Cheryl Ewy

 Steven Glass Kenton Hanson
Integer Math Tools

August 7, 1986

Revision Histon

March 4, 1986	V00:00	Initial Release
April 22, 1986	V00:10	Int2Dec, Long2Dec, Dec2Int and Dec2Long calls modified
May 9, 1986	V00:20	Errors in the input/output lists for the math routines fixed
August 7, 1986	V00:30	Functions \$10 to \$21 expanded.

STANDARD TOOL SET CALLS

IMBootInit Function number $=\$ 01$
This call does nothing.

IMStartUp \quad Function number $=\$ 02$
This call does nothing.

IMShutDown
Function number $=\$ 03$
This call does nothing.

IMVersion Function number $=\$ 04$

Input	Word	Space for Result
Output	Word	Result

This call returns the version number for the Integer Math tool set.

IMReset
Function number $=\$ 05$
IMReset is called when a system reset occurs. It does nothing.

IMActive
Function number $=\$ 06$
Input
Output
Word
Word
Space for Result Result

This call returns a non-zero result indicating that the tool set is active.

MATH ROUTINES

These poutines come from the Macintosh and are used throughout the tool box. Several types of numbers are supported.

Integer	The common single word signed integer
Long Integer	The common double word signed integer
Fixed	A two word signed value with 16 bits of fraction
Frac	A two word signed value with 30 bits of fraction

Multiply

Input	LongWord	Space for Result
Input	Word	M1
Input	Word	M2
Output	LongWord	Result

Takes the two 16 bit inputs, multiplies them together and produces a 32 bit result. If the inputs were unsigned, the 32 bit result is unsigned. If the inputs were signed, the low word of the 32 bit result is the signed result.

SDivide

Input	Word	Space for Remainder
Input	Word	Space for Quotient
Input	Word	Numerator
Input	Word	Denominator
Output	Word	Remainder
Output	Word	Quotient

Takes the two 16 bit signed inputs and divides them producing two 16 bit signed results.

UDivide

Input	Word	Space for Remainder
Input	Word	Space for Quotient
Input	Word	Numerator
Inputt	Word	Denominator
Output	Word	Remainder
Output	Word	Quotient

Takes the two 16 bit unsigned inputs and divides them producing two 16 bit unsigned results.

LongMul

Input	LongWord	Space for Result
Input	LongWord	Space for Result
Input	LongWord	M1
Input	LonWWord	M2
Output	LongWord	Result (most significant)
Output	LongWord	Result (least significant)

Takes the two 32 bit inputs, multiplies them together and produces a 64 bit result. If the inputs were unsigned, the 64 bit result is unsigned. If the inputs were signed, the low two words of the 64 bit result is the signed result.

LongDivide Input LongWord Space for Remainder Input Input Input Output Output

Function number $=\$ 0 \mathrm{D}$ LongWord LongWord LongWord LongWord

Space for Quotient Numerator Denominator Remainder Quotient

Takes the two 32 bit unsigned inputs and divides them producing two 32 bit unsigned results.

FixRatio
Input Input Input Output

Function number = \$0E

Takes the two 16 bit signed inputs and produces a 32 bit fixed point pesult that is the ratio of the numerator and denominator.

FixMul

Input	LongWord	Space for Result
Input	LongWord	M1
Input	LongWord	M2
Output	LongWord	Result

Takes the two 32 bit fixed point inputs and produces a rounded 32 bit fixed point result that is the product of the inputs. Overflows return the most postive or negative value depending on the exclusive or of the inputs signs.

FracMul

Input	LongWord	Space for Result
Input	LongWord	M1
Input	LongWord	M2
Output	LongWord	Result

Multiplies two Frac inputs and returns a rounded frac result. Overflows return the most postive or negative value depending on the exclusive or of the inputs signs.

FixDiv

Input	LongWord	Space for Result
Input	LongWord	Quotient
Input	LongWord	Divisor
Output	LongWord	Result

Divides two Fixed inputs and returns a rounded fixed result (no remainder). Overflows retum the most postive or negative value depending on the exclusive or of the inputs signs.

FracDiv	Function number $=\$ 12$	
Input	LongWord	Space for Result
Input	LongWord	Quotient
Input	LongWord	Divisor
Output	LongWord	Result

Divides two Frac inputs and returns a rounded Frac result (no remainder). Overflows return the most postive or negative value depending on the exclusive or of the inputs signs.

