
Cortland ProDOS 16 Reference

Includes System Loader

(Version 1.0)

Beta Draft

Engineering Pan Number: 030-3126
8/11/86

Writer: David C. Bice
Apple Technical Publications

Copyright © 1986 Apple Computer, Inc. All rights reserved.

e APPLE COMPUTER, INC.

This manual is copyrighted by
Apple or by Apple's
suppliers, with all rights
reserved. Under the copyright
laws, this manual may not be
copied, in whole or in part,
without the written consent of
Apple Computer, Inc. This
exception does not allow
copies to be made for others,
whether or not sold, but all of
the material purchased may
be sold, given, or lent to
another person. Under the
law, copying includes
translating into another
language.

© Apple Computer, Inc.,
1986
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010

Apple and the Apple logo are
registered trademarks of
Apple Computer, Inc.

Simultaneously published in
the United States and Canada.

8/11/86

Changes Since Previous Draft
• The title is changed from Cortland Operating System Reference to Cortland

ProDOS 16 Reference, with the subtitle Includes System Loader.

• All reference to the Cortland Finder has been removed from the manual.

• There are extensive changes to the System Loader functioning, data structures, and
calls.

• Most changes to the ProDOS 16 parts of the manual are minor. The most significant
change is in the manner of allocating direct-page/stack space.

• The glossary is now complete.

• The preface is more complete and includes space for a roadmap figure.

There are hundreds of minor changes in spelling, usage, tenninology and technical
interpretation throughout the manual. It is not practical or even possible to list those
changes or put change bars in the margins to note them.

Beta Draft

Cortland ProDOS 16 Reference

Schedule
12/20/85

2/21/86:

5/22/86:

8/11/86:

Beta Draft

Release of Document Design

Release of Preliminary Notes

Release of ProDOS/16 (version 1.0) Alpha Draft

Release of Cortland ProDOS 16 (version 1.0) Beta Draft

11 8/11/86

Contents

1 Preface
1 Road map to Cortland technical manuals
3 Introductory manuals
4 Machine reference manuals
.5 The Toolbox manuals
5 The Programmer's Workshop manual
5 Programming-language manuals
6 Operating-system manuals
6 All-Apple manuals
6 How to use this manual
7 Other materials you III need
7 Hardware and software
7 Publications
7 Notations and conventions
7 Terminology
8 Typographic conventions
8 Watch for these

9 Part I: How ProDOS 16 Works

11 Chapter 1. About ProDGS 16
11 Background
11 What is ProDOS 16?
12 Programming levels in the Cortland
13 Disks, volumes, and files
13 Memory use
14 External devices
14 ProDOS 16 and ProDOS 8
15 Upward compatibility
15 Downward compatibility
15 Eliminated ProDOS 8 system calls
16 Other features
16 Summary of ProDOS 16 features

19 Chapter 2. ProDGS 16 Files
19 Using files
19 Filenames
19 Pathnames

BetaDrqft iii 8/Il/86

Cortland ProDOS 16 Reference

21 Creating files
21 Opening files
22 The EOF and MARK
23 Reading and writing files
24 Closing and flushing files
24 File levels
25 File fonnat and organization
25 Directory files and standard files
26 File organization
27 Sparse fIles

29 Chapter 3. ProDOS 16 and Cortland Memory
29 Cortland memory configurations
30 ProDOS 16 and System Loader memory map
31 Entry points and fixed addresses
31 Memory management
32 The Memory Manager
32 Pointers and handles
33 How an application obtains memory

35 Chapter 4. ProDOS 16 and External Devices
35 Block devices
36 Character devices
36 Named devices
36 Number of online devices
37 Device search at startup
37 Volume control blocks
37 Interrupt handling
38 Unclaimed interrupts

39 Chapter 5. ProDOS 16 and the Operating Environment
39 Cortland system disks
39 Complete system disk
40 The SYSTEM.SETUP/ subdirectory
41 Application system disks
41 System Starnlp
44 Starting and quitting applications
44 PQUIT
45 Standard ProDOS 8 QUIT call
45 Enhanced ProDOS 8 QUIT call
45 ProDOS 16 QUIT call
46 QUIT procedure
47 Pathname prefixes

Beta Draft lV 8/11/86

48 Tools, fIrmware, and system software
48 The Memory Manager
49 The System Loader
49 The Scheduler
49 The UserID Manager
50 The System Death Manager

51 Chapter 6. Programming With ProDOS 16
51 Application requirements
52 Stack and direct page
52 Automatic allocation of stack and direct page
52 Defmition during program development
53 Allocation at run time
53 ProDOS 16 default stack and direct page
53 Manual allocation of stack and direct page
55 Managing system resources
55 Global variables
55 PrefIxes
56 Native mode and emulation mode
56 Setting initial machine confIguration
56 Allocating memory
56 Loading another program
57 Using interrupts
58 File creation/modifIcation date and time
59 Revising a ProDOS 8 application for ProDOS 16
59 Memory management
60 Hardware confIguration
60 Converting system calls
60 Modifying interrupt handlers
61 Compilation/assembly
61 Stack and direct page
61 Cortland Programmer's Workshop
62 Human Interface Guidelines

Cortland ProDOS 16 Reference

65 . Chapter 7. Adding Routines to ProDOS 16
65 Interrupt handlers
65 Interrupt handler conventions
66 Installing interrupt handlers
66 Making operating system calls during interrupts

Beta Draft v 8/11/86

Cortland ProDGS 16 Reference

67 Device drivers
67 Block device protocols
67 ProDOS block device protocol
67 ROM code conventions
68 Calls to the driver
69 Call parameters
69 Error codes

71 Part II: ProDOS 16 System Call Reference

73 Chapter 8.. Making ProDOS 16 Calls
73 The call block
74 The parameter block
74 Types of parameters
75 Parameter block fonnat
76 Setting up a parameter block in memory
76 Register values
77 Comparison with the ProDOS 8 call method
77 The ProDOS 16 Exerciser
78 Fonnat for system call descriptions

79 Chapter 9. File Housekeeping Calls
80 CREATE ($01)
83 DESTROY ($02)
84 CHANGE_PATH ($04)
86 SET_FILE_INFO ($05)
89 GET_FILE_INFO ($06)
93 VOLUME ($08)
95 SET_PREFIX ($09)
97 GET_PREFIX ($OA)
98 CLEAR_BACKUP_BIT ($OB)

99 Chapter 10. File Access Calls
100 OPEN ($10)
102 NEWLINE ($11)
104 READ ($12)
106 WRITE ($13)
108 CLOSE ($14)
109 FLUSH ($15)
110 SET_MARK ($16)

Beta Draft vi 8/11/86

Cortland ProDOS 16 Reference

111 GET_MARK ($17)
112 SET_EOF ($18)
113 GET_EOF ($19)
114 SET_LEVEL ($lA)
115 GET_LEVEL ($lB)

117 Chapter 11. Device Calls
118 GET_DEV_NUM ($20)
119 READ_BLOCK ($22)
120 WRITE_BLOCK ($23)

121 Chapter 12. Environment Calls
122 GET_PATHNAME ($27)
123 GET_BOOT_VOL ($28)
124 QUIT ($29)
126 GET_VERSION ($2A)

127 Chapter 13. Interrupt Control Calls
128 ALLOC_INTERRUPT ($31)
129 DEALLOC_INTERRUPT ($32)

131 Chapter 14. ProDOS 16 Error Codes
131 Nonfatal errors
134 Fatal errors
135 Bootstrap errors

137 Part III: The System Loader

139 Chapter 15. Introduction to the System Loader
139 What is the System Loader?
140 Loader terminology
141 Interface with the Memory Manager
142 Loading a relocatable segment
143 Load-fJle structure
143 Relocation

145 Chapter 16. System Loader Data Tables
145 Memory Segment Table
146 Jump Table
147 Creation of a Jump Table entry

.,/

Beta Draft vii 8/11/86

Cortland ProDOS 16 Reference

148 Modification at load time
149 Use during execution
149 Jump Table diagram
151 Pathname Table

ISS Chapter 17. Programming With the System Loader
155 Static programs
155 Programming with dynamic segments
156 Programming With run-time libraries
157 User control of segment loading
157 Designing a controlling program
158 Shutting down and restarting applications
158 Summary: loader calls categorized

161 Chapter 18. System Loader Calls
161 Introduction
161 How calls are made
162 Parameter types
162 Fonnat for System Loader call descriptions
164 Loader Initialization (SO1)
165 Loader Startup ($02)
166 Loader Shutdown ($03)
167 Loader Version ($04)
168 Loader Reset (S05)
169 Loader Status (S06)
170 Initial Load (S09)
173 Restart (SOA)
175 Load Segment by Number (SOB)
179 Unload Segment by Number (SOC)
181 Load Segment by Name (SOD)
183 Unload Segment (SOE)
185 Get Load Segment Info ($OP)
187 User Shutdown ($12)
189 Jump Table Load
191 Cleanup

193 Chapter 19. System Loader Error Codes
193 Nonfatal errors
194 Fatal errors

Beta Draft viii 8/II /86

195 Appendixes

197 Appendix A. ProDOS 16 File Organization
197 Organization of information on a volume
198 Format and organization of directory files
199 Pointer fields
199 Volume directory headers
202 Subdirectory headers
205 File entries
208 Reading a directory fIle
209 Format and organization of standard files
210 Growing a tree file
211 Seedling files
212 Sapling files
212 Tree files
213 Using standard files
213 Sparse fIles
215 Locating a byte in a file
215 Header and entry fields
215 The storage type attribute
216 The creation and last-modification Fields
216 The access attribute
217 The fIle type attribute

219 Appendix B. Apple II Operating Systems
219 . History
219 DOS
21'9 SOS
220 ProDOS 8
220 ProDOS 16
220 Pascal
220 File compatibility
221 Reading DOS 3.3 and Apple II Pascal disks
222 Operating system similarity
222 Input/Output
222 Filing calls
223 Memory management
224 Interrupts·

225 Appendix C. The ProDOS 16 Exerciser

Cortland ProDOS 16 Reference

BetaDrajt IX 8/11/86.

Cortland ProDOS 16 Reference

227 Appendix D. System Loader Technical Data
227 Object module fonnat
227 File types
227 Segment kinds
228 Record codes
229 Load-file numbers
229 Load-segment numbers
229 Segment headers
229 Restrictions on segment header values
229 Page-aligned and bank-aligned segments
230 Entry point and global variables
230 UserID fonnat

233 Appendix E. ASCII Tables

237 Appendix F. ProDOS 8, ProDOS 16 (1.0), and ProDOS 16 (2.0)
237 How does ProDOS 16 (1.0) work?
238 What new features does ProDOS 16 (1.0) have?
238 What additional features will ProDOS 16 (2.0) have?

243 Glossary

Index

ProDOS 16 Quick Reference Card

Tell Apple Card

Beta Draft x 8/11/86

Cortland ProDGS 16 Reference

List of Figures

P-l Roadmap to Cortland technical manuals

1-1 Programming levels in the Cortland
1-2 Example of a hierarchical fIle structure

2~1 Example of a ProDOS 16 fIle structure
2-2 Automatic movement ofEOF and MARK
2-3 Directory fIle format
2-4 Block organization of a directory fIle
2-5 Block organization of a standard fIle

3-1 Cortland memory map
3-2 ProDOS 16 and System Loader Memory Map
3-3 Memory allocatable through the Memory Manager

4-1 Interrupt handling through ProDOS 16

5-1 Boot initialization sequence
5-2 Startup program selection
5-3 Runtime program selection (QUIT call)

6-1 Automatic direct-page/stack allocation

15-1 Loading a relocatable segment

16-1 Memory Segment Table entry
16-2 Jump Table Directory entry
16-3 Jump Table entry (unloaded state)
16-4 Jump Table entry (loaded state)
16-5 How the Jump Table works
16-6 Pathname Table entry

A-I
A-2
A-3
A-4
A-5
A-6
A-7
A-8

Beta Draft

Block organization of a volume
Directory fIle format and organization
The volume directory'header
The subdirectory header
The file entry
Format and organization of a seedling file
Format and organization of a sapling file
Format and organization of a tree file

xi 8/11/86

Cortland ProDOS 16 Reference

A-9 An example of sparse file organization
A-IO MARK fonnat
A-ll Date and time fonnat
A-12 Access byte fonnat

D-I Segment kind fonnat
D-2 UserID fonnat

Beta Draft xii 8/11/86

Cortland ProDOS 16 Rciference

List of Tables

3-1 Cortland memory units
3-2 Memory block attributes

5-1 Contents of a complete Cortland system disk
5-2 Contents of a Cortland application system disk

6-1 Cortland equivalents to ProDOS 8 global page information

15-1 Load segment-memory block relationships (at load time)

17-1 System Loader functions categorized by caller

A-I Storage type values
A-2 Apple fJle types

B-1 Tracks and sectors to blocks (140K disks)

Beta[}rajt xiii 8/11/86

Cortland ProDOS 16 Reference

Beta Draft xiv 8/11/86

Preface

The Cortland ProDOS 16 Reference is a manual for software developers, advanced
programmers, and others who wish to understand the technical aspects of the Cortland
operating system. In particular, this manual will be useful to you if you want to write

• a stand-alone program that will automatically run when the computer is started up

• a routine that catalogs disks, manipulates sparse files, or otherwise interacts with the
Cortland file system at a basic level

• an interrupt handler

• a program that loads and runs other programs

• any program using segmented, dynamic code

The functions and calls in this manual are in assembly language format. If you are
programming in assembly language, you will use the same format to access operating
system features. If you are programming in a higher-level language, you will use library
interface routines specific to your language. Those library routines are not described here;
consult your language manual.

Road map to Cortland technical manuals

The Cortland has many advanced features, making it more complex than earlier models of
the Apple II. To describe it fully, Apple has produced a suite of technical manuals.
Depending on the way you intend to use the Cortland, you may need to refer to a select few
of the manuals, or you may need to refer to most of them.

The technical manuals are listed in Table P-l. Figure P-l is a diagram showing the
relationships among the different manuals.

Beta Draft 1 8/Il/86

Con/and ProDOS 16 Reference

Table pel. The Cortland technical manuals

Title Subject

Technical Introduction to the Cortland What the Cortland is

Cortland Hardware Reference Machine internals-hardware

Cortland Finnware Reference Machine internals-fmnware

Programmer's Introduction to the Cortland Concepts and a sample program

Cortland Toolbox Reference: Volume 1 How the tools work

Cortland Toolbox Reference: Volume 2 More Toolbox specifications

Cortland Programmer's Workshop The development environment

Cortland Workshop Assembler Reference* Using the CPW assembler

Cortland Workshop C Reference* Using C on the Cortland

ProDOS 8 Technical Reference ProDOS for Apple II programs

Cortland ProDOS 16 Reference ProDOS and Loader for Cortland

Human Interface Guidelines For all Apple computers

Apple Numerics Manual Numerics for all Apple computers

*There is a Pocket Reference for each of these.

Beta Draft 2 8/11186

Cortland ProDOS 16 Reference

(roadmap figure)

Figure p.l, Roadmap to the technical manuals

Introductory manuals

These books are introductory manuals for developers, computer enthusiasts, and other
Cortland owners who need technical information. As introductory manuals, their purpose
is to help the technical reader understand the features of the Cortland, particularly the
features that are different from other Apple computers. Having read the introductory
manuals, the reader will refer to specific reference manuals for details about a particular
aspect of the Cortland.

The technical introduction

The Technical Introduction to the Cortland is the fIrst book in the suite of technical manuals
about the Cortland. It describes all aspects of the Cortland, including its features and
general design, the program environments, the Toolbox, and the development
environment.

Beta Draft 3 8/Il/86

Cortland ProDOS 16 Reference

Where the Cortland Owner's Guideis an introduction from the point of view of the user,
the Technical Introduction describes the Cortland from the point of view of the program.
In other words, it describes the things the programmer has to consider while designing a
program, such as the operating features the program uses and the environment in which the
program runs.

The programmer's introduction

When you start writing programs that use the Cortland user interface (with windows,
menus, and the mouse), the Programmer's Introduction to the Cortland provides the
concepts and guidelines you need. It is not a complete course in programming, only a
starting point for programmers writing applications for the Cortland. It introduces the
routines in the Cortland Toolbox and the program environment they run under. lt includes
a sample event-driven program that demonstrates how a program uses the Toolbox and
the operating system.

An event-driven program waits in a loop until it
detects an event such as a click of the mouse button.

Machine reference manuals

There are two reference manuals for the machine itself: the Cortland Hardware Reference
and the Cortland Firmware Reference. These books contain detailed specifications for
people who want to know exactly what's inside the machine.

The hardware reference manual

The Cortland Hardware Reference is required reading for hardware developers, and it will
also be of interest to anyone else who wants to know how the machine works. Information
for developers includes the mechanical and electrical specifications of all connectors, both
internal and external. Information of general interest includes descriptions of the internal
hardware, which provide a better understanding of the machine's features.

The firmware reference manual

The CortlandPirmware Reference describes the programs and subroutines that are stored
in the machine's read-only memory (ROM), with two significant exceptions: Applesoft
BASIC and the Toolbox, which have their own manuals. The Firmware Reference
includes information about interrupt routines and low-level I/O subroutines for the serial
ports, the disk port, and for the DeskTop Bus, which controls the keyboard and the mouse.
The Firmware Reference also describes the Monitor, a low-level programming and
debugging aid for assembly-lan~age programs.

Beta Dratt' 4 8/11/86

Cortland ProDGS 16 Reference

The Toolbox manuals

Like the Macintosh, the Cortland has a built-in Toolbox. The Cortland Toolbox Reference,
Volume 1, introduces concepts and tenninology and tells how to use some of the tools. It
also tells how to write and install your own tool set. The Cortland Toolbox Reference,
Volume 2, contains information about the rest of the tools.

Of course, you don't have to use the Toolbox at alL If you only want to write simple
programs that don't use the mouse, or windows, or menus, or other parts of the desktop
user interface, then you can get along without the Toolbox. However, if you are
developing an application that uses the desktop interrace, or if you want to use the Super
Hi-Res graphics display, you'll find the Toolbox to be indispensable.

In applications that use the desktop user
interface, commands appear as options in pull
down menus, and material being worked on appears in
rectangular areas of the screen called windows. The
user selects commands or other material by using the
mouse to move a pointer around on the screen.

The Programmer's Workshop manual

The development environment on the Cortland is the Cortland Programmer's Workshop
(CPW). CPW is a set of programs that enable developers to create and debug application
programs on the Cortland. The Cortland Programmer's Workshop Reference includes
information about the parts of the workshop that all developers will use, regardless which
programming language they use: the shell, the editor, the linker, the debugger, and the
utilities. The manual also tells how to write other programs, such as custom utilities and
compilers, to run under the CPW Shell.

The Programmer' sWorkslwp Reference describes the way you use the workshop to create
an application and includes a sample program to show how this is done.

Programming-language manuals

Apple is currently providing a 65C816 assembler and a C compiler. Other compilers can
be used with the workshop, provided that they follow the standards defined in the Cortland
Programmer's Workshop Reference.

There is a separate reference manual for each programming language on the Cortland. Each
manual includes the specifications of the language and of the Cortland libraries for the
language, and describes how to write a program in that language. The manuals for the
languages Apple provides are the Cortland Workslwp Assembler Reference and the
Cortland Workshop C Reference.

BetaDrajt 5 8/11/86

Conland ProDOS 16 Reference

Operating-system manuals

There are two operating systems that run on the Cortland: ProDOS 16 and ProDOS 8.
Each operating system is described in its own manual: ProDOS 8 Reference and ProDOS
16 Reference. ProDOS 16 uses the full power of the Cortland and is not compatible with
earlier Apple lIs. The ProDOS 16 manual includes information about the System Loader,
which works closely with ProDOS 16, and about the Finder, which is the user interface to
the operating system. If you are writing programs for the Cortland, whether as an
application programmer or a system programmer, you are almost certain to need the
ProDOS 16 Reference.

ProDOS 8, previously just called ProDOS, is compatible with the models of Apple II that
use 8-bit CPUs. As a developer of Cortland programs, you need to use ProDOS 8 only if
you are developing programs to run on 8-bit Apple II's as well as on the Cortland.

All-Apple manuals

In addition to the Cortland manuals mentioned above, there are two manuals that apply to
all Apple computers: Human Interface Guidelines and Apple Numerics Manual. If you
develop programs for any Apple computer, you should know about those manuals.

The Human Interface Guidlines describes Apple's standards for the human interface of
programs that run on Apple computers. If you are writing an application for the Cortland,
you should be familiar with the contents of this manual.

The Apple Numerics Manual is the reference for the Standard Apple Numeric Environment
(SANE), a full implementation of the IEEE standard floating-point arithmetic. The
functions of the Cortland's SANE tool set match those of the Macintosh SANE package
and of the 6502 Assembly Language SANE software. If your application requires accurate
arithmetic, you '11 probably want to use the SANE routines in the Cortland. The Cortland
Tools Reference, Volume II, tells how to use the SANE routines is your programs. The
Apple Numerics Manual is the comprehensive reference for the SANE numerics routines.
A description of the version of the SANE routines for the 65816 is available through the
Apple Programmer's and Developer's Association, administered by the A.P.P.L.E.
cooperative in Renton, Washington.

How to use this manual

The Cortland ProDOS 16 Reference is both a reference manual and a learning tool. It is
divided into several parts, to help you quickly find what you need.

• Part I describes ProDOS 16, the central part of Cortland's operating system

• Part II lists and explains the ProDOS 16 operating system calls

• Part III describes the System Loader and lists all loader calls

• The final part consists of appendixes, a glossary, and an index

The first chapter in each part is introductory; read it first if you are not already familiar with
the subject. The remaining chapters are primarily for reference, and need not be read in any
particular order. A quick reference card tabulates calls, formats, and features for both

Beta Draft 6 8/11/86

Cortland ProDOS 16 Reference

ProDOS 16 and the System Loader. The ProDOS 16 Exerciser, on a diskette included with
the manual, provides a way to practice making ProDOS 16 calls before actually coding
them.

This manual does not explain 65816 assembly language. Refer to Cortland Programmer's
Workshop Assembler Reference for information on Cortland assembly language
programming.

This manual does not give a detailed description of ProDOS 8, the Apple II operating
system from which ProDOS 16 was derived. For synopses of the differences between
ProDOS 8 and ProDOS 16, see Chapter 1 and Appendix F of this manual. For more
detailed information, see ProDOS 8 Reference or ProDOS Technical Reference Manual..

Other materials you'll need

Hardware and software

To use the products described in this manual, you will need a Cortland with at least one
external disk drive. ProDOS 16 and the System Loader require only the minimum memory
configuration (256K RAM), although Cortland Programmer's Workshop and many
application programs may require more memory.

You will also need a Cortland system disk. A system disk contains ProDOS 16, ProDOS
8, the System Loader, and other system software necessary for proper functioning of the
computer. A system disk may also contain application programs.

If you wish to practice 'making ProDOS 16 operating system calls you will need the
ProDOS 16 Exerciser, a program on the diskette included with this manual.

,Publications

This manual is the only reference for ProDOS 16 and the System Loader. Other useful
references are described under "Roadmap to Cortland Technical Manuals," in this preface.

Notations and conventions
To help make the manual more understandable, the following conventions and defmitions
are used throughout.

Beta Draft 7 8/11/86

Cortland ProDOS 16 Reference

Terminology:

This manual may defme certain terms, such as Apple II and ProDOS, slightly differently
than what you are used to. Please note:

Apple II: A general reference to the Apple II family of computers, especially those
that may use ProDOS 8 or ProDOS 16 as an operating system. It includes the 64k
Apple II Plus, the Apple IIc, the Apple lIe, and the Cortland.

8-bit Apple IT: Any Apple II computer that is not a Cortland. Since previous
members of the Apple II family share many characteristics, it is useful to distinguish
them as a group from the Cortland.

ProDOS: A general term describing the family of operating systems developed for
Apple II computers. It includes both ProDOS 8 and ProDOS 16; it does not include
DOS 3.3 or SOS.

ProDOS 8: The existing, 8-bit ProDOS operating system (through version 1.2). In
previous Apple II documentation, ProDOS 8 is called simply ProDOS.

ProDOS 16: A 16-bit operating system developed for the Cortland computer. It is
the system described in this manual.

Typographic conventions

Each new term introduced in this manual is printed fIrst in boldface. That lets you know
that the term has not been defined earlier, andalso indicates that there is an entry for it in
the glossary. .

Throughout the manual, assembly language labels and entry points that appear in text
passages are printed in a special typeface (for example, ref_num and GET_ENTRY).
Function names that are English language terms are printed with initial caps (for example,
Load Segment By Number). When the name of a label or variable is used to mean the
value of that variable, the word is printed in italics (for example, "if ref num is
nonzero ... "). -

Watch for these

The following words mark special messages to you:

Note: Text set off in this manner-with a word or phrase such as Note--presents
sidelights or interesting points of information.

Important: Text set off in this manner-with the word Important:-presents
important information or instructions.

Warning: Text set off in this manner-with the word Warning:-indicates
potential problems or disaster.

Beta Draft 8 8/11/86

Part I

How ProDOS 16 Works

This pan of the manual describes version 1.0 of ProDOS 16. ProDOS 16 is the core of
the Cortland operating system; it provides file management and input/output
capabilities, and controls certain other aspects of the Cortland operating environment.

Beta Draft 9 8/11/86

Beta Draft 10 8/11/86

Chapter 1

About ProDOS' 16

This chapter introduces ProDOS 16. It gives background information on the development
of ProDOS 16, followed by an overview of ProDOS 16 in relation to the Cortland. A brief
comparison of ProDOS 16 with ProDOS 8, its closest relative in the Apple II world, is
followed by a reference list of the most pertinent ProDOS 16 features.

The chapter's organization roughly parallels that of Part I as a whole. Each section refers
you to the appropriate chapter for more information on each aspect of ProDOS 16.

Background

The Cortland is the latest Apple II computer; its microprocessor, the 65816, is a successor
to the Apple IIs' 6502 and functions in both 8-bit (6502 emulation) mode and 16-bit
(native) mode (see Technical Introduction to the Cortland). In accordance with the design
philosophy governing all Apple II family products, the Cortland is compatible with existing
Apple II software; most presently available Apple II, Apple IIc, and Apple IIe applications
will run unchanged on the Cortland.

To retain this compatibility while adding new features, the Cortland requires two separate
operating systems: ProDOS 8 and ProDOS 16. ProDOS 8 is the current operating system
for the Apple II family; it functions in Cortland emulation mode. ProDOS 16 is a newly
developed system, written specifically for the Cortland; it functions in both emulation and
native mode. The two operating systems automatically switch to match the system file that
is loaded, so the user need not worry about which operating system is active at anyone
time.

ProDOS 8 on the Cortland functions identically to ProDOS 8 on other Apple II computers,
except for some minor differences noted in Appendix B. For a complete description of
ProDOS 8, see the ProDOS 8 Reference.

d

What Is ProDOS 16?
ProDOS 16 is the central part, or kernel, of the Cortland operating system. Although other
software components (such as the System Loader described in this manual) may be thought
of as parts of the overall operating system, ProDOS 16 is the key component. It manages
the creation and modification of files. It accesses the disk devices through which the
files are stored and retrieved. It dispatches interrupt signals to interrupt handlers. It
also controls certain aspects of the Cortland operating environment, such as pathname
prefixes and procedures for quitting programs and starting new ones.

Beta Draft 11 8/11/86 .

Cortland ProDOS 16 Reference

Programming levels in the Cortland

Figure 1-1 is a simplified logical diagram of the Cortland, from a programmer's point of
view. Boxes representing parts of the system form a vertical hierarchy; arrows between the
boxes show the flow of control or execution from one level to the next. At the highest level
is the programmer or user; he directly manipulates the execution of the application program
that runs on the machine. Theapplication, in turn, interacts directly with the next lower level
of software-the operating system. The operating system interacts with the very lowest
level of software in the machine: the built-in fIrmware and toolbox routines. Those
routines directly manipulate the switches, registers, and input/output devices that constitute
the computer's hardware.

(tool calls)

ToolboxFirmware

r /I1 1

i '----t----J

~

(character device
access)

'9'
interrupts

Hardware .J

Figure 1-1. Programming levels in the Cortland.

This hierarchical view shows that the operating system is an intermediary between the
application program and the computer hardware. A program need not know the details of
individual hardware devices it accesses; instead, it makes operating system calls. The
operating system then translates those calls into the proper instructions for whatever
devices are connected to the system.

The lowest software level, between the operating system and hardware, is extensively
developed in the Cortland. It consists of two parts: the firmware, a collection of
traditional ROM-based routines for performing such tasks as character I/O, interrupt
handling, and memory manipulation; and the toolbox, a large set of assembly-language
routines and macros useful to all levels of software. As the arrows on Figure 1-1 show,
ProDOS 16 accesses the fIrmware/tools level of the Cortland directly, but so db application
programs. In other words, for tool calls and certain types of I/O, applications bypass
ProDOS 16 and interact directly with low-level system software.

BetaDrcift 12 8/11/86

ProDOS 16: Chapter 1

The arrows pointing upward along the diagram show a counterflow of information, in
which lower levels in the machine notify higher levels of important hardware conditions.
Interrupts from hardware devices are handled both by fIrmware and by ProDOS 16;
events are similar to interrupts but are handled by applications through tool calls.

Disks, volumes, and files

ProDOS 16 communicates with several different types of disk drives, but the type of drive
and its physical location (slot or port number) need not be known to a program that wants
to access that drive. Instead, a program makes calls to ProDOS 16, identifying the disk it
wants to access by its volume name or device name.

Information on a volume is divided into fIles. A file is an ordered collection of bytes that
has several attributes, including a name and a fIle type. Files are either standard files
(containing any type of code or data) or directory files (containing the names and disk
locations of other fIles). When a disk is initially formatted, its volume directory file is
created; the volume directory has the same name as the volume itself.

ProDOS 16 supports a hierarchical file system, meaning that volume directories can
contain the names of either fIles or other directories, called subdirectories; subdirectories
in turn can contain the names of fIles or other subdirectories. In a hierarchical fIle system, a
fIle is identifIed by its pathname, a sequence of file names starting with the volume
directory and ending with the name of the file. Figure 1-2 shows the relationships among
fIles in a hierarchical fIle system.

Volume

Directory

Figure 1-2. Example of a hierarchical file structure.

See Chapter 2 and Appendix A for detailed information on ProDOS 16's fIle structure,
organization and formats.

Memory use

ProDOS 16 and application programs on the Cortland are relieved of most memory
management tasks. The Memory Manager, a Cortland Tool, allocates all memory space,
keeps track of available memory, and frees memory no longer needed by programs. If a
program needs to allocate some memory space, it requests the space through a call to the

Beta Draft 13. 8111/86

Cortland ProDOS 16 Reference

Memory Manager. If a program makes a ProDOS 16 call that results in memory allocation,
ProDOS 16 requests the space from the Memory Manager and allocates it to the program.

The Memory Manager is described further in Chapter 3 of this manual, and in Cortland
Toolbox Reference. '

External devices

ProDOS 16 communicates only with block devices, such as disks. Programs that wish
to access character devices such as printers and communication ports must do so
directly, either through the device fIrmware or through Cortland Toolbox routines written
for those devices. See Cortland Firmware Reference and Cortland Toolbox Reference.

Certain devices generate interrupts to tell the computer that the device needs attention.
ProDOS 16 is able to handle up to 16 interrupting devices. You may place an interrupt
handling routine into service through a ProDOS 16 call; your routine will then be called
each time an interrupt occurs. If you install'more than one routine, the routines will be
polled in the order in which they were installed.

You may also r~move an interrupt routine with a ProDOS 16 call. In writing, installing,
and removing interrupt handling routines, be sure to follow the conventions and
requirements given in Chapter 8, "Adding Routines to ProDOS 16."

ProDOS 16 and ProDOS 8
ProDOS 16, although derived from ProDOS 8, adds several capabilities to support the new
features and operating modes of the Cortland. They include the following:

• The 65816 microprocessor functions in both 8-bit (emulation) and 16-bit (native)
execution modes. ProDOS 16 is designed to accept system calls from applications
running in either 8-bit or 16-bit mode;'ProDOS 8 accepts system calls from
applications running in 8-bit mode only.

• The Cortland has 256 kilobytes (256K) of RAM memory, presently expandable to 4
megabytes (4 Mb); its maximum potential memory space is as much as 16Mb.
ProDOS 16 has the ability to accept system calls from anywhere in that 16Mb
memory space (addresses up to $FFFFFF), and those calls can manipulate data
anywhere in memory. Under ProDOS 8, system calls can be made from memory
addresses below $FFFF only-the lowest 64K of memory.

• ProDOS 16 relies on a sophisticated memory management system (see Chapter 3),
instead of the simple global page bit map used by ProDOS 8.

• Applications under ProDOS 16 must make calls to allocate memory or to access
system global variables, such as date and time, system level, and I/O buffer
addresses. ProDOS 8 maintains that information in the system global page in
memory bank $00, but under ProDOS 16 the global page cannot be supported.

• ProDOS 16 also provides several programming conveniences not available under
ProDOS 8, including named devices and multiple, user-definable file prefixes.

Beta Draft 14 . 8/Il/86

ProDOS 16: Chapter 1

Upward compatibility

In a strict sense, ProDOS 16 is not upwardly compatible from ProDOS 8. Programs
written to function under ProDOS 8 on an Apple II will not run on the Cortland, under
ProDOS 16, without some modification. Conceptually, however, ProDOS 16 is upwardly
compatible from ProDOS 8, in at least two ways:

1. The two operating systems are themselves similar in structure:

• The set of ProDOS 16 system calls is a superset of the ProDOS 8 calls; for
(almost) every ProDOS 8 system call, there is a functionally equivalent ProDOS
16 call, usually with the same name.

• The calls are made in a nearly identical ways in both ProDOS systems, and the
parameter blocks for passing values to functions are laid out similarly.

• ProDOS 16 uses exactly the same file system as ProDOS 8. It can read from and
write to any disk volume produced by ProDOS 8. This file system similarity
applies to the disk-resident fIle and volume structure as well as the logical file and
volume structure.

2. Both operating systems are included with the Cortland. Most applications written'
for ProDOS 8 on the Apple II family of computers will run unchanged on the
Cortland-not under ProDOS 16, but under ProDOS 8.

Thus, even though the operating systems are not completely compatible, the Cortland
computer is completely upwardly compatible from other Apple II computers.You never
!1eed be concerned with which operating' system is functioning-if you run an Apple II
application, ProDOS 8 is automatically loaded; if you run a Cortland application, ProDOS
16 is automatically loaded. Chapter 5 explains the details of how this is accomplished.

Downward compatibility

ProDOS 16 is not downwardly compatible to ProDOS 8. Applications written for ProDOS
16 will not run on the Apple II, IIc, or lIe. The extra memory needed by Cortland
applications and the additional instructions recognized by the 65816 microprocessor make
applications written for ProDOS 16 incompatible with the other Apple II computers.

Eliminated ProDOS 8 system calls

As mentioned under "Upward Compatibility," most ProDOS 8 calls have functionally exact
equivalents in ProDOS 16. However, some ProDOS 8 calls do not appear in ProDOS 16
because they are unnecessary. The eliminated calls are

RENAME

GET TIME

SET BUF

The ProDOS 16 call CHANGE_PATH performs the same function.

Under ProDOS 16, the time and date are obtained through a call to
the Miscellaneous Toolset (see Cortland Toolbox Reference).

Under ProDOS 16, the Memory Manager, rather than the
application, allocates file I/O buffers.

Beta Draft 15 8/11/86

Cortland ProDOS 16 Reference

GET BUF

ONLINE

Other features

This call is unnecessary under ProDOS 16 because the OPEN call
returns a handle to the file's I/O buffer.

This call is replaced. in ProDOS 16 by the VOLUME calL

Like ProDOS 8, ProDOS 16 supports block devices only. It does not support I/O
operations for the built-in serial ports, mouse, Apple DeskTop Bus, sound generation
system, or any other nonblock device. Applications must access these devices through the
device fIrmware or the Cortland Toolbox.

ProDOS 8 and ProDOS 16 have identical file structures. Each can read and execute the
other's files, with the following exceptions:

• ProDOS 8 does not recognize ProDOS 16 load files (types $BO - $BF)

• ProDOS 16 does not recognize ProDOS 8 system files (type $FF) or binary files
(type $06)

The default operating system on the Cortland (after a cold or warm restart) can be either
ProDOS 8 or ProDOS 16, depending on the organization of files on the startup disk. See
"System Startup" in Chapter 5.

Running under ProDOS 8 does not disable memory beyond the addresses ProDOS 8 can
reach, nor does it disable any other advanced Cortland features; all system resources are
available, even though the application itself may make use of only the "ProDOS 8-Apple
II" portion.

Summary of ProDOS 16 features
The following lists summarize the principal features that distinguish ProDOS 16 from other
microcomputer operating systems. Refer to the glossary and to appropriate chapters for
defmitions and explanations of terms that may be unfamiliar to you.

In general, ProDDS 16 .••

• is a single-task operating system

• supports a heirarchical, tree-structured file system

• allows device-independent I/O for block devices

ProDGS 16 system calls ...

• use the JSL instruction and a parameter block

return error status in the A and P registers

• preserve all other CPU registers

• can be made from 65816 native mode or 6502 emulation mode

Beta Draft 16 8/Il/86

ProDGS 16: Chapter 1

• can be made from anywhere in memory

• can access parameter blocks anywhere in memory

• can use pointers that point anywhere in memory

• can transfer data anywhere in memory

The ProDOS 16 file management system...

• uses a hierarchical fIle strucrure

• supports pathname prefixes (8 allowed)

• allows byte-oriented access to both directory fIles and data files

• allocates fIles dynamically and noncontiguously on block devices

• supports sparse fIles

• provides buffers automatically

• supports access attributes that enable/disable
reading
writing
renaming
destroying
backup

• .assigns a system level to open flles

• automatically marks flles with date and time

• allows up to 14 volumes on line

• allows up to 8 open files

• uses a 512-byte block size

• allows volume sizes up to 32 megabytes

• allows data file sizes up to 16 megabytes

• allows 64 characters per pathname

• allows 64-character prefixes

• allows.15 characters per volume name

• allows 15 characters per fIle name

The ProDOS 16 device management system...

• supports the ProDOS 8 block device protocol

• names each block device

• allows 15 characters per device name

• allows 14 devices on line simulataneously

The ProDOS 16 interrupt management system...

• receives hardware interrupts not handled by firmware

• dispatches interrupts to user-provided interrupt handlers

• allows installation of up to 16 interrupt handlers

Beta Draft 17 8/11/86

Cortland ProDOS 16 Reference

For memory management, ProDGS 16..•

• dynamically allocates and releases system buffers (through the Memory Manager)

• can directly access up to 224 bytes (16 megabytes) of memory

• can run with a minimum of 256K memory

In addition, ProDGS 16...

• provides a QUIT call to cleanly exit one program and start another, with the option of
returning later to the quitting program

Beta Draft 18 8/11/86

Chapter 2

ProDOS 16 Files

The largest part of ProDOS 16 is its file management system. This chapter explains how
files are named, how they are created and used, and a little about how they are organized on
disks. It discusses ProDOS 16file access and file housekeeping calls.

Using files

Filenames

A ProDOS 16 filename or volume name is up to 15 characters long. It may contain
uppercase letters (A-Z), digits (0-9), and periods (.), and it must begin with a letter.
Lowercase letters are automatically converted to uppercase. A fIlename must be unique
within its directory. Some examples are

MEMOS
CHAPll
MY. PROGRAM

Pathnames

A ProDOS 16 pathname is a series of filenames, each preceded by a slash (/). The first
fIlename in a pathname is the name of a volume directory. Successive filenames indicate
the path, from the volume directory to the fIle, that ProDOS 16 must follow to find a
particular file. The maximum length for a pathname is 64 characters, including slashes.
Examples are

/DISK86/CHARTS/SALES.JUN
/DISK86/MY.PROGRAM
/DISK86/MEMOS/CHAPll

All calls that require you to name a fIle will accept either a full pathname or a partial
pathryame. A partial pathname is a portion of a pathname; you can tell that it is not a full
pathname because it doesn't begin with a slash and a volume name. The maximum length
for a partial pathname is 64 characters, including slashes.

. BetaDraft 19 8111186

Cortland ProDOS 16 Reference

These partial pathnames are all derived from the sample pathnames above:

SALES.JUN
MY.PROGRAM
MEMOS/CHAP 11
CHAP11

/OISK86/

CHARTSI

MEMOS/
CHARTS/
MY.PROGRAM

1111111111111111

PROFIT.3RD
SALES.JUN

1111111111111111

MEMOSI

PROFIT.3RD
LOSS.4TH
CHAP11

Figure 2-1. Example of a ProDOS 16 file structure

ProDOS 16 automatically adds a prefix to the front of partial pathnames to form full
pathnames. A prefix is a pathname that indicates a directory; several prefixes are stored
internally by ProDOS 16.

For the partial pathnames listed above to indicate the proper files, their prefixes should be
set to

/DISK86/CHARTS/
/DISK86/
/DISK86/
/DISK86/MEMOS/

respectively. The slashes at the end of these prefixes are optional; however, they are
convenient reminders that prefixes indicate directory fIles.

The maximum length for a prefix is 64 characters. The minimum length for a prefix is zero
characters, known as a null prefix. You set and read prefixes using the calls
SET_ PREF IX and GET_ PREF IX. The 64-character limits for the prefix and partial
pathname combine to create a maximum pathname of 128 characters.

ProDOS 16 allows you to set more than one prefix, and then refer to each prefix by code
numbers. When, as in the above examples, no particular prefix number is specified,

Beta Draft 20 8/11/86

ProDOS 16: Chapter 2

ProDOS 16 adds the default system prefix to the partial pathname you provide. See
Chapter 5 for a more complete explanation and examples.

Figure 2-1 illustrates a hypothetical directory structure; it contains all the fIles mentioned
above. Note that, even though there.are two files named PROFIT. 3RD in the volume
directory /D ISK. 86/, they are easily distinguished because they are in different
subdirectories (MEMOS/ and CHARTS/). That is why a full pathname is necessary to
completely specify a file.

Creating files

A fIle is placed on a disk by the CREATE call. When you create a fIle, you assign it the
following properties:

• A pathname. This pathname is a unique path by which the file can be identified and
accessed. This pathname must place the file within an existing directory.

• An access byte. The value of this byte detennines whether or not the file can be
written to, read from, destroyed, or renamed.

• A file type. This byte indicates to other applications the type of information to be
stored in the fIle. It does not affect, in any way, the contents of the file.

• A storage type. This byte detennines the physical format of the file on the disk.
There are only two different formats: one is used for directory files, the other for
non-directory files.

When you create a file, the properties listed above are placed on the disk, in a fonnat as
shown in Appendix A. Once a file has been created, it remains on the disk until it is deleted
(using the DESTROY call).

To check what the properties for a given file are, use the GET_FILE_INFO call. To
change the file's name, use the CHANGE_PATH call. To alter the other properties, use the
SET FILE INFO call.

Opening files

Before you can read information from or write information to a file, you must use the
OPEN call to open the file for access. When you open a file you specify it by pathname.
The pathname you give must indicate a previously created file; the file must be on a disk
mounted in a disk drive.

The OPEN call returns a reference number (ref num) and the location of a buffer
(io_buffer) to be used for transferring data to and from the file. All subsequent references
to the open file must use its reference number. The file remains open until you use the
CLOSE call.

