
Alpha Draft Programmer's Introduction to the Cortland

Programmer's Introduction to the
Cortland

Alpha Draft
Part No. 030-3122

July 31, 1986

Writer: William H. Harris
Apple Technical Publications

)

/>
I

Contents

Figures and Tables x

Preface About This Manual
Don't read this book unless... 1
Roadmap: How this manual fits into the Cortland Technical
Manual Suite 2
What's in this manual 7
Other materials you'll need 7
Visual cues 8
Language notation 8

Chapter 1 Deciding to Write Desktop Applications

About desktop applications 10
Gains and costs 10
Differences from Apple II programming 11
Differences from Macintosh programming 12

If you're porting over from the Mac 13

Chapter 2 Understanding the Cortland Programming Environment

About native mdoe and this book 15
HardwarelFirmware factors 15

Featuring the 65816 15
Working with the stack and direct page 16
Managing memory 18
The screen display 20
Summary: the native mode execution environment 21

The Cortland toolbox 22
Calling the tools 22
The big five 22
Desktop interface tools 23
Math tools 24
Printer tools 24
Sound tools 24
Specialized tools 24

Chapter 3 Programming a Desktop Application

About event-driven applications 27

2

An outline of an event-driven application 27
An example event-driven application 28

Step 1. Setting up the programming environment 28
Step 2. Defining the data structures and the data 29
Step 3. Starting up the Tool Locator 29
Step 4. Starting up the Memory Manager 30
Step 5. Starting up the Miscellaneous Tools 30
Step 6. Loading other tools 30
Step 7. Requesting direct page space for the tools 31
Step 8. Starting up QuickDraw II 32
Step 9. Starting up the Event Manager 33
Step 10. Starting up the Window Manager 34
Step 11. Starting up the Menu Manager 34
Step 12. Starting up other tool sets 34
Step 13. Setting up environment for main event loop 35
Step 14. Setting up the system menu bar 35
Step 15. Beginning the main event loop 36
Step 16. Handling application-specific events 37
Step 17. Shutting down the application 37

Preparing an event-driven algorithm 37
An event-driven application is... 38
Some practical hints 38

Chapter 4 Displaying in Color

The color possibilities 40
Drawing in color 42
Modifying the colors 43

Changing a color in a color table 43
Swapping whole color tables 44

Text colors 44

Chapter 5 Dealing With Flies

About file handling - ProDOS 16 46
Creating files 46
Opening files 47
Reading and writing files 47
Closing and flushing files 48
Presenting the standard file interface 48

Chapter 6 Coding Static and Dynamic Segments

Introducing static and dynamic segments 50
Coding static segments 50
Coding dynamic segments 51

Chapter 7 Wrlttng a Cortland Desk Accessory

The Different Styles of Desk Accessories 53
Writing Classic Desk Accessories 53
Writing New Desk Accessories 54

(

Chapter 8 Writing Shell Applications

Shell Environments 57
Writing top-level shells 57
Writing programs to run under shells 57

Appendix A Assembly Language Source Code for the Event-Driven
Example

Appendix B Pascal Source Code for the Event-Driven Example

Appendix C C Source Code for the Event-Driven Example

Appendix 0 Application Disk Flies

Appendix E Pointers to Other Cortland Books

3

(

Preface

About This Manual

Don't read this book unless...
you are a programmer interested in developing new applications or
desk accessories for the Cortland. This book is specifically
designed to get you started writing source code which takes full
advantage of the powerful capabilities of the Cortland.

Please don't expect this book to teach you about all the varieties of
programming possible for the Cortland. In particular, the book
does not tell you how to revise an existing Apple II application to
take advantage of the new Cortland features. Applications can be
written for the Cortland that also run on the other members of the
Apple II family, but that kind of programming lies outside the scope
of this book.

In this book, we wish to present a particular style of application
known as a desktop application. Such applications present
commands as options in pull-down menus, and material being
worked on appears in rectangular areas of the screen called
windows. The user can select commands or other material by using
the mouse to move a pointer around the screen. In addition, such
applications are event-driven; that is, the user causes an event
(typically a mouse click or a keypress) which the application takes
care of and then begins waiting for the next event.

We assume that you are either a programmer or very familiar with
programming concepts, but we do not assume that you know C,
Pascal, or 65816 assembly language. In fact, except in the
appendixes which list the source for the example desktop program,
we don't refer to any real programming language at all. We prefer to
present the concepts in English, so that you can understand the
overall structure of an event-driven program without concentrating
too much at first on the details.

RectoFooter

Besides the desktop applications, we aiso present some information
on how to work with Desk Accessories and Shell Applications. :\'ote
that this book is not intended to be an exhaustive reference. There
are many levels of understanding about programming on the
Cortland; this book is on the first level, while other books in the
Cortland suite provide the deeper levels. Those books are briefly
described in the next section of this preface.

f~oadmap: How This Manual Fits Into the
Cortland Technical Manual Suite
l11e Cortland has many advanced features, making it more complex
than earlier models of the Apple II. To describe it fully, Apple has
produced a suite of technical manuals. Depending on the way you
intend to use the Cortland, you may need to refer to a select few of
the manuals, or you may need to refer to most of them.

The technical manuals are listed in Table 1. Figure A-I is a diagram
showing the relationships among the different manuals. In
adcUtion, Appendix E has some additional specific references for
particular subjects application developers might be interested in.

Table 1
The Cortland Technical ManualS

Title

Technical Introduction to the Cortland

Cortland Hardware Reference

Cortland Firmware Reference

Programmer's Introduction to the Cortland

Cortland Toolbox Reference: Volume 1

Cortland Toolbox Reference: Volume 2

Cortland Programmer's Workshop

Cortland Workshop Assembler Reference"

Cortland Workshop C Reference"

Cortland Workshop Pascal Reference"

ProDOS 8 Technical Reference

2 About This Manual

Subject

What the Cortland is

Machine internals-hardware

Machine internals-firmware

Concepts and a sample program

How the tools work

More Toolbox specifications

The development environment

Using the assembler

Using C on the Cortland

Using Pascal on the Cortland

ProDOS for Apple II programs

Cortland ProDOS 16 Reference

Human Interface Guidelines

Apple Numerics Manual

·There is a Pocket Reference for each of these.

ProDOS, Loader, and Finder for Cortland

For all Apple computers

Numerics for all Apple computers

(
I

The Introductory manuals
These books are introductory manuals for developers, computer
enthusiasts, and other Cortland owners who need technical
information. As introductory manuals, their purpose is to help the
technical reader understand the features of the Cortland,
particularly the features that are different from other Apple
computers. Having read the introductory manuals, the reader will
refer to spedfic reference manuals for details about a particular
aspect of the Cortland.

The Technical Introduction

The Technical Introduction to the Cortland is the first book in the
suite of technical manuals about the Cortland. It describes all
aspects of the Cortland, including its features and general design,
the program environments, the Toolbox, and the development
environment.

'W'here the Cortland Owner's Guideis an introduction from the point
of view of the user, the Technical Introduction describes the
Cortland from the point of view of the program. In other words, it
describes the things the programmer has to consider while
designing a program, such as the operating features the program
uses and the environment in which the program runs.

The Programmer's Introduction

This book is the one that tells you how to begin writing programs
that use the Cortland user interface (with windows, menus, and the
mouse), and provides the concepts and guidelines you need. It is
not a complete course in programming, only a starting point. It
introduces the routines in the Cortland Toolbox and the program
environment they run under. It includes a sample program that
demonstrates how a program uses the Toolbox and deals with the
operating system.

Roadmap 3

4 About This Manual

'fhe machine re'ferencE~ mal1uals

There are two reference manuals for the machine itself: the
Cortland Hardware Reference and the Cortland Firmware
Reference, These books contain detailed specifications for people
who want to know exactly what's inside the box.

The Hardware Reference lTlanual

The Cortland Hardware Reference is required reading for
hardware developers, and it will also be of interest to anyone else
who wants to know how the machine works. It contains detailed
information about the hardware, including the mechanical and
electrical specifications of all connectors, both internal and
external. It also describes much of the internal hardware, to
provide a better understanding of the machine's features.

'11e Firmware '~eference manual

The Cortland Finnware Reference describes the programs and
subroutines that are stored in the machine's read-only memory
(ROM), with two significant exceptions: Applesoft BASIC and the
Toolbox, which have their own manuals. 'nle Firmware Reference
includes information about interrupt routines and low-level I/O
subroutines for the serial ports, the disk port, and for the DeskTop
Bus, which controls the keyboard and the mouse. The Firmware
Reference also describes the Monitor, a low-level programming
and debugging aid for the 65816.

The Toolbox manuals

Like the Macintosh, the Cortland has a built-in Toolbox. The
Cart/and Toolbox Reference, Volume 1, introduces concepts and
terminology and tells how to use the tools. It also tells how to write
and install your own tool set

Of course, you don't have to use the Toolbox at all. If you only want
to write simple programs that don't use the mouse, or windows, or
menus, then you can get along without the Toolbox. However, if
you are developing an application that uses the desktop interface,
or if you want to use the Super Hi-Res graphics display, you'll find
the Toolbox to be indispensable.

