
The ADS uC Tool Set

Peter Saum

REV 1.1

May. 15, 1986

The ADS uC tool set is used to send commands and data between the
Single-Chip Microcontroller (uC) and the system. Typically, the tool set
will be used to control ADS activity, but other commands, which are used
by diagnostic routines and the control panel, are available.

The tool set follows the standard convention of passing data and pointers
in the stack, then calling the tool locator with the tool set and
function number in the X register.

Tool Set Number = 9

Some commands can return an error code indicating busy. This usually
means that part of another command is currently active. Rather than queue
up the command, the tool set is putting the burden on the calling routine
to try again. A calling routine can retry the tool set immediately or it
can try later (maybe using the heartbeat chain to remind itself to try
again).

More details of each function can be found in the Single-Chip
Microcontroller (SKI) documentation, the Apple Desktop Sus
Microcontroller documenation, and the ADS specification. This document
assumes the user has knowledge of how ADS works.

An application which intends on using specific ADS devices other than the
mouse or keyboard must handle them with a driver. This driver will
consist of some setup routines and data handling routines. The setup
routines are used to identify devices on ADS, possibly changing ADS
addresses and handlers. The data handling routines consist of a
completion routine, which is called by the system when data is received
from a device; and any other routines which may be used to operate on the
data;

A special tool function can be used to automatically poll ADS for data
from specific devices. If data is received then that devices completion
routine is called. This mechani.sm is called the SRO list. The system will
automatically start polling the devices in the list whenever any device
on the bus asserts SRO.

The SRO function, SROPL, is the most efficient way for a single user
application to gather data from a ADS device. This mechanism assumes that
the user rarely switches between devices. When SRO is detected, the
system will always start looking for data by polling the last device
used.

Apple Desktop Bus uC Tool Set May. 15, 1986 Page #.1

·'n multi-user applications such as two (or more) player games the SRQ
list will not work efficiently, since it always give priority to the last
device which returned data. For these applications, each device should be
polled seperately using the POLL ADS command. This allows the application
to guarantee that devices can be read in an arbitrary fashion with no
device getting priority (unless application wants that) and also allows
the application to regulate how often data is read. The latter feature is
very important since it allows a game to adjust depending on
the number of players.

To poll each device seperately it must have a unique address. Currently
there is no support for this. There are two suggested methods for an
application to assign a unique address to each device.

A simple method is to request a player to hold down the activator button
(mouse button or keyboard open apple key) and then use the ADS Change
Address When Activated command. This command changes the address of any
device(s) that is currently activated. After verifying that a device has
changed addresses then tell the player to release the button. Repeat this
for each player, giving each one a new and different address.

Another mechanism for moving each ADS device to a unique address involves
using collision detection. The host requests the 10 at a specific address
(TALK-REG.3). The change address command is then issued'using the
Collision Detect Handler. Any device which did NOT detect a collision
will change its address. There is a chance that two (or more) devices may
not detect a collision and both will move to the new address. To
alleviate this problem, the device(s) at the new address should be moved
many times. This raises the chances that the devices will collide and
only a single device will be moved. Theoretically, two devices may
collide 1 out of 16 times. If there are more than two devices on the bus
then the chances of a collision rise quickly. With three devices then
there a 1/5 chance that two devices may not collide. (4 devices = 1/3 & 5
devices = 1/2).

For example, if an application wanted to distinguish 4 keyboards from
each other then it should send the 10 command (TALK Reg. 3 Address 2)
then issue the change address command, to address 8, with the collision
detect handler (=$FE). Any device that didn't detect a collision (at
least one) will change to the new address. This same scenario should be
repeated but instead changing address 8 to 9. Move any device which stays
at address 8 (it lost the collision) back to. address 2. Continue swapping
the device another 30 times between addresses 8 and 9, always moving any
losers back to address 2. Swapping 32 times gives a very good statistical
chance that only one device will have had its address changed to 8 from
the original keyboard address. This process should be repeated for each
keyboard, using two open addresses (such as 9 & 10, then 10 & 11 etc.).