Beta Draft 21 8111/86

Cortland ProDGS 16 Reference

Each open file's I/O buffer is used by the system the entire time the file is open. Thus it is
wise to keep as few files open as possible. ProDOS 16 allows a maximum of 8 open files
at a time.

When you open a file,. some of the fIle's characteristics are placed into a region of memory
called a file control block. Several of these characteristics-the location in memory of
the file's buffer, a pointer to the end of the file (the EOF), and a pointer to the current
position in the file (the file's MARK)-are accessible to applications via ProDOS 16 calls.
and may be changed while the file is open.

It is important to be aware of the differences between a file on the disk and an open file in
memory. Although some of the file's characteristics and some of its data may be in
memory at any given time, the fIle itself still resides on the disk. This allows ProDOS 16
to manipulate fIles that are much larger than the computer's memory capacity~ As an
application writes to the fIle and changes its characteristics, new data and characteristics are
written to the disk.

The EOF and MARK

To aid reading from and writing to files, each open file has one pointer indicating the end of
the fIle (the EOF), and another defining the current position in the fIle (the MARK).
ProDOS 16 moves both EOF and MARK automatically when necessary, but an application
program can also move them independently of I7oDOS 16.

The EOF is the number of readable bytes in the file. Since the first byte in a file has
number 0, the EOF, when treated as a pointer, points one position past the last character in
the fIle.

When a file is opened, the MARK is set to indicate the first byte in the file. It is
automatically moved forward one byte for each byte written to or read from the file. The
MARK, then, always indicates the next byte to be read from the file, or the next byte
position in which to write new data. It cannot exceed the EOF.

If during a write operation the MARK meets the EOF, both the MARK and the EOF are
moved forward one position for every additional byte written to the file. Thus, adding
bytes to the end of the file automatically advances the EOF to accommodate the new
informatiqn. Figure 2-2 illustrates the relationship between the :NIARK and the EOF.