The Cortland Programming languages
Apple is currently providing an assembler and compilers for C and
Pascal. Other compilers can be used with the workshop, provided
that they follow the standards defined in the Cortland
Programmer's Workshop Reference.

There is a separate reference manual for each programming
language on the Cortland. Each manual includes the specifications
of the language and of the Cortland libraries for the language, and
describes how to write, compile or assemble, and link a program in
that language. The manuals for the languages Apple provides are
the Cortland Programmer's Workshop Assembler Reference, the
Cortland Programmer's Workshop C Reference, and the Cortland
Programmer's Workshop Pascal Reference.

The Programmer's Workshop manual
The development environment on the Cortland is the Cortland
Programmer's Workshop. The Workshop is a set of programs that
enable developers to create and debug application programs on the
Cortland. The Cortland Programmer's Workshop Reference
includes information about the parts of the workshop that all
developers will use, regardless which programming language they
use: the Shell, the Editor, the ILnker, the Debugger, and the
utilities. The manual also tells how to run other programs, such as
custom utilities and compilers, under the Workshop Shell.

The standard object-module format, defined in the Programmer's
Workshop Reference, makes it possible to combine segments
written in different languages into a single program. The workshop
manual includes a sample program to show how this is done.

Roadmap 5

6 About This Manual

What Abollt ProDOS

There are two operating systems that run on the Cortland: ProDOS
16 and ProDOS 8. Each operating system is described in its own
manual: ProDOS 8 Reference and ProDOS 16 Reference. ProDOS
16 uses the full power of the Cortland and is not compatible with
earlier Apple ITs. The ProDOS 16 manual includes information
about the System Loader, which works closely with ProDOS 16. If
you are writing programs for the Cortland, whether as an
application programmer or as a system programmer, you are
almost certain to need the ProDOS 16 Reference.

ProDOS 8, previously just called ProDOS, is compatible with the
models of Apple IT that use 8-bit CPUs. A~ a developer of Cortland
programs, you need to use ProDOS 8 only if you are developing
programs to run on 8-bit Apple II's as well as on the Cortland. We
don't consider those kind of programs in this manual.

All-Apple manuals

In addition to the Cortland manuals mentioned above, there are
two manuals that apply to all Apple computers: Human Interface
Guidelines and Apple Numerics Manual. If you develop programs
for any Apple computer, you should know about those manuals.

The Human Interface Guidelines describes Apple's standard~ for
the human interface of programs that run on Apple computers. If
you are writing an application for the Cortland, you should be
familiar with the contents of this manual.

The Apple Nmner'ics Manual is the reference for the Standard
Apple Numeric Environment (SAJ"{E), a full implementation of the
IEEE standard floating-point arithmetic. The functions of the
Cortland's SANE tool set match those of the Macintosh SANE
package and of the 6502 Assembly Language SAJ"IE software. If your
application requires accurate arithmetic, you'll probably want to

use the SAJ"''E routines in the Cortland. The Apple Numerics Manual
is the comprehensive reference for the SANE numerics routines. A
description of the version of the SA;'\,'E routines for the 65816 is
available through the Apple Programmer's and Developer's
Association, administered by the A.P.P.L.E. cooperative in
Renton, Washington.

What's In This Manual
This manual has been designed to introduce you to event-driven
programming on the Cortland. To that end, Chapters 1 and 2
provide the background material you need to understand before
you can begin to code event-driven applications.

Chapter 3, "Programming an Event-Driven Application", is the
core of the book. In that chapter, we present a walkthrough of an
example event-driven application. The housekeeping for such
applications is so standard that you will be able to steal all of the
sequence, and maybe most of the code, for your own applications.

Chapter 4, "Displaying in Color", is an introduction to the colorful
capabilities of the Cortland. We introduce you to some of its
simpler aspects, and briefly sketch out how you can begin to change
the colors.

Chapter 5, "Dealing With Files", provides an overview of the
ProDOS 16 me calIs. You'll need to know about them if your
application is going to read or write mes from a disk.

Chapter 6, "Coding Static and Dynamic Segments", tells you the
basic rules that apply to how programs can be segmented for the
Cortland.

Chapter 7, "Writing a Cortland Desk Accessory", discusses the two
different types of desk accessories and the basic process desk
accessories must go through to execute safely

Chapter 8, "Writing Shell Applications", indicates the special rules
for writing both top-level and subordinate shell applications.

Appendixes A, B, and C provide the source code for the event­
driven application in 65816 Assembly, Pascal, and C respectively.
Appendix D lists the files that have to be on a disk to make it a
system disk, and Appendix E adds some cross-references for
specific topics to other books in the Cortland suite.

Other materials you'll need
In order to program event-driven applications, you'll also need at
least one of the languages available for the Cortland.

Other materials YOU'll need 7

Visual cues

New terms

Each new term introduced in this manual is printed first in
boldfuce. That lets you know that the term has not been defmed
earlier, and also indicates that there is an entry for it in the glossary.

Notes and warnings
The following typographical conventions mark special messages to
you:

.:. Note: Text set off in this manner presents sidelights or
interesting points of information.

Important Text set off In this manner-with the word Important in the
margin-presents Important information or instructions.

Warning Messages like this Indicate potentIal problE~ms or disasters.

Language notation

Since we don't use an actual computer language in this book, there
isn't much special notation you need to know about. There's only a
couple worth mentioning:

III Actual ProDOS commands are set off in all capital letters.

III C"""Anything else???""")

8 About This Manual

To use the
development
environment. ""

,.

",.

",.

",.

.".

'.,
"".. Cortland

.-_...."_".rAProgrammer's
Workshop
Reference

Programmer'.
Introduction

10 the
Cortland

To start learning

10 program the >1Cortland... >
>
>
>
>
>~~:Tcrr--'

To use
assembly

To use C... language...

Part I
. ., .,
" ",. .,

Cortland
.,

Cortland". .,
Workshop

.,
Workshop" ". ., .,

Cortland " C .,", Assembler. .,
Tools " Reference ., Reference'.,

""Reference:
. ., .,

,.,
Part II .,

To use the
Toolbox...

Cortland
Hardware

Reference

Toleamhow
the Cortland
works...

ProDOS 16
Reference

ProOOS8
Reference

To operale on
files...

Cortland
FirTJ1'Naffi

Reference

~Cortland
ID:ll:l:1:tH1:l Toolbox

Programmer's
L>-..>....::....:.~..:s Workshop

Chapter 1

Deciding to Write Desktop
Applications

About desktop applications
Desktop applications are those applications which adhere to the
concepts presented in the Apple Human lntetjace Guidelines.
Those guidelines establish a consistent user interface for all
applications.

One of the most basic tenets of the guidelines is that users should
feel they are controlling the program, rather than the program
controlling them. On the Cortland, that guideline is embodied
most fully in its support of event-driven applications. An event­
driven application responds to the user's actions, such as a mouse
click or a keypress, by taking some direct action. When that action
is completed, the application waits for the next event, when it leaps
into action again. This type of program is different (and we think
better) than the "series-of-orderly-menus" programs, which assume
that the user should do thus-and-so in such-and-such order.

TI1e next section will help you decide whether or not you wish to
write this type of application.

Gains and costs
The biggest reason to program desktop applications on the
Cortland is the consistent interface such an application presents to
the user. This means that users spend less time learning and more
time using an application.

As usual, however, there's no such thing as a free lunch. Event­
driven Cortland programs will not run on the Apple lIe and lIe,
unless you write additional code which recognizes which machine it
is running on and reacts accordingly.

10 Chapter 1: DeCiding to Write Desktop Applications

In this book. we'll use a·bit Apple
II's to refer to the Apple II. 11+. lie.
and lie,

Another cost is that you will have to learn event-driven
programming, which is not necessarily easier than menu-driven
progra.mming. However, we think that this type of user interface is
better for the user, and we prefer that the burden be placed on you
as the programmer; after all, you're the professional. The
disadvantage is minor when the ease of use and the compatibility
between the Mac and Cortland interfaces are considered.

One final note:this is the programming style preferred for the
Macintosh. The techniques you learn (although not the actual
code, in most instances) will be directly applicable to that
machine.

Differences from Apple II programming
.:- Note: This section is meant for experienced Apple II programmers

only. If you're not familiar with the Apple II. skip this section and go
on to the next one.

The Cortland has removed some of the limitations of the older 8-bit
Apple II world.