FixRound

Input	Word	Space for Result
Input	LongWord	Original Fixed value
Output	word	integer Result

Takes a Fixed input and returns a rounded integer result.

FracSqrt

Input	LongWord	Space for Result
Input	LongWord	Original Frac value
Output	LongWord	Result

Takes a Frac input and returns a rounded Frac square root. (Note: the input is taken as unsigned with the leading bit significant, i.e., the input range is from 0 to almost 4).

FracCos

Input	LongWord	Space for Result
Input	LongWord	Angle (fixed)
Output	LongWord	Result (fixed)

Takes a Fixed input (radians) and returns its cosine.

FracSin
Input
Input Output

Function number $=\$ 16$
LongWord
LongWard
LongWord

Space for Result
Angle (fixed)
Result (fixed)

Takes a Fixed input (radians) and peturns its sine.

FixATan2	Function number = $\$ 17$	
Input	LongWord	Space for Result
Input	LongWord	Input 1
Input	LongWord	Input 2 (fixed)
Output	LongWord	Result (fixed

Takes two inputs and peturns a fixed point arc tangent (radians) of their coordinate. The inputs can be long integer, fixed or Frac (but must be of the same type).

HiWord
Function number $=\$ 18$

Input	Word	Space for Result
Input	LongWord	Input
Output	Word	Result

Returns high word of input.

LoWord

Input	Word	Space for Result
Input	LongWord	Input
Output	Word	Result

Returns low word of input.

Long2Fix Function number $=\$ 1 \mathrm{~A}$

Input	LongWord	Space for Result
Input	LongWord	Input
Output	LongWord	Resul (fixed)

Converts long integer to fixed. Overflows return the most postive or negative value depending on the input sign.

Fix2Long

Input	LongWord	Space for Result
Input	LongWord	Input
Output	LongWord	Result (LongInt)

Converts fixed to long integer. Conversions are rounded.

Fix2Frac

Function number = $\$ 1 \mathrm{C}$

Input	LongWord	Space for Result
Input	LongWord	Input
Output	LongWord	Result (Frac)

Converts fixed to Frac. Overflows return the most postive or negative value depending on the input sign.

Frac2Fix

Function number $=\$ 1 \mathrm{D}$

Input	LongWord	Space for Result
Input	LongWord	Input
Output	LongWord	Result (Fixed)

Converts Frac to Fixed. Conversions are rounded.

Fix2X

Function number $=\$ 1 E$

Input	LongWord	Fixed value
Input	LongWord	Pointer to Extended

Converts Fixed to extended.

Frac2X \quad Function number $=\$ 1 F$

$\left.\begin{array}{ll}\text { Input } & \begin{array}{l}\text { LongWord } \\ \text { Input }\end{array} \\ \text { LongWord } & \begin{array}{l}\text { Frac value } \\ \text { Pointer to Extended }\end{array} \\ \text { Converts Frac to extended. } & \end{array}\right)$

X2Fix
Function number $=\$ 20$
Input LongWord space for fixed result
Input LongWord Pointer to Extended
Output LongWord fixed result
Converts extended to Fixed. Conversions are rounded. Overflows, NaNs, and Infinities return the most postive or negative value depending on sign of the input.

X2Frac

Function number = \$21

Input	LongWord	space for frac result
Input	LongWord	Pointer to Extended
Output	LongWord	frac result

Converts extended to Frac. Conversions are rounded. Overflows, NaNs, and Infinities return the most postive of negative value depending on sign of the input.

CONVERSION ROUTINES

These routines convert between a binary value and an ASCII character string representing that value. The binary value can be either a 2 -byte integer or a 4 byte integer. The character string can be in either hexadecimal or decimal format.

Int2Hex \quad Function number $=\$ 22$

Input	Word	2-byte unsigned integer
Input	LongWord	Pointer to output string
Input	Word	Length of output string

Takes a 2-byte unsigned integer and produces an ASCII string representing the value in hexadecimal tormat. The string is right-justified and padded at the left with zeros. If the string is too short to represent the value, an error is returned. The ASCll characters in the output string have the high bit clear.

Long2Hex

Input	LongWord	4-byte unsigned integer
Input	LongWord	Pointer to output string
Input	Word	Length of output string

Takes a 4-byte unsigned integer and produces an ASCII string representing the value in hexadecimal format. The string is right-justified and padded at the left with zeros. If the string is too short to represent the value, an error is retumed. The ASCII characters in the output string have the high bit clear.