Beta Draft 22 8/11/86

ProDOS 16: Chapter 2

(a). Beginning Position: E?F

m::r;:o:r"'<'i.·'~)~~~~~ijI

MARK

(b). After Writing or Reading Two Bytes: E~~,_

1FFFFFf.,,~~
~~~~~~

:::.: :~:.:.::':: MARK

(c), After Writing Two More Bytes: :::.: :-:-f E?F

ccr:c:r::r:o:~~\~.'~:~
\{:~

.:. ~A.~~
If T I

:::.: :.:.:.::':: MARK

Figure 2-2. Automatic movement of EOF and MARK

An application can place the EOF anywhere, from the current MARK position to the
maximum possible byte position. The MARK can be placed anywhere from the fIrst byte
in the me to the EOF. These two functions can be accomplished using the SET_EOF and
SET MARK calls. The current values of the EOF and the MARK can be determined using
the GET EOF and GET MARK calls.

Reading and writing files

READ and WRI TE calls to ProDOS 16 transfer data between memory and a fIle. For both
calls, the application must specify three things:

• The reference number of the file (assigned when the fIle was opened).

• The location in memory of a buffer (data buffer) that contains, or is to contain,
the transferred data. Note that this cannot be the same buffer (io buffer) whose
location was returned when the fIle was opened. -

• The number of bytes to be transferred.

When the request has been carried out, ProDOS 16 passes back to the application the
number of bytes that it actually transferred.

A read or write request starts at the.current MARK, and continues until the requested
number of bytes has been transferred (or, on a read, until the end of file has been reached).
Read requests can also terminate when a specifIed character is read. To turn on this feature
and set the character(s) on which reads terminate, use the NEWLINE call. It is typically
used for reading lines of text that are terminated by carriage returns.

Beta Draft 23 8/11/86



/

Cortland ProDOS 16 Reference

By the Way: Neither a READ nor a WRITE call necessarily causes a disk access.
ProDOS's I/O buffer for each open fI.le can hold one block (512 bytes) of data; it is
only when a read or write crosses a block boundary that a disk access occurs.

Closing and flushing files

When you finish reading from or writing to a fI.le, you must use the CLOSE call to close the
file. When you use this call, you specify only the reference number of the file (assigned
when the fI.le was opened).

CLOSE writes any unwritten data from the file's I/O buffer to the file, and it updates the
file's size in the directory, if necessary. Then it frees the 1024-byte buffer space for other •
uses and releases the file's reference number and file control block. To access the file once
again, you have to reopen it.

Information in the fI.le's directory, such as the fI.le's size, is normally updated only when
the file is closed. If the user were to press Control-Reset (typically halting the current
program) while a fI.le is open, data written to the file since it was opened could be lost, and
the integrity of the disk could be damaged. This can be prevented by using the FLUSH call.

FLUSH, like CLOSE, writes any unwritten data from the file's I/O buffer to the fI.le, and
updates the file's size in the directory. However, it keeps the file's buffer space and
reference number active, and allows continued access to the file. In other words, the file
stays open. If the user presses Control-Reset while an open but flushed file is in memory,
there is no loss of data and no damage to the disk.

Both the CLOSE and FLUSH calls, when used with a reference number of 0, normally
cause all open files to be closed or flushed. Specific groups of files can be closed or
flushed using the system file level (see next).

File levels

When a file is opened, it is assigned a level, according to the value of a specific byte in
memory (the system file level). If the file level is never changed, the CLOSE and
FLUSH calls, when used with a reference number of 0, cause all open files to be closed or
flushed. But if the level has been changed since the first file was opened, only the files
having a file level greater than or equal to the current system level are closed or flushed.

The system file level feature may be used, for example, by a controlling program such as a
BASIC interpreter to implement an EXEC command:

1. The interpreter opens an EXEC programfile when the level is $0.

2. The interpreter then sets the level to, say, $80.

3. The EXEC program opens whatever files it needs.

Beta Draft 24 8/11/86



ProDOS 16: Chapter 2

4. The EXEC program executes a BASIC CLOSE command, to close all the files it has
opened. All files at or above level 7 are closed, but the EXEC fIle itself remains
open.

You assign a value to the system file level with a SET LEVEL call; you obtain the current
value by making a GET LEVEL call. -

File format and organization
This portion of the chapter describes in general terms the organization of files on a disk.
For more detailed information, see Appendix A.

In general, structure refers in this manual to the hierarchical relationships among
~files-directories, subdirectories, and files. Format refers to the arrangement of
information (such as headers, pointers and data) withil1 a fIle. Organization refers to the
manner in which a single fIle is stored on disk, in terms of individual 512-byte blocks.
The three concepts are separate but interrelated. For example, because of ProDOS 16' s
hierarchical fIle structure, part of the/ormat of a directory file includes pointers to the files
within that directory. Also, because files are organized as noncontiguous blocks on disk,
part of the/onnat of every file larger than one block includes p.ointers to other blocks.

Directory files and standard files

Every ProDOS 16 file is a named, ordered sequence of bytes that can be read from, and to
which the rules of MARK and EOF apply. However, there are two types of files:
directory files and standard files. Directory files are special files that describe and
point to other files on the disk. They may be read from, but not written to (except by
ProDOS 16). All nondirectory files are standard files. They may be read from and written
to.

A directory file contains a number of similar elements, called entries. The first entry in a
directory file is the header entry: it holds the name and other properties (such as the number
of files stored in that directory) of the directory file. Each subsequent entry in the file
describes and points to some other file on the disk. Figure 2-3 shows the format of a
directory file.

BetaDrajt 25 8/11/86



Cortland ProDOS 16 Reference

DIrectory File
Standard Files or

DIrectory Flies

File B

Heade~ liil EJlleA

FileEntry~
(File A) :::::

Fi~~I;~~ry m~------_--w.....!
More Entries

More Files

File Entry lii~
(File IN)

FileW

Figure 2-3. Directory file fonnat

The files described and pointed to by the entries in a directory file can be standard files or
other directory files.

. An application does not need to know the details of directory fonnat to access files with .
known names, Only operations on unknown files (such as listing the files in a directory)
require the application to examine a directory's entries, For such tasks, refer to Appendix
A,

Standard fIles have no such predefined internal fonnat: the arrangement of the data
depends on the specific file type.

File organization

Because directory files are generally smaller than standard fIles, and because they are
sequentially accessed, ProDOS 16 uses a simpler fonn of storage for directory fIles than it
does for standard files, Both types of files are stored as a set of 512-byte blocks, but the
way in which the blocks are arranged on the disk differs,

A directory file is a linked list of blocks: each block in a directory file contains a pointer to
the next block in the directory file as well as a pointer to the previous block in the directory.
Figure 2-4 illustrates this organization.

Beta Draft

(block) Ij~ (block) ~...::::.::.:'.'....::...::.:.::~'" ~ ~I::::~:~;~~:;:::::
t .:j.:~.'.:j..:j..,~

..

:
:.:::::.::..:!::.: J ~

1...--__""

26 8/11/86



ProDOS 16: Chapter 2

Figure 2-4. Block organization of a directory file

Data files, on the other hand, are often quite large, and their contents may be randomly
accessed. It would be very slow to access such large files if they were organized
sequentially. Instead, ProDOS 16 stores standard files using a tree organization. The
largest possible standard file has a master index block that points to 128 index
blocks. Each index block points to 256 data blocks and each data block can hold 512
bytes of data. The block organization of the largest possible standard file is shown in
Figure 2-5.

ifIndex
Block

o

•••

Data:
Block:

o

Data:
---v"Block .:

255

•
•
•

Index
Block
127

Master ::::
Index
Block

Figure 2-5. Block organization of a standard file

Most standard fIles do not have this exact organization. ProDOS 16 only writes a subset of
this form to the file, depending on the amount of data written. This technique produces
three distinct forms of standard file: seedling, sapling, and tree files. All three are
explained in Appendix A.

Sparse files

In most instances a program writes data sequentially into a file. But by writing data,
moving the EOF and MARK, and then writing more data, a program can also write
nonsequential data to a file. For example, a program can open a file, write a few characters
of data, and then move the EOF and MARK (thereby making the file bigger) by an arbitrary
amount before writing a few more bytes of data. Only those blocks that contain nonzero
information are actually allocated for the file, so it may take up as few as three blocks on
the disk (a total of 1536 bytes). However, as many bytes as are specified by the value of

Beta Draft 27 8/11/86



Cortland ProDOS 16 Reference

EOF (up to 16 megabytes) can potentially be read from it. Such files are known as sparse
files. Sparse files are explained in more detail in Appendix A.

Important: In transferring sparse files, the fact that more data can be read from the
file than actually resides on the disk can cause a problem. Suppose that you were
trying to copy a sparse file from one disk to another. If you were to read data from
one file and write it to another, the new file would be much larger than the original
because data that is not actually on the disk can be read from the file. Thus if your
application is going to transfer sparse files, you must use the information in
Appendix A to determine which blocks should be copied, and which should not.

The file utility programs supplied with the Cortland automatically preserve the structure of
sparse files on a copy.

BeuiDraft 28 8/11/86 .



Chapter 3

ProDOS 16 and Cortland Memory

Strictly speakin'g, memory management is separate from the operating system in the
Cortland. This chapter shows how ProDOS 16 uses memory and how it interacts with the
Memory Manager.

Cortland memoty configurations
The Cortland microprocessor is capable of directly addressing 16megabytes (16Mb) of
memory. As shipped, the basic memory configuration for Cortland is 256 kilobytes
(256K) of RAM and 128K of ROM, arranged within the 16Mb memory space as shown in
Figure 3-1.

Bank Numbers_------------A------------__.r .\
SOO SOl S02-S3F ••• SEO SEl ••• SFD-SFD SFE SFF

SFFFF ~-~-~~~~~~~-~ ,,
I
I
I,,
I
I
/,,,,,
I
I
I
I,,
I
I
I,,,,
I
I,

SCXOJ ':-_-'-_.....J".*<I1' .......~\ y ---JI

RAM ROM

1..-_...J1 Basic Configuration C:_-:::J Expansion Memory

L>, S >, <.j Bank-Switched Memory M{:}hwi{:jl/O Memory

Figure 3-1. Cortland memory map

The total memory space is divided into 256 banks of 64K bytes each (see Table 3-1).
Banks $00 and $01 are used for system software, applications, and are the memory space
used for Apple IIellIe emulation mode. Banks $EO and $E1 are used principally for
high-resolution video display and additional system software and RAM-based tools.
Specialized areas of RAM include I/O space, bank-switched memory, and display buffers

Beta Draft· 29 8/Il/86



Cortland ProDOS 16 Reference

in locations consistent with Apple IIe/IIc memory configurations. Banks $FF and $FE are
ROM, which contains fmnware and ROM-based tools. For a more detailed picture of
Cortland Memory, see Technical Introduction to the Cortland and Cortland Hardware
Reference.

Unit
bank
block
page
long word
word
byte
nibble

Table 3·1. Cortland memory units

Size
65,536 bytes (256 pages)
512 bytes (for disk storage)
256 bytes
4 bytes
2 bytes
8 bits
4 bits (one-half byte)

With a I-megabyte Cortland Memory Expansion Card, 16 additional banks of memory are
made available; they are numbered sequentially, from $02 to $11. Expansion banks have
none of the specialized memory areas shown for banks $00-$01 and $EO-$E1; all64K
bytes in each bank is available for applications.

For Apple IIe/IIc emulation, the Cortland Memory Map is modified so that banks $00 and
$01 are identical to the Main and Auxiliary RAM on an Apple IIc or an Apple IIe with
extended 80-column card. See Apple lIe TechniGal Reference Manual or Apple lIe
Technical Reference Manual for details. Because it is used for emulation, the lower 48K of
both banks $00 and $01 and the display pages in banks $EO and $El is also called special
memory; there are restrictions on the placement of certain types of code in special
memory. For example, any system software that must remain active in emulation mode
cannot be put in special memory. See "Memory Manager" in Cortland Toolbox Reference
for more details.

ProDOS 16 and System Loader memory map

ProOOS'16 and the System Loader together occupy nearly all addresses from $0000
through $FFFF in both banks $00 and $01. This is the same memory space that ProDOS 8
occupies in the Apple IIelIIc: all of the Language Card area (addresses above $0000),
including most of bank-switched memory.

In addition, ProOOS 16 reserves (through the Memory Manager) approximately 1O.7K
bytes just below $COOO in bank $00 (in the region normally occupied by BAS Ie. SYSTEM
in an Apple IIelIIc), for I/O buffers, ProDOS 8 interface tables, and other code.

The part of ProOOS 16 that controls loading of both ProOOS 16 and ProOOS 8 programs
is located in parts of bank-switched memory in banks $EO and $El. Other system
softweare occupies most of the rest of the Language Card areas of banks $EO and $E1.

,

None of these reserved memory areas is available for use by applications.

Beta Draft 30 8/Il/86



ProDOS 16: Chapter 3

Bank Numbers
r.....-------,Jo...,-------.....'"

SOD SOlS02-S3Fi::"-;------i $EeOO

sc;o:o :
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

$OOCO •••••r.J

SED SEl

SOOA8 (ProDOS 16)

'SOOOO (System Loader)

t?0V:& System Loader

Figure 3-2. ProDOS 16 and System Loader memory map

Entry points and fixed addresses

Because most Cortland memory blocks are movable and under the control of the Memory
Manager (see next section), there are very few fixed entry points available to applications
programmers. References to fixed entry points in RAM are strongly discouraged, since
they are inconsistent with flexible memory management and are sure to cause compatibility
problems in future versions of Cortland. Informational system calls and referencing by
handles should take the place of access to fixed entry points.

The single supported ProDOS 16 entry point is $ElOOA8. That location is the entry point
for all ProDOS 16 calls.

Note: ProDOS 16 does not support the ProDOS 8 Global Page or any other fixed
locations used by ProDOS 8.

The single supported System Loader entry point is $E1 00 00. That location is the entry
point for all Cortland Tool calls.

Memory management

ProDOS 16 itself does no memory management. All allocation and deallocation of memory
in the Cortland is performed by the Memory Manager. The Memory Manager is a
Cortland Tool; for a complete description of its functions, see Cortland Toolbox Reference.

Beta Draft 31 8/11/86



Cortland ProDOS 16 Reference

The Memory Manager

The Memory Manager is a ROM-resident Cortland Tool that controls the allocation,
deallocation, and repositioning of memory blocks in the Cortland. It works closely with
ProDas 16 and the System Loader to provide the needed memory spaces for loading
programs and data and for providing buffers for input/output All Cortland software,
including the System Loader and ProDOS 16, must obtain needed memory space by
making requests (calls) to the Memory Manager.

The Memory Manager keeps track of how much memory is free and what parts are
allocated to whom. Memory is allocated in blocks of arbitrary length; each block
possesses several attributes that describe how the Memory Manager may modify it (such as
moving it or deleting it), how it must be aligned in memory (for example, on a page
boundary), and what program owns it. Table 3-2 lists the Memory Manager attributes that
a memory block has.

Table 3-2. Memory block attributes

Explanation

Can the block be moved while in memory?

Must it be loaded at a specific adress?

Must it be in a particular memory bank?

It is prohibited from extending across a bank
boundary?

May it be in special memory (banks $00 and $01)?

Must it be aligned to a page boundary?

Can it be purged? If so, with what priority?

Is the block locked (temporarily nonmovable and
unpurgeable)?

special-memory usable (yes/no)

page-aligned (yes/no)

purge level (0 to 3)

locked (yes/no)

Attribute

movable (yes/no)

fixed addiess (yes/no)

fixed bank (yes/no)

bank-boundary limited (yes/no)

Besides creating and deleting memory blocks, the Memory Manager moves blocks when
necessary to consolidate free memory. When it compacts memory in this way, it of
course can move only those blocks that needn't be fixed in location. This implies that as
many memory blocks as possible should be movable, if the Memory Manager is to be
efficient in compaction.

Pointers and handles

To access an entry point in a movable block, an application cannot use a simple pointer,
since the Memory Manager may move the block and change the entry point's address.
Instead, each time the Memory Manager allocates a memory block, it returns to the
requesting application '8. handle referencing that block.

A handle is a pointer to a pointer; it is the address of a fixed (nonmovable) location that
contains the address of the block. If the Memory Manager changes the location of the
block, it updates the address in the fixed location; the value of the handle itself is not
changed. Thus the application may continue to access the block using the handle, no matter

Beta Draft 32 8/11/86



ProDGS 16: Chapter 3

how often the block itself is moved in memory. If a block will always be fixed in memory
(locked or nonmovable), it may be referenced by a pointer instead of by its handle.

ProDOS 16 and the System Loader use both pointers and handles to reference memory
locations. Pointers and handles must be at least three bytes long to access the full range of
Cortland memory. However, all pointers and handles used by ProDOS 16 are four bytes
long, for ease of manipulation by the 16-bit registers in the 65816 microprocessor.

How an application obtains memory

When an application makes a ProDOS 16 call that requires allocation of memory (such as
opening a file or writing from a file to a memory location), ProDOS 16 first obtains any
needed memory blocks from the Memory Manager and then performs its tasks. Likewise,
the System Loader requests any needed memory either directly or indirectly (through
ProDOS 16 calls) from the Memory Manager. Conversely, when an application informs
the operating system that it no longer needs memory, that information is passed on to the
Memory Manager which in turn frees that application's allocated memory. In all of these
cases the memory allocation and deallocation is completely automatic, as far as the
application is concerned.

Any other memory that an application needs for its own purposes must be requested
directly from the Memory Manager. Figure 3-3 shows which pans of the Cortland
memory can be allocated through requests to the Memory Manager. Applications for
Cortland should avoid requesting absolute (fixed-address) blocks. Chapters 7 and 17 of
this manual discuss program memory management further; see also Programmer's
Intorduction to the Cortland.

Bank Numbersr,--------"'""'-,-------..,
SOO SOl S02-S3F

SFFFF ....---..,....---,;

S2CCO

SEQ SEl

1:;:::;:;:;:;:;:;:;:::::::::;:;::1 Allocatable ...1 _ .......1 Not Allocatalbe

Figure 3-3. Memory allocatable through the Memory Manager

Beta Draft 33 8/11/86



Cortland ProDOS 16 Reference

Beta Draft 34· 8/11/86



Chapter 4

ProDOS 16 and External Devices

An external device is a piece of equipment (hardware) that transfers information to or
from the Cortland. Disk drives, printers, mice, and joysticks are external devices. The
keyboard and screen are also considered external devices. An input device transfers
information to the computer, an output device transfers informationjrom the computer,
and an input/output device transfers information both ways.

This chapter discusses how ProDOS 16 provides an interface between applications and
certain external devices. ..

Block devices
A block device reads and writes information in multiples of one block of characters (512
bytes) at a time. Furthermore, it is a random-access device: it can access any block on
demand, without having to scan through the preceding or succeeding blocks. Block
devices are usually used for storage and retrieval of information, and are always
input/output devices. Disk drives are block devices.

ProDOS 16 supports access to block devices; that is, you may read from or write to a block
device by making ProDOS 16 calls. In addition to READ, WRITE, and the other file calls
described in Chapter 2, ProDOS 16 provides three "lower-level" device-access calls.
These calls allow you to access information on a block device without considering what
files the information is in. The calls are

GET DEV NUM

READ BLOCK

WRITE BLOCK

returns the device number associated with a particular named
device

reads one block (512 bytes) of data from a specified device

writes one block (512 bytes) of data to a specified device

The device number of a device is a required input for the other ProDOS 16 device calls.
The block read and write calls are powerful but are not needed by most applications; the
file access calls described in Chapter 2 are sufficient for normal disk I/O.

A block device generally requires a device driver to translate ProDOS 16's logical block
device model into the tracks and sectors by which information' is actually stored on the
physical device. The device driver may be circuitry within the disk drive itself (Unidisk
3.5), it may be included as part of ProDOS 16 (Disk II), or it may be on a separate card in
an expansion slot.

Chapter 7, "Adding Routines to ProDOS 16," describes the device drivers recognized by
ProDOS 16 and presents the protocol that any drivers used on the Cortland must follow.

Beta Draft 35 8/11/86



Cortland ProDGS 16 Reference

Note on RAM disks: RAM disks are internal software constructs that the
operating system treats like external devices. Although ProDOS 16 provides no
particular support for RAM disks, any RAM disk that behaves like a block device in
all respects will be supported just as if it were an external device.

Character devices
A character device reads or writes a stream of characters in order, one at a time. It is a
sequential-access device: it cannot access any position in a stream without fIrst
accessing all previous positions. It can neither skip ahead nor go back to a previous
character. Character devices are usually used to pass information to and from a user or
another computer; sonie are input devices, some are output devices, and some are
input/output devices. The keyboard, screen, printer and communications port are character
devices.

ProDOS 16 does not provide direct support for character devices; that is, you cannot access
them' through ProDOS 16 calls. Consult the appropriate firmware or tools documentation,
such as Cortland Firmware Reference or Cortland Toolbox Reference, for instructions on
how to make calls to the particular device· you wish to use.

Named devices
ProDOS 16 permits block devices to have assigned names. This ability is a convenience
for users, because they will no longer have to know thwe volume name to access a disk.

However, ProDOS 16's support for named devices is limited; device names may be used
only in the VOLUME and GET DEV NUM calls. Other calls require either a volume name or
the device number returned by the GET DEV NUM call.- -
Devices are named according to a built-in convention; assigned names may not be changed.
The naming convention is as follows:

Device Name
Any block device Dn

where n= a I-digit or 2-digit number (assigned consecutively)

Note on RAM-based drivers: The capacity for named devices lends itself to
future incorporation of RAM-based drivers; however, RAM-based drivers arel not
supported in the present release of ProDOS 16. If RAM-based drivers are
developed later, they may have their own names that could supersede the
ProDOS 16-assigned names.

Number of online devices
ProDOS 16 (v.1) supports up to 14 active devices at a time. The Cortland normally accepts
up to 4 devices connected to its disk port (Smartport) and two devices per expansion slot

Beta Draft 36 8/11/86"



ProDOS 16: Chapter 4

(slots 1 through 7). It is possible, however, to have up to 4 devices on a single slot (slot 5
with a Smartport card). Nevertheless, the total number of devices on line still cannot
exceed 14.

Device search at startup

When ProDOS 16 boots, it perfonns a device search to identify all built-in pseudo-slot
ROMs (internal ROMs) and all real physical slot ROMs (card ROMs). Every block device
found is incorporated into ProDOS 16's list of devices, and assigned a device number
(dev_num) and device name (dev_name).

Note: Control Panel settings detennine whether internal ROM or card ROM is
active for each slot. ProDOS 16 cannot support both internal and external devices
with the same slot number.

Volume control blocks

For each device with nonremovable media (such as a hard disk) found at boot time, a
volume control block (VCB) is created in memory. The VCB keeps track of the
characteristics of that online volume. For other devices (such as floppy disk drives) found
at boot time, VCB's are created as mes are opened on the volumes in those devices. A
maximum of eight VCB's may exist at anyone time; if you try to open a me on a device
whose volume presently has no open mes, and if there are already eight VCB entries, error
$55 (VCB table full) is returned. Thus, even though there may be up to 14 devices
connected to your system, only eight (at most) can be active (open) at anyone moment.

Interrupt handling

On the Cortland, interrupts may be handled at either the fmnware or the software level.
The built-in interrupt handers are in fmnware (see Cortland Firmware Reference); user
installed interrupt handlers are software and may be installed through ProDOS 16.

When the Cortland detects an interrupt that is to be handled through ProDOS 16, it
dispatches through the interrupt vector at $00 03 FE (page 3 in bank zero). At this point
the machine is executing in emulation mode, using the standard clock speed and 8-bit
registers. The vector at $00 03 FE has only two address bytes; in order to allow access to
all of Cortland memory, it points to another bank zero location. The vector in that location
then passes control to the ProDOS 16 interrupt dispatcher. The interrupt dispatcher
switches to full native mode (including higher clock speed) and then polls the user-installed
interrupt handlers.

Figure 4-1 is a simplified picture of what happens when a device generates an interrupt that
is handled through a ProDOS 16 interrupt handler.

Beta Draft 37 8/11/86



Cortland ProDOS 16 Reference

IRQ signal causes
control to transfer to F"'"""ln-te-rru-p-t-v,-e-ct-or--'

.. ($FFFE - $FFFF in
Bank $00)

JMP to I Built-In
""I Interrupt handler

Interrupt is handled by firmware: ~
see Cortland Firmware Reference

Is the Interrupt to be seNiced
by the built-in handler?

yes ',no

set complete
a-bit Apple II environment

,JSR to

User's Interrupt Vector JMP to
at $00 03 FE ..

(used by ProDOS 16)

ProDOS 16
Interrupt

Dispatcher

RTL back to ProDOS l~j~
Interrupt Dispatcher

(then RTI back to built-in
interrupt handler)

Poll each handler
in sequence:
Will one accept
the interrupt?

Unclaimed Interrupt: ............. no_"'""-_y_e_s...,

fatal error ~JSL to

User-installed
Handler

Handler
Processes Interrupt

Figure 4-1. Interrupt handling through ProDOS 16

ProDOS 16 supports up to 16 user-installed interrupt handlers. When an interrupt occurs
that is not handled by fmnware, ProDOS 16 transfers control to each handler successively
until one of them claims it. There is no grouping of interrupts into classes; their priority
rankings are reflected only by the order in which they are polled.

If you write an interrupt-handling routine, to make it active you must install it with the
ALLOC_ INTERRUPT call; to remove it, you must use the DEALLOC_ INTERRUPT call.
Be sure to enable the hardware generating the interrupt only after the routine to handle it is
allocated; likewise, disable the hardware before the routine is deallocated. See Chapter 8
for further details on writing and installing interrupt handlers.

Unclaimed interrupts

An unclaimed interrupt is defined as the condition in which the hardware Interrupt
Request Line (IRQ) is active (being pulled low), indicating that an interrupt-producing
device needs attention, yet none of the installed interrupt handlers claims responsibility for
the interrupt. When an interrupt signal occurs and ProDOS 16 can find no handler to claim
it, it assumes that a serious hardware error has occurred. It issues a system failure error
message to the System Death Manager (see Cortland Toolbox Reference), and stops
processing the current application. Processing cannot resume until the user reboots the
system.

Beta Draft 38 8/11/86



Chapter 5

ProDOS 16 and the Operating
Environment

ProDOS 16 is one of the many components that make up the Cortland operating
environment, the overall hardware and software setting within which Cortland
application programs run. This chapter describes how ProDOS 16 functions in that
environment and how it relates to the other components.

Cortland system disks
A Cortland system disk is a disk containing the system software needed to run any
application you wish to execute. Most system disks contain one or more operating systems
(ProDOS 16 and ProDQS 8), the System Loader, RAM-based Tool Sets, RAM patches to
ROM-based Tool Sets, fonts, desk accessories, boot-time initialization programs, and
possibly one or more applications.

There are two basic types of system disks: complete system disks and application system
disks. A complete system disk has a full set of Cortland system software, as listed in table
5-1. It is a resource pool from which application system disks can be constructed. An
application system disk has one or more application programs and only the specific system
software it needs to run the application(s). For example, a word processor system disk
may include a large selection of fonts, whereas a spreadsheet system disk may have only a
few fonts.

Software developers may create application system disks for their programs. Users may
also create application system disks, perhaps by combining several individual application
disks into a multiapplication system disk. Apart from the essential files listed in table 5-2,
there is no single set of required contents for application system disks.

Complete System Disk

Every Cortland user (and developer) needs at least one complete system disk. It is a pool
of system software resources, and may contain files missing from any of the available
application system disks. Table 5-1 lists the contents of a complete system disk.

Beta Draft 39 8/11/86



Cortland ProDOS 16 Reference

Table 5-1. Contents of a complete Cortland system disk

Directory/File

PRODOS

SYSTEM/
P8
P16
LOADER
START
LIBS/
TOOLS/
FONTS/
DESK.ACCS/
SYSTEM. SETUP/

TOOL.SETUP

BASIC.SYSTEM

Description

a routine that loads the proper operating system and selects
an application, both at boot time and whenever an application
quits

a subdirectory containing the following files:
ProDOS 8 operating system
ProDOS 16 operating system
the Cortland System Loader
typically a program selector
a subdirectory containing the standard system libraries
a subdirectory containing all RAM-based tools
a subdirectory containing all fonts
a subdirectory containing all desk accessories
a subdirectory containing system initialization programs
a load fIle containing patches to ROM and a program to
install them. This is the only required fIle in the
SYSTEM. SETUP / subdirectory; it is executed before any
others in the subdirectory.

The Applesoft BASIC system interface program

The complete system disk is an 800K byte, double-sided 3.5-inch diskette; the required
files will not fit on a 140K, single-sided S.2S-inch diskette.

When you boot a complete system disk, it executes the file SYSTEM/START. From the
START file, you may choose to call Applesoft BASIC; no other application programs are
available on the disk.

The SYSTEM.SETUP/ subdirectory

The SYSTEM. SETUP / subdirectory may contain several different types of files, all of
which need to be loaded and initialized at boot time. They include the following:

• The file TOOL.SETUP: This file must always be present; it is executed before
any others in SYSTEM. SETUP /. TOOL. SETUP installs and initializes any RAM
patches to ROM-based Tool Sets. After TOOL. SETUP is finished, ProDOS 16 loads
and executes the remaining files in the SYSTEM. SETUP / subdirectory, which may
belong to any of the categories listed below.

• Permanent Init Files (filetype $B6): These files are loaded and executed just
like standard applications (type $B3), but they are not shut down when finished.
They also must have certain characteristics:

1. They must be loaded in non-special memory.
2. They cannot permanently allocate any stack/direct-page space.
3. They must terminate with an RTL rather than a QUIT.

• Temporary Init Files (type $B7): These files are loaded and executed just like
standard applications (type $B3), and they are shut down when finished. They must
terminate with an RTL rather than a QUIT.

B'etaDrajt 40 8/11/86



ProDOS 16: Chapter 5

• New Desk Accessories (type $B8): These files are loaded but not executed.
They must be in non-special memory.

• Classic Desk Accessories (type $B9): These files are loaded but not executed.
They must be in non-special memory.

Application system disks

Each application program or group of related programs comes on its own application
system disk. The disk has all of the system files needed to run that application, but it may
not have all the fIles present on a complete system disk. Different applications may have
different system files on their application system disks.

For example, the ProDOS Programmer's Disk, included with this manual, is an application
system disk. It contains all the system files listed above, plus the files EXER16 and
EXER8. Those two fIles are the ProDOS 16 Exerciser and the ProDOS 8 Exerciser,
respectively. The ProDOS 16 Exerciser is described in Chapter 8 and Appendix C of this
manual; he ProDOS 8 Exerciser is described in the ProDOS 8 Reference.***It is not clear
that the disks will actually be shipped in this format.***
Table 5-2 shows which files must be present on all application system disks, and which
files are needed only for particular applications. In some very restricted instances, it may
be possible to fit an application and its required system fIles onto a 5.25-inch (140K)
diskette; most applications, however, require an 800K diskette.

Table 5-2.

Directory/File

PRODOS

SYSTEM/
p8
P16
LOADER
START
LIBS/
TOOLS/
FONTS/
DESK.ACCS/
SYSTEM. SETUP/

TOOL. SETUP

BASIC. SYSTEM

System startup

Contents of a Cortland application system disk

Required/(Required If... )

required

required
(required if the application is ProDOS 8-based)
required
required
(required if the program selector is to be used)
(required if system library routines are needed)
(required if the application needs RAM-based tools)
(required if the application needs fonts)
(required if desk accessories are to be provided)
required
required

(required if the application is written in Applesoft BASIC)

Disk blocks 0 and 1 on a Cortland system disk contain the startup (boot) code. They are
identical to the boot blocks on Apple IIellIe system disks (ProDOS 8 system disks). This
allows ProDOS 8 system disks to boot on a Cortland, and it also means that the initial part
of the ProDOS 16 bootstrap procedure is identical to that for ProDOS 8.

Beta Draft 41 8/11/86



Cortland ProDGS 16 Reference

Figure 5-1 shows the boot initialization procedure. First, the boot finnware in ROM reads
the boot code (blocks aand 1) into memory and executes it. For a system disk with a
volume name IV,

1. The boot code searches the disk's volume directory for the fIrst file named
IVIPRODOS with the file type $FF.

2. If the file is found, it is loaded and executed at location $2000 of bank $00.

Power On

Firmware/Tools initialization

(If this is a Pre-Cortland
ProDOS 8 System Disk)

......----'-;;.;;;......;..l.......:.:.::...-.boot failure:
'PRODOS cannot be found'

......__....;..__l.....__.. boot failure:
'check startup device'

af this is a Cortland
System Disk)

loed,

ProDOS 16

System Loader

Ioed &
execute

The file PRODOS is ProDOS 8;
it performs its own initializotion

and brings up a ProDOS 8
system program-see
ProOOS 8 Reference

Ioed.
Desk Accessories

to 'Startup Program Selection'
(Figure -...J

Figure 5Q l. Boot initialization sequence

From this point on, a Cortland system disk behaves differently from an Apple IIellIc
system disk. On an Apple IIelIIc system disk, the file named PRODOS is the ProDOS 8
operating system. On a Cortland system disk, however, this PRODOS file is not the
operating system itself; it is an operating system loader and application selector. When it

Beta Draft 42 8/11/86



ProDOS 16: Chapter 5

receives control from the boot code, IV IPRODOS performs the following tasks (see also
Figure 5-1):

3. It relocates the part of itself named PQU IT to an area in memory where PQUI T will
reside permanently. PQUIT contains the code required to terminate one program
and start another (either ProDOS 8 or ProDOS 16 application).

4. IV IPRODOS loads the ProDOS 16 operating system (file IVI SYSTEM!P 16).

5. Using ProDOS 16 calls, !V!PRODOS loads the Cortland System Loader (file
!vISYSTEM!LOADER).

6. IvIPRODOS performs any necessary boot initialization of the system, by executing
the files in the subdirectory !V! SYSTEM! SYSTEM. SETUP. If there is a file
named TOOL. SETUP in that subdirectory, it is executed first-it loads RAM-based
tools and RAM patches to ROM-based tools.

Every file in the subdirectory IV !SYSTEMI SYSTEM. SETUP must be a Cortland
load file of type $B6, $B7, $B8, or $B9. These file types are described under "The
SYSTEM. SETUP Subdirectory," in this chapter. After executing TOOL. SETUP,
Iv IPRODOS loads and executes, in turn, every other file that it finds in the
subdirectory.

7. Now IvIPRODOS selects ( =determines the pathname of) the system program or
application to run. Figure 5-2 shows this procedure.

a. It first searches for a type $B3 file named' Iv I SYSTEM! START. Typically,
.that fIle is a program selector, but it could be any Cortland application. If
START is found, it is selected.

b. If there is no START file, IV!PRODOS searches the boot volume directory for
the first file that is either 1.) a ProDOS 8 system program (type $FF with the
fIlename extension. SYSTEM), or 2.) a ProDOS 16 system program (type $B3
with the fIlename extension . SYS 16). Whichever is found first is selected.

Note: If a ProDOS 8 system program is found first, but the ProDOS 8 operating
system (file IVI SYSTEM!P 8) is not on the system disk, IvIPRODOS will then
search for and select the first ProDOS 16 system program (ProDOS 16 is always on
the system disk).

c. If IVIPRODOS cannot find a file to execute (for example, if there is no START
fIle and there are no ProDOS 8 or ProDOS 16 system programs), it will bring up
an interactive routine that prompts the user for the fIlename of an application to
load.

8. Finally, IV!PRODOS passes control to an entry point in PQUIT. It is PQUIT, not
!VIPRODOS, that actually loads the selected program. The next section describes
that procedure.

Note: PRODOS will write an error messsage to the screen if you try to boot it on
an Apple II computer other than a Cortland. This is because ProDOS 8 on a
Cortland disk is in the file VI SYSTEM/P 8, not in the file PRODOS.

Beta Draft 43 8/11/86



Cortland ProDOS 16 Reference

Fatal error:
'no x.SYSTEM or
x,SYSI6 file found'

r .SYSI6 file?

untlme
ram Selection'
re .-J

te an enhanced
OS 8 QUIT call.
the filename

e .SYSTEM program

from 'Boot Initialization'
(Figure .-J
(the file named PRODOS Is In control)

Is there a file named N/SYST£M/ST,dRT?
yes IV no

Is there a .SYSTEM 0

yes ~, no ...
1M1ich found fist?

.SYS16 file found first IF .SYSTEM file found first

. Execute a ProDOS 16 Execu
QUIT call. using the ProD
filename of the using
.SYS16 program ofth

load & to 'Runtime to'R
executeI file .1 ' Program Selection' 'Prog

....1IV/SYSTEM/START (Figure .-J (Figu

START is typically
a program selector.

allowing the user to choose
a program to load

Figure 5-2. Startup program selection

Starting and Quitting Applications
The Cortland startup sequence ends when control is passed to the program selection routine
(PQUIT). This routine is entered both at boot time and whenever an application terminates.

PQUIT

PQUIT is the ProDOS program dispatcher. It determines which ProDOS 8 or ProDOS 16
program is to be run next, and runs it. After startup, both PQUIT and the System Loader
are permanently resident in memory; PQUIT loads ProDOS 16 programs through calls to
the System Loader,

PQUIT has two entry points: P 8PQUIT and P 16PQUIT. Whenever a ProDOS 8
application executes a QUIT call, control passes through the P 8PQUIT entry point.
Whenever a ProDOS 16 application executes a QUIT call, control passes through the
P 16PQUIT entry point. To launch the fIrst program at system startup, /v /PRODOS
makes a ProDOS 8 or ProDOS 16 QUIT call and passes control to the proper PQUIT entry
point.

PQUIT supports three types of quit call: the standard ProDOS 8 QUIT call, an enhanced
ProDOS 8 QUIT call, and the ProDOS 16 QUIT call.

Beta Draft 44 8/11/86



ProDOS 16: Chapter 5

Standard ProDGS 8 QUIT call

The standard ProDOS 8 QUIT call's parameter block consists of a one-byte parameter
count field, followed by four null fields in this order: byte, word, byte, word. As ProDOS
8 is currently defined, all fields must be present and all must be set to zero. There is thus no
way for a program to use the standard QUIT call to specify the pathname of the next
program to run.

Enhanced ProDGS 8 QUIT call

The enhanced ProDOS 8 QUIT call differs from the standard call only in the permissible
values of the first two parameters. In the enhanced QUIT call, the first (byte) parameter is
defined as the quit type. If it is zero, the call is identical to a standard QU I T call; if it is
$EE, PQUIT interprets the following (word) parameter as a pointer to a string which is the
pathname of the next program to run.

The enhanced ProDOS 8 QUIT call is meaningful only on the Cortland, and only when
PQUIT is present to interpret it. It behaves like the standard QUIT call in any other
situation.

ProDGS 16 QUIT c~1I

The ProDOS 16 QUIT call has two parameters: a pointer to the pathname of the next
program to execute, and a boolean return flag to notify PQUIT whether or not control
should eventually return to the program making the QUIT calL

If the value of the return flag is true, PQUIT pushes the UserID of the calling (=quitting)
program onto an internal stack. As subsequent programs run and quit, several UserID's
may be pushed onto the stack. With this mechanism, multiple levels of shells may execute
subprograms and subshells, while ensuring that they eventually regain control when their
subprograms quit.

For example, the program selector (START file) might pass control to a software
development system shell, using the QUIT call to specify the shell and placing its own ID
on the stack. The shell in turn could hand control to a debugger, likewise puting its own
ID on the stack. If the debugger quits without specifying a pathname, control would pass
automatically back to the shell; when the shell quit, control would pass automatically back
to the START file.

This automatic return mechanism is specific to the ProDOS 16 QUIT call, and therefore is
not available to ProDOS 8 programs. When a ProDOS 8 application quits, it cannot put its
ID on the internal stack.

Beta Draft 45 . 8/11/86



Cortland ProDOS 16 Reference

QUIT procedure

This is a brief description of how PQUIT handles all three types of QUIT call. Refer also
to Figure 5-3.

1. If a ProDOS 16 or enhanced ProDOS 8 QUIT call specifies a pathname, PQUIT
attempts to execute the specified me. Under certain conditions this may not be
possible: the me may not be on line, there may be insufficient memory, and so on.
In that case the QUIT call fails and returns an error.

2. If the QUIT call specifies no pathname, PQUIT pulls a UserID off its internal ID
stack and attempts to execute that program. Typically, programs with UserID's on
the stack are in the System Loader's dormant state (see "User Shutdown" in
Chapter 18), and it may be possible to restart them without reloading them from
disk. Under certain conditions it may not be possible to execute the program: the file
may not be on line, there may be insufficient memory, and so on. In that case the
QUIT call fails and returns an error.

3. If the QUIT call specifies no pathname and the ill stack is empty, PQUIT executes
an interactive routine that allows the user to do any of these:

• reboot the system

• execute the me IV ISYSTEM/START

• enter the pathname of a program to execute

4. If the quitting program is a ProDOS 16 program, PQUIT calls the loader's User
Shutdown routine to place that program in a dormant state.

5. Once it has determined which program to load, PQUIT knows which operating
system is required. If it is not the current system,

a. PQUIT shuts down the current operating system and loads the required one.

b. PQUIT then makes Memory Manager calls to free memory used by the former
operating system and allocate memory needed by the new system. If the new
operating system is ProDOS 8, PQUIT allocates all special memory for the
program.

6. The new program is loaded. PQUIT calls the System Loader to load ProDOS 16
programs; for ProDOS 8 programs, PQUIT passes control to ProDOS 8, which then
loads and executes its own program directly.

7. Finally (if it is a ProDOS 16 program), PQUIT sets up various aspects of the
program's environment, including the direct-register and stack-pointer values, and
passes control to the program.

Beta Draft 46 8/11/86



ProDOS 16
Quit Call

IV execute

PQUIT routine

ProDOS 8
Quit Call

ProDOS 16: Chapter 5

Does the QUIT call specify the
pathname of the next program?

ves no

yes

Does the quitting program
want to return later?

IF yes

are there any User/D's
on the return st=k?

, no

place its
UserlD on
return stack..

Pull last UserlD
off return stack;
make that the
next program

user selects a filename

prompt user for
filename of
next program

user selects
IV reboot'

next program has been selected:
Must a different operating system be loaded?

., yes

~
e Operating System I

(ProDOS 8 or
ProDOS 16)

purge memory no longer needed
and allocate new memory

loed
Set uR ...

program s Selected Program
environmentl~e.::.:ixe:,:;;,c:;.:.ut~e..~ -l

to
'Soot Initialization'

(Figure ->

Figure 5-3. Run-time program selection (QUIT call)

When the just-launched program receives control from PQUIT, the machine is in the
following state:***information not yet available***

Pathname prefixes
A user-assigned prefIx is convenient when many files in the same subdirectory are
accessed, because it shortens the pathname references. A set of prefIxes is convenient
when files in several different subdirectories must be repeatedly accessed. The System
Loader, for example, makes use of multiple prefIxes. Once the pathnames are assigned to
prefIxes, you can refer to the prefIxes instead of remembering all the different pathnames.

ProDOS 16 will support 8 prefIxes, referred to by the prefix designators 0/, 1/,
2/ ,... ,7/. Each prefIx designator must include a terminating slash to separate it from the
rest of the pathname. Three of the prefix designators have default values:

Beta Draft 47 8/11/86



Cortland ProDOS 16 Reference

o/ is the system prefIx-the name of the volume from which the presently running
ProDOS 16 was booted.

1 / is the application subdirectory prefIx-the pathname of the subdirectory that
contains the currently running application.

2 / is the system library subdirectory prefIx-the pathname of the subdirectory that
contains the library modules used by the currently running application. On a typical
Cortland startup disk, prefIx 2 I is IvI SYSTEM/LIBS (where IV/ is the volume
name).

Your application may assign the rest of the prefIxes; they have no default or startup values.
In fact, once an application is running, it may also change the values of prefIxes 0 I, 1/, or
2/.

The prefIx designators are set (assigned to specific pathnames) and retrieved through the
SET_PREFIX and GET_PREFIX calls. Although a partial prefIx may be used in the
SET_PREFIX call, prefIxes are always stored in memory as complete pathnames. Once
set, a prefIx designator may be placed at the beginning of a partial pathname, replacing the
actual prefIx. If no prefIx designator is specifled in a partial pathname, ProDOS 16 assigns
the designator 0 I and attaches the system prefIx.

Note: The default value of the ProDOS 16 system prefix (designated by 0 I) is
equivalent to the :'system prefIx" recognized by ProDOS 8.

The following are some examples of prefIx use. They assume that the system prefIx (0/)
is set to I a Ib and that prefIx 5 I is set to I rnl n. The pathname provided by the caller is on
the left; the full pathname, constructed by ProDOS 16, is on the right.

/ x I y I z I x I y I z (full pathname provided)
p / ql r I a Ib / piql r (partial pathname-implicit use of system prefIx)
o/pl q/ r I a/b/pl ql r (explicit use of system prefIx)
5/p/q/r Irn/n/p/q/r (use of prefIx 51)

Tools, firmware, and system software
Although ProDOS 16 is the principal part of the Cortland operating system, several
"operating system-like" functions are actually carried out by other software components.
This section briefly describes some of those components; for detailed information see the
references listed with each one.

The Memory Manager

As explained in Chapter 3, the Memory Manager takes care of all memory allocation,
deallocation, and housekeeping chores. Applications obtain needed memory space either
directly, through requests to the Memory Manager, or indirectly through ProDOS 16 or
System Loader calls (which in turn obtain the memory through requests to the Memory
Manager).

Beta Draft 48 8/11/86



ProDOS 16: Chapter 5

The Memory Manager is a ROM-resident Cortland Toolset; for more detailed information
on its functions and how to call them, see Cortland Toolbox Reference.

The System Loader

The System Loader is a Cortland Toolset that works very closely with ProDOS 16 and the
·Memory Manager. It resides on the system disk, along with ProDOS 16 and other system
software (see "Cortland System Disks" in this chapter). All programs and data are loaded
into memory by the System Loader.

The System Loader supports both static and dynamic loading of segmented programs and
subroutine libraries. It loads files that conform to a specific format (object module
format); such files are produced by the Cortland Programmer's Workshop Linker
and other components of the Cortland Programmer's Workshop (see Cortland
Programmer's Workshop Reference).

The System Loader is described in Part III of this· manual.

The Scheduler

The Scheduler is a Heartbeat Task, a routine that functions in conjunction with the
Cortland Heartbeat Interrupt signal (see "Heartbeat Tools" in Cortland Toolbox Reference).
Its purpose is to coordinate the execution of interrupt'handlers and other interrupt-based
routines such as desk accessories.

The Scheduler is required only when an interrupt routine needs to call a piece of system
software, such as ProDOS 16, that is not reentrant. If ProDOS 16 is in the middle of a
call when an interrupt occurs, the interrupting routine cannot itself call ProDOS 16, because
that would disrupt the fIrst (not yet completed) call. The system needs a way of telling an
interrupt routine to hold off until the system software it needs is no longer busy.

The Scheduler accomplishes this by periodically checking a fIrmware flag called the Busy
word and maintaining a queue of processes that may be activated when the busy flag is
cleared. Interrupt routines that make operating system calls must go through the Scheduler
(see Chapter 8).

The UserID Manager

The UserID Manager is a Miscellaneous Tool that provides a way for programs to obtain
unique identifIcation numbers. Every memory block allocated by the Memory Manager is
marked with a UserID that shows what system software, application, or desk accessory it
belongs to.

Part of each block's 2-byte UserID is a Type ID field, describing the category of load
segment that occupies it. All ProDOS 8 and ProDOS 16 blocks are type 3; System Loader
blocks are type 7; blocks of controlling programs (such as a shell or switcher) are type 2;
and blocks containing application segments are type 1. Appendix D diagrams the format

Beta Draft 49 8/11/86



Cortland ProDOS 16 Reference

for the UserID word. See "Miscellaneous Tools" in Cortland Toolbox Reference for
further details.

The System Death Manager

All fatal errors, including fatal ProDOS 16 errors, are routed through the System Death
Manager, a Miscellaneous Tool. It displays a default message on the screen, or, if passed a
pointer when it is called, displays an ASCII string with a user-chosen message. Program
execution halts when the System Death Manager is called.

The System Death Manager is described under "Miscellaneous Tools" in Cortland Toolbox
Reference.

Beta Draft 50 8/Il/86



Chapter 6

Programming With ProDOS 16

This chapter presents requirements and suggestions for writing Cortland programs that use
ProDOS 16. .

Programming suggestions for the System Loader are in Chapter 17 of this manual. More
general information on how to program for the Cortland is available in Programmer's
Introduction to the Cortland. For language-specific programming instructions, consult the
appropriate language manual in the Cortland Programmer's Workshop ( see "Cortland
Programmer's Wokshop" in this chapter).

Application requirements
As used in this manual, an application is a complete program, typically called by a user
(rather than another program), that can communicate directly with ProDOS 16 and any
other system software or firmware it needs. For example, word processors, spreadsheet
programs, and language interpreters are examples of applications. Data files and source
code fIles, as well as subroutines, libraries, and utilities that must be called from other
programs are not applications.

A system program may be defined as a stand-alone application. It is a program that can
run as a start-up program (booted from the system disk).

To be an application, a Cortland program must

o consist of executable machine language code

o be in Cortland Object Module Format (see Appendix D)

o be fIle type $B3 - $BF (see Appendix A)

o have a flleriame extension of . SYS 16 (if you want it to be a system program)

o make ProDOS 16 calls as described in this manual (see Chapter 8)

o observe the ProDOS 16 QUIT conventions (see Chapter 5)

o observe all other applicable ProDOS 16 conventions, such as the conventions for
interrrupt handlers (see Chapter 7)

o get all needed memory from the Memory Manager (see Chapter 2)

All other aspects of the program are up to you. The rest of this chapter presents
conventions and suggestions to help you create an efficient and useful application or system
program, consistent· with Cortland programming concepts and practices.

Beta Draft 51 8/11/86



Cortland ProDOS 16 Reference

Stack and direct page
In the Cortland, the 65816 microprocessor's stack-pointerregisteris 16 bits wide; that
means that the hardware stack may be located anywhere in bank $00 of memory. Also, the
stack may be as much as 64K bytes deep. In theory, then, the stack may occupy any
unused space of any size in bank $00. In practice, however, the stack is limited to about
32K bytes because of reserved memory areas in bank $00 (see Chapter 3).

The direct page is the Cortland equivalent to a zero page. The difference is that it need
not be page zero in memory. Like the stack, the direct page may be placed in any unused
area of bank $00. The microprocessor's direct register is 16 bits wide, and all zero-page
(direct-page) addresses are added as offsets to the contents of that register. •

In practice, however, less space is available. First, only the lower 48K bytes of bank $00
can be allocated; the rest is reserved for I/O and system software. Also, because more than
one program can be active at a time, there may be more than one stack and more than one
direct page in bank $00. Furthermore, many applications may want to have parts of their
code as well as their stacks and direct pages in bank $00.

Your program should therefore be as efficient as possible in its use of stack and direct-page
space. The total size of both should probably not exceed about 4K bytes in most cases.
Still, that gives you the opportunity to write programs that require stacks and direct pages
much larger than the 256 bytes available for each on other Apple II's.

Automatic allocation of stack and direct page

Only you can decide how much stack and direct-page space your program will need when it
is running. The best time to make that decision is during program development, when you
create your source file(s). If you specify at that time the total amount of space needed,
ProDOS 16 and the System Loader will automatically allocate it and set the stack and direct
registers each time your program runs.

Definition during program development

You define your program's stack and direct-page needs by specifying a "direct~lpage/stack"
object segment (KIND =$92) when you assemble or compile your program (Figure 6-1).
The size of the segment is the total amount of stack and direct-page space your program
needs. It is not necessary to create this segment; if you need no such space or if the
ProDOS 16 default (see below) is sufficient,you may leave it out.

BetaDrqft 52 8/11/86



CD Object File:
You create a direct·
page/stack segment
In the object code

Segment
1

Segment
2

;:,egmenr
3

@ Load File:
Make sure the direct·
page/stack segment
IS a single load segment

Segment t::"\
1 ~ System Loader:

allocates a block in
Bank sao equai in size to the

direct·page/stack
Segment load segment

2

ProDOS16: Chapter 6

Memory Bank $00

@ ProDOS 16:

sets the stack register
to the highest address

tii;r;t~;;pJ"""'in the segment

A1212~228..... sets the direct register
to the iowest address
in the segment

Figure 6-1. Automatic direct-page/stack allocation

When the program is linked, it is important that the direct-page/stack segment not be
combined with any other object segments into a load segment-the linker must create a
single load segment corresponding to the direct-page/stack object segment. If there is no
direct-page/stack object segment, the linker will not create a corresponding load segment.

Allocation at run time

Each time the program is started (either through Initial Load or Restart), the System Loader
looks for a direct-page/stack load segment. If it finds one, it determines the segment's size
from from the LENGTH field in the segment's header. The System Loader then calls the
Memory Manager to allocate a page-aligned, locked, dynamic memory block of that size in
bank $00. The loader passes the base address and size of that space, along with the
program's UserID and starting address, to ProDOS 16. ProDOS 16 sets the A
(accumulator), D (direct) , and S(stack) registers as shown, then passes control to the
program:

A =UserID assigned to the program
D =address of the first (lowest) byte 'in the direct-page/stack space
S =address of the last (highest) byte in the direct-page/stack space

By this convention, direct-page addresses are offsets from the base of the allocated space,
and the stack grows downward from the top of the space.

Important: ProDOS 16 provides no mechanism for detecting stack overflow or
underflow, or collision of the stack with the direct page. Your program must be
carefully designed and tested to make sure this cannot occur.

When your program terminates with a QUIT call, the System Loader's Application
Shutdown function purges the direct-page/stack segment along with the program's other
dynamic segments. The stack and direct page are therefore not preserved between program
starts; they must be reallocated each time the program is run.

Beta Draft 53 8/11/86



Cortland ProDOS 16 Reference

Note: There is no provision for extending or moving the direct-page/stack space
after its initial allocation. Because bank $00 is so heavily used, the space you
request may be unavailable-the memory adjoining your stack is likely to be
occupied by a locked memory block. Make sure that the amount of space you
specify at link time mls all your program's needs.

ProDOS 16 default stack and direct page

If the loader fmds no direct-page/stack segment in a file at load time, it still returns the
program's UserID and starting address to ProDOS 16, but it does not call the Memory
Manager to allocate a direct-page/stack space and it returns zeros as the base address and
size of the space. ProDOS 16 then calls the Memory Manager itself, and allocates a 1K
direct-page/stack segment with the following attributes:

size: 1,024 bytes
owner: program with the UserID returned by the loader
fixed/movable: fIxed
locked/unlocked: locked
purge level: 1
may cross bank boundary? no
may use special memory? yes
alignment: page-aligned
absolute starting address? no
fIxed bank? yes-bank $00

See Cortland Toolbox Reference for a general description of memory block attributes
assigned by the Memory Manager.

Once allocated, the default direct-page/stack is treated just it would be if it had been
specifIed by the program: ProDOS 16 sets the A, D, and S registers before handing control
to the program, and at shutdown time the System Loader purges the segment.

Manual allocation of stack and direct page

You (your program, that is) may allocate your own stack and direct-page space at run time,
if you prefer. When ProDOS 16 transfers control to you, be sure to save the UserID value
left in the accumulator before doing the following:

1. Using the starting or ending address left in the D or S register by ProDOS 16, make
a FindHandle call to the Memory Manager, to get the memory handle of the
automatically-provided direct-page/stack space. Then, using that handle, get rid of
the space with a DisposeHandle call.

2. You can now allocate your own direct-page/stack space through the Memory
Manager NewHandle call. Make sure that the allocated block is purgeable,
unmovable, and locked.

3. Place the appropriate values (beginning and end addresses of the segment) in the D
and S registers.

Beta Draft 54 8/11/86



ProDGS 16: Chapter 6.

Managing system resources
Various hardware and software features of the Cortland provide information to an
application or increase its flexibility. This section suggests ways to use those features.

Global variables

Under ProDOS 8, a fixed-address Global Page maintains the values of important
