
'..-

Dan Oliver

01/30/86

06105/86

06/10/86

06114/86

06118/86

07/15/86

07/16/86

08/13/86

Initial release

Revised release. Note the removal of direct access to window records by applications
and additional calls to compensate. The inputs to NewWindow has become more
Mac like, and DisposeWindow is folded into CloseWindow.

Updates to page 4, and page 6 in the appendix.

Updates to pages 15-20.

Name changes to BootWmgr, InitWindows, TennWindows, and
WmgrVersion. Addition ofWindReset and WindStatus, although not
completed. Additional parameter, user 10, passed to WindStartup (formerly
InitWindows). TaskMaster uses an extended event record..

Expanded SetFrameColor. WNewRes doesn't redraw the screen anymore.
Changes to color table in ''WINDOW FRAME COLORS AND PATrERNS". New
input to NewWindow. New calls; GetCOrgin, SetCOrigin, GetDataSize,
SetDataSize, GetMaxGrow, SetMaxGrow, GetScroll, SetScroll,
GetPal:e, SetJPage, GetCDraw, SetCDraw, GetInfoDraw, SetInfoDraw,
StartDrawing. New sections DRAW CONTENT ROUTINE and DRAW
INFORMATION BAR ROUTINE. New input parameters to MoveWindow.
Defaults added to DragWindow. Parameters expressed as "POINT" are now broken
down into two WORDs.

Replacement for pages 6-8 in the appendix which lables NewWindow pa.rameter list.
Insert pages 15.a-15.c between pa.ges 15 and 16. These pages define DRAW
CONTENT ROUTINE and DRAW INFORMAnON BAR ROUTINE as promised in
the last release.

Two bits added to wframe field of window record (see NewWindow).
SetOrgnMask call added for scrollable windows that use color dithering in 640
mode. Parameter length field added to parameter list passed to NewWindow.
SetWMgrIcons call added along with a WINDOW MANAGER ICON FONT
section. TaskMaster returns window pointer in TaskData field rather than the
message field.

August 13, 1986

A,Botrr..mE WINDOW MANAGER

The Wmdow Manager is a tool for dealing with windows on the Cortland screen. The screen
represents a working mace or desktop; graphic objects appear on the desktop and can be
manipulated. with a mouse. A window is an object on the desktop that presents information, such
as a document or a message. Windows can be any size or shape, and there can be one or many of
them, depending an the application.

There are two kinds of predefined. window frames, document and alert.

:.

The alert window is used by the Dialog Manager and is explained in that ERS.

Inside the document window can be standard window COlllltrols, which are; title bar, close box,
zoom box, right scroll bar, bottom scroll bar, grow box, and information bar. The title bar
displays the window's title, can hold the close and zoom boxes, and can be a drag region for
moving the window. The close box is selected. by the user to remove the window from the screen.
The zoom box is selected by the user to make the window its maximum m.e and to return it to its
previous size and position. The right scroll bar is used to scroll vertically through the data in the
window. The bottom scroll bar is used to scroll horizontally through the data in the window. The
grow box is dragged by the user to change the size of the window. The information bar is a place
an application can display some information that won't be effected. by the scroll bars.

ntllBar

•Bottcm ~C1'On bar

(l~:.:.:.:-:....

A document window may have any or all of the standard window controls. The only restriction is
that if there is a close or zoom box there must also be a title bar. Common sense would dictate that
there only be a zoom box if there is a grow box, although this is not a requirement.

.....-/ August 13, 1986

No standard controls may be added to a alert window. Here are some possible document window
combinations:

-= I ..=~ e~

;.
.?i..
R
!::::...

le

e =

Your application can easily use standard window types, or create your own window types (see
DEFINING YOUR OWN WlNDOWS). Some windows may be created indirectly for you when
you use other parts of the Toolbox; an example is the window the Dialog Manager creates to
display an alert. Wmdows created either directly or indirectly by an application are collectively
caUed application windows. TIlcrn'S also a class of windows called system windows; these
are the windows in which desk accessories are displayed.

The Window Manager's main ftmetion is to k.eep track of overlapping windows. You can draw in
any window without running over onto windows in front of it. You can move windows to
different places on the screen, change thc:ir plane (front-to-back order), or change their size, all
without concern for how the various windows overlap. The Window Manager kepI'S track of any
newly exposed areas and provides a convenient machanism for you to ensure that they are properly
redrawn.