After each keyboard has been moved to a new address the application
should ask each user to press a key. The key press can then be used to
identify the address of each user.

Apple Desktop Bus uC Tool Set May. 15, 1986 Page #2

The SRQ list and ABSOLUTE tlag do not get cleared on RESET. Applications
.which install devices should use the CLRSRQTBL command dUring RESET.

The order that the parameters are listed tor each function represent the
order which they should be pushed on the stack. (i.e. Command is usually
the last value pushed on the stack).

The following examples are written in 16-bit mode with the following
equates:

UCTOOL EQU $9 ;ADB TOOL NUMBER
SND EQU $9 ;SEND FUNCTION NUMBER

Here is an example ot how to enable SRQ on a device at address 7:

ENSRQ EQU"
PEA $0000 ;COUNT OF a BYTES (=HOWMANY)
PEA $0000 ;DUMMY ADDRESS· NOT USED SINCE HOWMANY=O
PEA $0000
PEA $0057 ;ENABLE SRO OF ADDRESS 7
LOX #SND"256+UCTOOL ;SET UP FUNCTION CALL FOR SEND
JSL =TOOL.LOCATOR
BCS ERROR

The tollowing example shows how to make a tool call to change the handler
at a ADS device at address 7. It uses the uC tool set tunction called
SEND to transmit 2 bytes to register 3 at address 7:

LOA #$0207 ;CHANGE DEVICE AT ADDRESS 7 TO HANDLER 2
STA DATABUF ; INTO DATA BUFFER
PEA $0002 ;COUNT OF 2 BYTES TO BE SENT ON ADB (HOWMANY)
PEA "DATABUF ;HI WORD (BANK) OF DATA BUFFER ADDRESS
PEA DATABUF ;LOW WORD OF DATA BUFFER ADDRESS
PEA $00B7 ;TRANSMIT 2 DATA BYTES TO REG.3 OF ADB ADDRESS 7
LOX #SND"256+UCTOOL ;SET UP FUNCTION CALL FOR SEND
JSL =TOOL.LOCATOR
BCS ERROR

Here is an example ot sending data to an ADB device:

DATASND EQU ..
PEA $0005 ;5 DATA BYTES (4 data & 1 ADB command)
PEA "DATA ;ADDRESS OF DATA BUFFER WI AxBy
PEA DATA
PEA $004B ;CMD TO uC (TRANSMIT 4 DATA BYTES)
LOX #SND"256+UCTOOL
JSL =TOOL.LOCATOR
BCS ERROR

DATA
"

OS $8A,1,2,3,4 ;1 ST BYTE IS COMMAND:
; DEVICE @ ADDRESS 8, LISTEN, REG.O

Apple Desktop Bus uC Tool Set May. 15, 1986 Page #3

;OTHER BYTES ARE DATA

And finally an example that explains how to poll a device at address 7,
register 0 for data:

ADBPOLL EQU $0 ;ADB POLL FUNCTION NUMBER
PEA "CPLTVC ;HI WORD (BANK) OF COMPLETION. ROUTINE
PEA CPLTVC ;LOW WORD OF COMPLETION ROUTINE
PEA $00C7 ;REGISTER 0, ADDRESS 7 (IF REG. 3 THEN $F7)
LOX #ADSPOLL*256+UCTOOL ;SETUP FUNCTION CALL FOR POLL
JSL ==TOOL.LOCATOR
BCC OK ;EVERY THING OK
CMP #UCTOOL*256+SUSY ;CHECK IF BUSY ERROR
BEQ ADSPOLL ;POLL AGAIN IF BUSY
BRA ERROR

OK EQU *
END RTS ;END

COMPLETION VECTOR ROUTINE DESCRIPTION:

All completion routines are called in 8-bit native mode. There are
currently two types of completion vectors defined, the ADS Poll and the
SRQ List.

