
Apple IIGS Firmware
Reference Manual

Beta Draft
10/24/86

Writer: Rob Peck
Apple Technical Publications

This document contains preliminary information. It does not include

•final editorial corrections
•jinal art work
• an index

It may not include final technical changes

_()Dvri~ht © 1986 ADDle ComDuter, Inc.

l; APPLE COMPUTER, INC.

7his manual is copyrighted by
",pple or by Apple's suppliers,
''lith all rights reserved. Under
the copyright laws, this manual
may not be copied, in whole or
in part, without the written
consent of Apple Computer,
Inc. This exception does not
allow copies to be made for
others, whether or not sold, but
all of the material purchased
may be sold, given, or lent to
another person. Under the law,
copying includes translating
~nto another language.

s;: Apple Computer, Inc., 1986
20525 Mariani Avenue
Cupertino, California 95014
(',v8) 996-1010

"?ple and the Apple logo are
""'sistered trademarks of Apple
":.mputer, Inc.

_ditional credit lines as
",ded]

~ultaneously published in the
.ted States and Canada.

/

~etaDraft

CONTENTS

Chapter 1. Apple fiGS Firmware Overview
Introduction
A word about other Apple llGS finnware
The role of finnware in the Apple llGS system
Apple llGS finnware overview

Chapter 2. Notes for Programmers
Introduction
Apple llGS finnware routines
Other general topics

Chapter 3. System Monitor Firmware
Introduction
Invoking the Monitor
Monitor command syntax
Monitor command types
Monitor memory commands
Registers and flags
Miscellaneous Monitor commands
Special tricks with the Monitor
Machine-language programs
The Mini-Assembler
Summary of Monitor instructions

Chapter 4. Video Firmware
Introduction
Standard I/O links
Standard input routines
Standard output routines
Other finnware I/O routines
The text window

Chapter 5. Serial Port Firmware
Introduction
Compatability
Operating modes
Handshaking
Operating commands
Programming with Serial Port finnware
Error handling
Buffering
Interrupt notification
Background printing
Recharge routine
Extended interface

Chapter 6. Disk II Support
Introduction
Startup

T.O.C.-l

Table o!Contents

10/24/86

Table ofContents

BetaDrajt

Slot 5 boot
Apple 3.5 drive

Chapter 7. SmartPort Firmware
Introduction
Using SmartPort
Locating SmartPort
Locating the dispatch address
SmartPort call parameters
SmartPort assignment of unit numbers
Issuing a call to SmartPort
Device specific SmartPort calls
ROM Disk driver
Summary of SmartPort error codes
The SmartPort bus

Chapter 8. Interrupt Handler
Introduction
What is an interrupt?
The built-in Interupt Handler
Summary of system interrupts
Environment handling for interrupt processing
Handling Break instructions
Apple n os Mouse interrupts
Serial port interrupt notification
Chapter Summary

Chapter 9. Apple Desktop Bus Microcontroller
Introduction
ADB microcontroller commands
Microcontroller status byte

Chapter 10. Mouse Firmware
Introduction
Mouse position data
Using the Mouse fumware
Summary of fumware calls
Pascal calls
Assembly-language calls

Appendix A. Roadmap to the Apple IIGS Technical Manuals

Appendix B. Firmware ill Bytes

Appendix C. Firmware Entry Points in Bank 00

Appendix D. Vectors

Appendix E. Soft Switches

Appendix F. Disassembler/Mini-Assembler Opcodes

Appendix G. The Control Panel

T.O.C.-2 10/24/86

, I

""'letaDrajt

Appendix H. Banks $EO/$El

T.o.C.-3

Table o/Contents

10/24/86

• APPLE COMPUTER, INC.

This manual is copyrighted by
Apple or by Apple's suppliers,
with all rights reserved. Under
the copyright laws, this manual
may not be copied, in whole or
in part, without the written
consent of Apple Computer,
Inc. This exception does not
allow copies to be made for
others, whether or not sold, but
all of the material purchased
may be sold, given, or lent to
another person. Under the law,
copying includes translating
into another language.

e Apple Computer, Inc., 1986
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010

Apple and the Apple logo are
registered trademarks of Apple
Computer, Inc.

[additional credit lines as
needed]

Simultaneously published in the
United States and Canada.

(

Firmware Overview

Chapter 1

Apple IIGS Firmware Overview
This chapter gives a brief overview of the Apple llGS firmware and how it relates to the rest
of the sytem software.

Introduction
The Apple llGS firmware is composed of various kinds of routines that are stored in the
system's read-only memory (ROM). The Apple llGS ftrmware routines provide the means
to adapt and control the Apple llGS system.

The following is a listof the Apple IIGS firmware routines that are covered in this manual:

• System Monitor fIrmware

• Video fIrmware (I/O routines)

• Serial Port fIrmware (for character-at-a-time I/O)

• Disk Support firmware (slot 6 support)

• SmartPort ftrmware (for block device I/O)

• Interrupt Handler

• Apple Desktop Bus microcontroller

• Mouse fIrmware

A word about other Apple IIGS firmware
The above topics do not comprise the whole body of Apple llGS ftrmware. The Apple IIGS
ROM contains other fmnware, important enough to warrant separate manuals: the Apple
IIGS Tools (described in detail in the Apple IIGS Tools Reference Manual), Applesoft
BASIC (described in the Applesoft BASIC Reference Manual), and AppleTalk (described
in the AppleTalk Manual).

Apple IIG STools

The Apple IIGS Tools provide a means of constructing application programs that conform
to the standard user interface. By offering a common set of routines that every application
can call to implement the user interface, the tools not only ensure familiarity and
consistency for the user, but also help to reduce the application's code size and
development time.

AppleTalk

AppleTalk is a local-area network that provides communication and resource sharing with
up to 32 computers, disks, printers, IIlOdems, and other peripherals. AppleTalk consists of
communications hardware and a set of communications protocols. This hardware/software

Beta Draft 1-1 10/24/86

Firmware Overview

package, together with the computers, cables and connectors, shared resource managers
(servers), and specialized applications software, functions in three major configurations:
small-area interconnect systems, a tributary to a larger network, and a peripheral bus
between Apple computers and their dedicated peripheral devices.

The role of firmware in the Apple IIGS system
The firmware is an interface to the system's hardware that controls the display, the mouse,
serial I/O, and disk drives. Moreover, fmnware programs, such as the Monitor and
Control Panel, work directly with the system memory.

Traditionally, programmers have controlled hardware directly through their application
programs, bypassing any system fmnware. The disadvantage of this approach is that the
programmer has to do a lot more work. But more important than that is the increasing
likelihood that the resulting program will be incompatible either with other programs or
with future versions of the computer. By using the fmnware interfaces as defined, a
programmer can maintain compatibility with this and future releases of the system.

Levels of program operation

You can think of the different levels of program operation on the Apple IIGS as a heirarchy,
with a hardware layer at the bottom, firmware layers in the middle, and the application at
the top. Figure 1-1 shows a hierarchy of command levels-generally speaking, higher
level components calIon lower-level ones. (The levels are separated by the lines, and the
hardware components have heavy outlines.)

IApplication I

I ProDOS I I Loader
I

(
Monitor I I Finnware I I Drivers I I Toolbox

I I I I I I I ICPU Memory Keyboard Display Slots

Figure 1·1. Levels of program operation

Beta Draft 1-2 10/24/86

Firmware Overviel'>'

Apple IIGS firmware overview

The following paragraphs provide an overview of the Apple ITGS firmware described in
this manual.

System Monitor firmware

The System Monitor fmnware is a set of routines that you can use to operate the computer
at the machine-language level. You can examine and change memory locations, examine
and change registers, call system routines, and assemble and disassemble machine
language programs using the System Monitor fmnware.

Video firmware

Video fmnware allows you to manipulate the screen, in low resolution mode and text
mode, through your application programs and from the keyboard. Communication
between the keyboard and the video screen is controlled by fmnware subroutines, escape
codes, and control characters. The Video fmnware provides on-screen editing, keyboard
input, output to the screen, and cursor control.

Serial Port firmware

The Apple ITGS Serial Port fmnware facilitates serial communication with external devices,
such as printers and modems. The serial fmnware provides support for such things as
optional hardware and/or software handshaking, and background printing. There are two
serial pons, either of which can be configured as a printer or a modem port.

Disk Support firmware

The Apple ITGS Disk IT fmnware is a disk-support subsystem. It uses a built-in Integrated
Woz Machine (IWM) chip and accommodates Disk IT (Duodisk or Unidisk) drives. Slot 6
is the standard Disk II support slot.

SmartPort firmware

Disk IT devices are directly manipulated by slot 6 control hardware. Intelligent devices, by
contrast, are not directly manipulated by hardware, but rather are controlled by software
driven command streams. Such devices are labeled as intelligent devices because they have
their own controller that understands how to interpret these command streams. The
SmartPort fmnware is a set of assembly-language routines that permit you to attach a series
of intelligent devices to the external disk port of the Apple ITGS system. Using the
SmartPort fmnware, you can control these devices through SmartPort calls, such as Open,
Close, Format, Read Block, and Write Block.

Interrupt Handler

System interrupts halt the execution of a program or the performance of a function or
feature. The system contains a built-in interrupt handler, a user's interrup't-handler entry
point, and a means to notify the user when an interrupt occurs.

BeraDrafi 1-3 10/24/86

Firmware Overview

Apple Desktop Bus (ADB) microcontroller

The ADB Microcontroller is used to receive information from peripheral units attached to
the Apple Desktop Bus (ADB). The ADB microcontroller polls the internal keyboard,
sensing key-up and key-down events as well as control keys and optionally buffers them
for later access by the 65816. In addition, the ADB uC acts as host for the ADB
peripherals, such as the detachable keyboard and mouse. The ADB Microcontroller has its
own built-in set of instructions, including Talk, Listen, SendReset, and Rush.

Mouse firmware

The Apple nOS Mouse frrmware supplies the communication protocol for sensing the
current status of the mouse. The Mouse fmnware tracks mouse position data and mouse
button status, and provides entry points for assembly-language control.

Diagnostic routines

The system diagnostics contain manufacturing test routines. No external entry points are
defined for the system diagnostics at this time. Thus the diagnostics are not documented in
this manual.

I

BeraDraft 14 10/24/86

Video Firmware

Chapter 4

Video Firmware
,

This chapter describes the routines and command sequences that you use to produce and
control the video output of text to the Apple nOS video screen.

Introduction
The Apple nos video f1lTI1ware includes routines for text input and output. These routines
are used by high-level languages, but can just as easily be called directly from a routine that
you have written using the Mini-Assembler. Almost every program on the Apple JIos takes
input from the keyboard or mouse and sends output to the display. The Monitor and
BASIC accept keyboard input and produce screen output by using standard I/O subroutines
that are built into the Apple.nos fIrmware.

Using the video fIrmware I/O routines you can

• read keys individually from the keyboard

• read an entire line of key entries

• send characters to the f1lTI1ware output routines

• call built-in routines that control the video display

When you call the routine to get an entire line, the user has the chance to use the Backspace
key and other onscreen editing facilities before your routine sees the line. When you send
characters to the firmware output routines, most of the characters are transmitted to the
display. However, some of the characters control the display subsystem. These special
characters are listed in Tables 4-1, 4~3 and 4-4.

Standard I/O links

When you call one of the character I/O subroutines (COUT and RDKEY), the video
f1lTI1ware performs an indirect jump to an address stored in programmable memory.
Memory locations used for transferring control to other sub~outines are sometimes called
vectors; in this manual. The locations used for transferring control to the I/O subroutines
are called 1/0 links. In an Apple liOS running without a disk, each I/O link normally
contains the address of the body of the subroutine (COUT1 or KEYlN) that the fIrmware
calls for that specifIc form of I/O. If a disk operating system is running, one or both of
these links holds the address of the corresponding DOS or ProDOS I/O routines instead of
the f1lTI1ware default values.

Marginal Gloss: DOS and ProDOS maintain their own links to the standard I/O
subroutines.

BetaDrajt 4-1 10/24/86

Video Firmware

By calling the I/O subroutines thatjurnp to the link addresses instead of calling the standard
subroutines directly, you ensure that your program will work properly in conjunction with
other software, such as DOS or a printer driver that changes one or both of the I/O links.

-For the purposes of this chapter, we shall assume that the I/O links contain the addresses of
the staridard I/O subroutines: COUTl and KEYIN if the 80-column fmnware is disabled
and BASICOUT (also called C3COUTl) and BASICIN if the 80-column fmnware is
enabled.

Standard input routin~s

The Apple nos fmnware includes two different subroutines for reading from the keyboard.
One subroutine is named RDKEY, which stands for read key. RDKEY calls the character
input subroutine KEYIN (or BASICIN when the 80-column fmnware is active) and
accepts one character at a time from the keyboard.

The other subroutine is named GETLN, which stands for get line. By making repeated
calls to RDKEY, GETLN accepts a sequence of characters terminated with a carriage
return. GETLN also provides on-screen editing features.

RDKEY input subroutine

Your program gets a character from the keyboard by making a subroutine call to RDKEY at
memory location $FDOC. RDKEY sets the character at the cursor position to flash and
then passes control through the input link KSW to the current input subroutine, which is
normally KEYIN or BASICIN.

RDKEY produces a cursor at the current cursor position, immediately to the right of the
character you last sent to the display (normally by using the COUT routine). The cursor
displayed by RDKEY is a flashing version of the character that happens to be at that
position on the screen. Normally a user is typing new characters on a blank line, so the
next character will normally be a space. Thus the cursor appears as a blinking rectangle.

KEYIN/BASICIN input subroutines

Apple nos supports 40- and 80-column video displays by using input subroutines KEYIN
and BASICIN. The KEYIN subroutine is used when the SO-column fmnware is inactive;
BASICIN is used when the 80-column fmnware is active. When called, the subroutine
waits until the user presses a key and then returns with the key code in the accumulator.

If the SO-column fmnware is inactive, KEYIN displays a cursor by storing a checkerboard
block in the cursor location, then storing the original character, then the checkerboard
again. If the SO-column fumware is active, BASICIN displays a steady inverse space
(rectangle) as a cursor. In an additional operating mode, escape mode, the cursor displayed
is an inverse video plus sign (+). This indica~es that escape mode is active.

Marginal Gloss: See the section titled "Cursor control" later in this chapter for
more information about the escape mode.

.. I

BeraDraft 4-2 10/24/86

Video Firmware
Subroutine KEYIN also generates a random number. While it is waiting for the user to
press a key, KEYIN repeatedly increments the 16-bit number in memory locations 78 and
79 (hexadecimal $4E and $4F). This number continues to increase from 0 to 65535 and
then starts over again at O. The value of this number changes so rapidly that there is no
way to predict what it will be after a key is pressed. A program that reads from the
keyboard can use this value as a random number or as a seed for a random number
generator.

When the user presses a key,KEYIN accepts the character, stops displaying the cursor,
and returns to the calling program with the character in the accumulator.

Escape codes

Subroutine KEYIN has special functions that you invoke by typing escape codes on the
keyboard. An escape code is obtained by pressing ESC, releasing it, and then pressing
another key. The key sequences shown are not case sensitive. That is, Esc followed by A
(uppercase A) is equivalent to Esc followed by a (lowercase A).

Escape codes are used to clear the current line, the rest of the screen, or the whole screen;
to switch from 40-column to 80-column mode and vice versa; and to move the cursor on
the screen. The escape codes that KEYIN follows are listed in Table 4-1.

Cursor control

The Apple nos is equipped with four arrow keys. But these keys do not have a cursor
move function unless the system is specifically told to treat them in this way. The Apple
IIOS fumware provides what is called the escape mode, which activates the arrow keys for
cursor moves. One of eight possible escape sequences can be used to activate escape
mode. As Table 4-1 shows, you can enter escape mode by pressing ESC followed by an
alphabetic key or by pressing ESC followed by one of the four arrow keys. Recall also that
when the SO-column fumware is active, the cursor display changes to a plus sign (+) when
the Monitor is operating in escape mode.

You can continue to use the arrow keys to move around on screen. As noted in the table,
escape mode terminates when anything other than an arrow key is pressed.

Beta Draft 4-3 10/24/86

Video Firmware

Table 4-1. Escape codes

Cursor control

ESC A

ESC B

ESC C

ESCD

Cursor control!
Entering escape mode

ESC I (or ESC up arrow)

ESC J (or ESC left arrow)

ESC K (or ESC right arrow)

ESC M (or ESC down arrow)

Screen/line clearing

ESC@

ESC E

ESCF

Function

Moves the cursor right one space; exits from escape
mode

Moves the cursor left one space; exits from escape
mode

Moves the cursor down one line; exits from escape
mode

Moves the cursor up one line; exits from escape
mode

Function

Moves the cursor up one line and remains in escape
mode

Moves the cursor left one space and remains in
escape mode

Moves the cursor right one space and remains in
escape mode

Moves the cursor down one line and remains in
escape mode

Function

Clears the window and moves the cursor to its home
position (upper-left corner of screen); exits from
escape mode

Clears to the end of the line; exits from escape mode

Clears to the bottom of the window; exits from
escape mode

.. I

Beta Draft 44 10/24/86

Screen format control

ESC 4

ESC 8

ESC-CONTROL-D

ESC-CONTROL-E

ESC-CONTROL-Q

GETLN input subroutine

Video Firmware

Function

Switches from 80-column display to 40-column
display if 8o-column fmnware is active; sets links to
BASICIN and BASICOUT; restores normal window
size; exits from escape mode

Switches from 4o-column display to 8o-column
display by enabling the 80-column fmnware; sets
links to BASICIN and BASICOUT; restores nonnal
window size; exits from escape mode

Disables control characters; only carriage returns,
line feeds, bells, and backspaces have effects when
printingisp~onned

Reactivates control characters

If 80-column fmnware is active, deactivates the 80- .
column fmnware; sets links to KEYIN and COUT1;
restores nonnal window size; exits from escape
mode

Programs often need strings of characters as input While it is possible to call RDKEY
repeatedly to get several characters from the keyboard, there is a more powerful subroutine
you can use to get an edited line of characters. This routine is named GETLN, which
stands for get line; GETLN starts at location $FD6A. Using repeated calls to RDKEY,
GETLN accepts characters from the standard input subroutine-usually KEYIN-and puts
them into the input buffer located in the memory page from $200 to $2FF.

Marginal Gloss: GETLN also provides the user with onscreen editing and
control features described in the next section, "Editing with GETLN".

GETLN displays a prompting character, called simply a prompt. The prompt indicates to
the user that the program is waiting for input. Different programs use different prompt
characters, helping to remind the user which program is requesting input. For example, an
INPUT statement in a BASIC program displays a question mark (?) as a prompt. The
prompt characters used by the different programs on the Apple nOs are shown in Table 4
2.

GETLN uses the character stored at location 51 (hexadecimal $33) as the prompt character.
In an assembly language program, you can change the prompt to any character that you
wish. In BASIC or in the Monitor, changing the prompt charact~rhas no effect because
both BASIC and the Monitor restore the prompt to their original choices each time input is
requested from the user.

BetaDrajt 4-5 10/24/86

Video Firmware

Table 4-2. Prompt characters

Prompt ,character Program requesting input

?

]

>

User's BASIC program (INPUT statement)

Applesoft BASIC

Integer BASIC

Monitor

As you type an input character suing, GETLN sends each character to the standard output
routine, normally COUTI, which displays the character at the previous cursor position and
puts the cursor at the next available position on the display, usually immediately to the right
of the original position. As the cursor travels across the display, it indicates the position
where the next character will be displayed.

GETLN stores the characters in its buffer, starting at memory location $200 and using the
X register to index the buffer. GETLN continues to accept and display characters until you
press Return. Then it clears the remainder of the line the cursor is on, stores the carriage
return code in the buffer, sends the carriage return code to the display, and returns to the
calling program.

The maximum line length that GETLN can handle is 255 characters. If the user types more
than 255 characters, GETLN sends a backslash (\) and a carriage return to the display,
cancels the line it has accepted so far, and starts over. To warn the user that the line is
getting full, GETLN sounds a bell (tone) at every keypress after the 248th.

Editing with GETLN

The subroutine GETLN provides the standard onscreen editing features used with BASIC
interpreters and the Monitor. Any program that uses GETLN for reading the keyboard has
these features.

Marginal Gloss: For an introduction to editing with GETLN, refer to the
Applesoft Tutorial.

Cancel line

Any time you are typing a line, pressing Control-X causes GETLN to cancel the line.
GETLN displays a backslash (\) and issues a carriage return and then displays the prompt
and waits for you to type a new line. GETLN automatically cancels the line when you type
more than 255 characters, as described earlier.

Backspace

When you press the Backspace key, the back arrow key (labeled "<__ "), or the Delete key,
GETLN moves its buffer pointer back one space, deleting the last character in its buffer. It
also sends a backspace character to the routine COUT, which moves the display position

Beta Draft 4-6 10/24/86

Video Firmware
back one space. If you type another character now, it will replace the character you
backspaced over, both on the display and in the line buffer. Each time you press the
Backspace key, the cursor moves left and deletes another character, until you reach the
beginning of the line. If you then press Backspace one more time, you cancel the line. If
the line is canceled this way, GETLN issues a carriage return and displays the prompt.

Retype

The function of the Retype key (--» is complementary to the function of the Backspace
key. When you press Retype, GETLN picks up the character at the display position just as
if it had been typed on the keyboard. You can use this procedure to pick up characters that
you have just deleted by backspacing across them. You can use the backspace and retype
functions with the cursor motion functions to edit data on the display.

Marginal Gloss: For more information about cursor motion, see the section
"Cursor control" earlier in this chapter.

Keyboard input buffering

In versions of the Apple II prior to the Apple nas, if a keystroke happened while your
program was processing the previous keystroke, it was possible to lose characters that the
user was typing into your program. The Apple nos allows you to enable keyboard input
buffering to prevent the loss of keystrokes.

The user can select keyboard input buffering through the Control Panel program. If the
event manager is enabled, the type-ahead buffer can process an unlimited number of key
presses.

Standard output routines
The Monitor fmnware output routine is named COUT (pronounced Csout), which stands
for character out. The COUT routine nonnally calls COUTI which sends one character to
the display, advances the cursor position, and scrolls the display when necessary. The
COUTI routine restricts its use of the display to an active area called the text window,
described below.

Subroutine BASICOUT is essentially the same as COUT!; BASICOUT is used instead of
COUTI when the 80-column fmnware is active. BASICOUT displays the character in the
accumulator on the display screen at the currentcursor position and advances the cursor.
When BASICOUT returns control to the calling program, all registers are intact.

COUT/BASICOUT subroutines

When you call COUT (or BASICOUT) and send a character to COUTI, the character is
displayed at the current cursor position, replacing whatever was there. COUTI then
advances the cursor position one space to the right. If the cursor po~ition is at the right
edge of the window, COUTI moves the cursor to the left-most position on the next line
down. If this moves the cursor past the end of the last line in the window, COUTI scrolls
the display up one line and sets the cursor position at the left end of the new bottom line.

Beta Draft 4-7 10/24/86 .

Video Firmware

The cursor position is controlled by the values in memory locations 36 and 37 (hexadecimal
$24 and $25). Subroutine COUTI does not display a cursor, but the input routines
described below (COUP and C3COUTl) do display and use a cursor. If another routine
displays a cursor, that routine will not necessarily put the character in the cursor position
used by COUTl.

Control characters with COUTI and C3COUTl

Subroutine COUTI is the entry point that is active for character output in 4O-column mode.
Entry point C3COUTI is active when the system is in 80-column mode. Subroutines
COUTI and C3COUTI do not display control characters. Instead, the control characters
listed in Tables 4-3 and 4-4 are used to initiate action by the firmware. Other control
characters are ignored. Most of the functions listed here can also be invoked from the
keyboard, either by typing the control character listed or by using the appropriate escape
code, as described in the section "Escape codes" earlier in this chapter.

Table 4-3. Control characters with 80-column fIrmware off

Control character

CONTROL-G

CONTROL-H

CONTROL-J

CONTROL-M

CONTROL-" {char}

Action taken by COUTI

Produces user-defmed tone (Control Panel
menu)

Backspace

Line feed

Return

First character output after CONTROL-"
becomes the new cursor. If the DELETE key
is the fIrst character, the default prompt is
restored.

Table 4-4. Control characters with SO-column fIrmware on

Control character

CONTROL-E

CONTROL-F

CONTROL-G

CONTROL-H

CONTROL-K

Action taken by C3COUTI

Turns cursor off

Turns cursor on

Produces user-defmed tone (Control Panel
menu)

Backspace

Line feed

.Clears from cursor position to the end of the
screen

Beta Draft 4-8 10/24/86

CONTROL-L

CONTROL-M

CONTROL-N

CONTROL-O

CONTROL-Q

CONTROL-R

CONTROL-S

CONTROL-U

CONTROL-V

CONTROL-W

CONTROL-X

CONTROL-Y

CONTROL-Z

CONTROL-[

. CONTROL-\

CONTROL-]

CONTROL-_

CONTROL-A

CONTROL-A {char}

Video Firmware

Form feed

Carriage return

Changes to normal display format

Changes to inverse display format

Sets 40-column display

Sets 80-column display

Stops listing characters until another key is
pressed

Deactivates enhanced Video firmware

Scrolls the display down one line, leaving the
cursor in the current position

Scrolls the display up one line, leaving the
cursor in the current position

Disables MouseText character display and
uses inverse uppercase

Home

Clears the line on which the cursor resides

Enables MouseText character display by
mapping inverse uppercase characters to
MouseText characters

Moves cursor position one space to the right;
from edge of window, moves to left end of
nextllne

Clears from cursor position to the right end
of the line

Moves cursor up one line with no scroll

Goes to XY; using the next two characters
minus 32 as one-byte X and Y values, moves
the cursor to CH=X, CV=Y (Pascal)

'First character output after CONTROL-A
becomes the new cursor. If the DELETE key
is the fIrst character; the default prompt is
restored.

Note: This only works when using BASIC
links, not Pascal output links.

Beta Draft 4-9 10/24/86

Video Firmware

Inverse and flashing text

Subroutine COUT1 can display text in normal format, inverse format, or with some
restrictions, flashing format. The display format for any character in the display depends
on two factors: the character set being used at the moment and the setting of the two high
order bits of the character's byte in the display memory.

As it sends your text characters to the display, COUT1 sets the high-order bits according to
the value stored at memory location 50 (hexadecimal $32). If that value is 255
(hexadecimal $FF), COUT1 sets the characters to display in normal format. If that value is
63 (hexadecimal $3F), COUT1 sets the characters to inverse format. If the value is 127
(hexadecimal $7F) and if you have selected the primary character set, the characters will be
displayed in flashing format Note that the flashing format is not available in the alternate
character set. Table 4-5 shows the effect that the mask value has on particular parts of the
character set

Table 4-5. Text format control values

Mask Value Display format
(Dec) (Hex)

255 $FF Normal, uppercase, and lowercase

127 $7F Flashing, uppercase, and symbols

63 $3F Inverse, uppercase, and lowercase

To control the display format of the characters, routine COUT1 uses the value at location
50 as a logical mask to force the setting of the two high-order bits of each character byte it
puts into the display page. It does this by performing a logical AND function on the data
byte and the mask byte. The resulting byte contains a ain any bit that was a ain the mask.
BASICOUT, used when the 80-column fmnware is active, changes only the high-order
data bit.

Note: If the 80-column fIrmware is inactive and you store a mask value at location
50 with zeros in its low-order bits, COUT1 will mask those bits in your text. As a
result, some characters will be transformed into other characters. You should set
t,he mask values only to those given in Table 4-5.

If you set the mask value at location 50 to 127 (hexadecimal $7F), the high-order bit of
each resulting byte will be 0, and the characters will be displayed either as lowercase or
flashing, depending on which character set you selected. In the primary character set, the
next highest bit, bit 6, selects flashing format with uppercase characters. With the primary
charcter set you can display lowercase characters in normal format and uppercase characters
in normal, inverse, and flashing formats. In the alternate character set, bit 6 selects
lowercase or special characters. With the alternate character set you can display uppercase
and lowercase characters in normal and inverse formats.

BetaDrajt 4-10 10/24/86

Video Firmware _'

Other firmware I/O routines
In addition to the read and write character routines described above, the Apple IlOS
firmware also includes several routines that provide convenient screen-oriented I/O
functions. These functions are listed in Table 4-6 and are described in detail in Appendix
C, "Apple llos Software Entry Points in Bank 00."

Important: Appendix C is the official list of all entry points that are currently valid and for
which continued support will be provided in future revisions of this product.

Table 4-6. A partial list of other Monitor fumware I/O routines

Location ~ Description

$FC9C CLREOL Clears to end of line from current cursor position

$FC9E CLEOLZ Clear to end of line using contents of Y register as cursor
. position

$FC42 CLREOP Clears to bottom of window

$F832 CLRSCR Clears the low-resolution screen

$F836 CLRTOP Clears the top 40 lines of the low-resolution screen

$FDED COUT Calls the output routine whose address is stored in CSW,
normally COUTI

$FDFO COUTI Displays a character on the screen

$FD8E CROUT Generates a carriage return

$FD8B CROUT1 Clears to end of line and then generates a carriage return

$FD6A GETLN Displays the prompt character; accepts a string of characters
by means of RDKEY

$F819 HLINE Draws a horizontal line of blocks

$FC58 HOME Clears the window and puts the cursor in the upper left
corner of the window

$FDIB KEYIN With 80-column fumware inactive, displays checkerboard
cursor; accepts characters from keyboard

$F800 PLOT Plots a single low-resolution block on the screen

$F94A PRBL2 Sends 1 to 256 blank spaces to the output device

$FDDA PRBYTE Prints a hexadecimal byte

$FDE3 PRHEX Prints 4 bits as a hexadecimal number

BeraDrajt 4-11 10/24/86

Video Firmware

$F941 PRNTAX

$FDOC RDKEY

$F871 SCRN

$F864 SETCOL

$FC24 VfABZ

$F828 VLINE

The text window

Prints the contents of A and X in hexadecimal format

Displays blinking cursor; goes to standard input
routine, nonnally KEYIN or BASICIN

Reads color of a low-resolution block

Sets the color for plotting in low-resolution block

Sets the cursor vertical position

Draws a vertical line of low-resolution blocks

After starting up the computer or after a reset operation, the finnware uses the entire display
for text. However, you can restrict text video activity to any rectangular portion of the
display that you wish. The active portion of the display is called the text window. COUT1
or BASICOUT puts characters into the window only; when it reaches the end of the last
line in the window, it scrolls only the contents of the window.

You can control the amount of the screen that the video fnmware reserves for text by
modifying memory directly. You can set the top, bottom, left side, and width of the text
window by storing the appropriate values in four locations in memory. This enables your
programs to control the placement of text in the display and to protect other portions of the
screen from being overwritten by new text.

Memory loc'ation 32 (hexadecimal $20) contains the number of the leftmost column in the
text window. This number is nonnally 0, the number of the leftmost column of the
display. In a 40-column display, the maximum value for this number is 39 (hexadecimal
$27); in an 80-co1Umn display, the maximum value is 79 (hexadecimal $4F).

Memory location 33 (hexadecimal $21) holds the width of the text window. For a 40
column display, it is nonnally 40 (hexadecimal $28); for an 80-column display, it is
normally 80 (hexadecimal $50).

Memory location 34 (hexadecimal $22) contains the number of the top line of the text
window. This is nonnally 0, the topmost line in the display. Its maximum value is 23
(hexadecimal $17).

Memory location 35 (hexadecimal $23) contains the number of the bottom line of the
screen. Its nonnal value is 24 (hexadecimal $18) for the bottom line of the display. Its
minimum value is 1.

After you have changed the text window boundaries, no changes occur to the screen
appearance until you send the next character to the screen.

Beta Draft 4-12 10/24/86

Disk II Support

Chapter 6

Disk II Support
This chapter describes the Apple IIGS Disk II Support Firmware. Several different types of
disks can be attached to the Apple IIGS, some of which contain built-in intelligence. This
chapter describes the methods by which the Disk II product can be connected to the Apple
IIGS.

Introduction
The Apple ITGS Disk Support system, with its built-in Integrated Woz Machine (IWM)
chip, accommodates Disk II (DuoDisk and UniDisk drives) and Sony 3.5-inch drives with
built-in intelligence (UniDisk ~.5) or without built-in intelligence (Apple 3.5 drives).

Port 6 is the standard Disk II support slot. Disk II boot routines are built into ROM. Disk
IT routines in DOS, ProDOS, and Pascal operate the same as they do in an Apple II prior to
the Apple IIGs.

Port 5 (internal slot 5) controls the intelligent Sony and Apple 3.5 drives as well as the
RAM disk. You can attach up to two Disk IIs, two Apple 3.5 drives, and two or more
intelligent Sony 3.5-inch drives, depending on IWM output specifications. The disks must
be attached as shown in Figure 6-1.

Two Apple 3.5 drives are shown in Figure 6-1. This is the maximum number supported.
There may be more than one UniDisk 3.5 where this drive is shown in the figure.

IApple IlGS IIr--'--J--'---II J - 11- - II J - I
Apple 3.5 Apple 3.5 UniDisk 3.5 Disk II

Drive Drive UniDisk 5 1/4
DuoDisk

Figure 6-1. Maximum disk drive configuration

Interface routines for port 5 and port 6 access the IWM using slot-6 soft switches. The
firmware arbitrates between slot use of the same soft switches. If a peripheral card is
plugged into slot 6, the fmnware in port 5 can still access the disks plugged into port 6's
IWM connector by temporarily disabling the external peripheral card, performing the disk
access, and then reenabling the external peripheral card.

The port 5 disk interface for UniDisk 3.5 is called SmartPort. It consists of an expanded
version of the SmartPort software used in the 32K Apple II ROM. SmartPort supports two
Apple 3.5 drives, the RAM disk, and UniDisk 3.5, up to a total of 127 combined devices.
The SmartPort software is covered in detail in Chapter 7.

Beta Draft 6-1 10/24/86

Disk II Support

The port 6 disk interface fIrmware provides the Disk II support. This disk I/O fIrmware
resides in the $C600 address space. It supports up to two drives, addressed as though they
are connected to slot 6, as physical drive numbers 1 and 2. Both drives use single-sided,
143K-capacity, 35-track 16-sector format Table 6-1 summarizes the Disk II I/O port
characteristics.

