
QuickDraw IT
External Reference Specification

Steven E. Glass
Bennet Marks

August 11, 1986

Revision History

First Draft June 15, 1985
Revised July 10, 1985
Revised July 25, 1985
Revised September 19, 1985
Revised September 25, 1985
Revised October 29, 1985
Revised November 21, 1985
Revised December 3, 1985
Revised January 15, 1986
Revised March 5, 1986
Revised April 4, 1986
Revised April2S, 1986
Revised July 15,1986
Revised August 11, 1986

s. Glass
S. Glass
S. Glass
S. Glass
S. Glass
S. Glass
S. Glass
S. Glass
S. Glass
S. Glass & B. Marks
S. Glass & B. Marks
S. Glass & B. Marks
S. Glass & B. Marks
S. Glass & B. Marks

Ovals
RoundRects
Arcs

Summary

People writing software want to be able to do Macintosh-like graphics in the Super Hi-Res
Graphics modes.1 To do this we need QuickDraw like routines for the new modes. Most
of the code that provides this facility is in ROM; other parts will be in RAM (Because of the
way the tools system works an application need not care what pan of the code is where.)..
The ROM routines combined with these RAM based extensions are what we call
QuickDraw ll.

Appendix C contains a comparison of Quick.Draw with QuickDraw n.

QuickDraw II Capabilities

The Quick Draw ncore routines include calls for manipulating the graphics environment
and drawing primitive graphical objects. Included in the graphics environment is
information about

Drawing Location
Coordinate System
Cipping

The primitive objects supported are

Lines
Rectangles
Regions
Polygons

Pixel Images
Text

The first group of objects (lines, rectangles, regions, polygons, ovals, roundrects and arcs)
are all drawn with patterns. A pattern is a 64-pixel image organized as an 8x8 pixel square
which is used to define a repeating design. When a pattern is drawn, it is aligned such that
adjacent areas of the same pattern in the same graphics port will blend with it into a
continuous, coordinated pattern. In addition to the pattern, lines, regions and rectangles are
drawn using a drawing mask. The drawing mask is an 8x8 bit square that represents a
repeating design that is used to mask the pattern as it is drawn. Only those pixels in the
pattern aligned with a "1" in the mask are drawn. See figure 0 below.

iThese are new modes found only on a Cortland computer and have no relationship to
existing Apple n modes. The hardware is summarized in Appendix B for those not
familiar with it.

QuickDraw nERS August 11, 1986 Page 2

Figure 0
Drawing with Patterns and Masks.

libe8 Pattern RepIPatIPd Ev..-y
8 pixels

::::::::
II ID II II

III III III III

be Drawin9
'With Mask Applied

III II III III

III
II II III III

III

Pattern Dra\lffl
\\lith Mask

~-
Note that drawing with a mask that is all "I" is like drawing without masking occuring at
all. Drawing with a mask of all "0" is like not drawing since all pixels are masked out.

The Quic.kDraw n support for Pixel Maps is similar to Macintosh Quic.kDraw suppon for
bit maps. The major difference is that pixels are not a single bit. An additional difference
is that code in ROM does not suppon stretching and compression of an image as it is
transfered from one to pixel map to another.

The QuickDraw n suppon for Text is similar to the text suppon on the Macintosh but not
identical. Major differences include

QuickDraw nomy supports a limited number of style modifcations
The Font Manager is not closely integrated with QuickDraw n. It is more of a

higher level tool so the interaction between the two is different.
QuickDraw n does not scale text.

Basic Concepts and Tenninology
A pixel map is an area of memory containing a graphic image (the analogous QuickDraw
term is BitImage). This image is organized as a rectangular grid of dots called picture
elements, or pixels. Each Pixel has an assigned value or color. The number of colors a
pixel may have depends on its size or chunkiness. Two sizes are possible: four-color and
sixteen-color. Exactly which colors map into the various pixel values is determined by a
color table. This will be described later.

Pixel Size in the display is controlled independently for each scan line. Each scan line has a
scan line control byte (SCB) which determines the scan line's propenies. See Appendix B
for more details.

Pixels are frequently thought of as points in the Cartesian coordinate system. with each
pixel assigned a horizontal and venical coordinate. Following the QuickDraw standard, the

QuickDraw II ERS August 11, 1986 Page 3

coordinate grid falls between, rather than on pixels (see Figure 1). Each pixel is associated
with the point that is above and to the left of it.

Figure 1
Pixels, Points and Rectangles

012345678O ""'CD"~

1~~~~~~~~

2~~ ~.....ffi~~~

3~EB_ ~_EB~~~

4~~ e_....e_....._e

5~~ ~.....ffi~~~

6~~ ~.....ffi~~~

7~~~ +....Q
8o...."m-~....m.......cDo......m......aloo.oll:l~

The rectangle is defined by
the points (2,1) and (7,7).

It encloses 30 pixels.

0 A pixel

+ A Point

CJ A Rectangle

'"

This scheme allows a rectangle to divide pixels into two classes: those which fall within the
rectangle and those which fall outside the rectangle. Calls which draw rectan~les only
affect the pixels which fall inside the rectan~le.

A pixel map need not be the area of memory associated with the graphics screen.
QuickDraw II can treat other memory as pixel map memory and draw into it as easily as the
screen memory.

Drawing can be done in coordinates appropriate to the data being used. Data is mapped
from drawing space to the pixel map according to the information kept in two rectangles
(see Figure 2):

a. The Bounds Rectangle
b. The Port Rectangle

An important point to note is that the conceptual drawing space for QuickDraw II is not the
same as for QuickDraw on the Macintosh. On the Macintosh the drawing space is 64K by
64K pixels centered around 0,0. The bounds of the drawing space is -32K,-32k and
32K,32K. In QuickDraw II the drawing space is only 32K by 32K pixels. The bounds of
drawing are -16K,-16K and 16K,16K. Commands to draw oudside this space will
produce unpredictable results. They will not generate emmj.

QuickDraw II ERS August 11, 1986 Page 4

BoundsReet

Pixel Image
(Saeen or
other
Memory)

.. Active Port Rect (intersection of the BoundsRcct
and PortRect)

The BoundsRect is a rectangle that encompasses the entire pixel map. The upper left hand
comer of the Bounds rect is the point that is above and to the left of the first pixel in the
pixel map.

The PortRect is a rectangle that describes the "active" region of the pixel map. The
intersection of the Port and Bounds reets is the only place that pixels in the pixel map will
change (ignoring the VisRgn and ClipRgn to be discussed later).

A SetOrigin call allows you to change the position of both these rectangles in the coordinate
plane. The rectangles remain the same size and in the same location relative to each other
but the upper left hand comer (the origin) of the PortRect is set to the point passed by
SetOrigin.

Drawing is the process by which pixels are altered in a pixel map. You may imagine a pen
drawing the image by placing dots of the appropriate color at each pixel which falls under
its path as specified by the program. .

Drawings are clipped when instructions to draw in inactive parts of the ~wing space are
ignored. For example, if I am clipping to a rectangle defmed by (100,100) and (200,200)
and I try to draw a line from (0,0) to (1000,1000), only the pixels that fall inside the
(100,100) thru (200,200) range are affected.

QuickDraw IT also provides for clipping to arbitrary regions. Drawings are clipped to the
intersection of two regions: the clip region (a user-maintained clipping region) and the vis
region (a system-maintained clipping region). These work exactly as they do on the
Macintosh.

QuickDraw IT ERS August 11, 1986 PageS

The Drawing Environment

The drawing environment is a set of rules which explain how drawing actions behave. The
environment includes information about where drawing will occur (what part of memory,
its chunkiness), in what coordinate system, how it will be clipped, the pen state, the font
state and some other stuff. The various parts of the drawing environment are described
below.2

Drawing Location
QuickDraw IT will draw anywhere in memory. The most common location may be the
super hi-res screen, but a pixel map anywhere in memory and almost any size is acceptable
as long as the entire destination pixel map is in a single bank.

PortSCB - Flag to indicate chunkiness ofpixel map and master color palette.

Pointer to the pixel map - points to the first byte in the pixel map.

Width - nwn bytes in a row of pixels (QuickDraw teIm is rowBytes).

Bounds Rectangle - Rectangle that describes the extent of the pixel map and
imposes a coordinate system on it.

Port Rectangle - Rectangle that describes the active area ofData space.

Pen State

QuickDraw IT maintains a graphics pen (position and size). Its position is used for drawing
text, and its size is used for determining the size of a frame. There are two kinds of
drawing: normal drawing and erasing. In normal drawing, the destination pixel map
depends on what it was to start with, the original fill pattern or pixel image and the drawing
mode.3 Erasing just fills the affected pixels with the background pattern.

Pen Location - A point in data space.

Pen Size - A point describing the width and height of the pen.

Pattern Transfer Mode - One of the 8 transfer modes supported by the Primitives.
This mode is used when drawing horizontal lines with the fill pattern.

Pen Pattern - The pen pattern is used when drawing graphic objects.

Drawing Mask - The drawing mask prevents pixels aligned with zeros in the mask
from begin altered during drawing operations which use patterns.

2The specific state of the display hardware (current color tables and SCBs) could also be
though of as part of the environment, but for the purposes of this discussion we do not
consider these.

3There are eight different drawing modes. These modes are roles used to derive the color
of a pixel that is being drawn into. The eight modes and how they work are described in
detail Appendix A.

QuickDraw IT ERS August 11, 1986 Page 6

Background Pattern - The background pattern is used when erasing graphic
objects.

Clipping

As stated earlier, drawing is clipped to a variety of rectangles and regions.

Other Stuff

QuickDraw ITs local environment includes clipping information, handles to pictures,
regions and polygons, as well as a pointer to GrafProcs record. The GrafProcs record is a
record that holds pointers to all the standard drawing functions. A programmer may
change the pointers in this record and cause different drawing routines to be used.

An entire drawing environment is kept in a single record (called the GrafPort) which can be
saved and restored with a single call. This allows for simple (and hopefully fast) context

-switching. The GrafPort is a private data structure. The programmer can only change it by
making calls to QuickDraw procedures which affect it.

Note:
This is different from QuickDraw on the Macintosh today where you can change
fields in the GrafPort directly. (Macintosh QuickDraw will most likely evolve to
this in the future.) The full GrafPort definition is provided for debugging purposes
but programs should not rely on fields staying in the same place within the record.

Data Structures

FIXed Point or FlXed
F . long integer where high word represents a integer value and low word is a

fractional value. Fractional part is always positive (for example $8000 is
one half).

Pointer
P

Handle
H

Point

long integer (highest byte must be zero)

long integer (highest byte must be zero)

V integer
H integer

VI integer
HI integer
V2 integer
H2 integer

QuickDraw II ERS August 11, 1986 Page 7

String

Standard ProDOS string starting with a length byte followed by up to 255
characters of data.

CString

ASCII characters terminated with a zero byte.

An_SCB_Byte

Bits Meaning-----
()"3 Color Table
4 Reserved
5 Fill <>=Off l=on
6 Interrupt 0 == off 1 == on
7 Color Mode 0=320 1=640

ColorValue
Blue: 0•.15
Green: 0.•15
Red: 0..15
Reserved 0••15

Total size is one word. The word is arranged as follows:

I x I RIG I B I

high low
byte byte

ColorTable
packed may [0.•15] of ColorValue

LoeInfo
PortSCB : an_scb_byte
reserved': byte
PointerToPixelImage : pointer
Width : integer
BoundsRect: : rect

The width represents the number of bytes in a row (slice) of the pixel map. This number
must be a multiple of 8.

nibble == 0••15
twobit == 0..3
bit == 0••1

QuickDraw II ERS August 11, 1986 Page 8

Pattcm
case mode of

mode320:
(packed may [0..63] of nibble);

mode640:
(packed may [0••63] of twobit);

packed array [0..63] of bit;

TextStyle
word where the following bits are defined:

o bold
1 italic
:2 underline

Bold and underline are supported in ROM.

PenState
PnLoc : point
PnSize : point
PnMode : integer
PnPat : pattern
PnMask : mask

QuickDraw IT ERS August 11, 1986 Page 9

GratPort (Total Size is $AA or 170 bytes)
PortInfo : LocInfo
PortRect : red
ClipRgn : handle
VisRgn : handle
BkPat : Pattern
PnLoc : Point
PnSize: Point
PnMode : integer
PnPat : pattet:n
PnMask : mask
PnVlS : integer
FontHandle : Handle
FontID : Long
FontFlags : integer
TxSize : integer
TxFace: Style
TxMode : integer
SpExtta: fixed
ChExtta : fixed
FGColor : integer
BGColor : integer

PicSave : handle
RgnSave : handle
PolySave : handle
GrafProcs : pointer

ArcRot : integer

UserField: long
SysField : long

Font
See Appendix D

FontlnfoRecord

Ascent
Descent
WldMax
Leading

: integer
: integer
: integer
: integer

FontGlobalsRecorrl (currently 12 bytes long)

fontID
style
size
version
widMax
fbrExtent

QuickDraw II ERS

: integer
: textstyle
: integer
: VersionNumber
: integer
: integer

August 11, 1986 Page 10

ButSizeRecord (8 bytes long)

MaxWuith : integer
TextBufHeight : integer
TextBufRowWords : integer
FontWidth : integer

Polygon

PolySize
PolyBBox
PolyPoints

CursorHeight
CursorWuith*
CursorImage
CursorMask
HotSpotY
HotSpotX

: integer
: rect
: amy [0.•1] of point

: integer
: integer
: [array 1..CursorHeight,l..CiirsorWidth] of word
: [array l..CursorHeight,l..CursorWidth] of word
: integer
: integer

*This is number of words Wide of a single horizontal slice of the cursor. The last
word in each slice of the cursor must be O.

