
The Font Manager

First digit

2 3 4 567 B gAB C D E F

...,
Q A

::')'' : ::r., "
.: _: 'V ~
• •• • 0°

t ,O?: t.,
• :+': "-,

. .. .::
¢ ::<:: .., u

:-:.: ...

, ~ A

o QJ CE

§ ¥
£

@ ::n: » y

,
u
-o

"U

u

,
u

0" @ ::rr~
. :: ... : ...

,
e

c;
,
e

..., "
t N 1

, ,
x a 0

u 6 i'

r <; 1

vOn

s E i

q .A e
p A e

, ,
w a 0

I Y 1 Y a

L \ I I a

A Q a

J Z j z a

E U e
F V f

B R b

H X h

K·[k { a

esc
D T d

G W 9

@ p ,

? 0 _ 0

) N " n
- M] m }
<

7

9
8

4

/

)

o

+

(

'*

% 5
& 6

3€ ! 1

• # 3
" 2v .

* $

F

D

E

2

3

7

B

6

C

B

5

9

S.cond
digit

t 0

o
(, .

1

{, .

..... stands for e nonbreaking spacel the same width as e digit.
The first four characters are only in the system font (Chicego),

The shaded characters ere not in ell fonts.
Codes $09 through $FF ere reserved for future expansion,

Appendix A
Transfer Modes

There are eight different pen IIlOdes. These modes are used to derive the color of a pixel
when it is being drawn to. Each pixel is made up of a series of bits. The pen operates on
the individual bits in a pixel as single units. In this way logical binary operations are well
defined.

The codes for the various pen modes are different from the codes used in QuickDraw on
the Macintosh. Similar modes for text, pen and pixel transfers all use the same codes. The
codes for the inverted modes are the same as the orignal mode except that the high bit of the
word is set.

The following transfer modes are available. (Each 1 and 0 is the valu~ of a bit in a pixel)

Mode $0000 (COpy)
$8000 (notCOPY)

Copy SRC (or not SRC) to destination. Copy is the typical drawing mode.
For text, the fully colored text pixels (both foreground and background) are
copied into the destination.

copy

Dest. o
1

Pen
o 1

o 1
o 1

noteopy

Dest.

Pen
o 1

o I 1 0
1 I 1 0

Mode $0001 (OR)
$8001 (notOR)

Overlay (OR) SRC (or not SRC) and destination. You can use this mode to
non-desttuctively overlay new images on top of existing images and its
inverse to overlay inverted images. For text, the fully colored text pixels
(both foreground and background) are ORed with the destination.

OR

Dest. o
1

Pen
o 1

o 1
1 1

notOR

Dest.

Pen
o 1

o I 1 0
1 I 1 1

QuickDraw IT ERS August II, 1986 Page A-I

..

Mode $0002 (XOR)
$8002 (notXOR)

Exclusive or (XOR) pen with destination. You can use this mode and its
inversion for cursor drawing and rubber-banding. If an image is drawn in
penXOR mode. the appearance of the destination at the image location can
be restored merely by drawing the image again in penXOR mode. For text,
the fully colored text pixels (both foreground and background) are XORed
with the destination.

XOR

Dest. o
1

Pen
o 1

o 1
1 0

notXOR

Dest. o
1

Pen
o 1

1 0
o 1

Mode $0003 (DIe)
$8003 (notDIC)

Bit Clear (BIC) pen with destination «NOT pen) AND destination). You
can use this mode to explicitly erase (tum off) pixels. often prior to
overlaying another image. notBlC can be used to display the intersection of
two images. For text, the fully colored text pixels (both foreground and
background) are Bleed with the destination.

BIC

Dest. o
1

Pen
o 1

o 0
1 0

notBIC

Dest. o
1

Pen
o 1

o 0
1 0

QuickDraw II ERS August 11, 1986 Page A-2

Special Text Modes. The following modes are only used for text. They apply when
drawing from a I-bit per pixel world to a 2 or 4 bit per pixel/world. This only occurs when
drawing from the font to a destination pixel map.

Mode $0004 (foreCOPY)
$8004 (notforeCOPY)

Copies only the foreground pixels into the destination. Background pixels
are not altered. The inverted mode inverts the foreground pixels before
copying them.

Mode $0005 (foreOR)
$8005 (notforeOR)

ORs only the foreground pixels into the destination. Background pixels are
not altered. The inverted mode inverts the foreground pixels before the OR
operation occurs.

Mode $0006 (foreXOR)
$8006 (notforeXOR)

XORs only the foreground pixels into the destination. Background pixels
are not altered. The inverted,mode inverts the foreground pixels before the
XOR operation occurs.

Mode $0007 (foreBIC)
$8007 (notforeBIC)

BICs only the foreground pixels into the destination. Background pixels
are not altered. The inverted mode inverts the foreground pixels before the
BIe operation occurs. '

QuickDraw IT ERS August 11, 1986 Page A-3

Appendix B
Hardware Summary

The Super Hi-Res Graphics hardware can display 200 scan lines and many colors. The
following four features are controlled independently for each scan line:

Color Table
Fill Mode
Interrupt
Color Mode

One of 16
On or Off
On or Off '
320 vs 640 pixels per scan line

The scan line control byte (SCB) controls these four features for each scan line. The low,
nibble of the SCB identifies the color table to be used for this scan line. Bit 4 is reserved.
Bit 5 of the SCB controls fill mode: 1 is on, 0 is off. Bit 6 of the SCB controls intem1pts:
if the bit is set then an interrupt will be generated when the scan line is refreshed. Bit 7 of
the SCB controls the mode: 0 is 320, 1 is 640.

76543210
1-1-1-1-11--1--
M I F R Color Table

Color Table

A color table is a table of 16 two byte entries. The low nibble of the low byte is the
intensity of the color blue. The high nibble of the low byte is the intensity of the color
green. The low nibble of the high byte is the intensity of the color red. The high nibble of
the high byte is not used. Pixels in 320 mode are 4 bits wide and their numeric
representation identifies a color in the color table. Pixels in 640 mode are two bits wide
and their numeric representation identifies a' color in a subset of the full color table. The
first pixel in the byte (bits 0 and 1) selects one of four colors in the table from 0 thru 3. The
second pixel in the byte (bits 2 and 3) selects one of four colors in the table from 4 thru 7.
The third pixel in the byte (bits 4 and 5) selects one of four colors in the table from 8 thru
11. The fourth pixel in the byte (bits 6 and 7) selects one of four colors in the table from
12 thru IS.

HighByte LowByte
High Low High Low
Nibble Nibble Nibble Nibble

Reserved Red

QuickDraw II ERS

Green Blue

August 11, 1986 Page B-1

--.

Fill Mode

When fill mode is active, the Oth color in the color table becomes inactive. A pixel with a
numeric value of zero serves as a place holder indicating that the pixel should be displayed
as the same color last displayed.

Scan Line Values

1000020000010000

Colors Shown

BBBBBWWWWWWBBBBB

Interrupts

Intemlpts can be used to synchronize drawing with veriteal blanking so pixels are not
changed as they are being drawn (a pixel is drawn once every 1/60 of a second). Interrupts
can also be used to change the color table before a screen is completely drawn. This will
allow a program to show more than 256 colors on the screen at once (but at the cost of
servicing the inte:m1pt).

QuickDraw II ERS August 11, 1986 . Page B-2

Appendix C
Comparison to QuickDraw

QuickDraw has the following functional parts. Next to each part I indicate where the part
will fall.

Environmental Control Core
Rectangle Drawing Core
Line Drawing Core
Pixel Map Transfer Core
Region Clipping Core
Cursor Support and Drawing Core
Utilities Core
Text Core

Region Manipulation Core
Round Things (ovals, circles, round RAM

rects and arcs)
Pictures RAM
Polygons Core
Advanced Routines Core

Each routine in QufckDraw is listed below with its corresponding QuickDraw IT routine.
An entry under QuickDraw IT of "same" or "similar" means that the routine will work just
like or somewhat like the corresponding QuickDraw routine. A minus sign indicates that
the routine will not be present. Some entries are the names of calls as they will appear in
QuickDraw II (different from QuickDraw). A question mark indicates that we are not yet
sure. Finally, An explanation point indicates that prototype code is running today.