The Cortland has more memory, 16-bit registers, a bigger stack and
direct page, improved screen resolution, and advanced sound
capabilities (for details, refer to Chapter 2 and to the Carl/and
Technical Introduction). The Cortland obviously represents a leap
forward for the Apple II family. However, if you're an old Apple II
hacker, the leap may also be in a slightly different direction than
you anticipated. The syllogism can be constructed as follows:

1. The new capabilities of the Cortland are best accessed through
desktop applications.

2. Desktop applications are designed to use the system software,
rather than talking to the hardware directly.

3. Therefore, good Cortland Programmers don't write metal!

This departure from the old absolute address-oriented style of
Apple II programming is not accidental. The software of the system
has been designed so that it is self-defeating to use hardware entry
points or absolute addresses. If you go ahead and use such things as
hardware addresses, we won't be held responsible. We can almost
guarantee that any "hard-coding" you attempt will not remain
compatible with other versions of this machine in the future.

Differences from Apple II Programming 11

This policy has been deliberately adopted, in order to avoid the old
snarl where changes and improvements could not be made because
applications depended upon the actual locations. The current
system is a lot more flexible, and we hope you"1I soon get used to it

The policy also extends to such things as memory management,
where, instead of controlling memory directly, your application
asks the Memory Manager for space. Once again, the flexibility and
ease make up for the indirectness of the process. (See Chapter 2
under "Managing Memory" for details).

Similarly, the fIxed-address global page of the 8-bit Apple II world
has disappeared, to be replaced by ProDOS 16 calls.

Finally, note that the 65816 microprocessor adds some new
addressing modes and instructions to the 6502 world.···Should I
mention morc language differences here???···

Differences from Macintosh programming
.:. Note: This section is meant for experienced Macintosh

programmers only. If you're not familiar with the Mac, skip this
section and go on to the next chapter.

Beyond the obvious difference that the Cortland has a very different
microprocessor than the Macintosh, resulting in different
programming languages and capabilities, there is an essential
similarity betv.'een the Cortland and the Mac: both use desktop,
event-driven applications. Many of the toolbox routines are even
named the same and function in the same way. The toolbox has
been implemented differently on the Cortland, though, so watch
out for differences when using the tools. In particular, be aware that
the Cortland doesn't have a Resource Manager. The Cortland can
load data segments (which could be constructed to perform the
same functions as resources), but a standard format for maintaining
the data segments is not provided.

12 Chapter 1: Decid'ng to Write D.,sktop Applications

You'll also have to examine the Cortland tool calls you make
carefully. There are some tools that do not exist in the Mac (at least
at the time of this writing). For example, the Window Manager call
TaskMaster makes taking care of scrolling, zooming, etc. easier on
the application. For another example, a window type exists on the
Cortland with predefmed scroll boxes. Such differences are
typical; you can safely assume that a Cortland event-driven
program will work in the same general fashion as a Mac event­
driven program, but you can't assume that all the calls work in
exactly the same way.

·"MPW-CPW comparisons appropriate here, or better left
to CPW book?···

There are also some specific things you should check for if you're
trying to port a Mac application over; these are documented in the
next section.

If you're porting over from the Mac...
"·is this section appropriate, or too specific? I just couldn't
imagine where else "porters" would look for the
information? Or won't that many be ported over???'"

The steps to take if you're attempting to port over a Macintosh
application are as follows:

III Convert resource files to data segments. Whenever independent
(or shared) data blocks are needed, place them into a separate
segment.

II Remove references to Mac resource tools and replace them with
the appropriate non-resource from of the tool.

II If display dimensions exist as constants, change them. The
Macintosh has an aspect ratio of x to Xi the Cortland has a ratio
of X to X.

II Replace File Manager calls with ProDOS 16 calls.

·-what else??? Is this list small, finite-but-huge, or
infinite???"·

RectoFooter 13

(
\

Chapter 2

Understanding the Cortland
Desktop Environment

(

About native mode and this book
The Cortland can operate as a full 16-bit microprocessor (in so­
called native mode), or can emulate the 6502 of the 8-bit Apple n
world, or can operate in several states in between. In this book, we
consider only the native mode of the Cortland, since that is the
only environment which supports desktop applications. In this
chapter, we present the background you need in order to program
in this environment.

Hardware/firmware factors
In this section, we discuss the increased power of the Cortland, and
particularly the features you will have to consider when writing your
program.

Featuring the 65816
From the programmer's point of view, the microprocessor is
probably the most important piece of hardware. The Cortland uses
a 65816 microprocessor, some of whose are summarized in the
following table:

RectoFooter 15

Table X·X Features 01 the 65816 MlcroprOC9$$Or

16-bit accumulator

16-bit X and Y registers

Relocatable direct page (l6-bit Direct register)

Relocatable stack (l6-bit Stack Pointer register)

8-bit Data Bank register

8-bit Program Bank register

Addressing modes which take advantage of the 16- and 24-bit
possibilities offered by the above registers

Given these features of the 65816, you can see that the Cortland is
truly a 16-bit machine when it is functioning in native mode. It is
this "16-bitness" that provides many of the new capabilities of the
Cortland, with a large, relocatable direct page and stack being
among the most important.

Working with the stock and direct page

Because the 65816 microprocessor's stack-pointer register is 16 bits
wide, the hardware stack may theoretically be located anywhere in
bank $00 of memory and be as much as 64K bytes deep. In
practice, however, the stack is limited to about 32K bytes because of
reserved memory areas in bank $00.

The direct page is Cortland's equivalent to the 8-bit Apple Il's zero
page. The difference is that the direct page doesn't have to be page
zero in memory. Like the stack, the direct page may be placed in
any unused area of bank $00: The 65816's Direct register is 16 bits
wide, and all direct-page addresses are added as offsets to the
contents of that register. At least in theory, then, the direct page
can also be 64K bytes.

In practice, however, less space is available. First, only the lower
48K bytes of bank $00 can be allocated; the rest is reserved for I/O
and system software. Also, because more than one program can be
active at a time, there may be more than one stack and more than
one direct page in bank $00. Furthermore, many applications may
want to have parts of their code as well as their stacks and direct
pages in bank $00.

16 Chapter 2: Understanding the Desktop Environment

(

I
\

Important

Finally, the stack and the direct page grow towards each other in
bank $00 Direct-page addresses are offsets from the base of the
allocated space, and the stack grows downward from the top of the
space. Thus, the available space in bank $00 must selVe for both

ProDOS 16 provides no way to detect stack overflow or
underflow. or the stack colliding with the direct page. Your
program must be carefully designed and tested to make sure
this can't happen.

Your program should therefore be as efficient as possible in its use
of stack and direct-page space. The total size of both should
probably not exceed about 4K bytes in most cases. Still, that means
you can write programs that require stacks and direct pages much
larger than the 256 bytes available for each on 8-bit Apple II's.

Allocating stock and direct page space

You can choose one of three ways to define the total amount of
space for stack and direct page:

1. Assign the total amount of space for the direct page and stack
when you assemble and compile your program. This is the most
flexible method, since you don't have to change your source
code at all and can test the various effects of changes by simply
recompiling.

2. Allocate your own stack and direct-page space at run time.

3. Don't do anything, which gives the application a 1K total stack
and direct page by default.

Assigning stack and direct page dUring compilation: You can
define your program's stack and direct-page needs when you
assemble or compile your program. The size you specify is the
total amount of stack and direct-page space your program needs.
The space is assigned as a page-aligned, locked, dynamic memory
block of the appropriate size in bank $00. When your program
terminates with a Q1.JIT call, the direct-page/stack block is purged
along with the program's other allocated blocks. The stack and
direct page are therefore not preserved between program starts;
they must be reallocated each time the program is run.

RectoFooter 17

Important There Is no provision for extending or moving the dlrect­
page/stack space after Its Initial allocation. Because bank $00
Is so heavily used, the space you request may be
unavailable-the memory adjoining your stack Is likely to be
occupied by a locked segment. Make sure that the amount of
space you specify at link time fills all your program's needs.

Allocatlng space at run "me: Your program may allocate its own
stack and direct-page space at run time. When ProDOS 16 transfers
control to you, be sure to save the UserID value left in the
accumulator before doing the following:

1. Using the starting or ending address left in the D or S register by
ProDOS 16, make a FindHandle call to the Memory Manager, to
get the memory handle of the automatically-provided direct­
page/stack space. Then, using that handle, get rid of the space
with a DisposeHandle call.

2. Allocate your own direct-page/stack space through the Memory
Manager NewHandle call. Make sure that the allocated segment
is purgeable, unmovable, and locked.

3. Place the appropriate values (beginning and end addresses of the
segment) in the D and S registers.

Accepting the default stack and direct page: If the system finds
no direct-page/stack specification at load time, it still returns the
program's UserID and starting address to ProDOS 16, but it does
not allocate a direct-page/stack space and returns zeros as the base
address and size of the space. ProDOS 16 then calls the Memory
Manager itself, and allocates a locked 1K direct-page/stack in bank
$00.

Once allocated, the default direct-page/stack is treated just it would
be if it had been explicitly specified by the program.