Arror Cursor in 320 Mode:

de i'11,4'
*

de h'OOOOOOOOOOOOOOOO'
de h'OfOOOOOOOOOOOOOO'
de h'OFFOOOOOOOOOOOOO'
de h'OFFFOOOOOOOOOOOO'
de h'OFFFFOOOOOOOOOOO'
de h'OFFFFFOOOOOOOOOO'
de h'OFFFFFFOOOOOOOOO'
de h'OFFFFFFFOOOOOOOO'
de h'OFFOFFOOOOOOOOOO'
de h'OOOOOFFOOOOOOOOO'
de h'OOOOOOOOOOOOOOOO'

de h'FFOOOOOOOOOOOOOO'
de h'FfFOOOOOOOOOOOOO'
de h'FFFFOOOOOOOOOOOO'
de h'FFFFFOOOOOOOOOOO'
de h'FFFFFFOOOOOOOOOO'
de h'FFFFFFFOOOOOOOOO'

.de h'FFFFFFFFOOOOOOOO'
de h'FFFFFFFFFOOOOOOO'
de h'FFFFFFFFOOOOOOOO'
de h'FFFOFFFFOOOOOOOO'
de h'OOOOOFFFOOOOOOOO'

de i'l,l'

; eleven slices
; :by 4 words

; cursor image

mask image

; hot spot

QuickDraw n ERS August 11, 1986 Page 11

The Calls

Each of the calls listed below is listed in the form:

ToolCall Brief description of the purpose of the function.

Stack Betore Call
I previous C01Ue1ltS
I Space for Result
I Paroml
I Parom2
I

Stack Alter Call
I previous co1Ue1ltS
I TMRemlt
I

I
I Space for~ (If any).
I Description ofparameter
I Description ofparameter
k-SP

I
I Result (If any).
k-SP

Further description of the function and the parameters, if necessary.

A call is made as follows:

1. If the function has any output, push room for it on the stack.
2. Push the inputs in the order listed.
3. Invoke the macro for the call you want to make. The macro loads x with the

appropriate value and executes a JSL to the tool dispatcher. .
4. If the function returned any output it is now at the top of the stack.

Warning

QuickDraw II is very unforgiving of certain kinds of programming errors.

1) Making any QuickDraw calls without initializing QuickDraw FlI'St.
2) Passing any bad handles to QuickDraw
3) Making any QuickDraw calls with a bad port.

Error coc:ies are not likely to be returned when these three kinds of errors are made. In fact
there is no guarentee that your program will get control ever again after making one of these
errors.

Unfortunately, a worse situation is that your program will appear to work for a while even
though you make one of these errors but later die horribly for no reason.

QuickDraw II ERS .. August 11, 1986 Page 12

Housekeeping Functions

QDBootInit

No Inputs.

QDStartup

Initializes QuickDraw IT at boot time. The function puts the address
of the cursor update routine into the bank El vectors. An application
should never make this call.

Initializes Quickdraw IT, sets the current port to the standard port,
and clears the screen.

Stack Betore Can
I prwWus COIllenlS

I ZeroPage/JJc
I MastD'SCB
I MtuWuJJh
I ProgmmlD
I

Stack Alter Can
I prwWus COf!.le1lU
I

I
I integer
I SCB(woof)
I integer
I User m for memory manager (word).
k-SP

I
k-SP

QuickDraw uses 1h.I:= consecutive pages ofbank zero for its zero page starting at the
specified address. The MasrerSCB is used to set all SCB's in the super hi-res graphics
screen. MaxWidth is a number that tells QuickDraw IT the size in bytes of the largest pixel
map that will be drawn to (a value of zero indicates screen width). This allows QuickDraw
IT to allocate certain buffers it needs only once and keep them throughout the life of the
application. ProgramlD is the ID QuickDraw IT will use when getting memory from the
Memory Manager. All memory is reserved in the name of this ID.

This call can fail for several reasons. The most common reasons 'are QuickDraw is already
initialized, and there is not enough memory available for QuickDraw to obtain ~e buffers it
needs.

Warning:

QuickDraw now uses three pages in bank zero.

ElrorCodes

AlreadyInitialized This is returned when an attempt is made to initialize
QuickDraw a second time without shutting down first.

ScreenReserved This is returned when an the memory manager reports that
the screen memory (bank El from $2000 to, $9FFF) is
already owned by someone else.

Memory Manager Errors Any errors from the memory manager are returned
unchanged. .

QDShutDown

No Inputs.

Frees up any buffers that were allocated. This call returns an error if
QuickDraw is not active when the call was made.

QuickDraw IT ERS

./

August II, 1986 Page 13

Possible Errors

NotActive This is returned when an attempt is made to shutdown
QuickDraw without ever starting it up.

Memory Manager Errors Any errors from the memory manager are returned
unchanged.

QDVersion Returns the version of QuickDraw II.

Stack Before Can
I previous COnte1ltS
I Spacelor Version
I

Stack Alter can
I previous C01UefllS
I VUJion
I

Possible Errors

None.

I
I word
k·SP

I
I word
k·SP

QDStatus Returns whether or not QuickDraw is active.

Stack Before Can
I previous ColllefllS
I Spacelor Starus
I

Stack After Can
I previous COnte1ltS
I StalUS
I

Possible Errors

None.

QuickDraw IT ERS

I
I Boolean (word)
k·SP

I
I Boolean (word)
k·SP

August II, 1986 Page 14

Global Environment Calls

GetStandardSCB Returns a copy of the standard SCB in the low byte of the word.

Stack adore Call
I previtJr.ls C01ltelllS
I Space for SCB
I

I
I word
k·SP

I
I word
k·SP

Stack After Call
I previous COnJImU
I SCB
I

The SCB has the following fields:

Bits Meaning
0-3 Color Table 0
4 Reserved
5 Fill off
6 Interrupt off
7 Color Mode =320

. Possible Errors

None.

SetMasterSCB Sets the master SCB to the specified value (only the low byte is
used).

Stack Before Call
I previous contenlS
I MastuSCB
I

Stack After Call
I previous COnJImU
I

I
I Word
k·SP

I
k·SP

The master SCB is the global mode byte used throughout QuickDraw IT. The master SCB
is used by routines like InitPort to decide what standard values should be put into the
GrafPort.

Possible Errors

None

QuickDraw II ERS August 11, 1986 Page '15

GetMasterSCB Retu:ms a copy of the master SCB (only the low byte is valid).

Stack Before Call
I previous conle1llS
I Spaa MastuSCJJ
I

Stack After Call
I previous COnle1llS
I MastuSCJJ
I

Possible Errors

None

I
I word
k·SP

I
I word
k·SP

InitColorTable Returns a copy of the standard color table for ~e current mode.

......

Stack Before Call
I previous COnle1llS
I ToblePoinIu
I

Stack After Call
I . previous COnle1llS
I

QuickDraw IT ERS

I
I PoiDter to color table.
k·SP

I
k·SP

August 11, 1986

./

Page 16

do

The entries are as follows for 320 mode:

Pixel Value Name Master Color
0 Black 000 Opposite ofWhite
1 Dark Gray 777.
2 Brown 841
3 Pwple 72C
4 Blue OOF
S Dark Green 080
6 Orange f70
7 Red DOO
8 Flesh FA9
9 Yellow FFO
10 Green OEO
11 Light Blue 4DF
12 Lilac DAF
13 Periwinkle Blue 78F
14 Light Gray CCC
15 White FFF Opposite of Bl.a.ck

The entries are as follows for 640 mode:

Pixel Value Name Master Color

0 Black 000
....". 1 Red FOO

2 Green OFO
3 White FFF
4 Black 000
S Blue OOF
6 Yellow FFO
7 White FFF
8 Black 000
9 Red FOO
A Green OFO
B White FFF

'C Black 000
D Blue OOF
E Yellow FFO
F White FFF

For the rationale behind this color palette see Art Cabral's paper on Dithering Techniques in
640 mode.

Possible Errors

None.

SetColorTable Sets a color table to specified values.

Stack Before Call

QuickDraw IT ERS
-

August 11, 1986 Page 17

Stack After Call
I pmIious contellU
I

I
I integer
I Pointer to color table
I<·SP

I
I<·SP

TableNumber identifies the table to be set to the values specified in the table pointed to.
The 16 color tables are stored starting at $9EOO. Each table takes $20 bytes. Each word in
the table represents one of 4096 colors. The high nibble of the high byte is ignored.

Possible Errors

BadTable

GetColorTable

Only Table numbers from 0 to 15 are valid.

Fills a color table with the contents of another color table.

Stack Before Call
I pmIious contenu
I TobleNumber
I DestPtPtr
I

Stack After Call
I pmIious contenu
I

I
I integer
I Pointer to color table
Ic·SP

I
I<·SP

TableNumber specifies the number of the color table whose contents are to be copied;
TablePtr points to the color table which is to receive the contents.

Possible Errors

BadTable

SetColorEntry

Only Table numbers from 0 to 15 are valid.

Sets the value of a color in a specified color table.

Stack Before Call
I previous contenu
I TableNumber
I ElIJryNumber
I NewColor
I

Stack After Call
I previous contelllS
I

QuickDraw II ERS

I
I integel'
I integer
I integer
I<·SP

I
I<-SP

August 11, 1986 Page 18

TableNumber specifies the number of the color table; EntryNumber specifies the number
of the color to be changed; Vaiue sets the color.

Possible Errors

BadTable

GetColorEntry

Only Table numbers from 0 to 15 are valid.

Returns the value of a color in a specified color table.

Stack Before Call
I previous COnte1llS
I Spacefor Color
I Table Number
I Entry Number
I

Stack After Call
I previous contenlS
I Color
I

I
I word
I integer
I integer
k·SP

I
I word
k·SP

TableNwnber specifies the number of the color table; EntryNumber specifies the number
of the color to be examined; Value returns the color.

Possible Errors

BadTable

SetSCB

Only Table numbers from 0 to 15 are valid.

Sets the scan line control byte (SCB) to a specified value.

Stack Before Call
I previous COnte1llS
I Scanl.ine
I NewSCB
I

Stack After Call
I previous conte1llS
I

I
I integer
I integer
k·SP

I
k·SP

Scanline identifies the scan line whose SCB is to be set; Value sets the SCB.

Possible Errors

BadScanLine Only scan line numbers from 0 to 199 are valid.

GetSCB Returns the value of a specified scan line control byte (SCB).

Stack Before Call
I previous contenlS
I Space for SCB word

QuickDraw II ERS August 11, 1986 Page 19

Stack After CaD
I previous COnlenlS
I SCB
I

I integer
Ie-SP

I
I. word
Ie-SP

Scanline identifies the scan line whose SCB is to be examined; Value returns the value of
the SCB.

Possible Etrors

BadScanLine Only scan line numbers from 0 to 199 are valid.

SetAIlSCBs Sets all scan line control bytes (SCBs) to a specified value.

.:'--.

Stack Before Call
I previous C01UenlS
I NewSCB
I

Stack Arter Call
I previous COnlenlS
I

Possible Etrors

None

I
I word
Ie·SP

SetSysFont Tells Quic.kDraw to use the font passed as a system font.

Stack Before Call
I previous COnlenlS
I FontHand1It
I

Stack Arter Can
I previous COnlenlS
I

QuickDraw IT ERS

I
I Handle to font that will be system font.
Ie·SP

I
I<-SP

August 11, 1986 Page 20

There is a default system font in ROM which will be used unless this call is made. A
handle to the system font is put in the every port opened or inited.

Possible Errors

None

GetSysFont Returns a handle to the current system font.

Stack Before Call
I previous contenlS
I Spa«jor Handk
I

Stack Arter Call
I previous contenlS
I FonJHandJe
I

Possible EJ:rors

None

I
I Handle
k·SP

ClearScreen Sets the words in the screen memory to the value passed.

Stack Before Call
I previous COntenlS
I ColorWOI'ti
I

Stack Arter Call
I previous COntenlS
I

I
I word
k·SP

I
k·SP

This is a very fast clear screen that just stuffs the value passed into each word of screen
memory. The color you see on the screen will not be a solid color unless all the pixels in
the word passed are the same.