ADS Poll & ADS Receive Completion Vector

The ADB Poll Completion Vector Routine grabs Data from Buffer
pointed to by address on top of Stack. The first byte in the buffer
contains the number of data bytes in the buffer. The 1st data byte
received from ADS is the next byte in the buffer, with subsequent
data bytes received from ADB stored sequentially in the buffer. The
last (nth) byte received is the n+1 byte in the buffer.

CPLTVC EQU * ;COMPLETION VECTOR FOR ADS POLL
PHD ;Move direct page onto stack-1
TSC ;Stack now has RTL address (3 bytes)
TCD Old Direct Page (2 bytes)
LOA [6] ;Get length byte from buffer
BEQ ENDPOLL ;Got no data
TAY ;Set index to get 1st data byte

LP LOA [6],Y ;Get data byte
STA BUF,Y ;Move to application buffer
DEY ;Set index for next data byte
SPL LP

ENDPOLL EQU *
PLD ;Restore Direct page
RTL ;RETURN FROM COMPLETION ROUTINE

SRQ List Completion Vector

Apple Desktop Bus uC Tool Set May. 15, 1986 Page #4

The SRO Completion routine is very similar to the routine used by
ADB Poll. The only major difference is that an extra return address
is on the stack when the routine is called. (These extra 3 bytes are
left by the SRO list handler). SRO completion routines will find the
address to the data buffer 3 bytes into the stack, instead of on the
top of the stack.

SROCPLT EOU ..
PHD
TSC
TCD
LOA [9]
TAY
LOA [9],Y
DEY..

ENDABS PLD
RTL

;COMPLETION VECTOR FROM SRO LIST
;SAVE DIRECT PAGE
;MOVE DIRECT PAGE ONTO STACK
;AND DO INDIRECT INDEXED LONG TO
;GET DATA LENGTH (NOT 0)

;GET.LAST DATA BYTE
;MORE DATA, ETC.

;RESTORE STACK AND RETURN

Apple Desktop Bus uC Tool Set May. 15, 1986 Page #5

$10: Command Not Completed

$10: Command Not Completed

This table is used to show the tool set function protocol. The Input
Words/Long are stored on the stack by pushing the first item from the top
of the list onto the stack first. (Le. When the tool locator is called
the Command is typically on the top of stack). The DataoutPtr and
DatainPtr are pointers to a data structure of bytes. These data
structures are shown in more detail in Appendix A.

Command Structure: Error:
(FUNCTION NUMBER)

SEND: Input Word: HowMany $10: Command Not Completed
(9) Input Long: DataoutPtr

Input Word: Command

Send data to the uC. The command and data to be sent to uC is
documented in Appendix A&B.

RCV: . Input Word: Howmany
(A) Input Long: DatainPtr

Input Word: Command

Receive data from the uC. The command and data to be received
from uC is documented in Appendix A&8.

RDmem: Input Long: DataoutPtr
(B) Input Long: DatainPtr

Input Word: Command

Used to read a data byte from the uC memory ROM ($1400-$1 FFF)
or RAM ($0-$5F). The command and data to be received is
documented in Appendix A&B.

Reserved
(C)

ADBpoll:lnput Long: Completion Vector $10: Command Not Completed
(D) Input Word: Command $82: Susy (Command Pending)

Receive data from a ADS device. The ADS command byte sent
assumes that the command type is Talk, which tells the
addressed device to send data to the host (i.e. Talk).

ADSrcv: Input Word: ADB Command Code
(E) Input Long: Completion Vector $10: Command Not Completed

Input Word: Command $82: Susy (Command Pending)

Receive data from a ADS device. First byte sent is command byte
to be sent on ADS, which should include the ADB command type,
address,'and register. Normally this would only be used instead
of the ADSrcv function (D) if the command type was neither a

Apple Desktop Sus uC Tool Set May. 15, 1986 Page #6

ADS Listen or ADS Talk command. The command and data to be
received is documented in Appendix A&S.

ABSON: NO parameters
(F)
ABSOFF:
(10)

Used to disable/enable automatic polling of an absolute device.
Default is to automatically gather data from an absolute device
and interpret as absolute mouse positioning.