variables and addresses for system programs and applications. The Global Page is at the
same address in any machine or machine configuration that supports ProDOS 8, so an
application can always access those variables at the same addresses.

ProDOS 16 does not maintain a Global Page. Such a set of fixed locations is inconsistent
with the flexible and dynamic memory management system of the Cortland. Instead, calls
to ProDOS 16, tools or firmware will give you the information formerly provided by the
Global Page. Table 6-1 shows the Cortland calls used to obtain information equivalent to
ProDOS 8 Global Page values.

Table 6-1. Cortland equivalents to ProDOS 8 global page information

Global Page Information Cortland Equivalent

Global page entry points (not supported)
Device driver vectors (not supported)
List of active devices returned by VOLUME call (ProDOS 16)
Memory Map (responsibility of the Memory Manager)
Pointers to I/O buffers returned by OPEN call (ProDOS 16)
Interrupt vectors returned by ALLOC_ INTERRUPT call (ProDOS 16)
Date/Time returned by ReadT ime call (Misc. Toolset)
System Level returned by GET LEVEL call (ProDOS 16)
MACHID (not supported) -
System Program version (not supported)
ProDOS 16 Version returned by GE T_ VERS ION call (ProDOS 16)

Prefixes

The three predefined prefixes and five user-definable prefixes offer not only convenience in
coding pathnames, but flexibility in writing for different system and application disk
volumes. For example, any files on the boot disk can always be accessed through the·
prefix 0/, regardless of the boot volume name. Any library routine in the system library
subdirectory (normally the SYSTEM/LIBS subdirectory of the boot volume) will have the
prefix 2/, regardless of which system disk is on line. If you put libraries specific to your
application in the same subdirectory as your application, they can always be called with the
prefix 1/, regardless of what subdirectory or disk your program inhabits.

Of course, your application can always change the values of any of the prefixes. For
example, it may change prefix 2/ if it wishes to. access libraries on a system volume other
than the boot volume.

Beta Draft 55 8/11/86



Cortland ProDOS 16 Reference

Native mode and emulation mode

As noted in Chapter 6, you can make ProDOS 16 calls from either emulation or native
mode. Thus if part of your program requires the machine to be in emulation mode, you
needn't reset it to native mode before calling ProDOS 16. Emulation-mode programs in the
Cortland must be located in bank $00.

ProDOS 8 programs run entirely in emulation mode. If you wish to modify a ProDOS 8
program to run under ProDOS 16, or if you wish to use Cortland features available only in
native mode, see "Revising a ProDOS 8 Application for ProDOS 16" in this chapter. See
also Programmer's Introduction to the Cortland.

Setting initial machine configuration

When a Cortland application(type $B3) is fIrst launched, the Cortland is in full native mode
with all shadowing off (see Chapter 5). If your program needs a different machine
confIguration, it must make the proper settings...***information not yet available***

Allocating memory

All memory allocation is done through calls to the Memory Manager, described in Cortland
Toolbox Reference. Memory space you request may be either movable or nonmovable. If
it is movable, you access it through a memory handle; if it is nonmovable, you may access
it through a handle or through a pointer. Since the Memory Manager does not return a
pointer to an allocated block, you obtain the pointer by dereferencing the handle (see
Chapter 3).

ProDOS 16 parameter blocks are referenced by pointers; if you do not code them into your
program segments and reference them with labels, you must put them in nonmovable
memory blocks. To allocate space for a parameter block, request a memory block of
suffIcient size from the Memory Manager, and specify that it be nonmovable, or else
movable but locked. Obtain a pointer to the space by dereferencing its memory handle,
and use that pointer in your ProDOS 16 call block. Since the memory block is locked, the
pointer will always be valid.

Loading another program

If your program does not wish to load another program, it should use a ProDOS 16 QUIT
call with no parameters. That normally brings up a program selector which allows the user
to choose the next program to load. Most applications function this way.

However, if you want your application to load and execute another application, there are
several ways to do it. If you wish to pass control to permanently to another application,
use the ProDOS 16 QUIT call with a pathname pointer, as described in Chapter 5. By
using the return flag parameter in the ProDOS 16 QUIT call, your program can function
similarly to a shell-whenever it quits to another specifIed program, control will eventually
return to it.

Beta Draft 56 8/11/86



ProDGS i6: Chapter6

If you wish to load but not necessarily pass control to another program, or if you want
your program to remain in memory after it passes control to another program, use the
System Loader's Initial Load function (described in Chapter 18). When your program
actively loads other program files, it is called a controlling program; the CPW Shell
(see next section) is a controlling program. Chapter 17 presents sugge~tions for writing
controlling programs.

You may load a ProDOS 8 application (type $FF) through the ProDOS 16 QUIT call, but
you cannot do so with the System Loader's Initial Load call; the System Loader will load
only ProDOS 16 load files (types $B3-$BF).

Note: Because ProDOS 8 will not load type $B3 files, ProDOS 8-based
applications that load and run other applications cannot run any newer ProDOS 16
applications. This restriction is a natural consequence of the lack of downward
compatibility. If you wish to modify an older application to be able to use it with
ProDOS 16, see "Revising a ProDOS 8 Application for ProDOS 16," later in this
chapter.

Using interrupts

ProDOS 16 provides conventions (see Chapter 7) to ensure that interrupt-handling routines
will function correctly. If you are writing a print spooler, game, communications program
or other routine that uses interrupts, please follow those conventions.

As explained in Chapter 4, an unclaimed interrupt causes a system failure: control is passed
to the System Death Manager and execution halts Your program may pass a message to
the System Death manager to display on the screen when that happens. In addition,
because the System Death Manager is a tool, and because all tools may be replaced by user
written routines, you may substitute your own error handler for unclaimed interrupts. See
Cortland Toolbox Reference for information on the System Death Manager and for
instructions on writing your own Tool Set.

If ProDOS 16 is called while it is in the midst of another call, it issues a "ProDOS is busy"
error. This situation normally arises only when an interrupt handler makes ProDOS 16
calls; a typical application will nearly always find ProDOS 16 free to accept a call. Chapter
7 provides instructions on how to avoid this error when writing interrupt handlers;
nevertheless, all programs should be able to handle the "ProDOS is busy" error code in
case it occurs.

File creation/modification date and time
The information in this section is important to you -if you are writing a fIle or disk utility
program, or any routine that copies files.

All ProDOS 16 files are marked with the date and time of their creation. When a fIle is first
created, ProDOS 16 stamps the fIle's directory entry with the current date and time on the
system clock. If the fIle is later modified, ProDOS 16 then stamps it with a modification
date and time (its creation date and time remain unch~ged).

Beta Draft 57 8/11/86



Conland ProDOS 16 Reference

The creation and modification fields in a file entry refer to the contents of the file. The
values in these fields should be changed only if the contents of the me change. Since data
in the me's directory entry itself are not part of the file's contents, the modification field
should not be updated when another field in the file entry is changed, unless that change is
due to an alteration in the file's contents. For example, a change in the file's name is not a
modification; on the other hand, a change in the file's EOF always reflects a change in its
contents and therefore is a modification.

Remember also that a me's entry is a part of the contents of the directory or subdirectory
that contains that entry. Thus, whenever a file entry is changed in any way (whether or not
its modification field is changed), the modification fields in the entries for all its enclosing
subdirectories-including the volume directory-must be updated.

Finally, when a file is copied, a utility program must be sure to give the copy the same
creation and modification date and time as the original file, and not the date and time at
which the copy was created.

To implement these concepts, file utility programs should note the following procedures:

1. To create a new file:

a. Set the creation and modification fields of the file's entry to the current system
date and time.

b. Set the modification fields in the entries of all subdirectories in the path
containing the file to the current system date and time.

2. To rename a file:

a. Do not change the file's modification field.

b. Set the modification fields of all subdirectories in the path containing the file to
the current system date and time.

3. To alter the contents of a file:

a. ProDOS 16 considers a file's contents to have been modified if any WRITE or
SET_ EOF operation has been performed on the me while it is open. If that.
condition has been met, set the me's modification field to the current system date
and time when the file is closed.

b. Also set the modification fields of all subdirectories in the path containing the file
to the current system date and time.

4. To delete a file:

a. Delete the file's entry from the directory or subdirectory that contains it.

b. Set the modification fields of all subdirectories in the path containing the deleted
file to the current system date and time.

S. To copy a file:

a. Make a GET_FILE-INFO calIon the source file (the file to be copied), to get its
creation and modification dates and times.

b. Make a CREATE call to create the destination file (the file to be copied to). Give it
the creation date and time values obtained in step (a).

c. Open both the source and destination files. Use READs and WRITEs to copy the
source to the destination. Close both files.

Beta Draft 58 8/11/86



ProDGS 16: Chapter6

Note: The procedure for copying sparse files is more complicated than this. See
Appendix A.

d. Make a SET FILE-INFO call on the destination fIle, using all the information
returned from GET FILE INFO in step (a). This sets the modification date and
time values to thoseof the source fIle.

ProDOS 16 automatically carries out all steps in procedures (1) through (4). Procedure (5)
is the responsibility of the fIle copying utility.

Revising a ProDOS 8 application for ProDOS 16
If you have written a ProDOS 8-based program for the Apple TI Plus, TIe, or TIc, it 'will run
unchanged on the Cortland. The only noticeable difference will be its faster execution
because of the greater clock speed of the Cortland. However, the program will not be able
to take advantage of any advanced Cortland features such as large memory, the Toolbox,
the mouse-based interface, and new graphics and sound abilities. This section discusses
some of the basic alterations necessary to upgrade a ProDOS 8 application for native mode
execution under ProDOS 16 on the Cortland.

Because ProDOS 16 closely parallels ProDOS 8 inJunction names and calling structure, it
is not difficult to change system calls from one ProDOS to the other. But several other
aspects of your program also must be redesigned if it is to run in native mode under
ProDOS 16. Depending on the program's size and structure and the new features you wish
to install, those changes may range from minor to drastic.

Memory management

Because the Cortland supports segmented load files, one of the first decisions to make is
whether and how to segment the program (both the original program and any added parts),
and where in memory to put the segments.

To help decide where in memory to place pieces of your program, consider that execution
speed is related to memory loacation: banks $ED and $El are slow memory, and all the
other banks are fast memory (see Figure 3-1). Those parts of your program that are'
executed most often should probably go into fast memory, while less-used parts and data
segments may be appropriate in slow memory. Program segments that make heavy use of
I/O instructions might work best in slow memory; however,performance testing of the
completed program is the only way to accurately determine where segments should go.

Bank zero is available for stack, direct page, and whatever other code or data your program
wants in that space. Bank zero space is limited, however, and other software will need
parts of it also. Still, bank zero's nearly 32K of total available direct-page/stack space is
much larger than the 512 bytes available for stack and zero page under ProDOS 8.

Memory mana'gement methods are completely different under ProDOS 16 than under
proDOS 8. If your ProDOS 8 program manages memory by allocating its own memory
space and marking it off in the global page bit map, the ProDOS 16 version must be altered
so that it requests all needed space from the Memory Manager. Whereas ProDOS 8 does
not check to see if you are using only your marked-off space, the Memory Manager under

Beta Draft 59 8/11/86



/

Cortland ProDOS 16 Reference

ProDOS 16 will not assign to your program any part of memory that has already been
allocated.

Hardware configuration

ProDOS 8 applications run only in 6502 emulation mode on the Cortland. That does not
mean that applications converted to run under ProDOS 16 must necessarily run in native
mode. There are at least three configurations possible:

• The program may run in emulation mode, but make ProDOS 16 calls.

• The program may run in native mode with the m- and x-bits set. The accumulator
and index registers will remain 8 bits wide.

• The program may run in full native mode (m- and x-bits cleared).

Modifying a program for the fIrst confIguration probably involves the least effort, but
returns the least benefit.

Modifying a program to run in full native mode is the most diffIcult, but it makes best use
of all Cortland features.

Converting system calls

For most ProDOS 8 calls, there is an equivalent ProDOS 16 call with the same name. Each
call block must be modified for ProDOS 16: the JSR replaced with a JSL, the call number
fIeld made 2 bytes long, and the parameter list pointer made 4 bytes long. The only other
conversion required is the reconstruction of the parameter block to the ProDOS 16 format.

For other ProDOS 8 calls, the ProDOS 16 equivalent performs a slightly different task, and
the original code will have to be changed to account for that. For example, in ProDOS 8 an
ON_LINE call can be used directly to determine the names of all online volumes; in
ProDOS 16 a succession of VOLUME calls is required. Refer to the detailed descriptions in
Chapters 9 through 13 to see which ProDOS 16 calls are different from their ProDOS 8
counterparts.

Still other ProDOS 8 calls have no equivalent in ProDOS 16. They are listed and described
under "Eliminated ProDOS 8 System Calls," in Chapter 1. If your program uses any of
these calls, they will have to be replaced as shown.

Modifying interrupt handlers

If you have written an interrupt handling routine, it needs to be updated to conform with the
ProDOS 16 interrupt handling conventions (Chapter 7). There are very few chaI}ges

. necessary: making it return with an RTL rather than an RTS may be the only modifIcation
you need.

Beta Draft 60 8/11/86



ProDGS 16: Chapter 6

Compilation/assembly

Once your source code has been modified and augmented as desired, you need to
recompile/reassemble it. You must use an assembler or compiler that produces object files
in Cortland Object Module Format (OMP); otherwise the program cannot be properly
linked and loaded for execution. Using a different compiler or assembler may mean that, in
addition to modifying your program code, you might have to change some assembler
directives to follow the syntax of the new assembler.

If you have been using the EDASM assembler, you will not be able to use it to write
Cortland programs. The Cortland Programmer's Workshop is a set of development
programs that allow you to produce and edit source files, assemble/compile object files,
and link them into proper OMF load files. See "Cortland Programmer's Workshop" in this
chapter.

After your revised program is linked, assign it the proper Cortland application file type
($B3-$BE).

Stack and direct page

The fixed stack and zero-page locations provided for your program by ProDOS 8 are not
available under ProDOS 16. You may either let ProDOS 16 assign you a default 1,024
byte space, or you may defme a direct-page/stack segment in your object code. In either
case, the segment may be anywhere in bank $00. See "Stack and Direct Page," in this
Chapter.

Cortland Programmer's Workshop
The Cortland Programmer's Workshop (CPW) is a powerful set of development programs
designed to facilitate the creation of Cortland applications. If you are planning to write
programs for the Cortland, CPW will make your job much easier. The Workshop includes
the folowing components: '

• Shell

• Editor

• Linker

• Debugger

• Assembler

• C Compiler

All these components work together (under the Shell) to speed the writing, compiling or
assembling, and debugging of programs. The Shell acts as a command interpreter and an
interface to ProDOS 16, providing several operating system functions and file utilities that
can be called by users and by programs running under the Shell.

See the following manuals for more information on the Cortland Programmer's Workshop:

Beta Draft 61 8/11/86



/

Cortland ProDOS 16 Reference

• Cortland Programmer's Workshop Reference (describes the Shell, Editor, Linker,
and Debugger)

• Cortland Programmer's Workshop Assembler Reference

• Cortland Programmer's Workshop C Reference

• Cortland Programmer's Workshop Pascal Reference

Human Interface Guidelines
All people who develop application programs for Apple computers are strongly encouraged
to follow the principles presented in the Apple Human Interface Guidelines. That manual
describes the Desktop Interface through which the computer user communicates with
his computer and the applications running on it. This section briefly outlines a few of the
human interface concepts; please refer to the manual for specific design information.

The Apple Desktop Interface, first introduced with the MacintoshTM computer, is designed
to appeal to an audience of nonprogrammers. Whatever the purpose or structure of your
application, it will comunicate with the user in a consistent, standard, and non-threatening
manner if it adheres to the Desktop Interfage standards. These are some of the basic
principles:

Human control: Users should feel that they are controlling the program, rather than
the reverse. Give them clear alternatives to select from, and act on their selections
consistently.

Dialog: There should be a clear and friendly dialog between human and computer.
Make messages and requests to the user in plain English.

Direct Manipulation and Feedback: The user's physical actions should produce
physical results. When a key is pressed, place the corresponding letter on the screen.
Use highlighting, animation, and dialog boxes to show users the possible actions and
their consequences.

Exploration: Give the user pennission to test out the possibilities of the program
without worrying about negative consequences. Keep error messages infrequent.
Wam the user when risky situations are approached.

Graphic design: Good graphic design is a key feature of the guidelines. Objects on
the screen should be simple and clear, and they should have visual fidelity (that is, they
should look like what they represent). Icons andpalettes are common graphic elements
that need careful design.

Avoiding modes: a mode is a portion of an application that the user has to formally
enter and leave, and that restricts the operations that can be performed while it's in
effect. By restricting the user's options, modes reinforce the idea that computers are
unnatural and unfriendly. Use modes sparingly.

Device-independence: Make your program as hardware-independent as possible.
.Don't bypass the tools and resources in ROM-your program may become
incompatible with future products and features.

Beta Draft 62 8/11/86



ProDDS 16: Chapter6

Consistency: As much as possible, all applications sould use the same interface.
Don't confuse the user with a different interface for each program.

Evolution: Consistency does not mean that you are restricted to using existing
desktop features. New ideas are essential for the evolution of the Human Interface
concept. If your application has a feature that is described in Human Interface
Guidelines, you should implement it exactly as described; if it is something new, make
sure it cannot be confused with an existing feature. It is better to do something
completely different than to half agree with the guidelines.

Beta Draft 63 8/11/86



Cortland ProDGS 16 Reference

Beta Draft 64 8/11/86



Chapter 7

Adding Routines to ProDOS 16

This chapter discusses device-handling routines that may be used with ProDOS 16.
Because such routines are directly connected to ProDOS 16 and interact with it at a low
level, they are essentially transparent to applications and can be considered "part of'
ProDOS 16. Two types of routines are discussed: interrupt handlers and block device
(disk) drivers.

Interrupt handlers
The Cortland has extensive firmware interrupt support (see Con/cind Firmware Reference).
In addition, ProDOS 16 supports up to 16 user-installed interrupt handlers (see Chapter 5).
If you write an interrupt handler, it should follow the conventions described here. Note
also the precautions you must take if your handler makes operating system calls.

Interupt handler conventions

Interrupt handling routines written for the Cortland must follow certain conventions. The
interrupt dispatcher will set the following machine state before passing control to an
interrupt handler:

e = 0
m=O
x = 0
i = 1
c = 1
speed = high

Before returning to ProDOS 16, the interrupt handler must restore the machine to the
following state:

e =~O

m=O
x = 0
i = 1
speed =high

In addition the c flag must be cleared (= 0) if the handler serviced the interrupt, and set (=
1) if the handler did not service the interrupt. The handler must return with an RTL
instruction.

Beta Draft 65 8/11/86



Conland ProDOS 16 Reference

When an interrupt occurs, ProDOS 16 successively polls the installed interrupt handlers
until one of them services it, as indicated by the value of the c flag when the routine returns
to ProDOS 16. ProDOS 16 then switches back to emulation mode and performs an RT I to
the Cortland fmnware interrupt handling system. If no handler services the interrupt, it is
an unclaimed interrupt (see Chapter 4).

Installing interrupt handlers

Interrupt handlers are installed with the ALLOC INTERRUPT call and removed with the
DEALLOC_INTERRUPT call. The ProDOS 16"1nterrupt dispatcher maintains an interrupt
vector table, an array of up to 16 vectors to interrupt handlers. As each successive
ALLOC_ INTERRUPT call is made, the dispatcher adds another entry to the end of the
table. Each time a DEALLOC INTERRRUPT call is made to delete a vector from the table,
the remaining vectors are moved toward the beginning of the array, filling in the gap.
Interrupt handling routines are polled by ProDOS 16 in the order in which their vectors
occur in the interrupt vector table.

There is no way to reorder interrupt vectors except by allocating and deallocating interrupts.
Interrupts that occur often or require fast service should be allocated first, so their vectors
will be near the beginning of the interrupt vector table. If you need extremely fast interrupt
service, install your interupt handler directly in the Cortland fmnware interrupt dispatcher,
rather than through ProDOS 16. See Cortland Firmware Reference for further information.

Be sure to enable the hardware generating the interrupt only after the routine to handle it is
allocated; likewise, disable the hardware before the routine is deallocated. Otherwise, a
fatal unclaimed interrupt error may occur (see "Unclaimed Interrupts" in Chapter 4).

Making operating system calls during interrupts

ProDOS 16 is not reentrant. That is, it does not save its own state when interrupted. It
therefore is illegal to make an operating system call while another operating system call is in
progress; if a call is attempted, ProDOS 16 will return an error (number $06, "ProDOS is
busy").

For applications this is not a problem; the operating system is almost always free to accept a
call from them. Only routines that are started through interrupts (such as interrupt handlers
and desk accessories) need to be careful not to call ProDOS 16 while it is busy.

If an interrupt handler needs to make an operating system call, it must

1. fmd out if the operating system is busy

2. if so, defer itself temporarily

3. return control to the operating system so that it may complete the current call

4. regain control and make its own system call

The System Scheduler, part of a ROM-based tool, allows interrupt handlers to follow
these procedures. See Cortland Toolbpx Reference for detailed information.

Beta Draft 66 8/11/86



ProDGS 16: Chapter 7

Device drivers
If a disk drive supplied by another manufacturer is to work with ProDOS f6, it must look
and act (to the operating system) just like a drive supplied by Apple Computer. Its boot
ROM must have certain values in certain places, and its driver routine must use certain
direct-page locations for its call parameters.

Note: Because ProDOS 16 does not support character devices, only block device
drivers are considered here.

Block device protocols

Like ProDOS 8, ProDOS 16 supports only one block I/O convention (the ProDOS
protocol). Two other protocols, the Smartport and Extended Smartport protocols, are
supported only to the extent that ProDOS 16 maintains their entry point; ProDOS 16 must
do this because the entry point is part of the ProDOS protocol.

The current ProDOS block device I/O protocol is described in the following section. For
compatibility purposes, that protocol is supported in the Cortland; when an application uses
the protocol, ProDOS 16 makes the extra block moves necessary for multibank operation.

Note: In following text, ProDGS refers to both ProDOS 16 and ProDOS 8.
Where a certain feature applies only to one or the other, ProDGS 16 or ProDGS 8 is
specified explicitly.

ProDGS block device protocoJ

ROM code conventions

During startup, ProDOS searches for all active block storage devices. For slot n, if it finds
the following three bytes in that slot's ROM, ProDOS assumes it has found a disk drive:

$Cn01 = $20
$Cn03 = $00
$CnOS = $03

ProDOS then checks th~value of the byte at location $CnFF:

• If CnFF = $00, ProDOS assumes it has found a Disk II with 16-sector ROMs and
marks its internal device driver table (ProDOS 16) or the device driver table in the.
ProDOS global page (ProDOS 8) with the address of the Disk II driver routines. The
Disk II driver routines are part of ProDOS and support any drive that emulates
Apple's 16-sector Disk II (280 blocks, single volume, and so on; see
***reference?***).

• If CnFF =$FF, ProDOS assumes it has found a Disk II with 13-sector ROMs.
Because ProDOS does not support that format, it skips over the drive and continues
its search.

Beta Draft 67 8/11/86



ProDGS slot and drive
slot 5, drive 1
slot 5, drive 2
slot 2, drive 1
slot 2, drive 2

Cortland ProDOS 16 Reference

• If ProDOS finds any value other than $00 or $FF at $CnFF, it assumes it has found
an intelligent disk controller. If, in addition, the status byte at $CnFE indicates that the
device supports READ and STATUS requests, ProDOS marks the device table
(ProDOS 16) or global page (ProDOS 8) with a device-driver address whose high
byte is equal to $Cn and whose low byte is equal to the value found at $CnFF. In
other words, the value at $CnFF is the adddress (offset from $CnOO) of the beginning
of the driver routine for slot n..

The special locations in ROM are:

$CnFC-CnFD The total number of blocks on the device. This information is used
for writing the disk's bit map and directory header after formatting. If
the value at this location is $0000, the number of blocks must be
obtained by making a STATUS call to the device.

$CnFE The device's status byte. Bits 0 and 1 must be set or ProDOS will not
install the driver vector in the global page.

Bit no. Significance if set (=1)
7 the medium is removable
6 the device is interruptable
5-4 the number of volumes on the device (0 to 3)
3 the device supports formatting
2 the device can be written to
1 the device can be read from
o the device's status can be read

$CnFF The low bye of the driver vector (the entry point to the driver routine).
ProDOS places $CnOO plus the value of this byte in the global page.

Calls to the Driver

The only calls ProDOS makes to the disk driver are STATUS, READ, WRITE, and
FORMAT. On receiving the STATUS call the driver should perform a check to verify that
the device is ready for a READ or WRITE:

• If the device is not ready, the driver should set the carry bit and return the appropriate
error code in the accumulator.

• If the device is ready, the driver should clear the carry, place a zero in the
accumulator, and return the number of blocks on the dev~ce in the X and Y registers
(low byte in X, high byte in Y).

If you wish to install more than two drives or volumes per slot, you may do so by
installing a Smartport card in slot 5 (Apple H Plus, IIe, Hc) or by chaining them to port 5
(the Smartport port) on a Cortland. The Smartport card or port will accept up to 4 units,
mapped as follows:

Unit number
Smartport 1
Smartport 2
Smartport 3
Smartport 4

Beta Draft 68 8/11/86



ProDOS 16: Chapter 7

Call parameters

Call parameters are passed by ProDOS to the device driver at the following zero-page
locations:

Address

$42

$43

$44-$45

$46-$47

Parameter

command number:

unit number:

buffer pointer:

block number:

Explanation

0= STATUS request
1 =READ request
2 =WRITE request
3 = FORMAT request

The unit number is a byte value with the
following format:

Bit: I 7 6 j 5 !4 3! 2 ! 1 Ia I
Value: IDr Slot (not used) I

where
Dr = drive number (0 or 1)
Slot =slot number (1-7)

The address of the start of a 512-byte buffer
in memory, to transfer the data to or from.

The block on disk to transfer the data to or
from.

Format Note: the FORMAT code in the driver need only lay down whatever
address marks may be required. It is the responsibility of the calling routine to
write the virgin (empty) directory and bit map for the appropriate operating system.

Error codes

The device driver should repon errors by setting the carry flag and loading the error code
into the accumulator. Include at least these error codes:

Error Number Message
$27 I/O error
$28 No device connected
$2B Write-protected

Beta Draft 69 8/11/86



Cortland ProDOS 16 Reference

Beta Draft 70 8/11/86



Part II

ProDOS 16 System Call Reference

This part of the manual describes the ProDOS 16 system calls in detail. The calls are
grouped into five categories:

• File housekeeping calls
• File access calls
• Device calls
• Environment calls
• Intenuptcontrolcalls

(Chapter 9)
(Chapter 10)
(Chapter 11)
(Chapter 12
(Chapter 13)

Chapter 8 shows how to make the calls, and explains the format for the call descriptions in
Chapters 9 through 13. Chapter 14 is a complete list of ProDOS 16 error codes.

Beta Draft 71 8/11/86



Beta Draft 72 8/11/86



Chapter 8

Making ProDOS 16 Calls

Any independent program in the Cortland that makes system calls is known as a ProDOS
16 calling program or caller. The current application, a desk accessory, and an
interrupt handler are examples of potential callers. A ProDOS 16 caller makes a system call
by executing a system call block. The call block contains a pointer to a parameter
block. The parameter block is used for passing information between the caller and the
called function; additional information about the call is reflected in the state of certain
hardware registers. This chapter discusses these aspects of system calls and compares
them with the calling. method used in ProDGS 8.

Note: The phrase system call as used here is synonymous with operating system
call or ProDGS 16 call, and is equivalent to "MLI call" for ProDOS 8. It includes all
calls to the operating system for accessing system infonnation and manipulating
open or closed fIles. It is not restricted to what are called "system calls" in the
ProDGS Technical Reference Manual.

The call block

A system call block consists of a JSL Gump subroutine long) to the ProDOS 16 entry
point, followed by a 2-byte system call number and a 4-byte parameter block pointer.
ProDOS 16 performs the requested function, if possible, and returns execution to the
instruction immediately following the call block.

Any new applications written for Cortland under ProDOS 16 must use the system call
block format. When making the call, the caller may have the processor in emulation mode
or full native mode or any state in between (see Technical Introduction to the Cortland).
The call block looks like this:

Beta Draft 73 8/11/86



Cortland ProDOS 16 Reference

PRODOS

ERROR

PARMBLOCK

GEQU $E100AB

JSL PRODOS 8
DC I2 'CALLNUM'
DC I4 'PARMBLOCK'
BCS ERROR

fixed entry vector

Dispatch call to ProDOS 16 entry
2-byte call number
4-byte parameter block pointer
If carry set, go to er~or handler
otherwise, continue...

error handler

; parameter block

The call block itself consists of only the JSL instruction and the DC assembler directives.
The BCS instruction in this example is a conditional branch to an error handler called
ERROR.

AJSL rather than a JSR is required because theJSL uses a 3-byte address, allowing a
caller to make the call from anywhere in memory. The JSR instruction uses only a 2-byte
address, restricting it to jumps and returns within the current (64K) block of memory.

The parameter block

A parameter block is a specifically formatted table that occupies a set of contiguous bytes in
memory. It consists of a number of fields that hold information that the calling program
supplies to the function it calls, as well as information returned by the function to the caller.

Every ProDOS 16 call requires a valid parameter block (p ARMBLOCK in the example just
given), referenced by a 4-byte pointer in the call block. The caller is responsible for
constructing the parameter block for each call it makes; the list may be anywhere in
memory. Formats·for individual parameter blocks accompany the detailed system call
descriptions in Chapters 9 through 13.

Types of parameters

Each field in a parameter block contains a single parameter. There are three types of
parameters: values, results, and pointers. Each is either an input to ProDOS 16 from the
caller, or an output from ProDOS 16 to the caller.

• A value is a numerical quantity, 1 or more words long, that the caller passes to
ProDOS 16 through the parameter block. It is an input parameter.

• A result is a numerical quantity, 1 or more words long, that ProDOS 16 places into
the parameter block for the caller to use. It is an output parameter.

Beta Draft 74 8/11/86



ProDOS 16: Chapter8

• A pointer is the 4-byte address of a location containing data, code, an address, or
buffer space in which ProDOS 16 can receive or place data. The pointer itself is an
input for all ProDOS 16 calls; the data it points to may be either input or output.

A parameter may be both a value and a result. Also, a pointer may designate a location that
contains a value, a result, or both.

Note: A handle is a special type of pointer; it is a pointer to a pointer. It is the 4
byte address of a location that itselfcontains the address of a location containing
data, code, or buffer space. ProDOS 16 uses a handle parameter only in the OPEN
call (Chapter 10); in that call the handle is ,an output (result).

Parameter block format

All parameter fields that contain block numbers, block counts, file offsets, byte counts, and
other me or volume dimensions are 4 bytes long. Requiring 4-byte fields ensures that
ProDOS 16 will accommodate futQre large devices using guest file systems.

All parameter fields contain an even number of bytes, for ease of manipulation by the16-bit
65816 processor. Thus pointers, for example, are 4 bytes long even though 3 bytes are
sufficient to address any memory location. Wherever such extra bytes occur they must be
set to zero by the caller; if they are not, compatibility with future versions of ProDOS 16
will be jeopardized.

Pointers in the parameter block must be written with the low byte of the low word at the
lowest address.

Comparison of ProDOS 16 parameter blocks with their ProDOS 8 counterparts reveals that
in some cases the order of parameters is slightly different. These alterations have been
made to facilitate sharing a single parameter plock among a number of calls. For example,
most file access calls can be made with a single parameter block for each open file; under
ProDOS 8 this sharing of parameter blocks is not possible.

Important: A parameter's field width in a ProDOS 16 parameter block is often
very different from the range of permissible values for that parameter. The fact that
all fields are an even number of bytes is one reason. Another reason is that certain
fields are larger than presently needed in anticipation of the requirements of future
guest file systems. For example, the ProDOS 16 CREATE call's parameter block
includes a 4-byte aux type field, even though, on disk, the aux type field is
only 2 bytes wide (see"Format of Directory Files" in Appendix A)-: The two high
order bytes in the field must therefore always be zero.

Ranges of permissible values for all parameters are given as part of the system call
descriptions in the following chapters. When coding a parameter block, note
carefully the range of permissible values for each parameter, and make sure that the
value you assign is within that range.

Beta Draft 75 8/11/86



Cortland ProDOS 16 Reference

Setting up a parameter block in memory

Each ProDOS 16 call uses a 4-byte pointer to point to its parameter block, which may be
anywhere in memory. All applications must obtain needed memory from the Memory
Manager, and therefore cannot know in advance where the memory block holding such a
parameter block will be.

There are two ways to set up a ProDOS l6 parameter block in memory:

1. Code the block directly into the program, referencing it with a label. This is the
simplest and most typical. way to do it. The parameter block will always be correctly
referenced, no matter where in memory the. program code is loaded.

2. Use Memory Manager and System Loader calls to place the block in memory:

a. Request a memory block of the proper size from the Memory Manager. Use the
procedures described in Cortland Toolbox Reference. The block should be
either nonmovable or locked.

b. Obtain a pointer to the block, using the memory handle returned by the Memory
Manager. Dereference the block's memory handle (that is, read its contents
and use that value as a pointer to the block).

c. Set up your parameter block, starting at the address pointed to by the pointer
obtained in step (b).

Register values

There are no register requirements on entry to a ProDOS 16 call. ProDOS 16 saves and
restores all registers except the accumulator (A) and the processor status register (P); those
two registers store information on the success or failure of the call. On exit, the registers
have these values:

A zero if call successful; if nonzero, number is the error code
X unchanged
Y unchanged
S unchanged
D unchanged
P {see below}
DB unchanged
PB unchanged
PC address of location following the parameter block pointer

"Unchanged" means that ProDOS 16 initially saves, and then restores when finished, the
value the register had just before the JSL PRODOS 8 instruction.

Beta Draft 76 8/11/86



ProDOS 16: Chapter8

On exit, the processor status register (P) bits are

n undefmed
v undefmed
m unchanged
x unchanged
d unchanged
i unchanged
z undefmed
c zero if call successfull, 1 if not
e unchanged

Note: ProDOS 16 treats several flags differently than ProDOS 8. The nand z
flags are undefined here; under ProDOS 8, they are set accordmg to the value m the
accumulator. Here the caller may check the c flag to see if an error has occurred;
under ProDOS 8, both the c and z flags determine error status.

Comparison with the ProDOS 8 call method
With the exceptions noted in Chapter 1, ProDOS 16 provides an identical call for each
ProDOS 8 system call. The ProDOS 16 call performs exactly the same function as its
ProDOS 8 equivalent, but it is m a format that fits the Cortland environment:

• As m ProDOS 8, the system call is issued through a subroutme jump to a fixed
system entry point. However, the jump mstruction is a JSL (long jump to
subroutine) rather than a JSR, and it is to a.location in bank $El, rather than bank
$00.

• The parameter block pointer m the system call is 4 bytes long rather than 2, so the
parameter block may be anywhere m memory.

• All memory pointer fields within the parameter block are also 4 bytes long, so they
may reference data anywhere in memory.

• AliI-byte parameters are extended to 1 word in length, for efficient manipulation in
16-bit processor mode.

• All file-position (such as EOF) and block-specification (such as block number or
block count) fields in the parameter block are 4 bytes long, in anticipation of future
"guest file systems" that may support files larger than 16 Mb or volumes larger than
32Mb.

Note: Although only 3 bytes are needed for memory pointers and block numbers
in the Cortland, 4-byte pomters are used for ease of programming. The high byte
in each case is reserved and must be zero.

The ProDOS 16 Exerciser
To help you learn to make ProDOS 16 calls, there is a small program called the ProDOS 16
Exerciser included with this manual. It allows you to execute system calls from a menu,

Beta Draft 77 8/11/86



Cortland ProDOS 16 Reference

and examine the results of your calls. It has a hexadecimal memory editor for reviewing
and altering the contents of memory buffers, and it includes a catalog command.

When you use the Exerciser to make a ProDOS 16 call, you first request the call by its call
number and then specify its parameter list, just as if you were coding the call in a program.
The call is executed when you press Return. You may then use the memory editor or
catalog command to examine the results of your call.

Complete instructions for using the ProDOS 16 Exerciser program are in Appendix C.

Format for system call descriptions
The following five chapters list and describe all ProDOS 16 operating system functions that
may be called by an application. They are divided into five categories:

• File housekeeping calls
• File access calls
• Device calls
• Environment calls
• Interrupt control calls

Each description includes these elements:

• the function's name and call number
• a short explanation of its use
• a diagram of its required parameter block
• a detailed description of all parameters in the parameter block
• a list of all possible operating system error messages.

The parameter block diagram accompanying each call's description is a simplified
representation of the parameter block in memory. The width of the diagram represents one
byte; the numbers down the left side represent byte offsets from the base address of the
parameter block. Each parameter field is further identified as containing a value, result, or
pointer.

The detailed parameter description that follows th~ diagram has the following headings:

• Offset: The position of the parameter (relative to the block's base address)

• Label: The suggested assembly-language label for the parameter

• Description: Detailed information on the parameter, including:

parameter name: The full name of the parameter.

size and type: The size of the parameter (word or long word), and its·
classification (value, result, or pointer). A word is 2 bytes; a
long word is 4 bytes.

range of values: The permissible range of values of the parameter. A
parameter may have a range much smaller than its size in
bytes.

Any additional explanatory information on the parameter
follows.

Beta Draft 78 8/11/86



Chapter 9

File Housekeeping Calls

These calls might also be called "closed-fIle" calls; they are made to get and set information
about fIles that need not be open when the calls are made. They do not alter the contents of
the fIles they access.

The ProDOS 16 file housekeeping calls are described in this order:

Number Function Purpose

$01 CREATE creates a new file

$02 DESTROY deletes a fIle

$04 CHANGE PATH changes a fIle's pathname

$05 SET FILE INFO assigns attributes to a file

$06 GET FILE INFO returns a file's attributes

$08 VOLUME returns the volume on a device

$09 SET PREFIX assigns a pathname prefix

$OA GET PREFIX returns a pathname prefix

SOB CLEAR BACKUP BIT zeroes a fIle's backup attribute

Beta Draft 79 8/11/86



Cortland ProDOS 16 Reference

CREATE" ($01)

Every disk file except the volume directory file (and any UCSD Pascal region on a
partitioned disk) must be created with this call. It establishes a new directory entry for an
empty file.

Parameter Block:

o
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

10
11

fa .
fa pathname
fa

fa access

f- file_type .

f-
aux_type

f- storage_type

I- create_date

create_time

pointer

vdue

vdue

vdue

vdue

vdue

vdue

Offset Label

$00-$03 pathname

$04-$05 access

Description

parameter name: pathname
size and type: long word pointer (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the
pathname of the file to create.

parameter name: access
size and type: word value (high-order byte zero)
range of values: $OOOO-$00E3 with exceptions

A word whose low-order byte determines how the file may be
accessed. The access byte's format is

Beta Draft

Bit:

Value:

where D =destroy-enable bit
RN =rename-enable bit
B =backup-needed bit
W =write-enable bit
R =read-enable bit

80 8/11/86



ProDOS 16: Chapter 9

and for each bit, 1 = enabled, 0 = disabled. Bits 2 through 4
are reserved and must always be set to zero (disabled). The
most typical setting for the access byte is $C3 (11000011).

$06-$07 file_type

$08-$OB aux_type

parameter name: fIle type
size and type: word value (high-order byte zero)
range of values: $OOOO-$OOFF

A number that categorizes the me by its contents (such as text
file, binary file, ProDOS 16 system file). Currently defined
me types are listed in Appendix A.

parameter name: auxiliary type
size and type: long word value (high-order word zero)
range of values: $0000 0000-$0000 FFFF

A number that indicates additional attributes for certain fIle
types. DefInitions of all currently recognized auxiliary .types
and a list of the fIle types that use the auxiliary type fIeld are
given in Appendix A.

$OC-$OD storage type parameter name: storage type
- size and type: word value/result (high-order byte zero)

range of values: $OOOO-$OOOD with exceptions

A number that describes the logical organization of the fIle (see
Appendix A):

$00 =inactive entry
$01 = seedling fIle
$02 =sapling fIle
$03 =tree me
$04 =UCSD Pascal region on a partitioned disk
$OD =directory fIle

$01 and $OD are the most typical input values for this fIeld in
the CREATE call; any value in the range $00 through $03 is
automatically converted to an input (and output) of $01.

Note: $OE and $OF are not valid storage types; they are
subdirectory and volume key block identifiers.

$OE-$OF create date parameter name: Creation date
size and type: word value
range of values: limited range

The date on which the fIle was created. Its format is

Bit:

Value:

Beta Draft 81 8/11/86



Cortland ProDOS 16 Reference

If the value in this field is zero, ProDOS 16 supplies the date
obtained from the system clock.

$10-$11 create time parameter name: creation time
size and type: word value
range of values: limited range

Possible ProDGS 16 Errors

$07 ProDOS is busy
$10 Device not found
$27 I/O error
$2B Disk write-protected
$40 Invalid pathname syntax
$44 Path not found
$45 Volume not found
$46 File not found
$47 Duplicate pathname
$48 Volume full
$49 Volume directory full
$4B Unsupported storage type
$52 Unsupported volume type
$53 Invalid parameter
$58 Not a block device
$5A Block number out of range

Beta Draft 82 8/11/86



ProDGS 16: Chapter 9

DESTROY ($02)

This function deletes the file specified by pathname. It removes the fIle's entry from the
directory that owns it and returns the file's blocks to the volume bit map.

Volume directory files, fIles with unrecognized storage types, and open fIles cannot be
destroyed. Subdirectory files must be empty before they can be destroyed.

Parameter Block:

~t__p_at_h_na_m_e__~ po",e,

Offset Label

$00-$03 pathname

Description

parameter name: pathname
size and type: long word pointer (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the
pathname of the fIle to delete.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$10 Device not found
$27 I/O error
$2B Disk write-protected
$40 Invalid pathname syntax
$44 Path not found
$45 Volume not found
$46 File not found
$4A Version error
$4B Unsupported storage type
$4E Access: fIle not destroy-enabled
$50 File is open
$52 Unsupported volume type
$58 Not a block device
$5A Block number out of range

Beta Draft 83 8/11/86



Cortland ProDOS 16 Reference

This function perfonns an intravolume file move. It moves a file's directory entry from
one subdirectory to another within the same volume-the file itself is never moved. The
specified pathname and new pathname may be either full or partial pathnames in the same
volume. See Chapter 5 for an explanation of partial pathnames.

If the two pathnames are identical except for the rightmost me name (that is, if both the old
and new names are in the same subdirectory), this call produces the same result as the
RENAME call in ProDOS 8.

Parameter Block:

pathname pointer

4
56 new-pathname. pointer.7L....... ...J

. Offset Label Description

$00-$03 pathname parameter name: pathname
size and type: long word pointer (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the file's
present pathname.

$04-$07 new_pathname parameter name: new pathname
size and type: long word pointer (high-order byte zero)
range of values: 0000 OOOO-$OOFF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the file's
new pathname.

Possible ProDGS 16 Errors

$07 ProDOS is busy
$27 I/O error
$2B Disk write-protected
$40 Invalid pathname syntax
$44 Path not found
$45 Volume not found
$46 File not found
$47 Duplicate pathname
$4A Version error

Beta Draft 84 8/11/86



$4B Unsupported storage type
$4E Access: fIle not rename-enabled
$50 File is open
$52 Unsupported yolume type
$57 Duplicate volume .
$58 Not a block device

ProDOS 16: Chapter 9

Beta Draft 85 8/11/86



Cortland ProDOS 16 Reference

This function modifies the infonnation in the specified file's directory entry. The call can
be made whether the file is open or closed; however, any changed access attributes are not
recognized by an open file until the next time the file is opened. In other words, this call
does not modify the accessibility of memory-resident infonnation.

Note: ProDOS 16 ignores input values in the create date and
create time fields of this function. -

Parameter Block:

o
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

10
11
12
13
14
15

pathname

· .

· access

· file_type

.
· aux_tvpe

·
· (null field)

create_date

· create_time

· mod_date

mod_time

pointer

vdue

vdue

vdue

vdue

vdue

vdue

vdue

vdue

Offset Label

$00-$03 pathname

$04-$05 access

Description

parameter name: pathname
size and type: long word pointer (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the file's
pathname.

parameter name: access
size and type: word value (high-order byte zero)
range of values: $0000-$00E3 with exceptions

A word whose low-order byte detennines how the file may be
accessed. The access byte's fonnat is

Beta Draft 86 8/11/86



ProDOS 16: Chapter 9

Bit:

Value:

$06-$07 file_type

$08-$OB aux_type

where D =destroy-enable bit
RN =rename-enable bit
B =backup-needed bit
W =write-enable bit
R =read-enable bit

and for each bit, 1 =enabled, 0 = disabled. Bits 2 throm!:h 4
are reserved arid must always be set to zero (disabled). The
most typical setting for the access byte is $C3 (11000011).

parameter name: fIle type
size and type: word value (high-order byte zero)
range of values: $OOOO-$OOFF

A number that categorizes the fIle by its contents (such as text
file, binary file, ProDOS 16 system file). Currently defined
file types are listed in Appendix A.

parameter name: auxiliary type
size and type: long word value (high-order word zero)
range of values: $00000000-$0000 FFFF

A number that indicates additional attributes for certain file
types. Definitions of all currently recognized auxiliary types
and a list of the file types that use the auxiliary type field are
given in Appendix A.

SOC-SOD (null field) parameter name: (null field)
size and type: word value
range of values: (undefined)

Values in this field are ignored.

$OE-$OF create date parameter name: creation date
size and type: word value
range of values: limited range

The date on which the file was created. Its format is

(Values in this field are ignored.)

$10-$11 create time parameter name: creation time
size and type: word value
range of values: limited range

The time at which the file was created. Its format is

Beta Draft 87 8/11/86



Cortland ProDOS 16 Reference

Byte 1 Byte 0

Bit:

Value:

115 14113 12j11! 101918 7 6!51 4 13!21 1 1OI
10 010 Hour a 01 Minute I

$12-$13 mod date

$14-$15 mod time

(Values in this field are ignored.)

parameter name: modification date
size and type: word value
range of values: limited range

The date on which the fIle was last modified. Its fonnat is
identical to the create_date fonnat:

Byte 0

If the value in this field is zero, ProDOS 16 supplies the date
obtained from the system clock.

parameter name: modification time
size and type: word value
range of values: limited range

The time at which the fIle was last modified. Its fonnat is
identical to the create time format:

Byte 1 'Byte 0

Bit:

Value:

115 14 113 12j111 10 19 18 7 61514131211\01
10 010 Hour a 01 Minute I

If the value in this field is zero, ProDOS 16 supplies the time
obtained from the system clock.

Possible ProDGS 16 Errors

$07 ProDOS is busy
$27 I/O error
$2B Disk write-protected
$40 Invalid pathname syntax
$44 Path not found
$45 Volume not found
$46 File not found
$4A Version error

,$4B Unsupported storage type
$4E Access: file not write-enabled
$52 Unsupported volume type
$53 Invalid parameter
$58 Not a block device

Beta Draft 88 8/11/86



ProDOS 16: Chapter 9

This function returns the information that is stored in the specified file's directory entry.
The call can be made whether the fIle is open or closed. However, if you make the
SET FILE INFO call to change the access byte of an open file, the access information
retu.rned byGET FILE INFO may not be accurate until the file is closed.- -

Parameter Block:

o
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

10
11
12
13
14
15
16
17
18
19

- pathname

access

file_type

aux_type

or
fo total_blocks ·
fo storage_type ·

create_date

create_time

mod_date

mod_time ·

'" ·
fo blocks_used

pointer

result

result

result

result

result

result

result

result

result

Offset Label

$00-$03 pathname

$04-$05 access

Description

parameter name: pathname
size and type: long word pointer (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the
pathname..

parameter name: access
size and type: word result (high-order byte zero)
range of values: $0000-$00E3 with exceptions

A word whose low-order byte determines how the file may be
accessed. The access byte's format is

Beta Draft 89 8/11/86



Cortland ProDOS 16 Reference

Bit:

Value:
17 615 413! 2 1 0

ID RNI B ,eseNed W R

$06-$07 file_type

$08-$OB a ux_type

where D =destroy-enable bit
RN =rename-enable bit
B =backup-needed bit
W =write-enable bit
R =read-enable bit

and for each bit, 1 =enabled, 0 = disabled. Bits 2 through 4
are reserved and must always be set to zero (disabled). The
most typical setting for the access byte is $C3 (11000011).

parameter name: fIle type
size and type: word result (high-order byte zero)
range of values: $OOOO-$OOFF

A number that categorizes the fIle by its contents (such as text
file, binary file, ProDOS 16 system fIle). Currently defmed
flle types are listed in Appendix A.

parameter name: auxiliary type
size and type:· long word result (high-order word zero)
range of values: $0000 0000-$0000 FFFF

A number that indicates additional attributes for certain file
types. Definitions of all currently recognized auxiliary types
and a list of the file types that use the auxiliary type field ate
given in Appendix A.

cr

total blocks parameter name: total blocks
- size and type: long word result (high-order byte zero)

range of values: $0000 OOOO-$OOFF FFFF

If the call is for a volume directory file, the total number of
blocks on the volume is returned in this field.

SOC-SOD storage type parameter name: storage type
- size and type: word result (high-order byte zero)

range of values: $OOO0-$OOOD with exceptions

Beta Draft 90 8/11/86



ProDOS 16: Chapter 9

A number that describes the logical organization of the me (see
Appendix A):

$00 =inactive entry
$01 =seedling file
$02 =sapling file
$03 =tree me
$04 =UCSD Pascal region on a partitioned disk
SOD =directory file

Note: $OE and $OF are not valid storage types; they are
subdirectory and volume key block identifiers.

$OE-$OF create_date parameter name: creation date
size and type: word result
range of values: limited range

The date on which the me was created. Its format is

Bit:

Value:

$10-$11 create time parameter name: creation time
size and type: word result
range of values: limited range

The time at which the me was created. Its format is

Bit:

Value:

Byte 0

4 13 12 j1 i 0
Minute

$12-$13 mod date parameter name: modification date
size and type: word result
range of values: limited range

The date on which the file was last modified. Its format is
identical to the create date format:

Bit:

Value:

$14-$15 mod time

Beta Draft

parameter name: modification time
size and type: word result
range of values: limited range

91 8/11/86



/

Cortland ProDOS 16 Reference

The time at which the file was last modified. Its fonnat is
identical to the create time format:

Byte 1 Byte 0

Bit:

Value:
115 14 13 1211111019\8 7 6!5!4!3!2!1!01
10 0 0 Hour 0 01 Minute I

$16-$19 blocks used parameter name: blocks used
size and type: long word result
range of values: $0000 OOOG-$FFFF FFFF

The total number of blocks used by the file. It equals the vallie
of the blocks_used parameter in the file's directory entry.

cr
The total number of blocks used by all fIles on the.volume (if
the call is for a volume directory).

Possible ProDOS 16 Errors

$07 ProDOS is busy
$27 VO error
$40 Invalid pathname syntax
$44 Path not found
$45 Volume not found
$46 File not found
$4A Version error
$4B Unsupported storage type
$52 Unsupported volume type
$53 Invalid parameter
$58 Not a block device

Beta Draft 92 8/11/86



ProDGS 16: Chapter 9

VOLUME ($08)

When given the name of a device, this function returns:

• the name of the volume that occupies that device
• the total number of blocks on the volume
• the current number of free (unallocated) blocks on the volume
• the me system identification number of the volume

The volume name is returned with a leading slash (I).

To generate a list of all mounted volumes (equivalent to calling ON LINE in ProDOS 8
with a unit number of zero), call VOLUME repeatedly with successive device names ( .01,
. D2, and so on). When there are no more online volumes to name, ProDOS 16 returns
error $11 (Invalid device name).

Note: Because ProDOS 16 cannot detect the difference between an empty device
and a nonexistent device, in certain cases it assigns a device name where there is no
device connected, just to make sure it hasn't skipped over an empty device.
Therefore, in making VOLUME calls, you may occasionally find that there are more
"valid" device names than there are devices on line.

Parameter Blo·ck:

o
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

10
11

fo ·
dev_name

vol_name ·

fo
total_blocks

·
free_blocks ·

. file_sys_ld

pointer

pointer

result

result

result

Offset Label

$00-$03 dev name

Description

parameter name: device name
size and type: long word pointer (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the
device name. .

BetaDraft . 93 8/11/86



Cortland ProDOS 16 Reference

$04-$07 vol name parameter name: volume name
size and type: long word pointer (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the
volume name (including a leading slash).

$08-$OB total blocks parameter name: total blocks
- size and type: long word result (high-order byte zero)

range of values: $0000 OOOO-$OOFF FFFF

The total number of blocks the volume contains.

$OC-$OF free_blocks parameter name: free blocks
size and type: long word result (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The number of free (unallocated) blocks in the volume.

parameter name: me system ill
size and type: word result (high-order byte zero)
range of values: $OOOG-$OOFF

A word whose low-order byte identifies the me system to
which the specified me or volume belongs. The currently
defmed file system identification numbers are listed in
Appendix A. They include

a={reserved}
1 = ProDOS/SOS
2 =DOS 3.3
3 = DOS 3.2, 3.1
4 =Apple II Pascal
5 =Macintosh
6 =Macintosh (HFS)
7 = LISA
8 =Apple CP/M
9-255 = (reserved}

Possible ProDOS 16 Errors

$07 ProDOS is busy
$10 Device not found
$27 I/O error
$2E Disk switched: mes open
$45 Volume not found
$4A Version error
$52 Unsupported volume type
$55 Volume control block full
$57 Duplicate volume
$58 Not a block device

Beta Draft 94 8/11/86



ProDOS 16: Chapter 9

SET_PREFIX ($09)

This function assigns the indicated directory to any of 8 prefixes. The prefixes are
designated by a number followed by a slash: 0/, 1/, 2/, ... , 7/. Three prefix
designators have default values:

0/ is initially the ProDOS 16 system prefix-the name of the volume from which
ProDOS 16 was booted.

1 / is initiany the application subdirectory-the pathname of the subdirectory
containing the currently running application.

2 / is initially the system library subdirectory-the subdirectory that contains the
library modules used by the currently running application.

At any time, an application may change the pathnames assigned to any of the'prefixes
(including 0/, 1/, or 2/). The pathname of the indicated directory specified in the
SET_PREFIX call may be either a full or partial pathname-it itself may begin with a
prefix designator. Specifying a pathname with a length of zero sets the designated prefix to
null.

Note: ProDOS 16 does not check to make sure that the designated volume is on
line when you specify a prefix; it only checks the prefix string for correct syntax.

Parameter Block:

• vdue

prefix

o
1
21---------1

3

41-
51.--- ....

pointer

Offset Label Description

$0G-$01 prefix_num

$02-$05 prefix

parameter name: prefix number
size and type: word value
range of values: $0000-$0007

One of the 8 prefix numbers, in binary (without a terminating
slash).

parameter name: prefix
size and type: long word pointer (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing a