Possible Errors

None

GratOn Turns on the super hi-res graphics mode.

This routine only touches the bit in the NewVideo softswiteh that affects the what is
displayed. It does not change the linearization bit in the field.

No Inputs.

QuickDraw IT ERS August 11, 1986 Page 21

Possible Errors

None

GrafOrr Turns off the super hi-res graphics mode.

This routine only touches the bit in the NewVideo softswiteh that affects the what is
displayed. It does not change the linearization bit in the field

No Inputs.

Possible Errors

None

QuickDraw II ERS August 11. 1986 Page 22

..

GrafPort Calls

OpenPort Initializes specified memory locations as a standard port and
allocates new VisRgn and ClipRgn.

Stack Betore Call
I previous conumts
I PonPtr
I

I
I Pointer to Port.
I<·SP

I
I<·SP

Stack After Call
I previous C01llenu
I

Possible Errors

Memory Mgr Errors Any errors from the memory manager are renuned
unchanged.

InitPort Iniria1i;re.c; specified memory locations as a standard port.

Stack Betore Can
I previous conumts
I PonPtr
I

I
I Pointer to Port.
I<·SP

Stack After Call
I previous C01llenu I
I I<·SP

InitPort, un.Iike OpenPort, assumes that the region handles are valid and does not
allocate new handles. Otherwise, InitPort performs the same functions.

Possible Errors

Memory Mgr Errors Any errors from the memory manager are renuned
unchanged.

ClosePort Deallocates the memory associated with a port.

Stack Before Call
I previous C01llenu
I PonPtr
I

Stack After Call
I previous contents
I

QuickDraw II ERS

I
I Pointer to port.
I<·SP

I
I<·SP

August 11, 1986 Page 23

All handles are discarded. If the application disposes of the memory containing the port
without first calling ClosePort, the memory associated with the handles is lost and cannot
reclaimed.

Warning: Never close the CU1'1'Cnt port.

Possible Errors

Memory Mgr Euors Any emm from the memory manager are returned
unchanged.

SetPort Makes the specified port the current port.

Stack Before Can
I previous Ct»IIeIIU
I .PcnPtr
I

Stack Arter Call
I previous C01Ue1US
I

Possible Errors

None

I
I Pointer to port.
I<·SP

I
I<·SP

GetPort Returns the handle to the cummt port.

Stack Before Call
I previous C01Ue1US
I Spoajor PortPtr
I

Stack After Call
I previous co1Ue1US

. I PcnPtr
I

Possible Errors

None

I
I Space for Pointer to port.
I<·SP

I
I Pointer to port.
Ic-SP

SetPortLoc; Sets the current port's map information sttucmn: to the specified
location information.

Stack Before Call
I previous contelllS
I Ptr to LocInfo
I

Stack Arter Call

QuickDraw II ERS

I
I Pointer
I<·SP

August 11, 1986 Page 24

Possible Em>rs

None

GetPortLoc: Gets the CUl"I'Cnt port's map information structure and puts it at the
address indicated.

Sets the current portiS port rectangle to the specified recangle.
,~ ..

Stack Before Call
, previous colllenlS
, Fir toLocJnj'o
I

Stack After Call
I previous C01llenlS
I

Possible Em>rs

None

SetPortRect

Stack Before Call
I previous COIlle1llS
I RectPtr
I

Stack After Call
I previous COIlle1llS
I

Possible Em>rs

None

I
I PoiDter
I<·SP

,
I<·SP

,
I Pomter to rectangle.
I<·SP

,
I<·SP

GetPortRect Returns the CUl"I'Cnt portiS map port rectangle.

Stack Before Call
, previous COlllenlS
I RectPtr,

Stack After Call
, previous ColllenlS,

QuickDraw II ERS

I
, Pomter to rectangle.
I<·SP

,
'<aSp

August 11, 1986 Page 25

Possible Errors

None

SetPortSize Changes the size of the current GrafPort's PortRect.

Stack Before Can
I previous contents
I witJJh
I height
1

Stack After Call
I previous contents
I

1
I integer
I integer
k-SP

I
k-SP

This does not affect the pixel map, but just changes the active area of the GrafPort. The
call is normally used by the Window Manager.

Possible Errors

None

MovePortTo Changes the location of the current GrafPort's PortRect.

Stack Before Call
1 previous contents
I H
I V
I

Stack After Call
I previous C01lle1llS
I

1
1 integer
I integer
k-SP

I
k-SP

1Jrls does not affect the pixel map, but just changes the active area of the GrafPort. The
call is normally used by the Wmdow Manager.

Possible Errors

None

SetOrigin Adjusts the contents of PortRect and BoundsReet so that the upper
left comer of PortRect is set to the specified point.

Stack Before Call
I previous C01lle1llS
I H
I V
I

QuickDraw II ERS

I
I integer
1 integer
1<-51'

August 11, 1986 Page 26

Stack After Call
I previous contents I
I I<·SP

VisRgn is also affected. but CipRgn is not The pen position does not change.

Possible Errors

Memory Mgr Emm Any errors from the memory manager are returned
unchanged. (The memory manager may be called when the
VisRgn is offset).

SetClip Sets the clip region to the region passed by using CopyRgn.

Stack Before Call
I previous contents
I RgnHandk
I

I
I Handle
I<.SP

,/....

Stack After Call
I previous contents
I

Possible Errors

Memory Mgr Emm Any errors from the memory manager are returned
unchanged.

GetCIip Copies the Cip Region to the region passed. The region must have
been created earlier with a new rgn call.

Stack Before Call
I previous contents
I RgnHandk
I

Stack After Call
I previous contents
I

Possible Errors

Memory Mgr Errors Any errors from the memory manager are returned
unchanged.

CIipRect Changes the clip region of the current GrafPort to a rectangle
equivalent to a given rectangle.

Stack Before Call
I previous contenlS
I ReetPtr

.
QuickDraw IT ERS

Pointer

August 11, 1986 Page 27

Stack After Call
I previous C01UenlS I
I I<:·SP

This does not change the region handle, but affects the region itself.

Possible EIrors

Memory Mgr EIrors Any errors from the memory manager are returned
unchanged.

HidePen

No Inputs.

Possible EIrors

None

ShowPen

No Inputs.

Possible Errors

None

GetPen

Decrements the pen level A positive pen level indicates drawing
will occur; a negative pen level indicates drawing will not occur.

Increments the pen leveL A positive pen level indicates that drawing .
will occur; a negative pen level indicates drawing will not occur.

Returns the pen location.

Stack Before Call
I previous C01Ue1US
I PoinJPtr
I

Stack After Call
I previous C01Ue1US
I

Possible EIrors

None

I
I Pointer to point.
k·SP

I
k·SP

SetPenState Sets the pen state in the GrafPort to the values passed.

Stack Before Call

QuickDraw IT ERS August II, 1986 Page 28

..

Stack After Call
I previous contelllS
I

Possible Errors

None

I
I Pointer to PenState record.
k·SP

I
k·SP

GetPenState Returns the pen state from the GrafPon.

.~

Stack Before Call
I previous COnte1llS
I PenStatePtr
I

Stack Atter Call
I previous contelllS
I

Possible Errors

None

I
I Pointer to PenState record.
k-SP

I
k-SP

SetPenSize Sets the current pen size to the specified pen size.

Stack Before Call
I previous COnte1llS
I width
I haghl
I

Stack After Call
I previous COnte1llS
I

Possible Errors

None

I
I integer
I integer
k-SP

I
k-SP

GetPenSize Returns the current pen size at the place indicated.

Stack Before Call
I previous COnte1llS
I PoinlPtr
I

Stack After Call
I previous contelllS

QuickDraw IT ERS

I
I Pointer to point.
k·SP

August 11, 1986 Page 29

Possible Errors

None

SetPenMode Sets the current pen mode to the specified pen mode.

Stack Before Call
previous C01lle1llS

PenMork

Stack After Call
I previous C01lle1llS
I

Possible Errors

None

I
I word
k-SP

I
k-SP

GetPenMode Retums the pen mode from the current port.

/

Stack Before Call
I previous C01lle1llS
I Spm:efor PenMode
I

Stack After Call
I previous C01lle1llS
I PenMork
I

Possible Errors

None

I
I Space for PenMode (word).
k-SP

I
I word
k-SP

SetPenPat Sets the current pen pattern to the specified pen pattern.

Stack Before Call
I previous C01lle1llS
I PatJenlPfl'
I

Stack After Call
I previous contents
I

QuickDraw II ERS

I
I Pointer to pattern.
Ic:-SP

I
Ic:-SP

.
August 11, 1986 Page 30

Possible Errors

None

GetPenPat Returns the cummt pen pattern at the specified location.

Stack Before Call
I previous COnJenlS

. I PQ//I!nIPtr
I

Stack Alter Call
I previous COnJenlS
I

Possible Errors

None

I
I Pointer to pau.em.
k·SP

I
k·SP

SetSolidPenPat Sets the pen pattern to a solid pattern using the specified color.

Stack Before Call
I . previous C01llellU
I ColorNum
I

Stack After Call
I fRevWus contents
I

I
I integer
k·SP

I
k·SP

Only an appropriate number of bits in ColorNuin are used. If the PortSCB indicates 320
mode, then four bits are used; if the PortSCB indicates 640 mode, then two bits are used.

Possible Errors

None

SetPenMask Sets the pen mask to the specified mask.

Stack Before Call
I previous contelllS
I MaskPtr
I

Stack After Call
I previous contents
I

QuickDraw II ERS

I
I Pointer to mask:.
k·SP

I
k·SP

August 11, 1986 Page 31

Possible Emm;

None

GetPenMask Returns the pen mask at the specified location.

Stack Before CaU
I previous contents
I MaskPtr
I

Stack After Call
I previous contents
I

Possible Emm;

None

I
I Pointer to mask.
I<·SP

I
I<·SP

SetBackPat Sets the background pattern to the specified pattern.

Stack Before CaU
I previous conte~
I P01JJ!I71Ptr
I

Stack Arter Call
I previous contents
I

Possible Emm;

None

I
I Pointer to pauem.
I<·SP

I
I<·SP

GetBackPat Returns the background pattern at the specified location.

Stack Before Call
I previous contents
I POJJi!mPtr
I

Stack Arter Call
I previous contents
I

QuickDraw IT ERS

I
I Pointer to pattern.
I<·SP

I
I<·SP

August II, 1986 Page 32

Possible Errors

None

SetSolidBackPat Sets the background pattern to a solid pattern using the specified
color.

Stack Before Call
I previous C01llenU
I ColorNum
I

Stack After Call
I previous co1llenU
I

I
I integer
I<·SP

I
k-SP

Only an appropriate number of bits in ColorNum are used. If the PortSCB indicates 320
mode, then four bits are used; if the PortSCB indicates 640 mode, then two bits are used.

Possible Errors

None

,,'..
SolidPattern Sets the spcified pattern to a solid pattern using the specified color.

Stack Before Call
I previous C01lte1llS
I PoJIenIPtr
I ColorNum
I

Stack After Call
I previous C01llenU
I

I
I Pointer
I integer
I<-SP

I
I<-SP

Only an appropriate number of bits in ColorNum are used. If the PortSCB indicates 320
mode, then four bits are used; if the PortSCB indicates 640 mode, then two bits are used.

Possible Errors

None

PenNormal

No Inputs.

Sets the pen state to the standard state (penSize = 1,1; PenMode
= copy; PenPat = Black; PenMask = 1's). The pen location is not
changed.

QuickDraw II ERS August II, 1986 Page 33

Possible Errors

None

MoveTo Moves the cmrent pen location to the specified point.

Stack Before Can
I previous conumts
I H
I V
I

Stack After Call
I previous conumts
I

Possible Errors

None

I
I integer
I integer
k-SP

I
k-SP

Move Moves the cmrent pen location by the specified horizontal and
vertical displacements.

Stack Before Can
I previous conumts
I dl
I dV
I

I
I integer
I integer
k-SP

Stack After Can
I previous conJellU I
I k-SP

Possible Errors

None

SetFont Sets the cmrent font to the specified font.

Stack Before Call
I previous comenJs
I NewFontHontfle
I

Stack After Call
I previous coments
I

QuickDraw II ERS

I
I Handle to FODL
k-SP

I
k-SP

August 11, 1986 Page 34

..

Possible Errors

. None

GetFont Returns a handle to the CUITent font.

Stack Before Can
I previous COnlenlS
I Sp«efor Ruull
I

Stack After Call
1 previous contents
I FonlHantlk
I

Possible Errors

None

I
I Space for Handle.
I<-SP

I
I Handle
I<-SP

SetFontID Sets the footID field in the GrafPort.

Stack Before Call
I previous COnlenlS
I NewFonJlD
I

Stack After Call
1 previous contents
1

I
I PontIO (long).
I<·SP

I
I<-SP

This routine does not change the CUITent font. All it does is set the font ID. This call is
designed for use by the font manager for the benefit of the picture routines. The picture
routines use this field to try to find the font the application really wanted to draw with,
rather than the one that was available when the picture was recorded.