RDABS: Output Word: On/Off
(11)

Read flag to determine if automatic polling of absolute device
is on or off.

SCALE: Input Long: DatainPtr
(12)

Sets up scaling for absolute devices. By predefining a tool
call, a generic scaling desk accesory can be written to support
almost any size/brand graphics tablet.
Each of these values is stored as a word (16-bits) though the
multiply values will only operate on the low 8-bits.

X-Divide
V-Divide
X-Offset
V-Offset
X-MUltiply
Y-Multiply

RDSCALE: Input Long: DataoutPtr
(13)

Read absolute device scaling values.
Each of these values is stored as a word (16-bits) though the
multiply values will only operate on the low 8-bits.

X-Divide
V-Divide
X-Offset
V-Offset
X-MUltiply
Y-Multiply

SROPL: Input Long: Completion Vector $10: Command Not Completed
(14) Input Word: ADB Address $83: Device Not Present(@Address)

$84: List Full

This routine adds a device to the SRO list (if the device
exists) so that an application can be notified when this device
has data. Whenever an SRO is generated the system will

Apple Desktop Bus uC Tool Set May. 15, 1986 Page #7

automatically poll any device in the SRQ list to see if it has
data ready. If data is available then it will vector to the
completion routine with the data and notify the application.

SRQRMV: Input Word: ADB address $10: Command Not Completed
$82: Busy (Poll Active)

Removes a device from the SRQ list.
. .

CLRSRQT8L: No Parameters

Clears the SRQ list of all entries.

Some other processes are supported in the ADB uC tool set, since certain
interrupt conditions can originate from the uC.

Interrupt Handlers:

SRQ • MaintainsSRQ List &Pointer. If end of list encountered then
cleans up by disabling SRQ of all devices (exceptthe
keyboard), then enabling the SRQ of every device in the SRQ
list. .

ABORT • Attempts SYNCH command: If ignored System death, else RTL and
continues. This interrupt will reset many of the defaults,
including ADB devices and the control panel. If this error
could be fatal to an application then the ABORT vector should
be patched into so that it can be detected by the application
(and then the application should jump to wherever the old
ABORT vector was pointing).

RESPONSE· Reads data then Vectors to Completion Routine. Only a single
completion vector can be active at a time. If an application
wants to poll many devices sequentially then it should use ·the
completion vector to initiate a poll of the next device.

Apple Desktop Bus uC Tool Set May. 15, 1986 Page #8

Appendix A - Commands:

HOW
Function CMD MANY Single-Chip Microcontroller Command (From system to uC)

SEND
SEND
SEND
SEND
SEND
SEND
SEND
SEND
SEND

SEND

SEND

SEND

SEND

SEND

SEND

SEND

RDmem

RCV

RCV

RCV

RCV

. 01 a ABORT
02 a RESET KEYBOARD uC
03 a FLUSH KEYBOARD
10 a RESET SYSTEM
40 a RESET ADB
5x a ENABLE SRO (x=ADB address in low nybble)
7x a DISABLE SRO (x=ADB address in low nybble)
6x a FLUSH BUFFER ON ADB DEVICE (x=ADB address in low nybble)
04 1 SET MODES

INPTR <- Input Byte: Mode
as 1 CLEAR MODES

INPTR <- Input Byte: Mode
06 3 SET CONFIGURATION

INPTR <- Input Byte: ADB adrs. keyboard & mouse
INPTR <- Input Byte: Layout/Lang.
INPTR <- Input Byte: Repeat Delay/Rate

07 4 SYNCH
INPTR <- Input Byte: Mode
INPTR <- Input Byte: ADB adrs. keyboard & mouse
INPTR <- Input Byte: Layout/Lang.
INPTR <- Input Byte: Repeat Delay/Rate

08 2 WRITE uC MEMORY
INPTR <- Input Byte: Zero Page Memory Address
INPTR <- Input Byte: Data