Finally, you can easily set up your application so mouse actions cause these standard responses
inside a document window, or similar responses inside odler windows:

• Clicking anywhere in an inactive window makes it the active window by bring it to the
front and highlighting it.

• Clicking inside the close box of the aCtive window closes the window. Depending on
the 'application, this may mean that the window disappears altogether, or a representation
of the window (such as an icon) may be left on the desktop.

- Dragging anywhere inside the title bar of a window (except in the close or zoom boxes,
if any) pulls an outline of the window across the screen, and releasing the mouse button
moves the window to the new location. If the window isn't the active window, it
becomes the active window unless the Command key was also held down. A window
can never be moved completely off the screen; by convention, it can't be moved such
that the visible area of the title bar is less than four pixels square.

- Dragging inside the size box of the active window changes the size of the window.

\ ..J August 13, 1986

..

WIliPQW REGIOJS:S

Every window has the following two regions:

• The content region: the area that your application draw in

- The frame region: the outline of the entire window plus any standard window controls.

Together, the content and frame regions makeup the structure region.

The content regioo is bounded by the rectangle you specify when you create the window (that is,
the portRect of the window's grafPort) The content region is where your application presents
information to the user.

A window may also have any of the regions listed below within the window frame.

- A go-away region, a close box in the active window. Clicldng in this region closes
the window.

• A dnlg region, the title bar. Dragging in this region pulls an outline of the window
across the screen, moves the window to a new location, and makes it the active window
(if it isn't already) unless the Command key was held down.

- A grow region, the grow box. Dragging in this region pulls the lower right corner of
an outline of the window across the screen with the window's origin fixed, resizes the
window, and makes it the active window (if it isn't already) unless the Command key
was held down.

- A zoom region, the zoom box in the active window. Clicking in this region toggles
between the current position and size to a maximum. size, and back again.

Clicking in any region of an inactive window simply makes it the active window.

Note: The results of clicking and dragging tha.t are discussed here don't happen
automatically, unless you are calling TaskMaster; you have to make the right Window
Manager calls to cause them to happen.

August 13, 1986

CQMI.El".U.REGIQN AND WORK AREA

What is the PllIpOsc of windows any way? Wmdows are used to present more information than the
hardware (screen) can display at one time, and do it in a standard way. The name window is used
because the user sees through the window into a larger area. The power of windows is their ability
to give the user a standard device for accessing large amounts of data. Wmdows act like a
microfiche viewer. What is seen on the viewer is like what is seen in the window's content region.
And the window's data area is what the microfiche is to the viewer. Through the content region
the user can see part of the data area, unless the content region is large enough to view the entire
data area. Scroll bars al'e used to scroll the data area through the content region. The grow box and
zoom box are used to display more, or less, of the data area at one time. When the window is
moved, the data area is moved with it, so the view in the content remains the same.

August 13, 1986

. --"" ~

~DOWSCROLkBARS

Wmdow scroll bars are the devices used for scrolling the data area through the content region and
showing the relationship between the data area and content region. The Control Manager must be
installed in order to use scroll bars in windows. Scroll bars are handled by the Control Manager
but this document will go over how standard window scroll bars act relating to windows.

The scroll bar is like a reduced cross section of the work area. The scroll thumb is the same ratio to
the page region as the content region is to the data area.

Right SCroll Bar

August 13, 1986

USIN.G..mE wnmQW MANAGER

To use the Window Manager, you must have previously initialized QuickDraw and the Event
Manager. The first Window Manager routine to call is the initialization routine, WindStartup.

Where appropriate in your program,~ NewWindow to create any windows you need.

Now you have a choice to make. There are two ways to handle user input in relation to windows.
You can poll the user via GetNextEvent, and decide what to do with events, or poll via
TaskMaster, which will handle most events dealing with standard user interfaces (see USING
TASKMASTER).

Ifyou are not using TaskMaster, you must poll for events by calling GetNextEvent in the
Event Manager. For button down events, call FindWindow, to see if the button was pressed
inside a window. The following are results from FindWindow and the standard actions to take:

wInMenuBar Button passed somewhere outside of the desktop. Ifyou have not subtracted
any area from the deskup, there is a good chance it was pressed in the system
menu bar. Call MenuSeJed in the Menu Manager.

wInDrag Button pressed in a window's drag region, in may not be the active window
however. Call DragWindow.

wInContent Button pressed in window's content l'egion. Call SelectWindow if the
window is not the active window. Otherwise, handle the event according to
your application.

wInGoAway Button pressed in active window's close region. Call TrackGoAway. If
TrackClose returns TRUE, call CloseWindow, or HideWindow,
perhaps after saving whatever the user was working on inside the window.

wInZoom

wInGrow

Button pressed in active window's zoom region. Call TrackZoom. If
TrackZoom returns TRUE, call ZoomWindow.