Possible Errors

None

GetFontID Returns the FontlD field in the GrafPort.

Stack Before Call
I· previous COnlelllS

1 Sp«efor Result
1

Stack After Call
I previous COlllelllS

I FonlHantlk
I

QuickDraw IT ERS

I
I Space for FontIO (long).
I<·SP

I
I FontID (long)
I<·SP

August 11, 1'986 Page 35

Possible Errors

None

GetFontInfo Returns information about the current font in the specified record.

Stack Before Can
I previous C01lle1llS
I FlRecPtr
I

Stack Alter Call
I previous C01llelllS
I

I
I Pointer FontInfo record.
I<·SP

I
I<·SP

The information in the FontInfoRecord does not reflect current style modifications nor
chijxtra and spExtra.

Possible Errors

None

GetFGSize Returns the size of the font globals record.

Stack Before Call
previous C01llelllS

Spacefor integer

Stack After Call
I previous C01lle1llS
I size
I

I
I Space far resulting size
I<·SP

I
I integer
I<·SP

We expect that the amount of information returned by the GetFontGlobals call will change
from version to version. This call makes it possible to find out how many bytes are being
retlm1ed.

For the version of QuickDraw in ROM, this value is 10. For the RAM patch (version 1.1)
the value is 12.

Possible Errors

None

GetFontGlobals Returns information about the current font in the specified
record.

Stack Before Call
I previous contents
I FGRecPtr

QuickDraw II ERS

Pointer FontGlobals record.

August 11, 1986 Page 36

Stack Arter Call
I previous conlentSl
I I<-SP

The size of the FontGlobals record is returned by the GetFGSize call. The infomation
represents the grafport's CUI'reI1t font, and does not reflect style modifications. chExtra or
spExtr etc. Future versions of QuickDraw IT may add more information at the end of this
record (see GetFGSize). but the current fields and their order will be maintained.

Possible Errors

None

SetFontFlags Sets the font flags to the specified value.

Stack Before Call
I previous COnlentS
I FonIFlags.
I

Stack After Call
I previous conlentS
I

I
I word
I<-SP

I
I<·SP

The font flags are used to indicate special operations performed on the text. Only one is
defined at this time. If the lowest bit of the word is set then the font will be considered a
fixed with font (rather than proportional) and all characters will be equally spaced. The
width of the characters is that of widMax. Other flags are reserved for future use.

Possible Errors

None

GetFontFlags Returns the CUI'reI1t font flags.

Stack Before Call
, previous COnlentS

, Space for Flags

I

Stack After Call
I f1I'evious contelllS

I FontFlo.gs
I

QuickDraw IT ERS

,
, Space for word.
'<-SF

I
I word
I<-sp

August 11, 1986 Page 37

Possible Errors

None

SetTextFace Sets the text face to the specified value.

Stack Before Call
I previous C01llenJs
I TextFoce .
I

Stack After Call
I previous COnte1lU
I

I
I word
I<·SP

I
I<·SP

Up to sixteen operations are possible on the text (only two are supported in ROM). Each
bit in the textface word represents a different face. Plain text has a text face of O.

Plain
Bold
Underline

Possible Errors

None

GetTextFace

TextFace=O
TextFace= 1
TextFace =2

Returns the current text face.

Stack Before Call
I previous COnte1lU
I Space/or Result
I

Stack After Call
I previous conte1lU

. I TextFoce
I

Possible Errors

None

I
I Space for word.
I<·SP

I
I word
I<·SP

SetTextMode Sets the text mode to the specified value.

Stack Before Call
I previous C01llenJs
I Tt.X1Mode
I

Stack After Call
I previous conlenlS

QuickDraw II ERS

I
I word
I<·SP

August 11, 1986 Page 38

k·SP

There are eight different text transfer modes (and their opposites). The fastest modes are
the modes which only transfer the foreground to the destination. The fastest of the
foreground modes are FG-OR and FG-XOR. FG-BIC is almost as fast and FG-COPY is
the slowest.

Possible Errors

None

GetTextMode Returns the CU1l'ent text mode.

Stack Before Call
I previous C01llelllS

I Space for Result
I

Stack After Call
I previous colllents
I TexlModt
I

Possible Errors

None

I
I Space for word.
k·SP .

I
I word
k·SP

SetSpaceExtra Sets the space extra field in the 'grafpon to the specified value.

Stack Before Call
I previous C01llelllS
I SpaceE.xtm
I

Stack After Call
. I previous COlllents

I

I
I Fixed Point Value
k·SP

I
I<·SP

The space extra is used by programs that are trying to justify text to a left and right
boundry. When the space extrafield is non zero, its value is added the width of each space
printed in a string. It is a fixed point value rather than an integer because you want to be
able to control this down to the last pixel

Possible Errors

None

GetSpaceExtra Returns the space extra field from the grafport.

Stack Before Call
I previous cOlllents

QuickDraw II ERS August 11, 1986 Page 39

Space for Result

Stack After Call
I previous contenlS
I Spm:eExira
I

Possible Errors

None

I Space for Fixed Point Value.
I<·SP

I
I LONG
I<·SP

SetCharExtra Sets the char extra field in the grafport to the specified value.

Stack Before Call
I previous contenJs
I ChtrExIrrJ
I

Stack Alter Call
I previous contenJs
I

I
I Fixed Point Value
Ic·SP

I
I<·SP

. The CharExtra field in the grafport is used to add width to every character in the font that
has width. It does not affect zero width characters. This field is present because some
fonts that look good in one graphics mode need a little extra space between the characters in
another mode.

Possible Errors

None

GetSpaceExtra Returns the space extra field from the grafport.

Stack Before Call
I previous contenJs
I Spacefor Ruuh
I

Stack Alter Call
I previous contenlS
I C1ItEE:mrl
I

Possible Errors

None

I
I Space for Fixed Point Value.
I<·SP

I
I LONG
Ic·SP

SetForeColor Sets the foreground color field in the grafport to the specified value.

Stack Before Call

QuickDraw II ERS August 11, 1986 Page 40

..

Stack After Call
I previous contents
I

Possible E1rors

None

I
I word
Ic::-SP

I
k-SP

GetForeColor Returns the current foreground color from the grafport.

Stack Before Call
I previous contents
I Space for Result
I

Stack After Call
I previous contents
I FonColor
I

Possible Exrors

None

I
I Space Cor ForeColor (word).
k·SP

I
I word
k·SP

SetBackColor Sets the background color field in the grafport to the specified value.

Stack Before Call
I previous contents
I BadrColor
I

Stack After CaU
I previous contents
I

Possible E1rors

None

I
I word
k·SP

I
k·SP

GetBackColor Returns background color field from the grafport.

Stack Before Call
I previous contents
I Space for Result
I

Stack Alter Call
I previous contents
I BadrColor

QuickDraw II ERS

I
I Space for BaekColor (word).
k-SP

word

August 11, 1986 Page 41

Possible Errors

None

SetBuIDims This sets the size of the QuickDraw nclipping and text buffers. It
overrides-the MaxWldth value supplied to QDStartup and the text
buffer defaults- set at that time.

Stack Before Call
I previous C01lWllS
I MQ%Wuith
I MaxFondldghl
I MaxFBRExJenl
I

Stack After Call
I previous contents
I

I
I integer
I integer
I integer
I<·SP

MaxWidth is the width, in bytes, of the widest pixelmap the application will draw into (0
indicates screen width). MaxFontHeight is the height of the tallest font the application will
use (fRectHeight from the font record, computable as ascent + descent from the
GetFontInfo call). MaxFBRExtent is the greatest fbrExtent value of any font the
application will use. fbrExtent is a field in the font recon:i, and is returned by
GetFontGlobals. It is defined as the greatest (horizontal) distance, in pixels, from the
character origin to the furthest foreground or background pixel of any character in the font
For more infonnation, see "Fonts And Text In QuickDraw n".

SetBufSize "pads" the text buffer to permit values of chExtra S fbrExtent (of the currently
active font), spExtra S fbrExtent, and style modifications which add upto 36 pixels to the
bounds width (width of foreground and background) of any character.

When QDStartUp is called, it makes an internal call to SetBufDims, with the following
values: .

MaxWidth as supplied by the application;
MaxFontHeight =2 '" (height of system font);
MaxFBRExtent =2 '" (fbrExtent of system font).

If the application does not use fonts larger than that, and only uses reasonable values of
chExtra and spExtta and no very extreme (presumably customized) style modifications,
then there is no reason to call SetBufDims or ForceBufDims.

Error Codes

Memory Manager Errors Any errors from the memory manager are returned
unchanged.

QuickDraw n ERS August 11, 1986 Page 42

ForceBuIDims ,This call performs the same function as SetBufDims, except that
MaxFBRExtent value is not padded in any way. Any style
modification, etc., that might increase the bounds width of a
character must be added to MaxFBRExtent by the application.

Stack Belore Call
I previous conJe1ltS
I Mar.WuIlh
I MaxFontHdghl
I MaxFBRExunt
I

Stack After Call
I previous COnJe1ltS
I

I
I integer
I inleger
I inleger
k·SP

I
k·SP

This can be used to allow absurdly large values of chExtra, spExtra, strange styles, and the
like.

It is usually better to call SetBufDims and ForceBufDims once (if at all), early in the
application with reasonable "max" values, because claiming and clearing a buffer can take
lots of time. However, they may be called at any time. Also, it may sometimes be
worthwhile to make one of these calls to .shIiD.k the size of the text buffer, thus conserving
memory and (slightly) speeding performance. Don't be stingy, though.

ElTorCodes

Memory Manager Errors Any emm from the memory manager are returned
unchanged.

SaveBuIDims This call saves QuickDraw's buffer sizing information in an 8 byte
record supplied by the caller.

Stack Before Call
I previous COnJe1ltS
I PoWer to Sizdnfo

. I

Stack After Call
I previous contents
I

I
I Pointer
I<·SP

I
k·SP

This call can be used when an application (or tool) wants to temporarily change the size of
the QuickDraw buffers but wants to be able to restore them as well.

Possible Errors

None

RestoreBuIDims This call restores QuickDraw's internal buffers to the sizes described
in an 8 byte record. This record is created by SaveBuIDims.

QuickDraw IT ERS August 11, 1986 Page 43

Stack Before Call
I previous contelllS
I MaxWuiJh
I MaxFondleighl
I MaxFBREx1ent
I

Stack After Call
I previous COnte1llS
I

I
I integer
I integer
I integer
k-SP

I
I<-SP

This call can be used when an application (or tool) wants to temporarily change the size of
the QuickDraw buffers but wants to be able to restore them as well.

ElrorCodes

Memory Manager Errors Any errors from the memory manager are returned
unchanged.

SetClipHandle Sets the clip region handle field in the grafport to the value passed.

Stack Before Call
I previous COnte1llS
I RgnHtmtik
I

Stack After Call
I previous contelllS
I

Possible Errors

None

I .
I Handle
k-SP

I
k-SP

GetClipHandle Returns a copy of the handle to the ClipRgn.

Stack Before Call
I previous contelllS
I S[XJ£efor Result
I

Stack After Call
I previous contelllS
I RgnHandk
I

QuickDraw II ERS

I
I Space for Handle
k-SP

I
I Handle
k-SP

August 11, 1986 Page 44

Possible Errors

None

SetVisRgn Sets the vis region to the region passed by using CopyRgn.

Stack Before Call
I previous contents
I RgnHandJe
I

Stack Arter Call
I previous contents
I

Possible Errors

None

I
I Handle
k·SP

I
k·SP

GetVisRgn Copies the contents of the VisRgn into the region passed. The
region must have been created earlier with aNewRgn call.

,.

Stack Before Call
I previous contents
I RgnHandJe
I

I
I Handle
k·SP

Stack Arter Call
I previous COlllents I
I k·SP

Possible Errors

None

SetVisHandle Sets the clip region handle field in the graf port to the value passed.

Stack Before Call
I previous COlllents
I RgnHandJe
I

Stack Arter Call
I previous contents
I

QuickDraw II ERS

I
I Handle
k·SP

I
1c:·SP

August 11, 1986 Page 45

Possible Errors

None

GetVisHandle Retmns a copy of the handle to the VisRgn.

Stack Before CaD
previous contents
Space for Result

Stack After CaD
I previous contents
I RgnHtmdk
I

Possible Errors

None

I
I Space for Handle
k·SP

I
I Handle
k·SP

SetPicSave Sets the picsave field to the value passed. This is an intcral routine
that should not be used by application programs. .

,'"

Stack Before CaD
I previous COnte1ltS
I Pit:SaveValue
I

I
I Lonl
k·SP

Stack After Call
I previous contents I
I k·SP

Possible Errors

None

GetPicSave Returns the contents of the PicSave field in the GrafPort.

Stack Before Call
I previous contents
I Space for Long
I

Stack After Call
I previous contents
I PicSaveValue
I

QuickDraw IT ERS

I
I Space for PicSaveValue
k·SP

I
I Long
I<:-SP

August 11, 1986 Page 46

..