Table 6-1. Disk I/O port characteristics

Port Number:

Commands:

Initial Characteristics:

Hardware Location:

I/O port 6 drive 1
I/O port 6 drive 2

IN#6 or PR#6 from BASIC, or
CALL -151 (to get to the Monitor from BASIC),
then 6 Control-P

All resets except Control-Reset with a valid reset
vector pass control to slot 6 drive 1 if this drive
is set as the boot device (set through the Control
Panel)

$COEO-$COEF, reserved for Disk II usage

Monitor Firmware Routines: None·

I/O Finnware Entry Points: $C600 (port 6 boot address)
$C65E (read fIrst track, fIrst sector and begin
execution of the code found there)

Use Of Screen Holes: Port 6 main and auxiliary memory screen
holes are reserved

Startup
The Apple IIGS has two ways to start up -- a cold start and a warm start. A cold start clears
the machine's memory and tries to load an operating system from disk. A warm start stops
the current program that is running and leaves the machine in Applesoft with mel1}ory aI1d
programs intact.

A cold start can be initiated by any of the following:

• turning the machine on

• pressing Open-Apple-Control-Reset

• issuing a reboot command from the Monitor, BASIC, or a program

• pressing Control-Reset, if a valid reset vector does not exist

Assuming you have set the startup device (from the Control Panel) to slot 6, the cold-start
routine fIrst sets a number of soft-switches (see Appendix E) and then passes control to the
program entry point at $C600. This code turns on the Disk II, Unit 1 device motor,
recalibrates the head to track 0, then reads sector 0 from that track. The sector contents are
loaded into memory starting at address $0800; then program control passes to $0801. The
program loaded depends on the operating system or application program on the disk.

Beta Draft 6-2 10/24/86

Disk II Support

To restart the system from BASIC, issue a PR#6 command; from the Monitor command
mode, issue 6 Control-P; or from a machine language program, use JMP $C600.

A warm start begins when you press Control-Reset, if a valid reset vector exists.
Normally, a warm start leaves you in BASIC with memory unchanged. If a program has
changed the reset vector the system won't do a warm start; instead, a program may do any
number of things. Usually a program either does a cold start or it beeps or it does nothing,
leaving you in the currently executing program

Beta Draft 6-3 10/24/86

Smartport Finnware

Chapter 7

SmartPort Firmware

Introduction
The sma.rtPort firmware is an extension to the ProDOS block device driver resident in
internal slot 5. It consists of a set of assembly-language routines that supports a series of
block or character devices connected to the external disk port on the Apple ITGS. The
SmartPort converts calls to a format which is transmitted over the disk port to control
intelligent devices, such as the UniDisk 3.5. SmartPort also provides an interface to
several non intellegent devices through the use of device specific drivers. Non intelligent
devices that are supported on the Apple ITGS through SmartPort include the AppleDisk 3.5,
RAM Disk and ROM Disk.

Using the SmartPort
To use the SmartPort interface, a program issues calls in a manner similar to that used for
ProDOS Machine Language Interface calls. The topmost level of one of these calls is a
JSR to the SmartPort entry point followed by a SmartPort command byte and a pointer to a
table which contains the parameters necessary for the call.

Locating SmartPort
You can determine if the SmartPort Interface exists by examining the ProDOS Block
Device signature bytes shown below:

$CnOl = $20
$Cn03 = $00
$Cn05 =$03

In addition, you must also verify the existence of the SmartPon signature byte shown
below:

$Cn07 =$00

In the above addresses, n =the slot number for which the signature bytes are being
examined. All peripheral cards or ports with these signature byte values support both
ProDOS block device calls and SmartPort calls. You can examine the SmartPort ID Type
byte to obtain more infonnation about any special support that may be built into the
SmartPort driver. The SmartPort ID Type byte located at $CnFB has been encoded to
indicate the type of devices that can be supported by the SmartPort driver. Note that a

Beta Draft 7-1 10/24/86

SmartPort Firmwcire

driver that supports the Extended SmartPort calls must also support Standard SmartPort
calls.

$CnFB

a..---RamCard
..........---~CSI

I..-........&-.........---I...-........------Reserved
L......--------------Extended

Fig.7-!. SmartPort ID type byte

Locating the dispatch address
Once you have determined that a SmartPort interface exists in a slot or port, you need to
determine the entry point or dispatch address for the SmartPort. This address is
determined by the value found at $CnFF, where n is the slot number. By adding the value
at $CnFF to the address $CnOO, you calculate the standard ProDOS block device driver
entry point More infonnation on this entry point is available in the ProDOS Technical
Reference Manual. The SmartPort entry point is located three bytes after the ProDGS entry
point. Therefore, the SmartPort entry point is $CnOO plus 3 plus the value found at
$CnFF.

For example, if you find the signature bytes for the SmartPort interface in slot 5, and
$C5FF contains a hexadecimal value of $OA, the ProDGS entry point will be $C50A, and
the SmartPort entry point is three larger than $C50A, or $C50D.

SmartPort call parameters
The format of SmartPort calls include several parameters. Not all parameters will appear in
every SmartPort call. All the parameter types that may be required when making a
SmartPort call are described as follows:

Command name: The name used to identify the SmartPort call

Command number: A byte value contiguous in memory with the JSR to the
SmartPort entry point A hexadecimal number that specifies
the type of SmartPort call. Bit 6 will be cleared to 0 for
standard calls or set to 1 for extended calls.

Parameter List Pointer:A pointer contiguous in memory with the command number
that points to the parameter list.

Beta Draft

Parameter count: A hexadecimal byte value that specifies the number of
parameters contained in the parameter list

7-2 10124186

Unit number:

Buffer Address:

Block number:

Byte count:

Address pointer:

Smartpon Finnware

A hexadecimal byte value that specifies the unit number of
the device that the SmartPort call is to direct I/O to or from.

A pointer to memory that will be used. in the I/O transaction.
For standard SmartPort calls this will be a word wide pointer
referencing memory in bank zero. For extended. calls, the
pointer will be a longword referencing memory in any bank.

A number specifying the block address used. in an I/O
transaction with a block device. For standard SmartPort
calls this parameter is 24 bits wide. For extended. calls this
parameter is 32 bits wide.

This parameter is used. to specify the number of bytes to be
transferred between memory and the device. This parameter
is 16 bits wide.

This parameter is used. to specify an address within the
device.

SmartPort assignment of unit numbers
The Unit number is part of every parameter list. The unit number specifies which device
connected. to the SmartPort will respond to the command you are giving. Calls which
allow you to reference the SmartPort itself use a unit number of zero. Only the status, init,
and control calls may be made to unit zero. The Apple IIos assigns unit numbers to devices
in ascending order starting with a unit number of $01. Devices are assigned. unit numbers
starting with the RamDisk., RomDisk., AppleDisk 3.5 and finally intelligent devices such as
the UniDisk3.5.

Dynamic allocation of device unit numbers

The Apple nos implementation of SrnartPort interacts with the control panel selection of
boot devices. For any given port, a boot can only occur from the first device logically
connected. to that port SmartPort support is provided. to allow booting from any of three
types of devices:

Ram Disk
Rom Disk
Disk type device (AppleDisk 3.5 or UniDisk 3.5)

Depending on the devices that are connected. to the SmartPort, the selected. boot device may
not be the first logical device in the chain. In order to boot from the selected. device, the
selected. device must be moved. logically to the first unit in the device chain. Thi~ means
that all devices that were previously ahead of the selected boot device must now be moved
logically so that they are now located. behind the selected. boot device.

The initialization call handles assignments of unit numbers in a two stage process. The first
stage assigns unit numbers as described. above. The second stage remaps the units so that
the selected. boot device is always the first logical device in the chain. If 'scan' is selected as
the boot option in the control panel, SrnartPort will place the first physical disk device as
the first logical device in the device chain.

Beta Draft 7-3 10/24/86

SmartPon Finnware

Remapping of devices has some interresting implications when running with ProDOS
1.1.1. Current implementations of ProDOS only support two devices per port or slot. If
more than two devices are logically connected to the device chain, devices beyond the
second device can not be accessed with ProDOS 1.1.1. The interim version of ProDOS for
Apple nGS that will be available before ProDOS'16 is ProDOS 1.2. ProDOS 1.2 will
support up to four devices on SmartPort. ProDOS 1.2 will map the to two devices beyond
the second device in the device chain so that the additional devices will appear as if they are
connected to slot2. Due to the affects of the logical remapping that places the boot device
as the fIrst device in the chain, the relationship of devices and slots with ProDOS 1.2 varies
with the boot confIguration as set by the control panel.

Interaction between the control panel and the logical assignment of unit numbers to devices
on the SmartPort device chain will also be visable with ProDOS'16, however all the
devices will appear in slot 5. No remapping of units to slot 2 will be neccessary with
ProDOS'16 since ProDOS'16 will support more than two devices per port or slot.

Several illustrations follow, showing remapping of devices based on the selected boot
device vs. the device confIguration. Only a few of the possible derivations of the device
mapping are shown.

..~

.....:.

Ram Disk AppJeDisk 3.5
2nd stage unit 2 2nd stage unit 3-r il~ ~ef~-~il

AppleDisk 3.5
2nd stage unit 1*- il~

SmartPort

AppleDisk 3.5 AppleDisk 3.5 1
1st stage unit 2 1st stage unit 3

~~=~·4-~~aJ!j~~l4--""""""'~;;;;;;;;~-----

If Disk is boot'device
then remap devices

I SmartPort I~
Figure 7-2. Device mapping - Derivation 1.

Ram Disk
1st sta~e unit 1

SmartPort I..............~·~I=;;;;;~-~a I~

If Ram Disk is boot
device then:

SmartPort I~

,
Ram Disk

2nd stage unit 1*- il~

AppJeDisk 3.5 AppleDisk 3.5
1st stage unit 2 1st stage unit3

~T T "'~"""'---I-fj!-~;;;;;;;;iil

APPI.Dt 3.5 APPI.1.3.5
2nd stage unit 2 2nd stage unit 3

-r il CIIIli~I---""'*- il
Figure 7-3. Device mapping - Derivation.2.

Beta Draft 74 10/24/86

Smanport Firmware

......_S_m_artP_o_rt__I·
Ram Disk Rom Disk UniDisk 3.5

1st stage unit 1 1st stage unit 2 1st stage unit 3

...T l' "'il.I---.....-4'" il<llll......-~... il

If RamDisk is boot
device then:

SmartPort \.

Ram Disk Rom Disk UniDisk 3.5
2nd stage unit 1 2nd stage unit 2 2nd stage unit 3

~... il"'il.t----Df" il"'il.I---""'Df" il

Figure '-4. Device mapping - Derivation 3.

Rom Disk Ram Disk UniDisk 3.5
2nd stage unit 1 2nd stage unit 2 2nd stage unit 3

~... il"'il.I---.......r il"'lill.t----tf... il

Ram Disk Rom Disk UniDisk 3.5
1st stage unit 1 1st stage unit 2 1st stage unit 3

- - .1'" 71 -~~-• I §---"'1 v • <lIlII- dSmartPort I.

If RomDisk is
boot device then:

SmartPort I.

Figure '-5. Device mapping - Derivation 4.

Ram Disk Rom Disk
1st stage unit 1 1st stage unit 2

SmartPort I. ...T "'il.I---......r il<llll......--

If Disk is
boot device then:

SmartPort I.
UniDisk 3.5 Ram Disk Rom isk

2nd stage unit 1 2nd stage unit 2 2nd stage unit 3

~... il"'il.t----e[il<llll......--Df" il

Figure '-6. Device mapping - Derivation 5.

Beta Draft 7-5 10/24/86

SmartPon Finnware

Issuing a call to SmartPort
SmartPort calls fall into one of two categories, standard calls and extended calls. Standard
SmartPort calls are designed for interfacing Apple IT style peripherals. Extended SmartPort
calls are designed for peripherals that may take advantage of the 65816 processor's ability
to transfer data between any memory bank and the peripheral device and may require larger
block addressing than is possible with the standard SmartPort calls.

When making Standard SmartPort calls, the pointer following the SmartPort command byte
is a word wide pointer to a parameter list1n bank zero. When making Extended SmartPort
calls, the pointer is a longword pointer to a parameter list in any memory bank.

There are several constraints on the use of the SmartPort.

• the stack usage is 30-35 bytes. Programs should allow 35 bytes of stack space
for each call.

• the SmartPort cannot generally be used to put anything into absolute Zero Page
locations. Absolute Zero Page is defined as Direct Page when the Direct Register
is set to .OOסס$

• SmartPort can only be called from Apple IT emulation mode. This means that the
emulation flag in the 65C816 processor status byte must be set to a 1, and the
Direct Page Register and Data Bank Register must both be set to zero. Native
mode programs wishing to call SmartPort must switch to emulation mode prior to
making the SmartPort call. You must assure that your complete operating
environment is carefully preserved before making the call and restored after
making the call. You can find additional details about the environment in Chapter
2, Notes for Programmers.

This is an example of a standard SmartPort call:

JSR
DFB
DW
BCS

DISPATCH
CMDNUM
CMDUST
ERROR

;Call SmartPort command dispatcher
;This specifies the command type
;word pointer to the parameter list in bank $00
;Carry is set on an error

This is an example of a extended SmartPort call:

SP_EXT_CALL
JSR
DFB
DW
DW
BCS

DISPATCH
CMDNUM+$40
OvIDUST
A OvIDLIST
ERROR

;Call SmartPort command dispatcher
;This specifies the extended command type
;Low word pointer to the parameter list
;High word pointer to the parameter list
;Carry is set on an error

Upon completion of the call, execution returns to the RTS address plus three for a standard
call, or the RTS'address plus five for an extended call (the BCS statement in the
examples). If the call was successful, the C flag is cleared, and the A register is set to O. If
the call was unsuccessful, the C flag is set and the A register contains the error code. The
complete register status upon completion is summarized below.

Beta Draft 7-6 10/24/86

Smartport Firmware

REGISTER STATUS ON RETURN FROM SMARTPORT

65816 Status byte
NV1BDIZC Ace Xre PC SP

Successful Nonextended Call XX1XOUXO 0 n n JSR+3 U

Successful Extended Call XX1XOUXO 0 n n JSR+5 U

Unsuccessful Nonextended Call XX1XOUX1 Error X X JSR+3 U

Unsuccessful Extended Call XX1XOUX1 Error X X ISR+5 U

(Note: X =undefined. U =unchanged, n =undefined for tranfers to the device or nwnber of bytes
transferred when the transfer was from the device to the host

Figure 7-7. Register status on return from SmartPort

Beta Draft 7-7 10/24/86

/

SMARTPORTSTATUSCALL

CMDNUM
CMDUST

Standard call
$00
parameter count
unit number
status list pointer (low byte)
status list pointer (high byte)
status code

Extended call
$40
parameter count
unit number
status list pointer (low byte, low word)
status list pointer (high byte, low word)
status list pointer (low byte, high word)
status list pointer (high byte, high word)
status code

This call returns the status information about a particular device or about the SmartPort'
itself. This chapter lists status calls that return general information. Device specific status
calls can be implemented by a device for diagnostic or other information. Device specific
calls would have to be implemented with a status code of $04 or greater.

On return from a status call, the X and Y registers contain a count of the number of bytes
tranferred to the host X contains the low byte of the count, while Y contains the high byte
value of the count

Required parameters

Parameter Count:

unit number:

byte value =$03

1 byte value in the range: $00, $01 to $7E

Each device has a unique number assigned to i.t at initialization time. The numbers are
assigned according to the device's position in the chain. A status call with a unit number of
$00 specifies a call for the overall SmartPort status.

starns list pointer: Standard
Word pointer (bank $00)

Extended
Longword pointer

This is a pointer to the buffer to which the status list is to be returned. For standard calls,
this is a word wide pointer defaulting to bank $00. For extended calls, ,this is a longword
pointer. Note that the length of the buffer will vary depending on the status request being
made.

status code: 1 byte value in range of $00 - $FF

This is the number of the status request being made. All devices respond to the following
requests:

StatusCode Status returned

$00 Return device status
$01 Return device control block
$02 Return newline status (character devices only)
$03 Return device information block (DIB)

Beta Draft 7-8 10/24/86

Smanport Firmware

Although devices must respond to the status requests listed above, the device may not be
able to support the request. In this case, the device should return an Invalid Status Code
error ($21).

Statcode :: $00

The device status consists of four bytes. The first is the general status byte:

Bit Function
7 1 = Block device, 0 = Character device
6 1 =Write allowed
5 1. =Read allowed
4 1 =Device online, or disk in drive
3 1 =Format allowed
2 1 =Media Write Protected (block devices only)
1 1 =Device currently interrupting (supported by Apple TIC only)
o 1 =Device currently open (character devices only)

If the device is a block device, the next field indicates the number of blocks on the device.
This is a three byte field for standard calls or a four byte field for extended calls. The least
significant byte is first If the device is a character device, these bytes are set to zero.

Statcode :: $01

The device control block or DCB is device dependent: The DCB is typically used to
control various operating characteristics in a device. The DCB is set with the
corresponding control call. The first byte will be the number of bytes in the control block.
A value of $00 returned in this byte should be interpreted as a DeB length of 256, while a
value of $01 would be a DCB length of 1 byte. The length of the DCB will always be in
the range of 1 to 256 bytes excluding the count byte.

Statcode :: $02

There are currently no character devices implemented for use on the SmartPort, and
therefore the Newline status is presently undefined.

Statcode :: $03

This call returns the device information block or DIB. It contains information identifying
the device, its type, and various other attributes. The returned status list has the following
form:

STATI,jST: Standard call
Device Status byte
Block Size (low byte)
Block Size (mid byte)
Block Size (high byte)
ID String length
ID String (16 bytes)
Device Type byte
Device Subtype byte
Version word

BetaDr(Jjt

Extended call
Device Status byte
Block Size (low byte, low word)
Block Size (high byte, low word)
Block Size (low byte, high word)
Block Size (high byte, high word)
ID String length
ID String (16 bytes)
Device Type byte
Device Subtype byte
Version word

7-9 10/24186

/

SmartPort Firmware

The Device Status is a one byte field which is the same as the general status byte returned in
the device status call (stateode = $00). The Block Size field is the same as the Block Size
field retuned in the device status call. The ID String consists of a single byte prefix
indicating the number of ASCII characters in the ID string. This is followed by a 16 byte
field containing an ASCII string identifying the device. The most significant bit of each
ASCII character will be set to zero.

If the ASCII string consists of less than sixteen characters, ASCII spaces are used to fill the
unused portion of the string buffer. The Device Type and Device Subtype fields are single
byte fields. Several bits encoded within the DIB subtype byte have been defined to indicate
whether a device supports the extended SmartPort interface, disk switched errors or
removable media. A breakdown of the DIB subtype byte is shown below:

SubType

I....-........Ib-.......L_-.l._--'- RESERVED

o=Removable media
1....- _

1...- 1 =Supports Disk Switched Errors

r....... 1 =Supports Ex~nded SmartPort

Figure 7-8. SmartPort device subtype byte

Several device types and subtypes have been assigned to existing SmartPort devices.
These types and subtypes are shown below: .

TYPE SUBTYPE DEVICE

$00
$01
$01

·$03

$00
$00
$CO
$EO

Apple II Memory Expansion Card
UniDisk 3.5
AppleDisk 3.5
Apple II SCSI with non-removable media

Undefined SmartPort devices may implement the following types and subtypes:

TYPE SUBTYPE DEVICE

$02
$02
$02
$02
$02

$02
$03

$20
$00
$40
$AO
$CO

$AO
$CO

Hard Disk
Removable Hard Disk
Removable Hard Disk supporting disk switched errors
Hard Disk suporting extended calls
Removable Hard Disk suporting extended calls & disk
switched errors
Hard Disk suporting extended calls
SCSI with removable media

The Firmware Version field is a two byte field consisting of a number that indicates the
fmnware version.

Beta Draft 7-10 10/24/86

Smanpon Finnware

SmartPort driver status

A status call with a unit number of $00 and a status code of $00 ,is a request to return the
status of the SmartPort driver. This function returns the number of devices as well as the
current interrupt status. The Format of the status list returned is as follows:

STATLIST Byte 0:
Byte 1:
Byte 2:
Byte 3:
Byte 4:.
Byte 5:
Byte 6:
Byte 7:

Number of devices
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved

The number of devices field is a single byte field that indicates to the caller the total number
of devices connected to this slot or port. This number will always be in the range of 0 to
127.

Possible errors

$06
$21
$30-$3F

Beta Draft

BUSERR
BADCfL
$50-$7F

Communications error
Invalid status code
Device specific error

7-11 10/24/86

/

SmanPon Firmware

SMARTPORT READ BLOCK CALL

Standard call Extended call
C1v.D)~ $01 $41
C1v.D)UST parameter count parameter count

unit number unit number
data buffer pointer (low byte) data buffer pointer (low byte, low word)
data buffer pointer (high byte) data buffer pointer (high byte, low word)
block number (low byte) data buffer pointer (low byte, high word)
block number (middle byte) data buffer pointer (high byte, high word)
block number (high byte) block number (low byte, low word)

block number (high byte, low word)
block number (low byte, high word)
block number (high byte, high word)

. This call reads one 512 byte block from the block device specified by the unit number
passed in the parameter list The block is read into memory starting at the address specified
by data buffer pointer passed in the parameter list

Required parameters

Parameter count:

unit number:

byte value =$03

1 byte value in the range: $01 to $7E

data buffer pointer: Standard Call
word pointer (bank $00)

Extended Call
LongWord pointer

This is a pointer to a buffer that the data is to be read into. For standard calls, this is a
word pointer into bank $00. For extended calls, the pOinter is a longword specifying a
buffer in any memory bank. The buffer must be 512 bytes in length.

block number: Standard Call
3 byte number

Extended Call
4 byte number

This is the logical address of a block of data to be read. There is no general connection
between block numbers and the layout of tracks and sectors on the disk. The translation
from logical to physical block is performed by the device.

Possible errors

$06
$27
$28
$2D
$2F

Beta Draft

BUSERR
IOERROR
NODRIVE
BADBLOCK
OFFLINE

Communications error
I/O Error
No Device Connected
Invalid block number
Device off line or no disk in drive

7-12 10/24/86

Smartpon Firmware

SMARTPORT WRITE BLOCK CALL

Standard call Extended call
~~ $02 $42
CMDUST parameter count parameter count

unit number unit number
data buffer pointer (low byte) data buffer pointer (low byte, low word)
data buffer pointer (high byte) data buffer pointer (high byte, low word)
block number (low byte) data buffer pointer (low byte, high word)
block number (middle byte) data buffer pointer (high byte, high word)
block number (high byte) block number (low byte, low word)

block number (high byte, low word)
block number (low byte, high word)
block number (high byte, high word)

This call writes one 512 byte block to the block device specified by the unit number passed
in the parameter list The block is written from memory starting at the address specified by
the data buffer pointer passed in the parameter list.

Required parameters

parameter count: byte value =$03

unit number: 1 byte value in the range: $01 to $7E

data buffer pointer: Standard Call
word pointer (bank $00)

Extended Call
LongWord pointer

This is a pointer to a buffer that the data is to be written from. For standard calls, this is a
word pointer into bank $00. For extended calls, the pointer is a longword specifying a
buffer in any memory bank. The buffer must be 512 bytes in length.

block number: Standard Call
3 byte number

Extended Call
4 byte number

This is the logical address of a block of data to be written. There is no general connection
between block numbers and the layout of tracks and sectors on the disk. The translation
from logical to physical block is performed by the device.

Possible errors

$06
$27
$28
$2B
$2D
$2F

BetaDraft

BUSERR
IOERROR
NODRNE
NOWRITE
BADBLOCK
OFFLINE

Communications error
I/O Error
No Device Connected
Disk write protected
Invalid block number
Device off line or no disk in drive

7-13 10/24/86

/

SmanPort Firmware

SMARTPORT FORMAT CALL

Standard call
CMDNUM $03
CMDUST parameter count

unit number

Extended call
$43
parameter count
unit number

This call formats a block device. It should be noted that the format done by this call is
NOT linked to any operating system: it simply prepares all blocks on the medium for
reading and writing. Operating system specific catalog information such as bit maps and
catalogs are not laid down by this call.

Implementation of the format call

Some block devices may require device specific information at format time. This device
specific information may include a spare list of bad blocks be written following a physical
format of the media. In this case it may not be desirable to implement the format call in
such a way that a physical format actually occurs because a vendor supplied spare list may
not be available or because of the time involved in executing a bad block scan. It may be
more desirable to implement device specific control calls to lay down the physical tracks
and initialize the spare lists. If this is done, the Format call need only return to the
application with the accumulator set to $00 and the carry flag cleared. This should only be
done when it is not desirable for the application to physically format the media.

Required parameters

Parameter count:

unit number:

Possible errors

$06 BUSERR
$27 IOERROR
$28 NODRIVE
$2B NOWRITE
$2F OFFLINE

Beta Draft

byte value =$01

byte value in the range: $01 to $7E

Communications error
I/O Error
No Device Connected
Disk Write Protected
Device off line or no disk in drive

7-14 10/24/86

Smartport Finnware

SMARTPORT CONTROL CALL

Standard call Extended call
CMDNUM $04 $44
CMDUST parameter count parameter count

unit number unit number
control list pointer (low byte) control list pointer (low byte, low word)
control list pointer (high byte) control list pointer (high byte, low word)
control code control list pointer (low byte, high word)

control list pointer (high byte, high word)
control code

This call sends control information to the device. The information may be either general or
device specific.

Required parameters

Parameter count:

unit number:

byte value =$03

byte value in the range: $00 to $7E

control list: Standard Call
word pointer (bank $(0)

Extended Call
Longword pointer

This is a pointer to the user's buffer where the control information is to be read from. For
the standard control call, the pointer is a word value into bank $00. For the extended
control call, the pointer is a longword value that may reference any memory bank. The first
two bytes of the control list specify the length of the control list with the low byte first A
control list is mandatory even if the call being issued does not pass information in the list.
A length of zero is used for the fIrst two bytes in this case.

control code: byte value
Range: $OO-$FF

This is the number of the control request being made. This number and function is device
specifIc, with the exception that all devices must reserve the following codes for specific
functions.

Code Control function
$00 Reset the device.
$01 Set device control block
$02 Set newline status (character devices only)
$03 Service device interrupt

Code:::: $00

Performs a soft reset of the device. Generally returns 'housekeeping' values to some reset
value.

Code:::: $01

This control call is used to set the device control block. Devices generally use the bytes in
this block to control global aspects of the device's operating environment. Since the length

Beta Draft 7-15 10/24/86

/

SmartPon Finnware

is device dependent, the recommended way to set the DCB is to first read in the DCB (with
the STATUS call), alter the bits of interest, and then write out the same string with this call.
The first byte is the length of the DCB (excluding the byte itself). A value of $00 in the
length byte corresponds with a DCB size of 256 bytes, while a count value of $01
corresponds with a DCB size of 1 byte. A count value of $FF corresponds with a DCB
size of 255 bytes.

Possible errors

$06
$21
$22
$30-$3F

Beta Draft

BUSERR
BADCTL
BADCTLPARM
UNDEFINED

Communications error
Invalid control code
Invalid parameter list
Device specific error

7-16 10/24/86

Smartpon Firmware

SMARTPORT INIT CALL

CMDNUM
CMDUST

Standard call
$05
parameter count.
unit number

Extended call
$45
parameter count
unit number

This call provides the application with a way of resetting the SmartPort.

Required parameters

parameter count:

unit number:

byte value =$01

byte value =$00

The SmartPort will go through it's initialization sequence, hard resetting all devices and
sending each their device numbers. This call may not be made to a specific unit, rather it
must be made to the SmartPort as a whole. This call should not be executed by an
application. It is possible that making this call in conjunction with control panel changes
may relocate devices contrary to the ProDOS device list

Possible errors

$06 BUSERR Communications error
$28 NODRIVE No Device Connected

SMARTPORT OPEN CALL

Standard call
CMDNUM $05
CMDUST parameter count

unit number

Extended call
$45
parameter COWlt
unit number

This call is used to prepare a character device for reading or writing.

Note that block devices do not accept this call, and will return a invalid command error
($01).

Required parameters

Parameter count:

unit number;

Possible errors

byte value =$01

byte value in the range: $01 to $7E

$01
$06
$28

Beta Draft

BADCMD
BUSERR
NODRIVE

.Invalid command
Communications error
No Device Connected

7-17 10/24/86

SmartPon Firmware

Beta Draft 7-18

/

10/24/86

Smartport Firmware

SMARTPORT CLOSE CALL

Standard call
CMDNUM $07
CMDUST parameter count

unit number

Extended call
$47
parameter count
unit number

This call is used to tell an extended character device that a sequence of reads or writes is
over. In the case of a printer, this call could have the effect of flushing the print buffer.

Note that block devices do not accept this call, and will return a invalid command error
($01).

Required parameters

parameter count:

unit number:

Possible errors

$01 BADCMD
$06 BUSERR
$28 NODRIVE

Beta Draft

byte value =$01

byte value in the range: $01 to $7E

Invalid command
Communications error
No Device Connected

7-19

./

10/24/86

SmanPon Firmware

SMARTPORT READ CALL

Standard call Extended call
CMDNUM $08 $48
CMDUST . parameter count parameter count

unit number unit number
data buffer pointer (low byte) data buffer pointer (low byte, low word)
data buffer pointer (high byte) data buffer pointer (high byte, low word)
byte count (low byte) data buffer pointer (low byte, high word)
byte count (high byte) data buffer pointer (high byte, high word)
address pointer (low byte) byte count (low byte)
address pointer (mid byte) byte count (high byte)
address pointer (high byte) address pointer (low byte, low word)

address pointer (high byte, low word)
address pointer (low byte, high word)
address pointer (high byte, high word)

This call reads the number of bytes specified by the byte count into memory. The starting
address of memory that the data is read into is specified by data buffer pointer. The address
pointer references an address within the device that the bytes are to be read from. The
meaning of the address parameter depends on the device involved. Although this call is
generally intended for use by character devices, a block device might use this call to read a
block of a non standard size (greater than 512 bytes per block). In this case, the address
pointer may be interpreted as a block address.

Required parameters

parameter count:

unit number:

byte value =$04

1 byte value in the range: $01 to $7E

data buffer: Standard Call
word pointer (bank $00)

Extended Call
longword pointer

For standard calls, this is the two byte pointer a buffer that the data is to be read into. For
extended calls, the pointer is a longword specifying a buffer in any memory bank. The
buffer must be large enough to accomodate the number of bytes requested.

byte count: 2 byte number

This specifies the number of bytes which are to be transferred. All of the current
implementations of the SmartPort utilizing SmartPort Bus have a limitation of 767 bytes.
Other peripheral cards supporting the SmartPort interface may not have this limitation.

address: Standard Call
3 byte address

Extended Call
4 byte address

The address is a device specific parameter usually specifying a source address within the
device. An example of how this call might be implemented with an extended block device,
is to use the address as a block address for accessing a non standard block. This is done

BetaDrajt 7-20 10/24/86

Smanpon Finnware

with the AppleDisk 3.5 and UniDisk3.5 to read 524 byte Macintosh blocks from 3.5 inch
media.

Possible errors

$06
$27
$28
$2B
$2F
$2F

BetaDraft

BUSERR
IOERROR
NODRIVE
NOWRITE
BADBLOCK
OFFLINE

Communications error
I/O Error
No Device Connected
DISK WRITE PROTECIED
Invalid block number
Device off line or no disk in drive

7-21

./

10/24/86

smartPort Finnware

SMARTPORT WRITE CALL

Standard call Extended call
CMDNUM $09 $49
CMDUST parameter count parameter count

unit number unit number
data buffer pointer (low byte) data buffer pointer (low byte, low word)
data buffer pointer (high byte) data buffer pointer (high byte, low word)
byte count (low byte) data buffer pointer (low byte, high word)
byte count (high byte) data buffer pointer (high byte, high word)
address pointer (low byte) byte count (low byte)
address pointer (mid byte) byte count (high byte)
address pointer (high byte) address pointer (low byte, low word)

address pointer (high byte, low word)
address pointer (low byte, high word)
address pointer (high byte, high word)

This call writes the number of bytes specified by the byte count to the device specified by
the unit number. The starting address of memory that the data is read from is specified by
data buffer pointer. The address pointer references an address within the device where the
bytes are to be written. The meaning of the address parameter depends on the device
involved. The meaning of the address parameter depends on the device involved.
Although this call is generally intended for use by character devices, a block device might
use this call to write a block of a non standard size (greater than 512 bytes per block). In
this case, the address field would be interpreted as a block address.

Required parameters

Parameter count:

unit number:

byte value =$04

1 byte value in the range: $01 to $7E

data buffer: Standard Call
word pointer (bank $00)

Extended Call
longword pointer

For standard calls, this is the two byte pointer a buffer that the data is to be read into. For
extended calls, the pointer is a longword specifying a buffer in any memory bank. The
buffer must be large enough to accomodate the number of bytes requested.

byte count: 2 byte number

This specifies the number of bytes which are to be transferred. All of the current
implementations of the SmartPort utilizing SmartPort Bus have a limitation of 767 bytes.
Other peripheral cards supporting the SmartPort interface may not have this limitation.

address: Standard Call
3 byte value

Extended Call
4 byte value

The address is a device specific parameter usually specifying a destination address within
the device. An example of how this call might be implemented with a block device, is to
use the address as a block address for accessing a non standard block. This is done with
the AppleDisk 3.5 and UniDisk3.5 to write 524 byte Macintosh blocks to 3.5 inch media.

Beta Draft 7-22 10/24/86

Possible errors

Smanpon Firmware

$06
$27
$28
$2B
$2F
$2F

. BetaDrajt

BUSERR
IOERROR
NODRNE
NOWRITE
BADB~

OFFLINE

Conununicationse.rror
I/O Error
No Device Connected
DISK WRITE PROTECIED
Invalid block number
Device off line or no disk in drive

7-23

./

10/24/86

Smanport Finnware

The following tables summarize the command numbers and parameter lists for standard and
extended SmartPort calls.