Button pressed in active window's grow region. Call GrowWindow.

August 13, 1986

.. ;/

USING TASKMASTER

TaskMaster is a prOcedure that can handle many standard functions. TaskMaster is called
instead of GetNextEvent and the first thing TaskMaster does, is call GetNextEvent. If there
isn't an event ready, TaskMaster will return zero. Ifan event is ready, TaskMaster win look at
the event and tty to handle it. If the event can not be handled at all, the event code is returned and
the application can handle the event just like returning from GetNextEvent. IfTaskMaster can
handle the event, it will call standard functions to try and complete the task. For example, if the
user presses the mouse button in an active window's zoom region, TaskMaster will detect it and
call TrackZoom, then call ZoomWindow if the user actually selects the zoom region, and return
no event. However, sometimes TaskMaster can handle an event only up to a point. If the user
presses the mouse in the active window's content region, TaskMaster will detect it, but won't be
able to go any further, so it returns wInContent, which tells the application the mouse bunon is
down the active window's content region.

TaskMaster is provided for two reasons. The first is to make it easier for a programmer to get an
.application up and running as quickly as possible, and still take advantage of all the standard user
interfaces. Although TaskMaster was tailored for beginning programmers, advanced
programmers may find it useful when writing small, inhouse, applications. The second reason for
TaskMaster is aimmed at applications that are sold and will hopefully be around for years, if not
weeks, to come. In the future, applications might have to be modified to take advantage of some
new, as yet unknown, feature. If an application is using TaskMaster, it may be possible to make
the modification to TaskMaster, without adversely affecting past applications, so your application
will be using the new feature without any modification on your part.

TaskMaster is one of the steps taken to remove the user interface duties from the application, as
most operating system have done in the past. TaskMaster should be usable by even the most
advanced applications, although some alternate algorithms may have to be used in order to get the
desired results.

When calling TaskMaster you pass a pointer to a TaskMaster record, TaskRec. The beginning of
the record is the same as an event record. When TaskMaster calls GetNextEvent, it will pass
the pointer given, so the event record part ofTaskRec is set by GetNextEvent. The structure of
TaskRecis:

what
message
when
where
modifiers
TaskData
TaskMask

August 13, 1986

WORD
LONG
LONG
LONG
WORD
LONG
WORD

Event record portion, unchanged from GetNextEvent.

Extended portion for TaskMaster.

11511411311211111 01 9 1 81 71 6 I 51 41 31 21 1I 0I

L:

The TaskMask is used by your application to tell TaskMaster about functions you would not like
it to perform. To perform everything TaskMaster is capable of TaskMask should be $OFFF.
Bits are clear in TaskMask to disable features. See TaskMaster function call for an outline of
TaskMaster features and places TaskMask would cause a break. TaskMask is defined as:

o .. no MenuKey.
o'" no update handling.
o.. no FindWindow.
o.. no MenuSelect.
o'" no OpenNDA.
o .. no SystemCllck.
o.. no DragWindow.
o.. no Selec:tWiooow if wlnContent.
o .. no TrackGoAway.
o.. no TrackZoom.
0 .. no GrowWindow.
o... no scrolling.
Bits 12·15 must be clear.

It is important that bits 12-15 be clear. In fact, TaskMaster will return an error if they are not.
The bits are for future features which will continue to run with predated applications because bits
12-15 will mask off the new, unknown to current applications, features.

Window type return codes from TaskMaster are:

inUpdate - The window, who's pointer is stored in the TaskData field of TaskRec, needs
to be redrawn. Call BeginUpdate, draw the visRgn or the entire content region, and
call EndUpdate. .

wInMenuBar - The user made a selection from the system menu bar and the 1]) of the iteqI
selected is stored in the low-order WORD TaskData, the menu 1]) is in high-order
WORD ofTaskData. Handle the menu selection and unhighlight the menu's title when
you have completed. the requested action.

wInContent - This means the mouse button has been pressed inside the content region of
the active window. The window's pointer is in the TaskData field ofTaskRec.
Because the event happen inside an area your application controls, it is up to you to
handle this event in the manner you chose.

wInGoAway - User has selected the window's go-away region. Do what's needed and
call CloseWindow with the window pointer in the TaskData.field of TaskRec.