Possible Exrors

None

SetRgnSave Sets the RgnSave field to the value passed. This is an interal routine
that should not be used by application programs.

Stack Before Call
I previous C01lle1llS
I RgnSaveValue
I

Stack After Call
I previous C01lle1llS
I

Possible Exrors

None

I
I LONG
k-SP

I
k-SP

GetRgnSave Returns the contents of the RgnSave field in the GrafPort.

Stack Before Call
I pnvious C01lle1llS
I Space/or Long
I

Stack After Call
I previous C01lle1llS
I RgnSaveVaJu.e
I

Possible Errors

None

I
I SpaceforRgnSaveValue
k-SP

I
I LODg
k-SP

SetPolySave Sets the PolySave field to the value passed. This is an interal
routine that should not be used by application programs.

Stack Before Call
I previous conJenlS
I PolySaveVaJu.e
I

Stack After Call
I previous conJenJs
I

QuickDraw II ERS

I
I LODg
k-SP

I
k-SP

August 11, 1986 Page 47

Possible Errors

None

GetPolySave . Returns the contents of the PicSave field in the GrafPort.

Stack Before CaD
I previous contenlS
I Spaafor Long
I

Stack Arter Call
I previous contenlS
I PolySaveVu
I

Possible Exrors

None

I
I SpaceforPolySaveValue
k-SP

I
I Lons
k-SP

SetGrafProc:s Sets the GrafProcs field to the value passed.

Stack Betore Call
I previous COntenlS
I GrajPrrx:sPtr
I

Stack After Call
I previous contelllS
I

Possible Exrors

None

I
I Pointer
k-SP

I
k-SP

GetGrafProc:s Returns the contents of the Pointer to the GrafProcs record
associated with the GrafPort.

Stack Before Call
1 previous contelllS
I Spaafor Ptr
I

Stack After Call
1 previous contellls
I GrajPrrx:sPtr
I

QuickDraw II ERS

I
I Space for Pointer to Oraf Procs Record.
k-SP

1
I Pointer Oraf Procs Record.
I<-SP

August 11, 1986 Page 48

Possible Errors

None

SetUserField Sets the UserField field in the GrafPort to the value passed.
Programs can use this field to attaeh any data they want to a
GrafPort by using this field as a pointer to some other data area.

Stack Before Call
I previous conJenLs
I UserfiddValUl!
I

Stack Alter Call
I previous COnJe1lLS
I

Possible Errors

None

I
I LOOI
IC:·SP

I
Ic:·SP

GetUserField Returns the contents of the UserField field in the GrafPort.

Stack Before CaD
I previous COnJe1lLS
I Spaafor Long
I

Stack After Call
I previous COnJe1lLS
I UserF"lei.d
I

Possible Errors

None

I
I Space for UserF'reld Value
Ic:·SP

I
I LOOI
Ic:·SP

SetSysField Sets the SysField field to the value passed. This is an interal routine
that should not be used by application programs.

Stack Before Call
I previous conJe1lLS
I UserfkldValUl!
I

Stack Alter Call
I previous conJenLs
I

QuickDraw IT ERS

I
I Loog
Ic:·SP

I
Ic:·SP

August 11, 1986 Page 49

Possible Errors

None

GetSysField Returns the contents of the SysField field in the GrafPort.

,~'"

Stack Betore Call
I previous contents
I SptJ&t: for Long
I

Stack After Call
I previous contents
I SysFkld
I

Possible Errors

None

QuickDraw II ERS

I
I Space for SysFlCld Value
k:-SP

I
I LOllI
k:-SP

August 11, 1986 Page 50

Drawing Calls

LineTo Draws a line from the cmrent pen location to the specified point.

Stack Before Can
I previous contents
11.1.
I V
I

Stack After Can
I previous COl'IUnts
I

Possible Errors

I
I Integer
I integer
k·SP

Line

Memory Mgr Er.rors If a region is open, LineTo commands contribute to the
definition. Memory manager errors can occur at this time.

Draws a line from the current pen location to a new point specified
by the horizontal and venica1 displacements.

Stack Before Can
I previous COl'IUnts
I til
I fiI
I

Stack After CaD
I previous contents
I

Possible Errors

I
I integer
I integer
k·SP

I
k·SP

Memory Mgr Er.rors If a region is open, Line commands contribute to the
definition. Memorymanager errors can occur at this time.

Rectangle Drawing Calls
FrameRect Draws the boundary of the specified rectangle with the current

pattern and pen size.

Stack Before Call
I previous COl'IUnts
I RectPtr
I

Stack After Call
I previous collJellJs
I

QuickDraw II ERS

I
I Pointer to rectangle.
k·SP

I
I<·SP

August 11, 1986 Page 51

Only points entirely within the rectangle are affected.

Possible EIrors

Memory Mgr Emm If aregion is open, FrameRect commands contribute to the
definition. Memory manager errors can occur at this time.

PaintRect Paints (fills) the interior of the specified rectangle with the current
pen pattern.

Stack Before CaD
I previous COIlltmtS
I RictPtr
I

Stack After Call
I previous COIlltmtS
I

Possible Exrors

None

I
I Pointer to rectangle.
Ic-SP

I
I<-SP

EraseRect Erases the interior of the specified rectangle with the background
pattern.

Stack Before Call
I previous COnte1lls
I RectPtr
I

Stack After Call
I previous COfllents
I

Possible Exrors

None

I
I Pointer to rectangle.
I<-SP

I
Ic-SP

InvertRect Inverts the pixels in the interior of the specified rectangle.

Stack Before Call
I previous COfllents
I RectPtr
I

Stack After Call
I previous COfllelllS
I

QuickDraw II ERS

I
I Pointer to rectangle.
I<·SP

I
Ic·SP

August 11, 1986 Page 52

..

Possible Errors

None

FillRect Paints (fills) the interior of the specified rectangle with the specified
pattern.

Stack Before Call
I previous contenJs
I RectPtT
I PaltmlPtT
I

Stack After Call
I previDus contenJs
I

Possible Errors

None

Drawing Regions

I
I Pointer to rectaDgle.
I Pointer to pattern.
I<-SP

"

I<-SP

FrameRgn Draws the boundary of the specified region with the CUITent pattern
and CUITent pen size.

Stack Before Call
, previDus contelUS
I RgnHandk
I

Stack After Call
I previous contelUs
I

I
I Handle to region
I<-SP

,
I<-SP

Only points entirely inside the region are affected..

If a region is open and being fmmed., the outside outline of the region being"framed is
added to that region's boundary. .

Possible Errors

Memory Mgr Errors If a region is open, FrameRgn commands contribute to the
definition. Memory manager errors can occur at this time.

PaintRgn Paints (fills) the interior of the specified region with the current pen
pattern.

Stack Before Call
I previDus COlUelUs
I RgnHandk
I

QuickDraw IT ERS

I
I Handle to region
I<-SP

August 11, 1986 Page 53

Stack After Call
I previous contenls I
I I<-SP

Possible BIron

None

EraseRgn Fills the interior of the specified region with the background pattern.

Stack Before Call
I previous contenls
I RgnHandJe
I

Stack After Call
I previous contenls
I

I
I Handle to region
I<·SP

I
I<·SP

InvertRgn Inverts the pixels in the interior of the specified region.

Stack Before Can
I [JI'evious contenls
I RgnHandJe
I

Stack After Call
I previous contenls
I

Possible Em>rs

None

I
I Handle to region
I<·SP

I
I<-SP

FiIIRgn Fills the interior of the specified region with the specfied pattern.

Stack Before Call
I [JI'evious contenls
I RgnHandJe
I PalIt!nJP1I'
I

Stack 'After Call
I previous contenlS
I

QuickDraw IT ERS

I
I Handle to region
I Pointer to pattern
I<·SP

I
I<-SP

August 11, 1986 Page 54

Possible Errors

None

Drawing Polygons

FramePoly Frames the specified polygon.

Stack Before Call
I previous C01llDllS
I PolyHaw:lk
I

Stack After Call
I previous COnJenlS
I

I
I Handle to polygon
I<-SP

I
I<-SP

The polygon is framed with a series of lineto calls.

Possible Errors

Memory Mgr Errors Ifa region is open, FramePoly commands contribute to the.
definition. Memory manager errors can occur at this time.

PaintPoly Paints the specified polygon.

Stack Before Call
I previous COnl411lS
I PolyHaw:lk
I

Stack After Call
I previous COnl411lS
I

I
I Handle to polygon
I<-SP

I
I<-SP

The polygon is painted by opening a region, drawing lines, closing the region and painting
the region. When the drawing is complete, the region is discarded. There must be enough
memory around to hold the polygon.

Possible Errors

Memory Mgr Errors -Any errors from the memory manager are returned
unchanged.

ErasePoly Ex:ases the specified polygon.

Stack Before Call
I previous COnl411lS
I PolyHaw:lk
I

Stack After Call
I previous contems

QuickDraw II ERS

I
I Handle to polygon
I<:-SP

August II, 1986 Page 55

I<·SP

The polygon is erased by opening a region, drawing lines, closing the region and erasing
the region. When the drawing is complete, the region is discarded. There must be enough
memory around to hold the polygon.

Possible Errors

Memory Mgr Errors Any errors from the memory manager are returned
unchanged.

InvertPoly Inverts the specified polygon.

Stack Before Call
I previous COIllentS
I PolyHandle
I

Stack After Call
I previous COIllentS
I

I
I Handle to polygon
I<·SP

I
I<·SP

The polygon is inverted by opening a region. drawing lines. closing the region and
inverting the region. When the drawing is complete. the region is discarded. There must
be enough memory around to hold the polygon.

Possible Errors

Memory Mgr Errors Any errors from the memory manager are returned
unchanged.

FiIIPoly Paints the specified polygon.

Stack Before Call
I previous COnle1US
I PolyHfJIIIik
I Pa1lenIPlI'
I

Stack Arter Call
I previous COnle1US
I

I
I Handle to polygon
I Pointer to pattern
I<·SP

I
I<·SP

The polygon is painted by opening a region; drawing lines, closing the region and painting
the region. When the drawing is complete. the region is discarded. There must be enough
memory around to hold the polygon.

QuickDraw II ERS August II, 1986 Page 56

..

Possible Errors

Memory Mgr Errors Any errors from the memory manager are returned
unchanged.

Oval Drawing Calls

The code that draws ovals resides in RAM. The code that handles the ovals contribution to
region definitions resides in ROM.

FrameOval Draws the boundary of the oval enscribed in the specified rectangle
with the cummt pattern and pen size.

Stack Before Call
I previous C01Ue1lU
I RectPtr
I

Stack' After Call
I previous C01Ue1lU
I

I
I Pointer to rectangle.
I<·SP

I
I<·SP

Only points entirely within the rectangle are affected.

Possible Errors

Memory Mgr Errors Ifa region is open, FrameOval commands contribute to the
defInition. Memory manager errors can occur at this time.

PaintOval Paints (fills) the interior of the oval enscribed in the specified
rectangle with the current pen pattern.

Stack Before Can
I previous C01llenlS
I RectPtr
I

Stack After Call
I previous C01llenlS
I

Possible Errors

None

I
I Pointer to rectangle.
Ic·SP

I
Ic·SP

EraseOval Erases the interior of the oval enscribed in the specified rectangle
with the background pattern.

Stack Before Call
I previous coments
I RectPtr
I

QuiclcDraw IT ERS

I
I Pointer to rectangle.
I<·SP

August 11, 1986 Page 57

Stack Alter Call
I previous contents I
I . k-SP

Possible Errors

None

InvertOval Inverts the pixels in the interior of the oval enscribed in the specified
rectangle.

Stack Before Call
I previous contents
I RectPtr
I

Stack Alter Call
I previous contents
I

Possible Errors

None

I
I Pointer to rectangle.
k-SP

I
k-SP

FillOval Paints (fills) the interior of the oval enscribed in the speCified
rectangle with the specified pattern.

Stack Before Call
I previous contents
I RectPtr
I P01lmIPtr
I

Stack After Call
I previous contents
I

Possible Errors

None

I
I Pointer to rectangle.
I Pointer to pattern.
k-SP

I
k-SP

RoundRect Drawing Calls

The code that draws roundrects resides in RAM. The code that bandies the roundrects
contribution to region definitions resides in ROM.

FrameRRect Draws the boundary of the roundrect enscribed in the specified
rectangle with the current pattern and pen size.

Stack Before Call
I previous cOfllefilS
I ReCIPtr
I OvalWuith
I OvaJHeight
I

QuickDraw IT ERS

I
I Pointer to rectangle.
I integer
I integer
Ic::-SP

August 11, 1986 Page 58

Stack After Call
I previous COn1efllS

I
I

·I<-SP

Only points entirely within the rectangle are affected.

Possible Errors

Memory Mgr Errors If a region is open, FrameRRect commands contribute to the
definition. Memory manager errors can occur at this time.