Managing memory
("'-what I need here, I think, is a definition and list of only
those elements which affect the source code; that is, given
the power of the Memory Manager, the programmer does
not need to know details about the memory map or even
what memory he is allowed to use. Is this correct???...•

18 Chapter 2: Understanding the Desktop Environment

I;

There are other restrictions on
what parts of memory can be
used; for example. desk
accessories may not use special
memory and code may not cross
bank boundaries. For fuJi details
on all of the possible block
attributes. see the Memory
Manager chapter in Volume 1 of
the Cortland Toolbox Reference.

The whole point of the memory management scheme on the
Cortland is that you don't do it; that is, you as the programmer
don't have to keep track of what memory is available, and don't have
to worry about stomping on something already using some of
memory. Managing memory on the Cortland has been largely
lifted from you and given to the Memory Manager, who controls all
of the memory available to your application.

You might think of the Memory Manager as a bookkeeper who signs
out memory for your application to use, and protects that memory
while your application is using it. When your application fmishes
with the memory, it is returned to the Memory Manager who can
then sign it out again.....place for a graphic of the Memory
Manager as a bookkeeper - or would that be too cutesy or
over-anthropomorphic???"""

Given this approach, your application doesn't have to concern
itself with the details about where to place code or data in memory.
Instead , your application asks the Memory Manager for space, and
the Memory Manager returns a handle, rather than a simple
pointer, to that space. A handle points to a master pointer which
points to the memory block. If a block is moved, the program can
still find the block by examining the master pointer, which never
moves. The follOWing picture illustrates a handle and a master
pointer.

(illustration from Memory Manager ERS)

The most visible way this method affects your source code is that
you will sometimes need or want to use a pointer to the block rather
than the handle. To do that, you need to dereference the handle
by storing the current contents of the handle into a pointer.

When a handle has been dereferenced, the program must be sure
the block doesn't move, which might occur if the Memory Manager
is called. Your application specifies whether a particular block is
movable or immovable. For the main segments of program code,
it is often best to specify that the block be fixed, in which case the
block will never move.

RectoFooter 19

For other program segments, you might only want to temporarily
lock them down, so that they don't move while you're using them,
but then unlock them so that the Memory Manager can make more
efficient use of memory by moving blocks around. Similarly, data
blocks should be locked and unlocked in the same fashion. This
also brings up the concept of purging. When you unlock a block,
and you don't think you'll need it for awhile, you should mark it
purgeable so that the Memory Manager can throw out the contents
of the block and free the space if it has to. If the space is not
needed, the Memory Manager does not throw it out, thus leaving
the original contents available to the application. If the block is
purged, and the segment is requested, the Memory Manager has to
ask the System Loader to reload the block.

The System Loader is the other memory-affecting entity you should
know about. The System Loader has the capability to load segments
while a program is running, which opens up some space- and
efficiency saving options for applications.

The space-saving options are
discussed more fully in Chapter
6 of this book.

Although you usually won't make calls directly to the System Loader,
be aware that it functions most efficiently if you allow it to place
programs wherever the Memory Manager tells it to. The upshot is
that you shouldn't write code that is position-dependent. In
particular, avoid the use of absolute origins and addresses, since
those defeat the purpose of the relocating loader ···anything
else to avoid???·... This doesn't mean that your code has to be is
relocatable once it's been placed, but simply that the code must not
depend upon starting at a particular address.

See the Cortland ProDOS 16
Reference for complete details
on the System Loader.

The screen display
The display modes new to the Cortland, called the Super Hi·Res
graphics modes, are able to produce high-quality, high­
resolution color graphics.

20 Chapter 2: Understanding the Desktop Environment

Operating system
Accumulator size
Index register size
Direct page address
Stack address

(

-:. Apple IL As usual, we won't talk about the display modes
available on 8-bit Apple II's. Those are also available on the
Cortland, but are outside the scope of this book.

There are two Super Hi-Res graphics modes on the Cortland. Both
modes display 200 horizontal lines. 640 mode can produce 640
vertical lines, while 320 mode can produce 320 vertical lines.
There are advantages to each mode; 640 mode obviously has higher
resolution, while 320 mode is easier to work with in color.

You have to set the resolution in your program when you start up
QuickDraw IT, one of the Cortland tool sets. We'll discuss the
Cortland tools in a moment For now, you should also know that
QuickDraw IT determines the colors of the display. The default for
text and graphics is black characters and lines on a white
background. For information on changing the defaults, refer to
Chapter 4 'Displaying in Color, H in this book.

Summary: the native mode execution
environment
ProDOS 16 automatically sets up the following environment for
desktop, event-driven programs:

Table x.x The NaHve Mode Execution Environment

ProDOS 16
16 bits
16 bits
any page in bank $00
any page from $0800 to $BFOO
in bank $00

Shadowing of I/O spaces on
SmdowingofText~ges on
Shadowing of Hi-Res graphics pages off
Default display Super Hi-Res
Available RAM banks $00 and $01, expansion
RAM

parts of banks $EO and $El

The Cortland Toolbox 21

The Cortland toolbox
In this section, we introduce the Cortland tools. The Cortland tools
are collections of routines provided by Apple to make desktop
programming easier. The tools support the standard desktop
interface and provide you with building blocks to help you construct
your application.

Calling the tools

How to access the tools depends, of course, upon the programming
language from which you're calling them. However, there is at least
one rule that makes using the tools relatively easy: from any
language that supports the tools, you call an individual routine by
invoking its name and providing the proper input parameters.
Thus, the the tool calls are sort of a macro language in themselves.

See Volume 1 of Cortland
Toolbox Reference for details on
the calling conventions.

The big five

These tools provide the basic the framework upon which the other
tools can build. All of these tools must be used in every event­
driven application. The tools in this group are as follows:

Tool Locator Provides the mechanism for dispatching tool
calls. This tool allows you to get away with not
knowing where in memory the tools reside; the
Tool Locator knows and retrieves them when
you make a tool call. Once you start the Tool
Locator, its operation is automatic.

Memory Manager Allocates all memory available to the
application. When your application needs
memory, you'll request it from the Memory
Manager.

Miscellaneous Tool Includse mostly system-level routines that
must be available.

QulckDraw II Controls the graphics environment and draws
simple objects. Other tools call QuickDraw II
to draw such things as windows.

22 Chapter 2: UnderstandIng the Desktop Environment

Event MClnager

Menu Manager(

The list of tools needed tq :
support New Desk Accessories Is
given in Table 7,1 In Chapter 7 of
this book,

Traps events as they happen and passes them
to the application.

Examples of their use are given in the next chapter.

Desktop interface tools
This group of tools controls the desktop interface. The Window and
Menu Managers and Line Edit will almost always be used, in order to
adhere to the Human Interface Guidelines; the other tools should
be used if your application needs its feature (for example, the
Dialog Manager will be needed if your application uses dialog
boxes). Many of these tools are also needed to support New Desk
Accessories.

The tool sets are as follows:

Window Manager Updates windows.

Controls and maintains the pull-down menus
and the items in the menus.

Une Edit Presents text on the screen, and allows that text
to be edited.

Control Manager Presents controls, which are objects on the
screen that the user can manipulate with the
mouse to cause instant action or change
settings.

Dialog Manager Implements dialog boxes, which are to
appear on the screen when an application
needs more information to carry out a
command.

Scrap Manager Supports the desk scrap, which allows data to
be copied from one application to another (or
from one spot to another within an
application).

Desk Manager Enables applications to support desk
accessories, which are "mini-applications"
that can be run at the same time as another
application,

Standard File Operations

The Cortland Toolbox 23

Presents the standard user interface when a file
is to be saved or opened.

Examples of Window Manager and Menu Manager calls are given in
the next chapter.

Math tools
Integer Math Tool Set Supports mathematics routine with integers,

long integers, and signed fractional numbers.
Also converts integers, hex, and decimal
numbers from one form to another.

SANE

Printer tools

Supports the Standard Apple Numerics
package, which allows IEEE standard
extended-precision calculations.

High-Level Printer Driver
(···Information not yet available.···

Low-Level Printer Driver
(···Information not yet available.···

Sound tools
Sound Manager Supports the sound tool sets interfaces to the

Cortland toolbox and provides the basic
sound capabilities.

Note Synthesizer (···to be provided···)

(···How many others of these should we IIst17?···)

Specialized tools
Apple Desktop Bus Tool Set

Controls Apple Desktop Bus activity.

Scheduler Prevents a tool call from crashing the system
by asking for a temporarily unavailable system
resource.

24 Chapter 2: Understanding the Desktop Environment

Text Tool Set Provides an interface between Apple IT
character device drivers and applications
running in native mode.

The Cortland Toolbox 25

,.,

Chapter 3

Programming an Event-Driven
Application

The source code is reproduced in
Appendixes A, B, and C if you
wish to refer to it,

About event-driven applications
If you want to program native-mode applications on the Cortland,
you need to understand the concept and practice of event-driven
applications. This type of application essentially waits for the user
to do something (that is, cause an "event"), such as click the mouse
click or press a key on the keyboard, Such an application is
organized around a main event loop that trap the event and report
its type, Conditional statements th~n determine what action to take
based on what type of event hapPened.