directory pathname.

Beta Draft 95 8/11/86



/

Cortland ProDGS 16 Reference

Possible ProDOS 16 Errors

$07 ProDOS is busy
$40 Invalid pathname syntax

Beta Draft 96 8/11/86



ProDOS 16: Chapter 9

This function returns any of the current prefIxes (specified by number), placing it in the
buffer pointed to by prefix. The returned prefix is bracketed by slashes (such as
/APPLE/ or /APPLE/BYTES/). If the requested prefix has been set to null (see
SET_PREFIX), a count of zero is returned as the length byte in the prefix buffer.

Parameter Block:

a prefix_num • vdue
1
2
3 • .
4

prefix pointer

5

Offset Label

$00-$01 prefix_num

$02-$05 prefix

Description

parameter name: prefix number
size and type: word value
range of values:, $0000-$0007

One of the 8 prefix numbers, in binary (without a terminating
slash).

parameter name: prefIx
size and type: long word pointer (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The long word address of a buffer, in which ProDOS 16
places a length byte followed by an ASCII string representing
a directory pathname.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$53 Parameter out ofrange

Beta Draft 97 8/11/86



/

Cortland ProDOS 16 Reference

CLEAR BACKUP BIT (SOB)

This is the only call that will clear the backup bit in a file's access byte. Once cleared, the
bit indicates that the file has not been altered since the last backup. ProDOS 16
automatically resets the backup bit every time a file is altered.

Important: Only disk backup programs should use this function!

Parameter Block:

n__p_at_h_na_m_e__~ poo~r

Offset Label

$00-$03 pathname

Description

parameter name: pathname
size and type: long word pointer (high-order byte zero)
range 9f values: $0000 OOOO-$OOFF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the file's
pathname.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$40 Invalid pathname syntax
$44 Path not found
$45 Volume not found
$46 File not found
$4A Version error
$52 Unsupported volume type
$58 Not a block device

Beta Draft 98 8/11/86



Chapter 10

File Access Calls

These might be called "open-fIle" calls. They are made to access and change the
.infonnation within fIles, and therefore in most cases the files must be open before the calls
can be made.

The ProDOS 16 file access calls are described in the following order:

Number Function Purpose

$10 OPEN prepares fIle for access

$11 NEWLINE enables newline read mode

$12 READ transfers data from file

$13 WRITE transfers data to fIle

$14 CLOSE ends access to fIle

$15 FLUSH empties I/O buffer to file

$16 SET MARK sets current position in file

$17 GET MARK returns current position in file

$18 SET EOF sets size of fIle

$19 GET-EOF returns size of file

$lA SET LEVEL sets system fIle level

$lB GET LEVE;L returns system file level

Beta Draft 99 8/11/86



/

Con/and ProDOS 16 Reference

OPEN ($10)·

This function prepares a file to be read from or written to. It creates a file control block
.(FCB) that keeps track of the current characteristics of the file specified by pathname. It
sets the current position in the me (MARK) to zero, and returns a reference number
(ref num) for the me; subsequent file access calls must refer to the me by its reference
number. It also returns the address of a 1024-byte I/O buffer used by ProDOS 16 for
reading from and writing to the file.

Up to 8 mes may be open simultaneously.

Parameter Block:

o
1
2
3
4
5
6
7
8
9

reCnum

-- pathname

-
la_bUffer

I-

result

pointer

result

Offset Label

$00-$01 ref num

$02-$05 pathname

$06-$09 io buffer

Description

parameter name: reference number
size and type: word result (high-order byte zero)
range of values: $OOOO-$OOFF

An identifying number assigned to the file by ProDOS 16. It
is used in place of the pathname in all subsequent file access
calls.

parameter name: pathname
size and type: long word pointer (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the
pathname of the file to open.

parameter name: I/O buffer
size and type: long word result (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

A memory handle. It points to a location where the address of
the I/O buffer allocated by ProDOS 16 is stored.

Beta Draft 100 8/11/86



Possible ProDOS 16 Errors

$07 ProDOS is busy
$27 I/O error
$40 Invalid pathname syntax
$42 File control block table full
$44 Path not found
$45 Volume not found
$46 File not found
$4A Version error
$4B Unsupported storage type
$4E Access: fIle not read-enabled
$50 File is open
$52 Unsupported volume type
$54 Out of memory
$57 Duplicate volume

Beta Draft 101

ProDOS 16: Chapter 10

8/11/86



Cortland ProDGS 16 Reference

NEWLINE ($11)

This function enables or disables the newline read mode for an open file. When newline
is disabled, a READ call (described next) terminates only when the requested number of
characters has been read (unless the end of the file is encountered first). When newline is
enabled, the READ will also terminate when a newline character (as defined in the parameter
block) is read.

When a READ call is made and newline mode is enabled,

1. Each character read in is [lIst transferred to the user's data buffer.

2. The character is ANDed with the low-order byte of the newline enable mask
(specified in the NEWLINE call's parameter block).

3. The result is compared with the low-order byte of the newline character.

4. If there is a match, the read is terminated.

The enable mask is typically used to mask off unwanted bits in the character that is read in.
For example, if the mask.value is $7F (binary 0111 1111), a newline character will be
correctly matched whether or not its high bit is set. If the mask value is $FF (1111 1111),
the character will pass through the AND operation unchanged.

Newline read mode is disabled by setting the enable mask to $00.

Parameter Block:

o
1
2
3
4
5

I- reCnum

enable_mask

newline_char

result

vdue

vdue

Offset Label

.
$00-$01 ref num

Description

parameter name: reference number
size and type: word result (high-order byte zero)
range of values: $OOOO-$OOFF

The identifying number assigned to the file by the OPEN
function.

$02-$03 enable mask parameter name: enable mask
size and type: word value (high-order byte zero
range of values: $OOOO-$OOFF

The current character is ANDed with the low order byte of this
word.

Beta Draft 102 8/11/86



ProDOS 16: Chapter 10

$04-$05 newline char parameter name: newline character
- size and type: word value (high-order byte zero)

range of values: $OOOO-$OOFF

Whatever character occupies the low-order byte of this field is
defmed as the newline character.

Possible ProDGS 16 Errors

$07 ProDOS is busy
$43 Invalid reference number

BetaDrqft

./

103 8/11/86



Con/cmd ProDGS 16 Reference

READ ($12)

When called, this function attempts to transfer the requested number of bytes (starting at the
current position of the fIle specified by ref_num) into the buffer pointed to by data_buffer.
When fmished, the function returns the number of bytes actually transferred.

No more than 16,777,215 ($FF FF FF) bytes may be read in a single ~all.

Parameter Block:

o
1
2
3
4
5
6
7
8
9
A
B
C
D

· reCnum ·

·
data_buffer

· request_count

· ·

· ·
· transfer_count

vdue

pointer

vdue

result

Offset Label

$00-$01 ref num

Description

parameter name: reference number
size and type: word value (high-order byte zero)
range of values: $OOOO-$OOFF

The identifying number assigned to the fIle by the OP EN
function.

$02-$05 data buffer parameter name: data buffer
size and type: long word pointer (high-order byte zero)

- range of values: $0000 OOOO-$OOFF FFFF

The long word address of a buffer. The buffer should be large
enough to hold the requested data.

$06-$09 request_count parameter name: request count
size and type: long word value (high-order byte zero)
range of values: ·$0000 OOOO-$OOFF FFFF

The number of bytes to be transferred.

$OA-$OD transfer count parameter name: transfer count
- size and type: long word result (high-order byte zero)

range of values: $0000 OOOO-$OOFF FFFF

Beta Draft 104 8/11/86



ProDOS 16: Chapter 10

The actual number of bytes transferred.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$27 I/O error
$43 Invalid reference number
$4C EOF encountered (Out of data)
$4E Access: fIle not read-enabled

BetaDrajt 105 8/11/86



Con/and ProDOS 16 Reference

WRITE ($13)

When called, this function attempts to transfer the specified number of bytes from the
buffer pointed to by data_buffer to the file specified by ref_num (starting at the current
position in the file). When finished, the function returns the number of bytes actually
transferred.

No more than 16,777,216 ($FF FF FF) bytes may be written in a single call.

Parameter Block:

o
1
2
3
4
5
6
7
8
9
A
B
C
D

I- reCnum

data_buffer
l-

I-
I- request_count

transfer_count

value

pointer

value

result

Offset Label

$00-$01 ref num

Description

parameter name: reference number
size and type: word value (high-order byte zero)
range of values: $OOOO-$OOFF

The identifying number assigned to the fIle by the OP EN
function.

$02-$05 data buffer parameter name: data buffer
size and type: long word pointer (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The long word address of a buffer. The buffer should be large
enough to hold the requested data.

$06-$09 request_count parameter name: request count
size and type: long word value (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The number of bytes to be transferred.

$OA-$OD transfer count parameter name: transfer count
- size and type: long word result (high-order byte zero)

range of values: $0000 OOOO-$OOFF FFFF

Beta Draft 106 8/11/86



ProDOS 16: Chapter 10

The actual number of bytes transferred.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$27 I/O error
$2B Disk write-protected
$43 Invalid reference number
$48 Volume full
$4E Access: fIle not write-enabled
$5A Block number out of range

Beta Draft 107 8/11/86



/

Con/and ProDOS 16 Reference

CLOSE ($14)

This function is called to release all resources used by an open file. The file control block
(FeB) is released; if necessary, the file's I/O buffer is emptied (written to disk) and the
directory entry for the file is updated. Once a file is closed, any subsequent calls using its
ref_num will fail (until that number is assigned to another open file).

If the specified ref_num is zero, all open files at or above the current file level (see
SET LEVEL and GET LEVEL calls) are closed: For example, if files are open at levels 0,
1, and 2 and you have set the current level to 1, a CLOSE call with ref num set to 0 will
close all files at levels 1 and 2, but leave files at level 0 open. -

Parameter Block:

Offset Label

$00-$01 ref num

j value .

Description

parameter name: reference number
size and type: word value (high-order byte zero)
range of values: $OOOO-$OOFF

The identifying number assigned to the file by the OPEN
function.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$27 I/O error
$2B Disk write-protected
$43 Invalid reference number
$5A Block number out ofrange

Beta Draft 108 8/11/86



ProDGS 16: Chapter 10

FLUSH ($15)

This function is called to empty an open fIle's buffer and update its directory. If ref_num is
zero, all open files are flushed.

Note: ProDOS 16 ignores ref_num in this call. The FLUSH call flushes all open
files. The parameter is required for this call because future versions of ProDOS 16
will have the capability to flush individual files.

Parameter Block:

~t reCnum

Offset Label

$00-$01 ref num

1vdue

Description

parameter name: reference number
size and type: word value (high-order byte zero)
range of values: $OOOO-$OOFF
The identifying number assigned to the fIle by the OPEN
function.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$27 I/O error
$2B Disk write-protected
$43 Invalid reference number
$48 Volume full
$SA Block number out of range

BetaDrqft 109 8/11/86



Cortland ProDGS 16 Reference

SET_MARK ($16)

For the specified open me, this function sets the current position (MARK, the position at
which subsequent reading and writing will occur) to the point specified by the position
parameter. The value of the current position may not exceed EOF (end-of-file; the size of
the me in bytes),

Parameter Block:

/

a
1 i- reCnum vdue

position

2.
3
4
51-- -d

vdue

Offset

$00-$01

Label

ref num

'Description

parameter name: reference number
size and type: word value (high-order byte zero)
range of values: $OOOO-$OOFF

The identifying number assigned to the fIle by the OPEN
function.

$02-$05 position parameter name: position
size and type: long word value (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The value assigned to MARK. It is the position, in bytes
relative to the beginning of the fIle, at which the next read or
write will occur.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$27 I/O error
$43 Invalid reference number
$4D Position out of range
$5A Block number out of range

Beta Draft 110 8/Il/86.



ProDOS 16: Chapter 10

GET_MARK ($17)

This function returns the current position (MARK, the position at which subsequent
reading and writing will occur) for the specified open file.

Parameter Block:

reCnum

position

o
1
2 t--------1

3

41-51-- -1

vdue

result

Offset

$00-$01

Label

ref num

Description

parameter name: reference number
size and type: word value (high-order byte zero)
range of values: $OOOO-$OOFF

The identifying number assigned to the fIle by the OPEN
function.

$02-$05 position parameter name: position
size and type: long word result (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The current value of MARK. It is the position, in bytes
relative to the beginning of the fIle, at which the next read or
write will occur.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$43 Invalid reference number

Beta Draft 111 8/11/86



Con/and ProDOS 16 Reference

SET_EOF ($18)

, For the specified file, this function sets its logical size (in bytes) to the value spec';, 'cd by
, EOF (end-of-file). If the specified EOF is less than the current EOF, then disk bi '(s past

the new EOF are released to the system. However, if the specified EOF is equal, Jf

greater than the current EOF, no new blocks are allocated until data are actually wl~n to
them.

The value of EOF cannot be changed unless the file is write-enabled.

Parameter Block:

a reCnum • vdue1 r
2
3 r

eot vdue
4
5

Offset Label

$00-$01 ref num

$04-$07 eaf

Description

parameter name: reference number
size and type: word value (high-order byte 'ler'.
range of values: $OOOO-$OOFF

The identifying number assigned to the fIle by the Cl:: '
function.

parameter name: end-of-fIle
size and type: long word value (high-order byl-.f:TO)
range of values: $0000 OOOO-$OOFF FFFF

The specified logical size of the file. It represents the ': :).l

number of bytes that may be read from the file.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$27 I/O error
$43 Invalid reference number
$4D Position out of range
$4E Access: file not write-enabled
$5A Block number out of range

Beta Draft 112 '5/11/86



ProDOS 16: Chapter 10

GET EOF ($19)

For the specified open file, this function returns its logical size, or EOF (end-of-fi1e; the
number of bytes that can be read from it).

Parameter Block:

vaiuereLnumo
1
21--------l

3 I- eof • result
41- •
51..- ...1

Offset Label Description

$00-$01 ref num parameter name: reference number
size and type: word value (high-order byte zero)
range of values: $OOOO-$OOFF

The identifying number assigned to the fIle by the OPEN
. function.

$04-$07 eaf parameter name: end-of-fIle
size and type: ·long word result (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The current logical size of the fIle. It represents the total
number of bytes that may be read from the fIle.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$43 Invalid reference number

Beta Draft 113 8/11/86



Cortland ProDOS 16 Reference

SET_LEVEL ($lA)

This function sets the current value of the system fIle level (see Chapter 2). All subsequent
OPEN calls will assign this level to the files opened. All subsequent CLOSE calls for
multiple fIles (that is, those calls using a specified ref_num of zero) will be effective only
on those files that were opened when the system level was greater than or equal to the new
level.

The range of legal system level values is $OOOO-$OOFF. The file level initially defaults to
zero.

Parameter Block:

~f level

Offset Label

$00-$01 level

1vdue

Description

parameter name: system file level
size and type: word value (high-order byte zero)
range of values: $OOOo-$OOFF

The specifIed value of the system file level.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$59 Invalid file level

Beta Draft 114 8/II/86



ProDOS 16: Chapter 10

GET LEVEL ·($IB)

This function returns the current value of the system file level (see Chapter 2). All
subsequent OPEN calls will assign this level to the files opened All subsequent CLOSE
calls for multiple files (that is, those calls using a specified ref_Dum of zero) will be
effective only on those files that were opened when the system level was greater than or
equal to its current level.

Parameter Block:

~f level

Offset Label

$00-$01 level

j result

Description

parameter name: system file level
size and type: word result (high-order byte zero)
range of values: $OOOO-$OOFF

The current value of the system file level.

Possible ProDOS 16 Errors

$07 ProDOS is busy

Beta Draft 115 8/11/86



Cortland ProDOS 16 Reference

Beta Draft 116 8/11/86



Chapter 11

,Device Calls

Device calls access storage devices directly, rather than through the volumes or files on
them.

The ProDOS 16 device calls are described in the following order:

Number

$20

$22

$23

Beta Draft

Function

GET DEV NUM

READ BLOCK

WRITE BLOCK

117

Purpose

returns a device's number

transfers 512 bytes from a device

transfers 512 bytes to a device

8/11/86



Cortland ProDOS 16 Reference

GET_DEV_NUM ($20)

For the device specified by name, this function returns its device number. All other device
calls must refer to the device by its number.

Device numbers are assigned by ProDOS 16 at startup (boot) time. They are consecutive
integers, assigned in the order in which ProDOS 16 polls external devices (see Chapter 4).

Parameter Block:

deY_name pointer

4 dey_num result
51o..- .....l

Offset Label Description

$00-$03 dev name

$04-$05 dev num

parameter name: device name
size and type: long word pointer (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the
device name.

parameter name: device reference number
size and type: word result (high-order byte zero)
range of values: $OOOO-$OOFF

The device's reference number, to be used in other device
calls.

Possible ProDOS 16 Errors

$07 . ProDOS is busy
$10 Device not found
$11 Invalid device number
$40 Invalid pathname (device name) syntax

Beta Draft 118 8/11/86



ProDOS 16: Chapter 11

READ_BLOCK ($22)

This function reads one block of information from a disk device (specified by dev_num)
into memory starting at the address pointed to by data_buffer. The buffer must be at least
512 bytes in length, because existing devic~s define a block as 512 bytes.

Parameter Block:

o
1
2
3
4
5
6
7
8
9

dev_num

f- .
data_buffer

block_num
f- -

value

pointer

value

Offset Label

$00-$01 dey num

Description

parameter name: dieference number
size and type: word value (high-order byte zero)
range of values: $OOOO-$OOFF

The device's reference number, as returned by
GET DEV NUM.

$02-$05 data buffer parameter name: data buffer
size and type: long word pointer (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The long word address of a buffer that will hold the data to be
read in.

$06-$09 block num parameter name: block number
size and type: long word value (high word zero)
range of values: $00000000-$0000 FFFF

The number of the block to be read in.

Possible ProDOS 16 Errors

$07 ProDOS is busy .
$11 Invalid device number
$27 I/O error
$28 No device connected

Beta Draft 119 8/11186



Cortland ProDGS 16 Reference

WRITE_BLOCK ($23)

This function transfers one block of data from the memory buffer pointed to by data_buffer
to the disk device specified by deY_name. The block is placed in the specified logical block
of the volume occupying that device. For currently defined devices, the data buffer must
be at least 512 bytes long.

Parameter Block:

o
1
2
3
4
5
6
7
8
9

dev_num

-- data_buffer

- .

block_num

vdue

pointer

vdue

Offset Label Description

$00-$01 dey num parameter name: reference number
size and type: word value (high-order byte zero)
range of values: $OOOO-$OOFF

The device's reference number, as returned by
GET DEV NUM.

$02-$05 data buffer parameter name: data buffer
size and type: long word pointer (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The long word address of a buffer that holds the data to be
written.

$06-$09 block num parameter name: block number
size and type: long word value (high word zero)
range of values: $0000 0000-$0000 FFFF

The number of the block to be written to.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$11 Invalid device number
$27 I/O error
$28 No device connected
$2B Disk write-protected

BetaDrcift 120 8/11/86



Chapter 12

Environment Calls

These calls deal with the Cortland operating environment, the software and hardware
configuration within which applications run. They include calls to start and end
ProDOS 16 applications, and to determine pathnames and versions of system software.

The ProDOS 16 environment calls are described in the following order:

Number Function Purpose

$27 GET PATHNAME returns application pathname

$28 GET BOOT VOL returns ProDOS 16 volume name

$29 QUIT terminates present application

$2A GET VERSION returns ProDOS 16 version

Beta Draft 121 8/11/86



Cortland ProDOS 16 Reference

This function returns the complete pathname of the currently running application.

Parameter Block:

i~__p_a_th_na_m_e__~ poot~

Offset Label

$00-$03 pathname

Description

parameter name: pathname
size and type: long word pointer (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the
application's pathname.

Possible ProDGS 16 Errors

$07 ProDOS is busy
$27 I/O error
$40 Invalid pathname syntax
$44 Path not found
$45 Volume not found
$46 File not found
$4A Version error
$4B Unsupported storage type

Beta Draft 122 8/11/86



ProDOS 16: Chapterr 12

This function returns the name of the volume from which ProDOS 16 was last loaded.

Parameter Block:

~ f__p_at_h_na_m_e__~ pom'e,

Offset Label

$00-$03 pathname

Description

parameter name: pathnarne
size and type: long word pointer (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the boot
volume's name.

Possible ProDGS 16 Errors

$07 ProDOS is busy

Beta Draft 123 8/11/86



Cortland ProDOS 16 Reference

QUIT ($29)

Calling this function terminates the present application. It also closes all files, sets the
current system file level to zero, and deallocates any installed interrupt handlers. ProOOS
16 can then either 1.) launch a file specified by the quitting program or by the user, or 2.)
automatically launch a program specified in the quit return stack.

The quit return stack is a table maintained in memory by ProOOS 16. It provides a
convenient means for a shell program to pass execution to subsidiary programs (even other
shells), while ensuring that control eventually returns to the shell.

For example, a program selector may push its UserID onto the quit return stack whenever it
launches an application (by making a QUIT call). That program mayor may not specify
yet another program when it quits, and it mayor may not push its own UserID onto the
quit return stack. Eventually, however, when no more programs have been specified and
no others are waiting for control to return to them, the program selector's UserID will be
pulled from the stack and it will be executed once again.

Two QUIT call parameters control these options, as follows:

1. Pathname pointer:

a. If the patlmame pointer in the parameter block indicates a nonzero pathname, the
indicated program is loaded and executed.

b. If pathnarne is null (the address it points to contains a zero length byte),
ProOOS 16 pulls a UserIO from the quit return stack and executes the program
with that ID.

c. If pathnarne is null and the quit return stack is empty, ProOOS 16 executes a
built-in interactive dispatcher that prompts the user for the name of the next
system file to launch.

2. Flag word:

The flag word contains two boolean values: a return flag and a restart-from
memory flag.

a. If the return flag value is TRUE (bit 15=1), the UserID of the program making
the QUIT call is pushed onto the quit return stack. If the return flag is FALSE,
no 10 is pushed onto the stack.

b. If the value of the restart-from-memory flag is TRUE (bit 14=1), the program is
capable of being restarted from a dormant state in the computer's memory. If the
restart-from-memory flag is FALSE, the program must always be reloaded from
disk when it is run. Every time a program's UserIO is pushed onto the quit
return stack, the information from this flag is saved along with it.

Note: Programs that may be restarted from memory are called reentrant: they
initialize all their variables each time they execute, and make no assumptions about
the state of the machine when they gain control.

Caution: The ProOOS 16 QUIT call (unlike its ProOOS 8 equivalent) may return
an error.

Beta Draft 124 8/11/86



ProDGS 16: Chapterr 12

Parameter Block:

pointerchain-path

o
1
2
31- -1

4 return_flag vdue5 L..-. ...J

Offset Label Description

$00-$03 pathname parameter name: pathname
size and type: long word pointer (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the
pathname of the next fIle to execute.

significance
if = 1, place calling program's
UserID on return stack

$04-$05 flags parameter name: flag word
size and type: word value
range of values: $OOOO-$COOO

Two boolean flags in a 16-bit field. The bits are defined as
follows:

bit
15

14

13-0

if =1, calling program may be
restarted from memory

(reserved)

Possible ProDOS 16 Errors

$27 I/O error
$40 Invalid pathname syntax
$44 Path not found
$45 Volume not found
$46 File not found
$4A Incompatible fIle format
$4B Unsupported stroage type
$53 Block number out of range
$54 Out of memory
$5A Parameter out of range
$5C Not an executable system fIle
$5D Operating system not available

Beta Draft 125 8/11/86



Con/and ProDOS 16 Reference

GET_VERSION ($2A)

This function returns the version number of the currently running ProDOS 16 operating
system.

Bit:

Value:

Both byte and bit

where

• Byte 0 is the minor release number ( =0 for ProDOS 16 version 1.0)
• Byte 1 is the major release number ( =1 for ProDOS 16 version 1.0)
• B =The MSB (most significant bit) of byte 1

and

B =0 for final releases
B =1 for all prototype releases

Parameter Block:

~t version

Offset Label

$00-$01 version

~ result

Description

parameter name: version
size and type: word result (high-order byte zero)
range of values: $OOOO-$FFFF

The version number of ProDOS 16.

Possible ProDOS 16 Errors

$07 ProDOS is busy

Beta Draft 126 8/11/86



Chapter 13

Interrupt Control Calls

These calls allocate and deallocate interrupt handling routines.

The ProDOS 16 interrupt control calls are described in the following order:

Number

$31

$32

Beta Draft

Function

ALLOC INTERRUPT

DEALLOC INTERRUPT

127

Purpose

installs an interrupt handler

removes an interrupt handler

8/Il/86



Cortland ProDOS 16 Reference

ALLOC_INTERRUPT ($31)

This function places the address of an interrupt handling routine into the interrupt vector
table. You should make this call before enabling the hardware that can cause the interrupt.
It is your responsibility to make sure that the routine is installed at the proper location and
that it follows interrupt conventions (see Chapter 7).

The returned int_num is a reference number for the handler. Its only use is to identify the
handler when deallocating it; you must refer to a routine by its interrupt handler number to
remove it from the system (with DEALLOC_INTERRUPT).

When ProDOS 16 receives an interrupt, it polls the installed handlers in sequence,
according to their order in the interrupt vector table. The fIrst handler installed has the
highest priority. Each new handler installed is added to the end of the table; each one
deallocated is removed from the list and the table is compacted.

Note: Under ProDOS 8, the interrupt handler number is equal to the handler's
position in the polling sequence. By contrast, the value of int num under
ProDOS 16 is unrelated to the order in which handlers are polled.

Parameter Block:

0 int_num result
1
2
3 • int_code pointer
4 • .
5

Offset Label

$0D-$01 int nurn

$02-$05 int code

Description

parameter name: interrupt handler number
size and type: word result (high-order byte zero)
range of values: $OOOD-$OOFF

The identifying number assigned to the interrupt handler by
ProDOS 16.

parameter name: interrup.t code
size and type: long word pointer (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The long word address of the interrupt handler routine.

Possible ProDGS 16 Errors

$07 ProDOS is busy
$25 Interrupt vector table full
$53 Invalid parameter

Beta Draft 128 8/11/86



ProDDS 16: Chapter 13

DEALLOC_INTERRUPT ($32)

This function clears the entry (specified by int_num) for an interrupt handler from the
interrupt vector table. You must disable the associated interrupt hardware before making

. this call; a fatal error will result if a hardware interrupt occurs after its entry has been
cleared from the vector table.

DEALLOC INTERRUPT has no effect on the order of the polling sequence for the
remaininghandlers. Any subsequently allocated handlers will be added- to the end of the
polling sequence.

Parameter Block:

~f inCnum

Offset Label

$00-$01 int num

1vdue

Description

parameter name: interrupt handler number
size and type: word value (high~order byte zero)
range of values: $OOOO-$OOFF

The identifying number assigned to the interrupt handler by
ProDOS 16.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$53 Invalid parameter

Beta Draft 129 8/11/86



Cortland ProDOS 16 Reference

Beta Draft 130 8/11/86



Chapter 14

. ProDOS 16 Error Codes

The following is a complete list of operating system errors returned by ProDOS 16. When
it returns an error, ProDOS 16 places the error number in the accumulator (A-register) and
sets the Status register carry bit.

Each error code is followed by the error name and a brief description of its significance.

Nonfatal errors .
A nonfatal error signifies that a requested call could not be completed properly, but
program execution may continue.

Number

$00 (no error)

Message and Description

General Errors:

$01 Invalid call number: a nonexistent command has been issued.

$07 ProDGS is busy: the call cannot be made because ProDOS 16 is busy
with another call.

Device call errors:

$10 Device not found: there is no device on line with the given name
(GET_DEV_NUM call)

$11 Invalid device name or number: the given device name or reference
number is not in ProDOS 16's list of active devices (VOLUME,
READ_BLOCK and WRITE_BLOCK calls)

$25 Interrupt vector table full: the maximum number of user-defined
interrupt handlers (16) has already been installed; there is no room for
another (ALLOC_INTERRUPT call).

Beta Draft 131 8/11/86



Con/and ProDGS 16 Reference

$27 I/O error: a hardware failure has prevented proper data transfer to or from
a disk device. This is a general code covering many possible error
conditions.

$28 No device connected: There is no device in the slot and drive specified
by the given device number (READ_BLOCK and WRITE_BLOCK calls).

$2B Write-protected: The specified volume is write-protected (the "write
protect" tab or notch on the disk jacket has been enabled). No operation that
requires writing to the disk can be performed.

$2E Disk switched: The requested operation cannot be performed because a
disk containing an open file has been removed from its drive.

.Warning: Apple II drives have no hardware method for detecting disk
switches. This error is therefore returned only when ProDOS 16 checks a
volume name during the normal course of a call. Since most disk access
calls do not involve a check of the volume name, a disk-switched error can

. easily go undetected.

$2F Device not online: A device specified in a call is not connected tothe
system. This error may be returned by device drivers that can sense
whether or not a specific device is on line.

$30 - $3F Device-specific errors: (error codes in this range are to be defined and
used by individual device drivers.)

File call errors:

$40 Invalid pathname syntax: The specified pathname or device name
contains illegal characters

$42 FeB table full: The table of file control blocks is full; the maximum
permitted number of open mes (8) has already been reached. You may not
open another me (OPEN call).

$43 Invalid file reference number: the specified file reference number
does not match that of any currently open file.

$44 Path not found: A subdirectory name in the specified pathname does. not
exist (the pathname's syntax is otherwise valid).

$45 Volume not found: The volume name in the specified pathname does
not exist (the pathname's syntax is otherwise valid).

$46 File not found: The last file name in the specified pathname does not
exist (the pathname's syntax is otherwise valid).

$47 Duplicate pathname: An attempt has been made to create or rename a
file, using an already existing pathname (CREATE, CHANGE_PATH calls).

Beta Draft 132 8/11/86



ProDOS 16: Chapter 14

$48 Volume full: an attempt to allocate blocks on a disk device has failed, due
to lack of space on the volume in the device (CREATE, WR I TE calls). If
this error occurs during a write, ProDOS 16 writes data is until the disk is
full, and still permits you to close the me.

$49 Volume directory full: No more space for entries is left on the volume
directory (CREATE call). In ProDOS 16, a volume directory can hold no
more than 51 entries. No more fIles can be added to this directory until
others are destroyed (deleted).

$4A Version error (incompatible file format): The version number in the
specified flie' s directory entry does not match the present ProDOS 8
ProDOS 16 file format version number. This error can only occur in future
versions of ProDOS 16, since for all present versions of ProDOS 8 and
ProDOS 16 the me format version number is zero.

Note: The version numberreferred to by this error code concerns thefilejormat
only, not the version number of the operating system as a whole. In particular, it is
unrelated to the ProDOS 16 version number returned by the GET_VERSION call.

$4B Unsupported (or incorrect) storage type: The organization of the
specified me is unknown to ProDOS 16. See App'endix A for a list of valid
storage types. .

This error may also be returned if a directory has been tampered with, or if a
prefix has been set to a nondirectory file.

$4C End-of-file encountered (out of data): A read has been attempted,
but the current fIle position (MARK) is equal to end-of-file (EOF), and no
further data can be read.

$4D Position out of range: The specified file position parameter (MARK) is
greater than the size of the tile (EOF).

$4E Access not allowed: One of the attributes in the specified file's access
byte forbids the attempted operation (renaming, destroying, reading, or
writing).

$50 File is open: An attempt has been made to perform a disallowed
operation on an open file (OPEN, CHANGE PATH, DESTROY calls).

$51 Directory structure damaged: The number of entries indicated in the
directory header does not match the number of entries the directory actually
contains.

$52 Unsupported volume type: The specified volume is not a ProDOS 16,
ProDOS 8, or. SOS disk. Its directory format is incompatible with ProDOS
16.

$53 Parameter out of range: The value of one or more parameters in the
parameter block is out of its range of permissible values.

Beta Draft 133 8/11/86



Cortland ProDGS 16 Reference

$54 Out of Memory: A ProDOS 8 program specified by the QUIT call is too
large to fit into the memory space available for ProDOS 8 applications.

$55 VCB table full: The table of volume control blocks is full; the maximum
permitted number of online volumes/devices (8) has already been reached.
You may not add another device to the system. The error occurs when 8
devices are on line and a VOLUME call is made for another device that has no
open files.

$57 Duplicate volume: Two or more online volumes have identical volume
directory names. This message is a warning; it does not prevent access to
either volume. However, ProDOS 16 has no way of knowing which
volume is intended if the volume name isspecified in a call.

$58 Not a block device: An attempt has been made to access a device that is
not a block device. ProDOS 16 (v. 1.0) supports access to block devices
only.

$59 Invalid level: The value specified for the system file level is out of range
(SET_LEVEL call).

$5A Block number out of range: The'volume bit map indicates that the
volume contains blocks beyond the block count for the volume. This error
can occur only if the disk directory is damaged.

$5B Illegal pathname change: the pathnames on a CHANGE_PATH call
specify two different volumes. C~ANGE PATH can move files among
directories only on the same volume. -

$5C Not an executable system file: The file specified in a QUIT call is not
type $B3 or $FF. All applications launched by the QUIT call must be type
$B3 (Cortland application) or $FF (ProDOS 8 system file).

$5D Operating system not available: A ProDOS 8 application has been
specified by the QUIT call, but the ProDOS 8 operating system is not on the
system disk.

Fatal errors
A fatal error signifies the occurrence of a malfunction so serious that processing must halt.
To resume execution following a fatal error, you must reboot the system.

Number Message and Description

$01 Unclaimed interrupt: An interrupt signal has occurred and none of the
installed handlers claims responsibility for it. This error may occur if
interrupt-producing hardware is installed before its associated interrupt
handler is allocated.

Beta Draft 134 8/11/86



ProDGS 16: Chapter 14

$OA VCB unusable: The volume control block table has been damaged. The
values of certain check bytes are not what they should be, so ProDOS 16
cannot use the VCB table.

SOB FCB unusable: The file control block table has been damaged. The
values of certain check bytes are not what they should be, so ProDOS 16
cannot use the FCB table.

SOC Block zero allocated illegally: Write-access to block zero on a disk
volume has been attempted. Block zero on all volumes is reserved for boot
code.

SOD Interrupt occurred while I/O shadowing off: The Cortland has soft
switches that control shadowing from banks $EO and $E1 to banks $00
and $01. If an interrupt occurrs while those switches are off, the firmware
interrupt-handling code will not be enabled. See Cortland Firmware
Reference.

Bo'otstrap errors
Bootstrap errors can occur when the Cortland attempts to start up a ProDOS 16 system
disk. Errors can occur at several points in this process:

1. If there is no disk in any drive, a "sliding apple" symbol appears on the screen along
with the message:

check startup device

Place a system disk in a drive and press Control-u-Reset to restart the boot
procedure.

2. If there is a disk in a drive, but it is not a ProDOS 8 or ProDOS 16 system disk (that
is, there is no type $FF flie named PRODOS on it), the following message appears:

cannot find ProDOS

Remove the disk and replace it with another containing the proper flies, then press
Control-u-Reset to restart the boot procedure.

3. If the file named PRODOS is found, but another essential file is missing, a message
such as

No SYSTEM/P16 file found

or

No x.SYSTEM or x.SYS16 file found

may appear. Remove the disk and replace it with another containing the proper files,
then press Control-u-Reset to restart the boot procedure.

Beta Draft 135 8/1I186



Cortland ProDOS 16 Reference

Another type of ProDOS 16 bootstrap error occurs on other Apple II computers. If you try
to boot a ProDOS 16 system disk on any Apple II computer that is not a Cortland, the
following error message is displayed:

PRODOS/16 REQUIRES APPLE //-16 HARDWARE

When this occurs the disk will not boot. You can only boot a Cortland System Disk on a
Cortland computer.

BetaDrajt 136 8/11/86



Part III

The System Loader

The System Loader is a Cortland Tool Set that works closely with ProDOS 16. It is
responsible for loading all code and data into the Cortland's memory. It is capable of static
and dynamic loading and relocating of code or data segments, subroutines and libraries.

Chapter 15 explains in general terms how the System Loader works. Chapter 16 details
some of its functions and data structures. Chapter 17 gives programming suggestions for
using the System Loader. Chapter 18 shows how to make loader calls and describes each
call in detail. Chapter 19 is a complete list of System Loader error codes.

Beta Draft 137 8/11/86



Beta Draft·- 138 8/ll/86



Chapter 15

Introduction to the System Loader

This chapter gives a basic picture of the System Loader, defines some of the important
terms needed to describe what the loader does, describes its interactions with the "Memory
Manager, and presents an outline of the procedures it follows when loading a program into
memory. Additional related terms are defined in the Glossary.

What is the System Loader?
The System Loader is a set of software routines that manages the loading of program
segments into the Cortland. It is a"Cortland Tool Set; as such, it is independent of ProDOS
16. However, it works very closely with ProDOS 16 and with the Memory Manager,
another Tool Set. The System Loader has several improvements over the loading method
under ProDOS 8 on other Apple II computers:

• It makes loading easier and more convenient. Under ProDOS 8, the only automatic
loading is performed by the boot code, which searches the boot disk for the first
. SYSTEM file (type $FF) and loads it into location $2000. If a system program
needs to call another application it must do all the work itself, either by making
ProDOS 8 calls or by providing its own loader. On the Cortland, calls to the System
Loader perform the task more simply.

• It is a relocating loader: it loads relocatable programs at any available location in
memory. Under ProDOS 8, a program must be loaded at a fixed memory address, or
at an address specified by the system program that does the loading. The relocating
loader relieves the programmer of the burden (and restriction) of deciding where to
load programs.

• It is a segment loader: it can load different segments of a program independently,
to use memory efficiently.

• It is a dynamic loader: it can load certain program segments as they are needed
during execution, rather than at boot time only.

The System Loader handles files generated by the CPW Linker; the linker handles files
produced by a Cortland assembler or compiler. The linker, assembler, and compilers
are part of the Cortland Programmer's Workshop (CPW), a powerful and flexible set of
development programs designed to help programmers produce Cortland applications
efficiently and conveniently. See Chapter 6 of this manual for more infonnation and
references on Cortland Programmer's Workshop.

Beta Draft 139 8/11/86



Cortland ProDOS 16 Reference

Loader terminology
The System Loader is a program that processes load files. Load files are ProDas 16
applications (file-type $B3), run-time library files (fIle-type $B4), or other types of system
fIles (file-types $B6-$BF; see Appendix D). They must follow Object Module Format
(aMP) specifications, as defmed in the Cortland Programmer's Workshop Reference.
Each load file consists of load segments that can be loaded into memory independently;
load segments in a given load me arenumbered sequentially, starting with one.

Load fIles can contain segments of various kinds. Some segments, consist of program
code or data; others provide location information to the loader. The Jump Table
segment, when loaded into memory, provides a mechanism by which segments in
memory can trigger the loading of other needed segments. Each load fIle can have only one
Jump Table segment. A load fIle may also have one segment called the Pathname
segment, which provides a cross-reference between fIle numbers (in the Jump Table
segment) and pathnames (on disk) of the segments to be loaded. A third special type of
segment is the initialization segment. It contains any code that has to be executed first,
before the rest of the segments are loaded. All three types of segments are discussed more
fully in the next chapter.

Code and data segments can be either static or dynamic. A program's static load
segments are loaded into memory at initial load time (when the program is flrst started up);
they must stay in memory until the program is complete. Dynamic load segments, on the
other hand, are not placed in memory at initial load time; they are loaded as needed during
program execution. Dynamic loading can be automatic (through the Jump Table) or
manual, at the specific request of the application (through System Loader function calls).
When a dynamic segment is no longer needed by the program that called it, it can be
purged, or deleted, by the Memory Manager.

Segments may be either absolute or relocatable. An absolute segment must be loaded
into a specific location in memory, or it will not function properly. A relocatable segment
can execute correctly wherever the System Loader places it.

A controlling program is a program that requests the System Loader to perform an
initial load on another major program (usually an application ). The UserID
Manager (a Cortland Toolset) assigns a unique ill number (UserID) to that application, so
the loader may quickly locate all of the application's segments if necessary. A switcher is '
an example of a controlling program; a word processor is an example of an application.

When a program (load me) is initially loaded, only the static load segments are placed in
memory; at that point the System Loader has all the information it needs to resolve all
symbolic references among them. Until a dynamic segment is loaded, however, the loader
cannot resolve references to it because it does not know where in memory it will be. Thus
static segments may be directly referenced (by each other and by dynamic segments), but
dynamic segments can be referenced only through JSL (long subroutine jump) calls to the
Jump Table.

When the System Loader is called to load a program, it loads allstatic load segments
including the Jump Table segment (if any), and the Pathname segment (if any). The Jump
Table and the Pathname Table are constructed from these two segments, respectively.
During this process, a Memory Segment Table is also constructed in memory. These
three tables are discussed in more detail in the next chapter.

Beta Draft 140 8/11/86



System Loader: Chapter 15

Interface with the Memory Manager
The System Loader and the Memory Manager work closely together. The Memory
Manager is a Cortland Toolset (firmware program) that is responsible for allocating
memory in the Cortland; it provides space for load segments, tells the System Loader
where to place them, and moves segments around within memory when additional space is
needed.

When the System Loader loads a program segment, it calls the Memory Manager to allocate
a corresponding memory block. If the program segment is static, and therefore must not
be unloaded or moved, its memory block is marked as unpurgeable and unmovable.
That means that the Memory Manager cannot change that segment's position or contents as
long as the program is running. If the program segment is dynamic, its memory block is
initially marked as purgeable but locked (temporarily unpurgeable and unmovable;
subject to change during execution of the program). If the dynamic segment is position
independent, its memory block is marked as movable; otherwise, it is unmovable.

To unload a segment, the System Loader calls the Memory Manager to make the
coresponding memory block purgeable. If the controlling program wishes to unload all
segments associated with a particular application (for example, at shutdown), it calls the
System Loader's Application Shutdown function, which in turn calls the Memory Manager
to (1) purge the memory blocks of all dynamic segments for the application, and then (2)
make the memory blocks of all static segments purgeable. This process frees space but
keeps the application's static segments in memory, thus speeding up execution of a finder
or switcher that may shortly need to reload that application. Of course, if memory runs out
and the Memory Manager is forced to purge one of those static segments, the application
can no longer be used. The next time it is needed, the application must be loaded from
scratch.

Load segments have attributes that are closely related to their corrresponding memory
blocks. Load segments may be: dynamic or static, position-independent (or not), and
absolute or relocatable. Memory blocks may be: purgeable or unpurgeable, fixed ( =
unmovable) or not fixed ( = movable), and locked or unlocked. A typical load segment
will be placed in a memory block that is

Locked
Fixed
Purge Level =0 (if the segment is static)
Purge Level = 1 (if the segment is dynamic)

Depending on other requirements the segment may have, such as alignment in memory, the
load segment-memory block relationship may be more complex. Table 15-1 shows all

Beta Draft 141 8/11/86



(identifies the application the block is part of)
(0 to 3: 0 = unpurgeable, 3 = most purgeable)

Cortland ProDOS 16 Reference

possible relationships between the two that may hold at load time. The direct-page/stack
segment has special characteristics described in Chapter 6.

Table 15-1. Load segment-memory block 'relationships (at load time)

Load Segment Attribute Memory Block Attribute
static unpurgeable, fixed (unmovable)
dynamic purgeable, locked
absolute (ORG > 0) fixed (unmovable)
relocatable (no specific relation)
position-independent not fixed (movable)
not postion-independent fixed (unmovable)
KIND =11 fixed-bank
BANKS I ZE =0 may cross bank boundary
BANKSIZE =$10 000 may not cross bank boundary
ALIGN =0 not bank- or page-aligned
AL I GN =$100 page-aligned
ALIGN =$10 000 bank-aligned
direct-page/stack (KIND =92) dynamic, fixed bank ($00), page-aligned

Note: BANKS I ZE and AL I GN are segment header fields, described in
Appendix D of this manual and under "Object Module Format" in Cortland
Programmer's Workslwp Reference.

A memory block can be locked or unlocked through a call to the System Loader, but oth~r
attributes can be changed only through Memory Manager calls. Memory block attributes
useful to an application may include

• Start location
• Size of block
• UserID
• Purge level

These attributes are not in the Memory Segment Table itself but may be accessed through
the memory handle, which is part of the Memory Segment Table. If the memory handle is
NIL (0), the memory block has been purged. See Chapter 16 for further explanation.

Note: Strictly speaking, load segments are never purged or locked; those are .
actions taken on the memory blocks inhabited by the segments. For simplicity,
however, this manual may in certain cases apply terms such as purged or locked to
segments.

Loading a relocatable segment
This brief description of parts of the operation of the System Loader shows how the linker,
loader, and Memory Manager work together to produce and load a relocatable program
segme~t. Figure 15-1 shows the process in a simplified form.

Beta Draft 142 8/11/86



System Loader: Chapter 15 .

Load-file structure

Load files conform to a subset of object module format (OMF). In OMF, each module
(fIle) consists of one or more segments; each segment is further made up of one or more
records. In a load file specifically, each segment (apart from specialized segments such
as the load file tables described in Chapter 16) consists of program code or data, followed
(if the segment is relocatable) by a relocation dictionary. The relocation dictionary is
created by the linker as it convens an object segment into a load segment. The program
code or data consists of a single record of a particular type, and the relocation dictionary
consists of only two types of records: RELOC records, which give the loader the
information it needs to resolve local (within-segment) references, and INTERSEG
records, which give the loader the information it needs to resolve external (intersegment)
references. The detailed formats of both types of records are presented in Cortland
Programmer's Workshop Reference. .

When a relocatable segment is loaded into memory, it is loaded at a location determined by
the Memory Manager. Funhermore, only the first part of the segment (the program code
itself) is loaded into the part of memory reserved by the Memory Manager; the relocation
dictionary, if present, is loaded into a buffer or work area used by the loader. After loading
the segment, the loader relocates it, using the information in the relocation dictionary.

Memory Bonk $XX

Object RIe: load RI.:

·:
•·,,••·•·:.Ir"'~

Segmentp

code

(Intst'S8Qment
relerence)"-'" ,. .._..,,

: The loader patches
, Intersegment references to
:_ segment p by using
: INTERSEG records

to calculate offsets tram
."P (the Locder gets the
value fO( ."P trom the
memory segment toole)

~~;~~,",,8~ •••• The Loader patches
i--- Local references

Segment n 4-.-' by using RELOC
code records to calculate

offsets tromki

. .
I I

Memory Bank $VY

Q)
The System Loader

loads the code port of Segment n
into memO<)' at oddre.. A'l

(o..,gned by the MemO<)' Manager)

o
The Unker J:roduces a

load segment from one or more
object segments.

The relocatloo dictionary has
RELOC and INTERSEG records.

."P-I-----I

Figure 15-1. Loading a relocatable segment

Relocation

After the Sys.tem Loader has placed a load segment in memory, it must (unless the segment
consists of absolute code) relocate its address references. Relocation describes the
processing of a load segment so that it will execute properly at the memory location at
which it has been loaded. It consists of patChing (substituting the proper values for)
address .operands that refer to locations both within and external to the segment. The

Beta Draft 143 8/11/86



Conland ProDOS 16 Reference

relocation dictionary part of the segment contains all the infOlmation needed by the loader to
do this patching. Relocation is perfOlmed as follows:

1. Local references in the load segment (coded in the original object fIle as offsets from
the beginning of the segment) are patched from RELOC records in the relocation
dictionary. Using the starting address of the segment (available- from the Memory
Manager through the Memory Segment Table), the loader adds that address to each
offset, so that the correct memory address is referenced.

2. External references (references to other segments) are coded in the original object
module as global variables (subroutine names or entry points). The linker and loader
handle them as follows:

a. If the reference is to a static segment, the linker will have calculated the proper
file number, segment number, and offset of the referenced (external) segment,
and placed that information in an INTERSEG record in the relocation dictionary.
When the load segment is loaded, the loader uses the INTERSEG record and the
memory location of the external segment (available from the Memory Manager
through the Memory Segment Table), and then patches the external reference
with the proper memory address of the external segment.

b. If the reference is to a dynamic segment, the linker will have created a slightly
different INTERSEG record: instead of referencing the file number, segment,
and offset of the referenced external segment itself, the INTERSEG record
references the file number, segment number, ap.d offset of an entry in the Jump
Table. Therefore, when the load segment is loaded, the loader patches the
reference to point to the Jump Table entry. That entry, in turn, is what transfers
control to the external segment at its proper memory address (if and when the
referenced segment is loaded).

The Jump Table and the reasons for this indirect referencing are described further in
Chapter 16. The main point of interest here is that, when it performs relocation, the
loader doesn't care whether an intersegment reference is to a static or to a dynamic
segment-it treats both in exactly the same way.

The System Loader performs several other functions when it loads dynamic segments,
including searching for the name of the segment in the Pathname Table before loading, and
patching the appropriate Jump Table entry afterward. These and other functions are
described in more detail in the next two chapters.

Beta Draft 144 8/11/86



C.hapter 16

System Loader Data Tables

This chapter describes the data tables set up in memory during a load, to provide cross
reference information to the loader. The Memory Segment Table allows the loader to
keep track of which segments have been loaded, the addresses at which they have been
loaded, and whether or not a segment is presently being called from other segments. The
Jump Table allows programs to reference routines in dynamic segments that may not
currently be in memory. The Pathname Table provides a cross-reference between file
numbers and file pathnames of dynamic segments.

Memory Segment Table
The Memory Segment Table is a linked list, each entry of which describes a memory block
known to the System Loader. Memory blocks are allocated by the Memory Manager
during loading of segmerits from a load file, and each block corresponds to a single load
segment. Figure 16-1 shows the format of each entry in the Memory Segment Table.

I-
handle to
next entry

handle to
previous entry

UserlD

l-
I- memory handle
l-

I- load-file no.

load-segment no.

I-Ioad-segment kind

4 bytes

4 bytes

2 bytes

4 bytes

2 bytes

2 bytes

2 bytes

Beta Draft

Figure 16-1. Memory Segment Table entry

145 8/11/86



Cortland ProDOS 16 Reference

The fields have the following meanings:

Handle to next entry: The memory handle of the next entry in the Memory
Segment Table. This number is 0 for the last entry.

Handle to previous entry: The memory handle of the previous entry in the
Memory Segment Table. This number is 0 for the first entry.

UserID: The identification number assigned to the memory block this segment
inhabits. Normally, the UserID is available directly from the Memory Manager through
the memory handle. However, if the block has been purged its handle is NIL and the
UserID must be read from this field.

Memory handle: The identifying number of the memory block, obtained-from the
Memory Manager. Additional memory block information is available through this
handle. This handle is NIL if the block has been purged.

Load-file number: The number of the load file from which the segment was
obtained. If the segment is in the initial load file, the number is 1.

Load-segment number: The segment number of the segment in the load file.

Load-segment kind: The value of the KIND field in the load segment's header.
Segment kinds are described in Appendix D.

Jump Table
The Jump Table allows a program to reference dynamic segments. It consists of the Jump
Table Directory and one or more Jump Table segments.

On disk, Jump Table segments are load segments (of kind $02), created by the linker to
resolve references to dynamic segments. Any load flle or run-time library file may contain
a Jump Table segment.

In memory, the Jump Table Directory is created by the loader as it loads Jump Table
segments. The Jump Table Directory is a linked list, each entry of which points to a single
Jump Table segment encountered by the loader. Figure 16-2 shows the format of an entry
in the Jump Table Directory.

Beta Draft 146 8/rJ/86



System Loader: Chapter 16

handle to
next entry

handle to
previous entry

.. UserlD

I-
memory handle

4 bytes

4 bytes

2 bytes

4 bytes

Figure 16-2. Jump Table Directory entry

The fields have the following meanings:

Handle to next entry: The memory handle of the next entry in the Jump Table
Directory. This number is 0 for the last entry.

Handle to previous entry: The memory handle of the previous entry in the Jump
Table Directory. This number is 0 for the first entry.

UserID: The identification number assigned to the Jump Table segment that this
Directory entry refers to..

Memory handle: The handle of the memory block containing the Jump Table
segment that this Directory entry refers to.

Like the Directory, the individual Jump Table segments consist of a series of entries. The
next three subsections describe the creation, loading, and use of a single Jump Table
segment entry. The entry is used to resolve a single JSL instruction in a program segment.

Note: Throughout this manual, the term Jump Table entry refers to a Jump Table
segment entry, not a Jump Table directory entry.

Creation of a Jump Table entry

The Jump Table load segment is created I>y the linker, as it processes an object file. Each
time the linker encounters a JSL to a routine in an external dynamic segment, it creates an
INTERSEG record in the relocation dictionary of the load segment, and (if it has not done
so already) an entry for that routine in the Jump Table segment. The INTERSEG record

Beta Draft 147 8/11/86



Conland ProDOS 16 Reference

links the JSL to the Jump Table entry that was just created. Figure 16-3 shows the fonnat
of the Jump Table entry that the linker creates. See also Figure 16-5 (a).

- UserlD

f- load-file no.

load-segment no.

_ load-segment
offset-
JSL to

Jump Table Load
function

2 bytes

2 bytes

2 bytes

4 bytes

4 bytes

Figure 16-3. Jump Table entry (unloaded state)

The fields have the following meanings:

UserID: The USerID of the referenced dynamic segment.

Load-file number: The load-file number of the referenced dynamic segment.

Load-segment number: The load-segment number of the referenced dynamic
segment.

Load-segment offset: The location of the referenced address within the referenced
dynamic segment.

JSL to Jump Table Load function: A long subroutine jump to the Jump Table
Lo~d function. The Jump Table Load function is described in Chapter 18.

The final entry in a Jump Table segment has a load-file number of zero, to indicate that
there are no more entries in the segment.

Modification at load time

At load time, the loader places the program segment and. the Jump Table segment into
memory (it does not yet load the referenced dynamic segment). To link the Jump Table
segment with any other Jump Table segments it may have loaded, it creates the Jump Table
Directory. The Jump Table is now complete.

Using the information in the INTERSEG record, the loader patches the JSL instruction in
the program segment so that it references the proper part of the Jump Table in memory. It
also patches the actual address of the Jump Table Load function into the Jump Table entry.
The Jump Table segment is now in its unloaded state. See Figure 16-5 (b) .

. BetaDraft 148 8/11/86



System Loader: Chapter 16

Use during execution

During program execution, when the JSL instruction in the original load segment is
encountered, the following sequence of events takes place:

1. Control transfers to the proper Jump Table entry.

2. The JSL in the entry transfers control to the System Loader's Jump Table Load
function.

3. The Jump Table Load function gets (a) the load-file number, load-segment number,
and load-segment offset of the dynamic segment from the Jump Table entry; and (b)
the fIle pathname of the dynamic segment from the Pathname Table.

4. The System Loader loads the dynamic segment into memory.

5. The loader changes the dynamic segment's entry in the Jump Table to its loaded
state. The loaded state is identical to the unloaded state, except that the JSL to the
Jump Table Load function is replaced by a JMP to the external reference itself.
Figure 16-4 shows the format for the loaded state.