August 13, 1986

WINDOW MAMAGERXCOri.F0N'I

The standard document window definition uses a font to draw the close.and zoom boxes, and their
highlighted states, in a window's title. If you would like to use different icons you can replace the
default font. To replace the icon font, or just get the handle to the current font, call
SetWMgrlcoDS. The format of the font is as follows:

Character 0
Character 1
Character 2

Close box.
Highlighted close and zoom boxes.
Zoom box.

\.
'.~

WINDOW RECORDS.

The Wmdow Manager keeps all the information it requires for its operations on a particular window
in a window record. The record contains the window's grafPort, title pointer. position, size of
work area, a reserved long for the application, and other flags the Wmdow Manager needs to
manage windows. The complete window record is accessed directly only by the Window
Manager. Application access to recoJ:d information is restricted to calls through the Window
Manager and directly to the first part of the window record.

Not allowing direct access to the entire window record has good and bad sides. Access to window
information will be slower ifcalls to the WIndow Manager have to be made. However, the delay
would have to be measured in miliseconds, and the delay never seen on the screen. On the plus
side, future Wmdow Managers would not be tied to an older, possibly inadequate, record structure.
The chances of improving the current Window Manager, and maintaining compatibility accross
future hardware, is greatly improved by allowing records to change.

Many WIndow Manager calls require a window pointer that is returned from NewWindow. That
pointer is the pointer to the window's grafPort.

, ../
August 13, 1986 ~ITiJ

The part of the window record that is defined is:

wnext
wport
wsttucRgn
wcontRgn
wupdateRgn
wcontrol
wFrameCtrl
wframe

LONG
BYTE[l86]
LONG
LONG
LONG
LONG
LONG
WORD

Pointer to the next window in the window list.
Window's port. Retmned window pointers return a pointer to here.
Handle of window's entire region, the frame plus content.
Handle of window's content region.
Handle of region that is the part of the content that needs redrawing.
Handle of application's first control in content region.
Handle of frame's first control.
Bit vector that describes window.

11511~1311~1111~91817161514131~1Iol

L: F_HIUTED
F_ZOOMED
F_ALLOCATED
F_CTRL_T1E
F_INFO
F_VIS
Reserved
F_MOVE
F_ZOOM
Reserved
F_GROW
F_BSCRL
F_RSCRL
Reserved
F_CLOSE
F_TITlE

1 == frame is highlighted, 0 == unhighlighted.
1 == currently zoomed, 0 =: not zoomed.
1 =: record was allocated, 0 =: record was provided by application.
1 == control's state is independent, 0 == inactive window has inactive controls.
1 =: information bar, 0 == no information bar.
1 =: currently visible, 0 =: window is invisible.
1 =: title bar is a drag region, 0 =: no drag region.
1 =zoom box on title bar, 0 == no zoom box. (Zoom box must have title bar.)
1 =: grow box, 0 =: no grow box. (Grow box must have at least one scroll bar.)
1 =: window frame horizontal scroll bar, 0 == no horizontal scroll bar.
1 =: window frame vertical scroll bar, 0 =: no vertical scroll bar.
1 == close box, 0 =: no close box. (Close box must have title bar.)
1 == title bar, 0 == no title bar.

(The remainder ofthe record is undefined)

August 13, 1986

,..;' .

WI~OWS AND GRAFPOlUS

It's easy for applications to use windows: To the application, a window is a grafPort that it can
draw into with QuickDraw routines. When you create a window, you specify a rectangle that
becomes the portRect of the g:ra.fPort in which the window contents will be drawn. The bit map for
this grafPort., its pen~ and other characteristics are the same as the default values set by
QuickDraw. These characteristics will apply whenever the application draws in the window, and
they can easily be changed with QuickDraw routines.

There is, however, more to a window than just the grafPort that the application draws in. The
other part of a window is called the window frame, since it usually surrounds the rest of the
window. For drawing window frames, the Wmdow Manager creates a grafPort that has the entire
screen as its portRect; this grafPort is called the Window Manager port.