This chapter explores a demonstration event-driven application
developed by Apple. Since we can't tell which of the various
languages you're using, we walk through the application without
presenting the actual code,

You also should have received the source code in the language
package you purchased from Apple; feel free to steal the application
and use it as a "skeleton" which you can then flesh out into your full­
fledged application.

An outline of an ·event-driven application
This section simply lists the programming steps involved in writing
an event-driven application. The list gives you an overview of the
entire application. Each step is explained in more detail in the next
section.

Note that the steps are introduced chronologically, and not listed in
the order in which they might appear in source code. How modules
are chained together depends upon the language you're using and
your own predilections; we simply indicate the order in which
things must or should happen.

An outline of an event-driven applications 27

('-writer's note: should one more level of abstraction be
provided in the following list; e.g. "Start up the basic tool
sets needed by all applications")

1. Depending upon the language, set up the programming
environment.

2. DefIne the data structures and the data.

3. Start up the Tool Locator.

4. Start the Memory Manager.

5. Start up the Miscellaneous Tools.

6. Load any other desired tools.

7. Request zero page space from the Memory Manager.

8. Start up QuickDraw II.

9. Start up Event Manager.

10. Start up Window Manager.

11. Start up Menu Manager.

12. Start up any other tool sets needed.

13. Set up environment for main event loop.

14. Set up system menu bar.

15. Begin main event loop

16. Handle application-specific events.

17. Shut down application.

Note that, in some instances, the steps do not have to be taken in
exactly the suggested order. We're presenting an order that works in
the example application; this gives you a basis to begin
experimenting with the source code to see what can be changed.

An example event-driven application

Step 1. Setting up the programming environment

If you're programming in assembly language, there's at least one
thing you have to do before you start; you must tum on the 65816
instruction set and indicate under what name the output me will be
stored with a KEEP instruction. There are other various options you
may want, but we leave them up to you.

C""Anythlng likely in this slot for C or Pasca1???''')

28 Chapter 3: Programming an Event-Driven Application

)
,,/

(

Step 2. Defining the data structures and the data

Where and how you defme your data structures and the actual data
depends upon the language you1re using. In any case, the data must
be defined somewhere; we'll leave the housekeeping decisions for
you. Remember, though, to place all text that is to be displayed in a
local data area so that it can easily be changed for international
markets. (···can we make other recommendations across­
the-board or specific recommendations for Assembler, C,
and Pascal?···)

The structures you defme will, of course, depend upon your
program. This example program defines the following:

Ii The graphics mode.

Ii The menu colors.

II The basic structure of an event record.

III The basic structure of a rectangle.

IlII The basic structure of a window.

III The coordinates for the windows.

III The event codes returned by the Event Manager.

III Various control structures.

III Zero page data.

Another option is to place the data structures in separate modules,
which can then be retrieved through the appropriate language's
USING or Il':CLUDE facility.

Step 3. Starting up the Tool locator

As the name implies, the Tool Locator is the tool which does the
work of fmding all of the Cortland tools. It figures, then, that the
application must start up the Tool Locator before it makes any other
tool calls. The call is simple; it is simply

TLStartup

without any parameters. Once the Tool Locator is up and running,
you can begin starting up the other tools you need.

An example event-driven applications 29

Step 4. Starting up the Memory Manager

The "Memory Manager", for the Cortland, is the tool set which does
the housekeeping of assigning and cleaning memory. Because all of
the other tools ask the Memory Manager for any space they need,
the Memory Manager must be active before all other tools. The call
to start the Memory Manager is

MMStartup

without any input parameters. The call returns the User ill for this
execution of the application, which other Managers and Tools need
to reference in order to get memory space.

Step 5. Starting up the Miscellaneous Tools

The next tool you need to start is the collection of tool sets and
managers known as the Miscellaneous Tools. Don't be misled by
the name; this set of routines is crucial to the success of the event­
driven application. Once again, the call to start up the tool is
simply

MTStartup

Step 6. Loading other tools

Now that the Tool Locator, Memory Manager, and Miscellaneous
Tools are in place, it's time to load all other tool sets your
application will use. To simplify things, and to ensure that all RAJ\I­
based tools are loaded from disk, it is best to load all tools at this
time. The reloading of the Tool Locator, Memory Manager, and
Miscellaneous Tools doesn't hurt anything, and also gives you the
opportunity to ensure that the correct minimum version of all of
those tools is present. Loading all tool sets also saves you the
trouble of determining which tool sets are in ROM and which in
RAM.

The loading is accomplished by the LoadTools call, which needs as
input a pointer to a tool table listing the total number of tool sets
and the number of each tool set needed. The numbers of the tool
sets are given in table 3-1:

30 Chapter 3: Programming an Event-Driven Application

/'

Table 3-1
Tool set Numbers

Tool Mt number Tool Mt name

(

1 Tool Locator

2 Memory Manager

3 Miscellaneous Tools

4 QuickDraw II
5 Desk Manager

6 Event Manager
7 Scheduler
8 Sound Manager

9 Apple DeskTop Bus Tool Set
10 SANE
11 Integer Math Tool Set

12 Text Tool Set

13 Reserved for Apple Use
14 Window Manager

15 Menu Manager
16 Control Manager

17 Loader

18 High-Level Printer Driver

19 Low-Level Printer Driver
20 Line Edit

21 Dialog Manager
22 Scrap Manager

Important Any RAM-based tools must be located In the TOOLS
sUbdirectory of the SYSTEM directory (for a complete list of the
flies necessary on an application disk, refer to Appendix D),

Step 7. Requesting direct page space for the tools

Some of the tools, particularly QuickDraw II and the Event
Manager, require some direct page space. Your application has to
reserve that space before it starts up any tools which use it.

An example event-driven applications 31

Direct page IS t~e Cort'ar"'d's
r"D'over::ert on the 8-bt ADDie
I! s 'zero Doge', wnere :he ~rst

Doge (256 bytes) of memory
(starting at 10cationSOOOO in
bank SaO) was used extensively
to save time and space. On tihe
Cortland, tihe direct page can
actually start at any locanon In
bank SOO, and can be
theoretically any size up to 64K
bytes. However, the direct page
still provides the same
advantage of increasing
performance, essentially by
providing each manager with its
own 'zero page' See the
disc~ssion of direct page in
Chapter 2,

To reserve the space, you call the ~lemory Manager routine
~ewHandle, NewHandle needs as inputs the following information:

III the size of the memory block to reserve

III the User ID of the program requesting the space (the Cser ID was
prOVided by the Memory Manager in Step 4)

III the attributes of the block; that is, whether it is ftxed, page
aligned, ftxed bank, etc.- for direct page, the block must be
fIXed, ftxed bank, and locked

III the location where the block will begin

The call returns the handle of the direct page. ,>\5 discussed in the
Memory Manager section in Chapter 2 (and more fully discussed in
the Cortland Toolbox Reference description of the Memory
Manager), a handle is a pointer to a pointer.

That handle is used in the next steps to assign the zero page space
for QuickDraw II and the Event Manager.

Step 8. Starting up Quic:kDraw II

QuickDraw II is the tool set responsible for manipulating graphics
on the Cortland. Many of the other tool sets use QuickDraw calls to
draw their graphics, particularly those controlling the desktop
interface, such as the Menu and Window Managers. Therefore,
QuickDraw II must be started up before those other tools.

First, dereference the handle and store the associated pointer (the
block is locked, so the pointer is better). To start QuickDrawII, you
call the QDStartup routine and provide the following inputs:

32 Chapter 3: Programming an Event-Driven Application

(
,

II the starting location for QuickDraw II's zero page (it needs two
consecutive pages of direct page space)

II the Master Scan Line Byte, which controls the basic properties of
the lines that will appear on the screen, such as the resolution
and the color table for the scan line

III the maximum width in bytes of the largest pixel map that will be
drawn (a zero equals the entire screen)

III the User ID of the program requesting the space (the User ID was
provided by the Memory Manager in Step 4)

The basic structure of the tools in now in place; in fact, the
information up to this point is so generic you may wish to place it in
a single module. You could then either access that module from all
of your applications or copy and modify it slightly when necessary.
However, the next step takes you directly into the event-driven,
desktop-interface world,where there is still more generic
information that you might include into such a common module.

Step 9. Starting up the Event Manager

The Event Manager provides the basic support for event-driven
applications by monitoring:

III the user's actions, such as those involving the mouse and
keyboard

III the actions taken by other Managers, such as the Window and
Control Managers

As discussed in the "Philosophy of event-driven applications" in
this chapter, a typical event-driven application decides what to do
next by asking the Event Manager for the next event and then
responding appropriately to that event.