UserlD

f- lood-file no.

f-Iood-segment no.

load-segment
offset

f-

f- JML to
the external
reference

2 bytes

2 bytes

2 bytes

4 bytes

4 bytes

Figure 16-4. Jump Table entry (loaded state)

6. The loader transfers control to the dynamic segment. When the new segment has
finished its task (typically it is a subroutine and exits with an RTL), control returns to
the statement following the original JSL instructi~n. See Figure 16-5 (c).

Jump Table diagram

Figure 16-5 is a simplified diagram of how the Jump Table works. It follows the creation,
loading, and use of a single Jump Table entry, needed to resolve a single instruction in load
segment n. The instruction is a JSL to a subroutine named routine in dynamic segment a.

Beta Draft 149 8/11/86



Cortland ProDGS 16 Reference

a. Creation by the linker:

Object Segment n

(header)

eo er

(relocation
dictionary)

Jump Table entry-'F:::::::::::r-- referencing routif'l€l
in dynamic segment a

INTERSEG record
..#~fz;ZZ;i'Z;:z:;:t--referencing the

Jump Tobie entry

The Unker creates an
INTERSEG record in

the load segment and an
entry in the Jump Table segment

lou/lne

Dynamic
Segment

a

(code)

JSL ,

I...--lt---I ~ r----,,#'''
LINKER

JSL to routine
in dynamic
segment a

b. Modification at Load Time:

(code)

JSL

Memory Bonk $XX

:>egment
n

(code)

r 1
"'JSL •••••••..e--Uslng the iNTERSEG record.

Lo

0
a

1

der '--_..ijbx~f-I__--!""':y the Loader patches the
correct address of the
Jump Table entry onto the JSL

Jump Table

I I
Memory Bonk $VY

eo er

·:·:·•:
j 0)r ...........-\__--'r-......--~ I=:::::::::::::~':%;~..e-- the Loader patches the
: correct"address of the
: Jump Table Load function'? onto the Jump Table entry

Figure 16-5. How the Jump Table works

Beta Draft 150 8/11/86



System Loader: Chapter 16

c. Use During Execution:

Memory Bonk $XX

CD
I;=:=:t-.... JSL to Jump Table

entry encountered
during execution

I I
Memory Bonk $YV

Jump able

Q)
Execution posses to
Jump Table entry

to@

CD
Execution posses to

Jump Table Load function

. .
Memory Bank $ZZ '-1----' I :... .

",,,:,,,ory Bank ~;T :JSL from ®
I'~p :'"" ,.."moo' loo" '00""":n Junp Table entry to...................~<._~ its loaded state

I
I

!. . .
. . .

Memory Bonk ~u. I

=
IC :;~~

seg~ent :
: Loader posses.. ~~+_ .... control to routine

I ~...
Memory Bank $ZZ :,

~namlc :
Segment :

a •.

routine fnishes
with on RTL back
to segmentn

Figure 16-5. How the Jump Table works (continued)

Pathname Table
The Pathname Table provides a cross-reference between file numbers an$:! file pathnames,
to help the System Loader find the load segments that must be loaded dynamically. The
Pathname Table is a linked list of individual pathname entries; it starts with an entry for the
pathname of the initial load file, and includes any entries from segments of kind $04
(Pathname segments) that the loader encounters during the load. Also, if run-time library
files are referenced during program execution, their own pathname segments are linked to
the original one.

A load file's Pathname segment (KIND =$04) contains one entry for each run-time library
file referenced by the file. Each entry consists of a load-file number, file date and time, and
a pathname. A load file number of 0 indicates that there are no more entries in the segment.

Beta Draft 151 8/11/86



Cortland ProDOS 16 Reference

The Pathname Table is constructed in memory; its entries are identical to Pathname
segment entries, except that each also contains two link handles and a UserID field. Figure
16-6 shows the fonnat of a Pathname Table entry.

F
handle to

F next entry

F handle toF previous entry
F

F UserlD

F load-file no.

F file date

F file time

address of
Fdlrect page/stack

size of
Fdirect page/stack

.........~~?~&l!~..~.Y.t~L ......

~
pathname

~

4 bytes

4 bytes

4 bytes

2 bytes

2 bytes

2 bytes

2 bytes

2 bytes

Figure 16-6. Pathname Table entry

The fields have the following meanings:

Handle to next entry: the memory handle of the next entry iIi the Pathname Table.
For the last entry, the value of the handle is O.

Handle to previous entry: the memory handle of the previous entry in the
Pathname Table. For the first entry, the value of the handle is O.

UserID: the ID associated with this entry. Generally, each load file has a unique
UserID, and a single entry in the Pathname Table. Each new run-time library
encountered during execution is assigned the application's UserID.

File number: the number assigned to a specific load flle by the linker. File number 1
is reserved for the initial load file.

File date: the date on which the file was last modified.

File time: the time at which the file was last modified.

Thefile-date andfile time are ProDOS 16 directory items retrieved by the linker during
lin.kfug. They are included in the Pathname Table as an identity check on run-time
library files (they are ignored for other file types). To ensure that the run-time library
file used at program execution is the same one originally linked by the linker, the
System Loader compares these values' to the directory entries of the run-time library file
to be loaded. If they do not match, the System Loader will not load the file.

Beta Draft 152 8/11/86



System Loader: Chapter 16

Direct-page/stack address: the starting address of the buffer allocated (at initial
load) for the file's direct page (zero page) and stack.

Direct-page/stack size: the size (in bytes) of the buffer allocated for the file's direct
page and stack.

The direct-page/stack address and size fields are in the Pathname Table to allow the
Restart function to more quickly resurrect a dormant application (see "Restart" and
"User Shutdown" Chapter 18). These two fields are ignored for run-time library files.

File pathnarne: the full or partial pathnarne of this entry. Partial pathnames are
prepended with one of 8 prefix designators (see Chapter 5), three of which are reserved
as follows:

01 = ProDGS 16 system prefix (initially the boot volume name)

1 I =the current application's subdirectory

2 I = system library subdirectory (initially IVISYSTEM/LIBS, where !VI is the
boot volume name)

The pathname is a Pascal string, meaning that it consists of a length byte (of value n)
followed by an ASCII string (n bytes long).

BetaDrajt 153 8/11/86



Cortland ProDOS 16 Reference

Beta Draft 154 8/Il/86



Chapter 17

Programming With the
System Loader

This chapter discusses how you can use the capabilities of the System Loader at several
different levels, depending on the complexity of the programs you wish to write. It also
gives reqirements for designing controlling programs (shells)-programs that control the
loading and execution of other programs.

Programming suggestions for ProDOS 16 are in Chapter 6 of this manual. More general
information on how to .program for the Cortland is available in Programmer's Introduction
to the Cortland. For language-specific programming instructions, consult the appropriate
language manual in the Cortland Programmer's Workshop ( see "Cortland Programmer's
Wokshop" in Chapter 6).

Static programs
The functioning of the System Loader is completely transparent to simple applications.
Any program that is loaded into memory in its entirety at the beginning of execution, and
which does not call any other programs or routines that must be loaded during run time,
need not know anything about the System Loader. If such a static program is in proper
object module format, it will be automatically loaded, relocated, and executed whenever it
is called.

Programming With dynamic segments

You may write Cortland programs that use memory more efficiently than the simple
application described above. If your program is divided into static and dynamic segments,
only the static segments are loaded when the program is started up. Dynamic segments are
loaded only as needed during execution, and the memory they occupy is available again
when they are no longer needed.

Dynamic loading also is transparent to the typical application; no System Loader commands
are necessary to invoke it. If you segment your program as you write the source code, and
if you define the 'Proper s'egments as dynamic and static when the object code is linked, the
loading and execution of dynamic segments will be completely automatic.

Because segments are specified as static or dynamic at link time, you may experiment with
several configurations of a single program after it has been assembled. For example, you
might first run the program as a single static segment, then run several different static
dynamic combinations to see which gives the best performance for the amount of memory

Beta Draft 155 8/11/86



Cortland ProDGS 16 Reference

required. In this way the same program could be tailored to different machines with
different memory configurations.

In general, the least-used parts of a program are the best candidates for dynamic segments,
since loading and executing a dynamic segment takes longer than executing a static

, segment Furthermore, making a large, seldom-used segment dynamic might make the
initial load of a program faster, since the static part of the load file will be smaller.

Dynamic segments can be used as overlays (segments with the same fixed starting
address that successively occcupy the same memory area), but this structure is not
recommended for the Cortland. If all segments are instead relocatable, the Memory
Manager has more flexibility in finding the best place for each allocated segment, whether
or not it happens to be a space formerly occupied by another segment of the same program.

Programming With run-time libraries
Note: Although the System Loader supports run-time libraries, initial releases of
other Cortland system software may not This section discusses how to program
for run-time libraries when full support for them becomes available.

A run-time library is a load fIle. Like other libraries or subroutine fIles, it contains general
routines that may be referenced by a program. As with other libraries, references to it are
resolved by the linker.

Unlike other libraries, however, its segments are not physically appended to the program
that references it; instead, the linker creates a reference to it in the program's load file. The
run-time library remains on disk (or in memory) as an independent load file; when one of
its segments is referenced during program execution, the segment is then loaded and
executed dynamically.

As with dynamic segments, loading of run-time library segments is transparent to the
typical application. No System Loader commands are necessary to invoke it; as far as the
loader is concerned, the run-time library is just another load file with dynamic segments.

The most useful difference between run-time library segments and other dynamic segments
is that they may be shared among programs. Routines for drawing or calculating, dialog
boxes or graphic images, or any other segments that might be of use to more than one
program can be put into run-time libraries. And, being dynamic, they help keep the initial
load fIle small.

Important: In using both run-time libraries and other dynamic segments, make
sure that the volumes containing all needed segments and libraries are on line at run
time. A fatal error occurs if the System Loader cannot find a dynamic segment it
needs to load.

Beta Draft 156 8/Il/86



System Loader: Chapter 17

User control of segment loading
To make the greatest use of the System Loader, programs may make loader calls directly.
For most applications this is not necessary, but for programs with specialized needs the
System Loader offers this capability.

Your application can manually load other segments using the Load Segment By Number
and Load Segment By Name calls. Load Segment By Number requires the application to
know the load me number and segment number of the segment to load; Load Segment By
Name uses the load file pathname and segment name of the desired segment. Both require
UserID as an input; the UserID for each segment and each pathname are available from the
Memory Segment Table and Pathname Table, respectively. Other segment information
available through the Get Load Segment Info call.

One advantage of manually loading a dynamic segment is that it can be referenced in a more
direct manner. Automatically-loaded dynamic segments can be referenced only through a
JSL to the Jump Table; however, if the segment!s data such as a table of values, you may
wish to simply access those values rather than pass execution to the segment. By manually
loading the segment, locking it, and dereferencing its memory handle (obtaining a pointer
to the start of the segment), you may then directly reference any location in the table. Of
course, since the loader does not resolve any symbolic references in the manually loaded
segment, the application must know its exact structure.

Note: Manually-loaded dynamic segments on the Cortland can be used for the
same purposes as resource files on the Macintosh.

A program is responsible for managing the segments it loads. That is, it must unload them
(using Unload Segment By Number) or make them purgeable and unlocked (through
Memory Manager calls) when they are no longer needed.

Designing a controlling program

A program may cause the loading of another program in one of two ways:

• The program can make a ProDOS 16 QUIT call. ProDOS 16 and the System
Loader remove the quitting program from memory, then load and execute the
specified new program.

• The program can call the System Loader directly. The loader loads the specified new
program without unloading the original program, then hands control back to the
original program.

A controlling program is an application that loads and executes other programs using
method 2. It uses powerful System Loader. calls that are normally reserved for use by
ProDOS 16. Certain types of finders, switchers and shells may be controlling programs; if
you are writing such a program you should follow the conventions given here.

An application needs to be a controlling program only if it must remain in memory after it
calls another program. If it is necessary only that control return to the original program
after the called program quits, the ProDOS 16 QUIT call is sufficient for that. For
example, a finder, which always returns after an application it calls quits, does not have to

Beta Draft 157 8/11/86



Cortland froDOS 16 Reference

be a controlling program; it is not in memory while the application is running. On the other
hand, the Cortland Programmer's Workshop Shell, which has functions needed by the
subprograms that it calls, is a controlling program; it remains active in memory while its
subprograms execute.

If a controlling program loads another program, it is totally responsible for the
subprogram's disposition. It should pass execution to the subprogram with a JSL.
Likewise, the subprogram must not end with a QUIT; it should return to the controlling
program with an RTL.***sheliload file requirements are not yet fmalized***

The subprogram is first loaded using the System Loader's Initial Load function; the
function returns the subprogram's starting address and UserID to the controlling program.
The controlling program can then decide when and where to pass control to the
subprogram.

When the subprogram is fmished, the controlling program is responsible for removing it
from memory. The best way to do this is to call the User Shutdown function.

Shutting down and restarting applications

Through alternate use of the User Shutdown and Restart functions, a controlling program
can rapidly switch execution among several applications. If none of an application's static
segments have been removed from memory since shutdown, Restart rapidly brings the
application back because disk access is not required.

However, only software that is reentrant can be restarted in this way. Reentrant software
reinitializes its variables every time it gains control; it makes no assumptions about the state
of the machine it will find when it starts up. The controlling program is responsible for
deciding whether a program can be restarted.

Summary: loader calls categorized
The following table categorizes System Loader calls by the types of programs that make
them. Most applications, whether their segments are static or dynamic, and whether or not
they use run-time libraries, need make none of these calls. Applications that load dynamic
segments manually may call any of the user-callable functions. Controlling programs and
ProDOS 16 call the system-wide functions. Only the System Loader itself may call the
internal functions. Functions not listed in Table 17-1 either do nothing or are executed only
at system startup.

System Loader functions categorized by caller

System-Wide Internal
Initial Load Jump Table Load
Restart Cleanup
User Shutdown

Table 17-1.

User-Callable
Loader Version
Loader Status
Load Segment By Number
Unload Segment By Number
Load Segment By Name
Unload Segment
Get Load Segment Info

Beta Draft . 158 8/11/81..,



Beta Draft 159

System Loader: Chapter 17

8/11/86



Cortland ProDOS 16 Reference

Beta Draft 160 8/11/86



Chapter 18

System Loader Calls

Introduction

This chapter explains how System Loader functions are called, and describes the following
calls:

Number

$01
$02
$03
$04
$05

. $06

$09

$OA

SOB

$OC

SOD

$OE

$OF

$12

Function

Loader Initialization

Loader Startup

Loader Shutdown

Loader Version

Loader Reset

Loader Status

Initial Load

Restart

Load Segment By Number

Unload Segment By Number

Load Segment By Name

Unload Segment

Get Load Segment Info

User Shutdown

Jump Table Load

Cleanup

Purpose

(executed at system startup)

(no function)

(no function)

returns System Loader version

(no function)

returns initialization status

loads an application

restarts a dormant application

loads a single segment

unloads a single segment

loads a single segment

unloads a single segment

returns a segment's handle

makes an application dormant

loads a dynamic segment

frees memory space

How calls are m·ade

The System Loader is a Conland Tool Set (tool number 17, or hexadecimal $11). You call
. its functions using the standard (non-macro) Cortland tool calling sequence:

1. Push any required space for returned results onto the stack.

2. Push each input value onto the stack, in the proper order.

3. Execute the following call block:

BetaDrcift 161 8/11/86



Cortland ProDGS 16 Reference

LDX #$11+FuncNum!8
JSL Dispatcher

where

#$11 is the System Loader Tool number
li'uncNum is the number of the function being called

( I 8 means "shift left by 8 bits".)
Dispatcher is the address of the Tool Dispatcher ($E1 0000).

It is the responsibility of the controlling program (caller) to prepare the stack for each
function it calls, and to pull any results off the stack. Error status is returned in the
accumulator (A register); furthermore, the carry bit is set (1) if the call is unsuccessful, and
cleared (0) if the call is sucessful.

The Jump Table Load function does not use the above calling sequence, and cannot be
called directly by an apPlication. It is called indirectly, through a call to a Jump Table
entry. The absolute address of the function is patched into the Jump Table by the System
Loader at load time.

Parameter types

There are four types of parameters passed in the stack: values, results, pointers, and
handles. Each is either an input to or an output from the loader function being called.

• A value is a numerical quantity, either 2 bytes (word) or 4 bytes (long word) in
length, that the caller passes to the System Loader. It is an input parameter.

• A result is a numerical quantity, either 2 bytes (word) or 4 bytes (long word) in
length, that the System Loader passes back to the caller. It is an output parameter.

• A pointer is the address of a location containing data, code, or buffer space in which
the System Loader can receive or place data. A pointer may be 2 bytes (word) or 4
bytes (long word) in length. The pointer itself, and the data it points to, may be
either input or output.

• A handle is a special type of pointer: it is a pointer to a pointer. It is the 4-byte
address of a location that itself contains the address of a location containing data,
code, or buffer space. In System Loader calls, a handle is always an output.

Format for System Loader call descriptions

The following sections describe the System Loader calls in detail. Each description
contains these elements:

• the full name of the call

• a brief description of what function it performs

• the call's function number

• the call's assembly-language macro name·

the call's parameter list (input and output)

Beta Draft 162 8/11/86



System Loader: Chapter 18

• the stack configuration both before and after making the call

• a list of possible error codes

• the sequence of events the call invokes (if the brief description is not complete
enough).

• code examples,where appropriate

Parameter list note: In the parameter lists, input parameters are listed in the
order in which they are pushed onto the stack; output parameters are listed in the
order in which they are pulled from the stack. Check the stack diagrams if you are
uncertain of the proper order in which to push any of the parameters.

Stack diagram note: Unlike most other memory tables in this manual, the stack
diagrams are organized in units of words-that is, each tick mark represents two
bytes of stack space.

Beta Draft 163 8/11/86



Con/and ProDGS 16 Reference

Loader Initialization ($01)
This routine initializes the System Loader; it is called by the system software at startup
(boot) time. It clears all loader tables and sets the initial state of the system, making no
assumptions about the current or previous state of the machine. The System Loader's
global variables (see Appendix D) are defmed at this time. .

The Initialization routine is required for all Cortland Tools.

Function Number: $01

Macro Name: none

Parameters:

(none)

Possible Errors:

(none)

Beta Draft 164 8/11/86



System Loader: Chapter 18

Loader Startup ($02)
The Startup routine is required for all Cortland Tools. For the System Loader, this
function does nothing and need never be called.

Function Number: $02

Macro Name:

Parameters:

(none)

Possible Errors:

(none)

Beta Draft

LoaderStartup

165 8/11/86



Cortland ProDOS 16 Reference

Loader Shutdown ($03)
The Shutdown routine is required for all Cortland Tools. For the System Loader, this
function does nothing and need never be called.

Function Number: $03

Macro Name:

Parameters:

(none)

Possible Errors:

(none)

Beta Draft

LoaderShutdown

166 8/11/86



System Loader: Chapter 18

Loader Version ($04)
The Loader Version function returns the version number of the System Loader currently in
use.

The Version routine is required for all Cortland Tools.

Function Number: $04

Macro Name:

Parameters:

Input:

Output:

LoaderVersion

Parameter Name

(none)

Loader version

Size and Type

word result (2 bytes)

Stack Before Call:

previous contents
(result space)

~SP

Stack After Call:

previous contents
Version

f+- Sp

Possible Errors:

(none)

Beta Draft 167 8/11/86



Cortland ProDGS 16 Reference

Loader Reset ($05)
The Reset routine is required for all Cortland Tools. For the System Loader, this function
does nothing and need never be called.

Function Number: $05

Macro Name:

Parameters:

(none)

Possible Errors:

(none)

Beta Draft

LoaderReset

168 8/11/86



System Loader: Chapter 18

Loader Status ($06)
This routine returns the current status (initialized or uninitialized) of the System Loader. A
nonzero result means TRUE (initialized); a zero result means FALSE (uninitialized). A
result of TRUE is always returned by this call because the System Loader is always in the
initialized state.

The Status routine is required for all Cortland Tools.

Function Number: $06

Macro Name:

Parameters:

Input:

Output:

LoaderStatus

Parameter Name

(none)

. status

Size and Type

word result (2 bytes)

Stack Before Call:

previous contents
(result space)

+-SP

Stack After Call:

previous contents
Status

f.4- SP

Possible Errors:

(none)

Beta Draft 169 8/11/86



Con/and ProDOS 16 Reference

Initial Load ($09)
This function is called by a controlling program (such as a shell or a switcher) to ask the
Sy~tem Loader to perform an initial load of a program.

Function Number: $09

Macro Name: InitialLoad

Parameters:

Input:

Parameter Name

UserID

address of load-fIle pa;lmame

special-memory flag

Size and Type

word value (2 bytes)

long word pointer (4 bytes)

word value (2 bytes)

Output: UserID

starting address

address of direct pagel
stack buffer

size of direct pagel
stack buffer .

word result (2 bytes)

long word pointer (4 bytes)

word pointer (2 bytes)

word result (2 bytes)

SP

prevIous con en S

(result space)
(result space)

roo (result space)

(result space)

UserlD

i-
address of

load-file name

special-memory flag ...

Stack Before Call:

t t

Beta Draft 170 8/11/86



System Loader: Chapter 18

SP

prevIous con en S

dir. page/stack size
dir. page/stack addr.

- starting address

UseriD
~

Stack After Call:

t t

Possible Errors:

$1104
$1105
$1109
$llOA
$llOB.
$OOxx
$02xx

File is not a load me
System Loader is busy
SegNum out of sequence
lllegalload record found
Load segment is foreign
ProDOS 16 error
Memory Manager error

Sequence of Events:

When the Initial Load function is called, the following sequence of events occurs.

1. The function checks the Type ID and Main ID parts of the specified UserID.

a. If both parts of the specified UserID are nonzero, the System Loader uses it to
allocate space for the segments to be loaded.

b. If the Type ID part of the specified UserID is zero,the System Loader obtains a
new UserID from the UserID Manager, to assign to all segments of that me.
The new Type ID is given the value 1, meaning that the new me is classified as
an application.

c. If only the Main ID part of the specified UserID is zero, the System Loader
obtains a new UserID from the UserID Manager, using the supplied Type and
Aux ID's.

The UserID Manager (described in Cortland Toolbox Reference) guarantees that
UserID' s are unique to each application, tool, desk accessory, and so forth. See
Appendix D of this manual for a brief description of the UserID format and Type
ID's.

2. The function checks the value of the special-memory flag. If it is TRUE (nonzero),
the System Loader will not load any static segments into special memory (banks $00
and $Ol-see Chapter 3). The special-memory flag does not affect the load
addresses of dynamic segments.

3. The function calls ProDOS 16 to open the specified (by pathname) load file. If any
ProDOS 16 error occurs, or if the file is not a load file (type $B3-$BE), the System
Loader returns the appropriate error code.

Beta Draft 171 . 8/11/86



Cortland ProDOS 16 Reference

Note: If the load me is a ProDOS 8 system me (type $FF) or a ProDOS 8 binary
me (type $06), the loader will not load it.

4. Once the load me is opened, the System Loader adds the load-me information to the
Pathname Table, and calls the Load Segment By Number function for each static
segment in the load me.

e If any static segment loaded is an Initialization Segment (segment kind=$l 0), the
System Loader immediately transfers control to it. When the System Loader
regains control, it loads the rest of the static segments without passing control to
them.

e If a direct-page/stack segment (KIND=$92) is loaded, the System Loader returns
the segment's starting address and size.

Note: The System Loader treats a direct-page/stack segment as a locked, dynamic
segment. The segment cannot be moved or purged as long is the application is
active, but it is purged at shutdown.

e If any of the static segments cannot be loaded, the System Loader aborts the load
and returns the error from the Load Segment By Number function.

4. Once it has loaded all the static segments, the System Loader returns the starting
address of the first segment (other than an initialization segment) of load me 1 to the
controlling program. It then transfers execution to the controlling program. The
controlling program itself is responsible for setting the stack and direct registers and
for transferring control to the just-loaded program.

Beta Draft 172 8/11/86



System Loader: Chapter 18

Restart ($OA)
This function is called by a controlling program (such as a shell or a switcher) to ask the
System Loader to resurrect an application that has been shut down (by the User Shutdown
function), but is still in memory.

Function Number: $OA

Macro Name: Restart

Parameters:

Input:

Parameter Name

UserID

Size and Type

word value (2 bytes)

Output: UserID

starting address

address of direct pagel
stack buffer

size of direct pagel
stack buffer

word result (2 bytes)

long word pointer (4 bytes)

word pointer (2 bytes)

word result (2 bytes)

SP

prevIous con en S

(result space)
(result space)

(result space) .

(result space)

UserlD

~

Stack Before Call:

t t

BetaDraji 173 8/11/86



Cortland ProDOS 16 Reference

SP

prevIous con en s

dir. page/stack size
dir. page/stack addr.

- starting address

UserlD

r--

Stack After Call:

t t

Possible Errors:

$1101
$1105
$1108
$00:0:
$02:0:

Application not found
System Loader is busy
UserID error
ProDOS 16 error
Memory Manager error

Sequence of Events:

When the Restart function is called, the following sequence of events occurs.

1. An existing, nonzero UserID must be specified (the Aux ID part is ignored). If the
UserID is zero, error $1108 is returned. If the UserID is unknown to the System
Loader, error $1101 is returned.

2. The Restart function can work 'only if all of the specified program's static segments
are still in memory. What that means is that no segments in the Memory Segment
Table with the specified UserID can have been purged.

a. The System Loader checks the memory handle of each Memory Segment Table
entry with that UserID. If none are set to NIL the segments are all in memory.

b. The System Loader then resurrects the application by calling the Memory
Manager to make each of the application's segments unpurgeable and locked.

c. The application's complete UserID, the first segment's starting address, and the
direct page and stack information (from the Pathname Table) are returned to the
caller.

3. If any of the application's static segments are no longer in memory, the function
does the following:

a. It calls the Cleanup routine to purge all references to that UserID (and any other
unused UserID's) from the System Loader's tables.

b. It calls the UserID Manager to delete that UserID.

c. Finally, it calls the Initial Load function to load the application. The application
receives a new UserID, which is returned to the user.

Beta Draft 174 8/11/86



. System Loader: Chapter 18

Load Segment By Number ($OB)

. The Load Segment By Number routine is the workhorse function of the System Loader.
Other System Loader functions that load segments do so by calling this function. It loads a
specific load segment into, memory; the segment is specified by its load-file and load
segment numbers, and UserID.

Note: Applications use this function to manually load dynamic segments. An
application may also use Load Segment By Number to manually load a static
segment. However, in that case the System Loader does not patch the correct
address of the newly loaded segment onto any existing references to it. Therefore
the segment can be accessed only through its starting address.

Function Number: $OB

Macro Name:

Parameters:

Input:

Output:

LoadSegNurn

Parameter Name

UserID

load-file number

load-segment number

address of segment

Size and Type

word value (2 bytes)

word value (2 bytes)

word value (2 bytes)

long word pointer (4 bytes)

Stack Before Call:

previous contents

- (result space)

UserlD
load-file number

load-segment no.

f..4-SP

Stack After Call:

previous contents

address of
segment

i+-SP

Beta Draft 175 8/11/86



Cortland ProDGS 16 Reference

Possible Errors:

$1101
$1104
$1105
$1107
$1109
$110A
$110B
$OOxx
$02xx

Segment not found
File is not a load fIle
System Loader is busy
File version error
SegNum out of sequence
lllegalload record found
Load segment is foreign
ProDOS 16 error
Memory Manager error

Sequence of Events:

When the Load Segment By Number function is called, the following sequence of events
occurs.

1. First the loader checks to find out if the requested load segment is already in
memory: it searches the Memory Segment Table to determine if there is an entry for
the segment If the entry exists, the loader checks the value of the memory handle to
fmd out whether the corresponding memory block is still in memory. If so, the
function terminates without returning an error. If an entry exists but the memory
block has been purged, the entry is deleted.

2. If the segment is not already in memory, the System Loader looks in the Pathname
Table to get the load-fIle pathname from the load-fIle number. If the Pathname Table
has a partial pathname for this entry, the System Loader completes the pathname
according to ProDOS 16 conventions (see Chapter 5).

3. The System Loader checks the fIle type of the referenced fIle. If it is not a load file
(type $B3-$BE), then error $1104 is returned.

4. If the fIle is type $B4 (run-time library file), the System Loader compares the file's
modification date and time values to the fIle date and file time in the Pathname Table.
If they do not match, error $1107 is returned and the load is not performed.

5. ProDOS 16 is called to open the file. If ProDOS 16 cannot open the file, it returns
an appropriate error code.

6. After ProDOS 16 successfully opens the load file, the System Loader searches the
file for a load segment corresponding to the specified load-segment number. If none
is found, error $1101 is returned.

If the load segment is found, its header is checked (segment headers are described
under "Object Module Format" in Cortland Programmer's Workshop Reference). If
the segment is not dynamic, error $1102 is returned. If the value in the header's
SEGNUM field does not match the specified load-segment number, error $1109 is
returned. If the values in the NUMSEX and NUMLEN fields are not 0 and 4,
respectively, error $1 lOB is returned.

7. If the load segment is found and the header is correct, a memory block of the size
specified in the LENGTH fieHof the segment header is requested from the Memory
Manager. If the ORG field in the segment header is not zero, then a memory block

Beta Draft 176 8/11/86



System Loader: Chapter 18

staning at the address specified by ORG is requested (ORG is normally zero for
Cortland; that is, most segments are relocatable). Other segment attributes are set
according to values in other segment header fields-see Chapter 15.

8. If a nonzero UserID is specified, the memory block is given that UserID. If the
specified UserID is zero, the memory block is given the current UserID (value of
USERID global variable).

9. If the requested memory is not available, the Memory Manager and System Loader
use these techniques "to free space:

a. The Memory Manager unloads unneeded segments by purging their
corresponding memory blocks. Blocks are purged according to therr purge
levels. For example, alllevel-3 blocks are purged before the first level-2 block is
purged. Any dynamic segment whose memory block's purge level is zero cannot
be unloaded.

b. If all purgeable segments have been unloaded and the Memory Manager still
cannot allocate enough memory, it moves any movable blocks to enlarge
contiguous memory areas.

c. If all eligible memory blocks have been purged or moved, and the Memory
Manager still cannot allocate enough memory, the System Loader Cleanup
routine is called to free any unused parts of the System Loader's memory. The
Memory Manager then tries once more to allocate the requested memory.

d. If the Memory Manager is still unsuccessful, the System Loader returns the last
Memory Manager error that occurred.

10. Once the Memory Manager has allocated the requested memory, the System Loader
puts the load segment into memory, and processes the relocation dictionary (if any).
It patches location-dependent code according to the load address of the segment, and
replaces external references to dynamic segments with references to the Jump Table.

Note: If any records within the segment are not of a proper type ($E2, $E3, $Fl,
$F2, or $00), error $llOA is returned. See Appendix D for an explanation of
record types.

11. An entry for the segment is added to the Memory Segment Table.

12. The System Loader returns the starting address of the segment to the controlling
program.

Example of a Segment Search

Load segments in a load file are numbered sequentially starting at 1. To find a load
segment of a panicular number, the System Loader scans through the segments in order,
counting until it reaches the one it is searching for. Although each segment has a segment
number in its header; the loader uses that number only as a check, not as the means by
which it identifies the number of the segment.

To find load segment number 5, for example, the System Loader must first scan through
the first four load segments. Each load segment header must be processed, because load
segments vary in length. The scanning process is facilitated by the fact that (a) load
segments stan on block boundaries, and (b) the number of blocks in each load segment is
given in the first field of the segment header (the BLKCNT field).

Beta Draft 177 8/11/86



Cortland ProDOS 16 Reference

The following code sample shows the steps involved in loading the fIrst block of a
specifIed load segment:

SegNum:=load-segment number;
FileID:=load file;
open (FileID) ;
Block:=O;
for i:=l to SegNurn do

begin
seek (FileID,Block) ;
get (FileID) ;
Block:=Block+FileIDA.BLKCNT

end;

(find block)
(read block)
(add BLKCNT to block)

Beta Draft ·178 8/11/86



System Loader: Chapter 18

Unload Segment By Number ($OC)

This function unloads a specific load segment from memory; the segment is specified by its
load-file and load-segment numbers,and UserID.

Function Number: SOC

Macro Name:

Parameters:

Input:

Output:

UnLoadSegNum

Parameter Name

UserID

load-fIle number

load-segment number

(none)

Size and Type

word value (2 bytes)

word value (2 bytes)

word value (2 bytes)

SP

Stack Before Call:

previous contents

UserlD
load-file no.

load-segment no.

I+-

Stack After Call:

I
previous contents I

I+-sp

Possible Errors:

$1101
$1105
$OOn
$02x:x

Beta Draft

Segment nof found
System Loader is busy
ProDOS 16 error
Memory Manager error

179 81ll /86



Cortland ProDGS 16 Reference

Sequence of Events:

When the Unload Segment By Number function is called, the following sequence of events
occurs.

1. The System Loader searches the Memory Segment Table for the specified load-fIle
number and load-segment number. If there is no such entry, error $1101 is
returned.

2. If the Memory Segment Table entry is found, the loader calls the Memory Manager
to make purgeable (purge level =3) the memory block in which the dynamic
segment resides.

3. The loader changes all entries in the Jump Table that reference the unloaded segment
to their unloaded states.

Special conditions:

• If the specified UserID is zero, the current UserID (value of USERID) is assumed.

• If both the load-fIle number and load-segment number are nonzero, the specified
segment is unloaded regardless of whether it is static or dynamic. If either input is
zero, only dynamic segments are unloaded, as noted next.

• If the specified load-fIle number is zero, all dynamic segments for that UserID are
unloaded.

• If the specified load-segment number is zero, all dynamic segments for the specified
load file are unloaded.

Note: If a static segment is unloaded, the application that it is part of cannot be
restarted from a dormant state. See "Restart" and "User Shutdown," in this chapter.

Beta Draft 180 8/11/86



System Loader: Chapter 18

Load Segment By Name ($OD)
This function loads a named segment into memory. The segment is named by its load file's
pathname, and its segment name (from the SEGNAME field in the segment header). A
nonzero UserID may be specified if the loaded segment is to have a UserID different from
the current UserID.

Function Number: SOD

Macro Name: LoadSegName

Parameters:

Input:

Parameter Name

UserID

address of load-fIle name

address of load-segment name

Size and Type

word value (2 bytes)

long word pointer (4 bytes)

long word pointer (4 bytes)

Output: address of segment

load-file number

load-segment number

long word pointer (4 bytes)

word result (2 bytes)

word result (2 bytes)

SP

prevIous con en s

(result space)
(result space)

(result space) .

UseriD
address of

load-file name

address of
load-segment name

-+-

Stack Before Call:

t t

Beta Draft 181 8/11/86



Cortland ProDGS 16 Reference

Stack After Call:

previous contents
load-segment no.

load-file no.

I-
address of
segment

f-4- SP

Possible Errors:

$1101
$1104
$1105
$1107
$1109
$llOA
$llOB
$OOn
$02xx

Segment not found
File is not a load me
System Loader is busy
File version error
SegNum out of sequence
lllegalload record found
Load segment is foreign
ProDOS 16 error
Memory Manager error

Sequence of Events:

When the Load Segment By Name function is called, the following sequence of events
occurs.

1. The System Loader gets the load-file pathname from the pointer given in the function
call.

2. The System Loader checks the me type of the referenced file, from the file's disk
directory entry. If it is not a load file (type $B3-$BE), error $1104 is returned.

3. If it is a load me, the loader calls ProDOS 16 to open the file. If ProDOS 16 cannot
open the f~e, it returns the appropriate error code.

4. After the load me has been successfully opened by ProDOS 16, the System Loader
searches the file for a segment with the specified name. If it finds none, error $1101
is returned. If the load segment is found but it is not a dynamic segment, error
$1102 is returned.

5. If the load segment is found, the System Loader notes the segment number. It also
checks the Pathname Table to see if the load file is listed. If it is, it gets the load file
number from the table; if not, it adds a new entry to the Pathname Table, assigning
an unused file number to the load file.

6. Now that it has both the load-file number and the segment number of the requested
segment, the System Loader calls the Load Segment By Number function to load the
segment. If the Load Segment By Number function returns an error, the Load
Segment By Name function returns the same error. If the Load Segment By Number
function is successful, the Load Segment By Name function returns the load file
number, the load segment number, and the starting address of the memory block in
which the load segment was placed.

Beta Draft 182 8/11/86



System Loader: Chapter 18

Unload Segment ($OE)

This function unloads the load segment containing the specified address. By using Unload
Segment, an application can unload a segment without having to know its load-segment
number, load-file number, name or UserID.

Function Number: $OE

Macro Name: UnloadSeg

Parameters:

Input:

Parameter Name

address in segment

Size and Type

long word pointer (4 bytes)

Output: UserID

load-file number

load-segment number

word result (2 bytes)

word result (2 bytes)

word result (2 bytes)

SP

prevIous con en s

(result space)
(result space)
(result space)

address in segment

f+-

Stack Before Call:

t t

Stack After Call: _

SP

previous contents

load-segment no.
load-file no.

UserlD

f+-

Beta Draft 183 8/11/86



Cortland ProDOS 16 Reference

Possible Errors:

$1101
$1105
$OOxx
$Oill

Segment not found
System Loader is busy
ProDOS 16 error
Memory Manager error

Sequence of Events:

When the Unload Segment function is called, the following sequence of events occurs.

1. The function calls the Memory Manager to identify the memory block containing the
specified address. If the address is not within an allocated memory block, error
$1101 is returned.

2. If the memory block is found, the function uses the memory handle returned by the
Memory manager to fmd the block's UserID. It then scans the Memory Segment
Table for an entry with that UserID and handle. If no such entry is found, error
$1101 is returned.

3. If the Memory Segment Table entry is found, the function does one of two things:

a. If the Memory Segment Table entry refers to any segment other than a Jump
Table segment, the function extracts the load-file number and load-segment
number from the entry.

b. If the Memory Segment Table entry refers to a Jump Table segment, the function
extracts the load-fIle number and load-segment number in the Jump Table entry
at the address specified in the function call.

4. The function then calls the Unload Segment By Number function to unload the
segment.

The outputs of this function (load-file number, load-segment number, and UserID) can be
used as inputs to other System Loader functions such as Load Segment By Number.

Beta Draft 184 8/11/86



System Loader: Chapter 18

Get Load Segment Info ($OF)
This function returns the Memory Segment Table entry corresponding to the specified (by
number) load segment.

Function Number: $OF

Macro Name:

Parameters:

Input:

Output:

GetLoadSeglnfo

Parameter Name

UserID

load-file number

load-segment number

address of user buffer

(filled user buffer)

Size and Type

word value (2 bytes)

word value (2 bytes)

word value (2 bytes)

long word pointer (4 bytes)

SP

Stack Before Call:

previous contents

UserlD
load-file no.

load-segment no.

address of
user buffer -

~

Stack After Call:

I previous contents I
I+-sp

Possible Errors:

$1101
$1105
$OOxx
$02.xx

Beta Draft

Entry not found
System Loader is busy
ProDOS 16 error
Memory Manager error

185 8/11/86



Con/and ProDOS 16 Reference

Sequence of Events:

When the Get Load Segment Info function is called, the following sequence of events
occurs.

1. The Memory Segment Table is searched for the specified entry. If the entry is not
found, error $1101 is returned.

2. If the entry is found, the contents of the entry (except for the link pointers) are
copied into the user buffer.

BetaDrajt 186 8/11/86



System Loader: Chapter 18

User' Shutdown ($12)

This function is called by the controlling program to close down an application that has just
ternrinated.

Function Number: $12

Macro Name:

Parameters:

Input:

Output:

UserShutdown

Parameter Name

UserID

UserID

Size and Type

word value (2 bytes)

word result (2 bytes)

Stack Before Call:

previous contents
(result space)

UseriD

~SP

Stack After Call:

previous contents
UserlD

-+- SP

Possible Errors:

$1105
$OOxx
$02xx

Beta Draft

/

System Loader is busy
ProDOS 16 error
Memory Manager error,

187 8/Il/86



Cortland ProDOS 16 Reference

Sequence of Events:

When the User Shutdown function is called, the following sequence of events occurs.

1. The System Loader checks the specified UserID. If it is zero, the System Loader
assumes it is the current UserID ( =value of USERID global variable).

2. Using the UserID (with Aux ID set to zero), the loader calls the Memory Manager to
purge all dynamic segments' memory blocks with that UserID. The segments are
purged regardless of their purge level and whether or not they are locked.

3. The loader again calls the Memory Manager, to make all static segments with the
specified UserID purgeable.

The application is now in a dormant state-disconnected but not gone. It may oe
resurrected very quickly by the System Loader because all its static segments are still in
memory. Once anyone of its static segments is purged by the Memory Manager, however,
it is truly lost and mUst be reloaded from its load fIle if it is ever needed again.

Beta Draft 188 8/11/86



System Loader: Chapter 18

Jump Table Load
This function is called by an unloaded Jump Table entry in order to load a dynamic load
segment. Besides the function call, the unloaded Jump Table entry includes the load-fIle
number and load-segment number of the dynamic segment to be loaded. The Jump Table
is described in Chapter 16.

Function Number: none

Macro Name: none

Parameters:

Input:

Output:

Parameter Name

UserID

load-fIle number

load-segment number

load-segment offset

(none)

Size and Type

word value (2 bytes)

word value (2 bytes)

word value (2 bytes)

long word value (4 bytes)

Stack Before Call:

previous contents

UserlD
load-file no.

load-segment no.

load-segment offset

...-SP

Stack After Call:

I previous contents I
j...-SP

Beta Draft 189 8/11/86



Cortland ProDOS 16 Reference

Possible Errors:

$1101
$1104
$1105
$OOxx
$02xx

Segment not found
File is not a load fIle
System Loader is busy
ProDOS 16 error
Memory Manager error

Note: Because this function is never called directly by a controlling program, the
program need not know what parameters it requires.

Sequence of Events:

When the Jump Table Load function is called, the following sequence of events occurs.

1. The function calls the Load Segment By Number function, using the load-file
number and load-segment number in the Jump Table entry. If the Load Segment By
Number function returns any error, the System Loader considers it a fatal error and
calls the System Death Manager.

2. If the Load Segment By Number function successfully loads the segment, the Jump
Table Load function changes the Jump Table entry to its loaded state: it replaces the
JSL to the Jump Table Load function with a JML to the absolute address of the
reference in the just-loaded segment.

3. The function transfers control to the address of the reference.

!3etaDraji 190 8/Il/86



System Loader: Chapter 18

Cleanup
This routine is used to free additional memory when needed. It scans the Memory Segment
Table and removes all entries that reference purged segments.

Note: Because this function is never called directly by a controlling program, the
program need not know what parameters it requires.

Function Number: none

Macro Name: none

Parameters:

Input:

Output:

Parameter Name

UserID

(none)

Size and Type

word value (2 bytes)

Stack Before Call:

previous contents
UseriD

~SP

Stack After Call:

I
previous contents I

\4-sp

Possible Errors:

(none)

Sequence of Events:

When the Cleanup routine is called, the following sequence of events occurs.

1. If the specified UserID is 0:

a. The System Loader scans all entries in the Memory Segment Table.

Beta Draft

./

191 8/11/86



Conland ProDOS 16 Reference

b. All dynamic segments for all UserID's are purged.

2. If the specified UserID is nonzero:

a. The System Loader scans all entries in the Memory Segment Table with that
UserID.

b. All load segments (both dynamic and static) for that UserID are purged.

b. All entries in the Pathname Table and Memory Segment Table for that UserID are
deleted.

c. The UserID itself is then removed through a call to the UserID Manager.

Beta Draft 192 8/11/86



Chapter 19

System Loader Error Codes

Nonfatal errors

The System Loader returns errors in the same way ProDOS 16 does. Upon return from a
call, the carry bit reflects the error status (set to 1 if an error occurred, cleared to 0 if no
error), and the accumulator contains the error code ($0000 if no error).

If a ProDOS 16 or Memory Manager error occurs during the execution of a System Loader
call, the appropriate error code is placed ill the accumulator. ProDOS 16 error codes are
described in Chapter 14 of this manual; Memory Manager error codes are described in
Cortland Toolbox Reference.

The following table lists error numbers and gives for each a suggested screen message and
a brief description of its significance.

Number

$0000

$1101

$1104

$1105

$1107

Message and Description

(no error)

Not found: The specified segment (in the load file) or entry (in the
Pathname Table or Memory Segment Table) does not exist. If the
specified load me itself is not found, a ProDOS 16 error $46 (file not
found) is returned.

File is not a load file: the specified load file is not type $B3-$BE.
See Appendix A or D for descriptions of these me types.

Loader is busy: The call cannot be made because the System Loader
is busy with another call.

File version error: The specified file cannot be loaded because its
creation date and time do not match those on its entry in the Pathname
Table.

Note: this error applies to run-time library files only.

$1108 UserID error: The specified UserID either doesn't exist (Application
Shutdown), or doesn't match the UserID of the specified segment
(Unload Segment By Number).

Beta Draft 193

./

8/11/86



Cortland ProDOS 16 Reference

$1109

$110A

$110H

SegNum out of sequence: the value of the SEGNUM field in the
segment's header doesn't match the number by which the segment was
specified (Load Segment By Number, Initial Load).

Illegal load record found: A record in the segment is of a type not
accepted by the loader. Load files can consist only of record types $E2
(RELOC), $E3 (INTERSEG), $F1 (DS), $F2 (LCONST), and $00
(END).

Load segment is foreign: The values in the NUMSEX and NUMLEN
fields in the specified segment's header are not 0 and 4, respectively
(Load Segment By Number).

$OOl-$OSF (ProDOS 16 I/O errors)

$201-$20 A (Memory Manager errors)

Fatal errors
If a ProDOS 16 error or Memory Manager error occurs while the System Loader is making
an internal call, it is a fatal error. The most common case is when a Jump Table Load is
attempted for a dynamic load segment or run-time library segment whose volume is not on
line. Control is transferred to the System Death Manager, and the following message
appears on the screen:

Error loading Dynamic Segment-XXXX

where XXXX is the error code of the ProDOS 16 or Memory manager error that occurred.

Beta Draft 194 8/II /86



Beta Draft

Appendixes

195

./

8/11/86



Beta Draft 196 8/ll/86



Appendix A

ProDOS 16 File Organization

This appendix contains a detailed description of the way that ProDOS 16 stores files on
disks. For most applications, the operating system insulates you from this level of detail.
However, you must use this information if, for example, you want to

• List the files in a directory

• Copy a sparse fIle without increasing the file's size

• Compare two sparse files

This appendix fIrst explains the organization of information on volumes. Next, it shows the
format and organization of volume directories, subdirectories, and the various stages of
standard files. Finally it presents a set of diagrams showing the formats of individual
header and entry fIelds.

Note: In this appendix,format refers to the arrangement of information (such as
headers, pointers and data) within a file. Organization refers to the manner in
which a single fIle is stored on disk, in terms of individual 512-byte blocks.

Organization of information on a volume
When a volume is formatted for use with ProDOS 16, its surface is partitioned into an array
of tracks and sectors. In accessing a volume, ProDOS 16 requests not a track and sector,
but a logical block from the device corresponding to that volume. That device's driver
translates the requested block number into the proper track and sector number; the physical
location of information on a volume is unimportant to ProDOS 16 and to an application that
uses ProDOS 16. This appendix discusses the organization of information on a volume in
terms of logical blocks, not tracks and sectors.

When the volume is formatted, information needed by ProDOS 16 is placed in specifIc
logical blocks, starting with the fIrst block (block 0). A loader program is placed in
blocks 0 and 1 of the volume. This program enables ProDOS 16 (or ProDOS 8) to be
booted from the volume. Block 2 of the volume is the key block (the first block) of the
volume directory file; it contains descriptions of (and pointers to) all the files in the
volume directory. The volume directory occupies a number of consecutive blocks,
typically four, and is immediately followed by the volume bit map, which records
whether each block on the volume is used or unused. The volume bit map occupies
consecutive blocks, one for every 4,096 blocks, or fraction thereof, on the volume. The
rest of the blocks on the disk contain subdirectory file information, standard file
information, or are empty. The fIrst blocks of a volume look something like Figure A-I.

Beta Draft 197

../

8/11/86



Cortland ProDOS 16 Reference

Loader Volume
Directory

(Key Block)

Block n Block rl+1

Volume Volume
Directory Bit Map

(Last Block) (first block)

Volume
Bit Map

(last block)

Figure A-I. Block organization of a volume

The precise format of the volume directory, volume bit map, subdirectory files and
standard files are explained in the following sections.

Format and organization of directory files
The format and organization of the information contained in volume directory and
subdirectory files is quite similar. Each consists of a key block followed by zero or more
blocks of additional directory information. The fields in a directory's key block are:

• a pointer to the next block in the directory
• a header that describes the directory
• a number of file entries describing, and pointing to, the files in that directory
• zero or more unused bytes.

The fields in subsequent (nonkey) blocks in a directory are:

• pointers to the preceding and succeeding blocks in the directory
• a number of entries describing, and pointing to, the files in that directory
• zero or more unused bytes.

The format of a directory file is represented in Figure A-2.

Key Block Any Block Last Block

more
: file , •
• entries ..

+- pointer
--II 0

header

file entry

.

header

file entry

more •
: file : :
• entries •

ore
file : :

• entries •

0 r--
pointer ~

header

file entry

m .

file entry file entry file entry

unused
space

unused
space

unused
space

Figure A-2. Directory file format and organization

Beta Draft 198 8/Il/86



Appendix A

The header is the same length as all other entries in a directory fIle. The only difference
between a volume directory fIle and a subdirectory fIle is in the header format.

Pointer fields

The fIrst four bytes of each block used by a directory fIle contain pointers to the preceding
and succeeding blocks in the directory .fIle, respectively. Each pointer is a two-byte logical
block number-low-order byte first, high-order byte second. The key block of a directory
fIle has no preceding block; its fIrst pointer is zero. Likewise, the last block in a directory
fIle has no successor; its second pointer is zero.

Note: The block pointers described in this appendix, which hold disk addresses,
are two bytes long. All other ProDOS 16 pointers, which hold memory addresses,
are four bytes long. In either case, ProDOS 16 pointers are always stored with the
low-order byte fIrst and the high-order byte last. See Chapter 2, "ProDOS 16 and
Cortland Memory."

V olume directory headers

Block 2 of a volume is the key block of that volume's directory fIle. The volume directory
header is at byte position $0004 of the key block, immediately following the block's two
pointers. Thirteen fIelds are currently defIned to be in a volume directory header: they
contain all the vital information about that volume. Figure A-3 illustrates the structure of a
volume directory header. Following Figure A-3 is a description of each of its fIelds.

Beta Draft 199 8/11/86

./



Cortland ProDOS 16 Reference

Byte at

Block

Field
Length

2 bytes

1 byte
1 byte

2 bytes

1 byte
1 byte

1 byte
1 byte
1 byte

2 bytes

2 bytes

1 byte

f

1
!
1

f- create_date .

create_time

version
min_version

access
entryJength

entries_per_block

file_count

bit_mop_pointer

.. total_blocks

or
[ (pointer)

~r (polnterl

4 storage_type I nameJength
5

~ -
~ file_name ~15 bytes

:~~--1
-2. (reserved) '2' 8 bytes

18
lC

10
1E
IF
20
21

22
23
24
25
26
27
28
29
2.A.

Figure A-3. The volume directory header

"

Beta Draft 200 8/11/86



Appendix A

storage_type and nameJength (l byte): Two four-bit (nibble) fields are packed into
this byte. A value of $F in the high-order nibble (storage_type) identifies the current
block as the key block of a volume directory file. The low-order nibble contains the length
of the volume's name (see the file name field, below). The value of name length
can be changed by a CHANGE_PATHcall. -

file name (15 bytes): The first n bytes of this field, where n is the value of
na;e length, contain the volume's name. This name must conform to the file name
(volume name) syntax explained in Chapter 2. The name does not begin with the slash that
usually precedes volume names. This field can be changed by the CHANGE_P ATH call.

reserved (8 bytes): Reserved for future expansion of the file system.

create date (2 bytes): The date on which this volume was initialized. The format of
these bytes is described under "Header and Entry Fields," later in this appendix.

create time (2 bytes): The time at which this volume was initialized. The format of these
bytes is described under "Header and Entry Fields," later in this appendix.

version (l byte): The file system version number of ProDOS 8 or ProDOS 16 under
which the file pointed to by this entry was created. This byte allows newer versions of
ProDOS 16 to determine the format of the file, and adjust their interpretation processes
accordingly. For ProDOS 16, vers ion =O.

Note: Version in this sense refers to the file system version only. At present, all
ProDOS operating systems use the same file system and therefore have the same
file system version number. The file system version number is unrelated to the
program version number returned by the GET_VERSION call.

min_version: Reserved for future use. For ProDOS 16, it is O.

access (1 byte): Determines whether this volume directory can be read, written,
destroyed, or renamed. The format of this field is described under "Header and Entry
Fields," in this Appendix.

entry_length (1 byte): The length in bytes of each entry in this directory. The volume
directory header itself is of this length. For ProDOS 16, entry_length =$27.

entries_per_block (1 byte): The number of entries that are stored in each block of the
directory file. For ProDOS 16, entries_per_block =SOD.

file_c6unt (2 bytes): The number of active file entries in this directory file. An active file
is one whose storage_type is not O. Figure A-5 shows the format of file entries.

bit_map_pointer (2 bytes): The block address of the first block of the volume's bit map.
The bit map occupies consecutive blocks, one for every 4,096 blocks (or fraction thereof)
on the volume. You can calculate the number of blocks in the bit map using the
total_blocks field, described below.

The bit map has one bit for each block on the volume: a value of 1 means the block is free;
omeans it is in use. If the number of blocks used by all files on the volume is not the same
as the number recorded in the bit map, the directory structure of the volume has been
damaged.

Beta Draft 201 8/11/86



Con/and ProDOS 16 Reference

total blocks (2 bytes): The total number of blocks on the volume.

Subdirectory headers

The key block of every subdirectory fIle is pointed to by an entry in a parent directory; for
example, by an entry in a volume directory (Figure A-2). A subdirectory's header begins
at byte position $0004 of the key block of that subdirectory file, immediately following the
two pointers.

Its internal structure is quite similar to that of a volume directory header (only its last three
fields are different). There are fourteen fields in a subdirectory header: they contain all the
vital information about that subdirectory. Figure A-4 illustrates the structure of a
subdirectory header. A description of all the fields in the header follows the figure.

Beta Draft 202 8/11/86



Appendix A

Byte of

Block

Field

Length

2 bytes

1 byte

1 byte

2 bytes

2 bytes

1 byte
1 byte

1 byte
1 byte
1 byte

2 bytes

1 byte

- create_date ·

- create_time ·
version

min_version

access
entryJength

entries_per_block

F file_count ·

- parent_pointer ·
parent_entry_numb er

parenLentryJength

°C J1i (pointer) 1
~ ~~~~~-(-p-O-in-te-r-)~~~~-{i

4 storage_type I nameJength
5 - ..f' file_name 1'15 bytes