Mac QuickDraw
Routine

InitGraf
OpenPort
InitPort
ClosePort
SetPort
GetPort
GrafDevice
SetPortBits
PortSizc
MovePortTo
SetOrigin
SetClip
GetClip
ClipRect
BackPat

InitCursor
SetCursor

QuickDraw II ERS

QuickDraw II
Core

Different!
same!
same!
same!
same!
same!

SetPortLoc!
same!
same!
same!
sameI
same!
same!
same!

same!
sameI

August 11, 1986

QuickDraw II
RAM

Page <:-1

HideCursor same!
ShowCursor same!
ObscureCursor same!

HidePen same!
ShowPen same!
GetPen same!
GetPeDState same!
SetPenState same!
PenSize same!
PenMode same!
PenPat same!
PenNormal same!
MoveTo same!
Move same!
LineTo same!
Line same!

TextFont SetFont!
TextFacc sartof!
TextMode same!
TextSize no
SpaceExtta same!
DrawChar same!
DrawString same!
DrawText same!
CharWuith same!
StringWidth same!
TextWIdth same!
GetFontInfo same!

ForeColor SetFo:reColor!
BackColor SetBackColor!

GetPo:reColor!
GetBackColor!

ColorBit

SetRect same!
OffsetRect same! .
InsetRect same!
SectRect same!
UnionRect same!
PtInRect same!
Pt2Rect same!
PtToAngle ?
EqualReet same!
EmptyRect same!

FrameRect same!
PaintRect same!
EraseRect same!
InvertRect same!
FillReet same!

QuickDraw nERS August 11, 1986 Page C-2

...

FrameOval same!
PaintOval same!
EmseOval same!
InvertOval same!
FillOval same!

FrameRoundR.ect same!
PaintRoundRect same!
EraseRoundRect same!
InvettRoundRcct same!
FillRoundRcct same!

FrameAre same!
PaintArc same!
EraseArc same!
InverArc same!
F:illArc same!

NewRgn same!
DisposeRgn same!
CopyRgn same!
SetEMptyRgn same!
SetRectRgn same!
RectRgn same!
OpenRgn same!
OoseRgn same!

/- OffsetRcgion same!
InsetRgn same!
SectRgn same!
UnionRgn same!
DiffRgn same!
XorRgn same!
PtInRgn same!
RectInRgn same!
EqualRgn same!
EmptyRgn same!

.FrameRgn same!
PaintRgn same!
EraseRgn same!
InvertRgn same!
FillRgn same!

ScrollRcet same!
CopyBits PaintPixels!

OpenPicture same
PicComment same
OosePicture same
DrawPicture same
KillPieture same

OpenPoly same!
OosePoly same!

QuickDraw IT ERS August II, 1986 Page C-3

KillPoly same!
OffsetPoly same!

FramePoly same!
PaintPoly same!
ErasePoly same!
InvertPoly same!
FillPoly same!

AddPt same!
SubPt same!
SetPt same!
EqualPt same!
LocalToGlobal same!
GlobalToLocal same!

Random same!
GetPixel simil ,ar.
StuffHex unlikely
ScalePt same!
MapPt same!
MapRect same!
MapRgn same!
MapPoly same!

SetStdProcs same!- StdText simil ,ar.
StdLine similar!
StdRect simil ,ar.
StdRRect simil ,ar.
StdOval similar!
StdArc simil ,ar.
StdPoly simi! ,ar.
StdRgn similar!
StdBits similar!
StdComment simil ,ar.
StdTxMeas similar!
StdGetPic similar!
StdPutPic similar!

QuickDraw II ERS August II, 1986 Page C-4

Fonts And Text In OuickDraw II '

£!.\~~]1)@]~t! [j) 1J@ @1!J~~rk;:W:r~r~"!7 0] ~[fj®.

~©nU~ £!.\1)@] 1J@Z!U O[ft)

@~O©~[D)[f~~'l 00 ~

1J@ [ID@~@)JW W'J1~~@ W'J[}u~T@ IT'J®

1P@7~~1) fXl~~ W'Jrr~U 1ID~~©1@

Version 00.01 August 12, 1986 Bennet Marks

nralu etOatn snraluu etOatn snralu etaOln snralu etOatn
.~m ~~mm~~m QJ
'hrdlu, etoein shrdluu el,oein shrdlu eteoin shrdlu etoein
rdlu etoein shrdluu etoein shrdlu eteoin shrdlu etoein shrdlu et
diu etooin shrdluu etooin shrdlu etooin shrdlu etooin shrdlu etooin shr
rdlu etoein shrdluu etoein shrdlu eteoin shrdlu etoein shrdlu et
1rdlu "tooin shrdlllil "tooin shrdlll "tooin shrdlll "tooin shrdlll "t
rdlu etoein shrdluu etoein ShfJ1U eteoin shrdlu etoein shrdlu et
rdTu etoain slirdTuu etoain slir'aTu etaoin slirdTu etoain slirdTu e
rdlu etoain'shrdluu etoain shrdlu etaain shrdlu etoain shrdlu et
:-dlu etoain shrdluu etoain shrdlu et80in shrdlu etoain shrdlu etoe.
DDnlU:m =aaDllgllrl IDnnlUOlJOlJ =aaDlilDUIl IDnnlUOlJ =allaDgoo IDDl11lUOlJ =aaDllgoo
feU"., etoe\-'" sfwdlu.t6 Uoc;ai", ~fa,.fdI1A etaoin S1.fdI\I. etoA4..n ShfcU\I.

Apple Confidential

Fonts And Text In QuickDraw II

[F@ffl)~~ ~[JU@] jj@~ 0]) @1!lO©JfQ)1~W 00

OO@wO@j~©JJ [X)j~1©J17

Version 00.00 July 15. 1986 Bennet Marks
.First Draft

Version 00.01 August 12. 1986 Bennet Marks
fontlO field of Cortland Font Record renamed family

August 12. 1986 Apple Confidential Revision History

Fonts And Text In OuickDraw II

~®tfi)U~ C\~~ iJ@~ Om @3DO©J!])nlW 00
iJGl[f)O@ @j ©(1)~@1U~~

1. Introduction 0·1
1.1 About This Document 0·1
1.2 Abstract 0·1

2. Font Definition 0·2
2.1 Overview 0·2
2.2 The Cortland Font Definition 0·3
2.3 The Cortland Header Fields 0-4
2.4 The MF Part Of A Cortland Font 0·5

3. Characters, Fonts, And Drawing 0·6
3.1 Characters 0·6
3.2 Fonts 0-9

3.2.1 The Font Rectangle 0-9
3.2.2 Other Fields In The Font 0-11
3.2.3 The Font Strike 0-12
3.2.4 Defined Vs. Undefined Characters 0·13
3.2.5 The Location Table 0·14
3.2.6 The OffsetlWidth Table 0-15

3.3> Character Backgrounds And The Font Bounds Rectangle 0·17
3.3.1 Character Backgrounds 0-17
3.3.2 The Font Bounds Rectangle 0-18

3.4 Orawing, And The Text Buffer 0·20

August 12, 1985 Apple Confidential page O-j

Fonts And Text In QuickOraw II

4. Controlling Text Display
4.1 Character Spacing:

SetCharExtra, GetCharExtra, SetSpaceExtra.
GetSpaceExtra

4.2 Style Modifications:
SetTextFace, GetTextFace
4.2.1 Bolding
4.2.2 Underlining

4.3 Other Options:
SetFontFlags, GetFontFJags

5. Discussion Of The Main Calls
5.1 Text Drawing Calls:

OrawChar, OrawText, Ora:-vString,
OrawCString

5.2 Text Width Calls:
CharWidth, TextWidth, StringWidth,
CStringWidth

5.3 Text Bounds Calls:
CharBounds, TextBounds, StringBounds,
CStringBounds

5.4 Managing The Text Buffer:
SetBufStuff, ForceBufStuff, SaveBufOims,
RestoreBufOims
5.4.1 The Whole Text Buffer Catalog
5.4.2 Sizing The Buffers
5.4.3 Saving And Restoring The Buffer Sizes

5.5 Font Information:
GetF:ontlnfo, GetFontGlobals, GetFGSize

0·21
0·21

0·22

0·22
0·22
0·23

0·23
0·23

0·24

0·24

0·25

0·26
0·27
0·29
0·30

August 12, 1986 Apple Confidential page D-ii

Fonts And Text In OuickDraw II

by Bennet Marks

This document contains a detailed description of the handling of text and
fonts in QuickDraw II, including the definition of a Cortland font. It is
intended as a supplement to the QuickDraw II ERS. Most application
writers, most of the time, will not need any more information than is
included in that ERS. But if you are designing a font, writing a font editor.
making use of unusual fonts or an usually large variety of fonts. or
otherwise mucking about in the seemingly foggy areas of QD II text
display, this document may be helpful. More casual readers may want to
browse it, to see if it answers any questions they may have lurking in the
backs of their minds. or reveals any powerful or secret functionality
which may tum out to be useful. Or not

This represents the current state of the world. as of QuickDraw II Version
01.01. Any discrepencies from V.01.00 (which was never well-documented
anyway) will be noted.