PaintRRect Paints (fills) the interior of the roundrect enscribed in the specified
rectangle with the CUII'ent pen pattern.

Stack Before Can
I previous C01lle1US
I RectPtr
I OvolW'uJIh
I OvalHeigN
I

Stack After Call
I previous C01lle1US
I

Possible Errors

None

I
I Pointer to rectangle.
I integer
I integer
I<·SP

I
I<·SP

EraseRRect Erases the interior of the roundrect enscribed in the specified
rectangle with the background pattern.

Stack Before Call
I previous C01lle1US
I RectPtr
I OvolW'uJIh
I OvalHeigN
I

Stack After Call
I previous C01lle1US
I

Possible Errors

None

I
I Pointer to rectimgle.
I integer
I integer
I<·SP

I
I<·SP

InvertRRect Inverts the pixels in the interior of the roundrect enscribed in the
specified rectangle.

Stack Before Call
I previous co1lte1lts
I ReetPtr
I OvolW'uJIh
I OwJJHeigN
I

QuickDraw II ERS

I
I Pointer to rectangle.
I integer
I integer
I<-SP

August 11, 1986 Page 59

Stack After Call
I previous contelllS I
I I<·SP

Possible Errors

None

FillRRe'ct Paints (fills) the interior of the roundrect enscribed in the specified
rectangle with the specified pattern.

Stack Before Call
I previous contents
I RectPtI'
I OvalW"uiIh
I OvalHeighl
I Pal!mlPtI'
I

Stack After Call
I pnvious contents
I

Possible Errors

None

Arc Drawing Calls

I
I Pointer to rectangle.
I integer
I integer
I Pointer to pattern.
k·SP

I
k·SP

Arcs are defined by a rectangle, a start angle (in degrees) and an arc angle (in degrees).
The arc that is drawn is the part of the oval described by the rectangle starting at start angle
and sweeping clockwise arc angle degrees.

Framed arcs do not contribute to region definitions.

The code that draws'ovals resides in RAM.

FrameArc Draws the boundary of the arc enscribed in the specified rectangle
with the cUITent pattern and pen size.

Stack Before Call
I previous C01lle1llS
I RectPtI'
I SllIrtAngle
I An:Angle
I

Stack After Call
I previous COlllellls
I

QuickDraw II ERS

I
I Pointer to rectangle.
I integer
I integer
k·SP

I
k·SP

August 11, 1986 Page 60

Only points entirely within the rectangle are affected.

Possible Errors

None

PaintArc Paints (fills) the interior of the arc enscribed in the specified
rectangle with the current pen pattern.

Stack. Before Call
I previous COntenlS
I RectPtr
I StanAngk
I Arc:Angk
I

Stack. After Call
I previous C01llefllS
I

Possible Errors

None

I
I Pointer to rectangle.
I integer
I integer
Ie-SP

I
k-SP

EraseArc Erases the interior of the arc enscribed in the specified rectangle with
the background pattern.

Stack. Before Call
I previous COntenlS
I ReclPtr
I StortAngk
I ArcAngk
I

Stack. After Call
I previous C01llefllS
I

P'ossible Errors

None

I
I Pointer to rectangle.
I integer
I integer
k-SP

I
Ie-SP

InvertArc Inverts the pixels in the interior of the arc enscribed in the specified
rectangle.

Stack. Before Call
I previous C01llefllS
I RecJPtr
I StortAngk
I ArcAngk
I

I
I Pointer to rectangle.
I integer
I integer'
Ie-SP

Stack. After Call
I previous Co1llefllS I
I k-SP

QuickDraw II ERS August 11, 1986 Page 61

Possible Errors

None

FilIArc Paints (fills) the interior of the arc enscribed in the specified
rectangle with the specified pattern.

Stack Before Call
I pnvious COIllentS
I RedPrr
I StartAngle
I An::Angle
I PC1III!nIPrr
I

Stack Arter Call
I 1Jf'evious conte1lJS
I

Possible Errors

None

Pixel Transfer Calls

I
I Pointer to rectangle.
I integer
I integer
I Pointer to pattern.
k-SP

I
k-SP

ScrollRect Shifts the pixels inside the intersection of the specified rectangle,
VisRgn, ClipRgn, PortRect, and BoundsRect.

Stack Before Call
previous contellJS

RectPrr
til
dI

UpdoJdlgnHantik

Stack Arter Call
I pnvious conte1lJS
I

I
I Pointet to recL
I integer
I integer'
I Handle
k-SP

I
k-SP

The pixels are shifted a distance of dh horizontally and dv vertically. The positive
directions are to the right and down. No other pixels are affected. Pixels shifted out of the
scroll area are lost. The backgound pattern fills the space created by the scroll. In addition
UpdateRgn is changed to the area filled with BackPat.

Note that this UpdateRgn must be an existing region; it is not created by ScrollRect.

QuickDraw II ERS August 11, 1986 Page 62

..

Possible Errors

Memory Mgr Errors Any errors from the memory manager are returned
unchanged.

PaintPixels Transfers a region of pixels.

Stack Before Call
I previous COntenlS
I PainJParamPtr
I

Stack Alter Call ,
I previous COntenlS
I

I
I Pointer param block.
k·SP

I
k·SP

PaintParamPtr is equal to the following:

PrrToSourceLocInjo
PrrToDestLoclnjo
PtrToSourceReet
PtIToDestRect
Mode
MaskHanti1e (ClipRgn)

Pointer
Pointer
Pointer
Pointer
WORD
Handle

The pixels are transferred without referencing the current GrafPort. The source and
destination are described in the input, as is the clipping region.

A DestRect is required, but only the upper left comer is used in this version. In future
versions we hope to be able to provide stretching and shrinking. The DestRect shoudl be
the same size as the SrcRect for the code to work without changes in the future.

Possible Errors

NotEqualChunkiness This is retum.ed when the source and destination pixel maps
are not the same type. That is one is for a 320 mode display
and one is for a 640 mode display. The type is determined
by the PortSCB of the LocInfo record.

PPToPort Transfers pixels from a source pixel map to the current port clipping
to the current Vis and Clip regions.

Stack Before Call
I previous COfllenlS

I SrcLocPtr
I SrcRect
I DestX
I DutY
I Transfer Mode
I

Stack After Call

QuickDraw IT ERS

I
I Pointer param block.
I Pointer source rectangle.
I INTEGER.
I INTEGER.
I WORD.
k·SP

August 11, 1986 Page 63

This call differs form PaintPixels in that the current GrafPort is used as the destination.
This is very useful when tring to paint a pixel map to a window and getting the clipping
right. PaintPixels can do this but it requires extra code on the application's part.

Possible Errors

NotEqualChunk:iness This is returned when the source and destination pixel maps
are not the same type. That is one is for a 320 mode display
and one is for a 640 mode display. The type is determined
by theP~CB of the LocInfo record.

Text Drawing and Measuring

All text is drawn in the cummt font starting at the cummt pen position using the current
textmode and foreground and background colors. After text is drawn, the pen is advanced
by the width of the text drawn. The amount of advance can be obtained from any of the
width calls. The text box calls return a rectangle that is the bounding box for the text. This
width of the bounding box is not necessarily the width of the characters drawn because of
kerning. See the appendix on fonts for information on how this works.

DrawChar Draws the spedified character.

Stack Before Call
I previous COntenlS
I tht:CJa
I

Stack After Call
I previous COntenlS
I

Possible Errors

None

I
I word
k·SP

I
k·SP

DrawText Draws the spedified text.

Stack Before Call
I previous contents
I Te:xlPtr
I Te.xtI.4n
I

Stack After Call

QuickDraw II ERS

I
I Pointer
I integer
I<·SP

August 11, 1986 Page 64

Possible Errors

None

DrawString Draws the spedified string.

Stack Before Call
I previous COnlenJs
I StringPl1'
I

Stack Alter Call
I previous C01lllmlS
I

Possible Errors

None

I
I Pointer to port.
k·SP

I
k·SP

DrawCString Draws the spedified C·String.

Stadt Before Call
I pre'Vious COllUnlS
I SJringPl1'
I

I
I Pointer to port.
k·SP

Stack After Call
I previous C01lUnlS I
I k·SP

Possible Errors

None

Width Calls

Return the distance the pen would be advanced if the character or sequence of character
were to be drawn. Reflects current style, chExtra, spExtra, etc. The actual pen position is
not changed.

CharWidth Returns the width of the spedified character.

Stack Before Call
I previous conlenls
I Space for width
I theChar

QuickDraw IT ERS

Space for integer
word

August II, 1986 Page 65

Stack Arter Call
I previous conJelllS
I width
I

Possible Errors

None

k·SP

I
I integer
k·SP

TextWidth Returns the width of the spedified text

.....

Stack Before Call
I previous conJents
I Spacefor widJh
I TexJPtr
I TexJLen
I

Stack Arter Call
I previous conJents
I width
I

Possible Errors

None

I
I Space for integer
I Pointer
I· integer
k·SP

I
I integer
k·SP

StringWidth Retmns the width of the specified string.

Stack Before Call
I previous cOlllellls
I Space for widJh
I SrringPtr
I

Stack Arter Call
I previous conJents
I width
I

Possible Errors

None

. I
I Space for integer
I Pointer
k·SP

I
I integer
k·SP

CStringWidth Retmns the width of the specified C-String.

Stack Before Call
I previous colllents
I Space for widJh
I CStringPtr

QuickDraw II ERS

Space for integer
Pointer

August II, 1986 Page 66

Stack After Call
I previous C01lW!tS
I width
I

Possible EIrors

None

I
I integer
k·SP

Bounds Calls

The Bounds calls set the contents of a specified rectangle so that rectangle is the smallest
rectangle that encloses all the foreground and background pixels of the specified character
or sequence of characters, if they were to be drawn. The rectangle is in local pool'dinates.
It is as tall as the font height, with ascent pixel rows above the cmrent pen position and
decent rows below. It extends as far to the left as the current pen position or as far as the
leftmost kerning pixel, whichever is further to the left; and as far right as the (hypothetical)
new pen position, or the rightmost kerning pixel, whichever is further right. Reflects
current style, chExtra, spExtra, etc.

The rectangle is not actually drawn, and the actual pen position is not changed.

CharBounds Sets the specified rectangle to be the bounds of the specified
character.

Stack Before Call
I previous co~1IlS

I theChor
I RectPtT
I

Stack After Call
I previous C01lW!tS
I

P.ossible EIrors

None

I
I word
I Pointer
k·SP

I
k·SP

TextBounds Sets the specified rectangle to be the bounds of the specified text

Stack Before Call
I previous COlllelllS
I Te:xJPtr
I Tu:tLen
I RectPl1'
I

Stack After Call
I previous colllellls
I

QuickDraw II ERS

I
I Pointer to texL
I integer
I Pointer to reeL
k·SP

I
k·SP

August 11, 1986 Page 67

Possible EIrors

None

StringBounds Sets the specified rectangle to be the bounds of specified string.

Stack Before CaD
previous C01llMJS

StringPtr
RecJPtr

Stack After Call
I previous C01llMJS

I

Possible ExTors

None

I
I Pointer to string.
I Pointer to reel.
I<·SP

I
I<·SP

CStringBounds Sets the specified rectangle to be the bounds of specified cstring.

Stack Before Call
I previous C01llMJS

I CSlringPtr
I RecJPtr
I

Stack After Call
I previous contents
I

Possible ExTors

None

QuickDraw IT ERS

I
I Pointer to Cstring.
I Pointer to reel.
I<·SP

I
I<·SP

August 11, 1986 Page 68

...

Various Utilities

Calculations With Rectangles
SetRect Sets the rectangle pointed to by RectPtr to the specified values.

Stack Before Call
I prwious contents
I RectPtr
I Left
I Top
I RighJ
I Bouom
I

Stack After Call
I previous COnJenlS
I

Possible Errors

None.

I
I Pointer
I integer
I integer
I integer
I integer
I<-SP

I
I<-SP

OffsetRect Offsets the rectangle pointed to by RectPtr by the specified
displacements.

Stack Before Call
I previous contents
I RectPtr
I dl
I dV
I

Stack After Call
I previous contents
I

I
I Pointer
I integer
I integer
I<-SP

I
I<-SP

dv is added to the top and bottom; dh is added to the left and right.

Possible Errors

None.

InsetRect Insets the rectangle pointed to by RectPtr by the specified
displacements.

Stack Before Call
I previous colllellls
I RecJPtr
I dl
I iN

QuickDraw II ERS

Pointer
integer
integer

August 11, 1986 Page 69

k-SP

Stack Alter Call
I previous conlems I
I k-SP

dv is added to the top and subtracted from the bottom; dh is added to the left and subtracted
from the right.

Possible EmJrs

None.

SectRect Calculates the intersection of two rectangles and places the
intcrsect:ion in a third rectangle.

,.,....