Summa of Standard Commands and Parameter List

Status ReadBlock WriteBloc Format Control Init

$40 $41 $42 $43 $44 $45

$03 $03 $03 $01 $03 $01

Unit # Unit # Unit # Unit # Unit # Unit #

Buffer Ptr Buffer Ptr

Buffer Ptr Buffer Ptr

Block Addr Block Addr Ctrl Code

Block Addr Block Addr

Block Addr Block Addr

4:

1:

3:

5:

2:

6:

Command

CMONUM

CMDLlST Byte
0:

7:

8:

Figure 7-9. Summary Of standard commands and parameter lists

Summary of Standard Commands and Parameter Lists

Command Open Close Read Write

CMDNUM $46 $47 $48 $49

CMDLlST Byte
$01 $010: $04 $04

1: Unit # Unit # Unit # Unit #

2: Buffer Pt Buffer Pt.
3: Buffer Pt Buffer Pt

4: Byte Coun Byte Coun

5: Byte Coun Byte Coun

6: * *

7: * *

8: * *

This parameter is device specific

Figure 7-10. Summary of standard commands and parameter lists

1) The read byte count and the Control call list contents in some SrnartPort
implementations may not be larger than 767 bytes.

Beta Draft 7-23 10/24/86

SmanPonFinnware

2) Upon return from the Read call, the byte count bytes will contain the number of
bytes actually read from the device.

tended Comrn

Cormnand Status ReadBlock WriteBlock Fonnat Control !nit

CMDNUM $40 S41 S42 S43 $44 S45

CMDLIST Byte
S03 $03 $03 SOl S03 SOl0:

1: Unit # Unit * Unit # Unit * Unit * Unit #

2: StatUst Ptr Buffer Ptr Buffer Ptr CtrlList Ptr

3: StatUst Ptr Buffer Ptr Buffer Ptr CtrlList Ptr

4: StatUst Ptr Buffer Ptr Buffer Ptr CtrlList Ptr

5: StatList Ptr Buffer Ptr Buffer Ptr CtrlList Ptr

6: StatusCode Block Addr Block Addr Ctrl Code

7: Block Addr Block Addr

8: Block Addr Block Addr

9: Block Addr Block Addr

10:

11 :

. Figure 7-11. Summary of extended commands and parameter lists (part 1)

Beta Draft 7-24

./

10/24/86

Smanpon Firmware

Command Open Close Read Write

CMDNUM $46 $47 $48 $49

CMDUSTByte
$01 $01 $04 $040:

1: Unit ## Unit 1# Unit 1# Unit ##

2: Buffer Ptr Buffer Ptr

3: Buffer Ptr Buffer Ptr

4: Buffer Ptr Buffer Ptr

5: Buffer Ptr Buffer Ptr

6: Byte Count Byte Count

7: Byte Count Byte Count

8:

9:

10:

11 :

... This parameter is device stD=i

Figure 7-12. Summary of extended commands and parameter lists (part 2)

Notes:

1) The read byte count and the Control call list contents in some SmartPort
implementations may not be larger than 767 bytes.

2) Upon return from the Read call, the byte count bytes will contain the number of
bytes read from the device.

Device Specific SmartPort Calls
In addition to the common command set of SmartPort calls already listed, a device may
implement it's own device specific calls. Usually these calls will be implemented as a
subset of the SmartPort Status or Control calls rather than a new command.

SmartPort calls unique to the AppleDisk 3.5

Seven AppleDisk 3.5 device specific calls have been added as an extension to the Control
call. These device specific control calls may only be used with the AppleDisk 3.5. To
determine if a device is an AppleDisk 3.5 the type and subtype bytes returned from a DIB
statatus call may be examined. If the type byte is returned with a value of $01 and the
subtype byte is returned with a value of $CO, then the device is an AppleDisk 3.5. Since
the device specific calls to the AppleDisk 3.5 are implemented as control calls, only the

BetaDraji 7-25 10/24/86.

SmartPon Firmware

control code and control list for these calls will be defined here. Refer to the section on the
SmartPort Control Calls for information on the command byte and parameter list.

Control Code:
Control List: Count Low Byte

Count High Byte

This call is used to eject the media from the 3.5 inch drive.

$04
$00
$00

SetHook Control Code:
Control List: Count Low Byte

Count High Byte
Hook Reference number
Address Low
Address High
Address Bank

$05
$04
$00
$xx
$xx
$xx
$xx

This call is used to redirect routines internal to the AppleDisk 3.5 driver. The routine to be
redirected is referenced by the Hook Reference Number. The address that the routine is to
be redirected to is specified by the 3 byte address field in the control list.

Valid Hook Reference Numbers and their associated routines are shown in the table below:

Hook Reference
$01
$02
$03
$04
$05
$06
$07

Routine
Read Address Field
Read Data Field
Write Data Field
Seek
Format Disk
Write Track
Verify Track

The routine READ ADDRESS FIELD reads bytes from the disk until it finds the address
marks and a sector number specified as input parameters to the routine. The READ
BLOCK routine will read a 524 byte Macintosh block or 512 byte Apple IT block from the
disk.

The WRITE DATA FIELD routine will write a 524 byte block of data to the disk. For
Apple IT blocks, the first 12 bytes will be written as zero.

The SEEK routine will position the read/write head over the appropriate cylinder on the
disk.

The FORMAT routine writes the address marks, data marks, zeroed data blocks, checksum
and end of block marks.

BetaDraj't 7-26 10/24/86

./

Smartpon Firmware

DATA FIELD I I EOB IDATA
MARKS

GAP
H1H~1 ~.~ M ll:?K~

"""~ C/) S P< P< 5 - 10 § Su U r.1

~D5 AA 96 ~ r.1 Cl
~

H H ps AA lAC 342 DATA BYTES ~ DE AA IT
C/) H H H BYTES

E-i C/) C/) C/) r.1u SYNC C/) u

IADDRESSI ADDRESS FIELD

Figure 7-13. Disk sector format

The WRITE TRACK routine is called by the formatter to write out one track of empty
blocks. The number of blocks written is dependent on the track that the read/write head is

P positioned over.

The VERIFY routine is called by the formatter to verify that the data written by the WRITE
TRACK routine was written correctly.

ResetHook Control Code:
Control List: Count Low Byte

Count High Byte
Hook Reference number

$06
$01
$00

This call is used to restore the default address for the hook specified in the control list.

$07
$xx
$00
$xx

Control Code:
Control List: Count Low Byte

Count High Byte
Start Byte
Data.......

This call is used to change individual bytes in the mark tables. The count field specifies
how many bytes in the mark table are to be written plus 1. The start byte references an
offset into the mark table that the new bytes are to be written to. Bounds checking will be
performed to make sure the byte count will not overflow the internal mark table. The
default values for the MARK table is shown in detail below:

SetMark

Byte $FF
Byte$AD
Byte$AA
Byte$D5
Byte $FF
Byte $FC
Byte $F3
Byte $CF
Byte $3F
Byte $FF
Byte $FF
Byte$AA
Byte$DE
Byte $FF
Byte $FF

: Byte 0 Sector Number
: Byte 1 Data Marks
: Byte 2
: Byte 3
: Byte 4
: Byte 5 Sync Bytes
: Byte 6
: Byte 7
: Byte 8
: Byte 9
: Byte 10 Bit Slip Marks
: Byte 11
: Byte 12
: Byte 13
: Byte 14 Inter-Header Gap

Beta Draft 7-27 10/24/86

SmartPon Firmware

Byte $FF
Byte $FF
Byte $FF
Byte $96
Byte$AA
Byte $D5
Byte $FF

ResetMark

: Byte 15
: Byte 16
: Byte 17
: Byte 18 Address Marks
: Byte 19
: Byte 2(j

. : Byte 21

Control Code:
Control List: Count Low Byte

Count High Byte
Start Byte

$08
$xx
$00
$xx

This call is used to restore individual bytes in the mark tables to the default values. The
count field defines how many bytes in the mark table are to be restored plus 1. The start
field defines where in the mark table the bytes are to be restored.

SetSides Control Code:
Control Code: Count Low Byte

Count High Byte
Number of Sides

$09
$01
$00
$nn

This call is used to set the number of sides of the media to be formatted by the format call.
This allow for support of either single sided or double sided media. When the most
significant bit of the number of sides field is set to '1', then double sided media will be
formatted. If the most significant bit is cleared to '0', then single sided media will be
formatted.

SetInterleave Control Code:
Contrl List: .Count Low Byte

Count High Byte
Interleave

$OA
$01
$00
$01 to $OC

This call is used to set the sector interleave that will be layed down on the disk by the
format calL

SmartPort calls unique to the UniDisk 3.5

Five UniDisk 3.5 device specific calls have been added as extensions to the Control and
Status calls. These device specific calls may only be used with the UniDisk 3.5. To
determine if a device is an UniDisk 3.5 the type and subtype bytes returned from a DIB
statatus call may be examined. If the type byte is returned with a value of $01 and the
subtype byte is returned with a value of $00, then the device is a UniDisk 3.5. For calls
implemented as extensions to the control call, only the control code and control list will be
defmed. For calls implemented as extensions to the status call, only the status code and
status list will be defined. Refer to the sections on the SmartPort Control and Status Calls
for more information on these calls.

Control Code:
Control List: Count Low Byte

Count High Byte

This call is used to eject the media from the 3.5 inch drive.

$04
$00
$00

BeraDrajt 7-28 10/24/86

Execute Control Code: $05
Control List: Count Low Byte

Count High Byte
Accumulator Value
X Register Value
Y Register Value
Processor Status Value
Low Program Counter
High Program Counter

$06
$00
$xx
$xx
$xx
$xx
$xx
$xx

Smartport Firmware

This call is used to dispatch the intelligent controller in the UniDisk 3.5 device to execute a
65C02 subroutine. The register setup is passed to the routine to be executed from the
control list

SetAddress Control Code:
Control List: Count Low Byte

Count High Byte
Low Byte Address
High Byte Address

$06
$02
$00
$xx
$xx

This call is used to set the address in the UniDisk 3.5 controller's memory space that the
DownLoad call will load a 65C02 routine into. Care must be taken that the download
address is set only to free space in the UniDisk 3.5 memory map.

DownLoad Control Code: $07
Control List: Count Low Byte $xx

Count High Byte $xx
Executable 65C02 Routine.....

This call is used to download an executable 65C02 routine into the memory resident on the
UniDisk 3.5 controller. The address that the routine is loaded into is set by the SetAddress
call. The count field must be set to the length of the 65C02 routine to be downloaded.

UniDiskStat Status Code:
Status List: Byte

Soft Error
Retries
Byte
A Register after Execute
X Register after Execute
Y Register after Execute
P Register after Execute

$05
$00
$xx
$xx
$00
$xx
$xx
$xx
$xx

This call allows an application to get more detail about an error that may be returned on a
read or a write. It also allows an application to have access to the 65C02 register state after
dispatching the UniDisk 3.5 controller to execute a 65C02 routine via the EXECUTE call.

Addresses of memory mapped I/O internal to the UniDisk 3.5 controller are shown below:

BetaDrajt 7-29 10/24/86

SmanPon Firmw{]]'e

SOAOO

S0800

$0200

$0100

$0000

BetaDrajt

UniDisk 3.5 Intelligent Controller

RAM Usage Memory Map

Figure 7-14. Unidisk 3.5 memory map

7-30

$0800

S0600

~~~ S0500

$040C

S0200

S0100

SOOCO

$0000

10/24/86



Smartport Firmware

Function data4 data3 data2 datal dataO

Read S800 LASTONE /BUSEN /WRREQ ,uATENBL HDSEL

Wrt S800 TRIGGER ENBUS PH3EN IWMDIR HDSEL

Read S801 SENSE BLATCHl BLATCH2 URONEN CAO

/BLATCH /BLATCH
Wrt S801 /RSTIWM CLRl CLR2 DRIVEl DRIVE2

Figure 7-15. Unidisk 3.5 gate array I/O locations

Location

SOAoo
SOAOl
SOA02
SOA03
SOA04
SOA05
SOA06
$OA07
$OA08
SOA09
SOAOA
SOAOB
SOAOC
$OAOD
$OAOE
$OAOF

Specific Label

PHASEO reset
PHASEO set
PHASEl reset
PHASEl set
PHASE2 reset
PHASE2 set
PHASE3 reset
PHASE3 set
MOI'OROFF
MOI'ORON
ENABLEl
ENABLE2
L6 reset
L6 set
L7 reset
L7 set

IWMDIR=O (drv)

CAO reset
CAO set
CAl reset
CAl set
CA2 reset
CA2 set
LSTRB reset
LSTRB set

IWMDIR=l (host)

/BSY handshake
/BSY handshake

BetaDrajt

Figure 7-16. Unidisk 3.5 IWM locations

7-31 10/24/86



ROM Disk Driver
The ROM Disk is a plug-in card that houses ROM's that may be organized into blocks that
emulate a disk device, or provide space for rom based programs. This may include ROM
based extensions to the tool set, desk accessories or applications. Although SmartPort has
no built-in ROM Disk. SmartPort will support an external ROM Disk driver.

Installing a RomDisk driver

A RomDisk driver must reside at address $FO/OOOO. The ROMDISK may only occupy the
address space from $FO/OOOO through $F?/FFFF. The base address of the driver must
contain the ASCn string 'ROMDISK' in upper case with the MSB on. Entry to the
RomDisk driver will be through address $FO/0007. The SmartPort firmware will search
for a RomDisk driver during the boot process while assigning unit numbers to each of the
SmartPort devices. If the ASCn string 'ROMDISK' is found at address $FO/OOO7, an
initialization call will be executed to the ROM Disk driver via the RomDisk entry point If
the RomDisk returns with no error, the RomDisk driver will be installed into the SmartPort
device chain. If the RomDisk initialization call returns an error, the RomDisk driver will
not be installed in the SmartPort device chain.

Passing parameters to the ROM disk

Call parameters are passed to the ROM Disk from SmartPort through fixed memory
locations in absolute zero page. All input to device specific drivers are passed in an
extended foxmat This is done even for standard SmartPort calls so that the call parameters
will always be found in fixed locations. This does not mean that a non extended call will
be changed to an extended call. Only the organiztion of parameters is affected.

Some parameters do not occupy contiguous memory when presented in an extended
foxmat This occurs because the order of parameters has been prepared so that the
parameters can be transmitted over SmartPort Bus to intelligent devices. Absolute zero
page locations $40-62 have been saved by SmartPort prior to dispatching to the ROM Disk
driver, and will be restored by SmartPort afterretuming from the driver. This means that
these locations are available for use by the ROM Disk driver. Call parameters are passed to
the ROM Disk driver as shown below:

Beta Draft 7-32 10/24/86



Smartpon Firmware

Location Parameters Call Type

$42 Buffer Address (bits 0-7) All

$43 Buffer Address (bits 8-15) All

$44 Buffer Address (bits 16-23) All

$45 Command All

$46 Parameter Count All

$47 Buffer Address (bits 24-31) All

$48 Extended Block (bits 0-7) ReadBlock & Writeblock
Status Code or Control Code Status & Control
Byte Count (bits 0-7) Read & Write

$49 Extended Block (bits 8-15) ReadBlock & Writeblock
Byte Count (bits 8-15) Read & Write

$4A Extended Block (bits 16-23) ReadBlock & Writeblock
Address Pointer (bits 0-7) Read & Write

$4B Extended Block (bits 24-31) ReadBlock & Writeblock
Address Pointer (bits 8-15) Read & Write

$4C Address Pointer (bits 16-23) Read & Write

$4D Address Pointer (bits 24-31) Read & Write

Parameters being returned to the application from the ROM Disk Driver are passed in
absolute zero page locations as follows:

Location

$000050
$000051
$000052

Output Parameter Passed

Error Code
Low byte of count of bytes tranferred to host
High byte of count of bytes tranferred to host

All I/O information being passed between the application making the SmartPort call and the
ROM Disk driver will be passed through the buffer specified in the parameter list.

ROM organization

The ROM must contain the ROM Disk signature string as well as a ROM Disk driver. If
portions of the ROM are to be organized as blocks then a map of the ROM address space
might look like the figure shown below.

Beta Draft 7-33 10/24/86



SmanPort Firmware

RomDisk
Blocks

$Fn / XXXX+l t----------"'I$Fn/XXXX

RomDisk
Driver

$FOOOO7
$FOOOOO

Figure 7-17. The ROMDISK

It is possible to use the expansion ROM for both a RomDisk and ROM based extensions to
the tool set by partitioning the ROM into three areas (Driver, Blocks and Tools) as shown
below:

ROM Based
Tools

RomDisk
Blocks

RomDisk
Blocks

$Fnl XXXX+l ....... ......
$Fn/XXXX

RomDisk
Driver

$FOOOO7
$FOOOOO ascii strin •'ROMDISK'

Figure 7-18. Partitioning the ROM

The initialization call made to the RomDisk driver should make a call to the ToolLocator to
install any ROM based tool set extensions. This then allows the tool locator to dispatch to
the ROM based tool set extensions directly rather than down loading the tool set to RAM as
would be neccessary if the ROM disk only emulated disk I/O.

A block diagram of a RomDisk that occupies 128k of ROM (including the driver itself) is
shown below:

Beta Draft 7-34 10/24/86



Smanpon Finnware

ROM bank boundry -----tJ!I'l-------.BLOCKSFE

BLOCKSFD
......---""'""'"iBLOCK SFC

BLOCK S83
t-------tBLOCK S82
...... ""'""'"iBLOCK S81
...... ""'""'"iBLOCK S80

ROM bank boundry ~====~BLOCK S7F
BLOCK$7E

......-----tBLOCK $7D

......._--::l.....---'BLOCK S7C

ROMDISK driver
signature bytes
device size (number of blocks)

t- --tBLOCK S13
t- --tBLOCK $12
t-- --tBLOCK Sl1
t-- --tBLOCK SlO
t- --tBLOCK SOF
t- --tBLOCK SOE
....... --tBLOCK SOD

BLOCK SOC
.......-----tBLOCK SOB
....... --tBLOCK SOA

BLOCK $09
t------tBLOCK S08
t- --tBLOCKSm

BLOCKSQ6
t----""'""'"iBLOCK S05

BLOCK $04
t-------IBLOCK S03

BLOCK S02
.......-----IBLOCK SOl

~~~BiiL;;;OCK SOO
Driver in base 512 byte block
of ROM bank $FO

Total number of blocks = Romsize

Figure 7-19. Block diagram of a 128k ROM disk

Note that no ROM space has been reserved for toolset expansion in this example.

Beta Draft 7-35 10/24/86

SmartPort Finnware

SUMMARY OF SMARTPORT ERROR CODES

Description

A nonexistent command was issued.
Bad call parameter count This error will occur
only if the call parameter list was no properly
constructed.
A communications error with the IWM occured.
An invalid unit number was givien.
Interrupt devices not supported.
The control or status code is not supported by the
device.
The control list contains invalid information.
The device encountered an I/O error.
The device is not connected.. TIlls can occur if
the device is not connected but its controller is.
The device is write protected.
The block number is not present on the device.
Device off line or no disk in drive.
These are device specific error codes

A device specific 'soft' error. The operation
completed successfully, but some exception
condition was detected.

Acc value Error type
$00 No error
$01 BADCMD
$04 BADPCNT

$06 BUSERR
$11 BADUNIT
$1F NOINT
$21 BAOCTL

$22 BADCTLPARM
$27 IOERROR

. $28 NODRIVE

$2B NOWRITE
$2D BADBLOCK
$2F OFFLINE
$30-$3F DEVSPEC
$40-$4F RESERVED
$50-$5F NONFATAL

THE SMARTPORT BUS

The SmartPort Bus is a daisy chain configuration of intelligent devices, sometimes called
"bus residents", which are connected to the disk port of the host CPU. A Disk][type
device may be physically connected to the end of the SmartPort device chain on the Apple
nGS and its operation occurs transparently to host software. The Disk][device remains
dormant when a SmartPort bus resident is addressed. The number of bus residents is
limited by supply power and IWM drive considerations, since the software supports up to
127 residents. Power requirements usually limit the maximum number of bus residents to
four.

The drive selection is done through software. The command string contains a byte
specifying the device to be accessed. These device In bytes are assigned at bus reset by the
SmartPort in a manner to be described below.

There are two functions which are strictly hardware invoked, bus reset, and bus enable.
Both of these conditions are envoked by asserting combinations of phase lines on the disk
port which never occur under normal Disk][operation (Both functions involve asserting
opposing phases - this is pointless to do on a Disk][.) TIlls allows a DiskJ[type device
and other bus residents to effectively stay out of each other's way.

Function

Enable
Reset

1
o

X
1

1
o

X
1

BeraDrajt 7-36 10/24/86

Smartpon Firmware

The PHD don't care ('X') is necessary since when the bus is enabled, PHD is used as a
REQ handshake line cycled on a packet basis. ACK is sensed from the device through the
IWM write protect sense status.

How SmartPort assigns unit numbers

The assignment of unit numbers is initiated by the executing a call to the slot 5 boot entry
point, and always begins with a bus reset The reset flips a latch on all bus residents which
causes the daisy-ehained phase 3 line to become low. This causes all daisy-ehained devices
to be incapable of receiving the bus enable signal, which involves phase 3 high.

The host then sends the ID definition command. Whenever a device receives this command
(with ENABLE), it takes the unit number embedded in the command sJring and assigns that
number as its own unit number. Thereafter it will not respond to any command string with
a unit number other than that given it in the ID definition command.

Upon completing the ID definition command, the bus resident re-enables the phase 3 line,
allowing the next resident to recieve its ID definition command. This process continues as
long as their are bus residents. The last bus resident in the device chain returns an
exception indicating that is the last bus resident

Although disk] [devices are connected to the disk port, they are not bus residents and will
not respond to the ID definition command. A resident determines that he is the last
intelligent device in the chain through the-sensing of a signal, normally unused in Disk][
operation, which is groUnded by all intelligent devices. If no bus resident or a Disk][type
device is daisy-chained to the port, this line is read as high.

SmartPort interaction with the Disk][

The disk port built into the Apple IIoS will support a daisy chained 5 1/4" disk
(UniDiskS.25, Disk// or DuoDisk). This is done by sharing the same disk port hardware
between two different slot rom areas. Slot 5 ROM area contains the SmartPort interface
and ProDOS block device driver while slot 6 ROM area contains the Disk] [interface. The
Disk][device is enabled by the disk port signal IENABLE2. The SmartPort must activate
this line to communicate with intelligent bus residents. If this line were not intercepted
before being passed on to daisy chained devices, any attempt to talk to devices on the bus
would result in spurious operation of the Disk][at the end of the chain.

For the Disk][to remain aloof to SmartPort activity, each resident must gate the
IENABLE2line so that whenever any SmartPort bus resident is enabled (pHASE! and
PHASE3), any Disk][at the end of the chain will be disabled.

In other words, the IENABLE2line is only passed onto daisy chained devices when either
PHASE! or PHASE3 are low:

BUS ENABLE (PH! & PH3) - IENABLE2 (daisy)
PHASE!=O or PHASE3=O IENABLE2
PHASE!=! and PHASE3=! deasserted (high)

Other considerations

All intelligent residents try to process eve,ry command packet that goes over the bus,
responding only if it recognizes its own ID, Type and SubType encoded in the packet. It is

BetaDrajt 7-37 10/24/86

smartPortFinnware

the Device Type and command that will be used by the device to arbitrate between extended
and standard packets. Thus one resident can tell when some other resident is being
accessed or if the packet type (extended or standard) is compatable with the device. It is
therefore possible for a device controller to bring itself to some low power consumption
mode when it is not being accessed constantly.

Extended and standard command packets

There is no difference in the number of bytes passed over the SmartPort bus in a standard
command packet versus an extended command packet Standard SmartPort commands
may have a parameter list consisting of nine bytes maximum. Extended SmartPort
commands may have a parameter list consisting of eleven bytes maximum. The command
packet was designed for a maximum of nine bytes of information. The first two bytes
always contains the SmartPort command number and parameter count. The remaining
seven bytes consists of the seven bytes of the parameter list starting with the third byte for
standard commands or the fifth byte for extended commands. Seven bytes from the
parameter list are always copied into the command packet even though the parameter list for
the current command may consists of less than seven bytes.

SmartPort Bus description

The general flow of control of the SmartPort might be represented in this manner:

I ProDOS Interface I
Il0o..

Packet Management r Disk Port ~ •
ISmartPort Interface I

SmartPort Bus

SmartPort Anatomy
Figure 7·20. SmartPort anatomy

Whenever a call is made to the SmartPort device driver that utilizes SmartPort Bus, the
command table sent to the device driver is converted into what is known as a 'command
packet' before being sent to the device. Then the results of the call are sent back from the
device in a 'packet'. All data sent across the bus is placed in these packets. Each byte of
the packet is a seven bit quantity (bit 7 is always set), a limitation imposed by the IWM.
All data sent is converted from eight bit quantities to seven bit before transmission.

The information of the packet can be broken down into the following categories:

• General Overhead

• Source and Destination IDs

• Contents Type and AuxType

• Contents Status

• Contents

Beta Draft 7-38 10/24/86

Smartpon Finnware

The IDs are seven bit quantities and are assigned sequentially according to the device's
position in the chain. The host is always ID=O. Since every byte in the packet has the
MSB set, the host is $80, the first device in the chain is $81, etc.

The contents type consists of a type and auxtype byte. There are three currently defmed
contents types. Type = $80 is a command packet, $81 is a status packet, and $82 is a data
packet Bit 6 in the command byte and the AuxType byte defines the packet as either
extended or non extended. AuxType = $80 is a non extended packet, $CO is an extended
packet. Command = $8X is a non extended packet, $CX is an extended packet.

The contents byte is used on status and data packets. It contains the error code for
rea.d/write operations. This is the byte that the SmartPort will return as an error code for
the call

The contents itself consists of bytes of seven bits (hi bit set) of encoded data. Preceding
the bytes themselves are two length bytes. If the number of content bytes is
BYTECOUNT, then the first byte is defined as BYTECOUNT DN 7, and the second byte
is defmed as BYTECOUNT MOD 7. In other words, the first byte specifies the number of
groups of seven bytes of content, and the second is the remainder. Note that the second
byte will never have a value larger than 6. Both these bytes have their MSB set.

The general overhead bytes are packet begin and end marks, sync bytes (6) to ensure
correct synchronization of the IWMs, and a checksum. The checksum is computed by
exclusive ORing all the content data bytes (8 bits) and the IDs, type bytes, status and length
bytes. The checksum is eight bits sent as sixteen (see SmartPort Bus Packet Format
diagram).

BetaDraji 7-39 10/24/86

(

®U'lJ\)IID[f~ 1P@[f~ [IDO:D® ©@U'lJ\) U'lJ\)l1Drril ~©IID~~@rril® 1P[f@~@©@~

EXECUTING A READ FROM THE DEVICE

~ (D)(~ 0LREO

AO< ~ l~ @))Lr~

:os LORIVEIWM

~HOSTIWM

~ LDRIVE DATA

<:AjHOST DATA

CD Host asserts REO when ACK is negated and command packet is

CD Host enables IWM and sends packet to

@) Device deasserts ACK signalling the HOST that the packet was

® Host responds by deasserting REO.

@) Device asserts ACK when ready to send response packet to

® Host asserts REO when ready to receive response packet from

Q) Device enables IWM and sends response packet to

CD Device deasserts ACK at end of

® Host deasserts REO when packet
@ Device asserts ACK to indicate ready to re~eive command

Figure 7-21. SmartPort Bus communications -Read protocol

Beta Draft 740 10/24/86

Smartport Finnware

~1ITi'il®11'~~@I1'~ ®l1Il® ©@IITi'ilIITi'ill1Il!TIl~©®~~@!TIl® ~11'@~@©@~

EXECUTING A WRITE TO THE DEVICE

u
----------------~

I

~ ~------,@))'t~ 119
<D1.J\D ([))lJ~~

______1 1_

REO

DRIVE IWM

HOSTIWM J
DRIVE DATA

HOST DATA ~

CD Host asserts REO when ACK is negated and command packet is

<V Commad packet is sent.

® Device asserts ACK signalling that ~ got the

<D Host negates ACK finishing the command

® When REO is negated and device is ready to receive write data, devie e

® When ACK is negated and host is ready to send, host asserts

CD Host sends wr~e data.

@) Device asserts ACK signalling ~ received the

® Host negates REO allowing device to wr~e data to

® Device negates ACK and wr~es data to
<0 Host responds to negated ACK by asserting REO signalling ready for

® Device responds to REO by sending status to the

® Device asserts ACK signalling status

(23 Host acknowledges reciept of status by negating

® Device negates ACK when ready for next command

Figure 7-22. SmanPort Bus communications -Write protocol

Beta Draft 741 10/24/86

SmanPort Finnware

SmartPort Bus Packet Format

Packet Type ($80 - Command Packet
$81 - Status Packet
$82 - Data Packet)

Aux Type .($80)

1_$C_3_,I
1 21

1====,1
1====,1
I_51

Packet Begin Mark

Destination ID ($8D-FE)

Source ID ($8D-$FE)

Host ID always $80,
first device in chain $81,
2nd $82, etc.

I ,I

Data Status Byte (7 bits) ($8D-$FF)

Length of packet contents "odd" bytes ($80-$86)

Length of the packet contents groups of7~ bytes ($80-$ED)

Packet Contents Groups of 7 data bytes written
as 8, MSBs all in the first byte.

1 c7 1 c5 1 c3 1 c1

...............$.......C8_1

Checksum (8 bit XOR of packet data
and bytes 1-8 above) sent PM, every other bit a 'I '.

Packet End Mark

Beta Draft

All bytes have the MSB set per IWMeqts.

Figure 7-23. SmartPort Bus packet format

742 10/24/86

Smanpon Firmware

SmartPort Bus Packet Contents

Odd Group of
~.data bytes

(2·7 bytes sent)

Group of
7 data bytes
(8 bytes sent)

Group of
7 data bytes
(8 bytes sent) 000

Group of
7 data bytes
(8 bytes sent)

(packet Sizes range from 0 to 767 data bytes)

• Take a group of 7 data bytes to be encoded,

dl d2 d3 d4 . d5 . d6 . d7,
bits 7..0 bits 7..0 bits 7..0 bus 7..0 bits 7..0 bits 7..0 bits 7..0

where bit 7 is the most significant bit, then the bytes which are serially sent are as follows:

Top Bits Byte

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

Byte 6

Byte 7

1 d17 d2, d3, d4; <i5r ,d6 fl7
1 d16 dIs d~ d13 d~ p1 cP1
1 cI; cI; ~ d2:3 ci; p2 eP2
1 <136 ~ ~ <133 d3z p3 eP3
1 d46 d4s d'\ d4 3 d4 2 94 94

1 d56 d5s ~ d53 ~ fl5 cP5
1 d66 d6s d~ d~ d~ p6 cP6
1 d76 d75 d74 d73 d72 p7 cP7

• To determine the number of bytes in the odd group, is the remainder of the # of data bytes
in the packet divided by 7. When encoding the oddbytes, assume that the rest of the bytes
making up a group of seven are zero. (See example) Also note that if there are no oddbytes
(ie #packet data bytesf7 has zero remainder) the oddbytes group is just omitted. Similarly, if
the number of bytes in the packet is less than seven, there will be no 'seven' groups, only an
'oddbyte' group. .

• For example, if you are sending a 512 byte packet, the number of groops of seven
equals 73, and the remainder is 1. Therefore the first data byte will be sent as an odd group,
followed by 73 groups of seven bytes. The groups of seven bytes will be encoded as above,
and the odd bytes (byte in this example (d1 bits 7..0)) will be sent like so:

Top Bits Byte

Byte 1

1 d17 0 0 0 0 0 0

1 d16 dIs d~ d13 d~ p1 cP1

Note that the Top Bits for data bytes 2 through 7 in this example are omitted along with the
bytes which would have encoded the low seven bits of the data bytes 2 through 7. The oddbytes

Beta DrJt°uPis simply a special case of an instancel~~ group of seven. 10124186

SmartPon Finnware

Beta Draft

Figure 7-24. SmartPort Bus packet contents

744 10/24/86

Smartpon Finnware

Standard Command Packet Contents

Status ReadBlock WrlteBlock Format Control !nit

Beta Draft

BYTE 1

BYTE 2

BYTE 3

BYTE 4

BYTE 5

BYTE 6

BYTE 7

BYTE 8

BYTE 9

SOO SOl S02 S03 $04 S05

Parameter Parameter Parameter Parameter Parameter Parameter
Count Count Count Count Count Count

Byte 3 of Byte 3 of Byte 3 of - Byte 3 of ·
Parameter Parameter Parameter Parameter

List List List List

Byte 4 of Byte 4 of Byte 4 of - Byte 4 of -
Parameter Parameter Parameter Parameter

List List List List

- Byte 5 of Byte 5 of · · ·
Parameter Parameter

List List

· Byte 6 of Byte 6 of - · ·
Parameter Parameter

List List

- Byte 7 of Byte 7 of · · -
Parameter Parameter

List List

· . . · - -

· . - · · -

Note: Bytes with '-' have indeterminate values...
-the device should ignore these.

Figure 7-25. Standard command packet contents (part 1)

7-45 10/24/86

smartPort Firmware

Standard Command Packet Contents

Open Close Read Write

BYTE 1

BYTE 2

BYTE 3

BYTE 4

BYTE 5

BYTE 6

BYTE 7

BYTE 8

BYTE 9

$06 $07 $08 $09

Parameter Parameter Parameter Parameter
Count Count Count Count

Byte 3 of Byte 3 of Byte 3 of Byte 3 of
Parameter Parameter Parameter Parameter

List List List List

Byte 4 of Byte 4 of Byte 4 of Byte 4 of
Parameter Parameter Parameter Parameter

List List List List

Byte 5 of Byte 5 of
- - Parameter Parameter

List List

Byte 6 of Byte 6 of

- - Parameter Parameter
List List

Byte 7 of Byte 7 of
- - Parameter Parameter

List List

Byte 8 of Byte 8 of
- - Parameter Parameter

List List

Byte 9 of Byte 9 of

- - Parameter Parameter
List List

Beta Draft

Note: Bytes with '.' have indeterminate values...
the device should ignore these.