Some conventions: (1) references to any field of the Cortland font record
are boldfaced. (2) the word·"strings" is often used to mean ·strings. text
blocks. or Cstrings". This should be clear from context.

Criticisms, complements. questions, and comments to Bennet ~arks. MS
22-X, x6245. Thanks.

In our treatment of text drawing and text measurement. we have stayed

August 12. 1986 Apple Confidential page 0- 1

..
Fo"nts And Text In OuickDraw II

very close to the Macintosh model. The Cortland font definition is very
similar to Macintosh's; a simple conversion algorithm allows us to use any
font developed for the Mac. Most Macintosh OuickDraw text calls are
duplicated precisely in QuickDraw II. Any differences are due to the
following:

(1) we have added some information to the beginning of the font
definition;

(2) we do not have resources, so we are not planning on a full-blown Font
Manager in the Macintosh style. This required some changes in the 00 "
calls;

(3) we have added some calls· notably "'bounding box'" calls (TextBounds
and its siblings) - that are missing from Macintosh OuickDraw;

(4) we have added calls - DrawCString, CStringWidth, and the like· to
handle the Cstring data type (a sequence of characters terminated by a 0
byte);

(5) some features (such as scaling, italicizing, shadowing, and outlining
text) were not implemented in our ROM. They may be added in RAM latter.

References: see Inside Macintosh, chapters 6 and 7, and Macintosh
Revealed, chap. 8

A Cortland foot consists of a variable-length header, followed by a
Macintosh font record (we'll refer to this embedded Mac font as the ME
Q.aIi of the Cortland font).

The header is included to compensate for Cortland's lack of resources and
a complete Font Manager; it is of variable length to allow us to add extra
information at a later date.

August 12, 1986 Apple Confidential page D- 2

Fonts And Text In OuickDraw II

The MF part is exactly like a true Macintosh font, except for one thing
the IIgender" of integers. Mac's 68000 (as well as other processors in that
family) stores integers with the high byte first (Le., high byte at lower
memory location); Cortland's 65816 stores them with low byte first. So in
converting a Mac font to a Cortland font. we must swap the upper and
lower byte of each integer. This does not apply to the font strike
(bltlmage), which can be used as is.

CortFontRec 11II

RECCR)

offsetToMF:
family:
style:
size:
version:
fbrExtent:

INTEGER; {offset in words to Mac Font part} .
INTEGER; {font family number - previously fontlD}
INTEGER; {style font was designed with}
INTEGER; {point size}
INTEGER; {aD II version number}
INTEGER; {font bounds rectangle extent}

{additional fields may be present here}

{Mac font part follows:}

fontType :
firstChar:
lastChar:
widMax:

.kernMax:
nDescent:
fRectWidth :
fRectHeight :
owTLoc:
ascent :
descent:
leading:
rowWords:

.{bitlmage :
{font strike}

August 12, 1986

INTEGER; {font type}
INTEGER; {ASCII code of first defined character}
INTEGER; {ASCII code of last defined character}
INTEGER; {maximum character width}
INTEGER; {maximum leftward kern}
INTEGER; . {negative of descent}
INTEGER; {width of font rectangle}
INTEGER; {font height}
INTEGER; {offset fn words to offsetlwidth table}
INTEGER; {font ascent}
INTEGER; {font descent}
INTEGER; {leading}
INTEGER; {width of font strike in words}

ARRAY[1 .. rowWords,1 .. fRectHeight] of WORD;}

Apple Confidential page D- 3

Fonts And Text In CuickDraw II

{locTable : ARRAY[firstChar.. lastChar+2] of INTEGER;
{location table}

{owTable: ARRAY[firstChar.. lastChar+2] of INTEGER;
{offset/width table}

END;

~~ irlm~ ©~:ruD~~~ 1F~:na 1J:{)~@)~1 lFD(B~~~

We have included some information about the font in the header. Fonts
designed at a later time may include additional information. which could
be utilized by later versions of aD II; this is why the header is of variable
length. For upward and downward compatability of CD II and Cortland
fonts. two fields are particularly useful:

offsetToMF· this is the offset. in words. from this field to the
Macintosh font (MF) part included in the Cortland font (specifically. to the
fontType field). The header is therefore 2 • offsetToMF bytes long. In
aD II. V.01.01, offsetToMF III 6; the header is 12 bytes. Future fonts may
have longer headers. containing font information that can be utilized by
future versions of CD II. To assure that these improved fonts can be used
by older versions of aD II. the offsetToMF field provides a reliable jump
over this extra font information to the start of the Mac part of the font.
Of course. an older CD II will not be able to make use of new header fields
added since it was implemented; but at least it will be able to find the
information it can use.

version· this is the version number of the aD II for which the font was
designed. Later versions of aD II may. as mentioned. be able to utilize
extra information which is included in later fonts; by checking this field,
they can avoid trying to find and use information not included in an older
font. (Presumably a newer aD II. alerted by the version number to the lack
of such information. would use some default or calculated values.)

Examples of extra information that may be included in later fonts and used
by later versions of aD II are: thickness of underline. slope of italicized
letters. "smearing extent" of boldface. and the like (in Mac. these are
determined by the Font Manager).

The other header fields are:

August 12. 1986 Apple Confidential page D- 4

Fonts And Text In Ouickoraw II

family - an integer identifying the font. irrespective of size or style.
This can be thought of as corresponding to the fonrs name - Courier,
Geneva. etc. Presumably we will use the same numbers as Mac. More
detail to follow at some later date.

~ In previous versions of this document•. this field was called fontiO.

This conflicted with the grafport field fontlC, a longword that contains
this field, the font style, and the point size. The grafport won.

style - this indicates the style the font was designed with; in other
words. the style that the font "thinks" it is. Application writers and/or
graphic designers may design "pre-italicized" fonts, bolded fonts, or the
like, for reasons of aesthetics or time performance. When 00 II is asked
to apply a certain style when drawing a character or string, it first checks
this field. If the field indicates that the requested style is already part of
the font. the drawing call will not apply the styling algorithm. This
prevents. say. pre-italicized fonts from getting re-italicized. (See 4.2
for definition of style word.)

size - this is the point size of the font.

fbrExtent - font bounds rectangle extent. The maximum horizontal
distance. in pixels. from the character origin to any foreground.Q!
background pixel of any character in the font. This field was added to
Ouickoraw II as of V.01.01. (see 3.3.2)

A Mac font, or in this case the Macintosh font part of a'Cortland font.
consists of 4 sections:

(1) a fixed-length record containing general information. such as the font
height, the maximum character width. etc.

(2) the font strike (named bitlmage in the font record definition), which
is a pixelmap containing lhe image of every character defined in the font,
strung one after another. The pixelmap is in 1 bit/pixel form. Its width,
measured in words, is given by the rowWords field of the font record; its

August' 2, 1986 Apple Confidential page 0- 5

Fonts And Text In QuickDraw II

height, measured in pixels. is given by the "fRectHelght.

(3) the location table (locTable), an array of integers which indicates for
ea~h defined character where its image in the font strike begins.

(4) the offseVwidth table (owTable), an array of integers. For each
character, the low byte of its entry in the offseVwidth table (the
"character offsetj indicates how the character image"to be drawn should
be positioned with respect to the current pen location (using a somewhat
arcane encoding which will be detailed later - see 3.2.6); the high byte
indicates how far the pen should be advanced after the character is drawn
("character widthj.

This table is also used to identify a font's "missing characters", that is,
characters not defined in the font. An owTable value of -1 ($FFFF) marks
a missing character, which must be handled specially by the text calls.
More on this below (see 3.2.4).

A detailed description of the meanings and uses of these various fields and
arrays will be given below, with a general discussion of characters, fonts,
and drawing.-

This section largely duplicates similar chapters of Inside Macintosh and
Macintosh Reyealed. Some differences of the Cortland scheme are
presented, and some information that was unclear to me in my first few
(actually, several) readings of the Macintosh documentation is emphasized.
It is devoutly to be hoped that this will be helpful to those who come after
me (and I mean that in the most non-violent sense of the phrase).