Stack Belore Call
previous COnle1lLf

spacefor result
RectPv
RectPv
RectPv

Stack After Call
I previous COnle1lLf
I Empty Flag
I

I
I Space for Boolean empty flag
I Pointer
I Pointer
I Pointer
Ic:-SP

I
I Boolean (word).
k-SP

If the result is non-empty, the output is TRUE; if the result is empty, the output is FALSE.

Possible Errors

None.

UnionRect Calculates the union of two rectangles and places the union in a third
rectangle.

Stack Belore Call
I previous COnle1lLf
I RectPtr
I RectPv
I ReCIPtr
I

Stack After Call
I previous COnle1lLf
I

Possible Errors

None.

I
I Pointer to source reel
I Pointer to source reel
I Pointer to destination reel
Ic:-SP

I
I<-SP

PtInRect Detects whether a specified point is in a specified rectangle.

QuickDraw IT ERS August 11, 1986 Page 70

Stack Before Call
I previous C01lle1llS

I Space for Result
I PoinJPtr
I RectPtr
I

Stack After Can
I previous C01lle1llS

I Result Flag
I

I
I Space for Boolean result
I Pointer
I Pointer
k-SP

I
I Boolean (word) result
k-SP

For example:
PtInReet«10,10»,«10,l0,20,20» is TRUE but
PtInReet«20,20»,«10,l0,20,20» is FALSE.

Possible Errors

None.

PURect Copies one point to the upper left of a specified rectangle and
another point to the lower right of the rectangle.

Stack Before Call
I previous C01lle1llS

I PoWlPtr
I PoinI2Ptr
I RectPtr
I

Stack After Call
I previous C01lle1llS

I

Possible Errors

None.

I
I Pointer to source point.
I Pointer to source point.
I Pointer to destination reet.
k-SP

I
k-SP

EqualRect Compares two rectangles and returns TRUE or FALSE.

Stack Before Call
I previous COIlleIllS

I Space for Result
I RectlPtr
I Rect2Ptr
I

Stack After Call
I previous colllelllS .
I Boolean resuJJ
I

QuickDraw II ERS

I
I Space for Boolaean (word) result.
I Pointer to one reet.
I Pointer to other reel.
I<-SP

I
I Boolaean (word) result.
k-SP

August II, 1986 Page 71

Possible Errors

None.

EmptyRect Returns whether or not a specified rectangle is empty.

Stack Before can
I previous contenlS
I Spacejor Result
I RectPtr
I

Stack After Can
I previous COntenlS
I Result Flag
I

I
I Space for Boolean (word) result
I Pointer
k-SP

I
I Boolean (word) result
k-SP

An empty rectangle has the top greater than or equal to the bottom, or the left greater than or
equal to the right.

Possible EIrors

None.

Calculations With Points

I
I Pointer to point.
I Pointer to point used as source and destination
k-SP

AddPt Adds two specified points together and leaves the result in the
destination point.

Stack Before Call
I previous COntenlS
I SrcPtPtr
I DestPtPtr
I

Stack Arter Call
I previous COntenlS
I

Possible Errors

None.

I
k-SP

SubPt Subtracts the source point from the destination point and leaves the
result in the destination point.

Stack Before Call
I previous contents
I SrcPtPtr
I DestPtPtr
I

I
I Pointer to point.
I Pointer to point used as source and destination
Ic::-SP

QuickDraw II ERS August 11, 1986 Page 72

Stack After Call
I previous C01lle1llS I
I I<·SP

Possible Errors

None.

SetPt Sets a point to specified horizontal and vertical values.

Stack Before Call
previous conte1llS

SrcPtPtI'
H
V

Stack After Call
I previous C01lle1llS
I

I
I Pointer to poWL
I Horizontal value ofpoinL
I Verti.cal value of poinL
k·SP

I
I<·SP

Possible Errors

None.

EqualPt Returns a boolean result indicating whether two points are equal.

Stack Before Call
previous C01lle1llS
BooleonResull

SrcPtPtI'
DestPtPtT

Stack After Call
I previous C01lle1llS
I BookanResull
I

Possible Errors

None.

I
I Space forresulL
I Pointer to poinL
I Pointer to point used as source and destination
k·SP .

I
I resu1L
k-SP

LocalToGlobal Converts a point from local coordinates to global coordinates.

Stack Before Call
previous conte1llS

PoinJPtr

Stack After Call
I previous contents
I

QuickDraw II ERS

I
I Pointer to poinL
1c:·SP

I
I<·SP

August II, 1986 Page 73

Local coordinates are based on the current BoundsRect of the GrafPort. Global
coordinates have 0,0 as the upper left comer of the pixel image.

Possible Errors

None.

GlobalToLocal Converts a point from global coordinates to local coordinates.

Stack Before Call
I previous COnlenlS

I PoinJPtr
I

I
I Pointer to poinL
I<·SP

Stack Alter Call
, previous COnlelllS

I
I
I<·SP

Local coordinates are based on the current BoundsRect of the GrafPort. Global
coordinates have 0,0 as the upper left comer of the pixel image.

Possible Errors

None.

Calculations With Regions

I
I Space for resulting Handle
I<·SP

Allocates space for a new region and initializes it to the empty
region.

Stack Before Call
I previous COnle1US
I Spa.cefor HtlNik
I

NewRgn

Stack Alter Call
I previous COnle1US
I Handk 10 New Rgn
I

I
I Resulting Handle.
I<·SP

This is the only way to create a new region. All other calls work with existing regions.

Possible Errors

Memory Mgr Errors Any errors from the memory manager are returned
unchanged.

DisposeRgn Deallocates space for the specified region.

Stack Before Call
I previous COllJt!nlS

QuickDraw II ERS August 11, 1986 Page 74

..

I Handle to Region being disposed.
Ic-SP

I
Ic-SP

Stack After Call
I previous COntenlS
I

Possible Errors

Memory Mgr Errors Any errors from the memory manager are returned
unchanged.

CopyRgn Copies the contents of a region from one region to another.

Stack Before Call
I previous COlllenlS
I SrcRgnHandJ.e
I DutRgnHandJ.e
I

Stack After Call
I previous COntenlS
I

I
I Handle to source region.
I Handle to destination region
k-SP

I
k-SP

If the regions are not the same size to start with, the DestRgn is resized. (DestRgn must
already exist. This call does not allocate it.)

Possible Errors

Memory Mgr Errors Any errors from the memory manager are returned
unchanged.

SetEmptyRgn Destroys the previous region information by setting it to the empty
region.

Stack Before Call
I previous COlllenlS
I RgnHandle
I

Stack After Call
I previous COlllenlS
I

I
I Haodle to Region being modified
k·SP

I
k-SP

The empty region is a rectangular region with a bounding box of (0,0,0,0). If the original
region was not rectangular, the region is resized.

QuickDraw IT ERS August 11, 1986 Page 75

Possible Errors

Memory Mgr Errors Any errors from the memory manager are returned
unchanged.

SetRectRgn Destroys the previous region information by setting it to a rectangle
described by the input.

Stack Before Call
I previous COntenlS
I RgnHfJ1IIile
I Left
I Top
I Right
I Bouom.
I

Stack After Call
I previous contenlS
I

I
I Handle to region being set.
I integer
I integer
I integer
I integer
I<·SP

I
I<·SP

If the inputs do not describe a valid rectangle, the region is set to the empty region. If the
original region was not rectangular, the region is resized.

Possible Errors

Memory Mgr Errors Any errors from the memory manager are returned
unchanged.

RectRgn Destroys the previous region information by setting it to a rectangle
described by the input.

Stack Before Call
I previous conte1lls
I RgnHfJ1IIile
I RectPtr
I

Stack After Call
I previous COnte1lls
I

I
I Handle to region being set.
I Pointer to rectangle used as source
I<·SP

I
I<·SP

If the input does not describe a valid rectangle, the region is set to the empty region. If the
original region was not rectangular, the region is resized..

Possible Errors

Memory Mgr Errors Any errors from the memory manager are returned
unchanged.

OpenRgn

No Inputs.

Tells QuickDraw II to allocate temporary space and start saving lines
and framed shapes for later processing as a region definition.

QuickDraw II ERS August 11, 1986 Page 76

This call takes no inputs. Instead it allocates memory to hold information about the being
created. When CloseRgn is called, the region is created and this memory is freed.

While the region is open, all calls to Line, LineTo, FrameRect, FrameOval,
FrameRRect, FrameRgn and FramePoly contribute to· the region defmitition.

Possible Errors

RgnA1readyOpen This is returned ifyou are ah'eady saving to a region in this
grafport.

Memory Mgr Errors Any errors from the memory manager are returned
unchanged.

I
I Handle to region being set to collection of points
I<-SP

Tells QuickDraw II to stop processing information and to return the
region that has been created.

~ Stack Before Call
I previous contents
I RgnHandlt:
I

CloseRgn

Stack After Can
I previous conte1US
I

I
I<-SP

The region must ah'eady exist, and its contents are replaced with the new region.

Possible Errors

RgnNotOpen This is returned when there is not a region open in the
current grafport.

Memory Mgr Errors Any errors from the memory manager are returned
unchanged.

OffsetRgn Moves the region on the coordinate plane a distance of db
horizontally and dv vertically.

Stack Before Call
I previous contents
I RgnHandIe
I d:l
Idl
I

,.
I Handle to region being offset
I Horizontal displacement.
I Vertical displacement.
I<-SP

Stack After Call
I previous contents
I

I
I<-SP

The region retains its size and shape.

QuickDraw II ERS August 11, 1986 Page 77

Possible Errors

Memory Mgr Errors Any errors from the memory manager are returned
unchanged.

InsetRgn Shrinks or expands a region.

Stack Before Call
I previous COlllenJs
I RgnHfllIIik
I til
I tN
I

Stack After Call
I previous COIllenJs
I

I
I Handle to region being inset.
I Horizontal displacement.
I Vertical dispJacement.
I<-SP

I
I<-SP

All points on the region boundary are moved inwards a distance ofdv vertically and dh
horizontally. Ifdv or dh are negative, the points are moved outwards in that direction.
InsetRgn leaves the region "centered" on the same position, but moves the outline.
InsetRgn of a rectangular region works just like InsetRect.

Possible Errors

Memory Mgr Errors Any errors from the memory manager are returned
unchanged.

SectRgn Calculates the intersection of two regions and places the intersection
in the third region.

Stack Before Call
I previous COIllenJs
I RgnHand1e1
I RgnHOIIIiJe2
I DeslRgnHandle
I

Stack After Call
I previous CO~1IIS

I

I
I Handle to one source region
I Handle to another source region
I Handle to destination region
I<-SP

I
I<·SP

The destination region must already exist The function does not allocate it However, the
destination region may be one of the source regions.

If the regions do not intersect, or one of the regions is empty, the destination is set to the
empty region.

QuickDraw IT ERS August 11, 1986 Page 78

Possible Errors

Memory Mgr Errors Any errors from the memory manager are returned
unchanged.

UnionRgn Calculates the union of two regions and places the union in the third
region.

Stack Before Call
I previous C01lJCllS
I RgnHondJe1
I RgnHaruiJe2
I DestRgnHandJe
I

Stack Alter Call
I previous comtmU
I

I
I Handle to onc source region
I Handle to another source region
I Handle to destination region
k-SP

I
k-SP

The destination region must already exist. The function does not allocate it. However, the
destination region may be one of the source regions.

Ifboth regions are empty, the destination is set to the empty region.

Possible Errors

Memory Mgr Errors Any errors from the memory manager are returned
unchanged.

DiffRgn Calculates the difference of two regions and places the difference in
the third region.

Stack Before Call
previous conJenls

RgnHondJe1
RgnHaruiJe2

DestRgnHandJe

Stack Alter Call
I previous COnJelllS
I

I
I Handle to one source region
I Handle to another source region
I Handle to destination region
k-SP

I
k-SP

The destination region must already exist. The function does not allocate it. However, the
destination region may be one of the source regions.

If the source region is empty, the destinatioll is set to the empty region.

QuickDraw IT ERS August 11, 1986 Page 79

Possible Errors

Memory Mgt Errors Any errors from the memory manager are returned
unchanged.

I
I Handle to one source region
I Handle to anolber source region
I Handle to destination region
I<·SP

Calculates the difference between the union and the interseetion of
two regions and places the resultin the third region.

Stack Betore Call
I previous conumts
I RgnHtlIIJiW.
I RgnH0ndJe2
I DestRgnHtJ11dJ14
I

XorRgn

Stack After Call
I previous co~1IlS
I

I
I<·SP

.....

The destination region must already exist. The function does not allocate it. However, the
destination region may be one of the source regions.

If the regions are not coincident, the destination is set to the empty region.

Possible Errors

Memory Mgr Errors Any errors from the memory manager are returned
unchanged.

PtInRgn Checks to see whether the pixel below and to the right of the point is
within the specified region.