11 1 SEND ADB KEYCODE
INPTR <- Input Byte: Keycode

4y n+1 TRANSMIT ADB BYTES (y=7+n & n=# of bytes to transmit {n<>O})
INPTR <- Input Byte: ADB Command (ADB type,adrs.,reg.)
INPTR <- Input Bytes: 2-8 data bytes

8r 2 TRANSMIT 2 ADB BYTES (r=ADB address)
INPTR <- Input Byte: 1st Data Byte
INPTR <- Input Byte: 2nd Data Byte

09 READ uC MEMORY
INPTR <- Input Byte: Low Memory Address
INPTR <- Input Byte: High Memory Address
OUTPTR <- Output Byte: Data

OA 1 READ MODES
OUTPTR <- Output Byte: Mode

OB 3 READ CONFIGURATION
OUTPTR <- Output Byte: Repeat Delay/Rate
OUTPTR <- Output Byte: Layout/Lang.
OUTPTR <- Output Byte: ADB adrs. keyboard & mouse

OC 1 READ ADB ERROR BYTE
·OUTPTR <- Output Byte: Error Code

00 1 READ VERSION NUMBER
OUTPTR <- Output Byte: Version Number

Apple Desktop Bus uC Tool Set May. 15, 1986 Page #9

APPENDIX B - Single-Chip Microcontroller (SKI) Commands:

COMMANDS TO uC:

BIT 76543210

00000000 -
00000001 ABORT COMMAND
00000010 RESET KEYBOARD uC .
00000011 FLUSH KEYBOARD

00000100 SET MODES using next byte as follows:
00000101 CLR MODES using next byte as follows:

Bit Function

7 Reset on RESET key only (CONTROL not needed)
6 Set XOR LOCK-SHIFT mode
5 Change ADB Keyboard layout to lie layout
4 Buffer keyboard mode
3 4X repeat enabled, instead of Dual (2X) repeat
2 Include Spacebar, Delete key on Dual repeat
1 Disable Auto-poll of ADB mouse
o Disable Auto-poll of ADB keyboard

00000110 SET CONFIGURATION BYTES using next 3 bytes as follows:
Byte 1:

HI Nybble - ADB mouse address
LO Nybble - ADB keyboard address

Byte 2:
HI Nibble - Char.set (needed for certain langs.)

MSB set if keypad '.' swapped with ','
LO Nybble - Set Keyboard Layout Language

LAYOUT/LANG. = CODE:

US (US) = 0
UK (UK) = 1
FRENCH (FR) = 2
DANISH (ON) = 3
SPANISH (SP) = 4
ITALJAN (IT) = 5
GERMAN (GR) = 6
SWEDISH (SW) = 7
DVORAK (DV) = 8
CANADIAN (CN) = 9

Apple Desktop Bus uC Tool Set May. 15, 1986 Page IC

Byte 3:
HI Nybble • Set Delay to repeat rate (3 bits)

0: 1/4 sec.
1: 1/2 sec.
2: 3/4 sec.
3: 1 sec.
4: NO REPEAT

LO Nybble • Set Auto-repeat rate (3 bits)
0: 40 keys/sec
1: 30 keys/sec
2: 24 keys/sec
3: 20 keys/sec
4: 15 keys/sec
5: 11 keys/sec
6: 08 keys/sec
7: 04 keys/sec

00000111 SYNCH COMMAND

Sets MODES byte (See Command 4 or 5 above) followed by
Configuration bytes (Command 6). This command is issued
by the system after reset to reset the keyboard. After
receiving the command the uC will reset itself back to
its internal power up state and then reset ADB devices.

00001000 WRITE uC MEMORY
Send 1 byte address (for RAM) followed by 1 byte of data

00001001 READ uC MEMORY
Send 2 bytes address of uC location (ROM or RAM).
1st byte=low adrs byte & 2nd byte=hi adrs byte(=O if RAM)

00001010 READ MODES BYTE (See command 4 or 5 above)

00001011 READ CONFIGURATION BYTES - Returned in Data latch:
. See Set Configuration for values

Byte 1:
HI Nybble - ADB mouse address
LO Nybble • ADB keyboard address

Byte 2:
HI Nybble - Char.set (needed for certain langs.)
LO Nybble • Set Keyboard Layout Language

Byte 3:
HI nibble· Set Delay to repeat rate (3 bits)
LO nibble - Set Auto-repeat rate (3 bits)

00001100 READ THEN CLEAR FBD ERROR BYTE - Returned in Data latch

Apple Desktop Bus uC Tool Set May. 15, 1986 Page ! I

00001101 GET VERSION NUMBER - Returned in Data latch
(Also returns PORT R, which is undefined input port on
uC, in HI nybble.)