A character image is a rectangular array of bits. representing pixels. The
"on" (1) bits are called the character foreground pixels.

By convention, no "padding" is included on the left or the right of the
character image; that is, neither the left nor right column is blank (all
O's). (When characters are actually drawn, the space between them is

August 12, 1986 Apple Confidential page D- 6

Fonts And Text In OuickDraw II

determined by information contained in the font tables and elsewhere; this
is discussed below.)

There is no such convention for the top and bottom rows of a character
image; they may be blank.

The number of rows in the character image (including any blank rows) is
called the character height. Every character in a font must have the same
height (which is why blank top or bottom rows are sometimes necessary).
This is called the font height, or fReetHeight in the font record.

The number of columns in a character image is called the character image
width, or just the image width. Note that a character can have an image
width of O. For example, the space has a 0 image width; its "character
image" consists of no pixels at all. (The character height, in such a case,
is determined by the font that the space character is part of.)

The character rectangle is a rectangle which er:'closes the character image.
Its width is the image width of the character, which may vary from·
character to character in a font; its height is the character height, which
is the same for all characters in a font.

Each character has a number associated with it called the character width,
found in the offset/width table. This is the number of pixels the pen
position is to be advanced after the character is drawn. This is different
from the image width, and the distinction is very important. For example,
the space character has 0 image width, but some positive character width,
which determines the size of the space. Some characters have a non·zero

.image width but a 0 character width· one example is an umlaut, which is
meant to be typed over a vowel. The umlaut is drawn first, then the vowel
is drawn with the same pen location. Characters with 0 character width
are called, somewhat morbidly, dead characters.

Also associated with every character in a font is its baseline and its
character origin. The baseline is a horizontal line which separates the
image into two sets of rows, one set above and one below. (Remember that
in OuickDraw II, as in OuickDraw, horizontal and vertical lines fall
between pixels, rather than running through them.) The position of the
baseline depends on the fonfs ascent and descent fields; it is chosen so
that there are ascent rows above it and descent rows below. The

August 12,1986 Apple Confidential page D· 7

..
Fonts Arld Text In OuickDraw II

baseline will be in the same horizontal position for every character in the
font. Any foreground pixels of a character image that lie below the
baseline are collectively called the characte(s descender. Most
characters don't have a descander, but, in an average font, characters like
"q'" and .y. do.

The ascent line is the horizontal line just above the top row of a
character, and the descent line is the line just below the bottom row.
They will also be the same for every character in the font.

For each character, its character origin is a point on the baseline which is
used to position the character for drawing. This point may be between
pixels of the character image, to the right of them, or to the left. (Here,
note that points lie between pixels, not on them.) Its location relative to
the character image can be calculated by the character offset in the
offset/width table, as will be detailed later (3.2.6 again). When the
character is drawn, it is placed in the destination pixelmap so that its
character origin coincides with the current pen location.

For many letters, the character origin is located on the left edge of the
character image, so that, when the character is drawn, its leftmost
foreground pixels fall just to the right of the pen. Sometimes the
character origin is between pixels of the character image (or, rarely and
perversely, entirely to the right of the image). When such a character is
drawn, some of its pixels will fall to the left of the pen position. This is
called kerning (to the left). In such a case, the distance in pixels from the
character origin to the left edge of the character is called the character's
leftward kern.

When character image pixels fall to the right of the new'pen position after
the character is drawn, the character is said to kern to the right. For
various reasons this is not nearly so significant or interesting as kerning
to the left. Kerning in either direction can cause letters to overlap each
other. (See Figures 1 and 2 on next page.)

August 12, 1986 Apple Confidential page D- 8

Fonts And Text In OlJickOraw II

ucent line

charecter /
origin

font
character height

~I--li--
rectangle

~.....--t~.........- bese line

j--+......j-j-+--l--il'\. next cherecter origin
.......;.....;.....;...............I........l._ descent line J

'- imege width...J

character - no kern1 ng

Figure 1

font
height

,..... character width~
-- e3cent line

"""-+--+--4
1
_' -i

-1--1-'1--1 charecteri rectengle

I
i

........;........;.......-411~ be3e line
---l-l-f-'-i!l: '\. next cherecter orinincherecter i i J ..,

origin ! de3cent line
""'-- imege widthJ

character - kerns left

Figure 2

Imagine all the defined characters of a font drawn so that their character
origins coincide. The result would be a black mess of foreground pixels.

August 12, 1986 Apple Confidential page D- 9

Fonts And Text In QuickDraw II 0

The smallest rectangle completely enclosing this mess is called the tu:u
rectangle. (This is different from the font bounds rectangle. defined in
3.3.2.)

font
rectangle

character -A....
origin

--- ascent line

base line

.....................................- descent line

ascent

descent

font rectangle (sim.uleted)

Figure 3

Several fields of the font measure aspects of the font rectangle:

kernMax - this is the distance in pixels from the font rectangle's
(common) character origin to the left edge of the font rectangle. If the left
.edge of the font rectangle is to the left of the character origin - that is, if
any character in the font actually kerns to the left - kernMax is
represented as a negative number. If the character origin lies on the left
edge of the font rectangle, kernMax is O•

.[Every Picture Tells A Story. Sometimes Fictional - Part 1: it is difficult
to read the "sense" of a quantity represented by a distance in a picture. In
Figure 3, kernMax IIlI -1: but ascent III +7 and descent III +2]

That takes care of most fonts. However, it is quite possible that in some
fonts the left edge of the font rectangle is 1 or more pixels to the right of
the character origin. In this case, it seems appropriate - at least from a

f

mathematician's point of view - to assign kernMax a positive value, even
. though this bends the terminology a bit: people do not usually say of a

character that, for example, leaves two columns of blank pixels between
the pen position and its image that it "kerns to the left" 2 pixels, or -2
pixels, or anything at all. (Not that the subject comes up at most dinner

August 12,1986 Apple Confidential page 0- 10

Fonts And Text In OuickDraw II

parties, anyway.) We will adopt this convention, permitting positive
values for kernMax, at least for now.

fRectWldth • the width in pixels of the font rectangle. Note that t,his
may be more than the maximum character image width, because the font
rectangle's left and right extremes may come from different characters.

fRectHelght - the height in pixels of the font rectangle.

ascent - the number of pixel rows above the (common) baseline in the
font rectangle (or, in any character).

descent - the number of pixel rows below the baseline in the font
rectangle (or, in any character). Note fRectHelght IIIl ascent + descent.

nDescent - negative of descent.

(An obscure aside: for typical fonts· those in which the font rectangle at
least touches its character origin - ascent and descent will be
non-negative, and kernMax and nDescent will be non-positive. But
strange fonts can be imagined - or, worst yet, designed - in which these
restrictions can be dropped. Ideally, QuickDraw II will handle these just
as well. I may document these cases later, for the curious and/or
Obsessive.).

Look for the return of the font rectangle when we get into the
offset/width table of the font! Coming soon to a raster near you! Just
when you thought it was safe to go back into the drawing space again

fontType - this is left over from Mac, where $9000 indicates a
proportional font and $8000 a fixed-width font. QD II ignores this field.

firstChar - ASCII code of the first defined character in the font. See
3.2.4.

lastChar - ASCII code of the last defined character of the font. See 3.2.4.

widMax - the maximum character width (pen displacement) of any

August 12, 1986 Apple Confidential page D- 11

Fonts And Text In OuickDraw II

character in the font, measured in pixels.

owTLoc • the offset, in words, from this field to the font offset/width
table (owTable).

By adding 2 III owTLoc to the memory address of this field, you get a
pointer to the owTable. In order to get a pointer to the locTable, you
must subtract 2 III (lastChar· firstChar + 3) from theowTable pointer.
There's no locTLoc field in the font record. (Why not? Don't ask me, I
only work here.)

leading· the recommended number of blank pixel rows between the
descent row of one line of text and the ascent row of the next.
Applications may use this or not, as they please.

rowWords· the width of the font strike, in words. See below.