~~~--1-2 (reserved) ~ 8 bytes
1B
1C

10
1E
1F

20
21

22
23
24
25
26

27
28
29
2A

Figure A-4. The subdirectory header

Beta Draft 203 8/11186.

Cortland ProDOS 16 Reference

storage_type and name_length (1 byte): Two four-bit (nibble) fields are packed into
this byte. A value of $E in the high-order nibble (storage_type) identifies the current
block as the key block of a subdirectory fIle. The low-order nibble contains the length of
the subdirectory's name (see the file_name field, below). The value of name_length
can be changed by a CHANGE_PATH call.

file name (15 bytes): The first name_length bytes of this field contain the subdirectory's
nanle. This name must confonn to the file name syntax explained in Chapter 2. This field
can be changed by the CHANGE PATH call.

reserved (8 bytes): Reserved for future expansion of the file system.

create date (2 bytes): The date on which this subdirectory was created. The fonnat of
these bytes is described under "Header and Eqtry Fields," later in this appendi'<:.

create time (2 bytes): The time at which this subdirectory was created. The fonnat of
these bytes is described under "Header and Entry Fields," later in this appendix.

version (1 byte): The file system version number of ProDOS 8 or ProDOS 16 under
which the fIle pointed to by this entry was created. This byte allows newer versions of
ProDOS 16 to determine the fonnat of the file, and adjust their interpretation processes
accordingly. For ProDOS 16, version = O.

Note: Version in this sense refers to the file system version only. At present, all
ProDOS operating systems use the same file system and therefore have the same
file system version number. The me system version number is unrelated to the
program version number returned by the GET_ VERS ION call.

min_version (1 byte): The minimum version number of ProDOS 8 or ProDOS 16 that
can access the infonnation in this me. This byte allows older versions of ProDOS 8 and
ProDOS 16 to determine whether they can access newer files. For ProDOS 16,
min version =O.

access (1 byte): Determines whether this subdirectory can be read, written, destroyed, or
renamed, and whether the file needs to be backed up. The fonnat of this field is described
under "Header and Entry Fields," in this Appendix. A subdirectory's access byte can be
changed bv the SET FILE INFO and CLEAR BACKUP BIT calls.

" - - --
entry_length (1 byte): The length in bytes of each entry in this subdirectory. The
subdirectory header itself is of this length. For ProDOS 16, entry_length =$27.

entries_per_block (l byte): The number of entries that are stored in each block of the
directory file. For ProDOS 16, entries_per_bJ,.ock =SOD.

file_count (2 bytes): The number of active file entries in this subdirectory file. An active
me is one whose storage type is not O. See "File Entries" for more infonnation about
file entries. -

parent_pointer (2 bytes): The block address of the directory file block that contains the
entry for this subdirectory. This and all other two-byte pointers are stored low-order byte
first, high-order byte second.

Beta Draft 204 8/11/86

Appendix A

parent_entry_number (1 byte): The entry number for this subdirectory within the block
indicated by parent_poin'ter.

parent_entry_Iength (1 byte): The entry_length for the directory that owns this
subdirectory file. Note that with these last three fields you can calculate the precise position
on a volume of this subdirectory's file entry. For ProDOS 16, parent entry length
=$TI. - -

File Entries

Immediately following the pointers in any block of a directory file are a number of entries.
The first entry in the key block of a directory file is a header, all other entries are file
entries. Each entry has the length specified by that directory's entry length field, and
each file entry contains information that describes, and points to, a single subdirectory file
or standard file.

An entry in a directory file may be active or inactive, that is, it mayor may not describe a
file currently in the directory. If it is inactive, the first byte of the entry (storage type
and name_length) has the value zero. -

The maximum number of entries, including the header, in a block of a directory is recorded
in the entries_per_block field of that directory's header. The total number of active
file entries, not including the header, is recorded in the file count field of that·
directory's header. -.

Figure A-5 describes the format of a file entry.

Beta Draft 205 8/11/86

Con/and ProDOS 16 Reference

2 bytes

2 bytes

1 byte

2 bytes

2 bytes

2 bytes

1 byte
1 byte
1 byte

2 bytes

3 bytes

2 bytes

2 bytes

Field

Length

1 byte

~ 15 bytes
l- .

file_type

key_pointer

I- blocks_used .

I-
EOF

l-

t- create_date

I- create_time

version
min_version

access

I- aux_type

mod_date

mod_time

I- header_pointer

Entry

Offset

o storage_type I nameJength

1
21;-
~ file_name

F
10
11
12

13
14
15
16
17
18
19
1A
18
1C

10
1E

1F
20
21
22
23
24
25
26

Figure A-5. The file entry

Beta Draft 206 8/11/86

Appendix A

storage_type iUld name_length (1 byte): Two four-bit (nibble) fields are packed into
this byte. The value in the high-order nibble (storage type) specifies the type of file
pointed to by this file entry: -

$1 = Seeding file
$2 = Sapling fIle
$3 = Tree fIle
$4 = Pascal area
$D = Subdirectory

Seedling, sapling, and tree files are described under "Fonnat and Organization of Standard
Files," in this Appendix. The low-order nibble contains the length of the fIle's name (see
the file name field, below). The value of name length can be changed by a
CHANGE PATH call. -

file_name (15 bytes): The first name_length bytes of this field contain the file's name.
This name must confonn to the file name syntax explained in Chapter 2. This field can be
changed by the CHANGE_PATH call.

file_type (1 byte): A descriptor of the internal structure of the file. Table A-I (at the end
of this appendix) is a list of the currently defmed values of this byte.

key_pointer (2 bytes): The block address of:

• the master index block (if the fIle is a tree fIle)
• the index block (if the file is a sapling file)
• the data block (if the fIle is a seedling fIle)

blocks_used (2 bytes): The total number of blocks actually used by the file. For a
subdirectory file, this includes the blocks containing subdirectory infonnation, but not the
blocks in the fIles pointed to. For a standard fIle, this includes both infonnationaJ blocks
(index blocks) and data blocks. See "Fonnat and Fonnat and Organization of Standard
Files" in this Appendix.

EOF (3 bytes): A three-byte integer, lowest byte first, that represents the total number of
bytes readable from the fIle. Note that in the case of sparse fIles, EOF may be greater than
the number of bytes actually allocated on the disk.

create_date (2 bytes): The date on which the file pointed to by this entry was created.
The fonnat of these bytes is described under "Header and Entry Fields," later in this
appendix.

create_time (2 bytes): The time at which the file pointed to by this entry was created.
The fonnat of these bytes is described under "Header and Entry Fields," later in this
appendix.

version (1 byte): The file system version number of ProDOS 8 or ProDOS 16 under
which the file pointed to by this entry was created. This byte allows newer versions of
ProDOS 16 to detennine the fonnat of the file, and adjust their interpretation processes
accordingly. For ProDOS 16, version =O.

Note: Version in this sense refers to the file system version only. At present, all
ProDOS operating systems use the same file system and therefore have the same

Beta Draft 207 . 8/11/86

Conland ProDOS 16 Reference

. file system version number. The file system version number is unrelated to the
program version number returned by the GET_VERSION call.

min version (1 byte): The minimum version number of ProDOS 8 or ProDOS 16 that
can access the information in this file. This byte allows older versions of ProDOS 8 and
ProDOS 16 to determine whether they can access newer files. For ProDOS 16,
min version =O.

access (1 byte): petermines whether this file can be read, written, destroyed, or renamed,
and whether the file needs to be backed up. The format of this field is described under
"Header and Entry Fields," later in this appendix. The value of this field can be changed
by the SET_FILE_INFO and CLEAR_BACKUP_BIT calls. You cannot delete (destroy) a
subdirectory that contains any fIles. .

aux type (2 bytes): A general-purpose field in which an application can store additional
information about the internal format of a file. For example, the ProDOS 8 BASIC system
program uses this field to record the load address of a BASIC program or binary file, or the
record length of a text file.

mod_date (2 bytes): The date on which the last CLOSE operation after a WRITE was
performed on this file. The format of these bytes is described under "Header and Entry
Fields," later in this appendix. This field can be changed by the SET_F ILE_ INFO call.

mod_time (2 bytes): The time at which the last CLOSE operation after a WRITE was
performed on this file. The fonnat of these bytes is described under "Header and Entry
Fields," later in this appendix. This field can be changed by the SET_FILE_INFO call.

header_pointer (2 bytes): This field is the block address of the key block of the
directory that owns this file entry. This and all two-byte pointers are stored low-order byte
first, high-order byte second.

Reading a directory file

This section deals with the general techniques of reading from directory fIles, not with the
specifics. The ProDOS 16 calls with which these techniques can be implemented are
explained in Chapters 9 and 10.

Before you can read from a directory, you must know the directory's pathname. With the
directory's pathname, you can open the directory file, and obtain a reference number
(ref_num) for that open file. Before you can process the entries in the directory, you must
read three values from the directory header:

• Length of each entry in the directory (entry_length)
• Number of entries in each block of the directory (entriesyer_block)
• Total number of fIles in the directory (file count).

Using the reference number to identify the me, read the first 512 bytes from the file, and
into a buffer (ThisBlock in the example below). The buffer contains two two-byte
pointers, followed by the entries; the first entry is the directory header. The three values
are at positions $lF through $22 in the header (positions $23 through $26 in the buffer).

Beta Draft 208 8/Il/86

(Get reference number)
{Read a block into buffer}
{Get directory info }

Appendix A

In the example below, these values are assigned to the variables EntryLength,
EntriesPerBlock, and FileCount.

Open (DirPathname, RefNum);
ThisBlock := Read5l2Bytes(RefNum);
EntryLength := ThisBlock[$23];
EntriesPerBlock := ThisBlock[$24];
FileCount := ThisBlock[$25] + (256 * ThisBlock[$26]);

Once these values are known, an application can scan through the entries in the buffer,
using a pointer (EntryPointer) to the beginning of the current entry, a counter.
(BlockEntries) that indicates the number of entries that have been examined in the
current block, and a second counter (ActiveEntr ies) that indicates the number of
active entries that have been processed.

An entry is active and is processed only if its first byte, the storage_type and
name_length, is nonzero. All entries have been processed when ActiveEntries is equal

$ to FileCount. If all the entries in the buffer have been processed, and ActiveEntries doesn't
equal FileCount, then the next block of the directory is read into the buffer.

EntryPointer
BlockEntries
ActiveEntries

:= EntryLength + $04; {Skip header entry}
:= $02; {Prepare to process entry two}
:= $00; {No active entries found yet }

while ActiveEntries < FileCount do begin
if ThisBlock[EntryPointer] <> $00 then begin {Active entry}

ProcessEntry(ThisBlock[EntryPointer]) ;
ActiveEntries := ActiveEntries + $01

end;
if ActiveEntries < FileCount then {More entries to process}

if BlockEntries = EntriesPerBlock
then begin {ThisBlock done. Do next one}

ThisBlock "= Read5l2Bytes(RefNum);
BlockEntries := $01;
EntryPointer := $04

end;
Close (RefNum) ;

end
else begin

EntryPointer :=
BlockEntries :=

end

{Do next entry in ThisBlock
EntryPointer + EntryLength;
BlockEntries + $01

This algorithm processes entries until all expected active entries haVe been found. If the
directory structure is damaged, and the end of the directory file is reached before the proper
number of active entries has been found, the algorithm fails.

Format and organization of standard files
Each active entry in a directory file points to the key block (the fIrst block) of a fIle. As
shown below, the key block of a standard file may have several types of information in it.
The storage type fIeld in that file's entry must be used to determine the contents of the

Beta Draft 209 8/Il/86

Cortland ProDOS 16 Reference

key block. This section explains the structure of the three stages of standard file: seedling,
sapling, and tree. These are the mes in which all programs and data are stored.

Growing a tree file

The following scenario demonstrates the growth of a tree file on a volume. This scenario is
based on the block allocation scheme used by ProDOS 16 on a 280-block flexible disk that
contains four blocks of volume directory, and one block of volume bit map. Larger
capacity volumes might have more blocks in the volume bit map, but the process would be
identical.

A fonnatted, but otherwise empty, ProDOS 16 volume is used like this':

Blocks 0-1 Loader
Blocks 2-5 Volume directory
Block 6 Volume bit map
Blocks 7-279 Unused

If you open a new me of a nondirectory type, one data block is immediately allocated to
that me. An entry is placed in the volume directory, and it points to block 7, the new data
block, as the key block for the me. The key block is indicated below by an arrow.

The volume now looks like this:

Blocks 0-1 Loader
Blocks 2-5 Volume directory
Block 6 Volume bit map

-> Block 7 Data block 0
Blocks 8-279 Unused

This is a seedling file: its key block contains up to 512 bytes of data. If you write more
than 512 bytes of data to the me, the me grows into a sapling file. As soon as a second
block of data becomes necessary, an index block is allocated, and it becomes the file's
key block: this index block can point to up to 256 data blocks (it uses two-byte pointers).
A second data block (for the data that won't fit in the first data block) is also allocated.

The volume now looks like this:

Blocks 0-1 Loader
Blocks 2-5 Volume directory
Block 6 Volume bit map
Block 7 Data block 0

-> Block 8 Index block 0
Block 9 Data block 1
Blocks 10-279 Unused

This sapling file can hold up to 256 data blocks: 128K of data. If the me becomes any
bigger than this, the file grows again, this time into a tree file. A master index block
is allocated, and it becomes the file's key block: the master index block can point to up to
128 index blocks, and each of these can point to up to 256 data blocks. Index block 0
becomes the first index block pointed to by the master index block. In addition, a new
index block is allocated, and a new data block to which it points.

Beta Draft 210 8/11/86

Appendix A

Here's a new picture of the volume:

Blocks 0-1 Loader
Blocks 2-5 Volume directory
Block 6 Volume bit map
Block 7 Data block 0
Block 8 Index block 0
Blocks 9-263 Data blocks 1-255

-> Block 264 Master index block
Block 265 Index block 1
Block 266 Data block 256
Blocks 267-279 Unused

As data is written to this me, additional data blocks and index blocks are allocated as
needed, up to a maximum of 129 index blocks (one a master index block), and 32,768 data
blocks, for a maximum capacity of 16,777,215 bytes of data in a me. If you did the
multiplication, you probably noticed that a byte was lost somewhere. The last byte of the
last block of the largest possible me cannot be used becauseEOF cannot exceed
16,777,216: If you are wondering how such a large fIle might fit on a small volume such
as a flexible disk, refer to the description of sparse files in this appendix.

This scenario shows the growth of a single fIle on an otherwise empty volume. The
process is a bit more confusing when several files are growing~r being
deleted-simultaneously. However, the block allocation scheme is always the same: when
a new block is needed, ProDOS 16 always allocates the first unused block in the volume bit
map.

Seedling files

A seedling file is a standard file that contains no more than 512 data bytes ($0 <= EOF
<= $200). This file is stored as one block on the volume, and this data block is the file's
key block.

The organization of such a seedling me appears in Figure A-6.

Data
Block

512 bytes long ~

SOS;E08;S200

Figure A-6. Format and organization of a seedling file

Beta Draft 211 8/11/86

Cortland ProDOS 16 Reference

The file is called a seedling file because it is the smallest possible ProDOS 16 standard file;
if more than 512 data bytes are written to it, it grows into a sapling file, and thence into a
tree fIle.

The storage type field of a directory entry that points to a seedling file has the value
$1. -

Sapling files

A sapling file is a standard fIle that contains more than 512 and no more than 128K bytes
($200 < EOF <= $20000). A sapling file comprises an index block and 1 to 256 data
blocks. The index block contains the block addresses of the data blocks. See Figure'A-7.

S200<EOF:5S20 000

Data
Block
SFF

Figure A-7. Fonnat and organization of a sapling file

The key block of a sapling fIle is its index block. ProDOS 16 retrieves data blocks in the
file by first retrieving their addresses in the index block.

The storage_type field of a directory entry that points to a sapling file has the value $2.

Tree files

A tree file contains more than 128K bytes, and less than 16Mb ($20000 < EOF <
$1000000). A tree file consists of a master index block, 1 to 128 index blocks, and 1 to
32,768 data blocks. The master index block contains the addresses of the index blocks,
and each index block contains the addresses of up to 256 data blocks. The structure of a
tree file is shown in Figure A-8.

Beta Draft 212 8/11/86

Up to 128
2-byte pointers t

index blocks

key_pointer -11~===1:;'1

~~~:~r I
Block:::

S20 OOO<EOF:::;Sl 000 000

Index i.1

Block
sao

•

•
•
•

Data ::
Block~~
SFF :~~

Data:::
Bloc :~:

Soo

•
•
•

Data
Bloc
SFF

Appendix A

Figure A-S. Ponnat and organization of a tree file

The key block of a tree fIle is the master index block. By looking at the master index
block, ProDOS 16 can fmd the addresses of all the index blocks; by looking at those
blocks, it can find the addresses of all the data blocks.

The storage_type field of a directory entry that points to a tree file has the value $3.

Using standard files

An application program operates the same on all three types of standard files, although the
storage_type in the file's entry can be used to distinguish between the three. A
program rarely reads index blocks or allocates blocks on a volume: ProDOS 16 does that.
The program need only be concerned with the data stored in the file, not with how they are
stored.

All types of standard files are read as a sequence of bytes, numbered from 0 to (EOF-1),
as explained in Chapter 2.

Sparse files

A sparse file is a sapling or tree file in which the number of data bytes that can be read
from the file exceeds the number of bytes physically stored in the data blocks allocated to

Beta Draft 213 8/11/86



Cortland ProDOS 16 Reference

the file. ProDOS 16 implements sparse files by allocating only those data blocks that have
had data written to them, as well as the index blocks needed to point to them.

For example, you can defme a file whose EOF is 16K, that uses only three blocks on the
volume, and that has only four bytes of data written to it. Refer to figure A-9 during the
following explanation.

1. If you create a file with an EOF of $0, ProDOS 16 allocates only the key block (a
data block) for a seedling file, and fills it with null char~cters (ASCII $00).

2. If you then set the EOF and MARK to position $0565, and write four bytes,
ProDOS 16 calculates that position $0565 is byte $0165 ($0564-($0200 * 2)) of the
third block (block $2) of the file. It then allocates an index block, stores the address
of the current data block in position 0 of the index block, allocates another data
block, stores the address of that data block in position 2 of the index block, and
stores the data in bytes $0165 through $0168 of that data block. The EOF is now
$0569.

3. If you now set the EOF to $4000 and close the file, you have a 16K sapling file that
takes up three blocks of space on the volume: two data blocks and an index block
(shaded in figure A-9). You can read 16384 bytes of data from the file, but all the
bytes before $0565 and after $0568 are nulls.

Data Blocks

S2CXJ

~~~f:+--bytes 565-568

S3

S6FF
1'7771 Blocks actually
L:::::.:::::.d written to disk

EOF =$4000-_.J $" ~ S~FF
Figure A-9. An example of sparse file organization

Thus ProDOS 16 allocates volume space only for those blocks in a file that actually contain
data. For tree files, the situation is similar: if none of the 256 data blocks assigned to an
index block in a tree file have been allocated, the index block itself is not allocated.

Beta Draft 214 8/11/86

Appendix A

Note: The fIrst data block of a standard file, be it a seedling, sapling, or tree file,
is always allocated. Thus there is always a data block to be read in when the file is
opened.

Locating a byte in a file

This is how to fInd a specific byte within a standard file:

The MARK is a three-byte value that indicates an absolute byte position within a file. If the
file is a tree file, then the high-order seven bits of the MARK determine the number (0 to
127) of the index block that points to the byte. The value of the seven bits indicates the
location of the low byte of the index block address within the master index block. The
location of the high byte of the index block address is indicated by the value of these seven
bits plus 256.

Bit:

Value:
--....__--...'Y,... A- --..."'.-- A-.....__----.J

Applies to: Tree File only Tree and Sapling All Three

Figure A-IO. MARK format

If the flle is a tree fIle or a sapling fIle, then the next eight bits of the MARK determine the
number (0-255) of the data block pointed to by the indicated index block. This 8-bit value
indicates the location of the low byte of the data block address within the index block. The
high byte of the index block address is found at this offset plus 256.

For tree, sapling, and seedling fIles, the low nine bits of the MARK are the absolute
position of the byte within the selected data block.

Header and entry fields

The storage type attribute

The value in the storage type fIeld, the high-order four bits of the fIrst byte of an
entry, defInes the type of header (if the entry is a header) or the type of fIle described by the
entry. Table A-I lists the currently defIned storage type values.

Table A-I. Storage type values

$0 indicates an inactive fIle entry
$1 indicates a seedling fIle entry (EOF <= 256 bytes)
$2 indicates a sapling fIle entry (256 < EOF <= 128K bytes)
$3 indicates a tree fIle entry (128K < EOF < 16M bytes)

Beta Draft 215 8111186

Conland ProDOS 16 Reference

$4 indicates a Pascal operating system area on a partitioned disk
$D indicates a subdirectory fIle entry
$E indicates a subdirectory header
$F indicates a volume directory header

ProDOS 16 automatically changes a seedling fIle to a sapling fIle and a sapling file to a tree
file when the file's EOF grows into the range for a larger type. If a file's EOF shrinks into
the range for a smaller type, ProDOS 16 changes a tree fIle to a sapling fIle and a sapling,
file to a seedling fIle.

The creation and last-modification fields

The date and time of the creation and last modification of each file and directory is stored as
two four-byte values, as shown in Figure A-II.

Bit:

Value:

Bit:

Value:

Figure A-11. Date and time format

The values for the year, month, day, hour, and minute are stored as binary integers, and
may be unpacked for conversion to normal integer values.

The access attribute

The access attribute field, or access byte (Figure A-12), determines whether the file can be
read from, written to, deleted, or renamed. It also contains a bit that CaJil be used to indicate
whether a backup copy of the file has been made since the file's last modification.

Bit: 7! 6 lSi 4 I3 !2 I 1 i 0

Value: D RN! B reservedlWi R
where

D = destroy-enable bit
RN = rename-enable bit
B =backup-needed bit
W = write-enable bit
R = read-enable bit

Figure A-12. Access byte format

Beta Draft 216 8/11/86

File Type

$00
$01
$02 t
$03 t
$04
$05 t
$06
$07 t
$08
$09 t
$OA t
SOB t
SOC t
$OD,$OE t
$OF
$10 t
$11 t
$12 t
$13 t
$14 t
$15 t
$16-$18 t
$19
$lA
$IB
$IC-$EE
$B3
$B4
$B5
$B6
$B7-$BE
$BF

Appendix A

A bit set to 1 indicates that the operation is enabled; a bit cleared to 0 indicates that the
operation is disabled. The reserved bits are always O. The most typical setting for the
access byte is $C3 (11000011).

ProDOS 16 sets bit 5, the backup bit, to 1 whenever the file is changed (that is, after a
CREATE, RENAME, CLOSE after WRITE, or SET FILE INFO operation). This bit
should be reset to 0 whenever the fIle is duplicatedby a backup program.

Note: Only ProDOS 16 may change bits 2-4; only backup programs should clear
bit 5 (using CLEAR_BACKUP_BIT).

The file type attribute

The file_type field in a directory entry identifies the type of fIle described by that entry.
This field should be used by applications to guarantee fIle compatibility from one
application to the next. The currently recognized values of this byte are listed in Table A-2.

Table A-2. Apple file types

Preferred Use

Uncategorized file (SOS and ProDOS 8)
Bad block file
Pascal code file
Pascal text fIle
ASCII text file (SOS and ProDOS 8)
Pascal data file
General binary file (SOS and ProDOS 8)
Font file
Graphics screen file
Business BASIC program file
Business BASIC data file
Word Processor fIle
SOS system fIle
SOS reserved
Directory file (SOS and ProDOS 8)
RPS data fIle
RPS index fIle
AppleFile discard file
AppleFile model fIle
AppleFile report format file
Screen Library file
SOS reserved
AppleWorks Data Base file
AppleWorks Word Prec. fIle
AppleWorks Spreadsheet fIle
Reserved
ProDOS 16 application
ProDOS 16 run-time library fIle
ProDOS 16 shell load file
ProDOS 16 startup load file
Reserved for ProDOS 16 load files
ProDOS 16 document file

Beta Draft 217 8/11/86

Cortland ProDOS 16 Reference

$EF
$FO
$Fl-$F8
$F9
$FA
$FB
$FC
$FD
$FE
$FF

Beta Draft

Pascal area on a partitioned disk
ProDOS 8 CI added command file.
ProDOS 8 user defined files 1-8
ProDOS 8 reserved
Integer BASIC program file
Integer BASIC variable file
Applesoft program file
Applesoft variables file
Relocatable code file (EDASM)
ProDOS 8 system file

tapply to Apple ill only

218 8/11/86

Appendix B

Apple II Operating Systems

This appendix explains the relationships between ProDOS 16 and three other operating
systems developed for the Apple II family of computers (DOS, ProDOS 8, and Apple II
Pascal), as well as two developed for the Apple III (SOS and Apple III Pascal).

If'you have written programs for one of the other systems or are planning to write
programs concurrently for ProDOS 16 and another system, this appendix may help you see
what changes will be necessary to transfer your program from one system to another. If
you are converting files from one system to another, this appendix may help you
understand why some conversions may be more successful than others.

..
The fIrst section gives a brief history. The next two sections give general comparisons of
the other operating systems to ProDOS 16, in terms of file compatibility and operational
similarity.

History

DOS

DOS stands for Disk Operating System. It is Apple's fIrst operating system; before DOS,
the firmware monitor program controlled program execution and input/output.

DOS was developed for the Apple II computer. It provided the first capability for storage
and retrieval of various types of files on disk (the Disk II); the System Monitor allowed
input/output (of binary data) to cassette tape only.

The latest version of DOS is DOS 3.3. It uses a 16-sector disk format, like ProDOS
Earlier versions use a 13-sector format that cannot be read by ProDOS.

SOS

SOS is the operating system developed for the Apple III computer. Its name is an acronym
for Sophisticated Operating System, reflecting its increased capabilities over DOS. On the
other hand, SOS requires far more memory space than either DOS .or ProDOS 8 (below),
which makes it impractical on computers with less than 256K of RAM.

Beta Draft 219 8/11/86

Cortland ProDOS 16 Reference

ProDOS 8

ProDOS 8 (for Professional Disk Operating System) was developed for the newer
members of the Apple II family of computers. It requires at east 64K of RAJ.\1 memory,
and can run on the Apple lIe, Apple IIc, and 64K Apple II Plus.

ProDOS 8 brings some of the advanced features of SOS to the Apple II family, without
requiring as much memory as SOS does. Its commands are essentially a subset of the SOS
commands. .

The latest version of ProDOS 8 developed specifically for the Apple lIe and IIc is ProDOS
8 (1.1.1). An even more recent version, developed for the Cortland but compatible with
the lIe and lIc, is ProDOS 8 (1.2) .

.
Note: Prior to development of ProDOS 16, ProDOS 8 was called simply
ProDOS.

ProDOS 16

ProDOS 16 is an extended revision of ProDOS 8, developed specifically for the Cortland
(it will not run on other Apple II's). The "16" refers to the 16-bit internal registers in the
Cortland 65816 microprocessor.

ProDOS 16 permits access to the entire 16 Mb addressable memory space of the Cortland
(ProDOS 8 is restricted to addressing 64K) and it has more "SOS-like" features than
ProDOS 8 has. It also has some new features, not present in SOS, that ease program
development.

There are two versions of ProDOS 16. Version 1.0 is an interim system, consisting of a
ProDOS8 core surrounded by a "ProDOS 16-like" user interface. Version 2.0 is the
complete implementation of the ProDOS 16 design.

Pascal

The Pascal operating system for the Apple II is modified and extended from UCSD Pascal,
developed at the University of California at San Diego. The latest version, written for the
Apple lIe/lIc and 64K Apple II Plus, is Pascal 1.3. It also runs on a Cortland.

Another Pascal, for the Apple III, is a modified version of Apple II Pascal. It uses SOS as
its operating system.

File compatibility

ProDOS 16, ProDOS 8, and SOS all use a hierarchical file system with the same format
and organization. Every file on one system's disk can be read by either of the other
systems. DOS and Pascal use significantly different formats.

Beta Draft 220 8/11/86

AppendixB

The other systems compare to ProDOS 16 as follows:

ProDpS 8:

SOS:

DOS:

Pascal:

ProDOS 16 and ProDOS 8 have identical me system organizations and
recognize the same me types, with these exceptions:

ProDOS 8 does not recognize the file types $B3, $B4, $B5, $B6; these file
types are specific to ProDOS 16.

The SOS file types that are recognized by ProDOS 16 are directory files,
text files, and binary files. These three types are adequate for transferring
programs and data between SOS and ProDOS 16.

DOS does not have a hierarchical me system. ProDOS 16 cannot directly
read DOS fIles (but see "Reading DOS 3.3 and Apple II Pascal Disks,"
below).

Apple II Pascal does not have a hierarchical fIle system. ProDOS 16 cannot
directly read Apple II Pascal files (but see "Reading DOS 3.3 and Apple{l
Pascal Disks," below).

Apple III Pascal uses the SOS fIle system. Therefore ProDOS 16 can read
Apple III Pascal directory files, text fIles, and binary files***binary
files?***.

Reading DOS 3.3 and Apple II Pascal disks

Both DOS 3.3 and ProDOS 8 140K flexible disks are formatted using the same 16-sector
layout. As a consequence, the ProDOS 16 READ BLOCK and WRITE BLOCK calls are
able to access DOS 3.3 disks too. These calls know nothing about theorganization of files
on either type of disk.

When using READ_BLOCK and WRITE_BLOCK, you specify a 512-byte block on the
disk. When using RWTS (the DOS 3.3 counterpart to READ BLOCK and
WRITE_BLOCK), you specify the track and sector of a 256-byte chunk of data, as
explained in the DOS Programmer's Manual. To use READ BLOCK and WRITE BLOCK
to access DOS 3.3 disks, you must know what 512-byte bloCk corresponds to the-track and
sector you want.

Table B-1 shows how to detennine a block number from a given track and sector. First
multiply the track number by 8, then add the sector offset that corresponds to the sector
number. The half of the block in which the sector resides is detennined by the half-of
block line (1 is the first half; 2 is the second).

Table B-l. Tracks and sectors to blocks (l40K disks)

Block number =(8*track number) + sector offset

Sector: 0 1 2 3 4 5 6 7 8 9 A B C D E F
Sector offset: 0 7 6 6 5 5 4 4 3 3 2 2 1 1 0 7
Half of block: 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2

Beta Draft . 221 8/11/86

Conland ProDOS 16 Reference

Refer to the DOS Programmer's Manual for a description of the file organization of DOS
3.3 disks.

Operating system similarity

Input/Output

ProDOS 16 can perform I/O operations on disk fIles (block devices) only. Under ProDOS
16, therefore, the current application is responsible for knowing the protocol necessary to
communicate with character devices (such as the console, printers, and communication
ports).

The other systems compare to ProDOS 16 as follows:

ProDOS 8: Like ProDOS 16, ProDOS 8 performs I/O on block devices only.

SOS:

DOS:

Pascal:

SOS communicates with all devices, both character devices and block
devices, by making appropriate file access calls (such as open, read write,
close). Under SOS, writing to one device is essentially the same as writing
to another.

DOS allows communication with one type of device only-the Disk II
drive. DOS 3.3 uses a 16-sector disk format; earlier versions of DOS use a
13-sector format. 13-sector Disk II disks cannot be read directly by DOS
3.3, SOS, ProDOS 8, or ProDOS 16.

Apple II and Apple III Pascal provide access to both block devices and
character devices, through File lIO, Block I/O, and Device I/O calls to the
volumes on the devices.

Filing calls

SOS, ProDOS 8, and ProDOS 16 filing calls are all closely related. Most of the calls are
shared by all three systems; furthermore, their numbers are identical in ProDOS 8 and SOS
(ProDOS 16 calls have a completely different numbering system from either ProDOS 8 or
SOS).

The other systems compare to ProDOS 16 as follows:

ProDOS 8: The ProDOS 8 ON LINE call corresponds to the ProDOS 16 VOLUME call.
When given a device name, VOLUME returns the volume name for that
device. When given a unit number (derived from the slot and drive
numbers), ON_LINE returns the volume name.

The ProDOS 8 RENAME call corresponds to the ProDOS 16
CHANGE_PATH call, except that RENAME can change only the last name in
a pathname.

Beta Draft 222 8/Il/86

SOS:

DOS:

Pascal:

AppendixB

Under SOS (unlike ProDOS 16), you must specify the me size when
creating a me. File sizes are not automatically extended when needed.

TheSOS GET FILE INFO call returns the size of the me (the value of
EOF). With ProDOS16 you must fIrst open the me and then use the
GET EOF call.

The SOS VOLUME call corresponds to the ProDOS 16 VOLUME call. When
given a device name, VOLUME returns the volume name for that device.

The SOS calls SET MARK and SET EOF can use a displacement from the
current position 'in the fIle. ProDOS-16 accepts only absolute positions in
the fIle for these calls.

DOS calls distinguish between sequential- access and random-access text
fIles. ProDOS 16 makes no such distinction, although the ProDOS 16
READ call in NEWLINE mode functions as a sequential-access read.

DOS uses APPEND and POS ITION commands, roughly similar to ProDOS
16's SET MARK, to set the current position in the fIle and to automatically
extend thesize of the fIle.

The CLOSE command in DOS can be given in immediate (from the
keyboard} or deferred(in a program) mode. No ProDOS 16 commands may
be given in immediate mode.

Apple II Pascal distinguishes among text files, datafiles, and code files,
each with different header formats; all ProDOS 16 fIles have identical header
fonnats. The Pascal procedures REWRITE and RESET correspond to
ProDOS 16's CREATE and OPEN calls. Pascal has more procedures for
reading from and writing to fIles and devices than does ProDOS 16.

Because Apple III Pascal uses the SOS fIle system, its ming calls
correspond directly to SOS calls.

Memory management

Under ProDOS 16, neither the operating system nor the application program perform
memory management; allocation of memo!)' is the responsibility of the Memory Manager, a
Cortland ROM-based Tool. When an application needs space for its own use, it makes a
direct request to the Memory Manager. When it makes a ProDOS 16 call that requires the
allocation of memory space, ProDOS 16 makes the appropriate request to the Memory
Manager. The Cortland Memory Manager is similar to the SOS memory manager, except
that it is more sophisticated and is not considered part of the operating system.

The other systems compare to ProDOS 16 as follows:

ProDOS 8: A ProDOS 8 application is responsible for its own memory management. It
must fInd free memory, and then allocate it by marking it off in the ProDOS
8 Global Page's memory bit map. ProDOS 8 protects allocated areas by
refusing to write to any pages that are marked on the bit map. Thus it

Beta Draft 223 8/11/86

Cortland ProDOS 16 Reference

SOS:

DOS:

Pascal:

Interrupts

prevents the user from destroying protected memory areas (as long as all
allocated memory is properly marked off; and all data is brought into
memory using ProDOS 8 calls).

SOS has a fairly sophisticated Memory Manager that is part of the operating
system itself. An application requests memory from SOS, either by location
or by the amount needed. If the request can be satisfied, SOS grants it.
That portion of memory is then the sole responsibility of the requestor until
it is released.

DOS performs no memory management. Each application under DOS is
completely responsible for its own memory allocation and use.

Apple II Pacal uses a simple memory management system that controls the
loading and unloading of code and data segments and tracks the size of the
stack and heap.

Apple III Pascal uses SOS for memory management.

ProDOS 16 does not have any built-in interrupt-generating device drivers. Interrupt
handling routines are therefore installed into ProDOS 16 separately, using the
ALLOe INTERRUPT call. When an interrupt occurs, ProDOS 16 polls the handling
routineSin succession until one of them claims the interrupt. .

The other systems compare to ProDOS 16 as follows:

ProDOS 8: ProDOS 8 handles interrupts identically to ProDOS 16, except that it allows
fewer installed handlers (4 vs. 16).

SOS:

DOS:

In SOS, any device capable of generating an interrupt must have a device
driver capable of handling the interrupt; the device driver and its interrupt
handler are inseparable and are considered to be part of SOS. In addition,
SOS assigns a distinct interrupt priority to each device in the system.

DOS does not support interrupts.

Pascal: Apple II Pascal versions 1.2 and 1.3 support interrupts; earlier versions of
Apple II Pascal do not.

Apple III Pascal uses the SOS interrupt system.

Beta Draft 224 8/11186

Beta Draft

Appendix C

. The ProDOS 16 Exerciser

infonnation not yet available

225 8/11/86

Con/and ProDOS 16 Reference

Beta Draft 226 8/11/86

Appendix D

System -Loader Technical Data

This appendix assembles some specific technical details on the System Loader. For more
information, see the referenced publications.

Object module format
The System Loader can load only code and data segments that conform to Cortland Object
Module Format. Object Module format is described in detail in Cortland Programmer's
Worrkshop Reference.