The Event Manager has to be started up before the rest of the
desktop tools can be used. To start the manager, call the EMStartup
routine and provide the following inputs:

II the starting location for the Event Manager' zero page '(it needs
one page of direct page space)

II the maximum number of events that the Event Queue can hold
(zero uses default of 20; maximum is 3639)

III the borders for the mouse or cursor , called the clamp values

&I the User ID of the application (the User ID was provided by the
Memory Manager in Step 4)

An example event-driven applications 33

Now that the Event Manager has been started, the rest of the desktop
interface tools can be started, beginning with the Window Manager.

Step 10. Starting up the Window Manager

The Window Manager keeps track of the application's windows, and
needs to be started for all event-driven applications which use the
desktop interface. To start the Window Manager, caIl the
WindStartup routine and provide the User ID of the application as
input.

Step 11. Starting up the Menu Manager

The Menu Manager supports the menu bar at the top of the screen,
an integral part of the desktop interface. To start the Menu
Manager, call the MenuStartup routine and provide the following
inputs:

III the User ID of the application (the User ID was provided by the
Memory Manager in Step 4)

III the starting location for the Menu Manager's zero page (it needs
one page of direct page space)

Up to this point, the information is almost entirely standard for all
event-driven applications. Thus, the code could be kept in a
common file and reused for any application.

Step 12. Starting up other tool sets

At this point, you now start tlp any other tool sets your application
will need. There is no prescribed order, although it's nice
conceptually to start with the tools your applications will use most
often.Note that the remaining tool sets require different inputs when
an application starts them up:

III a few, such as the Control Manager, require some direct page
space and the User ID (as provided by the memory manager)

III others, like the Sound Manager, require only some direct page
space

III still others, like the Integer Math Tool Set, do not require any
inputs

34 Chapter 3: Programming an Event-Driven Application

(

The list of minimum tool sets
needed for desk accessories Is
given In Table 7-1 In Chapter 7.

What each tool set requires as input to the startup call is
documented in the Cortland Toolbox Reference: Volume 1 and
Volume 2. There is also a minimum number of tool sets required to
support desk accessories.

The example application starts up the Control Manager and the
Integer Math Tools.

Step 13. Setting up environment for main event loop

The application is now almost ready to start its own work. If there
are any other flags or pointers that need to be cleared, they should
be done now (-"'Jim's application clears the zero page.
Anything else?--)

Step 14. Setting up the system menu bar

First, it's a good idea to set up the system menu bar. Now is when the
tool calls start to be really convenient, as they chain together to do
many of the background tasks required for an event-driven
application.

To set up the menu bar, start with the tool call NewMenu, providing
the following input:

II the "normal" menu colors; that is, the colors of the menu bar
and text when it is not being selected

III the "selected" menu colors; that is, the colors of the menu bar
and text when it is being selected

II a pointer to the data for the menu

The data for the menu should contain the title for each menu and
the items listed under each menu. For more information about
menu strings, see to the Menu Manager chapter in Volume 1 of the
Cortland Toolbox Reference.

The call returns a handle to the data for the menu, which can then
be used by the tool call InsertMenu to place the data in the list of
menus. InsertMenu needs the following input:

III the pointer to the menu string

III the place in the list of menus to insert the menu (zero to insert the
string at the front of the list)

An example event-driven applications 35

Your application can then calculate the appropriate height of the
menu bar with a FixMenuBar call, which returns a height based on
the tallest font being used. The menu bar can then actually be
drawn with a DrawMenuBar call.

The example application then allocates windows and storage space
for each window C·"what can we say about this?"·).

Step 15. Beginning the main event loop

You're now ready to have the application start its main work doing
nothing-or rather, sitting around in the event loop waiting for an
event to happen so that it can be handled. Most of the spedal
personality of your application will be built in this module, so we're
more limited in what we can prescribe for the module. We'll give
you some general guidelines, though, and indicate some of the
capabilities of the event loop by exploring the example
application.

The first thing the application should check for is whether its time to
quit. If it isn't, the application checks for the next event.

When an event does happen, the application gets the event and
passes it to the Window Manager routine called Task..Master.
TaskMaster essentially filters out the events which affect the structure
of windows, such as a click in the Zoom, Go Away, and Grow boxes.
TaskMaster can automatically handle those events, so your
application doesn't need to deal with them. To use TaskMaster, you
provide the following inputs:

III the event mask, used to call the Event Manager routine
GetNextEvent

III a pointer to the extended task event recoid that TaskMaster uses

If TaskMaster can't handle the event, it passes the event code back to
the application, where the application must deal with it. For
example, if the user selects a menu item, the application must find
out which item was selected and take action based on the item.
When the action is finished, the application returns to the main
loop to wait for some other event to happen.

36 Chapter 3: Programming an Event-Driven Application

/

Step 16. Handling application-specific events

We've now reached the point where your application does its work.
As an introduction to what kind of work an event-driven application
can do, we present two of the choices from the menu of the example
application.

The ftrst example is the opening of the ftrst QuickDraw window. To
reach this window, the user has made a selection on the
menu...C"'''W what level of detail should we go in this
section???···)

The second example is (...·hopefully, there will be time to
include in the example program a module that changes the
information in the content of the window?·")

Step 17. Shutting down the application

When it's time to quit the application, there is a series of steps which
ensure a graceful exit They are as follows:

1. Turn off all tool sets (except the three listed below) by using the
ShutDown call from each tool set This is another good place for
a common subroutine.

2. Call the Miscellaneous Tool Set ShutDown routine (with no
parameters).

3. Provide the User ill to the Memory Manager ShutDown callA.
Call the Tool Locator ShutDown routine (with no parameters).

5. Use the ProDOS QUIT caU to leave the application. The most
common situation will be to give the QUIT call without any
parameters, which will shut the application down and return to
the program in control "above" it (typically a finder or launcher
of some sort). Other possibilities are available; refer to the
ProDOS 16 manual for more information.

Preparing an event-driven algorithm
Now that you've seen an example event-driven application, it
should be clear that the creative part of your programming task will
be handling the various kinds of events you defme in your
application. In this section, we provide some background
information and some practical hints to laying out this kind of
application.

An example event-driven applications 37

An event-driven application is...
When the Macintosh introduced event-driven programming, Mac
programmers may have completed this section heading with the
words "trouble", "impossible", or perhaps something unprintable.
The programmers were not used to the chaotic world of reality
where users actually interrupt one action to perform another. To
ease you over that hurdle, we present in this section several
alternative concepts that might help you learn to write event-driven
applications.

None of the following concepts is the "correct" way to think about
event-driven applications. All of them are merely attempts to get
you to grasp the essence of this type of programming.

You might think of an event-driven application as:

III An endless loop waiting for an event to happen so that the loop
can dispose of the event and go back to waiting.

III Interrupted by user action, so that every event is sort of a mini­
interrupt.

III Causing a series of event ftlters until the end of the chain is found,
at which point the kind of event remaining is precisely known.

III Anarchy, not hierarchy.

("·Any other ideas???·")

Some practical hints
(-Tips and tricks on how to analyze a budding application
for its event-driven possibilities? Sort of a practical
application of the philosophy stated at the beginning of the
chapter? I would need a brainstorming session with
experienced application programmers for this sort of
thing"·)

38 Chapter 3: Programming an Event-Driven Application

(

Chapter 4

Displaying in Color

(

40 Displaying in Color

The color possibilities
The Cortland was designed to be a colorful character. The video
display hardware has many color capabilities; as usual, though, we
insulate you from the hardware by providing tool calls to
manipulate the color. To understand the way QuickDraw
manipulates it, you need to understand some background concepts.

Each physical horizontal line on the Cortland screen is called a
scan line, and each scan line is controlled independently by a scan
line control byte (an SeB). The SCB controls, among other things,
the resolution and the color table for the line.

Each color table has a palette of sixteen colors associated with it
The colors in the palette are associated with a color number, which
assigns the color's order in the table. The standard palette for the
default color table (table zero) for 320 mode is illustrated in Table 4­
1:

\

Table 4·1
Standard palette, table zero - 320 mode

Color number Default color Master color value

0 Black 000 Opposite of White
1 Dark Gray 777
2 Brown 841

3 Purple 72C
4 Blue OOF

5 Dark Green 080
6 Orange F70
7 Red DOO
8 Flesh FA9
9 Yellow FFO
10 Green OEO
11 Light Blue 4DF
12 Lilac DAF

13 Periwinkle Blue 78F
14 Light Gray CCC
15 White FFF Opposite of Black

The "master color value" specifies the red-green-blue values that
blend to make up the color. More information is given in the
"Changing a Color in a Color Table" section below.

The standard palette was selected because of its flexibility and
appearance; we recommend that you use it at fIrst until you are used
to the concept. You can then begin experimenting by resetting
individual colors in the palette, or even replacing the color table
with an entirely new one.