Hex2Int \quad Function number $=\$ 24$

Input	Word	Space for result
Input	LongWord	Pointer to input string
Input	Word	Length of input string
Output	Word	2-byte unsigned integer

Takes an ASCII string representing a hexadecimal value and produces a 2-byte unsigned integer. The string should be right-justified and may be padded at the left with blanks or zeros. The ASCII characters in the string
may have the high bit either set or clear. Illegal characters in the string will cause an error to be returned. If the hexadecimal value is greater than SFFFF, an overflow epror will be returned.

Hex2Long	Function number $=\$ 25$	
Input	LongWord	Space for Result
Input	LongWord	Pointer to input string
Input	Word	Length of input string
Output	LongWord	4-byte unsigned integer

Takes an ASCII string representing a hexadecimal value and produces a 4 -byte unsigned integer. The string should be right-justified and may be padded at the left with blanks or zeros. The ASCll characters in the string may have the high bit either set or clear. Illegal characters in the string will cause an epror to be returned. If the hexadecimal value is greater than \$FFFFFFFFF, an overflow error will be returned.

Int2Dec
Input
Input
Input
Input

Function number $=\$ 26$
Word
LongWord
Word
Word

2-byte integer
Pointer to output string
Length of output string Signed flag

Takes a 2-byte integer and produces an ASCII string representing the value in decimal format. The string is right-justified and padded at the left with blanks. The ASCII characters in the string have the high bit clear. If the Signed flag $=0$, the integer will be considered to be unsigned. If the Signed flag $<>0$, the integer will be considered to be signed. If a signed integer is negative, the string will contain an ASCII minus sign to the left of the most-significant digit. If the string is too short to represent the value, an error is returned.

Long2Dec
Input Input Input Input

Function number $=\mathbf{\$ 2 7}$
LongWord • 4-byte integer
LongWord Pointer to output string
Word
Word Length of output string Signed flag

Takes a 4-byte integer and produces an ASCII string representing the value in decimal format. The string is right-justified and padded at the left
with blanks. The ASCII characters in the string have the high bit clear. If the Signed flag = 0, the integer will be considered to be unsigned. If the Signed flag $<>0$, the integer will be considered to be signed. If a signed integer is negative, the string will contain an ASCII minus sign to the left of the most-significant digit. If the string is too shon to represent the value, an epror is returned.

Dec2Int

Input Input Input Input Output

Function number $=\$ 28$

Word
LongWord
Word
Word
Word

Space for result
Pointer to input string
Length of input string
Signed flag
2-byte integer

Takes an ASCII string representing a decimal value and produces a 2 byte integer. The string should be right-justified and may be padded at the left with blanks or zeros. The ASCII characters in the string may have the high bit either set or clear. If the Signed flag $=0$, the value will be considered to be unsigned. If the Signed flag >0, the value will be considered to be signed. If the value is signed, the string may contain an ASCII plus or minus sign directly in front of the most-significant digit. lliegal characters in the string will cause an error to be returned. If a signed value is greater than 32,767 or less than -32,768 an overflow error will be returned. If an unsigned value is greater than 65,535 an overtlow error will be returned.

Dec2Long
Input
Input
Input Input Output

Function number $=\$ 29$

Takes an ASCll string representing a decimal value and produces a 4byte integer. The string should be right-justified and may be padded at the left with blanks or zeros. The ASCll characters in the string may have the high bit either set or clear. If the Signed flag $=0$, the value will be considered to be unsigned. If the Signed flag <0, the value will be considered to be signed. If the value is signed, the string may contain an ASCII plus or minus sign directly in front of the most-significant digit. Illegal characters in the string will cause an error to be returned. If a signed value is greater than $2,147,483,647$ or less than $-2,147,483,648$
an overflow error will be returned. If an unsigned value is greater than $4,294,967,295$ an overflow error will be returned.

Hexlit
Function number = \$2A

Input	LongWord	Space for result
Input	Word	2-byte unsigned integer
Output	LongWord	4-byte hexadecimal string

Takes a 2-byte unsigned integer and returns a 4-byte ASCII string representing the value in hexadecimal format.

ERROR CODES

$\$ 0 B 01$	Bad input parameter
$\$ 0 B 02$	Illegal character in string
$\$ 0 B 03$	Integer or Long Integer overflow
$\$ 0 B 04$	String overflow