Stack Before Can
I previous co~1IlS
I Space/or Result
I PoinJPtr
I RgnHandle
I

I
I Space for Boolean (word)
I Pointer to poinL
I Region Handle
I<·SP

Stack After Call
I previous conumts
I Boolean Result
I

I
I Boolean (word)
I<·SP

The function returns TRUE if the pixel is within the region and FALSE if it is not.

Possible Errors

Memory Mgr Errors Any errors from the memory manager are returned
unchanged.

RectInRgn Checks whether a given rectangle intersects a specified region.

Stack Before Call

•
QuickDraw IT ERS August II, 1986 Page 80

previous C01llenlS
Space for Result

RectPtr
RgnHlUIIiJe

Stack Arter Call
I previous C01llenlS

I Booletm Result
I

I
I Space for Boolean (word)
I Pointer to rect.
I Region Handle
k·SP

I
I Boolean (word)
k·SP

The function returns TRUE if the intersection encloses at least one pixel or FALSE if it
does not

Possible Errors

Memory Mgr Emm Any errors from the memory manager are returned
unchanged.

EqualRgn Compares the two regions and returns TRUE if they are equal or
FALSE ifnot

Stack Before Call
I previous C01llenlS
I Spacefor Ruul.t
I RgnHlJIIIiW
I RgnHantili!2
I

Stack Arter Call
I previous C01llenlS
I Boolean Result
I

I
I Space for Boolean (word)
I Pointer to point.
I Region Handle
k·SP

I
I Boolean (word)
k·SP

The two regions must have identical sizes, shapes and locations to be considered equal.
Any two empty regions are always equal.

Possible Errors .

Memory Mgr Emm Any errors from the memory manager are returned
unchanged.

EmptyRgn Checks to see if a region is empty.

Stack Before Call
I previous C01llenlS
I Spacefor Result
I RgnHlUIIiJe
I

Stack After Call
I previous contellls
I Boolean Ruul.t
I

I
I Space for Boolean (word)
I Region Handle
I<·SP

I
I Boolean (word)
k·SP

Returns TRUE if the region is empty or FALSE ifnot

QuickDraw IT ERS August 11, 1986 Page 81

Possible Errors

Memory Mgr Errors Any errors from the memory manager are returned
unchanged.

Calculations with Polygons

OpenPoly Returns a handle to a polygon data sttueture that will be updated by
future LineTo's.

Stack Before Call
I previousco~
I Space/orPolyHandk
I

Stack After Call
I previous contents
I PolyHantik
I

I
I Space for Handle to Polygon
I<.SP

I
I Handle to Polygon
I<·SP

The polygon is completed by making a ClosePoly call.

Possible EIrors '

PolyAlreadyOpen This is returned when a polygon is already open and being
saved in the current grafport.

Memory Mgr Errors Any errors from the memory manager are returned
unchanged.

ClosePoly

Possible EIrors

Completes the polygon creation process staned with OpenPoly,
Has no inputs or outputs.

PolyNotOpen

Memory Mgr Errors

This is returned when a polygon is not open in the cummt
grafport.
Any errors from the memory'manager are returned
unchanged.

KiIIPoly Disposes of the specified polygon,

Stack Before Call
I fJf'eviousco~
I PolyHandle
I

Stack After Call
I previous conte1l1s
I

QuickDraw IT ERS

I
I Handle to polygon
k·SP

I
k·SP

August II, 1986 Page 82

Possible Errors

Memory Mgr EIrors Any errors from the memory manager are returned
unchanged.

OffsetPoly Offsets the specified polygon by dH and dV.

Stack Before Call
I previous contents
I PolyHondle
I til
I fiI
I

Stack After Call
I previous contents
I

I
I Handle to polygon.
,I Horizontal displacement
I Vertical displacement
I<-SP

I
I<-SP

Possible Errors

Memory Mgr EIrors Any errors from the memory manager are returned
unchanged.

Mapping and Scaling Utilities

MapPt Maps the specified point from the source feet to the dest reet.

Stack Before Call
I previous contents
I PoWPtr
I SrcReetPtr
I DestRectPtr
I

Stack After Call
I previous contents
I

I
I Pointer to poinL
I Pointer to source reet
I Pointer to dest rect
I<·SP

I
I<·SP

Possible Errors

None.

MapRect Maps the specified rectangle from the source rect to the dest reet.

Stack Before Call
I previous contents
I RectPtr
I SrcRectPtr
I DestRectPtr
I

Stack After Call

QuickDraw II ERS

I
I Pointer to rectangle.
I Pointer to source reet
I Pointer to dest reet
I<-SP

August 11, 1986 Page 83

Possible Errors

None.

MapRgn Maps the specified :region from the source :rect to the dest :rect.

Stack Before Call
I previous CD1IIeJIlS
I MapRgn
I SrcRecJPtr
I DestRec1Ptr
I

I
I Handle to region.
I Pointer to source reet
I Pointer to dest rea
I<-SP

I
I<-SP

Stack After Call
I previous CDntenlS
I

Possible Errors

Memory Mgr Errors Any errors from the memory manager are :returned
unchanged.

MapPoly Maps the specified polygon from the source rect to the dest reet

Stack Before Call
I previous CD1IIeJIlS
I PolyHand1I!
I SrcRecJPtr
I DestRectPtr
I

Stack After Call
I previous CDntenlS
I

Possible Errors

None.

I
I Handle to polygon.
I Pointer to source reet
I Pointer to dest reet
I<-SP

I
I<-SP

ScalePt Scales the specified point from the source reet to the dest reet

Stack Before Call
I previous CD1IIeJIlS
I PoinJPtr
I SrcRecJPtr
I DestRectPtr
I

Stack After Call .
I previous contents
I

QuickDraw IT ERS

I
I Pointer to point.
I Pointer to source reet
I Pointer to dest feet
I<-SP

I
I<-SP

August 11, 1986 Page 84

Possible Er.rors

None.

Miscellaneous Utilities

Random Returns a pseudorandom number in the range -32768 to 32767.

Stack. Before Call
I previous collJtmJs
I SpaceforinJegu
I

Stack After Call
I previous C01llDllS
I Rantlom inJeger
I

I
I Space for returned integer
k·SP

I
I integer
k·SP

The number returned is generated based upon calculations performed on SeedYalue, which
can be set with SetRandSeed. The result for any particular seed value is always the
same.

Possible Er.rors

None.

SetRandSeed Sets the seed value for the random number generator.

Stack Before Call
I previous contellJS
I RandomSeed
I

Stack After Call
I previous C01llDllS
I

I
I lon& integer
k·SP

I
k·SP

The algorithm for random numbers uses a 32 bit seed to produce a 16 bit random number.

Possible Er.rors

. None.

GetPixel Returns the pixel below and to the right of the specifed point

Stack Before Call
I previous collJellJs
I Space for P~l
I H
I V
I

Stack After Call

QuickDraw IT ERS

I
I Space for word
I Horizontal value ofpoinL
I Vertical value of poinL
Ic::·SP

August 11, 1986
.

Page 85

I
I word
I<-SP

ThePixel is returned in the lower bits of the word. If the current drawing location has a
chunkiness of 2, then 2 bits of the word are valid. If the current drawing location has a
chunkiness of 4, then 4 bits of the word are valid.

There is no guarantee that the point a.etually belongs to the port.

Possible EITors

None.

QuickDraw II ERS August 11, 1986 Page 86

..

Customizing QuickDraw Operations
TheSe routines work similarly to those in QuickDraw on the Macintosh. The major
difference is that no inputs are passed on the stack. Instead the standard routines expect
their inputs on zero page at particular locations. Moreover. they expect that QuickDraw's
zero page is already switched in when they are called. Details on what parts of zero page
are used for what are not available yet.

A final difference is how these routines are called. Rather than making standard tool calls,
you access them through vectors in bank EO.

SetStdProcs Sets up the specified record of pointers.

Stack Before Call
I [Jf'evWus C01llefl1S I
lPointer to StdProc Record I Pointer to standard proc record.
I I<-SP

Stack After Call
I [Jf'evWus C01llefllS I
I I<-SP

Possible Errors

None.

StdText Draws standard text.

StdLine Draws standard lines.

StdRect Draws standard rects.

StclRRect Draws standard round rects.

StdOval Draws standard ovals.

StdArc Draws standard arcs.

StdPoly Draws standard polys.

StdRgn Draws standard regions.

StdPixels . Draws standard pixels.

QuickDraw IT ERS August 11. 1986 Page 86

StdComment

StdTxMeas

StdGetPic

StdPutPic

SetIntUse

Does standard comments for pictures.

Does standard text measuring.

Does standard retieval from picture record.

Does standard storage into picture record.

Tells QuickDraw's cursor drawing code whether or not it should use
scan line interrUpts.

Stack Before Call
I previous COnlimlS
I UsdfIJ
I

Stack After Call
I previous C01lle1lJS
I

I
I word
k-SP

I
k·SP

QuickDraw normally uses scan line intemIpts to draw the cursor without flicker. If an
application wants to use scan line intemIpts for some process of its own, it must tell
QuickDraw not to use them.

GetAddress Returns the address of the specified table.

I
I Space for Pointer to table in ROM
I integer
k·SP

input
output

Stack Before Call
I previous COnlimlS
I Space/or PoinJo
I JD
I

lD
Tab/ePtr

WORD
LONG

Stack After Call
I previous conlimlS
I

The ID's supported are

1 ScreenTable
2 ConTabre320
3 ConTable640

I
k-SP

QuickDraw IT contains a number of tables that may be useful to a programmer. The
GetAddress. call is provided to make these tables accessable. It is absolutely imperitive that
a program obtain the address of a table every time it runs. We will make no guarentee that
these tables will stay in the same place when we change the ROM In fact we can guarentee

QuickDraw IT ERS August II, 1986 Page 87

that these tables will move and that anyone who hard-codes the addresses of these tables in
their programs will be sorry.

The screen table has 200 two byte entries. Each is the address of the start of a scan line in
the display buffer. The zeroth entry is $2000, the address of scan line zero. Entry 1 is
$20AO; the address of scan line one•. And so on.

ConTable320 and ConTable640 are used to convert from bytes that are one bit per pixel to
bytes that are four and two bits per pixel respectively. ConTable320 has 256 four byte
entries while ConTable640 has 256 two byte entries. These entries are the two and four bit
per pixel representation of one bit per pixel bytes. For example, the byte containing $37
looks as follows in one, two and four bit per pixel mode.

One Bit Two Bit Four Bit

%00110111 %00 00 1111 00 111111 $OOFF OFFF

The two and four bit versions would be obtained from the table as follows:

ldaOneBit
and#$ooFF
asia
tay
Ida rrwoBitTable],y

ldaOneBit
and#$ooFF
asia
asia
tay
Ida [FourBitTable],y
tax
iny
iny
Ida [FourBitTable],y

pick up the byte
mask off the high byte
multiply by 2 or 4

put result in y
load out of table through y
(save in x)
(bump y)

(get the second word)

In both cases the addresses obtained from GetAddress·are already on zero page.

Possible Errors

NotActive This is returned when Quick:Dra.w has not been initialized.

QuickDraw II ERS August 11, 1986 Page 88

Cursor-Handling Routines

SetCursor Sets the cursor to the image passed in the cursor record.

Stack Before Call
I previous COIIIenlS
I Cunod'tf'
I

Stack After Call
I previous C011lenlS
I

I
I Pointer to cursor record.
I<-SP

I
I<-SP

If the cursor is hidden, it remains hidden and appears in the new form when it becomes
visible again. If the cursor is visible, it appears in the new form immediately.

GetCursorAdr Returns a pointer to the current cursor record.

Stack Before Call
I previous C011lenlS
I Spacefor PoWer
I

Stack After Call
I previous C011lenlS
I Cunod'tf'
I

I
I Space for Pointer cunent cursor recOrd.
I<-SP

I
I Pointer to current cursor record
I<-SP

HideCursor

No Inputs.

ShowCursor

No Inputs.

obscureCursor

No Inputs.

Decrements the cursor level. A cursor level of zero indicates the
cursor is visible; a cursor level less than zero indicates the cursor is
not visible.

Increments the cursor level unless it is already zero. A cursor level
of zero indicates the cursor is visible; a cursor level less than zero
indicates the cursor is not visible.

Hides the cursor until the mouse moves. This tool is used to get the
cursor out of the way of typing.

QuickDraw IT ERS August 11, 1986 Page 89

InitCursor

No Inputs.

Reinit:ializes the cursor.

.",'"

The cursor is set to the arrow cursor and made visible. This routine also checks the
MasterSCB and sets the cursor accordingly. This is the routine to use if for some reason
you want to change modes in the middle of a program. The steps you take to do this are:

1. Hide the cursor if it is not already hidden.
2. Set the MasterSCB to the mode you want.
3. Set all the SCB's to the MasterSCB.
4. Set the color table the way you want it.
S. Repaint the screen for the new mode
6. Call InitCursor.

QuickDraw II ERS August 11, 1986 Page 90

	v4_07_01
	v4_07_02
	v4_07_03
	v4_07_04
	v4_07_05
	v4_07_xx