The font strike (called bitlmage in the font definition) is a 1 bit/pixel
pixelmap consisting of the character images of every defined character in
the font, placed sequentially in order of increasing ASCII code from
firstChar to lastChar+1 (we'll get to that "+1" business in a minute·
see 3.2.5). The character images in the font strike abut each other; no
blank columns are left between them. Since all the characters of a font
have the same height, the font strike is just one long pixelmap with no
jumps or undefined stretches, and with a height of fRectHeight. The
strike is padded on the right, if necessary, with enough extra pixels (on
'each row) to make the row width a multiple of 16, that is, an integral
number of words. This width, measured in words, is found in the
rowWords field of the font record. (See Figure 4 on next page.)

August 12, 1986 Apple Confidential page D- 12

Fonts And 1ext In au~Draw II

_--------------row ..-Idth........-------------

r '::j''1!:M' '··Ill'7· : ~. I
tont • , :r, tn

II r::-:;iF=-1
height c: •• ...!p·fi ; .F..

1::::::::-':'" ..po ., .::: eft • .:.....

-~--.. ~ ~........____---'''. .r--!.n'-----.j.--

Font Strite

Figure 4

Not every possible ASCII code must have a character image in the font
strike. The font may leave some characters undefined; these are called
missing characters (although "undefined characters" is good enough for
me). Every character with a code less than firstChar or greater than
lastChar.1 is undefined. There may be other undefined characters as
well. The offsetIWidth table (owTable) has an entry for every code from
firstChar to lastChar.2, inclusive (we're up to ".2" already, and I
haven't even told you about ".1 "1!1 Patience, pati~nce.). If a character's
entry in the offsetIWidth table is·1 ($FFFF), then the character is
undefined (~missingj.

Character code lastChar.1 is a special case. Immediately following
lastChar in the font strike is a character known as the missing symbol,
which is to be used in place of any missing character (it is exactly
because of the confusion of these two phrases that I prefer "undefined
character-e). This character must be present in the font strike. It has
entries in the locTable and the owtable. and its entry in the owTable
must not be -1. For all purposes the missing symbol is a defined character
with ASCII code lastChaf+1. In many fonts the missing symbol is a
hollow rectangle; in the current ROM system font. it's a white-on-black

mi,sing
,ym..bol

August 12, 1986 Apple Confidential page D- 13

..
Fonts And Text In OuickDraw II

question mark.

Whenever the 00 II text-handling routines encounter a missing character
less than flrstChar, greater than lastChar+1, or having an owTable
entry of -1 - they immediately substitute the missing symbol for the
character, using the missing symbors character image, 10cTabie entry,
and owTable entry wherever needed.

The location table (locTable) is' an array of integers with an entry for
each character code from firstChar to lastChar+2. It is used to find
character images in the font strike. For each defined character, its entry
gives the distance in pixels from the beginning of the font strike to the
beginning of the character's image in the font strike ("beginning", here,
means left edge). This indicates where the character image starts. To see
where it ends, take the next locTable entry (the beginning of the next
character image), and subtract 1. Since the character images abut each
other, this will give you the precise limits of the character image. The
image width of'a defined character with code C is locTable[C+1]
10cTable[e]. This may be O.

In order for this scheme to work, two conditions must hold:

(1) the 10cTabie entry for an undefined character must be the same as
the entry for the next defined character. This prevents undefined
characters, which have no image in the strike, from interfering with the
hunt for images of defined characters.

Note that there always will be a "next defined character", because the
missing symbol, which serves as a defined character, is tacked on at the
end of the strike.

(2) in order to get the character image for the missing symbol, there has
to be an entry in the locTable following the missing symbol's. For this
reason locTable[lastChar+2] is included, and is set equal to the length of
the font strike in pixels, ignoring the "padding to'a word boundary" that is
added to the font strike. (Told you we'd get to lastChar+21)

August 12, 1986 Apple Confidential page D- 14

Fonts And Text In OuickDraw II

The offseVwidth table (owTable) is an array of integers with an entry
for each character code. from firstChar to lastChar+2. If a character's
entry is -1, the character is undefined ("missing").

Otherwise the entry's low and high bytes are the character width and
character offset, respectively. Both are interpreted as numbers in the
range 0-254 (255 is ruled out to avoid the case where both bytes are 255,
giving us an entry of -1, which would mark a missing character).

The character offset is used to calculate the position of character origin
relativ~ to the image, in the following way: the offset is added to the
fonfs kernMax. The result is the (horizontal) distance in pixels from the
character origin to the left edge of the image. If the result is negative,
then the origin is to the right of the image's left edge (the character kerns
leftward). If the result is positive, the origin is to the left of the image's
left edge. (A result of 0 means that the character origin sits on the left
edge of the image). Since we already know that the character origin must
lie on the baseline (whose position is determined from ascent and
descent), this locates the origin precisely.

If you draw the font rectangle, and look at a particular character's
character rectangle within it, the character offset is seen to be the
offset,in pixels, between the left edge of the font rectangle and the left
edge of the character rectangle. Hence the name. (See Figure 5 on next
page).

August 12, 1986 Apple Confidential page D- 15

Fonts And Text In QuickDraw II

font
rectengle

ch8l'Elcter
origin """'"'

ch8l'ecter
offset

character rectangle in font rectangle

Figure 5

The low byte of the offseVwidth table entry gives the character width,
which is the distance in pixels the pen should be advanced (to the right·
my apologies to the Hebrew scholars among us) after the character is
drawn. In applications, this distance can be affected by a number of calls,
particularly SetCharExtra and SetSpaceEXtra. There: is, however, a general
rule in CD II, which can be simply stated as: if you're dead, you stay dead.
Translation: any character whose character width (from the offset/width
table, unmodified) is 0 will not have that width changed by chExtra,
spExtra, style modifications, non-proportionality, or any other effect.
We assume that characters are given 0 width only for some very good
reason, and we're not going to mess with it.

~ ©&~~a~m: SltroW m~m~~a@[lU @(l' C&l@!J'JillD>~!I'\)!l~~~1.) CC)~

lJ\'li)@~D~a@!l~O@~ 1la:l~ ~~~l){t Oiro Sl (§h!l1!l@~~T w3~n~ @?
O~~~ nDillDn ©@J' ~~~~J' nlh&J'il ~~ wan~ ~~ Ih&W@t

w~lQ nlh@ @)1mw3J'i)~ (l'@)tYr!3~~~D Sl~@) !)1@ [lU@n !l3~@~!l.

This includes chExtr.a, spExtra, style mods, etc. CD II does not check for
this condition. Irs up to you. Good luck.

The lastChar+2 entry of the offset/width table is set to ·1.

August 12, 1986 Apple Confidential page D- 16

Fonts And Text In OutckDraw II

~$j CC~Jll:rw1il~:r ~1;~rotJJ'Jtl~ ~~tJ nJ~ ~~J'Jl

®~JDntJ~ ~'1!ln~~~~

As mentioned before, a character's foreground consists of all the 1 pixels
in its image. You would think that the background consists of all the O's in
the image. Not quite. In 00 II, we extend the background on the left to
include any pixels to the left of the image's left edge, but to the right of
the character origin (and between the ascent and descent lines). On the
other side, we extend the background on the right to include any pixels
(between ascent and descent) to the right of the image's right edge, but to
the left of the character origin of the next character (that is, to the left
of the new pen position). Any new pixels added in this way are considered
background pixels.

(A clearer way to say this might be: the foreground of a character
consists of all 1 bits in its character image. The background consists of
all 0 bits in the image and all non-foreground pixels that are to the right
of the character origin, to the left of the subsequent character origin
[III character origin + character width], above the descent line, and below
the ascent line.)

Of course, in some cases there is no extending to be done. If the character
kerns to the left, then no left extension is necessary; if i.t kerns to the
right, then no extension to the right is needed.

'This is a very natural definition of background. If you're going to draw,
say, a green character with a red background (tacky, except during
Christmas), the red background will usually (that is, for characters that
don't stretch entirely from the old pen position to the new) extend a little
to the left and/or right of the character's image. This is what people
generally want -for a background. But, in addition, when characters do
kern, the background extends as ~ar left or right as the kerning, so the
kerned part of the character doesn't jut out into never- never land.

This brings us to the definition of the character bounds rectangle: it is
the smallest rectangle enclosing all the foreground and background pixels
of a character. It may be somewhat larger than the character rectangle,

August 12, 1986 Apple Confidential page D- 17

Fonts And Text In QuickOraw II

which encloses the image, because the bounds rectangle takes into account
the character width (pen positions) as well as the image width. The width
of a character's bounds rectangle is called the character bounds wid1b.

cherecter~ width
!

character
origin

.,cent line

i--i--i--r-- character bounds rectangle

It-II-- character rechmgle

--+--I-.........~~ base line
'\. next character origin

..........IIIIIIIIIIIIiIIIIiIIIIIIbu....- descent line

cherecter bounds rectengl e

Figure 6

QD II includes calls for measuring character bounds rectangles, and
corresponding routines for strings, Cstrings, and text.