There is a total of 16 palettes available at anyone time. Since the
color table is controlled independently for each scan line, it seems
that the table could be changed for each line, which could result in
256 colors on the screen at once (16 colors in a palette times 16
palettes). In theory, that's true, but in practice we recommend that
you use only one color table for applications that use windows.
Remember, the scan line controls a physical line on the screen, not
the "relative" line in a window. If a window gets moved to another
part of the screen, the effects on the color would be at worst
unpredictable and at best difncult to control.

The color possibilities 41

/

42 Displaying in Color

If the entire screen is under control C....*presumably such an
application should not allow partial windows???*"), then
more complicated things can be done with the SCB's and the color
tables. You'll have to study the QuickDraw II chapter in Volume 2 of
the Cortland Too/box Reference for that information.

The color for 640 mode is more difficult to handle; in order to take
advantage of 640 mode's special capabilities, you'll have to
understand more about the video display then we wish to discuss in
this book. We recommend that, you experiment with color in 320
mode until you understand the principles. In this chapter, we deal
only with 320 mode. For further information refer to the Cortland
Hardware Reference and the QuickDraw II chapter in Volume 2 of
the Cortland Too/box Reference. (*"should we say more in
this forum???? I realize it will have to be added to the
QukkDraw discussion**·)

.:- Note: The Cortland colors default to black and white. Thus,
you can easily use 640 mode for high-resolution drawing without
even worrying about the color.

Drawing in color
If you specify the default color table when you fire up QuickDraw II
and then simply use a QuickDraw n call to draw on the screen, it will
draw black lines Cor whatever) on a white background. To change
the color of the line that is being drawn, or the screen background,
you use the QuickDraw tool calls dealing with pen patterns.

For example, using the default color table, you could make the pen
draw in the color red by calling the QuickDraw n routine
SetSolidPenPat and specifying color number 7. Similarly, other
QuickDraw calls can set the color of the background or C-any
other things worth mentioning????)

Any of the colors in the current color table can be selected as the
color to draw with or as the background

Refer to QuickDraw II In Volume
2 of the Cort1and Toolbox
Reference for details.

Modifying the colors

Changing a color in a color table
Probably the first thing you'n want to change about a color table is
the substitution of one color for another. You might, for example,
want to have four shades of green on the palette in order to paint a
subtle natural landscape.

To change a color, you use the QuickDraw II call SetColorEntry,
which sets the value of a specified color number in a specified color
table. For example, assume that you want to change the color
orange in the default table to a light green. You would specify to a
SetColorEntry can that you wanted to change table zero (the
number of the default table), color number 6 (the number of the
color orange) to the new color value. Of course, you also have to
specify the new color value, which is taken from a two-byte value as
follows:

(picture from hardware reference)

Since higher hexadecimal numbers mean darker colors, and we
wanted a light green, you would set the color value to "OCO", which
changes color 6 in table zero to that color.

While we have modified table zero to contain a different color (and
could continue to do so until table zero was completely changed),
you can also use this method to create an entirely new color
table-table 1 for instance.Of course, to do so would take sixteen
SetColorEntry cans. There is a more efficient way, at least in terms
of calls. You can also use the QuickDraw II call SetColorTable to set
a whole table at once to the values stored at a certain range of bytes
in the video buffer. However, that's a bit hardware-oriented for the
purposes of our discussion, so we'n let you explore that technique
on your own.C-is this an appropriate place to end the
discussion???··)

Modifying the colors 43

44 Displaying in Color

Swapping whole color tables
After you get used to setting individual colors in the default color
table, you may want to create your own customized palette.in an
entirely new color table. Using the SetColorEntry or SetColorTable
techniques described above, you can set the colors in the table to
any of the 4096 possible colors. You then teU the Cortland to use
the new table with the GetColorTable call, which retrieves the values
from the color table; for example, you could swap out table zero
with the values from table 1, etc.

You should also be aware that you could change the colors on the
screen by building the new table and then using the Scan Line
Control byte (SCB) to teU the line to use the new color table.

Text colors
You determine the color of text displaying on the screen by using
the QuickDraw II calls SetForeColor and SetBackColor. Once
again, you specify the color number to the call, which sets the
foreground (the "characters") and the background colors according
to the corresponding color in the current color
table.C···Anything else to mention??·")

Chapter 5

Dealing With Files

About file handling - ProDOS 16
When your application needs to store or retrieve information from
a disk or hard disk, you will need to deal with disk meso These are in
the province of ProOOS 16, which, among other duties, is in
control of all disk files. In this chapter, we discuss the basic
processes your source code must go through in order to access disk
meso We don't give you the details of how to make the ProDOS
calls; instead, we introduce you to them and indicate what they do.

For complete information on the
ProDOS 16 calls which affect
flies. refer to the Cortland
ProDOS 16 Reference.

Creating Files
Your application places a me on a disk by using the ProOOS 16
CREATE call. When you create a me, you assign to it the following
properties:

III A pathname. A ProDOS 16 pathname is a series of filenames,
each preceded by a slash (j). This pathname is a unique path by
which the file can be identified and accessed. The first filename
in a pathname is the name of a volume directory. Successive
filenames indicate the path, from the volume directory to the
file, that ProOOS 16 must follow to find a particular file. The
maximum length for a pathname is 64 characters, including
slashes.

This pathname must place the file within an existing directory.

III An access byte. The value of this byte determines whether or
not the file can be written to, read from, destroyed, or renamed.

III A file type. This byte indicates to other programs the type of
information to be stored in the file. It does not affect, in any
way, the contents of the file.

III A storage type. This byte determines the physical format of the
me on the disk..

46 Chapter 5: Dealing With Files

Opening Files
Before you can read information from or write information to a file,
you must use the OPEN call to open the file for access. When you
open a me you specify it by pathname. The pathname you give
must indicate a previously created file; the file must be on a disk
mounted in a disk drive.

The OPEN call returns a reference number and a buffer location to
be used for transferring data to and from the file. All subsequent
references to the open file must use its reference number. The me
remains open until you use the CLOSE call.

When you open a file, some of the file's characteristics are placed
into a region of memory called a file control block. Several of
these characteristi~e location in memory of the file's buffer, a
pointer to the end of the file (the EOF), and a pointer to the current
position in the me (the file's MAR.K)-are accessible to system
programs via ProOOS 16 calls, and may be changed while the file is
open.

Be aware of the differences between a me on the disk and an open
file in memory. Although some of the file's characteristics and
some of its data may be in memory at any given time, the file itself
still resides on the disk. This allows ProDOS 16 to manipulate mes
that are much larger than the computer's memory capacity. As a
program writes to the file and changes its characteristics, new data
and characteristics are written to the disk.

Reeding and Writing Files
READ and WRITE calls to ProDOS 16 transfer data between memory
and a file. For both calls, the system program must specify three
things:

III The reference number of the me (assigned when the me was
opened).

III The location in memory of a buffer that contains, or is to
contain, the transferred data. Note that this cannot be the same
buffer whose location was returned when the me was opened

III The number of bytes to be transferred.

When the request has been carried out, ProDOS 16 passes back to
the program the number of bytes that it actually transferred.

Reading and Wrlttng Flies 47

Closing and Flushing Files
When you fInish reading from or writing to a me, you must use the
CLOSE call to close the me. CLOSE writes any unwritten data from
the file's I/O buffer to the me, and it updates the me's size in the
directory, if necessary. Then it frees the buffer space for other uses
and releases the file's reference number. To access the file again,
you have to reopen it.

Information in the file's directory, such as the file's size, is normally
updated only when the me is closed. If the user presses Control­
Reset (typically halting the current program) while a file is open,
data written to the file since it was opened could be lost, and the
integrity of the disk could be damaged. This can be prevented by
using the FLUSH call.

FLUSH, like CLOSE, writes any unwritten data from the file's I/O
buffer to the file, and updates the me's size in the directory.
However, it keeps the file's buffer space and reference number
active, and allows continued access to the file. In other words, the
file stays open. If the user presses Control-Reset while an open but
flushed me is in memory, there is no loss of data and no damage to
the disk.

Both the CLOSE and FLUSH calls can close or flush all files or
specific groups of files.

Presenting the standard file interface
The Standard File Operations tool set allows you to present the user
with a standard way of dealing with files. The tool calls present a
standard dialog box whenever a me is to be opened or saved. Your
application needs to make only those tool calls to ensure the
consistent user interface ("·details to be added later, when the
File Operations tools settle down·")

~8 Chapter 5: Dealing With Flies

Appendix D

Application Disk Files

Table D-l lists the application disk files and structure necessary to
support a desktop, event-driven application.