Figure 7-26. Standard command packet contents (part 2)

746 10/24/86

Smanpon Finnware

Extended Command Packet Contents

Status ReadBlock Write Block Format Control !nit

Beta Draft

BYTE 1

BYTE 2

BYTE 3

BYTE 4

BYTE 5

BYTE 6

BYTE 7

BYTE 8

BYTE 9

$40 $41 $42 $43 $44 $45

Parameter Parameter Parameter Parameter Parameter Parameter
Count Count Count Count Count Count

Byte 5 of Byte 5 of Byte 5 of · Byte 5 of ·
Parameter Parameter Parameter Parameter

List List List List

Byte 6 of Byte 6 of Byte 6 of · Byte 6 of ·
Parameter Parameter Parameter Parameter

List List List List

· Byte 7 of Byte 7 of · · ·
Parameter Parameter

List List

· Byte 8 of Byte 8 of · · ·
Parameter Parameter

List List

· Byte 9 of Byte 9 of · · -
Parameter Parameter

List List

· . . · · ·

· . . · · ·

Note: Bytes with '-' have indeterminate values...
the device should ignore these.

Figure 7-27. Extended command packet contents (part 1)

7-47 10/24/86

SmartPort Firmware

Extended Command Packet Contents

Open Close Read Write

BYTE 1

BYTE 2

BYTE 3

BYTE 4

BYTE 5

BYTE 6

BYTE 7

BYTE 8

BYTE 9

$46 $47 $48 $49

Parameter Parameter Parameter Parameter
Count Count Count Count

Byte 5 of Byte 5 of Byte 5 of Byte 5 of
Parameter Parameter Parameter Parameter

List List List List

Byte 6 of Byte 6 of Byte 6 of Byte 6 of
Parameter Parameter Parameter Parameter

List List List List

Byte 7 of Byte 7 of

· · Parameter Parameter
List List

Byte 8 of Byte 8 of
· · Parameter Parameter

List List

Byte 9 of Byte 9 of

· · Parameter Parameter
List List

Byte 10 of Byte 10 of

· · Parameter Parameter
List List

Byte 11 of Byte 11 of

· · Parameter Parameter
List List

BetaDrajt

Note: Bytes with '_, have indeterminate values...
the device should ignore these.

Figure 7-28. Extended command packet contents (part 2)

748 10/24/86

Mouse Firmware

Chapter 10

Mouse Firmware
This chapter describes the firmware that drives the Apple TIGS mouse. You can read the
mouse position and the status of the mouse buttons using this firmware.

Important: The information in this manual regarding soft switches and hardware
registers for the Apple TIGS Mouse are provided for information only.
All applications must use the firmware calls only if they wish to be
compatible with the Mouse used on previous and future Apple TI
systems.

Introduction
The Apple TIGS mouse is an intelligent device that uses the Apple Desktop Bus (ADB) to
communicate with the Apple TIGS ADB microcontroller. This is a departure from the
AppleMouse card and the TI c mouse interface, each of which depend extensively on
firmware to support the mouse. The Apple TIGS Mouse fIrmware has a true passive mode
like the AppleMouse, but differs from the TI c Mouse, which requires interrupts to do
anything.

Certain devices, to operate properly, must be the sole source of interrupts within a system
in that they have critical times during which they require immediate service by the
microprocessor. An interrupting communications card is a good example of a device that
has a critical service interval. If it is not serviced quickly, characters might be lost. The
true passive mode permits such devices to operate correctly. The passive mode also
prevents the 65C816 from being overburdened with interrupts from the Mouse finnware as
can occur in the II c if someone is moving the mouse rapidly while an application program
is running. .

The Apple IIGS Mouse firmware can only cause an interrupt if all of the following
conditions are true:

• The interrupt mode is selected

• The mouse is on.

• An interrupt condition has occurred.

• A vertical blanking signal (VBL) has occurred.

Unlike the TIc Mouse, which interrupts whenever the mouse is moved, the Apple TIGS
Mouse interrupts in sync with the vertical blanking signal. This automatically limits the
total number of Mouse interrupts to 60 per second, cutting down on the overhead the
mouse puts on the 65C816. If an interrupt condition (determined by the mode byte setting)
occurs, it will be passed to the 65C816 only when the next VBL happens.

Warning: Since the Mouse information is only updated once each vertical blanking
interval, your program must be certain that at least one vertical blanking time has
elapsed between Mouse reads if it expects to obtain new information from the
mouse.

BeraDraft 10-1 10/24/86

Mouse Firmware

Mouse position data
When the mouse is moved., data is returned as a delta move as compared to its previous
position, where the change in X or Y direction can be as much as to ± 63 counts. The
maximum value of 63 in either direction represents approximately 0.8 inches of travel.

Marginal Gloss: A delta move represents a number of counts change in position
as compared to the preceding position that the Mouse occupied. The Apple TIGS
Mouse firmware converts this relative-position data (called a delta) to an absolute
position.

The mouse also provides the following information to the mouse firmware:

• current button 0 and button 1 data (1 if down, 0 if up)

• Delta position since the last read

Note: At power up or at reset, the GLU chip enters a noninterrupt state while also
turning the Mouse interrupt off.

The ADB microcontroller automatically processes Mouse data. The microcontroller
periodically polls the Mouse to check for activity. If the mouse is moved, or the button is
pushed, two bytes are sent to the microcontroller. The microcontroller sends both Mouse
data bytes to the GLU chip (byte Y followed by byte X-this enables the interrupt). The
65C816 then checks the status register to verify that a Mouse interrupt has taken place, the
two data bytes have been read, and Mouse byte Y was read first. The GLU chip clears the
interrupt when the second byte has been read. To prevent overruns, the microcontroller
only writes Mouse data when the registers are empty (after byte X has been read by the
system). Table 10-1 shows the 16 bits returned by the Apple IIGS Mouse.

Table 10-1. Apple TIGS Mouse data bits

Bit Function

15 Button 0 status
14-8 Y movement (negative =up, positive =down)
7 Button 1 status
6-0 X movement (negative =left, positive =right)

The next section describes the register addresses used by the fumware to control or to
communicate with the mouse.

Register addresses (used by firmware only)

Table 10-2 shows the contents of the register addresses that the ADB microcontroller uses
to transmit Apple TIGS Mouse data and status information to the 65C816. The paragraphs
that follow this table outline the conditions under which these registers are used by the
fumware. . .

BetaDrajr 10-2 10/24/86

Mouse Firmware

Table 10-2. Register addresses used for the Apple llaS Mouse

Address Function

$C024

$C027 GLU status register, defined as follows:
Bit 0 = d Must not be altered by Mouse
Bit 1 =0 X position available (read only)
Bit 1 =1 Y position available (read only)
Bit 2 =k Must not be altered by Mouse
Bit 3 =k Must not be altered by Mouse
Bit 4 =d Must not be altered by Mouse
Bit 5 =d Must not be altered by Mouse
Bit 6 = 1 Mouse interrupt enable (read/write)
Bit 7 =1 Mouse register full (read only)

k =used by keyboard handlers
d =used by ADB handlers

Mouse data register:
First read yields X position data and button 1 data
Second read yields Y position data and button 0 data

To enable Mouse interrupts, set bit 6 of location $C027 to 1. Recall, however, that only
this bit and no other should be changed. This entails reading the current contents, changing
only that single bit, then writing the modified value back into the register.

Ifmouse interrupts are enabled, the finnware determines if the interrupt came from the
Mouse by reading bits 6 and 7 of $C027; if both bits =I, then a Mouse interrupt is
pending.

Reading Mouse position data (firmware only)

The following sequence of steps must be taken, in this exact order, to allow accurate
mouse readings to be obtained. Failure to perform the steps in this order would necessitate
some corrective action since the data would be contaminated. Contaminated data is a
condition that occurs when the X and Y values that you are trying to read are from different
VBL reads of the Mouse. The corrective actions that the firmware writer must take is
outlined below.

• Read bit 7 of $C027:

If bit 7 =0, then X and Y data is not yet available
If bit 7 = I, then data is available but could be contaminated

• Read bit 1 of $C027 only if bit 7 = 1:

If bit 1=0, then X and Y data are not contaminated and can be read. The first read
of $C024 returns X data and button 1 data; the second read of $C024 returns Y data
and button 0 data.

The fmnware writer must use caution when using indexed instructions. The false
read andwrite results of some indexed instructions can cause X data to be lost and
Y data to appear where X data was expected.

BetaDrajr 10-3 10124186

Mouse Firmware

If bit 1 = 1 and $C024 has not been read, then the data in $C024 are contaminated
and must be considered useless. If that condition occurs, perform the following
steps:

• Read $C024 one time only.

• Ignore the byte read in.

Exit the Mouse read routine without updating the X, Y, or button data. This
will not harm the program; however, it guarantees that the next time the
program reads Mouse positions, the positions will be accurate.

The data bytes read in contain the following information:

X data byte:

• If bit 7 = 0, then Mouse button 1 is up.

• If bit 7 = 1, then Mouse button 1 is down.

Bit 0-6 delta Mouse move:

"If bit 6=0, then a positive move is made up to $3F (63).

" If bit 6=1, then a negative move in two's complement is made up to
$40 (64).

Y data byte:

• If bit 7 = 0, then Mouse button 0 is up.

" If bit 7 = 1, then Mouse button 0 is down.

Bit 0-6 delta Mouse move:

" If bit 6 = 0, then a positive move is made up to $3F (63) ticks.

"If bit 6 = 1, then a negative move in two's complement is made
up to $40 (64).

Position clamps

When the Mouse moves the cursor across the screen, the cursor is only allowed to move
within specified boundaries on the screen. These boundaries are the maximum cursor
positions on the screen in the X and Y directions. These maximum positions are indicated
to the firmware by clamps.

Marginal Gloss: Clamps are data values that specify a maximum or minimum
value for some other variable. For this instance, the Mouse clamps specify the
minimum and maximum positions of the cursor onscreen.

The Mouse clamps reside in RAM locations reserved for the firmware. You should only
access these locations by using the Apple llGS tools.

Using the mouse firmware
You can use the Mouse fIrmware by way of assembly language or BASIC. There are
several procedures and rules to follow to be effective in either language. The following

BetaDraji 104 10/24/86

Mouse Finnware

paragraphs outline these procedures and rules and give examples of the use of the Mouse
firmware from each of these languages.

Firmware entry example using assembly language

To use a Mouse routine from assembly language, read the location corresponding to the
routine you want to call (see Table 10-4). The value read is the offset of the entry point to
the routine to be called.

Note: Interrupts must be disabled on every call to the Mouse firmware. "n" is the slot
number of the Mouse.

The following assembly code example correctly sets up the entry point for the mouse
firmware. To use the code, you must decide which mouse firmware command you wish to
perform, and duplicate the code below for each of the routines you use. For example, to
utilize SERVEMOUSE from assembly code, you would substitute the line labeled
'SETMENTRY LDA SETMOUSE' with a line that reads 'SERVEMENTRY LDA
SERVEMOUSE' where SERVEMOUSE is equated to $Cn13. Table 10-4 defines all of
the offset locations for the built-in Mouse firmware routines.

SETMOUSE

SETMENTRY

ERROR

TOMOUSE

EQU

LDA
STA
LDX
LDY
PHP
'SEI
LDA
JSR
BCS
PLP
RTS
PLP
JMP
JMP

$Cn12

SETMOUSE
TOMOUSE+2
Cn
nO

*$01
TOMOUSE
ERROR

ERRORMESSGE
$CnOO

iOffset to SETMOUSE offset ($C412
i for Apple IIGs)
iGet offset into code
iModify operand
iWhere Cn = C4 in Apple IIGS
iWhere n = 40 in Apple IIGS
iSave interrupt status
iGuarantees no interrupts
iTurn Mouse passive mode on
iJSR to a modified JMP instruction
iC = 1 if illegal-mode-entered error
;Restore interrupt status
;Exit
;Restore interrupt status
;Exit to error routine
;Modified operand for correct entry
;point, $C400 for Apple IIGS

Firmware entry example using BASIC

The Mouse and BASIC have the following interface. To turn the Mouse on, execute the
following code:

PRINT CHR$(4);"PR#4"
PRINT CHR (1)
PRINT CHR$(4);"PR#{)"

:REM Mouse ready for output
:REM 1 turns the Mouse on from BASIC
:REM Restore screen output

Note: Use PRINT CHR$(4);"PR#3" to return to 80 columns.

Beta Draft 10-5 10/24/86

Mouse Firmware

To accept outputs from BASIC, the fIrmware changes the output links at $36 and $37 to
point to $C407 and performs an INITMOUSE (described above).

To turn the Mouse off, execute the following BASIC program:

PRINT CHR$(4) ; "PR#4"
PRINT CRR (0)
PRINT CHR$(4); "PR#O"

:REM Mouse ready for output
:REM 0 turns the Mouse off from BASIC
:REM Restore screen output

PRINT CHR$(4); "IN#4"
INPUT X, Y, B
PRINT CRR$(4) ; "IN#O"

Note: Use PRINT CHR$(4);"PR#3" to return to 80 columns.

To read Mouse position and button statuses from BASIC, execute the following code:

:REM Mouse ready for input
:REM Input Mouse position
:REM Return keyboard as the input device when
Mouse positions have been read

When the Mouse is turned on from BASIC (to input data), the firmware changes the input
links at $38 and $39 to point to $C405. When you execute an INPUT statement while the
input link is set for Mouse input, the firmware performs a READMOUSE operation before
converting the screen hole data to decimal ASCII and places the converted input data into
the input buffer at $200.

In BASIC, the Mouse runs in passive mode or a noninterrupt mode. Clamps are set
automatically to 0000-1023 ($0000-$03FF) in both the X and Y directions, and position
data in the screen holes are set to O.

During a BASIC INPUT statement, the firmware reads the position changes (deltas) from
the ADB Mouse, adds them to the absolute position in the screen holes, clamping the
positions if necessary, and converts the absolute positions in the screen holes to ASCII
format The firmware then places that data, with the button 0 status, into the input buffer
followed by a carriage return and returns to BASIC.

Note: The name 'screen-holes' has absolutely nothing to do with the appearance of
anything on the actual display. Screen-holes are simply unused bytes in the
memory area normally reserved for screen display operations, but which are unused
by the display circuitry. Thus these so-called screen-holes can be utilized by the
firmware for other purposes.

Reading button 1 status

Button 1 status cannot be returned to a BASIC program. This would add another input
variable to the input buffer, and an error that reads '?EXTRA IGNORED' would be
displayed.

If you want to read button 1 status, you can use BASIC's Peek command to read the screen
hole that contains that data. The data returned to the input buffer is in the following form:

s xl x2 x3 x4 x5, s yl y2 y3 y4 y5, sb BO b5 cr

Where

Beta Draft 1D-6 10/24/86

Mouse Finnware

s =sign of absolute position

xl...x5 = 5 ASCn characters giving the decimal value of X

yl...y5 =5 ASCn characters giving the decimal value ofY

sb = Minus (-) if key on keyboard was pressed during input
statement and plus (+) if no key was pressed during input
statement

BO =ASCn space character

b5 = 1 if button 0 is pressed now and was pressed in last INPUT
statement

=2 if button 0 is pressed now but was not pressed in last INPUT
statement

=3 if button 0 is not pressed now but was pressed in last INPUT
statement

= 4 if button 0 is not pressed now and was not pressed in last
INPUT statement

cr =Carriage return (required as a terminator before control is
passed from fmnware back to BASIC)

Note: The BASIC program must reset the key strobe at $COlO if sb returns to a
negative state. A POKE 49168,0 resets the strobe.

The Mouse is resident in Apple nos internal slot 4. When the Mouse is in use, the main
memory screen holes for slot 4 hold X and Y absolute position data, current mode, button
0/1 status, and interrupt status. Eight additional bytes are used for Mouse information
storage; they hold the maximum and minimum clamps for the Mouse's absolute position.
Table 10-3 lists the Mouse's screen-hole use when Apple nGS firmware is used.

Table 10-3. Position and status information

Address Use

$47C Low byte of absolute X position

$4FC Low byte of absolute Y position

$57C High byte of absolute X position

$5FC High byte of absolute Y position

$67C Reserved and used by firmware

$6FC Reserved and used by firmware

$77C Button 0/1 interrupt status byte (see Figure 10-1)

BeraDraji 10-7 10/24/86

Mouse Firmware

$7FC Mode byte (see Figure 10-2)

Used by Firmware Only

Figures 10-1 and 10-2 show how the bits of the Button Interrupt Status Byte and the Mode
Byte are assigned.

II I Previously, button 1 was upldown (011)
. Movement inteITupt

Button Oil inteITupt

VBL intemJpt

Currently button 1 is upldown (Oil)

XIY moved since last READMOUSE

Previously, button was upldown (Oil)

Currently, button 0 is upldown (0/1)

Figure 10-1. Button interrupt status byte ($77C)

Mouse off/on (0/1)

Interrupt on next VBL if Mouse is moved

Interrupt on next VBL if button is pressed

Interrupt on VBL

Reserved

Reserved

Reserved

Reserved

Figure 10-2. Mode byte ($7FC)

Summary of firmware calls
The ftrmware calls to enter Mouse routines are listed in Table 10-4. These calls conform to
the Pascal 1.1 protocol for peripheral cards.

BetaDrajt 10-8 10/24/86

Mouse Firmware

Table 10-4. Firmware calls

Location Routine Definition

$C40D PINIT Pascal INIT device (not implemented)

$C40E ' PREAD Pascal READ character (not implemented)

$C40F PWRITE Pascal WRITE character (not implemented)

$C41O PSTATUS Pascal get device status (not implemented)

$C411 = $00 Indicates that more routines follow

The following are routines implemented on Apple fiGS, Apple fi, and the AppleMouse
card:

Location Routine Definition

$C412 SETMOUSE Sets Mouse mode

$C413 SERVEMOUSE Services Mouse interrupt

$C414 READMOUSE Reads Mouse position

$C415 CLEARMOUSE Clears Mouse position to 0 (for delta mode)

$C416 POSMOUSE Sets Mouse position to user-defmed position

$C417 CLNv1PMOUSE Sets Mouse bounds in a window

$C418 HOMEMOUSE Sets Mouse to upper-left comer of clamping
window

$C419 INITMOUSE Resets Mouse clamps to defaults, positions to 0,0

The next six entry points are provided for compatibility with the AppleMouse card and do
nothing in the Apple fiGS:

Location Routine Definition

$C41A DIAGMOUSE Dummy routine; clears tc' and performs an RTS

$C41B COPYRIGHT Dummy routine; clears 'c' and performs an RTS

$C41C TIMEDATA Dummy routine; clears 'c' and performs an RTS

$C41D SETVBLCNTS Dummy routine; clears tc' and performs an RTS

$C41E OPTMOUSE Dummy routine; clears 'c' and performs an RTS

$C41F STARTIIMER Dummy routine; clears 'c' and performs an RTS

Beta Draft]Q..9 10/24/86

Mouse Firmware

In addition to the routines listed above, the following locations are also signficant:

Location

$C400

$C405·

$C407

$C408 = $01

$C40C = $20

$C4FB =$D6

Routine

BINITENTRY

BASIClNPUT

BASICOUTPUT

Definition

Initial entry point when coming from BASIC

BASIC input entry point (opcode SEC) Pascal
IDbyte

BASIC output entry point (opcode CLC) Pascal
IDbyte
~

Pascal generic signature byte

Apple technical Support ID byte

Additional ID byte

The above sections described how the mouse is accessed from BASIC. The next section
talks about entry points from Pascal.

Pascal calls
Pascal recognizes the Mouse as a valid device, however, Pascal is not supported by the
firmware. A Pascal driver for the Mouse is available from Apple to interface programs
with the Mouse. Pascal calls PINIT, PREAD, PWRITE, and PSTATUS return with the X
register set to 3 (pascal illegal operation error) and carry set to 1. The following is a list of
the Pascal fIrmware calls:

PINIT

Function:

Input:
Output:

PREAD

Function:

Input:
Output:

BetaDrajt

Not implemented Gust an entry point in case user calls it by
mistake)
All registers and status bits
X =$03 -- Error 3 =Bad mode: illegal operation
C =1 -- Always
Screen holes: Unchanged

Not implemented Gust an entry point in case user calls it by
mistake).
All registers and status bits
X =$03 -- Error 3 =Bad mode: illegal operation
C =1 -- Always
Screen holes: Unchanged

10-10 10/24/86

Mouse Finnware

PWRITE

Function:
Input:
Output:

Not implemented Gust an entry point in case it's called by mistake)
All registers and status bits
X = $03 -- Error 3 = Bad mode: illegal operation
C =1 -- Always
Screen holes: Unchanged

Input:
Output:

PSTATUS
Function: Not implemented Gust an entry point in case user calls it by

mistake)
All registers and status bits
X =$03 .- Error 3 =Bad mode: illegal operation
C = 1 -- Always
Screen holes: Unchanged

The above sections described how the mouse is accessed from BASIC and PASCAL. The
next section talks about entry points from assembly language.

Assembly language caUs
This section lists the Assembly Language fIrmware calls. When you use the Mouse from
assembly language, there are several items that you must keep in mind. These items are
specified in the form of notes that precede the table of routines.

Note:

• For built-in fIrmware, n =Mouse slot number 4.

• The following bits and registers are not changed by Mouse firmware:

• e, m, I, x

• Direct register

• Data bank register

• Program bank register

• Mouse screen holes should not be changed by an applications program. The only
exception is during the function POSMOUSE when new Mouse coordinates are
written, by the applications program, directly into the screen holes. No other Mouse
screen hole can be changed by an applications program without adversely affecting
the Mouse.

• The 65C816 assumes that the mouse firmware is entered in the following machine
state:

• 65C816 is in emulation mode.

• Direct register = .OOסס$

• Data bank register =$00.

• System speed =fast or slow (does not matter which).

• Text page 1 shadowing is on to allow access to screen hole data.

Beta Draft 10-11 10/24/86

Mouse Firmware

Now, here are the actual firmware routines. Notice that each is specified by its offset entry
address. Recall that the offset entry point is a value at a given location (Example $C412) to
which you add the value of the main entry point (Example $C4(0) to obtain the actual
address to which the processor must jump to execute that routine.

SETMOUSE

Function:
Input

Output

($C412)

Sets Mouse operation mode
A =mode ($00 to $OF, only valid modes)
X =en for standard interface (Apple IIGS Mouse not affected)
Y =nO for standard interface (Apple IIGS Mouse not affected)
A = mode if illegal mode entered, else A is scrambled
X, Y, Y, N, Z = scrambled ~

C = 0 if legal mode entered (mode is <= $OF)
C =1 if illegal mode entered (mode is > $OF)
Screen holes: Only mode bytes are updated.

SERVEMOUSE ($413)

READMOUSE ($C414)

Function:
Input:
Output:

Function:

Input:

Output:

Tests for intemlpt from Mouse and resets Mouse's interrupt line
A, X, Y = not affected
X, Y, V, N, Z = scrambled
C =0 if it was a Mouse interrupt

C =1 if it was not a Mouse interrupt
Screen holes: Interrupt status bits updated to show current status.

Reads delta (x/y) positions, updates absolute X/Y positions, and
reads button statuses from ADB Mouse
A =not affected
X = Cn for standard interface (Apple IIGS Mouse not affected)
Y =nO for standard interface (Apple IIGS Mouse not affected)
A, X, Y, Y, N, Z =scrambled
C =O--Always
Screen holes: SLO, XHI, YLO, Yill buttons and movement status
bits updated; interrupt status bits are cleared.

.'

CLEARMOUSE ($415)

Function:

Input:

Output:

Resets buttons, movement, and interrupt statusto 0, X, and Y
This mode is intended for delta Mouse positioning instead of the
normal absolute positioning.
A =not affected
X =Cn for standard interface (Apple IIGS Mouse not affected)
Y = nO for standard interface (Apple IIGS Mouse not affected)
A, X, Y, V, N, Z = scrambled
C =O--Always
Screen holes: SLO, XHI, YLO, Yill buttons and movement status
bits updated--interrupt status bits are cleared.

Beta Draft 10-12 10/24/86

POSMOUSE

Function:
Input:

Output:

Mouse Firmware

($C416)

Allows user to change current Mouse position
User places new absolute X/Y positions directly in appropriate
screen holes.
X ::: Cn for standard interface (Apple nOS Mouse not affected)
Y ::: nO for standard interface (Apple nOS Mouse not affected)
A, X, Y, V, N, Z::: scrambled
C::: O--Always
Screen holes: User changed X and Y absolute positions only; bytes
changed.

Input:

Output:

Function:

CLAMPMOUSE ($C417)

Sets up clamping window for Mouse use. Power up defaults are 0
to 1023 ($OOOO-$03FF)
A ::: 0 if entering X clamps

A ::: 1 ifent~gY clamps
Clamps are entered in slot 0 screen holes by the user as follows:

$478 ::: low byte of low clamp
$4F8 ::: low byte of high clamp
$578 ::: high byte of low clamp
$5F8 ::: high byte of high clamp

X ::: Cn for standard interface (Apple nOS Mouse not affected)
Y ::: nO for standard interface (Apple nos Mouse not affected)
A, X, Y, V, N, Z ::: scrambled
C ::: 0 -- Always
Screen holes: X/Y absolute position is set to upper-left corner of
clamping window. Clamping RAM values in bank $EO are updated,

Note: The Apple nOS Mouse performs an automatic HOMEMOUSE operation after
a CLAMPMOUSE. The execution of a HOMEMOUSE is required because the delta
information is being fed to the firmware instead of ±l's as in the case of the Apple
n and the 6805 AppleMouse microprocessor cards. The delta information from
Apple nos ADB Mouse alters the absolute position of the screen pointer, using
clamping techniques not used by the other two mouse devices.

HOMEMOUSE ($C418)

Function:

Input:

Output:

Sets X/Y absolute position to upper-left comer of clamping
window
A ::: not affected
X ::: Cn for standard interface (Apple nOS Mouse not affected)
Y ::: nO for standard interface (Apple nOS Mouse not affected)
A, X, Y, V, N, Z::: scrambled
C ::: O--Always
Screen holes: User changed X and Y absolute positions only; bytes
changed.

Beta Draft 10-13 10/24/86

Mouse Firmware

INITMOUSE ($C419)

Function:

Input:

Output:

Sets screen holes to defaults and sets clamping window to default of
oo-1023סס ,OOסס$) $03FF) in both the X and Y directions; resets
OLU Mouse interrupt capabilities

A == not affected
X :: Cn for standard interlace (Apple IIos Mouse not affected)
Y :: nO for Standard interface (Apple IIOS Mouse not affected)

A, X, Y, V, N, Z:: scrambled
C :: o--Always
Screen holes: X/Y positions, button statuses, and interrupt status
are reset.

Note: Button and movement statuses are valid only after a READMOUSE.
Interrupt status bits are valid only after a SERVEMOUSE. Interrupt status bits are
reset after a READMOUSE. Read and use or read and save the appropriate Mouse
screen hole data before enabling or reenabling 65C816 interrupts.

Beta Draft 10/24/86

Appendix A

Roadmap to the Apple IIGS
Technical Manuals

The Apple IIGS personal computer has many advanced
features, making it more complex than earlier models of the
Apple II. To describe it fUlly, Apple has produced a suite of
technical manuals. Depending on the way you intend to use
the Apple IIGS, you may need to refer to a select few of the
manuals, or you may need to refer to most of them.

The technical manuals are listed in Table A-1. Figure A·1 is
a diagram showing the relationships among the different
manuals.

Table A·l
The Apple IIGS technical manuals

Title

Technical Introduction to the Apple IIGS

Apple IIGS Hardware Reference

Apple IIGS Firmware Reference

Programmer's Introduction to the Apple IIGS

Apple IIGS Toolbox Reference: Volume 1

Apple IIGS Toolbox Reference: Volume 2

Apple IIGS Programmer's Workshop Reference

SubJect

What the Apple IIGS is

Machine internals-hardware

Machine internals-firmware

Concepts and a sample program

How the tools work and some toolbox
sepcifications

More toolbox specifications

The development environment

Apple IIGS Workshop Assembler Reference"

Apple IIGS Workshop C Reference"

ProDOS 8 Reference

Apple IIGS ProDOS 16 Reference

Human Interface Guidelines

Apple Numerics Manual

"There is a Pocket Reference for each of these.

Using the APW assembler

Using C on the Apple IIGS

ProDOS for Apple' II programs

ProDOS and Loader for Apple IIGS

Guidelines for the desktop interface

Numerics for all Apple computers

115

116

Figure A·l
Roodmap to 1he technical manuals

To start fl/lding
out about
the~eIlGS-~~~-~~#.;

To Ieam how the
~IIGSwOOG-~

•.:,.:.i.·.!.:.:.:.:.:.,..',:.·.:.:.',':L,--.li ..JlI:
·:::::~~r,:::;·

To start learning
to program
treftWle IIGS--...i;~~~~~~e-+F

To use the toobox

To operate on lues --e~~

Introductory manuals
These books are introductory manuals for developers,
computer enthusiasts, and other Apple IIGS owners who need
technical information. As introductory manuals, their
purpose is to help the technical reader understanq the
features of the Apple IIGS, particularly the features that are
different from other Apple computers. Having read the
introductory manuals, the reader will refer to specific
reference manuals for details about a particular aspect of the
Apple IIGS.

The technical introduction

The Technical Introduction to the Apple IIGS is the first book
in the suite of technical manuals about the Apple IIGS. It
describes all aspects of the Apple IIGS, including its
features and general design, the program environments, the
toolbox, and the development environment.

Where the Apple IIGS Owner's Guide is an introduction from
the point of view of the user, the Technical Introduction
describes the Apple IIGS from the point of view of the
program. In other words, it describes the things the
programmer has to consider while designing a program, such
as the operating features the program uses and the
environment in which the program runs.

Introductory manuals 11 7

The programmer's Introduction
When you start writing programs that use the Apple IIGS
user interface (with windows, menus, and the mouse). the
Programmer's Introduction to the Apple IIGS provides the
concepts and guidelines you need. It is not a complete course
in programming, only a starting point for programmers
writing applications for the Apple IIGS. It introduces the
routines in the Apple IIGS Toolbox and the program
environment they run under. It includes a sample event
driven program that demonstrates how a program uses the
Toolbox and the operating system.

An event-driven program walts In
a loop until It detects an event
such as a click of the mouse
button.

Machine reference manuals
There are two reference manuals for the machine
itself: the Apple IIGS Hardware Reference and the
Apple IIGS Firmware Reference. These books contain
detailed specifications for people who want to know exactly
what's inside the machine.

The hardware reference manual
The Apple lias Hardware Reference is required reading for
hardware developers, and it will also be of interest to anyone
else who wants to know how the machine works. Information
for developers includes the mechanical and electrical
specifications of all connectors, both internal and external.
Information of general interest includes descriptions of the
internal hardware, which provide a better understanding of
the machine's features.

118 Appendix A: Roadmap to the Apple IIGS Technical Manuals

In applications that use the
desktop user Interlace,
commands appear as options in
pull-down menus. and material
being worked on appears in
rectangular areas of the screen
called windows, The user seiects
commands or other material by
using the mouse to move a
pointer around on the screen,

The firmware reference manual

The Apple IIGS Firmware Reference describes the programs
and subroutines that are stored in the machine's read-only
memory (ROM), with two significant exceptions: Applesoft
BASIC and the toolbox, which have their own manuals. The
Firmware Reference includes information about interrupt
routines and low-level I/O subroutines for the serial ports,
the disk port, and for the DeskTop Bus interface, which
controls the keyboard and the mouse. The Firmware
Reference also describes the Monitor, a low-level
programming and debugging aid for assembly-language
programs.

The toolbox manuals
Like the Macintosh, the Apple IIGS has a built-in toolbox.
The Apple IIGS Toolbox Reference, Volume 1, introduces
concepts and terminology and tells how to use some of the
tools. It also tells how to write and install your own tool set.
The Apple IIGS Toolbox Reference, Volume 2, contains
information about the rest of the tools.

Of course, you don't have to use the toolbox at all. If you only
want to write simple programs that don't use the mouse, or
windows, or menus, or other parts of the desktop user
interface, then you can get along without the toolbox.
However, if you are developing an application that uses the
desktop interface, or if you want to use the Super Hi-Res
graphics display, you'll find the toolbox to be indispensable.

The Programmer's Workshop manual 119

The Programmer's Workshop manual
-The development environment on the Apple IIGS is the
Apple JIGS Programmer's Workshop (APW). APW is a set of
programs that enable developers to create and debug
application programs on the Apple IIGS. The Apple IIGS
Programmer's Workshop Reference includes information
about the parts of the workshop that all developers will use,
regardless which programming language they use: the
shell, the editor, the linker, the debugger, and the utilities.
The manual also tells how to write other programs, such as
custom utilities and compilers, to run under the APW Shell.

The APW reference manual describes the way you use the
workshop to create an application and includes a sample
program to show how this is done.

Programming-language manuals
Apple is currently providing a 65C816 assembler and a C
compiler. Other compilers can be used with the workshop,
provided that they follow the standards defined in the
Apple IIGS Programmer's Workshop Reference.

There is a separate reference manual for each programming
language on the Apple IIGS. Each manual includes the
specifications of the language and of the Apple IIGS libraries
for the language, and describes how to write a program in
that language. The manuals for the languages Apple provides
are the Apple IIGS Workshop Assembler Reference and the
Apple IIGS Workshop C Reference.

120 Appendix A: Roadmap to the Apple IIGS Technical Manuals

Operating-system manuals
There are two operating systems that run on the
Apple IIGS: ProDOS 16 and ProDOS 8. Each operating
system is described in its own manual: ProDOS 8
Reference and Apple JIGS ProDOS 16 Reference. ProDOS 16
uses the full power of the Apple IIGS and is not compatible
with earlier Apple II's. The ProDOS 16 manual includes
information about the System Loader, which works closely
with ProDOS 16. If you are writing programs for the
Apple IIGS, whether as an application programmer or a
system programmer, you are almost certain to need the
ProDOS 16 Reference.

ProDOS 8, previously just called ProDOS, is compatible
with the models of Apple II that use 8-bit CPUs. As a
developer of Apple IIGS programs, you need to use ProDOS 8
only if you are developing programs to run on 8-bit
Apple II's as well as on the Apple IIGS.