In order to get some new, useful measures for the '"width" of a font, we
define the font bounds rectangle. Imagine that, for all of a font's
characters, the characters' bounds rectangles were drawn so that all the

'character origins coincided. The resulting rectangle (more precisely, the
rectangle which' is the union of a.1I these rectangles) is called the fimt
bounds rectangle. This rectangle includes all pixels, foreground and.
background, of every character in the font. (Consequently, it may be bigger
than the font rectangle, which is only guaranteed to include all the
foreground pixelS.)

We define: fbrWidth to be the width of the font 'bounds rectangle;
fbrBightExtent to be the distance from the (common) character origin to
the right edge of the font bounds rectangle; and fbrLeftExtent be the
distance from the origin to the left edge (all distances measured in pixels.
and as positive numbers). Finally, let fbrExtent be the maximum of

August 12, 1986 Apple Confidential page D- 18

Fonts And Text In QuickDraw II

fbrleftExtent and fbrRightExtent. (fbrWidth plays no role right nowI but
seemed worth defining anyway.)

font
bounds

rectangle

fbrLeftE xtent

tf-III-- font
-+-+--11I rectangle

base line

fbrRightExtent

ascent

descent

font bounds recteangl e

Figure 7

fbrExtent may seem like a fairly obscure number, but it has a natural
interpretation. It is the furthest possible horizontal distance from the
pen location to (the far edge of) any pixel that can be altered by drawing
any character in the font. In many ways it is a more precise measure of
the width of a font than widMax or fRectWidth.

[Every Picture Tells A Story, Sometimes Fictional- Part 2: it would seem
from Figure 7 that fbrLeftExtent and kemMax are the same, or rather that

. fbrLeftExtent • -kemMax. This is true if and only if kernMax is zero or
negative; if kernMax is positive (that is, if every character image starts
at least 1 pixel to the right of the character o'rigin) then fbrLeftExtent is
zero. This makes fbrleftExtent easy to calculate. It also looks like
fbrRightExtent is the same as widMax; but if any character kems to the
right beyond the reach of widMax, then fbrRightExtent will be bigger than
widMax. This makes fbrRightExtent a little more slippery.]

II$' The fbrExtent field was added to the Cortland font definition in
QuickDraw II as of V.01.01. It's needed for the safe handling of the text
buffer. It is not included in the Macintosh font defition. If you are
converting a Mac font to the Cortland, fbrExtent can be calculated by

August 12, .1986 Apple Confidential page D- 19

..
Fonts And Text In OutckDraw II

using the CharBounds call on character codes 0·255 and doing some simple
arithmetic (the CharBounds call itself doesn't need a valid value for
fbrExtent, so it can be called for the calculation). This only has to be
done once for each font.

Whenever a character or string is to be drawn, it is first drawn into the
text buffer, a 1 bit/pixel pixelmap reserved for the private use of the CD "
text-drawing calls. For strings, only those characters that have a chance
of making it into the destination pixelmap (we will make this precise
later; see 5.4.1) are actually drawn; the others, to the left and the right,
only contribute to the cumulative pen displacement. So there is no reason
for an application to try to "pre-clip" characters out of long strings,
unless it has a uniquely fast way of doing so.

The text buffer starts out empty at the beginning of each drawing call.
Successive characters of a string are drawn into it, with an internal "text
buffer pen" incremented by the character width each time. Regardless of
the ultimate text mode (txMode in the grafport), characters are drawn
into the text buffer in OR mode. So characters that kern into each other do
not interfere destructively. (For this reason, with certain text modes like
SrcXor you can get different results if you put up a string one character at
a'time, using DrawChar, than if you put up the whole string with
DrawString. In the DrawChar case, overlapping characters may cancel out
some pixelS.)

.Once the character or string is safely in the text buffer, any requested
style mods (underlining, bolding, etc.) are applied to it. Then the text
buffer is transferred to the destination. Individual bits are replaced with

, 2 or 4 bits, depending on the "chunkiness" of the destination; the bit
patterns used are the grafport's fgColor for the 1 (foreground) bits,
bgColor for the 0 (background) bits. During the transfer, the text image
is clipped to the current clipping region. The surviving pixels are
combined with the destination's pixels, according to whatever text moqe
is in use. If and when the result makes it to the screen, the bit patterns
will be translated into colored pixels according to the current color
map(s).

August 12, 1986 Apple Confidential page D- 20

Fonts And Text In QuickDraw II

Various CD II calls affect text display. Generally they set some field of
the current grafport which is used in the text-drawing process. Matching
the "set" calls are corresponding "get" calls.

SetForeColor, GetForeColor, SetBackColor. GetBackColor. SetTextMode, and
GetTextMode deal with the grafport fields fgColor. bgColor. and
txMode. whose effects were described just above (3.4). The other display
control calls deal with:

SetCharExtra. GetCharExtra. SetSpaceExtra. G~tSpaceExtra

These calls set andlor get two fields in the grafport. chExtra and
spExtra. which can alter the character widths (pen displacement) when
characters are drawn. Each is a fixed-point number. with a one-word
integer part and a one-word fractional part.

chExtra is added to the character width of each character as it is drawn.
except for "dead characters" - as mentioned above. character widths of 0
are left that way.

Adding chExtra to a character width will. of course. give us character
origin positions with a fractional part. During any text-drawing call. CO

, II keeps track of this fractional part and. when drawing a character.
rounds its character origin position to the nearest integer (1/2 - that is.
$8000· is rounded up). The fractional part is not remembered after the
call is completed; each drawing call starts off fresh.

chExtra (which is not present in Mac) was included because some fonts
that look fine in 320 mode appear too closely spaced in 640 mode; putting
an extra pixel between letters seems to help in these cases.

spExtra works the same way, but it is only applied to the space character.
It is commonly used to help in justifying text. Note that "space
character". here, means ASCII $20 and nothing else. In particular. the
"non-breaking space" included in many fonts is unaffected by the spExtra

August 12. 1986 Apple Confidential page D- 21

Fonts And Text In QuickDraw II

field. apExtra is cumulative with chExtra.

These values are set by SetCharExtra and SetSpaceExtra (and can be
fetched by GetCharExtra and GetSpaceExtra). In theory, the application can
set chExtra and spExtra to any fixed-point value, even negative ones.
However. as mentioned before. any values that cause a character to have a
character width of less than 0 or greater than 255 pixels will cause no
end of trouble. W@3J lbSl~ m:ro ~!lm~a

SetTextFace, GetTextFace

These calls set and get the txFace fierd of the grafport, which 'determines
the style to be applied to the text. In the ROM, only two bits are defined:

bit 0: bold
bit 2: underline

If one of these bits is set ami the corresponding bit of the style field of
the current font is nS21 set, then the appropriate style modification is
applied to the text (see style under 2.3). The next two sections describe
the current implementation of the style mods.

As currently implemented. bolding has the following effect on characters
and strings:

(1) characters are spaced further apart: 1 pixel is added to every
character width (except for dead characters).

(2) each character is drawn twice, once in its expected position, then
again 1 pixel to the right. The two images are ORed together. (This
transformation is actually applied to the entire text buffer at once, after
all the characters have been drawn into it. Saves time, that way.)

August 12, 1986 Apple Confidential page 0- 22

Fonts And TJxt In QuickDraw II

If the font has a descent greater than or equal to 2, then a horizontal line,
1 pixel thick, is drawn 2 pixels under the baseline, extending the length of

.the character(s) to be drawn. This "length" takes into account both the
starting and ending pen locations and any kerning to the left or the right.
The underline is not necessarily continuous; it "shies away" from
descenders. Specifically, a pixel of the line is omitted if there is a
foreground pixel of the text image immediately above, below, to the right,
or to the left of it.

If the font (jescent is less than 2, no underlining is done, regardless of the
value of txFace.

When both bolding and underlining are called for, bolding is done first (it
~ make a difference).