00001110 READ CHARACTER SETS AVAILABLE - Returns # of bytes, then data
This command is used by control panel to determine which
character sets are available in the system. This assumes
that each uC is paired with a specific mega chip. (Though
mega chips may be paired wi more than one uC). The order
that the character sets are returned is important. The
first number returned corresponds to the character set 0
in the mega, while the next number is character set 1,
etc.

00001111 READ LAYOUTS AVAILABLE - Returns # of bytes, then the data
This command is used by control panel to determine which
keyboard layouts are available in the system. Again, like
the character sets available command the order that the
number are returned is important. The first number
returned represents layout 0 in the uC. A predefined
table defines which number corresponds to which layout
language.

00010000 RESET THE SYSTEM - Pulls the reset line low for 4 ms.

00010001 SEND ADB KEYCODE - Pretend that 2nd byte is ADB keycode
This command can be used to emulate a ADB keyboard, by
accepting keycodes from a device and then sending them to
the uC to be processed as keystrokes. This command will
not process either RESET up or RESET down codes, so they
must be trapped out before using this command. This
command can be used to watch for key up sequences.

0001---1 ­

001----- -

01000000 RESET ADS - Pulls ADS low for 4 ms.
Care must be taken with this command because resetting a
ADS keyboard will clear any pending commands including
all key up events. This means that if a keystroke is used
to launch this command while the key is released, then
the key up code will be lost and the key will auto-repeat
until another key is pressed. All keys should be up
before this command is executed.

01001000 RECEIVE SYTES - Command, wi address, is in 2nd byte
The system starts by sending a command byte on ADS and
then waits for the uC to pass back any data t.hat it
receives. Returns bytes in opposite order (n-> 1).

Apple Desktop Sus uC Tool Set May. 15, 1986 Page I.~

01001 num TRANSMIT num BYTES - Command, wi address, is in 2nd byte
Note.: If num=O then command is RECEIVE BYTES described above

Else num == # of data bytes-1
The system starts by sending a command followed by
between 2 to 8 data bytes (num+1) to the uC, which are to
be transmitted over ADB. The command sent will be
transmitted directly as the ADB command byte, which is
the first byte received after the TRANSMIT num BYTES
command.

0101abcd ENABLE SRO ON ADB DEVICE AT ADDRESS abcd

0110abcd FLUSH BUFFER ON ADB DEVICE AT ADDRESS abcd
This command is dangerous - see RESET ADB description

0111abcd DISABLE SRO ON ADB DEVICE AT ADDRESS abcd
This command may be dangerous. If data is pending when
this command is executed then the pending data may be
lost. For example if SRO is disabled on the ADB keyboard
then all key up codes may be lost. Also see RESET ADB
description

10xyabcd TRANSMIT 2 BYTES:
Address - abed
Register- xy

Assumes a two byte transfer of data using the ADB Listen
command. .

11 xyabcd Poll ADB device:
Address - abcd
Register- xy

This command is used to get data from a specific device.
It uses the ADB Talk command then waits for the device to
either send back data or timeout. The uC waits until all
data has been received then responds back to the system
with a status byte which indicates the number of bytes
received followed by the data. It returns the bytes in
opposite order than received on ADB (n->1).

* All commands which require more than a 1 byte transfer, will automatically
timeout in 10 ms. if there is no response, except for the SYNCH cmd which
may reqUire 20 ms. to process the ADB address byte.

Apple Desktop Bus uC Tool Set May. 15, 1986 Page 1:5