All-Apple manuals
In addition to the Apple IIGS manuals mentioned above, there
are two manuals that apply to all Apple computers: Human
Interface Guidelines and Apple Numerics Manual. If you
develop programs for any Apple computer, you should know
about those manuals.

The Human Interface Guidlines manual describes Apple's
standards for the desktop interface of programs that run on
Apple computers. If you are writing an application for the
Apple IIGS, you should be familiar with the contents of this
manual.

All-Apple manuals 121

The Apple Numerics Manual is the reference for the Standard
Apple Numeric Environment (SANE), a full implementation
of the IEEE standard floating-point arithmetic. The functions
of the Apple II~S SANE tool set match those of the Macintosh
SANE package and of the 6502 assembly language SANE
software. If your application requires accurate arithmetic,
you'll probably want to use the SANE routines in the
Apple IIGS. The Apple IIGS ToolBox Reference tells how to
use the SANE routines in your programs. The Apple
Numerics Manual is the comprehensive reference for the
SANE numerics routines. A description of the version of the
SANE routines for the 65C816 is available through the Apple
Programmer's and Developer's Association, administered by
the A.P.P.L.E. cooperative in Renton, Washington.

v Note: The address of the Apple Programmer's and
Developer's Association is 290 SW 43rd Street, Renton,
WA 98055, and the telephone number is (206) 251
6548.

122 Appendix A: Roadmap to the Apple IIGS Technical Manuals

AppendixB

Appendix B

Firmware ID Bytes

The firmware ID bytes are used to identify the particular hardware system on which you are
currently working. Table B-1 lists the locations from which you can read ID information.
Each system maintains three separate ID byte locations as indicated in the table below. If
all three ID bytes match for a given system type, you will know that your software is
rwming on that particular system.

Table B·!. ID information locations

System Main ID ($FBB3) Sub IDl ($FBCO) Sub ID2 ($FBBF)

TI $38 $60 $2F
TI+ $EA $EA $EA
TIe $06 $EA $Cl
TIe+ $06 $EO $00
Apple TIos $06 $EO $00
TIc $06 $00 $FF
TIc+ $06 $00 $00

To distinguish the Apple TIos from a TIe, since the ID bytes are identical, run the following
short routine with the ROM enabled in the language card.

Beta Draft

SEC
JSR $FElF
BCS ITSAPPLE2E
BCC ITSAppleIIGS

;e = 1 as a starting point
;RTS for all Apple Ills prior to the Apple IIGS
;If e = 1, then the system is an old Apple II
; If e = 0, then the system is a Apple I IGs' or
:later, and the registers are returned with the
;information in Table B-2.

B-1 10/24/86

AppendixB

Table B-2. Register bit information

Register Bit Information

A

B

Y

15 -7
6
5
4
3
2
1
o

15 - 0

15 - 8

Reserved
1, if system has a memory expansion slot
1, if system has an IWM port
1, if system has a built-in clock
1, if system has Front Desk Bus
1, if system has see
1, if system has external slots
1, if system has internal ports

Reserved

MachineID:

00
1 - FF

Apple JIGS
Future machines

x 7-0 ROM version number

The Y register contains the machine ID; the X register contains the ROM version
number.

Note: If the ID call was made in emulation mode, only the low 8 bits of X, A, and Y
are returned correctly; however, the c bit is accurate. If the call was made in native
mode, the c bit as well as register information is accurate as shown in Table B-2 and is
returned in full 16-bit native mode. The c bit is the carry bit in the processor status
register.

Beta Draft B-2 10/24/86

AppendixC

Appendix C

Firmware Entry Points in Bank 00

Apple Computer, Inc. will maintain the entry points described within this document in any
future Apple nOS or Apple II compatible machine that Apple produces. No other entry
points will be maintained in any way, shape, or form. Use of the entry points in this
document will assure compatibility with Apple llos and future Apple II compatible
machines. Note that these entry points are specific to Apple llos and Apple llOS
compatible machines and do not necessarily apply to Apple IIe or llc machines.

For AlL of the routines defined in this chapter, the following definitions apply

.. 'A' represents the lower eight bits of the accumulator

.. 'B' represents the upper eight bits of the accumulator

.. 'X' and 'Y' represent eight bit index registers

.. 'DBR' represents the data bank register

.. '1(' represents the program bank register

.. 'P' represents the processor status register

.. 'e' is the emulation mode bit

Warning: For ALL of the routines that are contained in this appendix, the following
environment variables must be set with the values shown here

.. 'e' bit must be set to 1

.. decimal mode must be set to 0

.. 'K' must be set to $00

.. 'D' must be set to ooסס$

.. 'DBR' must be set to $00

Beta Draft C-1 10124186

Appendix C

Here are the descriptions of the firmware routines that are supported as entry points now
and for future models of the Apple IT family, starting with the Apple ITOS.

Addr

$F800

Name

PLOT

Description

Plot on the low-resolution screen only

PLOT puts a single block of the color value set by
SETCOL on the low-resolution display screen.

Input: 'A'
'X'
'Y'

=block's vertical position (0-$2F)
=1
=block's horizontal position (0-$27)

$F80E PLOT1

Output: Unchanged= 'X'I'Y'I'DB R '/'K'I'D 'I'e'
Scrambled= 'A'/'B'/'P'

Modify block on the low-resolution screen only

PLOT puts a single block of the color value set by
SETCOL on the low-resolution display screen. The
block is plotted at current settings of GBASL/GBASH
with current COLOR and MASK settings.

Input: 'A'
'X'
'Y'

=?
=?
=block's horizontal position (0-$27)

H2

Input: 'A'
'X'
'Y'

$F819

Beta Draft

HLINE

Output:Unchanged= 'X'/'Y'/'DBR'I'K'I'D'/'e'
Scrambled= 'A'/'B'/,P'

Draw a horizontal line of blocks on low resolution
screen only

HLINE draws a horizontal line of blocks of the color
set by SETCOL on the low-resolution graphics display.

=block's vertical position (0-$2F)
=?
=block's leftmost horizontal position
(0-$27)
=(Address=$2C) block's rightmost
horizontal position (0-$27)

Output:Unchanged= 'X'I'DBR'/'K'/'D'/'e'
Scrambled= 'A'/'Y'I'B '/'P'

10/24/86

Input: 'A'
'X'
'Y'
V2

$F828

$F832

$F836

VLINE

CLRSCR

CLRTOP

AppendixC

Draw a vertical line of blocks on the low resolution
screen only

VLINE draws a vertical line of blocks of the color set
. by SETCOL on the low-resolution display.

=block's top vertical position (0-$2F)
=1
=block's horizontal position (0-$27)
=(Address=$2D) block's bottqm
vertical position (0-$2F)

Output:Unchanged= 'X'I'DBR'I'K'I'D'l'e'
Scrambled= 'A'I'Y'/B'I'P'

Clear the low-resolution screen only

CLRSCR clears the low-resolutions graphics display
to black. If CLRSCR is called while the video display
is in text mode, it fills the screen with inverse at
signs (@) characters.

Input: 'A' =1
'X' =1
'Y' =1

Output:Unchanged= 'X'/'DBR'/'K'I'D'/'e'
Scrambled= 'A'I'Y'I'B '/,P'

Clear the top 40 lines of the low-resolution screen
only

CLRTOP clears the top 40 lines of the low-resolution
graphics display (mixed mode clear of the graphics
portion of the screen to black).

Input: 'A' =1
'X' =1
'Y' =1

Output:Unchanged= 'X'/'DBR'/,K'I'D'l'e'
Scrambled= 'A 'I'Y'/,B 'I'P'

Beta Draft C-3 10/24/86

AppendixC

$F847 GBASCALC Calculate base address for low-resolution graphics
only

GBASCALC calculates the base address of the line on
which a particular pixel is to be plotted.

Input 'A ' =Vertical line to find address for
(O-$2F)

'X' =?
'Y' =?

OutputUnchanged= 'X'I'Y'I'DBR'I'K'I'D'l'e'
Scrambled= 'B '/'P'
Special= 'A'=GBASL

$F85F

BetaDraft

NXTCOL Increment color by 3

NXTCOL adds 3 to the current color (set by SETCOL)
used for low-resolution graphics.

Input 'A' =?
'X' =?
'Y' =?

OutputUnchanged= 'X'/'Y'/'DBR'/'K'/'D'l'e'
Scrambled= 'B'I'P'
Special= 'A'=new color in highllow

nibbles

C4 10/24/86

$F864 SETCOL

AppendixC

Set low-resolution graphics color

SETCOL sets the color used for plotting in
low-resolution graphics.
The colors are as follows:

$0 =Black
$1 =Deep Red
$2 =Dark Blue
$3 =Purple
$4 = Dark Green
$5 = Dark Gray
$6 = Medium Blue
$7 = Light Blue
$8 = Brown
$9 =Orange
$A = Light Gray
$B = Pink
$C = Light Green
$D = Yellow
$E = Aquamarine
$F =White

Input: 'A ' =low nibble=new color to use
high nibble doesn't matter

'X' =?
'y t =?

Output: Unchanged=
Scrambled=
Special=

'X'/'Y'/'DBR'/'K'/'D'/'e'
'B'/top'
'A'=new color in highllow
nibbles

$F871 SCRN Read the low-resolution graphics screen only

SCRN returns the color value of a single block on the
low resolution graphics display. Call it with the
vertical position of the block in the accumulator and
horizontal position in the 'Y' register.

Input: 'A'
'X'
'Y'

=Vertical line to find addr for (0-$2F)
=?
=?

BetaDrajt

Output: Unchanged=
Scrambled=
Special=

c-s

'X'/'Y'/'DBR'/'K'/'D'/'e'
'B'/,P'
'A'=Color of block specified in
low nibble. High nibble is O.

./

10/24/86

AppendixC

$F88C INSDS 1.2 Do LDA (PCL,X) then fall into IN'SDS2

IN'SDS 1.2 gets the opcode to determine the instruction
length of with an LDA (PCL,X) and falls into INSDS2.

Input: 'A'
'X'.
'Y'
PCR

PCL

=7
=Offset into buffer at pointer PCL/PCH
=7
=(Address $3B) high byte of buffer
address to get opcode from
in bank: $00.
=(Address=$3A) low byte of buffer
address to get opcode from
in bank: $00.

Output:Unchanged=
Scrambled=
Special=

$F88E INSDS2

'DBR'I'K'I'D'l'e'
'A'/'X'/'B'/'P'
'Y'=$OO
LENGTH (Address=$2F) contains
instruction length-1 of 6502
instructions or =$00 if not a
6502 opcode.

Calculate length of 6502 instruction

IN'SDS2 determines the length-1 of the 6502
instruction denoted by the opcode appearing in the 'A'
register.
IN'SDS2 returns correct instruction length-l of 6502
opcodes only. All non-6502 opcodes return a length of
$00. The BRK opcode for compatibility reasons returns
a length of $00 not $01 as one would expect it to.

Input: 'A'
'X'
'Y'

=Opcode to determine length of
=7
=7

Beta Draft

Output: Unchanged=
Scrambled=
Special=

C-6

'DBR'I'K'/'D'/'e'
'A '/'X'/'B'/'P'
'Y'=$OO
LENGTH (Address=$2F) contains
instruction length-1 of 6502
instructions or =$00 if not a
6502 opcode.

10/24/86

$F890

Appendix C

GET816LEN Calculate length of 65C816 instruction

GET816LEN determines the length-1 of the 65816
instruction denoted by the opcode appearing in the 'A'
register. The BRK opcoderemrns a length of $01 as
one would expect it to.

Input: 'A'
'X'
'Y'

=Opcode to determine length of
=7
=7

Output: Unchanged=
Scrambled=
Special=

'DBR'I'K'I'D'/'e'
'A 'I'X'I'B 'I'P'
'Y'=$OO
LENGTH (Address=$2F) contains
instruction length-1 of 65C816
instructions.

$F8DO

$F940

INSTDSP

PRNTYX

Display disassembled instruction.

INSTDSP disassembles and displays one instruction
pointed to by the program counter PCL/PCH
(Addresses·$3A/$3B) in bank $00.

Input: 'A ' =7
'X' =7
'Y' =?

OutputUnchanged= 'DBR'/'K'/'D'l'e'·
Scrambled= 'A'I'X'I'Y'I'B'/'P'

Print contents of 'Y' and 'X' registers as hex

PRNTYX prints the contents of the 'Y' and 'X' registers
as a four-digit hexadecimal value.

Input: 'A'
'X'
'Y'

=?
=Low hex byte to print
=High hex byte to print

$F941 PRNTAX

Output: Unchanged= 'X'/'Y'/,DB R '/'K'I'D 'I' e'
Scrambled= 'A'I'B'/'P'

Print contents of 'A' and 'X' registers as hex

PRNTYX prints the contents of the 'A' and 'X' registers
as a four-digit hexadecimal value.

Input 'A'
'X'
'Y'

=High hex byte to print
=Low hex byte to print
=?

Beta Draft

Output:Unchanged= 'X'/'Y'I'DBR'I'K'I'D'/'e'
Scrambled= 'A'/'B'/'P'

C-7

./

10/24/8Q

AppendixC

$F944 PRNTX Print contents of 'X' register as hex

PRNTYX prints the contents of the 'X' register as a
two-digit hexadecimal value.

Input: 'A' =?
'X' =Hex byte to print
'Y' =?

Output: Unchanged= 'X'I'Y'I'DBR'/'K'I'D'l'e'
Scrambled= 'A'!,B '!'P'

$F948 PRBLNK Print 3 spaces

PRBLNK outputs three blank spaces to the standard
output device.

Input: 'A' =?
'X' =?
'Y' =?

Output: Unchanged= 'Y'!'DBR'I'K'/,D'/'e'
Scrambled= 'B'!,P'
Special= 'X'=$OO

'A'=$AO (Space ASCII code)

$F94A PRBL2 Print 'X' number of blank spaces

PRBL2 outputs from 1 to 256 blanks to the standard
output device.

Input: 'A ' =?
'X' =Number of blanks to print

($00=256 blanks)
'Y' =?

Beta Draft

Output: Unchanged=
Scrambled=
Special=

C-8

'Y'/,DBR'/'K'/'D'l'e'
'B'/'P'
'X'=$OO
'A'=$AO (Space ASCII code)

10/24/86

$F953 PCADJ

AppendixC

Adjust monitor program counter

PCADJ increments the program counter by 1,2,3, or 4
depending on the LENGTH (Address $2F) byte.
O=add 1 byte. l=add two bytes. 2=add three bytes.
3=add four bytes. .

Note: PCL/PCH (Addresses $3A/$3B) are not changed
by this call. The 'A'ty' registers contained the new
program counter at the end of this call.

Input: 'A' =?
'X' =?
'Y' =?
PCL =(Address $3A) program counter low

byte.
PCH =(Address $3B) program counter high

byte.
LENGTH=(Address $2F) length-1 to add to

program counter

Output: Unchanged=
Scrambled=
Special=

$F962

'DBR'j'K'I'D'l'e'
'X'I'B'I'P'
'A'=new PCL
'Y'=new PCH
PCI)PCH are not changed

TEXT2COPY EnablelDisable text page 2 software shadowing

TEXT2COPY toggles the text page 2 software
shadowing function on and off. The first access to
TEXT2COPY enables shadowing and the next access
disables shadowing. When TEXT2COPY is enabled, a
heartbeat task is enabled which, on every VBL, copies
the information from bank 00 locations $0400-$07FF
to bank EO locations $0400-$07FF. It then enables VBL
interrupts. VBL interrupts will remain on until
Control-Reset is pressed or until the system is
restarted. TEXT2COPY can disable the copy function
but cannot disable VBL interrupts once they are
enabled.

Input: 'A' =?
'X' =?
'Y' =1

Output:Unchanged= 'DBR'I'K'I'D'l'e'
Scrambled= 'A'I'X'I'Y'I'B'I'P'

Beta Draft C-9

./

10124186

Appendix C

$FA40

$FA4C

OLDIRQ

BREAK

Go to emulation mode interrupt handling routines

Does a jump to the interrupt handling routines which
handle emulation mode break and irqs. All registers
are restored after the application RTI's at the end of
its installed interrupt routines. Location $45 is not
destroyed as in the][,][+ and original jje Apples.

Input: 'A' =?
'X' =?
'Y' =?

Output:Unchanged= 'A'j'X'I'Y'I'DBR'I'P'j
'B'j'}C'j'D'j'e'

Scrambled= nothing

Old 6502 break handler

BREA}C save the 6502 registers, the program counter
and then jumps indirectly through the user hooks at
$03FOj$03Fl. Note that this is the 6502 registers not
the 65C816 registers. This entry point is essentially
obsolete except in very rare circumstances.

Input: 'A'
'X'
'Y'

=Assumes 'A' was stored at addr $45
=?
=?

Output: Unchanged=
Special=

'DB R'/,}C'/,D'j'e'
A5H (Address $45)='A' value
XREG (Address $46)='X' value
YREG (Address $47)='Y' value
STATUS (Address $48)='P' value
SPNT (Address $49)='S' stack
pointer value

$FA59 OLDBRK New 65C816 break handler

OLDBRK prints out the address of the BRK instruction,
disassembles the BRK instruction, and prints the
contents of the 65C816 registers and memory
configuration at the time the BRK instruction was
executed.

Input: All 65C816 registers and memory
configuration saved by interrupt handler.

Output:Drops user into monitor after displaying
information.

Beta Draft C-10 10/24/86

$FA62

$FAA6

RESET

PWRUP

Appendix C

Hardware reset handler

RESET sets up all necessary warmstart parameters for
Apple nos. It is called by the 65C816 reset vector stored
in ROM in locations $FFFC/$FFFD. If normal warmstart
then exits through user vectors at $03F2/$03F3. If
coldstart then exits by attempting to startup a startup
device such as a disk drive or AppleTalk depending on
Control Panel settings. If a program JMPs here it
MUST enter in emulation mode, the direct register set
to ,OOסס$ the data bank register set to $00 and the
program bank register set to $00 or RESET will not
work.

Input: 'K'fDBR'fD'fe' = $00'

Output: Doesn't return to calling program.

System coldstart routine

PWRUP does a partial reset of the system then
attempts to startup the system via a disk drive or
AppleTalk. PWRUP also zeros out memory in bank 00
from address $0800-$BFFF. If a program IMPs here it
MUST enter in emulation mode, the direct register set
to ;ooסס$ the data bank register set to $00 and the
program bank register set to $00 or RESET will not
work. If no startup device is available the message
'Check Startup Device' appears on the screen.

Input: 'K'/'DBR'I'D'l'e' = $00'

Output: Doesn't return to calling program.

Beta Draft Call 10/24/86

/

$FABA SLOOP Disk controller slot search loop

SLOOP is the disk controller search loop. It searches
for a disk controller beginning at the peripheral ROM
space (if RAM Disk, ROM Disk and AppleTalk have not
been selected via the control panel as the startup
device.) pointed to by LOCO and LOCI (addresses
$00/$01). If a startup device can be found it.Th1Ps to
that cards ROM space. Ifno startup device can be
found then the message 'Check Startup Device'
appears on the screen. If RAM Disk or ROM Disk has
been selected then the firmware JMPs to the Smart
Port code which handles those startup devices. If
slot 7 was selected then and AppleTalk is enabled in
port 7 then the firmware JMPs to the AppleTalk boot
code in slot 7.

Input: 'A ' =?
'X' =?
'Y' =?
LOCO =(Address $(0) Must be $00 or

startup will not occur.
LOCI =(Address $01) contains $Cn where

n=next slot number to test for a
startup device.

$FAD7REGDSP

Output: Doesn't return to calling program.

Display contents of registers

REGDSP displays all 65816 register contents stored
by the fumware, displays various Apple IIGS memory
state information including shadowing and also
displays system speed.
Displayed values includes
'A '/'X'/'Y'/'K'I'DBR'/'S 'I'D'/
'M'I'P'/'M'/'Q'l'm'l'x'/'e'/'L'
'A'fX'fY'fS' are always saved and displayed as 16
bit values even if emulation mode or 8 bit native
mode is selected.

Input: 'A' =?
'X' =?
'Y' =?

Output:Unchanged= 'DBR'/'K'/'D'/'e'
Scrambled= 'A'/'X'/'Y'/'B'I'P'

Beta Draft C-12 10/24/86

$FB19

$FB1E

RTBL

PREAD

Appendix C

Register names table for 6502 registers only
This is not a callable routine. It is a fIxed ASCn
string. The fixed string is 'AXYPS'. Some routines
require this string here or they will not execute
properly. The most significant bit of each ASCII
character is set (1).

Input: No input - Not a callable routine.

Output:No output - Not a callable routine.

Read a hand controller

PREAD returns a number that represents the position
of the specified hand controller.

Input: 'A'
'X'
'Y'

=7
=O,1,2,or 3 only = paddle to read
=7

$FB21 PREAD4

OutputUnchanged= 'X'/'DBR'I'K'I'D'l'e'
Scrambled= 'A'I'B'I'P'
Special= 'Y'=paddle count

Timeout paddle then read the hand controller

PREAD4 verifies the paddle (hand controller) has
timed out then reads the paddle the same as PREAD
does returning a number that represents the position
of the specified hand controller.

Input: 'A'
'X'
'Y'

=7
=O,1,2,or 3 only =paddle to read
=7

$FB2F

Beta Draft

INIT

Output:Unchanged= 'X'l'DBR'l'K'l'D'l'e'
Scrambled= 'A'I'B'I'P'
Special= 'Y'=paddle count

Initialize text screen

INIT sets up the screen for full window display and
text screen page 1.

Input: 'A ' =7
'X' =7
'Y' =7

OutputUnchanged= 'DBR'I'K'I'D'/'e'
Scrambled= 'X'I'Y'I'B '/'P'
Special= 'A'=BASL

C-13 10/24/86

AppendixC

$FB39

$FB40

$FB4B

SETIXT

SETGR

SETWND

Set text mode

SETIXT sets screen for full text window but does not
force text page 1 as INIT does.

Input: 'A t =7
'X' =7
'Y' =7

OutputUnchanged= 'DBR'j'K'/'D'j'e'
Scrambled= 'X'j'Y'j'B 'j'P'
Special= 'A'=BASL

Set graphics mode

SETGR sets screen for mixed graphics mode and
clears the graphics portion of the screen then sets
top of window to line 20 for 4 lines of text space
below the graphics screen.

Input: t A' =7
'X' =7
'Y' =7

OutputUnchanged= 'DBR'j'K'j'D'j'e'
Scrambled= 'X'j'Y'/'B 'j'P'
Special= 'A'=BASL

Set text window size

SETWND sets window to the following
WNDLFT (address=$20)=$OO
WNDWDTH (address=$21)=$28/$50 (40/80 columns)
WNDTOP (address $22)='A' on entry
WNDBTM (address $23)=$18

Input 'A'
'X'
'Y'

=NewWNDTOP
=7
=7

Beta Draft

OutputUnchanged= 'X'j'DBR'j'K'j'D'/'e'
Scrambled= 'Y'j'B '/'P'
Special= 'A'=BASL

C-14 10124/86

Appendix C

$FB51 SETWND2 Set text window width and bottom size

SETWND2 sets window to the following
WNDWDTH (address=$21)=$28/$50 (40/80 columns)
WNDBTM (address $23)=$18

Input: 'A' =?
'X' =?
'Y' =?

Output Unchanged= 'X'I'DBR'I'K'I'D'l'e'
Scrambled= 'Y'I'B'I'P'
Special= 'A'=BASL

$FB5B TABV Vertical tab

TABV stores the value in 'A' in CV (address $25) then
calculates a new base address for storing data to the
screen.

Input: 'A'
'X'
'Y'

=New vertical position (line number)
=?
=?

$FB60

Beta Draft

APPLEII

OutputUnchanged= 'X'/'DBR'I'K'I'D'/'e'
Scrambled= 'Y'/'B '/'P'
Special= 'A'=BASL

Clears screen and displays Apple nOS logo

APPLEII does a screen clear and displays the startup
ASCII string 'Apple nGS' on the fIrst line of the
screen.

Input 'A' =?
'X' =?
'Y' =?

OutputUnchanged= 'X'l'DBR'/'K'l'D'l'e'
Scrambled= 'A'I'Y'I'B'I'P'

C-15 10124186"

Appendix C

$FB6F SETPWRC Create power up byte

SETPWRC calculates the "funny" complement of the
high byte of the RESET vector and stores it at
I'WREDUI' (address $03F4).

Input: 'A' =7
'X' =7
'Y' =7

Output: Unchanged= 'X'I'Y'I'DBR'I'K'I'D'/'e'
Scrambled= 'B'/'I"
Special= 'A'=I'WREDUI'

$FB78 VIDWAIT Check for a pause (CONTROL-S) request

VIDWAIT checks the keyboard for a CONTROL-S if it
is called with an $8D (carriage return) in the
accumulator. If a CONTROL-S is found, it falls
through to KBDWAlT. If not, control is sent on to
VIDOUT where the character is printed and cursor
advanced.

Input: 'A' =Output character
'X' =7
'Y' =7

Output: Unchanged= 'X'/'DBR'/'K'/'D'/'e'
Scrambled= 'A'/'Y'/'B'/'P'

$FB88 KBDWAIT Wait for a keypress

KBDWAIT waits for a keypress. The keyboard is
cleared, unless the keypress is a CONTROL-C, then
control is sent on to VIDOUT where the character is
printed and the cursor advanced.

Input: 'A' =7
'X' =7
'Y' =7

Output:Unchanged= 'X'I'DBR'I'K'I'D'l'e'
Scrambled= 'A'I'Y'I'B'I'I"

Beta Draft C-16 10/24/86

Appendix C

$FBB3 VERSION One of the monitor ROM's main identification bytes

This is not a callable routine. It is a fixed hex value.
The fixed value is $06. This is the identification
byte which indicates this is a lIe or later system.
This byte is the same in the /Ie, the enhanced lie,
the /Ie, the enhanced /Ie and Apple nos.

Input No input - Not a callable routine.

OutputNo output - Not a callable routine.

$FBBF ZIDBYTE2 One of the monitor ROM's main identification bytes

This is not a callable routine. It is a fixed hex value.
The fixed value is $00. This is the identification
byte which indicates this is a enhanced IIe or later
system.

Input No input - Not a callable routine.

Output No output - Not a callable routine.

$FBCO ZIDBYTE One of the monitor ROM's main identification bytes'

This is not a callable routine. It is a fixed hex value.
The fixed value is $EO. This is the identification
byte which indicates this is an enhanced /Ie or later
system.

Input No input - Not a callable routine.

OutputNo output - Not a callable routine.

$FBCl BASCALC Text base address calculator

BASCALC calculates the base address of the line for
the next text character on the forty column screen.
The values calculated are stored at BASL/BASH
(AddresseS"$0028/$0029).

Input 'A'tx,
'Y'

=Line number to calculate base for
=1
=1

Beta Draft

Output: Unchanged= 'X'/,Y'I'DB R '/'K'/'D '/,e'
Scrambled= 'B 'I'P'
Special= 'A'=BASL

C-17 10/24/86

Appendix C

$FBDD

$FBE2

$FBE4

Beta Draft

BELLI

BELL1.2

BELL2

Generate user selected bell tone.

BELLI generates the user selected (via the Control
Panel) bell tone. There is a delay prior to the tone
being generated to prevent rapid calls to BELLI
causing distorted bell sounds.

Input: 'A' =1
'X' =1
'Y' =?

Output:Unchanged= 'X'/'DBR'I'K'/'D'l'e'
Scrambled= 'A'I'B'I'P'
Special= 'Y'=$OO

Generate user selected bell tone

BELL1.2 generates the user selected (via the Control
Panel) bell tone. There is a delay prior to the tone
being generated to prevent rapid calls to BELL1.2
causing distorted bell sounds.

Input: 'A' =1
'X' =1
'Y' =?

Output:Unchanged= 'X'I'DBR'/'K'/'D'l'e'
Scrambled= 'A'/'B'/'P'
Special= 'Y'=$OO

Generate user selected bell tone

BELL2 generates the user selected (via the Control
Panel) bell tone. There is a delay prior to the tone
being generated to prevent rapid calls to BELL2
causing distorted bell sounds.

Input: 'A' =1
'X' =1
'Y' =1

Output:Unchanged= 'X'I'DBR'I'K'/'D'l'e'
Scrambled= 'A'/'B'I'P'
Special= 'Y'=$OO

C-18 10/24/86

Appendix C

$FBFO STORADV Place a printable character on the screen

STORADV stores the value in the accumulator at the
next position in the text buffer (screen location) and
advance to the next screen location position.

Input: 'A' =Character to display in line
'X' =7
'Y' =7

Output: Unchanged= 'X'I'DBR'I'K'I'D'l'e'
Scrambled= 'A'I'Y'I'B'I'P'

$FBF4 ADVANCE Increment the cursor position

ADVANCE advances the cursor by one position. If the
cursor is at the window limit it issues a carriage
return to go to the next line on the screen.

Input: 'A' =7
'X' =7
'Y' =7

OutputUnchanged= 'X'I'DBR'I'K'I'D'/'e'
Scrambled= 'A'/'Y'/'B'/'P'

$FBFD VIDOUT Place a character on the screen

VIDOUT sends printable characters to STORADV.
Return, linefeed, forward and reverse space, etc., are
vectored to appropriate special routines.

Input: 'A'
'X'
'Y'

=Charaeter to output
=7
=7

Beta Draft

Output:Unchanged= 'X'I'DBR'I'K'I'D'/'e'
Scrambled= 'Y'/'B'I'P'
Special= 'A'=Output character

C-19 10/24/86

AppendixC

$FCIO

$FCIA.

$FC22

BS

UP

VTAB

Back-space

BS decrements the cursor one position. If the cursor
is at the beginning of the window. the horizontal
cursor position is set to the right edge of the window
and the routine goes to the UP subroutine.

Input: 'A' =?
'X' =?
'Y' =?

Output: Unchanged= 'X'I'DBR 'I'K'/,D 'I'e'
Scrambled= 'A'I'Y'I'B 'I'P'

Move up a line

UP decrements the cursor vertical location by one
line unless the cursor is currently on the first line.

Input: 'A' =?
'X' =?
'Y' =?

OutputUnchanged= 'X'/'Y'/'DBR'I'K'/'D'/'e'
Scrambled= 'A'/,B 'I'P'

Vertical tab

VTAB loads the value at CV (address $25) into the
accumulator and goes to VTABZ.

Input: t A' =?
'X' =?
'Y' =?

BetaDrajt

Output Unchanged=
Scrambled=
Special=

C-20

'X'/'Y'I'DBR'/'K'/,D'/'e'
'B'I'P'
'A'=BASL
BASl./BASH (addresses
$28/$29)= new base address.

10/24/86

$FC24 VTABZ

Appendb: C

Vertical tab (alternate entry)

VTABZ uses the value in the accumulator to update
the base address used for storing values in the text
screen buffer.

Input: 'A'
'X'
'Y'

=Line to calculate base address for
=7
=7

Output: Unchanged=
Scrambled=
Special=

'X'l'Y'l'DBR'l'K'l'D'l'e'
'B'/,P'
'A'=BASL
BASL/BASH (addresses
$28/$29)= new base address.

$FC42

$FC58

BetaDrajt

CLREOP

HOME

Clear to end of page

CLREOP clears the text window from the cursor
position to the bottom of the window.

Input: 'A' =7
'X' =7
'Y' =7

Output:Unchanged= 'X'I'DBR'I'K'I'D'l'e'
Scrambled= 'A'I'Y'I'B'/'P'

Home cursor and clear to end of page

HOME moves the cursor to the top of the screen
column 0 then clears from there to the bottom of the
screen window.

Input: 'A I =7
'X' =7
'Y' =7

Output:Unchanged= 'X'/'DBR'/'K'/'D'l'e'
Scrambled= 'A'/'Y'I'B'/'P'·

C-21 10/24/86

Appendix C

$FC62 CR Begin a new line

CR sets the cursor horizontal position back to the
left edge of the window and then goes to LF to get to
the next line on the screen.

Input: 'A' =?
'X' =?
'Y' =?

Output: Unchanged= 'X'I'DBR'/'K'I'D'/'e'
Scrambled= 'A'I'Y'I'B'I'P'

$FC66 LF Line-feed

LF increments the vertical position of the cursor. If
the cursor vertical position is not past the bottom
line, the base address is updated, otherwise the
routine goes to SCROLL to scroll the screen.

Input: 'A' =?
'X' =?
'Y' =?

Output: Unchanged= 'X'I'DBR'I'K'I'D'/'e'
Scrambled= 'j\'/'Y'/'B'/'P'

$FC70 SCROLL Scroll the screen up one line

SCROLL moves all characters up one line within the
current text window. Maintains cursor postion.

Input: 'j\' =?
'X' =?
'Y' =?

Output: Unchanged= 'X'/'DB R'I'K'/'D'l'e'
Scrambled= 'j\'/'Y'/'13'/'P'

$FC9C CLREOL Clear to end of line

CLREOL clears a text line from the cursor position to
the right edge of the window.

Input: 'A' =?
'X' =?
'Y' =?

Output: Unchanged= 'X'/'D13 R'I'K'/'D'l'e'
Scrambled= 'j\ '/'Y'/'13 'I'P'

BetaDrajt C-21 9117/86

AppendixC

$FC9E CLREOLZ Clear to end of line

CLREOLZ clears from 'Y' on the current line to the
right edge of the text window.

Input: 'A' =7
'X' =7
'Y' =Horizontal position to start clearing

from.

Output: Unchanged= 'X'/'DBR'/'K'/'D'l'e'
Scrambled= 'A'/'Y'/'B'I'P'

$FCA8 WAIT Delay loop. System speed independent

WAIT delays for a specific amount of time, then
returns to the program that called it The amount of
delay is specified by the contents of the accumulator.
With 'A' the contents of the accumulator, the delay is
1/2(26+27A+5AI\2)*14/14.31818 microseconds. WAIT
should be used as a minimum delay time not a 100%
absolute delay time.

Input: 'A' =7
'X' =7
'Y' =7

Output: Unchanged= 'X'I'Y'I'DBR'I'K'/'D'l'e'
Scrambled: 'B'I'P'
Special: 'A'=$OO

$FCB4 NXTA4 Increment pointer at A4l../A4H (addresses $42/$43)

NXTA4 increments the 16 bit pointer at A4l../A4H and
then goes to NXTA1.