SetFontFlags, GetFontFlags

The ·fontFlags field of the grafport is set by SetFontFlags and fetched by
GetFontAags. In the current ROM, only the last bit (bii 0) of this word is
defined. If it is set, then the font is uSeQ as a non-proportipnal font
every character is given the same character width, namely widMax (the
maximum character width field from the font definition).. Well, almost
every character - as usual, characters with character width 0 are
exempted.

When non-proportionality is in effect, chExtra, spExtra, style
modifications, etc., are applied to the character width afmt it has been
set to widMax.

All other bits of this field are reserved, and should be set to O.

DrawChar, DrawText, DrawString, DrawCString

August 12, 1986 Apple Confidential page D- 23

Fonts And Text In OuickOraw II

The specified character or string of characters is drawn, using all the
current information· font, style, mode, etc. The current pen position is
used as the character origin of the first character. The pen is advanced by
the sum of the character widths. Note that, although the text image is
clipped to the current clip region, the pen is not ·clipped" in any way; the
new pen position can be outside the current grafport bounds.

Near the edges of its drawing space (±16K,±16K), OD II is unreliable; this
applies to text drawing as well as to any other kind. Calls which would
draw outside the space can cause catastrophic results. hvnllf'Ci)R
~~ ~~~ ~ c§lnl~@lI\)~R.

CharWidth, TextWidth, StringWidth, CStringWidth

These calls return the total pen displacement that would result if the
character or sequence of characters were to be drawn. Nothing is actually
dra~n, however. The width calls take into account current styles,
chExtra, spExtra, text flags, etc. But they do not take kerning (which is
independent of pen displacement) into account; that's a job for the text
bounds calls. Note that the width calls only return a pen displacement, not
a new pen location. They make no use of the current pen location, and they
don't change it

CharBounds, TextBounds, StringBou!lds, CString80unds

These calls return the smallest rectangle that would enclose all the
foreground and background pixels of the character or string ("or text block
or Cstring") of characters if they were to be drawn, starting at the current
pen location. The rectangle is given in the local coordinates of the current
grafport.

Unlike the text width calls, these calls take kerning into account, as well
as pen movement. The bounds rectangle extends to the left as far as the

August 12, 1986 Apple Confidential page D- 24

Fonts And Text In QutckOraw II

starting pen position or the leftmost kerning pixel (if any) of the text
image, whtchever is further to the left; similarly it extends as far right as
the new pen position or the rightmost kerning pixel (ditto), whichever is
further to the right. See 3.3, above, for an equally awkward description of
this idea. But, at the least, the bounds rectangle is reliable; any pixel
which might be changed by a text-drawing call is inside the corresponding
bounds rectangle.

The rectangle extends up (from the current pen location) to the ascent
line, and down (ditto) to the descent line. It is not clipped to any clipping
region. It takes into account style mods, chExtra, spEX1ra, etc. Note
that the bounds rectangle is not actually. drawn by these calls; its
coordinates are simply returned to the application.

Some strings ("or text or Cstrings"), or possibly even some characters,
may have no foreground or background pixels. In the case of a character, it
would have to have 0 image width and 0 character width - a space with no
length. Strings may have zero length (no characters), or be composed
entirely of the spaceless spaces just described. In these cases, the text
bounds calls return a degenerate rectangle· specifically, one whose right
and left edges are the same (namely, the current pen location's x coord
inate). The upper and lower edges of the rectangle will be the ascent and
descent line (relative to the pen's y coordinate), as usual.

Why these bounds calls were not included in Mac is beyond me.

SetBufStuff, ForceBufStuff, SaveBufOims, RestoreBufOims

~ ~J!):rir.)Q:ro@ ~ n~~ CM)~D~ Sl~~ ~Ih~ @:P) aa <S~~jJ

~~:r ~ wa~~ Sl~ ~lh~ ~~~ ~~!l'~

These are calls which affect the size of the text buffer and the way it is
used. They also affect the CO II clip buffer; for details on that, see the CD
II ERS.

Before detailing the calls and their parameters, we start with a general
discussion of the text buffer:

August 12, 1986 Apple Confidential page D- 25

..
.

Fonts And Text In Ouk:kOraw II

When a string (or text block or Cstring) is to be drawn into a pixelmap, it
is first drawn into the text buffer. Characters of the string that fall far
outside the destination's left or right boundaries are not actually drawn
into the text buffer; only their character widths are used, to determine
where the string actually enters the destination (on the right) and/or what
the final pen location should be (on the left).

For the text-drawing calls to handle this safely and efficiently', 00 II must
have certain information about the largest pixelmap sizes and character
sizes it will have to deal with. For one thing, the text buffer must be at
least as wide (in pixels) as the widest destination pixelmap that may be
used (actually, it must be a little wider, to avoid disaster when drawing
characters that fall partly in and partly out of the destination); and it has
to be as high as the highest font. For another thing, in order to decide if a
pen location is so "far outside" the destination that a character drawn
with that origin can't possibly impinge on the destination, 00 II needs to
know the width of the widest possible character. -Widest", here, includes
not only image width and character width, but any elongations due to
chExtra, spExtra, style modifications, etc. Any pixel that can be touched
by a character's foreground or background must be considered.

This is what fbrExtent was created for. It describes how far away from
the current pen location any "alterable" pixel can be. But fbrExtent
depends only on the font, and does not take into account style mods and the

, like. This is why we have two calls: SetBufStuff, which provides
(generous) defaults for any character elongations, and ForceBufStuff,
which puts things more under the application'S control.

am~:nl!)nU OO@)U~: W@)tUI lI'Jil!lW !l\)~~1 !l\)~ ~@) @!)]] cg~:h~:r

@~ ~~~~ ~l!dla:Ji)~g lJ>a~~ @@)!ro~a:Ji)Q.!)~ ~t1a:ro~ ~~ ~~

B'1 W@)llJ (§]:rJ&~~f1W" W@)Q.!) lI'J\l!lW &~~~W ~ & w3;ro~~J' " " " "

When QOStartUp is called, it creates a text buffer which is twice as high
as the system font, wide enough to support the MaxWidth parameter of
QOStartUp, and capable of handling characters twice as wide as the
system font characters ("wide" in the sense of fbrExtent). It also

August 12, 1986 App'le Confidential page 0- 26

fonts And Text In QuickDraw II

permits the use, with any font, of any chExtra s fbrExtent (of that
font); IpExtfl S tbrExtent; and it allocates up to 36 extra pixels per
character to accomodate style modifications (right now, all we have is
bolding, which adds 1'pixel to a character; but we hope to have italics
later, and italicizing a large font can stretch its horizontal extent quite a
lot). If your application is only going to deal with fonts and text display
parameters that fall within those limits, you can trust to the defaults and
never call SetBufStuff or ForceBufStuff. Otherwise, read on:

SetBufStuff takes 3 parameters:
MaxWidth: INTEGER;
MaxFontHeight: INTEGER;
MaxFBRExtent: INTEGER;

MaxWidth is the width in bytes (n.g1 pixels) of the largest pixelmap the
application will draw into (a value of 0 indicates screen width). It will
override the value supplied to COStartUp. MaxFontHeight is the height, in
pixels, of the tallest font the application will have to work with.
MaxFBRExtent is the fbrExtent of the widest (Le., greatest fbrExtent)
font the application will work with. The call resizes the clip buffer and
the text buffer to accomodate these sizes.

In addition, SetBufStuff "pads" the text buffer and signals the routine that
determines if a character is "far outside" the destination to allow for: (1)
values of chExtra and spExtra s the fbrExtent of the font in use at any
,given time; and (2) an extra 36 pixels of style modification added to the
width of any character.

(It should now be obvious that COStartUp makes an internal call to
SetBufStuff with MaxWidth from the COStartUp parameters, MaxHeight
twice the size of the system font, and MaxFBRExtent twice the size of the
system font fbrExtent.)

SetBufStuff's three parameters are only used to size the text buffer (and·
the CO II clip buffer, but lers not worry about that now). When it comes
time to actually~ a string, and CD II must decide which characters
might make it into the destination and which ones don't have a snowball's
chance I it uses the fbrExtent of the current font (which may be way

August 12, 1986 Apple Confidential page D- 27

Fonts And Text In QuickOraw II

smaller than MaxFBRExtent), the current values of ,pExtnl, chExtra,
txFace, etc., and, for a -destination pixelmap width", the width of the
active portion of the current grafport's pixelmap (its minRed, to be
specific). Therefore large values for SetBufStufrs parameters may soak
up some memory for the text buffer size, but will not cost much in time
lost drawing characters into the text buffer that will never make it into
the destination. This also means that, once the text buffer is sized, the
MaxFBRExtent parameter can be forgotten. (This is not true for
Force,BufStuff.)