File types

File types for load fIles and other aMP-related files are listed below. For a complete list of
Apple II file types, see Table A-2 in Appendix A.

File type Description
$BO Source file (aux_type defines language)
$B 1 Object file
$B2 Library me
$B3 Application file
$B4 Run-time library file
$B5 Shell load me

$B6 - $BF
$B6
$B7
$B8
$B9

Reservedfor system use. Currently-defined types include:
Permanent inititialization file
Temporary iiritialization me
New desk accessory
Classic desk accessory

Segment kinds

Whereas files are classified by type, segments are classified by kind. Each segment has a
kind designation in the KIND field of its header. Each bit in the KIND field describes some
attribute of the segment; different combinations of these attributes yield different values for
the segment kind.

The KIND field is one byte long. Figure D-l shows its format.

Beta Draft 227 8/11/86

Cortland ProDOS 16 Reference

Bit:

Value:

7 6 5!41312!11°
SD Pr PI I Type

where

and
segment:

Figure D-l. Segment kind fonnat

SD (bit 7) = Static/Dynamic (0 = static; 1 = dynamic)
Pr (bit 6) = Private (0 = no; 1 = yes)
PI (bit 5) = Position-Independent (0 = no; 1 = yes) .

TYPE (bits 0-4) describes one of the following classifications of the

Value of TYPE
$00
$01
$02
$04
$08
$10
$11
$12

Description
Code Segment
Data Segment
Jump Table Segment
Pathname Segment
Library Dictionary Segment
Initialization segment
Absolute Bank Segment
Direct Page/Stack Segment

Segment attributes (bits 5-7) can be combined with particular types (bits 0-4) to yield
different values for KIND. For example, a dynamic Initialization Segment has KIND =
$90.

Record codes

Load segments, like all OMF segments, are made up of records. Each type of record has
a code number and a name. For a complete list of record types, see Cortland
Programmer's Workslwp Reference. The only record types recognized by the System
Loader are these:

Record Code Name Description

$E2 RELOC intrasegment relocation recblrd (in relocation
dictionary)

$E3 INTERSEG intersegment relocation record (in relocation
dictionary)

$F1 DS zero-fill record

$F2 LCONST long-constant record (the actual code and data for
each segment)

$00 END the end of the segment

If the loader encounters any other type of record in a load segment, it returns error $11OA.

Beta Draft 228 8/11/86

AppendixD

Load-file numbers

Load files processed by the Cortland Programmer's Workshop Linker at anyone time are
numbered consecutively from 1. Load file 1 is called the initial load file. All other files
are considered to be run-time libraries. .

A load-fIle number of ain a Jump Table segment or a Pathname segment indicates the end
of the segment.

Load-segment numbers

In each load file created by the linker, segments are numbered consecutively by their
position in the load file, starting at 1. Load segment 1 must be static. The loader
determines a segment's number by counting its position from the beginning of the load file.
As a check, the loader also looks at the segment number in the segment's header.

Segment headers

The first part of every Object Module Format segment is a segment header; it contains 16
fields that give the name, size, and other important information about the segment.

Restrictions on segment header values

Because OMF supports capabilities that are more general than the System Loader's needs,
the System Loader permits load files to have only a subset of all possible OMF
characteristics. The loader does this by restricting the values of several segment header
fields:

NUMSEX:
NUMLEN:
BANKSIZE:
ALIGN:

must be a
. must be 4

must be less than or equal to $10 000
must be less than or equal to $10 000

If the System Loader finds any other values in any of the above fields, it returns error
$llOB ("Segment is Foreign"). The restrictions on BANKSIZE and ALIGN are also
enforced by the CPW Linker..

Page-aligned and bank-aligned segments

In OMF, the values of BANKS I ZE and ALIGN may be any multiple of 2. But because the
Memory Manager supports only two types of alignment (page- and bank-alignment) and
one bank size (64K), the System Loader converts BANKSIZE and ALIGN to a limited set
of values, as follows:

1. If ALIGN =0, the block is not aligned to any memory boundary, except that:

• if O<BANKS I ZE<=$100, the block is page-aligned

• if 100<BANKSIZE<=$10 000, the block is bank-aligned

,

Beta Draft 229 8/11 /86

_Cortland ProDOS 16 Reference

2. If O<AL I GN<=$lOO, the block is page-aligned, except that:

• if 100<BANKSIZE<=$1O 000, the block is bank-aligned

3. if 1000<ALIGN<=$10 000, the block is bank-aligned

Entry point and global variables
There is only one entry point needed for all System Loader calls (actually, all tool calls). It
is to the Cortland tool dispatcher, at the bottom of bank $El (address $El 00 00).
Although the System Loader maintains memory space with a table of loader functions in
other parts 0f memory, locations in those areas are not supported. Please make all System
Loader calls with a JSL to $El 00 00, as explained in Chapter 18.

The following variables are of global significance. They are defined at the system level,
meaning that any application that needs to know their values may access them. However,
only USERID is important to most applications, and it should be accessed only through
proper calls to the System Loader. The other variables are needed by controlling programs
only, and should not be used by applications.

SEGTBL Absolute address of the Memory Segment Table
JMPTBL Absolute address of the Jump Table List
PATHTBL Absolute address of the Pathname Table
USERID UserID of the current application

UserID format
The UserID Manager is discussed in Chapter 5, and fully explained in Cortland Toolbox
Reference. Only the fonnat of the UserID number, needed as a parameter for System
Loader calls, is shown here.

There is a 2-byte UserID associated with every allocated memory block. It is divided into
three fields: Main ID, Aux ill, and Type ID. The Main ID is the unique number
assigned to the owner of the block by the UserID Manager, every allocated block has a
nonzero value in its Main ID field. The Aux ID is a user-assignable identification; it is
ignored by the System Loader, ProDOS 16, and the UserID Manager. The Type ID gives
the general class of software to which the block belongs.

.Beta Draft 230 8/11/86

Figure D-2. UserID fonnat

The Main ID can have any value from $01 to $FF (0 is reserved).

The Aux ill can have any value from $00 to $OF.

Type ill values are defined as follows:

o Memory Manager
1 Application
2 Controlliing Program
3 ProDOS 8 and ProDOS 16
4 Toolset
5 Desk accessory
6 Run-time library
7 System Loader
8-F (undefmed)

AppendixD

Beta Draft 231 8/11/86

Cortland ProDOS 16 Reference

Beta Draft 232 8/11/86

Beta Draft

Appendix E

ASCII Tables

233 8/11/86

Cortland ProDOS 16 Reference
Char Dec Hex Binary Char Dec Hex Binary

nul 0 0 00000000 @ 64 40 01000000
soh 1 1 00000001 A 65 41 01000001
stx 2 2 00000010 B 66 42 01000010
etx 3 3 00000011 C 67 43 01000011
eot 4 4 00000100 D 68 44 01000100
enq 5 5 00000101 E 69 45 01000101
aek 6 6 00000110 F 70 46 01000110
bel 7 7 00000111 G 71 47 01000111
bs 8 8 00001000 H 72 48 01001000
ht 9 9 00001001 I 73 49 01001001
If 10 A 00001010 J 74 4A 01001010
vt 11 B 00001011 K 75 4B 01001011
ff 12 C 00001100 L 76 4C 01001100
cr 13 D 00001101 M 77 4D 01001101

so 14 E 00001110 N 78 4E 01001110
si 15 F 00001111 0 79 4F 01001111

dIe 16 10 00010000 P 80 50 01010000
del 17 11 00010001 Q 81 51 01010001
de2 18 12 00010010 R 82 52 01010010
dc3 19 13 00010011 S 83 53 01010011
dc4 20 14 00010100 T 84 54 01010100
nak 21 15 00010101 U 85 55 01010101
syn 22 16 00010110 V 86 56 01010110
etb 23 17 00010111 W 87 57 01010111
can 24 18 00011000 X 88 58 01011000
em 25 19 00011001 Y 89 59 01011001
sub 26 1A 00011010 Z 90 5A 01011010
esc 27 1B 00011011 (91 5B 01011011

fs ~8 1C 00011100 \ 92 5C 01011100
gs 29 10 00011101 1 93 5D 01011101
rs 30 IE 00011110 /I 94 5E 01011110
us 31 IF 00011111 - 95 5F 01011111
sp 32 20 00100000 ,

96 60 01100000
! 33 21 00100001 a 97 61 01100001

34 22 00100010 b 98 62 01100010
35 23 00100011 e 99 63 01100011
S 36 24 00100100 d 100 64 01100100
% 37 25 00100101 e 101 65 01100101
& 38 26 00100110 f 102 66 01100110

39 27 00100111 g 103 67 01100111
(40 28 00101000 h 104 68 01101000
) 41 29 00101001 105 69 011 01 00 1.. 42 2A 00101010 j 106 6A 01101010
+ 43 2B 00101011 k 107 6B 01101011

44 2C 00101100 I 108 6C 01101100
45 2D 00101101 m 109 6D 01101101
46 2E 00101110 n 110 6E 01101110

/ 47 2F 00t01111 0 III 6F 01101111
0 48 30 00110000 P 112 70 01110000
1 49 31 00110001 q 113 71 01110001
2 50 32 00110010 r 114 72 01110010
3 51 33 00110011 s 115 73 01110011
4 52 34 00110100 t 116 74 01110100
5 53 35 00110101 u 117 75 01110101
6 54 36 00110110 v 118 76 01110110
7 55 37 00110111 w 119 77 01110111
8 56 38 00111000 x 120 78 01111000
9 57 39 00111001 Y 121 79 01111001

58 3A 00111010 z 122 7A 01111010
59 3B 00111011 123 7B 01111011

< 60 3C 00111100 124 7C 01111100
61 3D 00111101 125 7D 01111101

> 62 3E 00111110 126 7E 01111110
? 63 3F 00111111 del 127 7F 01111111

Beta Draft 234 8/13/86

Appendix E
Char Dec Hex Binary Char Dec Hex Binary

A 128 80 10000000 l 192 CO 11000000
A 129 81 10000001 i 193 C1 11000001

~
PO 82 10000010 -, 194 C2 11000010
131 83 10000011 ~ 195 C3 11000011

N 132 84 10000100 f 196 C4 11000100
0 133 85 10000101 197 C5 11000101
0' 134 86 10000110 !:l. 198 C6 11000110
a 135 87 10000111 « 199 C7 11000111
11 136 88 10001000 » 200 C8 11001000
a 137 89 10001001 201 C9 11001001
a 138 8A 10001010 202 CA 11001010
1i 139 8B 10001011 A 203 CB 11001011
A 140 8C 10001100 A 204 CC 11001100
<; 141 8D 10001101 0 205 CD 11001101
e .142 8E 10001110 CE 206 CE 11001110
e 143 8F 10001111 re 207 CF 11001111
e 144 90 10010000 208 DO 11010000
e 145 91 10010001 209 D1 11010001
i 146 92 10010010 210 D2 11010010
1 147 93 10010011 211 D3 11010011
i 148 94 10010100 212 D4 11010100
'j 149 95 10010101 213 D5 11010101
Ii 150 96 10010110 + 214 D6 11010110
6 151 97 10010111 0 215 D7 11010111
0 152 98 10011000 'J 216 D8 11011000
0 153 99 10011001 Y 217 D9 11011001
0 154 9A 10011010 I 218 DA 11011010
0 155 9B 10011011 c 219 DB 11011011
11 156 9C 10011100 220 DC 11011100
U 157 9D 10011101 221 DD 11011101
U 158 9E 10011110 fi 222 DE 11011110
U 159 9F 10011111 fl 223 DF 11011111... 160 AO 10100000 * 224 EO 11100000I
0 161 Al 10100001 225 E1 11100001

¢ 162 A2 10100010 226 E2 11100010
£ 163 A3 10100011 .. 227 E3 11100011
§ 164 A4 10100100 %0 228 E4 11100100. 165 A5 10100101 A 229 E5 11100101
~ 166 A6 1010011 0 E 230 E6 11100110
B 167 A7 10100111 A 231 E7 11100111
® 168 A8 10101000 J; 232 E8 11101000
<e 169 A9 10101001 E 233 E9 11101001
TM 170 AA 10101010 f 234 EA 11101010

171 AB 10101011 i 235 EB 11101011
172 AC 10101100 r 236 EC 11101100

¢ 173 AD 10101101 t 237 ED 11101101
iE 174 AE 10101110 6 238 EE 11101110
0 175 AF 10101111 6 239 EF 11101111
00 176 BO 10110000 • 240 FO 11110000
± 177 Bl 10110001 6 241 F1 11110001
:5 178 B2 10110010 D 242 F2 11110010
~ 179 B3 10110011 0 243 F3 11110011
¥ 180 B4 10110100 U 244 F4 11110100
Jl 181 B5 10110101 245 F5 11110101
a 182 B6 10110110 246 F6 11110110
r. 183 B7 10110111 247 F7 11110111
IT 184 B8 10111000 248 . F8 11111000
1t 185 B9 10111001 249 F9 11111001
J 186 BA 10111010 250 FA 11111010

187 BB 10111011 251 FB 11111011
188 BC 10111100 252 FC 111111 00

n 189 BD 10111101 ~ 253 FD 11111101
le 190 BE 10111110 254 FE 11111110
(6 191 BF 10111111 : 255 FF 11111111

Beta Draft 235 8/13/86

Cortland ProDOS 16 Reference

Beta Draft 236 8/11/86

ProDOS
and

Appendix F

8, ProDOS
ProDOS 16

16 (1.0);
(2.0)

[Writer's note: this appendix will appear only in the drafts of this manual that
describe version 1.0 of ProDOS 16. The final draft, which is expected to be
describing version 2.0; will refer to version 1.0 only in Appendix B.]

ProDOS 8 is the operating system developed specifically for the Apple II family of
computers. Most users of the 64K Apple II Plus, Apple IIc and Apple IIe computers have
ProDOS 8 as an operating system. ProDOS 8 makes use of the capabilities of the 6502
and 65C02 microprocessors used in those machines and, unlike its predecessor DOS 3.3,
supports interrupts and can access several different types of disk storage devices.

The Cortland is the latest computer in the Apple II family. It has a 65816 microprocessor,
compatible with-but much more powerful than-the 6502 processors used on earlier
Apple II computers. To exploit this greater power, Apple is developing an operating
system that is more powerful than, but similar to, ProDDS 8. That operating system is
ProDOS 16 (version 2.0). ProDOS 16 (2.0) will be the principal Cortland operating
system when it is complete.

However, ProDOS 16 (2.0) will probably not be fmished before the first shipments of the
Cortland, and the Cortland needs a functioning operating system in the interim. Several
key components of Cortland system software rely on ProDOS 16 (2.0)'s capabilities.
Apple has therefore introduced ProDOS 16 (version 1.0) as a temporary operating system,
to allow the Cortland to function as designed and to give developers and early users a
system that "feels" and acts very much like ProDOS 16 (2.0). ProDDS 16 (1.0)
implements the exact call structure and many of the other features of ProDOS 16 (2.0), but
will be available approximately 6 months sooner. Developers can write software compatible
with ProDOS 1~ (2.0) and test it under ProDOS 16 (1.0).

How does ProDOS 16 (1.0) work?

ProDDS 16 (1.0) functions as a shell around ProDDS 8. It has a user-interface layer that
mimics the external appearance and system call structure of ProDOS 16 (2.0), but the actual
operating system beneath the shell is ProDOS 8. Users, applications, and system software
can therefore make calls as if they were calling ProDOS 16 (2.0), even though their calls
are carried out by ProDOS 8.

In spite of the new system call structure, ProDOS 16 (1.0) is for the most part re~tricted to
functions that are available under ProDOS 8. Those parts of ProDOS 16 (2.0) that will
involve fundamental revisions or extensions to ProDOS 8 are not available in ProDOS 16
(1.0). Nevertheless, there are new ProDOS 16 (1.0) features and calls; they are mentioned
in the next subsection and documented where appropriate in the following chapters.

Beta Draft 237 8/11/86

Cortland ProDOS 16 Reference

What new features does ProDGS 16 (1.0) have?

ProDOS 16 (2.0) was designed to take advantage of certain Cortland capabilities and to
provide additional programming convenience over ProDOS 8. ProDOS 16 (1.0)
implements most of those design features. For example:

• You can make ProDOS 16 (1.0) system calls from anywhere in memory, using
parameter blocks located anywhere in memory. By comparison, ProDOS 8 calls and
lists must be in the lowest 64K bytes of memory

• You can make I/O data transfers under ProDOS 16 (1.0) to or from anywhere in
memory. ProDOS 8 can perform I/O only with the lowest 64K bytes of memory.

• ProDOS 16 (1.0) allows limited use of named devices. With ProDOS 8 you must
refer to a device by its volume name or its slot and drive numbers:

• ProDOS 16 (1.0) supports up to eight pathname prefixes; ProDOS 8 supports only
one.

The following operating system calls, not recognized by ProDOS 8, are part of ProDOS 16
(1.0):

CLEAR BACKUP BIT
CHANGE PATH
SET LEVEL
GET LEVEL
GET DEV NUM- -
GET PATHNAME
GET BOOT VOL- -
GET VERSION

(clears one of a file's access bits)
(changes the pathname of a file within a volume)
(sets the system file level)
(returns the system file level)
(returns the reference number for a named device)
(returns the pathname of the current application)
(returns the name of the volume that contains ProDOS 16)
(returns the current ProDOS 16 version)

These and all other ProDOS 16 calls are described in detail in Chapters 9 through 13.

What additional features will ProDGS 16 (2.0) have?

Because ProDOS 16 (1.0) functions with a core of ProDOS 8, certain features that will be
part of ProDOS 16 (2.0) could not be included in ProDOS 16 (l.0). Some of them are the
following:

• ProDOS 8 allows a maximum of 8 files to be open simultaneously. ProDOS 16 (1.0)
has the same restriction, but ProDOS 16 (2.0) will allow an unlimited number of open
files.

• ProDOS 8 allows a maximum of 14 devices on line at a time. ProDOS 16 (1.0) has
the same restriction, but ProDOS 16 (2.0) will allow any number of online devices.

• ProDOS 8 supports only one block device I/O protocol. ProDOS 16 (l.0) supports
the same protocol, but ProDOS 16 (2.0) will support at least three separate deviceI/O
protocols.

• ProDOS 8 does not support named devices. ProDOS 16 (1.0) supports named
devices only in the VOLUME and GET DEV NUM calls. ProDOS 16 (2.0) will have
more extensive support for named deVIces. -

• Neither ProDOS 8 nor ProDOS 16 (1.0) prompts the user to mount a needed volume.
ProDOS 16 (2.0) will have a volume mount function.

Beta Draft 238 8/11/86

AppendixF

The following operating system calls, not recognized by ProDOS 16 (1.0), will be part of
ProDOS 16 (2.0):

GET ENTRY
WRITE PROTECT
GET DIB

(returns an ASCII string with a file's directory information)
(determines the write-protect status of a volume)
(returns a device information block)

Beta Draft 239 8/11/86

Con/and ProDOS 16 Reference

Beta Draft 240 8/11/86

Beta Draft 241 8/Il/86

Beta Draft 242 8/11/86

Glossary

absolute code: Program code that must be loaded at a specific address in memory, and
never moved.

access byte: An attribute of a ProDOS 16 file that determines what types of operations,
such as reading or writing, may be performed on the file.

accumulator: The register in the microprocessor where most compufations are
performed.

address: A number that specifies the location of a single byte of memory. Addresses
carl be given as decimal integers or as hexadecimal integers. The Cortland has addresses
ranging from 0 to 16,777,215 (in decimal) or from $00 00 00 to $FF FF FF (in
hexadecimal). The letter x in an address stands for all possible values for that digit. For
example, $Dxxx means any or all of addresses from $DOOO through $DFFF.

application program (or application): A program that performs a specific task useful
to the computer user, such as word processing, data base management, or graphics.
Compare controlling program. ProDOS 16 applications are file type $B3.

ASCII: Acronym for American Standard Code for Infonnation Interchange. A code in
which the numbers from 0 to 127 stand for text characters. ASCII code is used for
representing text inside a computer and for transmitting text between computers or between
a computer and a peripheral device.

assembler: A program that produces object files from source files written in assembly
language.

backup bit: a bit in a file's access byte that tells backup programs whether the file has
been altered since the last time it was backed up.

bank: A 64K (65,536-byte) portion of the Cortland internal memory. An individual bank
is specified by the value of one of the 65816 microprocessor's bank registers.

bank-switched memory: On Apple II-series computers, that part of the Language
Card memory in which two 4K-portions of memory share the same address range
($DOOO-$DFFF).

binary file: A file of absolute code that is ProDOS 8 file type $06. The System Loader
will not load binary files.

bit: A contraction of binary digit. The smallest unit of information that a computer can
hold. The value of a bit (1 or 0) represents a simple two-way choice, such as yes or no or
on or off..

bit map: A set of bits that represents the positions and states of a corresponding set of
items. See global page bitmap or volume bitmap.

Beta Draft 243 8/11/86

/'

Cortland ProDOS 16 Reference

block: (1) A unit of data storage or transfer, typically 512 bytes. (2) a contiguous, page
aligned region of computer memory of arbitrary size, allocated by the Memory Manager.
Also called a memory block.

block device: A piece of equipment (hardware) that transfers data to or from a computer
in multiples of one block (512 bytes) of characters at a time. Disk drives are block devices.

boot: Another way to say start up. A computer boots by loading a program into
memory from an external storage medium such as a disk. Boot is short for bootstrap load.

buffer: A region of memory where information can be stored by one program or device
and then read at a different rate by another, for example, a ProDOS 16 I/O buffer.

byte: A unit of information consisting of 8 bits. A byte can take any value between 0
and 255 ($0 and $FF hexadecimal). The value can represent an instruction, number,
character, or logical state.

call: (v) To request the execution of a subroutine, function, or procedure. (n) A request
from the keyboard or from a program to execute a named function.

carry flag: A status bit in the microprocessor, used as an additional high-order bit with
the accumulator bits in addition, subtraction, rotation, and shift operations.

character: Any symbol that has a widely understood meaning and thus can convey
information. Most characters are represented in the computer as one-byte values.

character device: A piece of equipment (hardware) that transfers data to or from a
computer as a stream of individual characters. Keyboards and printers are character
devices.

close: to prevent further access to an open file. When a file is closed, its updated version
is written to disk and all resources it needed when open (such as its I/O buffer) are
released. The fIle must be opened before it can be accessed again.

compact: To rearrange allocated memory blocks in order to increase the amount of
contiguous unallocated (free) memory. The Memory manager compacts memory when
needed.

compiler: A program that produces object modules from source fIles written in a high
level language such as Pascal.

controlling program: A program that loads and runs other programs, without itself
relinquishing control. A controlling program is responsible for shutting down its
subprograms and freeing their memory space when they are finished. A shell, for
example, may be a controlling program.

current application: The application program currently loaded and running. Every
application program is identified by a UserID number; the current application is defined as
that application whose UserID is the present value of the USERID global variable.

data block: a 512-byte portion of a ProDOS 16 standard file that consists of whatever
kind of information the file may contain.

Beta Draft 244 8/11/86

Glossary

desk accessories: Small, special-purpose programs that are available to the user
regardless of which application is running-such as the Control Panel, Calculator, Note,
Pad, and Alarm Clock

desktop: The visual interface between the computer and the user. In computers that
support the desktop concept, the desktop consists of a menu bar at the top of the screen,
and a gray area in which applications are opened as windows. The desktop interface was
fIrst developed for the Macintosh computer.

device: A piece of equipment (hardware) used in conjunction with a computer and under
the computer's control. Also called a peripheral device because such equipment is often
physically separate from but attached to the computer.

device driver: A program Fhat manages the transfer of information between a computer
and a peripheral device.

direct page: A page-aligned portion of bank $00 of Cortland memory, any part of which
can be addressed effIciently because its high address byte is $00 and its middle address
byte is fIxed by the value of the 65816 processor's direct register.

directory file: One of the two principal categories of ProDOS 16 fIles. Directory fIles
contain specifically formatted entries that contain the names and disk locations of other
files. Compare standard file. Directory fIles are either volume directories or
SUbdirectories.

disk operating system: an operating system whose principal function is to manage
fIles and communication with one or more disk drives. DOS and ProDOS are two
families of Apple II disk operating systems.

dispose: To permanently deallocate a memory block. The Memory Manager disposes of
a memory block by removing its master pointer. Any handle to that pointer will then be
invalid. Compare purge. .

DOS: An Apple II disk operating system. DOS is an acronym for Disk Operating
System.

dynamic segment: A segment that can be loaded and unloaded during execution as
needed. Compare static segment.

e flag: A flag bit in the 65816 that determines whether the processor is in native mode or
emulation mode.

emulation mode: The 8-bit state of the 65g16 processor, in which it functions like a
6502 processor in all respects except clock speed.

EOF (end·or.file): The logical size of a ProDOS 16 fIle; it is the number of bytes that
may be read from or written to t.he fIle.

error (or error condition): the state of a computer after it has detected a fault in one or
more commands sent to it.

error code: a number or other symbol representing a type of error.

Beta Draft 245 8/11/86

/

Cortlcmd ProDGS 16 Reference

event: a notification to an application of some occurrance (such as an interrupt generated
by a keypress) that the application may want to respond to.

event-driven: A kind of program that responds to user inputs in real time by repeatedly
testing for events posted by interrupt routines. An event-driven program does nothing until
it detects an event such as a keypress.

external device: See device.

fatal error: an error serious enough that the computer must halt execution.

file control block (FeB): a data structure set up in memory by ProDOS 16 to keep
track of all open files.

file entry or file directory entry: The part of a ProDOS 16 directory or subdirectory
that describes and points to another file. The flIe so described is considered to be "in" or
"under" that directory.

file level: see system file level

filename: The string of characters that identifies a particular file within its directory.
ProDOS 16 filenames may be up to 15 characters long. Compare pathname.

file type: An attribute in a ProDOS 16 flIe's directory entry that characterizes the contents
of the flIe and indicates how the file may be used. On disk, file types are stored as
numbers; in a directory listing, they are often displayed as three-character mnemonic codes.

filing calls: Operating system calls that manipulate flIes. In ProDOS 16, filing calls are
subdivided into file housekeeping calls (described in Chapter 9) andfile access calls
(described in Chapter 10).

finder: A program that performs file and disk utilities (formatting, copying, renaming,
and so on) and also starts applications at the request of the user.

firmware: Programs stored permanently in the computer's read-only memory (ROM).
They can be executed at any time but cannot be modified or erased.

flush: to update an open file (write any updated information to disk) without closing it.

global page: Under ProDOS 8, 256 bytes of data at a fixed location in memory,
containing useful system information (such as a list of active devices) available to any
application.

global page bitmap: A ponion of the ProDOS 8 global page that keeps track of memory
use in the computer. Applications under ProDOS 8 are responsible for marking and
clearing parts of the bitmap that correspond to memory they have allocated or freed.

guest file system: a file system, other than ProDOS 16's, whose files can be read by
ProDOS 16.

handle: See memory handle

Beta Draft 246 8/11/86

Glossary

hexadecimal: The base-16 system of numbers, using the ten digits 0 through 9 and the
six letters A through F. Hexadecimal numbers can be converted easily and directly to
binary form. In Apple manuals hexadecimal numbers are usually preceded by a dollar sign
($).

high-order: The most significant part of a numerical quantity. In normal representation,
the high-order bit of a binary value is in the leftmost position; likewise, the high-order byte
of a binary word or long word quantity consists of the leftmost eight bits.

Human Interface Guidelines: A set of software development guidelines developed by
Apple Computer to support the desktop concept and to promote uniform user interfaces in
Apple II and Macintosh applications.

image: A representation of the contents of memory. A code image consists of machine
language instructions or data that may be loaded unchanged into memory.

index block: A 512-byte part of a ProDGS 16 standard file that consists entirely of
pointers to other parts (data blocks) of the file.

initial load file: The first file of a program to be loaded into memory. It contains the
program's main segment and the load file tables (Jump Table segment and Pathname
segment) needed to load dynamic segments and run-time libraries.

initialization segment: A segment in an initial load file that is loaded and executed first,
to perform any initialization that the program may require.

input/output: the transferral of information between a computer's memory and
peripheral devices.

interrupt: a temporary suspension in the execution of a program that allows the computer
to perform some other task, typically in response to a signal from a device or source
external to the computer.

interr~pt handler: a program, associated with a particular external device, that executes
whenever that device sends an interrupt signal to the computer. The interrupt handler
performs its tasks during the interrupt, then returns control to the computer so it may
resume program execution.

interrupt vector table: A table maintained in memory by ProDGS 16 that contains the
addresses of all currently active (allocated) interrupt handlers.

INTERSEG record: A part of a relocation dictionary. It contains relocation
information for external (intersegment) references.

I/O: See input/output.

Jump Table: A table contructed in memory by the System Loader from all Jump Table
segments encountered during a load. The Jump Table contains all references to dynamic
segments that may be called during execution of the program.

Jump Table directory: a master list in memory, containing pointers to all segments that
make up the Jump Table.

Beta Draft 247 8/11/86

Con/and ProDGS 16 Reference

Jump Table segment: A segment in a load file that .contains all references to dynamic
segments that may be called during execution of that load file. The Jump Table segment is
created by the linker.

K: Kilobyte. 1024 (210) bytes.

kernel: The central part of an operating system. ProDOS 16 is the kernel of the Conland
operating system. .

key block: The fIrst block in any ProDOS 16 file.

kind: see segment kind.

Language Card: Originally, a peripheral card for the Apple II that expanded its memory
capacity from 48K to 64K. It is now a general term, denoting those parts of memory with
addresses between $DOOO and $FFFF on any Apple II-family computer. See also bank
switched memory.

level: see system file level

library file: An object file containing program segments, each of which can be used in
any number of programs. The linker can search through the library file for segments that
have been referenced in the program source file.

linker: The program that combines fIles generated by compilers and assemblers, resolves
all symbolic references, and generates a me that can be loaded into memory and executed.

load file: The output of the linker. Load files contain memory images that the System
Loader can load into memory.

load segment: A segment in a load file.

lock: To prevent a memory block from being moved or purged. A block may be locked
or unlocked by the Memory Manager, or by an application through a call to the System
Loader.

long word: A double-length word. For the Cortland, a long word is 32 bits (4 bytes)
long.

low-order: The least signifIcant part of a numerical quantity. In normal representation,
the low-order bit of a binary number is in the rightmost position; likewise, the low-order
byte of a binary word or long word quantity consists of the rightmost eight bits.

m flag: A flag in the 65816 processor that determines whether the accumulator is 8 bits
wide or 16 bits wide.

macro: a single predefIned assembly-language pseudo-instruction that an assembler
replaces with se~eral actual instructions. Macros are almost like higher-level instructions
that can ·be used inside assembly-language programs, making them easier to write.

main segment: The first segment in the initial load file of a program (unless the file also
has an initialization segment). It is loaded first and never removed from memory until the
program terminates.

Beta Draft 248 8/11/86

Glossary

MARK: The current position in an open .file. It is the point in the file at which the next
read or write operation will occur.

master index block: The key block in a ProDOS 16 tree file, the largest organization
of a standard file that ProDOS 16 can support. The master index block consists solely
of pointers to one or more index blocks.

master pointer: A pointer to a memory block; it is kept by the Memory Manager. Each
allocated memory block has a master pointer, but the block is normally accessed through its
memory handle (which points to the master pointer), rather than through the master pointer
itself.

Mb: Megabyte. 1,048,576 (220) bytes.

memory handle: The identifying number of a particular block of memory. It is a pointer
to the master pointer to the memory block. A handle rather than a simple pointer is needed
to reference a movable memory block; that way the handle will always be the same though
the value of the pointer may change as the block is moved around.

Memory Manager: A program that manages memory use in the Cortland. The Memory
Manager allocates and deallocates memory blocks to hold program segments or data.

memory block: see block (2).

MLI: Machine Language Interface-the part of ProDOS 8 that processes operating system
calls.

monitor: see video monitor.

monitor program: a fmnware program of Apple II-family computers, used for
operating the computer at the machine-language level.

move: To change the location of a memory block. The Memory Manager may move
blocks to consolidate ~emory space.

movable: A memory block attribute, indicating that the Memory Manager is free to move
the block. A block is made movable or unmovable through Memory Manager calls.

native mode: the 16-bit operating state of the 65816 processor.

newline: a me-reading mode in which each character read from the me is compared to a
specified character (called the newline character); if there is a match, the read is
terminated. Newline mode is typically used to read individual lines of text, with the
newline character defined as a carriage return.

nibble: a unit of information consisting of one-half of a byte, or 4 bits. A nibble can
take on any value between 0 and 15 ($0 and $F hexadecimal).

NIL: Pointing to a value of O. A memory handle is NIL if the address it points to is filled
with zeroes. Handles to purged memory blocks are NIL.

object file: The output from an assembler or compiler, and the input to a linker.

Beta Draft 249 8/11/86

Cortland ProDOS 16 Reference

object module: An object file in Object Module Format.

object module format: The general format used in object files, library flies, and load
files.

OMF File: Any file in object module format.

open: To allow access to a file. A fIle may not be read from or written to until is is open.

operating system: A program that organizes the actions of the various parts of the
computer and its peripheral devices. See also disk operating system.

page: A portion of memory 256 bytes long and beginning at an address that is an even
multiple of 256. Memory blocks whose starting addresses are an even multiple of 256 are
said to be page-aligned.

parameter: A value passed to or from a function.

parameter block: A set of contiguous memory locations, set up by a calling program to
pass parameters to and receive results from an operating system function that it calls.
Every call to ProDOS 16 must include a pointer to a properly constructed parameter block.

partial pathname: the part of a pathname following a prefix. A partial pathname does
not begin with a slash because it has no volume directory name.

pathname: the complete name by which a file is specified. It is a sequence of filenames
separated by slashes, starting with the fIlename of the volume directory and following the
path through any subdirectories that the operating system must follow to locate the file. A
complete pathname always begins with a slash, because volume directory names always
begin with a slash.

Pathname segment: A segment in a load file that contains the cross-references between
load files referenced by number (in the Jump Table segment) and their pathnames (listed in
the file directory). The Pathname segment is created by the linker.

Pathname Table: A table constructed in memory from all individual Pathname segments
encountered during a load. It contains the cross-references between load files referenced
by number (in the Jump Table) and their pathnames (listed in the file directory).

pointer: An item of information consisting of the memory address of some other item.

position-independent code: Code that is written specifically so that its execution is
unaffected by its position in memory. It can be moved without needing to be relocated.

prefix: A portion of a pathname starting with a volume name and ending with a
subdirectory name. A prefix and a partial pathname together constitute a complete
pathname.

prefix designator: A code used to represent a particular prefix. Under ProDas 16,
there are eight prefix designators, each consisting of a number followed by a slash: 0/,
1/, ... ,8/.

Beta Draft 250 8/Il/86

Glossary

ProDOS: A family of disk operating systems developed for the Apple IT family of
computers. ProDOS stands for Professional Disk Operating System, and includes both
ProDOS 8 and ProDOS 16. All ProDOS operating systems have identical file formats.

ProDOS 8: A disk operating system developed for the 64K Apple IT Plus, Apple lIe, and
Apple ITc computers. It functions in 8-bit mode, compatible with 6502-series
microprocessors. It also runs on the Cortland when the 65816 processor is in 6502
emulation mode.

ProDOS 16: A disk operating system, functionally similar to ProDOS 8 but more
powerful,developed for 65816 native mode operation on the Cortland.

purge: To temporarily deallocate a memory block. The memory menager purges a block
by setting its master pointer to NIL (0). All handles to the pointer are sti(ll valid, so the
block can be reconstructed quickly. Compare dispose.

purge level: An attribute of a memory block that sets its priority for purging. A purge·
level of 0 means that the block is unpurgeable.

purgeable: A memory block attribute, indicating that the Memory Manager may purge the
block if it needs additional memory space. Purgeable blocks have different purge levels,
or priorities for purging; these levels are set by Memory Manager calls.

queue: A list in which entries are added at one end and removed at the other, causing
entries to be removed in fIrst-in, fIrst-out (FIFO) order. Compare stack.

quit return stack: A stack maintained in memory by ProDOS16. It contains a list of
programs that have terminated but Wish to return when the presently executing program is
fInished.

random-access device: See block device.

reentrant: A characteristic of certain types of software. A program is reentrant if it
reinitiallzes its variables and makes no assumptions about machine state each time it gains
control. Programs that are reentrant can be restarted from a dormant state in memory;
they also can be executed even while they have been halted during operation by an
interrupt signal. Under certain conditions, the Scheduler manages execution of
programs that are not reentrant.

RELOC record: A part of a relocation dictionary that contains relocation information for
local (within-segment) references.

relocate: The process of modifying a file or segment at load time so that it will execute
correctly at the location in memory at which it is loaded.

relocatable segment: A load segment that can be loaded into any part of memory. A
relocatable load segment contains a code image followed by a relocation dictionary.

relocation dictionary: A part of a relocatable load segment that contains relocation
infoITIJ.ation necessary to modify the code-image immediately preceding it. When the code
image part of the segment is loaded into memory, the relocation dictionary is processed to
recalculate the values of location-dependent addresses and operands.

Beta Draft 251 8/11/86

/

Cortland ProDGS 16 Reference

restart: to reactivate a dormant program in the computer's memory. The System Loader
can restart dormant programs if all their segments are still in memory. If any critical part of
a dormant program has been purged by the Memory Manager, the program must be
reloaded from disk instead of restarted.

run-time library file: A load file containing program segments-each of which can be
used in any number of programs-that the System Loader loads dynamically when they are
needed.

sapling file: An organizational form of a ProDOS 16 standard file. A sapling file
consists of a single index block and up to 256 data blocks.

Scheduler: a fIrmware program that manages requests to execute interrupted software
that is not reentrant. If, for example, an interrupt handler wishes to make ProDOS 16
calls, it must do so through the Scheduler because ProDOS 16 is not reentrant.
Applications need not use the Scheduler because ProDOS 16 is not in an interrupted state
when it processes applications' system calls.

sector: a div.ision of a track on a disk. When a disk is formatted, its surface is divided
into tracks and sectors.

seedling file: An organizational form of a ProDOS 16 standard file. A seedling file
consists of a single data block.

segment: An individual component of an Oill file. Each me contains one or more
segments.

segment kind: a numerical designation used to classify a segment in object module
format. It is the value of the KIND field in the segment's header.

sequential-access device: See character device.

source file: An ASCII file consisting of instructions written in a particular language,
such as Pascal or assembly language. An assembler or compiler converts source files into
object meso

sparse file: A variation of the organizational forms of ProDOS 16 standard files. A
sparse file may be- either a sapling file or a tree file; what makes it sparse is the fact that
its logical size (defmed by its EOF) is greater than its actual size on disk. This occurs
when one or more data blocks contain nothing but zeros. Those data blocks are
considered to be part of the file, but they are not actually allocated on disk until nonzero
data is written to them.

stack: A list in which entries are added (pushed) and removed (pulled) at one end only
(the top of the stack), causing them to be removed in last-in, first-out (LIFO) order.
Compare queue.

standard file: 'One of the two principal categories of ProDOS 16 files. Standard files
contain whatever data they were created to hold; they have no predefined internal format.
Compare directory file.

start up: To get the system running.. It involves loading system software from disk, and
then loading and running an application. Also called boot.

Beta Draft 252 8/11/86

Glossary

static segment: A s~gment that is loaded only at program boot time, and is not unloaded
during execution. Compare dynamic segment.

storage type: An attribute of a ProDOS 16 file that describes the file's organizational
fonn (such as directory file, seedling file, or sapling file).

switcher: a controlling program that rapidly transfers execution among several
applications.

System Death Manager: A finnware program that processes fatal errors by displaying
a message on the screen and halting execution.

system: A coordinated collection of interrelated and interacting parts organized to perfonn
some function or achieve some purpose-for example, a computer system comprising a
processor, keyboard, monitor, disk drive, and software. '

system file level: A number between $00 and $FF associated with each open ProDOS
16 file. Every time a file is opened, the current value of the system file level is assigned to
it. If the system file level is changed (by aSET_LEVEL call), all subsequently opened files
will have the new level assigned to them. By manipulating the system file level, a
controlling program can easily close or flush files opened by its subprograms.

System Loader: The program that manages the loading of program and data segments
into the Cortland memory. The System Loader works closely with ProDOS 16 and the
Memory Manager.

system program: A self-booting application. It is either 1) a ProDOS 16 application
(file type $B3), whose fJlename has the extension ,SYS 16; or 2) a ProDOS 8 application
(file type $FF), whose filename has the extension .SYSTEM. .

system software: The components of a computer system that support application
programs by managing system resources such as memory and I/O devices.

subdirectory: A ProDOS 16 directory file that is ~ot the volume directory.

tool: see Tool Set

Tool Set: a related group of (usually finnware) routines, available to applications and
system software, that perfonn necessary functions or provide programming convenience.
The Memory Manager, the System Loader, and Quickdraw II are Tool Sets.

toolbox: The sum of all Tool Sets available on the Cortland. It includes both ROM-based
and RAM-based Tool Sets.

track: A series of concentric circles on a disk. When a disk is fomiatted, its surface is
divided into tracks and sectors.

tree file: An organizational fonn of a ProDOS 16 standard file. A tree file consists of
a single master index block, up to 127 index blocks, and up to 32,512 data
blocks.

Beta Draft 253 .8/11/86

Conland ProDGS 16 Reference

unload:. To remove a load segment from memory. To unload a segment, the System
Loader does not actually "unload" anything; it calls the Memory Manager to either purge
or dispose of the memory block in which the code segment resides. The loader then
modifies the Memory Segment Table to reflect the fact that the segment is no longer in
memory.

UserID: an identification number that specifies the owner of every memory block
allocated by the Memory Manager. UserID's are assigned by the UserID Manager.

UserID Manager: A Tool Set that is responsible for assigning UserID's to every block
of memory allocated by the Memory Manager.

video monitor: a display device that receives video signals by direct connection only.

version: A number indicating the release edition of a particular piece of software.
Version numbers for most system software (such as ProDOS 16 and the System Loader)
are available through function calls.

volume: An object that stores data; the source or destination of information. A volume
has a name and a volume directory with the same name. Volumes typically inhabit
devices; a device such as a floppy disk drive may contain one of any number of volumes
(disks).

volume bitmap: A portion of every ProDOS 16-formatted disk that keeps track of free
disk space.

volume control block (VCB): A data structure set up in memory by ProDOS 16 to
keep track of all volumes/devices connected to the computer.

volume directory: A ProDOS 16 directory fIle that is the principal directory of a
volume. It has the same name as the volume. The pathname of every file on the volume
starts with the volume directory name.

word: A group of bits that is treated as a unit. For the Cortland, a word is 16 bits (2
bytes) long.

zero page: The first page (256 bytes) of memory in Apple II computers. Since the high
order byte of any address in this part of memory is zero, only a single byte is needed to
specify a zero-page address. Zero-page locations are therefore more quickly and compactly
addressed than any other parts of memory. Compare direct address.

Beta Draft 254 8/11/86

Beta Draft 255

Glossary

8/11/86

Conland ProDGS 16 Reference

Beta Draft 256 8/11/86

	v2_07_01
	v2_07_02
	v2_07_03
	v2_07_04
	v2_07_05
	v2_07_06
	v2_07_07
	v2_07_08
	v2_07_09
	v2_07_10
	v2_07_11
	v2_07_12
	v2_07_13
	v2_07_14