Input: 'A' =7
'X' =7
'Y' =7

Output:Unchanged= 'X'/'Y'I'DBR'I'K'I'D'l'e'
Scrambled= 'A'/'B'/'P'

Beta Draft C-22 9117/86

Appendix C

$FCBA NXTAI Compare AIL/AIR (addresses $3c/$3D) with
A2L/A2H (addresses $3E/$3F) then increments
AIL,lAIH

NXTAI does a 16 bit compare of AlL/AlH with
A2L/A2H and increments the 16 bit pointer AlL/AlH.

Input: 'A' =?
'X' =?
'Y' =?

Output: Unchanged= 'X'/,Y'/,DBR'I'K'/'D'/'e'
Scrambled= 'A'/,B '/'P'

$FCC9 HEADR Write a header to cassette tape (OBSOLETE)

HEADR is an obsolete entry point in Apple IIOS. It does
nothing except an RTS back to the calling routine.

Input: 'A' =?
'X' =?
'Y' =?

Output:Unchanged= 'A '/'X'/'Y'/,P'/,B 'I
'DBR'/'K'/,D'/'e'

$FDOC RDKEY Get an input character and display old inverse
flashing cursor

RDKEY is the character input subroutine. It places
the old Apple][inverse character flashing cursor on
the display at the current cursor position and jumps
to the subroutine FD10.

Input: 'A' =?
'X' =?
'Y' =?

Beta Draft

Output: Unchanged~

Scrambled=
Special=

C-23

'X'/,DBR'/'K'/,D'/'e'
'Y'/'B '/'P'
'A'=key pressed (inputted
character)

9/17/86

AppendixC

$FDIO FDIO Get an input character and don't display inverse
flashing character cursor

FD lOis a character input subroutine. It jumps to
the subroutine whose address is stored in
KSWL/KSWH (addresses $38/$39), usually the
standard input subroutine KEYIN, which displays the
normal cursor and returns with a character in the
accumulator. FDlO returns only after a key has been
pressed or an input character has been placed in the
accumulator.

Input: 'A' =7
'X' =7
'Y' =7

Output:Unchanged=
, Scrambled=

Special=

'X'l'DBR'l'K'l'D'l'e'
'Y'/'B 'I'P'
'A'=key pressed (inputted
character)

$FD18 RDKEYI Get an input character

RDKEYI jumps to the subroutine whose address
is stored in KSWL/KSWH (addresses $38/$39),
usually the standard input subroutine KEYIN, which
returns with a character in the accumulator. RDKEYI
returns only after a key has been pressed or an input
character has been placed in the accumulator.

Input: 'A' =7
'X' =7
'Y' =7

Beta Draft

Output: Unchanged=
Scrambled=
Special=

C-24

'X'I'DBR'/'K'I'D'/'e'
'Y'I'B'I'P'
'A':=key pressed (inputted
character)

9/17/86

$FDIB KEYIN

Appendix C

Read the keyboard

KEYIN is the keyboard input subroutine. It tests the
event manager to see if it is active. If it is active,
KEYlN reads the key pressed from the event manager,
otherwise it reads the Apple's keyboard directly.
In any case it randomizes the random number seed
RNDL/RNDH (addresses $4E1$4F). When a key is
pressed, KEYIN removes the cursor from the display
and returns with the keycode in the accumulator.

Input: 'A'
'X'
'Y'

= character under cursor
=?
=?

Output: Unchanged=
Scrambled=
Special=

$FD35 RDCHAR

'X'j'DBR'l'K'l'D'j'e'
'Y'I'B'I'P'
'A'=key pressed (inputted
character)

Get an input character and process ESCape codes

RDKEY is the character input subroutine which also
interprets the standard Apple ESCape sequences. It
also places an appropriate cursor on the display at
the cursor position and jumps to the subroutine
whose address is stored in KSWl./KSWH (addresses
$38/$39), usually the standard input subroutine
KEYIN, which returns with a character in the
accumulator. RDCHAR returns only after a non
ESCape sequence key has been pressed or an input
character has been placed in the accumulator.

Input: 'A' =?
'X' =?
'Y' =?

Beta Draft

Output: Unchanged=
Scrambled=
Special=

C-25

'X'I'DBR'/'K'/'D'/'e'
'Y'I'B '/'P'
'A'=key pressed (inputted
character)

9/17/86

AppendixC

$FD67 GETLNZ Get an input line after issuing a carriage return

GETLNZ is an alternate entry point for GETLN that
sends a carriage return to the standard output, then
continues in GETLN. The calling program must call
GETLN with the prompt character at PROMPT (address
$33).

Input: 'A' =?
'X' =?
'Y' =?
PROMPT=(address $33)= prompt character

Output:Unchanged= 'DBR'I'K'I'D'l'e'
Scrambled= 'A'/'Y'/'B'/'P'
Speciaf= $200-$2xx contains input line.

'X'=length of input line.

$FD6A GETLN Get an input line with a prompt

GETLN is the standard input subroutine for entire lines
of characters. The calling program must call GETLN
with the prompt character at PROMPT (address $33).

Input: 'A' -?-.
'X' =?
'Y' =?
PROMPT=(address $33)= prompt character

Output: Unchanged= 'DBR'/'K'/'D'/'e'
Scrambled= 'A'I'Y'I'B'I'P'
Special= $200-$2xx contains input line.

'X'=length of input line.

$FD6C GETLNO Get an input line with a prompt (alternate entry)

GETLNO outputs the contents of the accumulator as the
prompt. If the user cancels the input line with a
CONTROL-X or by entering too many backspaces the
contents of PROMPT (address $33) will be issued as
the prompt when it gets another line.

Input: 'A' =prompt character
~X' =?
'Y' =?
PROMPT=(address=$33)=prompt character

Beta Draft

Output: Unchanged=
Scrambled=
Special=

C-26

'DBR'I'K'I'D'l'e'
'A'/'Y'/'B'/'P'
$200-$2xx contains input line.
'X'=length of input line.

9117/86

$FD6F GETLNl

Appendix C

Get an input line with no prompt (alternate entry)

GETLNl is an alternate entry point for GETLN that does
not issue a prompt before it accepts the input line. If
the user cancels the input line with a CONTROL-X or by
entering too many backspaces the contents of PROMPT
(address $33) will be issued as the prompt when it
gets another line.

Input: 'A' =7
'X' =7
'Y' =7
PROMPT=(address $33)=prompt character

Output: Unchanged=
Scrambled=
Special=

'DBR'I'K'I'D'l'e'
'A'/'Y'/'B'/'P'
$200-$2xx contains input line.
'X'=length ofinput line.

$FD8B

$FD8E

Beta Draft

CROUTl

CROUT

Clear to end on line then issue a carriage return

CROUTl clears the current line from the current cursor
position to the right edge of the text window. It then
goes to CROUT to issue a carriage return.

Input: 'A' =?
'X' =?
'Y' =?

Output:Unchanged= 'X'/'DBR'/,K'I'D'l'e'
Scrambled= 'Y'I'B '/'1"
Special= 'A'=$8D (carriage return)

Issue a carriage return

CROUT issues a carriage return to the output device
pointed to by CSWL/CSWH (addresses $36/$37).

Input: 'A' =7
'X' =7
'Y' =7

Output:Unchanged= 'X'I'Y'I'DBR'/'K'I'D'l'e'
Scrambled= 'B '/'1"
Special= 'A'=$8D (carriage return)

C-27 9117/86

AppendixC

$FD92 PRAI Print a carriage return and AIL/AIH
(addresses $3C1$3D)

PRAI sends a carriage return character ($8D) to the
current output device followed by the contents of the
16 bit pointer AIL/AIH (addresses ($3C/$3D) in hex
followed by a colon (:).

Input: 'A' =?
'X' =?
'Y' =?

Output Unchanged= 'DBR'I'K'I'D'l'e'
Scrambled= 'X'I'B '/,P'
Special= 'A'=$EA (colon)

'Y'=$OO

$FDDA PRBYTE Print a hexadecimal byte

PRBYTE outputs the contents of the accumulator in
hexadecimal format to the current output device.

Input: 'A' =Hex byte to print
'X' =?
'Y' =?

Output: Unchanged= 'X'/'Y'/'DBR'/'K'/'D'/'e'
Scrambled= 'A'/'B'/,P'

$FDE3 PRHEX Print a hexadecimal digit

PRHEX outputs the lower nybble of the accumulator as
a single hexadecimal digit to the current output
device.

Input: 'A'
'X'
'Y'

=Lower nybble is digit to output
=?
=?

BetaDrajt

OutputUnchanged= 'X'/'Y'/'DBR'I'K'I'D'l'e'
Scrambled= 'A 'I'B '/,P'

C-28 9/17/86

$FDED COUT

Appendix C

Output a character

COUT calls the current output subroutine. The
character to output should be in the accumulator.
COUT calls the subroutine whose address is stored in
CSWUCSWH (addresses $36/$37), which is usually the
standard character output routine COUTI.

Input: 'A'
'X'
'Y'

=Character to print
=?
=?

$FDFO COUTI

Output:Unchanged= 'A'/'X'I'Y'I'DBR'/'K'I'D'l'e'
Scrambled= 'B '/'P'

Output a character to the screen

COUTI displays the character in the accumulator on
the Apple's screen at the current output cursor
position and advances the output cursor. It places the
character using the settings of the normal/inverse
location INVFLG (address $32). It handles the control
characters return ($8D), linefeed ($8C), backspace/left
arrow ($88), right arrow ($95), bell ($87), and change
cursor command (CONTROL-A = $9E).

Input: 'A'
'X'
'Y'

=Character to print
=?
=?

$FDF6 COUTZ

Output:Unchanged= 'A'l'X'l'Y'/'DBR'l'K'l'D'/'e'
Scrambled= 'B '/'P'

Output a character to the screen without masking it
with the inverse flag

COUTZ outputs the character in the accumulator
without masking it with the inverse flag INVFLG (address
$32). Output goes to the screen.

Input: 'A'
'X'
'Y'

=Character to print
=?
=?

Beta Draft

Output:Unchanged= 'A'l'X'l'Y'/'DBR'l'K'/'D'/'e'
Scrambled= 'B '/,P'

9117/86

AppendixC

$FEIF IDROUTINE Returns identification information about the system

IDROUTINE is called with 'c' (carry) set. If it returns
with 'c' (carry) clear then the system is a Apple nGS or
later system. If 'c' (carry) returns clear the registers
'A'fX'fY' contain identification information about the
system.

Input: 'A' =?
'X' =?
'Y' =?

Output: Unchanged=
Scrambled=
Special=

'DBR'I'K'I'D'l'e'
'B'/,P'
'e' (carry)=O if Apple IIGS or later.
If 'c'=O then 'A'tX'/,Y' contain
identification information.
If 'c'=l then 'A'tX'/,Y' are
unchanged.

Input: 'A'
'X'
'Y'

$FE2C

BetaDrajt

MOVE Original monitor move routine

MOVE copies the contents of memory from one range of
locations to another. This subroutine is NOT the same
as the monitor move (M) command. The destination
address must be in A4L1A4H (addresses $421$43), the
starting source address in AILlAIH (addresses
$3C/$3D) and the ending source address in A2L/A2H
(addresses $3EI$3F) when MOVE is called. 'Y' must
contain the offset into the source/destination buffers
to start with.

=?
=?
=Offset into source/destination
buffers to start with (normally $00).

AIL/AIH=(addresses $3C!$3D)=start of
source buffer.

A2L1A2H=(addresses $3E1$3F)=end of source
buffer..

A4L1A4H=(addresses $42/$43)=start of
destination buffer.

Output:Unehanged= 'X'I'Y'/'DBR'I'K'I'D'l'e'
Scrambled= 'A 'IB' I'P'
Special=

AIL/AIH=(addresses $3C/$3D)=end
of source buffer+1

A2L1A2H=(addresses $3E1$3F)=end
of source buffer.

A4L1A4H=(addresses $42/$43)=end
of destination buffer+1.

C-30 9/17/86

Appendix C

$FE5E "LIST" Old list entry point. NOT supported in Apple llGS

$FE80 SETINV Set inverse text mode

SETINV sets INVFLG (address $32) so that subsequent
text output to the screen will appear in inverse mode.

-Input: 'A' =7
'X' =7
'Y' =7

Output: Unchanged= 'A'I'X'I'DBR'/'K'I'D'l'e'
Scrambled= 'Y'I'B '/,P' -
Special= INVFLG (address $32)=$3F

'Y'=$3F

$FE84 SETNORM Set normal text mode

SETNORM sets INVFLG (address $32) so that subsequent
text output to the screen will appear in normal mode.

Input: 'A' =7
'X' =7
'Y' =7

Output:Unchanged= 'A'I'X'/'DBR'/'K'/'D'/'e'
Scrambled= 'Y'/'B '/'P'
Special= INVFLG (address $32)=$FF

'Y'=$FF

$FE89

BetaDrajt

SETKBD Reset input to keyboard

SETKBD resets the input hooks KSWI.jKSWH
(addresses $38/$39) to point to the keyboard.

Input: 'A' =7
'X' =7
'Y' =?

OutputUnchanged= 'DBR'/'K'I'D'l'e'
Scrambled= 'A 'I'X'/'Y'I'B '/'P'

C-31 9/17/86

AppendixC

$FE8B' INPORT Reset input to a slot

INPORT resets the input hooks KS\VLIKSWH (addresses
$38/$39) to point to the ROM space reserved for a
peripheral card (or port) in the slot (or port)
designated by the value in the accumulator.

Input 'A'
'X'
'Y'

=slot number to set hooks to.
=1
=1

$FE93 SETVID

OutputUnchanged= 'DBR'I'K'I'D'l'e'
Scrambled= 'A'I'X'I'Y'I'B'/'P'

Reset output to screen

SETVID resets the output hooks CSWL/CSWH
(addresses $36/$37) to the screen display routines.

Input 'A' =1
'X' =1
'Y' =1

OutputUnchanged= 'DBR'I'K'/'D'l'e'
Scrambled= 'A'I'X'I'Y'I'B'I'P'

$FE95 OUTPORT Reset output to a slot

OUTPORT resets the output hooks CSWL/CSWH
(addresses $36/$37) to point to the ROM space
reserved for a peripheral card (or port) in the slot (or
port) designated by the value in the accumulator.

Input: 'A'
'X'
'Y'

=Slot number to reset hooks to.
=1
=?

BetaDrajt

OutputUnchanged= 'DBR'/'K'I'D'l'e'
Scrambled= 'A'I'X'/'Y'I'B '/'P'

C-32 9/17/86

Appendix C

$FEB6 00 Original Apple]['0'0 entry point

·00 begins execution of the code pointer to by A ILlA2L
(addresses $3C/$3D).

Input: 'A' =1
'X' =$01 (required)
'Y' =1
AIL/AIH (addresses $3C/$3D)=start address

of program to run.
A5H (address $45) = 'A' value to set up before

running program.
XREO (address $46)= 'X' value to set up before

running program.
YREO (address $47)= 'Y' value to set up before

running program.
STATUS (address $48)='P' status to set up

before running program.

Output: Unchanged= 'DBR'/'K'/,D'/,e'
Scrambled= 'A'/'X'I'Y'/'B'/'P'

$FECD WRITE Write a record to cassette tape. (OBSOLETE)

WRITE is an obsolete entry point in Apple IIGs. It does
nothing except an RTS back to the calling routine.

Input: 'A' =1
'X' =?
'Y' =1

Output: Unchanged= 'A'I'X'I'Y'I'P'/'B'I
'DBR'/'K'/'D'/'e'

$FEFD READ Read a data from a cassette tape (OBSOLETE)

READ is an obsolete entry point in Apple JIGS. It does
nothing except an RTS back to the calling routine.

Input: 'A ' =?
'X' =1
'Y' =1

OutputUnchanged= 'A'/,X'/,Y'I'P'I'B'I
'DB R 'I'K 'I'D 'I' e'

BetaDraji C-33 9117/86

Appendix C

$FF2D

$FF3A

PRERR

BELL

Print 'ERR' to output device

PRERR sends the or 'ERR to the output device and goes
to BELL.

Input: 'A' =?
'X' =?
'Y' =?

Output:Unchanged= 'X'I'Y'I'DBR'I'K'I'D'l'e'
Scrambled= 'B '/,P'
Special= 'A'=$87 (bell character)

Send a bell character to the output device

BELL writes a bell (CONTROL-G) character to the
current output device.

Input: 'A' =?
'X' =?
'Y' =?

$FF3F

Output:Unchanged= 'X'/'Y'I'DBR'I'K'I'D'l'e'
Scrambled: 'B '/,P'
Special= 'A'=$87 (bell character)

RESTORE Restore 'A'/'X 'I'Y'I'P , registers

Restore 6502 register information from locations
$45-$48.

Input: 'A ' =?
'X' =?
'Y' =?
A5H (address $45)= new value for 'A'
XREG (address $46)= new value for 'X'
YREG (address $47)= new value for 'Y'
STATUS (address $48)= new value for 'P'

Beta Draft

Output: Unchanged=
Scrambled=
Special=

C-34

'DBR'I'K'I'D'/'e'
'B'
'A'=new value
'X'=new value
'Y'=new value
'P'=new value

9117/86

Appendix C

$FF4A SAVE Save 'A'fX'fY'l'P'fS' registers and clear decimal mode

Save 6502 register information in locations $45-$49
and clear decimal mode.

Input: 'A' =?
'X' =?
'Y' =?

Output:Unchanged= 'Y'I'DBR'I'K'/'D'l'e'
Scrambled= 'A'/'X'/'B'/'P'
Special=
ASH (address $45)= value of 'A'
XREG (address $46)= value of 'X'

. YREG (address $47)= value of 'Y'
STATUS (address $48)=value of 'P'
SPNT (address $49)=value of stack pointer-2
Decimal mode is cleared

$FF58 IORTS Known RTS instruction

IORTS is used by peripheral cards to determine which
slot it is in. This RTS is fIxed and will never be
changed.

Input: 'A' =?
'X' =?
'Y' =?

Output:Unchanged= 'A'I'X'/'Y'I'DBR'I'K'/'D'/'e'
Scrambled= nothing

$FF59 OLDRST Old entry point to the monitor

Set up video and keyboard as output and input devices.
Set hex mode, do not beep and enter monitor at MONZ2.
Does not return to caller. All monitor 65816 register
storage locations are reset to standard values.

Input: 'A' =?
'X' =?
'Y' =?

Output:Does not return to caller.

BetaDrajt C-35 9117/86

. AppendixC

$FF65

$FF69

$FF6C

$FF70

Beta Draft

MON

MONZ

MONZ2

MONZ4

Standard monitor entry point with beep

Clear decimal mode, beep bell and enter the monitor
at MONZ. All monitor 65816 register storage
locations are reset to standard values.

Input: 'A' =7
'X' =7
'Y' =7

Output: Does not return to caller.

Standard monitor entry point (Call-151)

All monitor 65816 register storage locations are
reset to standard values. MONZ displays the '>I<'
prompt and sends control to the monitor input parser.

Input: 'A' =7
'X' =7
'Y' =7

Output:Does not return to caller.

Standard monitor entry point (alternate)

Does not change monitor 65816 register storage
locations. MONZ2 displays the '*' prompt and sends
control to the monitor input parser.

Input: 'A' =7
'X' =7
'Y' =7

.Output: Does not return to caller.

No prompt monitor entry point

Does not change monitor 65816 register storage
locations. No prompt is displayed. Control is sent to
the monitor input parser.

Input: 'A' =7
'X' =7
'Y' =?

Output:Does not return to caller.

C-36 9/17/86

Appendix C

$FF8A DIG Shift hex digit into A21/A2H (addresses $3E/$3F)

DIG shifts an ASCII representation of a hex digit in
the accum'ulator into A2l./A2H (addresses $3E1$3F).
Exits into NXTCHR.

Input: 'A' =ASCII character EORed with $130.
'X' =?
'Y' =Entry point in input buffer $2xx to

continuede~gcharacre~at

Output: Unchanged= 'DBR'I'K'I'D'l'e'
Scrambled= 'i\'/'B'/'l"/'X'
Special= 'Y'=points to next character in

input buffer at $2xx.

$FFA7 GETNUM Transfer hex input into A21/A2H (addresses $3E/$3F)

GETNUM scans the input buffer ($2xx) starting at
position 'Y'. It shifts hex digits into A2l./A2H
(addresses $3E1$3F) until a non-hex digit is
encountered. Exits into NXTCHR.

Input: 'A' =7
'X' =7
'Y' =Entry point in input buffer $2xx to

start decoding characte~ at.

Output: Unchanged= 'DBR'/'K'/'D'l'e'
Scrambled= 'A'/'B'/'J?'/'X'
Special= 'Y'=points to next character in

input buffer at $2xx.

$FFAD NXTCHR Translate next characrer

NXTCHR is the loop used by GETNUM to parse each
characrer in the input buffer and convert it to a value
in A2l./A2H (address $3E1$3F). It also upshifts any
lower case ASCII values that appear in the input
buffer (addresses $2xx).

Input: 'A'
'X'
'Y'

=7
=7
=Entry point in input buffer $2xx to
start decoding characte~ at.

Beta Draft

Output: Unchanged=
Scrambled=:
Special=

C-37

'DBR'I'K'I'D'/'e'
'A'/'B'/'J?'/'X'
'Y'=points to next character in
input buffer at $2xx.

9/17/86

Appendix C,

$FFBE TOSUB Transfer control to a monitor function

TOSUB pushes an execution address onto the stack
and then RTSs to the routine. It is of very limited use
to any program.

Input: 'A'
'X'
'Y'

=?
=?
=Offset into subroutine table

$FFC7 ZMODE

Output:Unchanged= 'DBR'l'K'l'D'l'e'
Scrambled= 'A 'I'B 'I'P'/'X'I'Y'

Zero out monitor's mode byte MONMODE (address $31)

Zero out MONMODE (address $31).

Input: 'A'
'X'
'Y'

=?
-?-,
=?

Beta Draft

Output:Unchanged= 'A'I'X'j'DBR'I'K'I'D'l'e'
Scrambled= 'P'I'B'
Special: 'Y'=$OO

C-38 9/17/86

Appendix D

Vectors

This appendix contains a list of the Apple nos vectors. A vector is usually either a 2-byte
address in page $00 or possibly a 4-byte jump instruction in a different bank of memory.
Vectors are utilized to assure that there will be a common point of interface between
externally developed programs and system-resident routines. External software jumps
directly or indirectly through these vectors instead of attempting to locate and jump directly
to the routines themselves. When a new version of the system is released, the vector
contents change with the new release, thereby maintaining system integrity.

Bank 00 page 3 vectors
$03FO-$03Fl BRKV User BRK vector

Address of the subroutine that handles BRK intemupts.
Normally points to OLDBRK (address $FA59) in the monitor
ROM.

$03F2-$03F3 SOFTEV User soft entry vector for RESET

Address of the subroutine that handles wann start (RESET
pressed). Normally points to BASIC or the operating
system.

$03F4 PWREDUP EOR of high byte of SOFTEV address

PWREDUP=SOFTEV+l EORed with the constant $A5. If
PWREDUP does NOT equal SOFTEV+l EORed with the
constant $A5 the system does a cold start. If PWREDUP
equals SOFrEV+1 EORed with the constant $A5 the system
does a warm start.

$03F5-$03F6-$3F7 AMPERV Applesoft's '&' IMP vector

BetaDrcift

Address of the subroutine that handles Applesofts '&;
(ampersand) commands. Normally points to IORTS (address
$FA58) in the monitor. $03F5 contains a IMP ($4C) opcode.

D-1 10124186

AppendixD

$03F8-$03F9-$3FA USRADR User's Control-Y and Applesoft's
USR function JMP vector

Address of the subroutine that handles user's Control-Y
and Applesoft's USR function commands. Normally points
to MON (address $FF65) in the monitor or to
BASIC.SYSTEM's warm. start address ifPRODOS8 is loaded
in. $03F8 contains a JMP ($4C) opcode.

$03FB-$03FC-$3FD NMI User NMI vector

Address of the subroutine that operating systems or
applications can change to gain access to NMI interrrupts.
Normally points to OLDRST (address $FF59) in the monitor
ROM or to the operating system ifone is loaded. $03FB
contains a JMP ($4C) opcode.

$03FE-$03FF IRQLOC User IRQ vector

Beta Draft

Address of the subroutine that operating systems or
applications can change to gain access to IRQ interrrupts.
Normally points to MaN (address $FF65) in the monitor
ROM or to the operating system if one is loaded.

0..2 10124/86

AppendixD

Bank 00 page C3 routines
AUXMOVE$C311 Move data blocks between main and auxiliary

4SKmemory

AUXMOVE is used by the lIe and Ilc to move data
blocks between main and auxiliary memory. For
compatiblity reasons, Apple llGS also supports this
entry point if the SO-Column firmware is enabled via
the Control Panel.

Input: 'A'
'X'
'Y'
'c'
'c'
AIL

AIH

A2L

A2H

A4L

A4H

=?
=?
=?
=1=Move from main to auxiliary memory
=O=Move from auxiliary to main memory
=(address $3C) source starting address,

low-order byte
=(address $3D) source starting address,

high-order byte
=(address $3E) source ending address,

low-order byte
=(address $3F) source ending address,

high-order byte
=(address $42) destination starting

address, low-order byte
=(address $43) destination starting

address, high-order byte

Output:Unchanged
Changed
AIL/AIH

A2L/A2H

A4L/A4H

='A'/'X'/'Y'I'DBR'I'K'I'D'/'e'
='B'/'P'
=(adclresses $3C/$3D)=16-bit

source ending address +I
=(addresses $3E/$3F)=16-bit

source ending address
=(addresses $42/$43)=16-bit

original destination address
+ number of bytes moved + I

XFER$C314 Transfer program control between main and
auxiliary 48K memory

XFER is used by the lIe and /lc to transfer control
between main and auxiliary memory. For
compatiblity reasons, Apple llGS also supports this
entry point if the 80 column firmware is enabled via
the Control Panel. XFER assumes the programmer
has saved the cUrrent stack pointer at $0100 in
auxiliary memory and the alternate stack pointer at
$0I0I in auxiliary memory before calling XFER and
to restore them after regaining control. Failure to

Beta Draft 0.3 10124186

AppendixD

do so will cause program errors and incorrect
interrupt handling.

Input: I A ' =?
'X' =?
'Y' =?
'c I =1=Transfer control from main to

auxiliary memory
'c' =O=Transfer control from auxiliary to

main memory
'v' =l=Use page zero and stack in auxiliary

memory
'v' ==O=Use page zero and stack in main

memory
$03ED =Program starting address,

low-order byte
$03EE =Program starting address,

high-order byte

BetaDrajt

Output: Unchanged
Changed

='A'I'X'I'Y'I'DBR'I'K'I'D'l'e'
='B'I'P'

D-4 10/24/86

Bank 00 page Fx vectors

AppendixD

$FFE4-$FFE5 NCOP Native mode COP vector

TIris is not a callable routine. It is a 16-bit value which
changes with each ROM release. Its value is not
guaranteed. No program should make use of this value.
TIris vector is pulled from the ROM and used whenever a
native mode COP is executed.

$FFE6-$FFE7 NBREAK Native mode BRK vector

TIris is not a callable routine. It is a 16-bit value which
changes with each ROM release. Its value is not
guaranteed. No program should make use of this value.
TIris vector is pulled from the ROM and used whenever a
native mode BRK is executed.

$FFE8-$FFE9 NABORT Native mode ABORT vector

TIris is not a callable routine. It is a 16-bit value which
changes with each ROM release. Its value is not
guaranteed. No program should make use of this value.
This vector is pulled from the ROM and used whenever a
native mode ABORT is executed.

$FFEA-$FFEB NNMI Native mode NMI vector

TIris is not a callable routine. It is a 16-bit value which
changes with each ROM release. Its value is not
guaranteed. No program should make use of this value.
TIris vector is pulled from the ROM and used whenever a
native mode NMI is executed.

$FFEE-$FFEF NIRQ Native mode IRQ vector

Beta Draft

TIris is not a callable routine. It is a 16-bit value which
changes with each ROM release. Its value is not
guaranteed. No program should make use of this value.
This vector is pulled from the ROM and used whenever a
native mode IRQ is executed.

D-5 10/24/86

AppendixD

$FFF4-$FFF5 ECOP Emulation mode COP vector

This is not a callable routine. It is a 16-bit value which
changes with each ROM release. Its value is not
guaranteed. No program should make use of this value.
This vector is pulled from the ROM and used whenever an
emulation mode COP is executed.

$FFF8-$FFF9 EABORT Emulation mode ABORT vector

This is not a callable routine. It is a 16-bit value which
changes with each ROM release. Its value is not
guaranteed.. No program should make use of this value.
This vector is pulled from the ROM and used whenever an
emulation mode ABORT is executed.

,

$FFFA-$FFFB ENMI Emulation mode NMI vector

This is not a callable routine. It is a 16-bit value which
changes with each ROM release. Its value is not
guaranteed. No program should make use of this value.
This vector is pulled from the ROM and used whenever an
emulation mode NMI is executed.

$FFFC-$FFFD ERESET RESET vector

This is not a callable routine. It is a 16-bit value which
changes with each ROM release. Its value is not
guaranteed. No program should make use of this value:
This vector is pulled from the ROM and used whenever an
emulation mode NMI is executed.

$FFFE-$FFFF EBRKIRQ Emulation mode BRK/IRQ vector

BetaDraft

This is not a callable routine. It is a 16-bit value which
changes with each ROM release. Its value is not
guaranteed. No program should make use of this value.
This vector is pulled from the ROM and used whenever an
emulation mode BRK or IRQ is executed.

D-6 10/24/86

AppendixD

Bank El vectors
The vectors DISPATCH1 through SYSMGRV are guaranteed to be in the given locations
in this and all future Apple nOS-compatible machines.

$E1/0000-0003 DISPATCH1 Jump to tool locator entry type 1

Unconditional jump to the tool locator entry
type 1. JSL from user's code directly to the tool
locator with this entry point. The form of the call in memory is as
follows:

JMP abslong ($5C/1ow byte/high byte/bank byte)

$E1/0004-0007 DISPATCH2 Jump to tool locator entry type 2

Unconditional jump to the tool locator entry
type 2. JSL to a JSL from user's code to the tool
locator with this entry point. The form of the call in memory is as
follows: ' .

JMP abslong ($5C/1ow byte/high byte/bank byte)

$E1/0008-000B UDISPATCH1 Jump to tool locator entry type 1

Unconditional jump to the user installed tool
locator entry type 1. JSL from user's code
directly to the user installed tool locator with
this entry point The form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

$E1/000C-000F UDISPATCH2 Jump to tool locator entry type 2

INTMGRV$E1/0010-0013

BetaDraji

Unconditional jump to the user installed tool
locator entry type 2. JSL to a JSL from user's
code to the user installed tool locator with this
entry point The form of the call in memory is as follows:
JMP abslong ($5C/1ow byte/high byte/bank byte)

Jump to system interrupt
handler/manager

Unconditional jump to the main system interrupt
handler/manager. If the application patches out
this vector it must be able to handle all
interrupts in the same fashion as the built in

D-7 10/24/86

AppendixD

ROM interrupt handler/manager. If not the
system will not, in most circumstances, run.
The form of the call in memory is as follows:

.Th1P abslong ($5C/1ow byte/high byte/bank byte)

$El/OO14-0017 COPMGRV Jump to COP manager .

Unconditional jump to COP (eo-processor)
manager. Currently points to code which causes
the monitor to printout a COP instruction
disassembly, similar to the BRK disassembly.
The form of the call in memory is as follows:

.Th1P abslong ($5C/1ow byte/high byte/bank byte)

$El/OO18-001B ABORTMGRV .Jump to ABORT manager

Unconditional jump to ABORT manager. Currently
.points to code which causes the monitor to
printout the instruction being executed's
disassembly, similar to the BRK disassembly.
The form of the call in memory is as follows:
IMP abslong ($5C/1ow byte/high byte/bank byte)

$El/OOIC-OOIF SYSDMGRV Jump to system death manager

BeraDraft

Unconditional jump to the system death manager.
This call assumes the following:
• Entry is in 16-bit native mode.
• 'c' (carry) =0 if user defined message pointed

to on stack. =1 if use default
messsage.

• The stack is set up as follows:
9,S =Error high byte
8,S =Error low byte
7,S =Null byte of message address
6,S =Bank byte of message addr
5,S =High byte of message addr
4,S =Low byte of message addr
3,S =unused return address
2,S =unused return address
1,S =unused return address

The form of the call in memory is as follows:

.Th1P abslong ($5C/1ow byte/high byte/bank byte)

D-8 10/24/86

AppendixD

IRQ.APTALK and IRQ.SERIAL vectors
The following vectors IRQ.APTALK and IRQ.SERIAL are normally set up to point to
internal interrupt handlers or to code which sets carry and RTL's back to the interrupt
manager. All the routines are called in 8-b,it native mode and at high speed. The data bank
register, the direct register, MSLOT ($7F8), and the stack pointer are not preset and/or
setup as for other interrupt vectors. The called routine must return carry clear if the routine
handled the interrupt and carry set if it did not handle the interrupt. Carry clear tells the
interrupt manager not to call the application or operating system. Carry set tells the
interrupt manager that the application or the operating system must be notified of the current
interrupt The called routines must preserve the DBR, speed, 8-bit native mode, the D
register, the stack pointer (or just use current stack) and MSLOT for proper operation.
'A'fX'fY' need not be preserved. Interrupts are disabled on entry to all interrupt
handlers. The handler must not re-enable interrupts from within the interrupt handler.
AppleTalk and the Desk Accessory Manager are allowable exceptions. These vectors
should only be accessed via the miscellaneous tools. Their location in memory is not
guaranteed.