ForceBufStuff takes the same parameters as SetBufStuff and performs the
same functions; however, it does not IlIpad" the text buffer at all. Any
extra pixels that might be added to a character bounds width due to
chExtra, spExtra, style mods, or whatever, should be added into the
maxFBRExtent parameter by the application making the call.

ForceBufStuff, like SetBufStuff, sizes the buffer(s) on the basis of its
parameters; and, ~hen a string is actually drawn, only the width of the
current grafport's pixelmap is considered, not all of MaxWidth. But, unlike
SetBufStuff, ForceBufStuff forces aD II to use the MaxFBRExtent
parameter to decide which characters are in and which out, rather than
trying to calculate a ·current" fbrExtent value. ForceBufStuff is for
those times when you're going to do something weird, like a customized
style modification, and aD II is not arrogant enough to think it can
anticipate you. Consequently, when ForceBufStuff is called, its
MaxFBRExtent value must be remembered for subsequent drawing calls. I
mention all of this only because, in the SaveBufDims and RestoreBufDims,
there is an asymmetry in the parameters handed back, depending on
whether the text buffer was originally "setlll (MaxFBRExtent no longer
needed) or "forced" (MaxFBRExtent must be remembered). See 5.4.3.

It is of course permissable -to call SetBufStuff or ForceBufStuff every
time you change fonts, or even every time you call SetCharExtra,
SetTextFace, or whatever. But this is not recommended. Sizing (and
clearing) buffers can be quite time-consuming. The routines should
probably be called once (if at all), with the maximum realistic values for
each of the parameters, and never again. We may supply some RAM-based
software tools for getting these values, maximized over all fonts in the
system file.

August 12, 1986 Apple Confidential page 0- 28

Fonts And rext In OuickDraw II

SetBufStuff and/or ForceBufStuff are useful if you are using enormous
fonts, unreasonably large values of chExtra and apExtra, style mods that
distend charaders in some horrible way, or the like. However· surprise! •
they can also be used to specify a text buffer which is smaller and more
efficient than the default buffer provided by CD II. For example, if you
plan on only using the system font, and no chExtra, spExtra, or style
mods, then calling ForceBufStuff with the system font height and system
fbrExtent will create a smaller, tighter text buffer which will save
memory, save time used in buffer-clearing, and do a better job of
identifying which characters don't need to be drawn into the text buffer
(another time saving).

You know best what your application will need. But don't be stingy at the
cost of flexibility. Also, realize that adding in a few "fudge factor" pixels
to MaxFBRExtent may cost a tiny amount in space and time, but may save
you disaster if you've, say, forgotten about bolding. Precise calculations
of MaxFBRExtent for the ForceBufStuff call are not necessary; upper limits
will do.

SaveBufDims and RestoreBufDims are included for orderly "context
switching" between subprograms. SaveBufDims saves the "state" of the
clip buffer and text buffer sizes in the form of an 8-byte record:

DimsRecord •
RECQ=U)

,MaxWidth:
TextBufHeight:
TextBufRowWords:
FontWidth:
END;

INTEGER;
INTEGER;
INTEGER;
INTEGER;

MaxWidth is the current value of the application-set maximum pixelmap
width, in bytes. TextBufHeight is the current text buffer height, in pixels;
and TextBufRowWords is the current width of the text buffer, in words
(quite avaried collection of measurement units, isn't it?). FontWidth
serves two purposes: if it is zero. it means the buffer was set up with a
call to SetBufStuff; if it is non-zero. then the buffer was set up with a
call to ForceBufStuff, and the value of FontWidth is equal to the

August 12, 1986 Apple Confidential page D- 29

INTEGER;
INTEGER;
INTEGER;
INTEGER;

Fonts And Text In OutckDraw II

MaxFBRExtent parameter used in that call.

RestoreBufDims restores the buffer dimensions on the basis of the
DimRecord it is given.

Regardless of through what call the text buffer is sized or resized· by
ODStartUp, SetBufDims, ForceBufDims, or RestoreBufDims • the
application is W resposible for clearing it. The calls take care of
clearing the text buffer automatically. Also note that SaveBufDims and
RestoreBufDims do not save and restore the contents of the text buffer,
only the parameters related to its size.

GetFontlnfo, GetFontGlobals, GetFGSize

Three calls are included for gathering information on the current font.

GetFontlnfo returns information in the following record:

FontlnfoRecord ...
START
ascent:
descent:
widMu:
leading:
'End;

These values have been modified, if necessary, to reflect style
modifications currently in effect (at this time that simply means that if
bolding is on, widMax has been increased by 1).

GetFontGlobals returns a variable-length record:

FontGlobalsRecord lIB

START
family: INTEGER;

August 12, 1986 Apple Confidential page D- 30

style:
Ilze:
verllon:
wldMax:
fbrExtent:

INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;

Fonts And Text In OuickDraw II

{additional fields may be present here}

END;

widMax is taken from the embedded Mac font; all the others are from the
Cortland header. They are taken directly from the font, and mll modified,
regardless of any style modifications in effect.

We expect in the future to add more information to the FontGlobalsRecord.
In order to warn the application, we have the call GetFGSize. It returns
the length in bytes of the FontGlobalsRecord - currently 12 (as of aD II
V.01.01). Future versions of 00 II may add extra information at the ends of
their FontGlobalsRecords, but they will maintain the documented fields
and ordering of earlier versions for compatabiJity.

August 12. 1986 Apple Confidential page 0- 31

..

First Publication

Appendix E
Change History

June 15. 1985

Second Publication July 10. 1985
Added summary of hardware.
Added Global Environment calls.
Fixed typos reported by Harvey.
A few GrafPort calls were made more like QuickDraw. QuickDraw names were

adopted whereever there were questions.

Third Publication July 25. 1985
Added commentary about initial review.
Added Line Drawing calls.
Raised questions of code size.

Fourth Publication September 17. 1985
Mode is part of GrafPort
Patterns are private.
The bounds reel is private

PenPat => SetPenPat
BackPat => SetBackPat
GetPenPat
GetBackPat
Appendix C

Fifth Publication September 25. 1985
General Carifications
Cipping

Sixth Publication October 29. 1985
General Carifications
GrafPort is no longer private

Seventh Publication November 21. 1985
Adjusted to new tool locator specifications
Adjusted to new memory manager specifications
Added section on calling conventions
Added utility calls to ERS
Removed low level slab and slice routines and low level clipping routine

information from this document
SetPenPat => PenPat
SetBackPat => BackPat

Eighth Publication December 3. 1985
Refined Color Table
Removed Scroll Rect from Core Routines (they will be part of the expanded

routines now).
Updated Appendix C

QuickDraw IT ERS August 11. 1986 Page E-l

Ninth Publication January 15, 1986
Changed the Name to QuickDraw n
Removed Text Calls from this document.
Added Region calls.
Added Scro11Rect
Updated Appendix C

Tenth Publication March 5, 1986
Made GrafPort private and added calls for accessing fields.
Added PenMask to grafport and drawing definition.
Added calls for PenMask.
Redefined codes for transfer modes. Added two text transfer modes.
Added infonnation on the Cursor data structure.
Added information on Customizing QuickDraw operations.
Added Text Calls and appendix on font definition. Added new font field to

GrafPort.
Added UserField and System Field to GrafPort.
Added GetAddress Call
Updated Appendix C.

Eleventh Publication April 4, 1986
Added Polygon calls.
Added SetIntUse call
Added Get & Set SysFont calls.
Added Get & Set VisRgn calls.

Twelfth Publication April 25, 1986
Reoganizcd all the calls.
Augmented introductory information
Added missing calls:

oearScreen
GrafOn
GrafOff
GetOipHandle
SetOipHandle
GetVisHandle
SetVisHandle
InitCursor

Changed the way inputs are described.
Changed input to SetRandSeed from integer to long.

Thirteenth Publication July 15, 1986
Added information on calls in RAM.
Added information on Fonts.

Fourteenth Publication August 11, 1986
Corrected many errors reported by testing.
Removed mention of the NotActive error. QuickDraw no longer supports this.

Calling QuickDraw when it is not active leads to unpredictable results often fatal
to th~ system.

QuickDraw nERS August 11, 1986 Page E-2

	v4_08_01
	v4_08_10
	v4_08_11