Tobie 0·1
Desktop Application Disk Flies

I)lrec tory/File

PRODOS
SYSTEM

P16
LOADER
START
LIBS?
TooLS/

(and all the RAM-based tool sets needed to support
the application)

FOr-.7S/
DESK.ACCS/
SYSTEM. SETUP/

TooL.SETUP

RectoFooter

ApPE~ndix E

Pointers to Other Cortland
Books

In this appendix, we supply some references by specific topic to
chapters in the other Cortland books. We hope this list will help
you find specific topics quickly. (---Writer's note: this section
L'l intended as a catch-all for any topics that are too large or
too complicated for the scope of this book. Please
<:ontributel-")

Managing devices: How to manage block devices can be found in
the ProDOS 16 Reference in the chapter "Adding Routines to
ProDOS 16". You can read and write blocks and name devices, but
the information is normally only useful if you are writing such things
as disk ftxers. The file calls normally control input and output from
and to the disk.

Character devices are not really relevant to the desktop
environment, since that kind of input/output is normally handled
by tool calls such as Line Edit, QuickDraw II, and the Event
Manager.

Handling f1nnware IntetTupts: These can be found in the Cortland
Finnwa1'e Reference in the chapter "System Interrupts".

Installing Interrupt handlers: Look under the vector initialization
calls in the "Miscellaneous Tools" chapter in Volume 1 of the
Cortland Toolbox Reference.

Accessing tho sound capabilities of the Cortland: Look under
the "Sound Manager" chapter in Volume 2 of the Cortland Toolbox
Reference. Some of the RAM-based sound tools are sold as a
separate package and have their own book.

RectoFooter

2 Appendix E: Pointers to Other Cor11and Books

Chapter 6

Codingl Stcltic and Dynamic
SeglTlents

/

Introducing static and dynamic segments
A segment is simply a module of an application. Static segments
are loaded at program execution time, and are not unloaded during
execution; dynamic segments are loaded and unloaded during
program execution as needed. The loading and unloading is
transparent to the application.

This dynamic or static quality of a segment is assigned at link time.
We're not going to tell you how to assign those qualities in this book;
instead, we're going to give you the picture of how you'll have to
write your code in order for it to execute properly as static or
dynamic.

For complete information on
link!ng segments, see the
Cortland Programmer's
Workshop Reference.

Coding static segn1el"lts
Actually, the title of this section is slightly misleading; there's
nothing extra to do to code a static segment, save the general
requirement of not starting the segment at a particular address.

If a program is one static segment, the static segment will be loaded
where the Memory Manager wants it (as long as you don't specify an
origin at linking time). The program will simply remain there until
it terminates. For small applications and desk accessories, one
static segment is often all that's necessary. However, if your
program is beginning to strain the limits of memory, or you wish to
decrease the time it takes to load and nln, you might want to use the
Cortland's capability to load dynamic segments.

50 Chapter 6: Coding Static and Dynamic Segments

Coding dynamic segments
The System Loader for the Cortland has the capability to load
segments of an applietion while the application is running. This
allows you to decrease the initial load time of your application by
loading only the "permanent" part of the application as static
segments. Less-used code or data can be kept in dynamic segments
which will be loaded when the program requests them.

Such dynamic segments must as usual not contain absolute
addresses, so that the segment is relocatable. Most importantly,
dynamic segments must be subroutines which are jumped to with a
;SL or equivalent C·*"what is the C and pascal equivalent of a
JSL???).

Once a dynamic segment has been automatically loaded, it will stay
in memory until your application unloads it At that point, the
segment is marked as purgeable. If the Memory Manager desesn't
need more space before the next request for the segment, the
segment won't need to be reloaded and can be accessed quickly.

If the Memory Manager does need more memory than it can obtain
by compaction, it will purge the segment. The next time the
segment is asked for, the System Loader will have to load it again.

Automatically-loaded dynamic segments.are usually used for data
segments or for code segments that are accessed infrequently.
C···any more tips???···)

If your program wants to do a little more work and load dynamic
segments manually, it can make direct calls to the System Loader.
That process is out of the scope of this book, but is detailed in the
System Loader chapters of the ProDOS 16 Reference. (*··or
should we discuss it briefly here???···)

-> For Macintosh programmers: The capability to manually load
dynamic data segments canbe extended to load Mac-like
"resources" if desired.

Coding dynamic segments 51

Chapter j'

Writing a Cortlclnd Desk
Accessory

The different styles of desk c3ccessoriE~s

A desk accessory is a "mini-application" than can run at the same
time as another Cortland application. The Cortland supports two
different kinds of desk accessories; Classic Desk Accessories
CCDA's) and New Desk Accessories (NDA's).

Classic Desk Accessories are designed to execute in a non··desktop
environment. In essence, the CDA interrupts the application and
gets full control of the Cortland,

New Desk Accessories, on the other hand, are designed to execute
in a desktop environment. As such, they operate in a window and
are subject to the same rules as an event-driven application. They
are not stand-alone applications, however, since they rely upon
applications already having started up the Cortland tools.

~either type of desk accessory has a lot of extra programming
overhead apart from the actual task the accessory performs, Both
types depend heavily for support upon the Cortland tool called the
Desk Manager. In this chapter, we don't discuss the support the
Desk Manager gives, but rather we concentrate on what form the
Desk Accessory has to take.

For full details on the Desk
Manager and its desk accessory
suppport, see Volume 1 of the
Cortland Toolbox Reference,

Writing Classic Desk Accessories
When a Classic Desk Accessory gets control from the Desk
Manager, tile processor is in full native mode. Since the Desk
Manager has already saved the necessalY parts of the old state, the
CDA can concern itself solely with its own work.

TIle basic procedure of a CDA is to:

1. Initialize for new state, Remember, the Desk Manager has
already saved the old state when the CDA gets control.

2 Chapter 7: Writing a Cortland Desk Accessory

2. Do the actual work of the CDA Like all Cortland applications, a
CDA should ask the Memory Manager for any space that it needs.
In addition, the CDA must not cut the stack back further back than
it is when it gets control.

3. After the work of the accessory is finished, it must return to the
Desk Manager with an RTI or its equivalent. The Desk Manager
then automatically restores the old state and returns to the desk
accessory menu.

In order for a CDA to be found by the Cortland, it must have a me
type of $B9 (assigned when linking) and be placed in the
DESK.ACCS subdirectory of the SYSTEM directory.The accessory
must start an identification section which specifies the name of the
CDA and a pointer to the start of the code. The exact specifications
for the identification section are listed under the Desk Manager
chapter in the first volume of the Cortland Toolbox Reference.
C-"Or does anyone think we should llst that structure
here??....)

Writing New Desk Accessories
AlI New Desk Accessories are loaded from the disk at boot time.
When a NDA gets control from the Desk Manager, the processor is
in full native mode. The NDA can assume that the following tools
shown in Table X.x. have already been loaded and initialized.

Table X-X
Tools available to New Desk Accessories

Tool name

Tool Locator
Memory Manager
Miscellaneous Tools
QuickDraw
Event Manager
Window Manager C---List not yet settled-·-)
Menu Manager
Line Edit
Control Manager
Dialog Manager
Scrap Manager
High- and Low-Level Printer Drivers

Wrltlng New Desk Accessories }')""'I

.I

The basic task of an NDA is to:

1. Save important global values like the GrafPort ('·....finallist
needed when available....·)

2. Monitor the events ftltered through to it by TaskMaster, the Event
Manager, and some other system events. Based upon the event
it receives, the desk accessory must take action.

Note that a desk accessory cannot obtain any direct page space,
but must use the stack. (-Otherwise, does it ask the
Memory Manager for other space···??? Steve Glass is
thinking about this one···)

3. When the accessory is closed, it must restore the global
values.and return to the Desk Manager with an RTI. or its
equivalent.

In order for an NDA to be found by the Cortland, it must have a me
type of $B8 (assigned when linking) and be placed in the
DESK.ACCS subdirectory of the SYSTEM directory.

An NDA must start an identification section which specifies the
pointers to the four routines, how often it gets run codes, what
events it wants, and what the text is that appears as the menu item.
The exact specifications for the identification section are listed
under the Desk Manager chapter in Volume 1 of the Cortland
Too/box Reference. (···Or does anyone think we should list
that structure here??····)

"\ 5.5 Chapter 7: Writing a Cortland Desk Accessory

/
!

Chapter 8

Writing Shell Applications

(

Shell environments
(....*1 have put this chapter here as a conversation piece. Do
we want such a chapter, or should it be folded in with the
other issues in Appendix E??? Is there enough material to
warrant its inclusion, or is it too complex or too uncommon
for this book's level????)-

Writing top-level shells
(basic approach - if designed to run under a shell, the application
can count on the resources of the shell being there. CPW example
of such a shell.)

Writing programs to run under shells
(as above, count on resources being there)

Writing programs to run under shells 57

Appendixes

Appendix A

Assembly Language Source
Code ... Event-Driven Example

("·to be supplied"·)

Appendix B

Pascal Language Source
Code - Event-Driven Example

("·to be supplied"·)

RectoFooter

Appendix C

C Language Source Code ­
Event-Driven Example

(··*1:0 be supplied···)

RectoFooter

	v1_05_01
	v1_05_02
	v1_05_03
	v1_05_04
	v1_05_05