$E1/0020-0023 IRQ.APTALK Jump to AppleTalk interrupt handler

Unconditional jump to AppleTalks LAP (link
access protocol) interrupt handler. Handles sec
interrupts intended for AppleTalk. The form of the call in memory is
as follows:

JMP abslong ($5C/low bytelhigh byte/bank byte)

$E1/0024-0027 IRQ.SERIAL Jump to serial port interrupt handler

Beta Draft

Unconditional jump to serial ports interrupt
handler. Handles interrupts intended for serial
ports. The form of the call in memory is as follows:

JMP abslong ($5C/1ow byte/high byte/bank byte)

D-9 10/24/86

AppendixD

IRQ.SCAN through IRQ.OTHER vectors
The following vectors IRQ.SCAN through IRQ.OTHER are normally set up to point to
internal interrupt handlers or to code which sets carry and RTL's back to the interrupt
manager. All the routines are called in 8-bit native mode, high speed, data bank register set
to $00, and the direct register set to $0000. The called routine must return carry clear if it
handled the interrupt and carry set if it did not handle the interrupt Carry clear tells the
interrupt manager not to call the application or operating system. Carry set tells the
interrupt manager that the application or the operating system must be notified of the current
interrupt. The called routines must preserve the DBR, speed, 8-bit native mode and D
register for proper operation. 'A'I'X'I'Y' need not be preserved. Interrupts are disabled
on entry to all interrupt handlers. The handler must not re-enable interrupts from within the
interrupt handler. AppleTalk and the Desk Accessory Manager are allowable exceptions.
These vectors should only be accessed via the miscellaneous tools. Their location in
memory is not guaranteed.

$E1/0028-002B IRQ.SCAN Jump to scan line interrupt handler

Unconditional jump to the scan line interrupt
handler. Used by the cursor update routine.
The form of the call in memory is as follows:

IMP abslong ($5C/1ow byte/high bytelbank byte)

$E1/002C-002F IRQ.SOUND Jump to sound interrupt handler

Unconditional jump to the sound interrupt
handler. Handles all interrupts from the Ensoniq
sound chip. The form of the call in memory is as follows:

IMP abslong ($5C/1ow byte/high bytelbank byte)

Unconditional jump to the vertical blanking (VBL)
interrupt handler. The form of the call in memory is as follows:

$E1/0030-0033
J;

\1/(~HT

IRQ.VBL Jump to VBL handler

IMP abslong ($5C/1ow byte/high bytelbank byte)

$E1/0034-0037 IRQ.MOUSE Jump to mouse interrrupt handler

BetaDrajt

Unconditional jump to the mouse interrupt
handler. The form of the call in memory is as follows:

IMP abslong ($5C/1ow byte/high bytelbank byte)

D-10 10/24/86

$El/OO38-003B IRQ.QTR Jump to quarter second interrupt
handler

AppendixD

Unconditional jump to the quarter second
interrupt handler. Used by AppleTalk..
The form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

$ElIOO3C-003F IRQ.KED Jump to keyboard interrupt handler

Unconditional jump to the keyboard interrupt
handler. Currently the keyboard has no
hardware interrupt. Keyboard interrupts are still
available by making a call to the miscellaneous
tools telling it to install a heartbeat task which
every VBL time polls the keyboard. If a key is
pressed the heartbeat task will JSL through this
vector. This forms a quasi keyboard interrupt.
The form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

$El/OO40-0043 IRQ.RESPONSE Jump to ADB response interrupt
handler

Unconditional jump to the ADB (Apple Desktop
Bus) response interrupt handler. The form of the call in memory is
as follows:

JMP abslong ($5C/low bytelhigh byte/bank byte)

$El/OO44-0047 IRQ.SRQ Jump to SRQ interrupt handler

Beta Draft

Unconditional jump to the ADB (Apple Desktop
Bus) SRQ (Service ReQuest) interrupt handler.
The form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

D-ll 10/24/86

AppendixD

$E1/0048-004B IRQ.DSKACC Jump to the Desk Accessory interrupt
handler

IRQ.FLUSH

IRQ.MICRO

$E1/004C-004F

$E1/0050-0053

Unconditional jump to the Desk Accessory
manager interrupt handler. Invoked by the user
pressing Control-Open Apple-Escape.The form of the call in'
memory is as follows:

JMP abslong ($5C/1ow byte/high bytelbank byte)

Jump to the keyboard FLUSH interrupt
handler

Unconditional jump to the keyboard FLUSH
interrupt handler. Invoked by the user pressing
Control-Open Apple-Backspace. The form of the call in memory is
as follows:

JMP abslong ($5C/1ow byte/high byte/bank byte)

Jump to keyboard micro abort
interrupt handler

Unconditional jump to the keyboard micro abort
recovery routine. This interrupt can only occur if
the keyboard micro had a catastrophic failure. If
the failure does occur the firmware will try to
resync up to the keyboard micro and initialize.
The form of the call in memory is as follows:

JMP abslong ($5C/1ow byte/high bytelbank byte)

$E1/0054-0057 IRQ.lSEC Jump to one second interrupt handler

IRQ.EXT$E1/0058-005B

Beta Draft

Unconditional jump to the one second interrupt
handler. The form of the call in memory is as follows:

JMP abslong ($5C/1ow byte/high bytelbank byte)

Jump to VGC external interrupt
handler

Unconditional jump to the VGC (Video Graphics
Chip) external interrupt handler. Currently the
pin which generates this interrupt is forced high
so that no interrupt can be generated. This
interrupt handler is for future system expansion

D-12 10/24/86

o AppendixD

and currently cannot be used. The form of the call in memory is as
follows:

JMP abslong ($5C/low byte/high bytelbank byte)

$E l/OO5C-005F ffiQ.OTIIER Jump to other interrupt handler

Unconditional jump to an installed interrupt
handler which handles interrupts other than the
ones handled by the internal firmware. This is a
general purpose vector.The form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

$El/oo60-0063 CUPDATE Cursor update vector

Unconditional jump to the cursor update routine
in Quickdraw II. The form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

$E1/0064-0067 INCBUSYFLG Increment busy flag vector

Unconditional jump to the increment busy flag
routine.The form of the call in memory is as follows:

JMP abslong ($5C/low byte/high bytelbank byte)

$E1/oo68-006B DECBUSYFLG Decrement busy flag vector

Unconditional jump to the decrement busy flag
routine.The form of the call in memory is as follows:

JMP abslong ($5C/low bytelhigh bytelbank byte)

$E l/OO6C-006F BELLVECTOR Monitor bell vector intercept routine

Beta Draft

Unconditional jump to a user installed BELL
routine. The monitor calls this routine whenever
a BELL character ($87) is output through the
output hooks (CSWL/CSWH $36/$37) and
whenever BELLI, BELL1.2, and BELL2 are called.
The routine is called in 8-bit native mode and
must return to the monitor in 8-bit native mode.
The data bank register and direct register must
be preserved. Carry must be returned clear or
the monitor will generate its own bell sound.
For compatibility with existing programs the 'XI
register must be preserved during this call and

D-13 10/24/86

AppendixD

'Y' must be =$00 on exit from this call.
The form of the call in memory is as follows:
JMP abslong ($5C/low byte/high byte/bank byte)

$E1/0070-0073 BREAKVEcrOR Break vector

Unconditional jump to a user installed break
vector. The user is called in 8-bit native mode,
high speed, data bank register set to $00, direct
register set to $0000. The user must preserve
the data bank register, direct register, speed and
return in 8 bit native mode with an RTL. The
users program must also clear carry or the
normal break routine pointed to by the vector at
$00103FO.03F1 will be called. If carry comes
back clear the break interrupt is processed and
the application program is resumed 2 bytes past
the BRK opcode. This vector is set up to be used
by debuggers such as the Apple IIGS Debugger.
The form of the call in memory is as follows:

JMP abslong ($5C/1ow byte/high byte/bank byte)

$E1/0074-0077 TRACEVECfOR Trace vector

Unconditional jump to a trace vector. The user is
called in 8-bit native mode, high speed, data bank
register set to $00, direct register set to $0000.
The user must preserve the data bank register,
direct register, speed and return in 8 bit native
mode with an RTL. If the user clears carry the
monitor firmware resumes where it left off. If
the user sets carry the monitor firmware
currently will print Trace' on the screen and
continue where it left off. This vector is set up
to be used in the future by the system firmware
and in the present by debuggers.The form of the call in memory is
as follows:
JMP abslong ($5C/1ow byte/high byte/bank byte)

$E1/0078-007B STEPVECfOR Step vector

Beta Draft

Unconditional jump to a step vector. The user is
called in 8 bit native mode, high speed, data bank
register set to $00, direct register set to $0000.
The user must preserve the data bank register,
direct register, speed and return in 8 bit native
mode with an RTL~ If the user clears carry the
monitor fIrmware resumes where it left off. If
the user sets carry the monitor firmware
currently will print 'Step' on the screen and

D-14 10/24/86

$E1/007C-007F

AppendLtDo

continue where it left off. This vector is set up
to be used. in the future by the system fumware
and in the present by debuggers. The form of the call in memory is
as follows:

JMP abslong ($5C/1ow byte/high byte/bank byte)

Reserved. for future expansion vector.

This vector is reserved. for future system
expansion and is not available for the user.
The form of the call in memory is as follows:

JMP abslong ($5C/1ow byte/high byte/bank byte)

Beta Draft D-15 10/24/86

AppendtxD

TOWRITEBR through MSGPOINTER vectors

The vectors TOWRITEBR through MSGPOINTER are guaranteed to stay in the same·
memory locations in all Apple llGS compatible systems. These vectors are for convenience
and are not to be altered by any application.

$E1/0080-0083 TOWRITEBR Write BATTERYRAM routine

This vector points to a routine which copies the
BATTERYRAM buffer in bank E1 to the clock chip's
BATTERYRAM with proper checksums. This
routine is called the miscellaneous tools and by
the Control Panel programs.The form of the call in memory is as
follows:

JMP abslong ($5C/1ow byte/high byte/bank byte)

$E1/0084-0087 TOREADBR Read BATIERYRAM routine

This vector points to a routine which copies the
clock chip's BATIERYRAM to the BATrERYRAM
buffer in bank E1, compares the checksums and if
they match just returns to the caller. If they do
not match or if one of the values in the
BATTERYRAM is out of limits the system default
parameters are written into the BATIERYRAM
buffer in bank E1 and then into the clock chip's
BATTERYRAM with proper checksums. This
routine is called the miscellaneous tools and by
the Control Panel programs.The form of the call in memory is as
follows:

JMP abslong ($5C/low byte/high byte/bank byte)

$E1/0088-008B TOWRITETIME Write time routine

Beta Draft

This vector points to a routine which writes to
the seconds registers in the clock chip. It
transfers the values in the CLKWDATA buffer in
bank E1 to the clock chip. This routine is called
by the miscellaneous tools only. It returns carry
clear if the write was successful and carry set
if unsuccessful.The form of the call in memory is as follows:
JMP abslong ($5C/1ow byte/high byte/bank byte)

D-16 10/24/86

$E11OO8C-008F TOREADTIME Read time routine

AppendixD

TOBRAMSETIJP

$E1/0090-0093

$E1/0094-0097

This vector points to a routine which reads from
the seconds registers in the clock chip. It
transfers the values to the CLKRDATA buffer in
bank El to the clock chip. This routine is called
by the miscellaneous tools only. It returns carry
clear if the read was successful and carry set
ifunsuccessful. The form of the call in memory is as follows:

JMP abslong ($5C/1ow byte/high byte/bank byte)

TOCTRL.PANEL Show control panel

This vector points to the Control Panel program.
It assumes it was called from the Desk
Accessory Manager. It uses most of zero page. It
RTLs back to the Desk Accessory Manager when
Quit is chosen. The form of the call in memory is as follows:

JMP abslong ($5C/1ow byte/high byte/bank byte)

Setup system to BATTERYRAM
parameters routine

This vector points to a routine which sets up the
system parameters to match the values in the
BATTERYRAM buffer. In addition if it is called
with carry clear it sets up the slot configuration
(internal versus external). If it is called with
carry set it does NOT set up the slot
configuration (internal versus external).

Note: BATTERYRAM buffer E1 values can be set
via the miscellaneous tools only.

The form of the call in memory is as follows:
JMP abslong ($5C/1ow byte/high byte/bank byte)

$E1/0098-009B TOPRINTMSG8 Print ASCII string designated by the 8
bit accumulator

Beta Draft

This vector points to a routine which displays
ASCII strings pointed to by multiplying the 8 bit
accumulator times 2 (shifting it left I bit) and
then indexing into the address pointer table
pointed to by MSGPOINTER (address E1/00CO
(three byte pointer)). It then uses that address

D-17 10/24/86

AppendixD

$El1OO9C-009F

to get the string to display. This routine is used
by the built in Control Panel, any text based RAM
Control Panel and by the monitor to display
messages. The form of the call in memory is as follows:

JMP abslong ($5C/1ow byte/high bytelbank byte)

TOPRINTMSG16 Print ASCII string designated by the
16-bit accumulator

This vector points to a routine which displays
Ascn strings pointed to by the 16-bit 'A'
register. The accumulator is used to index
into the address pointer table pointed to by
MSGPOINTER (address EllOOCO (three byte
pointer)). It then uses that address to get the
string to display. This routine is used by the
built in Control Panel, any text based RAM
Control Panel and by the monitor to display
messages. The form of the call in memory is as
follows:

JMP abslong ($5C/1ow byte/high bytelbank byte)

$El/OOAO-OOA3 CTRLYVECTOR User Control-Y vector

Unconditional jump to a user defmed Control-Y
vector. The user is called in 8-bit native mode,
data bank register set to $00, direct register set
to $0000. The user must preserve the data bank
register, direct register, speed and return in
emulation mode with an RTS from bank 00. If no
debugger vector is installed the monitor
firmware will go to the user via the normal
Control-Y vector in bank 00 (USRADR
00/03F8.03F9.03FA). This vector is set up to be
used by debuggers.The form of the call in memory is as follows:

JMP abslong ($5C/1ow byte/high bytelbank byte)

$El/OOA4-00A7 TOTEXTPG2DA Point to Alternate Display Mode desk
accessory

This vector points to the Alternate Display Mode
program. It assumes it was called from the Desk
Accessory Manager. It RTLs back to the Desk
Accessory Manager when a key is pressed..
The form of the call in memory is as follows:

JMP abslong ($5C/1ow byte/high bytelbank byte)

Beta Draft D-18 10/24/86

$E1/00A8-00BF PR016MLI Prodos 16 MLI vectors

AppendixD

This vector points to the Prodos 16 routines.
Consult Prodos 16 documents for information
about these calls.

$El/OOCO-OOC2 MSGPOINTER Pointer to all strings used in Control
Panel, Alternate Display Mode, and
monitor system messages

This three byte vector points to the address
pointer table which points to ASCn strings
which are used by the Control Panel, Alternate
Display Mode and monitor system messages. It is
not useful for users. The form of the call in memory is as follows:

low byte/high byte/bank byte

BetaDrajt D-19 10124186

I

1

Appendix E

Soft Switches

This appendix contains a list of the Apple IIos soft switches--the locations at which various
program definable system control options may be accessed and changed. Note that this
listing of soft switches is provided for reference only. You should only change the
contents of a soft switch by using the appropriate tool from the Tool Set. Please refer to
the Apple IIGS Tool Set Manual for more information.

Address Name Explanation

cooo: COOO 20 IOADR EQU * ;Al1 I/O is at $Cxxx
cooo: COOO 21KBD EQU II< ;Bit 7=1 ifkeystroke

;Bits 6-0=Key pressed
COOO:OO 22CLR8OCOL DFB 0 ;disable 80 column store
C001:00 23 SET80COL DFB 0 ;enable 80 column store
C002:00 24 RDMAINRAM DFB 0 ;read from main 48K RAM
C003:00 25 RDCARDRAM DFB 0 ;read from alt. 48K RAM
C004:00 26 WRMAINRAM DFB 0 ;write to main 48K RAM
COO5:00 27 WRCARDRAM DFB 0 ;write to alt. 48K RAM
COO6:00 28 SETSLOTCXROM DFB 0 ;use ROMS on cards
COO7:00 29 SETINTCXROM DFB 0 ;use internal ROM
COO8:00 30SETSTDZP DFB 0 ;use main zero page/stack
COO9:00 31SETALTZP DFB 0 ;use alt. zero page/stack
COOA:OO 32 SETINTC3ROM DFB 0 ;Enable internal slot 3 ROM
COOB:OO 33 SETSLOTC3ROM DFB 0 ;Enable external slot 3 ROM
COOC:OO 34 CLR80VID DFB 0 ;disable 80 column hardware
COOD:OO 35 SET80VID DFB 0 ;enable 80 column hardware
COOE:OO 36CLRALTCHAR DFB 0 ;normal LC, flashing UC
COOF:OO 37 SETALTCHAR DFB 0 ;normal inverse, LC; no flash
CO10:00 38 KBDSTRB DFB 0 ;turn off key pressed flag
COll:00 39RDLCBNK2 DFB 0 ;Bit 7=1 if LC bank 2 is in
C012:00 40RDLCRAM DFB 0 ;Bit 7=1 ifLC RAM read

enabled
C013:00 41 RDRAMRD DFB 0 ;Bit 7=1 if reading alt 48K
C014:00 42RDRAMWRT DFB 0 ;Bit 7=1 if writing alt 48K
C015:00 43RDCXROM DFB 0 ;Bit 7=1 if using int rom
C016:00 44RDALTZP DFB 0 ;Bit 7=1 if slot zp enabled
C017:00 45RDC3ROM DFB 0 ;Bit 7=1 if slot c3 space enabled
C018:00 46RD8OCOL DFB 0 ;Bit 7=1 if 80 column store
C019:00 47RDVBLBAR DFB 0 ;Bit 7=1 if not VBL
C01A:OO 48RDTEXT DFB 0 ;Bit 7=1 if text (not graphics)
C01B:00 49RDMIX DFB 0 ;Bit 7=1 if mixed mode on
C01C:OO 50RDPAGE2 DFB 0 ;Bit 7=1 ifTXTPAGE2 switched in
C01D:00 51 RDHIRES DFB 0 ;Bit 7=1 if IDRES is on
C01E:OO 52 ALTCHARSET DFB 0 ;Bit 7=1 if alternate char set in use
C01F:OO 53 RD80VID DFB 0 ;Bit 7=1 if 80 column hardware in

Beta Draft £-1 10/24/86

AppendixE

C020:00 54 DFB 0 ;Reserved for future system
expansion

C021:
C021:
C021:
C021:
C021:
C021:
C021:

C021:
C021:
C021:
C021:00

56 '" 7 6 5 4 3 2 1 0
57 *-1 ---;- -,- --1- --1- --1- --1- --1- -I

58 "'IEnab1e I' 1 1 1 I 1
59 *lco1or/ 0 1 0 I 0 I 0 I 0 I 0 I 0 1
60 *1 mono I I I I 1 , 1 1
61 *1 1__ '__ 1__ '__ '__ 1__ 1__ '
62 lie N\MI\ MONOCOLOR status byte N\MI\

64 lie MONOCOLOR bits defined as follows:
65 lie bit 7= 0 enables color -- 1 disables color
66'" bit 6,5,4,3,2,1,0 Must be 0
68 MONOCOLOR DFB 0 ;Monochrome/co1or select register

TBCOLOR bits defined as follows:
bit 7,6,5,4 = Text color bits
bits 3,2,1,0 = Background color bits

;Text/background color select register

Color bits =
$0 = Black
$1 =Deep Red
$2 =Dark Blue
$3 =Purple
$4 = Dark Green
$5 =Dark Gray
$6 =Medium Blue
$7 =Light Blue
$8 = Brown
$9 =Orange
$A =Light Gray
$B =Pink
$C = Green
$D =Yellow
$E = Aquamarine
$F =White

TBCOLOR DFB 0

70 '" 7 6 5 4 3 2 1 071 "'-I ------ ---"'1- --._- ._--

72 "'I I
73 "'I Text Color Bits 1 Background Color Bits
74 "'I I
75 liel, ~-:-:-=-::::-:::-:::-::-=-:-I, _

76 lie AMM TBCOLOR byte MAM

78 lie

79 *
80 '"
81 lie

82 lie

83 >I<

84 *
85 lie

86 '"
87 '"
88 >I<

89 >I<

90 >I<

91 *
92 '"
93 >I<

94 *
95 '"
96 '"
97 '"
98 >I<

100

C022:
C022:
C022:
C022:
C022:
C022:
C022:

C022:
C022:
C022:
C022:

. C022:
C022:
C022:
C022:
C022:
C022:
C022:
C022:
C022:
C022:
C022:
C022:
C022:
C022:
C022:
C022:
C022:
C022:00

Beta Draft E-2 10/24/86

Appendix E

102 * 7 6 5 4 3 2 1 0
103 *-1 --- I -~- I

104 * I VGC 1sec Scan Ext 1sec I Scan Ext I
105 *1 int I int I int I int I 0 I int I int I inti
106 * Iactive Iactive Iactive 1active 1 Ienable Ienable lenabl
107 * 1 I 1 1 I 1 1 1 1
108 * I\N\M VGCINT status byte I\N\M

122 '" 7 6 5 4 3 2 1._~_0
123 "'-I I
124>1< 1 Button 1

125 * Istatus IDelta Delta movement
126>1< I now 1 sign
127 * 1 1 1 I I 1

128'" M/\M MOUSEDATA byte MM/\ ---

C023:
C023:
C023:
C023:
C023:
C023:
C023:

C023:
C023:
C023:
C023:
C023:
C023:
C023:
C023:
C023:
C023:00

C024:
C024:
C024:
C024:
C024:
C024:
C024:

C024:
C024:
C024:
C024:
C024:
C024:00

110*
111 *
112*
113 *
114*
115 *
116*
117*
118 *
120

130 >I<

131 '"
132'"
133 *
134 *
136

VGCINT bits defined as follows:
bit 7= 1 if interrupt generated by VGC
bit 6= 1 if 1 second timer interrupt
bit 5= 1 if scan line interrupt
bit 4= 1 if external interrupt (Forced low in Apple nOS)
bit 3= Must be 0
bit 2= 1 second timer interrupt enable
bit 1= scan line interrupt enable
bit 0= ext int enable (Can't cause an int in Apple nos)
VGCINT DFB 0 ;VGC interrupt register

MOUSEDATA bits defined as follows:
bit 7= if reading X data = button 1 status

if reading Y data = button 0 status
bit 6= sign of delta 0='+' -- 1='·'
bit 5,4,3,2,1,0 = delta movement
MOUSEDATA DFB 0 ;X or Y mouse data register

C025: 138 * 7 6 5 4 3 2 1 0_
C025: 139>1< -I 1 1Update 1 1 1 1 I
C025: 140"'1 Open IClosedl mod IKeypad IRepeat 1 Caps Ctrl IShftl
C025: 141 *1 Apple I Applelno keyl key Iactive 1 lock 1 key 1 keyl
C025: 142>1< 1 key I key I press 1active I Iactive 1active Iactv I
C025: 143 * I 1 I 1 1 I I 1 I
C025: 144 >I< MMII KEYMODREG status byte I\N\M

C025: 146 >I< KEYMODREG bits defined as follows:
C025: 147 * bit 7= Open Apple key active
C025: 148 '" bit 6= Closed Apple key active
C025: 149 * bit 5= Updated modifier latch without keypress
C025: 150>1< bit 4= Keypad key active
C025: 151 '" bit 3= Repeat active
C025: 152 >I< bit 2= Caps lock active

Beta Draft £-3 10/24/86

AppendixE

C025:
C025:
C025:00

153 >I< bit 1= Control key active
154>1< bit 0= Shift key active
156 KEYMODREG DFB 0 ;Key modifier register

Data to/from keyboard micro

DATAREG bits defined as follows:
bit 7,6,5,4,3).,1,0 = data to/from keyboard micro

Data at interrupt time in this register is defined as:
bit 7= Response byte if set, otherwise status byte
bit 6= ABORT valid if set and all other bits reset
bit 5= Desktop manager key sequence pressed
bit 4= Flush buffer key sequence pressed
bit 3= SRQ valid if set
bit 2,1,0 If all bits clear then no FDB data valid,
else the bits indicate the number of valid
bytes received minus 1. (2-8 bytes total)
DATAREG DFB 0 ;Data register in KeyGlu chip

166 >I<

167 >I<

168 >I<

169 '"
170 >I<

171 *
172 *
173 *
174 *
175 >I<

176 *
177 >I<

179

158 >I< 7 6 5 4. 3 2 1 0

159>1< I
160 >I< I
161 >I< I
162>1< I
163 "'I~__ I I I I
164 III ~ I\N\N\ DATAREG byte I\N\N\'-:-:-'--

C026:
C026:
C026:
C026:
C026:
C026:
C026:

C026:
C026:
C026:
C026:
C026:
C026:
C026:
C026:
C026:
C026:
C026:
C026:
C026:00

181 >I< 7 6 5 4 3 2 1 °182 *-1 I I I I I
183>1< I Mousel Mousel Data Data I Key Key I MouselCmd I
184>1< I reg I int I - reg I int I data I int IX/Yreglreg I
185>1< I full Ienable I full lenablel full Ienable I data Ifull I
186 *I I I I I I I I I
187 >I< NV\M KMSTATUS status byte MM/\

;Keyboardlmouse status register
;ROM bank select toggle
(Not used in Apple llGS)

C027:
C027:
C027:
C027:
C027:
C027:
C027:

C027:
C027:
C027:
C027:
C027:
C027:
C027:
C027:
C027:
C027:
C027:00
C028:00

189 *
190 *
191 >I<

192 *
193 *
194 *
195 *
196 *
197 *
198 *
200
201

KMSTATUS bits defIned as follows:
bit 7= 1 if mouse register full
bit 6= mouse interrupt disable/enable
bit 5= 1 if data register full
bit 4= data interrupt enable
bit 3= 1 if key data full<---NEVER USE, WON'T WORK
bit 2= key data interrupt enable<---NEVER USE, WON'T WORK
bit 1= 0 = mouse 'X' register data available

1 = mouse 'Y' register data available
bit 0= Command register full
KMSTATUS DFB 0
ROMBANK DFB 0

Beta Draft E4 10/24/86

203 '" 7 6 5 4 3 2 1 0
204'" I I 1 I I .
205 '" IEnable 1Linear 1 B/W IEnabl
206'" 1 super 1 videolColor I 0 0 0 0 Ibk 11
207 '" 1hi-res 1 IDHiresl Iltch I
208 *1 I 1 1 I 1 I
209 * MI\I\II NEWVIDEO byte MI\I\II

222 '" 7 6 5 4 3 2 1 0
223'" -I 1 1 1 1 I
224'" I Character Generator 1 NTSC/I Lang 1 I
225'" I language select I PAL Iselectl 0 0 0 I
226'" I 1 I I I bit 1 1
227'" I I 1 I I 1 1

228 '" MMA LANGSEL byte AMM

C029:
C029:
C029:
C029:

, C029:
C029:
C029:

C029:
C029:
C029:
C029:
C029:
C029:
C029:

C029:00

C02A:00

C02B:
C02B:
C02B:
C02B:
C02B:
C02B:
C02B:

C02B:
C02B:
C02B:
C02B:
C02B:
C02B:
C02B:
C02B:
C02B:
C02B:
C02B:
C02B:
C02B:
C02B:
C02B:00
C02C:OO

211 '"
212 *
213 *
214 '"
215 *
216 *
217 *

'"
219

220

230 '"
231 '"
232 '"
233 '"
234 '"
235 '"
236 '"
237 '"
238 '"
239 '"
240 '"
241 '"
242 '"
243 '"
245
246

Appendix E

NEWVIDEO bits defined as follows:
bit 7= 1=disable Apple lIe video (enables super hi-res)
bit 6= 1 to linearize for super hi-res
bit 5= 0 for color double hi-res -- 1 for B/W hi-res
bit 4,3,2,1= MUST be pregrammed as 0
bit 0= Enable bank 1 latch to allow long instructions

to access bank 1 directly. Set by monitor only.
User must NOT change this bit

NEWVIDEO DFB 0 ;Video/enable read alt mem
with long instructions

DFB 0 ;Reserved for future system
expansion

LANGSEL bits defined as follows:
bit 7,6,5= Character generator language select

Primary language Secondary language
$0 = USA. Dvorak
$1 = UK USA
$2 = French USA
$3 = Danish USA
$4 = Spanish USA
$5 = Italian USA
$6 = German USA
$7 = Swedish USA

bit 4= 0 if NTSC video mode -- 1ifPAL video mode
bit 3= LANGUAGE switch bit 0 ifprimary lang set selected
bit 2,1,0 ;MUST be programmed as O's
LANGSEL DFB 0 ;Language/PAl/NTSC select register
CHARROM DFB 0 ;Addr for tst mode read of character

ROM

BetaDrajt £-5 10124186

Appendix £

;Slot ROM select
;Addr for read of video cntr bits
V5-VB
;Addr for read of video cntr bits
VA-HO
;clicks the speakerDFB 0

HORIZCNT DFB 0

SPKR

SLTROMSEL bits defined as follows:
bit 7= 0 enables internal slot 7 -- 1 enables slot ROM
bit 6= 0 enables internal slot 6 -- 1 enables slot ROM
bit 5= 0 enables internal slot 5 -- 1 enables slot ROM
bit 4= 0 enables internal slot 4 -- 1 enables slot ROM
bit 3= MUST be 0
bit 2= 0 enables internal slot 2 -- 1 enables slot ROM
bit 1= 0 enables internal slot 1 -- 1 enables slot ROM
bit 0= Must be 0
SLTROMSEL DFB 0
VERTCNT DFB 0

268

269

248 * 7 6 5 4 3 2 1 0_
249 *1- I I
250*ISlot7 ISlot6 ISlot5 ISlot4 I ISlot2 ISlotl 1 I
251 >I< lintext lintextlintextlintext I 0 lintext lintext I 0 I
252 * lenable Ienable Ienable Ienable I Ienable Ienable I I
253 *1 I I I I I I I I
254 * MI\N\ SLTROMSEL byte MI\N\

256 *
257 >I<

258 *
259 >I<

260 >I<

261 '"
262 >I<

263 >I<

264 lit

266
267

C02D:
C02D:
C02D:
C02D:
C02D:
C02D:
C02D:

C02D:
C02D:
C02D:
C02D:
C02D:
C02D:
C02D:
C02D:
C02D:
C02D:OO
C02E:OO

C02F:OO

C030:00

271 * 7 6 5 4 3 2 1 0
272 *1- I I
273 * I 3.5" 3.5" I I
274>1< I head I drive I 0 0 , I 0 0 0 I 0
275 * Iselect Ienable I I I
276 *, I I I I , I
277 >I< Nv\M DISKREG status byte I\MM

C031:
C031:
C031:
C031:
C031:
C031:
C031:

C031:
C031:
C031:
C031:
C031:00

279 >I<

280 *
281 *
282 >I<

284

DISKREG bits defined as follows:
bit 7= 1 to select head on 3.5" drive to use
bit 6= 1 to enable 3.5" drive
bit 5,4,3,2,1,0= Must be 0
DISKREG DFB 0 ;Used for 3.5" disk drives

C032:
C032:
C032:
C032:
C032:
C032:
C032:

C032:
C032:
C032:

Beta Draft

286 >I< 7 6 5 4 3 2 1 0-287 *-, I I I , I
288 * I IClear IClear I I I
289 * I 0 11 sec I scan I 0 I 0 0 0 0 I
290 *1 lint lIn inti I I
291 *, I I I I I
292 * MI\N\ SCANINT byte MMI\ ,

294 * SCANINT bits defined as follows:
295 * bit 7= Must be 0
296 * bit ~ write a 0 here to reset 1 second interrupt

£-6 10/24/86

C032:
C032:
C032:
C032:
C032:
C032:
C032:OO

297 *
298 *
299 *
300 '"
301 *
302 *
304

bit 5= write a 0 here to clear scan line interrupt
bit 4= Must be 0
bit 3= Must be 0
bit Z= Must be 0
bit 1= Must be 0
bit 0= Must be 0
SCANINT DFB 0 ;Scan line interrupt register

Appendix E

Clock data register

7 6 5 4 3 2 1 0C033:
C033:
C033:
C033:
C033:
C033:
C033:

C033:
C033:
C033:00

306 *
307'" I
308 * I
309 *I
310 * 1

311 * 1 ' I I I 1 _
312 lie I\I\N\A CLOCKDATA byte I\I\N\A

314 * CLOCKDATA bits defined as follows:
315 * bit 7,6,5,4,3,2,1,0 -- Data passed to/from clock chip
317 CLOCKDATA DFB 0 ;Clock data register

319 '" 7 6 5 4 3 2 1 0
320 *-1 I I
321 * I Clockl Read/IChip I I
322 * 1 xfer IWrite 1enable I 0 I Border Color
323 * 1 I chip lassertl 1
324 * 1 I I I 1
325 * AAAAA CLOCKCTL byte AAAAA

C034:
C034:
C034:
C034:
C034:
C034:
C034:

C034:
C034:
C034:
C034:
C034:
C034:
C034:
C034:00

327 '"
328 '"
329 '"
330 '"
331 '"
332 '"
333 '"
335

CLOCKCTL bits defmed as follows:
bit 7= Set =1 to start transfer to clock

Read =0 when transfer to clock is complete
bit 6= 0= write to clock chip -- 1= read from clock chip
bit 5= Clk chip enable asserted after transfer O=no!l=yes
bit 4= Must be 0
bit 3,2,1,0=select border color (see TBCOLOR for values)
CLOCKCTL DFB 0 ;Clock control register

C035:
C035:
C035:
C035:
C035:
C035:
C035:

337 * 7 6 5 4 3 2 1 0-338 *-1 1 1
339 *I 1 Stop I I Stop I Stop I Stop 1 Stop IStopl
340 *1 0 II/O/LCI 0 lauxh-rlsuprhrlhires2lhireslltxpgl
341 '" 1 Ishadow 1 Ishadowlshadowlshadowlshadowlshadl
342 lie I 1 I I I I , 1 1
343 '" AAAAA SHADOW byte I\I\N\A

C035: 345 * SHADOW bits defined as follows:
C035: 346 '" bit 7= Must write 0
C035: 347 '" bit 6= 1 to inhibit I/O and language card operation
C035: 348 * bit 5= Must write 0
C035: 349 '" bit 4= 1 to inhibit shadowing aux hi-res page
C035: 350 * bit 3= 1 to inhibit shadowing 32k video buffer

BetaDrajt £-7 10124186

Appendix £

C035:
C035:
C035:
C035:00

351 lie

352 *
. 353 *

355

bit 2= 1 to inhibit shadowing hires page 2
bit 1= 1 to inhibit shadowing hires page 1
bit 0= 1 to inhibit shadowing text pages
SHADOW DFB 0 ;Shadow register

C036: 357 * 7 6 5 4 3 2 1 0
C036: 358 *1- I I I
C036: 359 * I Slow/ I I Shadow I Slot 7 I Slot 61 Slot 51 Slt4 I
C036: 360 * I fast I 0 0 Iin allimotor Imotor 1 motor Imotr I
C036: 361 *1 speed I I RAM Idetectldetectldetectldtctl
C036: 362 lie I I I I I I I I I
C036: 363 * AMM CYAREG byte f\MM

382 * 7 6 5 4 3 2. 1 0
383 *-1 I I I
384 * I Busy Auto IAccessl I
385 * I flag I inc I doc/ I 0 I Volume DAC

386 * I I adrptr I RAM I I
387 * I I I I I
388 ... f\MM SOUNDcrL byte AMM

C036:
C036:
C036:
C036:
C036:
C036:
C036:
C036:
C036:
C036:00
C037:00
C038:00
C039:00
C03A:00
C03B:00

C03C:
C03C:
C03C:
C03C:
C03C:
C03C:
C03C:

C03C:
C03C:
C03C:
C03C:
C03C:
C03C:
C03C:
C03C:00

365 *
366 lie

367 >I<

368 *
369 *
370 ...
371 *
372 *
373 *
375
376
377
378
379
380

390 *
391 *
392 *
393 *
394 *
395 *
396 *
398

CYAREG bits defmed as follows:
bit 7= O=slow system speed -- l=fast system speed
bit 6= Must write 0
bit 5= Must write 0
bit 4= Shadow in all RAM banks (Never to be used!!)
bit 3= Slot 7 disk motor on detect (Set by monitor only)
bit 2= Slot 6 disk motor on detect (Set by monitor only)
bit 1= Slot 5 disk motor on detect (Set by monitor only)
bit 0= Slot 4 disk motor on detect (Set by monitor only)
CYAREG DFB 0 ;Speed and motor on detect
DMAREG DFB 0 ;Used during DMA as bank address
SCCBREG DFB 0 ;SCC channel B cmd register
SCCAREG DFB 0 ;SCC channel A cmd register
SCCBDATA DPE 0 ;SCC channel B data register
SCCADATA DFB 0 ;SCC channel A data register

SOUNDCTL bits defined as follows:
bit 7= 0 if not busy -- 1 if busy
bit 6= O=disable auto incrementing of address pointer

l:enab1e auto incrementing of address pointer
bit 5= O=access doc -- 1=access RAM
bit 4= Must be 0
bit 3,2,1,O=volume DAC-$O/$F=low/full volume (write only)
SOUNDCTL DFB 0 ;Sound control register

BetaDrajt £-8 10/24/86

Sound data read/written

Low byte of sound address pointer

C03D:
C03D:
C03D:
C03D:
C03D:
C03D:
C03D:

C03D:
C03D:
C03D:00

C03E:
C03E:
C03E:
C03E:
C03E:
C03E:
C03E:

C03E:
C03E:
C03E:00

Appendix E

400 * 7 6 . 5 4. 3 2 1 0
401 >I< -I --- ---

402>1< 1

403>1< I
404 >I< 1

405 *1__,..,' I 1 I..,..,...,~ _
406 * MMII SOUNDDATA byte AMM

408 * SOUNDDATA bits defined as follows:
409 * bit 7,6,5,4,3,2,1,0 = Data read from/written to sound RAM
411 SOUNDDATA DFB 0 ;Sound data register

413 * 7 6 5 4 3 2 1 0414 * -, --- --- --- --- --- --- ---

415 Ii< I
416 * I
417 * 1

418 *1__:-:.1 I I 1
419* MMA SOUNDADRLbyteM~M~A--

421 * SOUNDADRL bits defined as follows:
422 * bit 7,6,5,4,3,2,1,0 =Address into sound RAM low byte
424 SOUNDADRL DFB 0 ;Sound address pointer, low byte

426 * 7 6 5 4 3 2 1 0
427 *-, -
428 * 1
429 *I High byte of sound address pointer
430 * I
431 *, 1 1 I 1
432 * MMA SOUNDADRH byte I\MM

C03F:
C03F:
C03F:
C03F:
C03F:
C03F:
C03F:

C03F:
C03F:
C03F:00
C040:00

434 '"
435 *
437
438

SOUNDADRH bits defined as follows:
bit 7,6,5,4,3,2,1,0 =Address into sound RAM high byte
SOUNDADRH DFB 0 ;Sound address pointer, high byte

DFB 0 ;Resexved for future system
expansion

Note: The Mega II mouse is not used in Apple IIos as a mouse but the softswitches
and functions are used. Therefore the user may not use the Mega II mouse
softswitches.

C041: 440 * 7 6 5 4 3 2 1 0-
C041: 441 *-1 1 I I I I I
C041: 442 * 1 IEnablelEnablelEnablelEnablelEnabl
C041: 443 * 1 0 0 0 11/4secl VBL Iswitch 1 move Imousl
C041: 444 *1 I ints I ints 1 ints I ints I I
C041: 445 *I I I 1 1 I I

Beta Draft £-9 10/24/86

AppendixE

C041: 446 '"

C041: 448 '"
C041: 449 >I<

C041: 450 >I<

C041: 451 *
C041: 452 >I<

C041: 453 >I<

C041: 454 *
C041: 455 '"
C041: 456 '"
C041:00 458

C042:00 459

C043:00 460

M.NV\ INTEN byte MM/\

INTEN bits defmed as follows:
bit 7= Must be 0
bit 6= Must be 0
bit 5= Must be 0
bit 4= 1 to enable 1/4 second interrupts
bit 3= 1 to enable VBL interrupts
bit 2= 1 to enable Mega II mouse switch interrupts
bit 1= 1 to enable Mega II mouse movement interrupts
bit 0= 1 to enable Mega II mouse operation
INTEN DFB 0 ;Interrupt enable register

(fl.IlD.ware use only)
DFB 0 ;Reserved for future system

expansion
DFB 0 ;Reserved for future system

expansion

Mega II mouse delta movement byte

7 6 5 4 3 2 1 0--- --- --- --- ---

C044:
C044:
C044:
C044:
C044:
C044:
C044:

C044:
C044:

C044:00

C045:
C045:
C045:
C045:
C045:
C045:
C045:

C045:
C045:

C045:00

C046:
C046:
C046:
C046:
C046:
C046:
C046:

462 '" 7 6 5 4 3 2 1 0
463 *1
464 '" 1

465 *1 Mega II mouse delta movement byte
466'" I
467'" 1 1 I 1 I
468 * I\MM MMDELTAX byte MI\M

470 * MMDELTAX bits defined as follows:
471 * bit 7,6,5,4,3,2,1,0 = delta movement in 2's complement

notation
473 MMDELTAX DFB 0 ;Mega II mouse delta X register

475 *
476 * 1

477 * I
478 * 1

479 * 1
480*1__-:1 I 1 I..,.........,~ _
481 * I\MM MMDELTAY byte I\MM

483 '" MMDELTAY bits defined as follows:
484 * bit 7,6,5,4,3,2,1,0 = delta movement in 2's complement

notation
486 'MMDELTAY DFB 0 ;Mega II mouse delta Y register

488 '" 7 6 5 4 3 2 1 0
489 *1-
490*ISelfl IMMouselStatuslStatuslStatuslStatuslStatus\Statl
491 *Iburninl last 1 AN3 11/4secl VEL Iswitch 1 move !systl'
492 * 1 diags 1button 1 1 int 1 int 1 int lint 1 IRQ I

493 *1 1 I 1 1 \ I \ I
494 * /\MM DIAGTYPE byte MM/\

Beta Draft E-10 10/24/86

Appendix £

C046: 496 '" DIAGTYPE bits defined as follows:
C046: 497 '" bit 7= 0 if self diagnostics get used if BUTNO=I/BUTNl=1
C046: 498 '" bit 7= 1 if bum-in diags get used ifBUTNO=I/BUTNl=l
C046: 499 >I< bits 6-0 = same as INTFLAG

C046: 501 '" 7 6 5 4 3 2 1 0
C046: 502 '" -I I I I I I I I I
C046: 503 "'IMMouselMMouselStatus I Status I Status I Status I Status IStat 1
C046: 504 '" 1 now I last I AN3 11/ 4sec I VEL I switch I move I syst I
C046: 505 '" 1button Ibutton I 1 int I int I int lint 1 IRQ I
C046: 506 '" 1 I I I I I I I 1
C046: 507 '" MAM INTFLAG byte MAM

DFB 0

DFB 0

DFB 0

DFB 0

DFB 0

DFB 0
DFB 0
DFB 0
DFB 0
DFB 0
DFB 0
DFB 0
DFB 0
DFB 0
DFB 0
DFB 0
DFB 0
DFB 0
DFB 0

DFB 0

TXTCLR
TXTSET
MIXCLR
MIXSET
TXTPAGEI
TXTPAGE2
LORES
HIRES
SETANO
CLRANO
SETAN1
CLRAN1
SETAN2
CLRAN

INTFLAG bits defmed as follows:
bit 7= 1 if mouse button currently down
bit 6= 1 if mouse button was down on last read
bit 5= status of AN3
bit 4= 1 if 1/4 second interrupted
bit 3= 1 ifYBL interrupted
bit 2= 1 if Mega II mouse switch interrupted
bit 1= 1 if Mega II mouse movement interrupted
bit 0= 1 if system IRQ line is asserted
DIAGTYPE EQU '" ;0/1 Self/burn-in diagnostics
INTFLAG DFB 0 ;Interrupt flag register
CLRVBLlNT DFB 0 ;Clear the YBW.75Hz interrupt flags
CLRXYINT DFB 0 ;Clear Mega II mouse interrupt flags

DFB 0 ;Reserved for future system
expansion
;Reserved for future system
expansion
;Reserved for future system
expansion
;Reserved for future system
expansion
;Reserved for future system
expansion
;Reserved for future system
expansion
;Reserved for future system
expansion
;switch in graphics (not text)
;switch in text (not graphics)
;clear mixed-mode
;set mixed-mode (4 lines text)
;switch in text page 1
;switch in text page 2
;low-resolution graphics
;high-resolution graphics
;Clear annunciator 0
;Set annunciator 0
;Clear annunciator1

. ;Set annunciator 1
;Clear annunciator 2
;Set annunciator 2

509 >I<

510 >I<

511 '"
512 >I<

513 '"
514 '"
515 >I<

516 '"
517 '"
519
520
521
522
523

524

525

526

527

528

529

530
531
532
533
534
535
536
537
538
539
540
541
542
543

C046:
C046:
C046:
C046:
C046:
C046:
C046:
C046:
C046:
C046: C046
C046:00
C047:00
C048:00
C049:00

C04A:OO

C04B:OO

C04C:00

C04D:OO

C04E:OO

C04F:OO

C050:00
C051:00
C052:00
C053:00
C054:00
C055:00
C056:00
C057:00
C058:00
C059:00
C05A:OO
C05B:00
C05C:00
C05D:00

Beta Draft £-11 10/24/86

Appendix E

C05E:OO
C05F:OO
C060:00
C061:00
C062:00
C063:00
C064:00
C065:00
C066:00
C067:00

544 SETAN3
545 CLRAN3
546 BUTN3
547 BUTNO
548 BUTN1
549 BUTN2
550 PADDLO
551
552
553

DFB 0
OFB 0
DFB 0
DFB 0
DFB 0
DFB 0
DFB 0
DFB 0
DFB 0
DFB 0

;Clear annunciator 3
;Set annunciator 3
;Read switch 3
;Read switch 0 (Open Apple key)
;Read switch 1 (Closed Apple key)
;Read switch-2
;Read paddle 0
;Read paddle 1
;Read paddle 2
;Read paddle 3

C068: 555 lie 7 6 5 4 3 2 1 0
C068:. 556 *-1 I 1 1
C068: 557 lie IALZP I PAGE2 I RAMRD I RAMWRT I RDROM I LCBNK2 I ROME 1INTCXI
C068: 558 lIelstatuslstatuslstatuslstatuslstatuslstatuslstatuslstatl
C068: 559 lie I I I I I I 1 I 1
C068: 560 >I< I I I I I I I I I
C068: 561 >I< I\/\AAA STATEREG status byte I\/\AAA

;State register
;Reserved for future system
expansion
;Reserved for future system
expansion
;Reserved for future system
expansion
;Reserved for future system
expansion
;Test mode bit register
;Clear test mode
;Enable test mode
;trigger the paddles
;ROM interrupt code jump table
;Sel LC RAM bank2 rd, wrt
protect LC RAM
;Enable ROM read, 2 reads
wrt enb LC RAM
;Enable ROM read, wrt
protect LC RAM .

DFB 0

DFB 0

DFB 0

DFB 0
DFB 0
DFB 0
DFB 0
DS 15,0
DFB 0

DFB 0

DFB 0

ROMIN

TESTREG
CLRTM
ENTM
PTRIG

STATEREG bits defined as follows:
bit 7= ALZP status
bit 6= PAGE2 status
bit 5= RAMR.D status
bit 4= RAMWRT status
bit 3= RDROM status (Read only RAM/ROM (0/1)
IMPORTANT NOTE:

Do two reads to $C083 then change STATEREG
to change LCRAM/ROM banks (0/1) and still
have the language card write enabled.

bit 2= LCBNK2 status O=LC bank 0 - 1=LC bank 1
bit 1= ROMBANK status
bit 0= INTCXROM status
STATEREG DFB 0

DFB 0

563 '"
564 *
565 >I<

566 '"
567 '"
568 '"
570 '"
571 '"
572 >I<

573 >I<

575 >I<

576 *
577 >I<

579
580

581

582

583

584
585
586
587
588
590

591

592

C068:
C068:
C068:
C068:
C068:
C068:
C068:
C068:
C068:
C068:
C068:
C068:
C068:
C068:00
C069:00

C06A:OO

C06B:OO

C06C:OO

C06D:OO
C06E:OO
C06F:OO
C070:00
C071:
C080:00

C081:00

C082:00

Beta Draft E-12 10/24/86

Appendix E

C083:00 593 LCBANK2 DFB 0 ;Sel LC RAM bank2, 2 rds
wrt enb LC RAM

C084:00 595 DFB 0 ;Sel LC RAM bank2 rd, wrt
protect LC RAM

C085:00 596 DFB 0 ;Enable ROM read, 2 reads
wrt enb LC RAM

C086:00 597 DFB 0 ;Enable ROM read, wrt
prote:et LC RAM

C087:00 598 DFB 0 ;Sel LC RAM bank2, 2 rds
WIt enb LC RAM

C088:00 600 DFB 0 ;Sel LC RAM bankl rd, wrt
protect LC RAM

C089:00 601 DFB 0 ;Enable ROM read, 2 reads
wrtenbLCRAM

C08A:00 602 DFB 0 ;Enable ROM read, wrt
protect LC RAM

C08B:OO 603 LCBANK.l DFB 0 ;Sel LC RAM bank1, 2 rds
WIt enb LC RAM

C08C:OO 605 DFB 0 ;Sel LC RAM bankl rd, wrt
protect LC RAM

C08D:OO 606 DFB 0 ;Enable ROM read, 2 reads
wrt enb LC RAM

C08E:OO 607 DFB 0 ;Enable ROM read, wrt
protect LC RAM

C08F:OO 608 DFB 0 ;Sel LC RAM bank1, 2 rds
wrt enb LC RAM

OO:610סס DEND

:ooסס 612 CLRROM EQU $CFFF ;Switch out $C8 ROMs

Beta Draft E-13 10/24/86

Appendix E

Table E-l. Symbol table sorted by symbol

COlE ALTCHARSET C061 BUTNO C062 BUTNI
C060 BUTN3 C02C CHARROM C034 CLOCKCfL
COOO CLR8OCOL COOC CLR80VID COOE CLRALTCHAR
C05B CLRANI C05D CLRAN2 COSF CLRAN3
C06E CLRTM C047 CLRVBLINT C048 CLRXYINT
C026 DATAREG C046 DIAGTYPE . C031 DISKREG
C06F ENrM C057 HIRES C02F HORIZCNT
C046 INTFLAG COOO IOADR COlO KBDSTRB
C025 KEYMODREG C027 KMSTATUS C02B LANGSEL
C083 LCBANK2 C056 LORES C052 MIXCLR
C044 MMDELTAX C045 MMDELTAY C021 MONOCOLOR
C029 NEWVIDEO C064 PADDLO C070 PTRIG
COIF RD80VID COl6 RDALlZP COl7 RDC3ROM
COl5 RDCXROM COlD RDHIRES COlI RDLCBNK2
COO2 RDMAINRAM COlB RDMIX COIC RDPAGE2
COl4 RDRAMWRT COlA RDTEXT COl9 RDVBLBAR
C08l ROMIN C032 SCANINT C03B SCCADATA
C03A SCCBDATA C038 SCCBREG COOl SETSOCOL
COOF SETALTCHAR COO9 SETALlZP C058 SETANO
C05C SETAN2 C05E SETAN3 COOA SETINTC3ROM
COOB SETSLOTC3ROM COO6 SETSLOTCXROM COO8 SETSTDZP
C02D SLTROMSEL C03F SOUNDADRH C03E SOUNDADRL
C03D SOUNDDATA C030 SPKR C068 STATEREG
C06D TESTREG C050 TXTCLR C054 TX1PAGE I
C051 TXTSET C02E VERTCNT C023 VGCINT
COO4 WRMAINRAM

Beta Draft

C063 BUTN2
C033 CLOCKDATA
C059 CLRANO
CFFFCLRROM
C036CYAREG
C037DMAREG
C041 INTEN
COOO KBD
C08B LCBANKI
C053 MIXSET
C024 MOUSEDATA
COl8 RD80COL
COO3 RDCARDRAM
COl2 RDLCRAM
COl3 RDRAMRD
C028 ROMBANK
C039 SCCAREG
CooD SETSOVID
C05ASETANl
COO7 SETlNTCXROM
C035 SHADOW
C03C SOUNDCTL
con TBCOLOR
C055 TXTPAGE2
Coo5 WRCARDRAM

10/24/86

Table E-2. Symbol table sorted by address

COOO IOADR COOO KBD COOO CLR8OCOL
COO2 RDMAINRAM COO3 RDCARDRAM COO4 WRMAINRAM
COO6 SETSLOTCXROM COO7 SETINTCXROM COO8 SETSTDZP
CooA SETINTC3ROM CooB SETSLOTC3ROM COOC CLR80VID
COOE CLRALTCHAR CooF SETALTCHAR COlO KBDSTRB
COl2 RDLCRAM COl3 RDRAMRD COl4 RDRAMWRT
COl6 RDAL'IZP COl7 RDC3ROM COl8 RD8OCOL
COlA RDTEXT COlE RDMIX COIC RDPAGE2
COlE ALTCHARSET COIF RD80VID C021 MONOCOLOR
C023 VGCINT C024 MOUSEDATA C025 KEYMODREG
C027 KMSTATUS C028 ROMBANK C029 NEWVIDEO
C02C CHARROM C02D SLTROMSEL C02E VERTCNT
C030 SPKR C031 DISKREG C032 SCANINT
C034 CLOCKCTL C035 SHADOW C036 CYAREG
C038 SCCBREG C039 SCCAREG C03A SCCBDATA
C03C SOUNDCTL C03D SOUNDDATA C03E SOUNDADRL
C041 INTEN C044 MMDELTAX C04S MMDELTAY
C046 INTFLAG C047 CLRVBLINT C048 CLRXYINT
C051 TXTSET C052 MIXCLR . C053 MIXSET
COS5 TXTPAGE2 C056 LORES C057 HIRES
C059 CLRANO C05A SETANI COSB CLRANI
C05D CLRAN2 COSE SETAN3 C05F CLRAN3
C061 BUTNO C062 BUTNI C063 BUTN2
C068 STATEREG C06D TESTREG C06E CLRTM
C070 PTRlG C081 ROMIN C083 LCBANK2
CFFF CLRROM

Appendix E

COOl SETSOCOL
COOS WRCARDRAM
COO9 SETAL'IZP
COOD SETSOVID
COlI RDLCBNK2
COl5 RDCXROM
COl9 RDVBLBAR
COlD RDHIRES
C022 TBCOLOR
C026 DATAREG
C02B LANGSEL
C02F HORIZCNT
C033 CLOCKDATA
C037 DMAREG

. C03B SCCADATA
C03F SOUNDADRH
C046 DIAGTYPE
C050 TXTCLR
C054 TXTPAGE I
C058 SETANO
C05C SETAN2
C060 BUTN3
C064 PADDLO
C06FENTM
C08B LCBANKI

Beta Draft £-15 10/24/86

Appendix G

Appendix G

The Control Panel

The Control Panel firmware allows you to experiment with different system configurations
and change the system time. You can also permanently store any changes in the battery
powered RAM (called Battery RAM). The Battery RAM is a Macintosh clock chip that has
256 bytes of battery-powered RAM for system parameter storage.

The Control Panel program is a hardware configuration program that is ROM resident It is
invoked when the system is powered up if you press the Solid-Apple key. An alternate
means of invoking the Control Panel is to do a cold start by holding down Control and
Solid-Apple at the same time and Reset The Desk Accessory Manager can also call the
Control Panel and affect the values specified in this appendix.

Beta Draft G-1 10/24/86

AppendixG

Control Panel parameters
The following lists the selections and options available for each Control Panel menu. A
checkmark ("J) is used to indicate the default for each option.

Printer Port: Sets up all related functions for the printer port (slot 1).
Options are as follows:

Beta Draft

Option

Device connect

Line length

Delete first LF after CR

Add LF after CR

Echo

Buffering

Baud

G-2

Choices

...J Printer
Modem

...J Unlimited
40
72
80
132

...JNo
Yes

...J Yes
No

...JNo
Yes

...JNo
Yes

50
75
110
134.5
150
300
600
1,200
1,800
2,400
3,600
4,800
7,200
9,600

...J 19,200

10/24/86

Data bits

Stop bits

Parity

DCD handshake

DSR/DTR handshake

XON/XOFF handshake

~8
7
6
5

~2
1

Odd
Even

~None

~Yes
No

~ Yes
No
Yes

~No

Appendix G

Modem Port: Sets up all related functions for the modem port (slot 2).
Options are as follows:

Beta Draft

Option

Device connected

Line length

Delete first LF after CR

Add LF after CR

Echo

Buffering

G-3

Choices

~ Modem
Printer

~ Unlimited
40
72
80
132

~No
Yes

~Yes
No

~No
Yes

~No
Yes

10/24/86

AppendixG

Baud

Data bits

Stop bits

Parity

DCD handshake

DSR/DTR handshake

XON/XOFF handshake

50
75
110
134.5
150
300
600

...J 1,200
1,SOO
2,400
3,600
4,800
7,200
19,200

...JS
7
6
5

...J2
1

Odd
Even

...JNone

No
...J Yes
...J Yes

No
Yes

...JNo

Display: Selects all video specific options. Choosing type automatically
causes color or monochrome selections to appear on the rest of the
screen.

Options are as follows:

BetaDraji

Line option

Type

Columns

G4

Choices

...J Color
Mono

...J 40
SO

10/24/86

BetaDrajt

Hertz

G-5

"';60
50

Appendix G

10/24/86

AppendixG

BetaDrajt

Color/Monochrome Selections

Text color

Text background

G-6

(Color name is displayed)
black
deep red
dark blue
purple
dark green
dark gray

.medium blue
light blue
brown
orange
light gray
pink
light green
yellow
aquamarine

-..J white

(Color name is displayed)
black
deep red
dark blue
purple
dark green
dark gray

-..J medium blue
light blue
brown
orange
light gray
pink
light green
yellow
aquamarine
white

•

10/24/86

Border color

Standard colors

(Color name is displayed)

black
deep red
dark blue
purple
dark green
dark gray

..J medium blue
light blue
brown
orange
light gray
pink
light green
yellow
aquamarine
white

No
..J Yes

Appendix G

(Standard colors indicates whether the user's chosen colors match theApple
standard values. If the user selects Yes, in addition the current colors are switched

t to Apple standard colors.)

Sound: Allows system volume and pitch to be altered via an indicator bar.
Default is in the middle of each range.

Speed/RAM disk: Allows default system speed of either normal speed, 1 mhz, or fast
speed. 2.6/2.8 (RAM/ROM) mhz. Available options are
Option Choices

System speed: ..J Fast
Normal

Allows default amount of free RAM to be used for RAM disk.
Options are as follows:

Minimum free RAM for RAM disk: (minimum)
Maximum free RAM for RAM disk: (maximum)

Graduations between minimum and maximum are determined by
adding or subtracting 32k from the RAM size that is displayed.
Limited to zero or the largest selectable size is reached. Default
RAM disk size is 0 bytes minimum, 0 bytes maximum. RAM disk
size ranges from 0 bytes to largest selectable RAM disk size.

Beta Draft G-7 10/24/86

AppendixG

Slots:

The amount of free RAM (in kilobytes) for the RAM disk will be
displayed on the screen in the format xxxxxK. Free RAM equals
the total system RAM minus 256K.

The current RAM disk size is also displayed on the screen. The
cUITent RAM disk size can be determined by one of the commands
for the RAM disk driver.

Total RAM in use: xxxxxK will be displayed on the screen. Total
RAM in use equals total system RAM minus total free RAM.

Total free RAM disk will be displayed on the screen. You can
determine the amount of total free RAM by calling the memory
manager.

Allows user to select either built-in device or peripheral card for
slots 1,2,3,4,5,6, and 7. Also allows the user to select start-up
slot or to scan slots at start-up time. Options are available as
follows:

BetaDrajt

Option

Slot 1

Slot 2

Slot 3

Slot 4

Slot 5

Slot 6

Slot 7

Start-up slot

G-8

Choices

'" Printer port
Your card

'" Modem port
Your card

'" Built-in text
display
Your card

'" Mouse port
Your card

'" Smart port
Your card

'" Disk port
Your card

'" Built-in AppleTalk
Your card

'" Scan1
2
3
4
5
6
7

10/24/86

Options:

Appendix G

RAM disk
ROM Disk

Allows you to select the keyboard layout, text display language, key
repeat speed, and delay to key repeat to use advanced features.
Layouts and languages are displayed that correspond to the
hardware. Layouts and languages not available with your hardware
(keyboard micro and Mega II) are not displayed. The information
on the layouts and languages that are available comes from the
keyboard micro at power-up time. Options are as follows:

Beta Draft G-9 10/24/86

AppendixG

Selection
Display language
Keyboard layout

Repeat speed

Repeat delay

Double-click time

Cursor flash rate

Advanced features

Shift caps/lowercase

Fast space/delete keys

Dual speed keys

Choices
Chosen from Table 0-1
Chosen from Table 0-1

Indicator selects the following options:

4 char/sec
8 char/sec
11 char/sec
15 char/sec

" 20 char/sec
24 char/sec
30 char/sec
40 char/sec

Indicator selects the following options:

.25 sec

.50 sec
" .75 sec

1.00 sec
No repeat

Indicator selects following options
(l tick =1/60th of a second):

xx ticks (slow)
xx ticks

" xx ticks
xx ticks
xx ticks (fast)

Indicator selects following options
(l tick =1/60th of a second):

xx ticks (slow)
xx ticks

" xx ticks
xx ticks
xx ticks (fast)

" NoYes

" NoYes

" NormalFast

BetaDrajt G-IO 10/24/86

High speed mouse

Table ·G-l. Language options

·...JNo
Yes

Appendix G

Number

o
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
10
11
12
13
14
15
16
17
18
19
lA
IB
lC
ID
IE
IF

ASCII

English (D. S. A.)
English (D. K.)
French
Danish
Spanish
Italian
German
Swedish
Dvorak
French Canadian
Flemish
Hebrew
Japanese
Arabic
Greek
TurkiSh
Finnish
Portuguese
Tamil
Hindi
Tl
T2
T3
T4
T5
T6
Ll
L2
L3
L4
L5
L6

(The keyboard microprocessor provides the pointer for the appropriate ASCn value listed
in Table G-l). .

Clock:

Beta Draft

Allows the user to set the time and date and time/date formats.
Options are as follows:

G-11 10/24/86

AppendixG

Option Choices

Month 1-12

Day 1-31

Year 1904-2044

Format ...j M1vf/DD/YY
DD/MM/YY
YY/MMIDD

Hour (depends on -Format selected) 1-12 or 0-23

Minute

Second

Format

0-59

0-59

...j AM-PM
24 hour

Quit: Returns you to calling application or, if called from
keyboard, performs a start-up function.

Battery-powered RAM
The battery-powered RAM (called the battery RAM). is a Macintosh clock chip that has 256
~ytes of battery-powered RAM used for system parameter storage.The AppleTalk node
number is stored in the Battery RAM, set by the AppleTalk firmware.

Note: The battery RAM is not for application program use.

The battery RAM must include encoded bytes for all options selectable from the control
panel. Standard setup values are placed into battery RAM during manufacturing.
However, the keyboard layout and display language will be determined by the keyboard
used.

Items changeable by manufacturing and the Control Panel program can be changed by the
user's application program if desired; however, only an Apple-approved utility program

. can make changes to battery RAM. If the changing program is not an Apple-approved
utility, battery RAM will be severely damaged, and the system will become inoperative. If
battery RAM is damaged and inoperative (or the battery dies), the firmware will
automatically use the Apple standard values to bring up the system. The battery can be
replaced and the user can enter the Control Panel program to restore the system to its prior
configuration.

BetaDraji 0-12 10/24/86

Appendix G

Control Panel at power up
At power-up, the battery RAM is checksummed. If the battery RAM fails its checksum
test, the system assumes a U.S. keyboard configuration and English language. Further,
U.S. standard parameters are checksummed and moved to the battery RAM storage buffer
in bank. El. The system continues running using U.S. standard parameters.

Beta Draft G-13 10/24/86

Appendix H

Appendix H

Banks $EO/$El

A special section of Apple IIOs memory is dedicated to the Mega-II chip. The Mega-II,
also called the Apple-II-on-a-chip, is a separate coprocessor that runs at 1 Mhz and
provides the display that the Apple IIos produces on the video screen.

To communicate with the Mega-II, the Apple IIoS either writes directly into banks $EO or
$El, or enables a special soft switch, named shadowing, is turned on. When shadowing is
enabled, whenever the Apple IIgs writes into bank $00 (or bank $01), the system
automatically synchronizes with the Mega-II and writes the same data into bank $EO (or
bank $El).

Figure H-l depicts the layout of the memory in these banks of memory. Some of this
memory is dedicated to display areas, some of it is reserved for fIrmware use; and some of
it is declared as free space and is managed by the memory manager.

Figure H-1 shows the location of the various functions of Apple IIgs barucs EO and E1. In
the figure, the notation K means a decimal value of 1024 bytes, and the notation page
means hex $100 bytes.

Note: In Figure H-l, the memory segments calledfree space are available through
the memory manager only.

Beta Draft H-1 10/24/86

AppendixH

EO Main Language Card
20 pages (8K reserved)

BankO Bankl
10 pages 10 pages

4K reserved 4Kreserved

I/O (Always active)

60 pages (14K free space)

Double Hi-Res Page 2
($4oo0-$5FFF)

Grophics

Double Hi-Res Page 1
($2oo0-$3FFF)

Grophics
14 pages (5K reserved)

Text Page 2

Text Page 1

4 pages (IK reserved)

.... $FFFF...

.... $COOO...

.... $Aooo...

.... $8000...

.... $7000...

.... $6000...

.... $5000...

.... $4000...

.... $3000...

.... $2000...

.... $OCOO...

..... $0800...

.... $0400...

.... ...ooסס$

El Aux Language Card
20 pages (8K reserved)

BankO Bankl
10 pages 10 pages

4K reserved 4K reserved

I/O (Always active)

20 pages (8K free-space)

Super Hi-Res
($6000-$9FFF)

Grophics

Double Hi-Res Page 2
($4oo0-$5FFF)

Grophics

Double Hi-Res Page 1
($2000-$3FFF)

Gro ph ics
14 pages (5K reserved)

Text Page 2

Text Page 1

4 pages (lK reserved)

Figure H-l. Memory map of banks EO and El

BetaDraft . H-2 10/24/86

AppendixH

Using banks EO and El

You can use graphics memory located in memory banks $EO and $E1 or the free space via
the memory manager; however, you must exercise. caution to ensure that you don't use
areas that are reserved for machine use.

Free space

Eighty pages, or 32K bytes, in the area labeledfree space can be used.; however, this area
must be accessed through the Memory Manager. (The Memory Manager can be called
through Apple nos tools.) If you try to use this space without first calling the Memory
manager, you will cause a system crash.

Video buffers not needed for screen display may be used for your applications.

Note: Video buffers are only used by firmware for video displays since there is no
way to determine which video modes are needed by your applications.

Language card area

The language card area is switched by the same soft switches used to switch Apple II .
simulation language cards in banks $00 and $01. Before switching langauge card banks
(or ROM for RAM or RAM for ROM), the current configuration must be saved. The
configuration must be restored after your subroutine is fmished accessing the switched
area.

Shadowing

The shadowing ability in Apple nOS can be used by applications to display overlay data to
the screen. Normally if an application wants to display an overlay on an existing screen, it
must save the data in the area that is overwritten. Because of the shadowing capabilities of
the Apple nOs, this task is simplified.

When shadowing is turned on, you draw your original screen display into bank $00 and
bank $01. To display the overlay, turn shadowing off, and write directly into banks $EO
and $E1. This only affects the display and not the original screen data that is also present
in banks $00 and $01. When you are finished with the overlay, enable shadowing again
and simply read and write the screen data (use MVN or MVP for speed) into the current
screen area using banks $00 and $01. This will have no effect on banks $00 or $01, but
will restore the display to its appearance before the overlay data was written.

Beta Draft H-3 10/24/86

	v2_01_01
	v2_01_02
	v2_01_03
	v2_01_04
	v2_01_05
	v2_01_06
	v2_01_07
	v2_01_08
	v2_01_09
	v2_01_10