August 13, 1986 yagellIJ]J

WI,KDOW F.JtAKE COLORS ANDJAIT:E;~NS

' ,.J In addition the to the standard window types and controls, the color of the window and controls
can be selected. Colors are selected from a color table which you either pass when creating a
window, or a default table. The color table for a document window is:

FrameColor
TitleColor
TBarColor
GrowColor
lnfoColor

WORD
WORD
WORD
WORD
WORD

Color of window frame.
Color of inactive bar, inactive title, and active title.
Color and pattern of active title bar.
Color of grow box.
Color information bar background.

Use SetFrameColor to set the color table a window should use, and GetFrameColor to get a
pointer to the window's current color table.

The following diagrams show how these colors are used.

FrameColor:

UnsedOutline
Color

I
Zero

····11.· .
:::- ..
~
~...
:··:--...···...., "\""", ..

-"" " :n..: :: : :'t::J

I..!D::LE~;;;, Frame Color

o

Inactive
title color.

Zero

15

f····~··········1itie··;,j··············, Title Color: ~~IE------- Inactive Title Bar Color· ,· ,, ,
:...•....•....•...........•...•...•,....~· , ,· , ,· , ,, , ,, , ,· , ,· , '· , ,· , ,· . .· , ,· , ,· . ,· . ,· . .· . .· . ,· . .· . .· . .,...•••.•.••••............•..••....,....,· , .· . .· . .
~•.•.•....•.•..........•••.~...~

TitleColor:

August 13, 1986

o

Background
Color

Pattem
Color

Pattem Number
0 ... solid
1 .. dither
2 .. lined

15

lr:···m···························:\t*-Title Bar Pattern/Color
,~••.••....••.........•.....,· .· .· .
~"""""""""""""""""""~· . .· . .· . .· . .
~ ".""...~
: ""~: ~ ~: ~...~· . .· . .· . .· . .: ~...~· . .· . .· . .
~ , ~""', ~ ~::~~

: : :: : :,..~::
~ ~ ~""'~ ~ :.::~:

TBarColor.

GrowColor:

Grow Box Color

Zero Interior
Color
When Not
Selected

Interior
Color
When
Selected

InfoColor:

Information Bar Color
15

Zero Interior
Color
When Not
Selected

o

Unused

AU~lust 13, 1986

H..oW A Wl.HDOW IS DRAWN

Wh.en a. window is drawn or redrawn, the following two-step process usua.lly takes places: the
window frame is drawn, then the window contents.

To perform the first step of this process, the Wmdow Manager manipulates regions of the Window
Manager port as necessary to ensure that only what should be drawn is drawn. It then calls the
window defmition function with a request that the window frame be drawn. The window
definition function is either within the Window Manager or in the application for custom windows
(see DEFINING YOUR OWN WINDOWS).

For the second step the Wmdow Manager generates an update event to get the application to
draw the window contents. It does this by accmnulating. in the update region, the areas of the
window's content region that need updating. The Event Manager periodically calIs
Che:cltUpdate to see if there's any window whose update region is not empty; if it finds one, it
reports (via the GetNextEvent function) that an update event has occurred, and passes along the
window pointe.r in the event message. Update events will be issued to the front most window fIrst
and the bottom most last. The application should respond as follows:

1. Call BeginUpdate. This procedure temporarily replaces the visRgn of the window's
grafPort with the intersection of the visRgn and the update region. It then clears the
update region for that window.

2. Draw the window contents.

3. Call EnciUpdate to restore the actual visRgn.

August 13, 1986

..

DRAW CONTENI ROIlIlNE

IfwContDefProc is nonzero, the value will be considemd the a.c:idress of a routine in your
application that will draw the window's content region. WContDefProc must be set ifyou want to
use window frame scroll bars. TaskMaster will scroll the content and call wContDefProc to
update the uncovered area when the use perfroms a scrolling action. WContDefProc could be
considered a control action procedure.

WContDefProc might be useful even if you are not using window frame scroll bars. TaskMaster
will be able to handle you update events if wContDefProc is set. TaskMaster will call
BegilraUpdate, wContDefProc and EndUpdate. (TaskMaster does take some short cuts in
calling BeginUpdate and EndUpdate because its part of the Wmdow Manager.) Along these
lines. if you are using window frame scroll bars, and therefore TaskMaster, you will not get
update events, because they are handled by TaskMaster.

There are no inputs or outputs to your draw content routine. Simple draw what is needed in the
content and perform a RTI.. to exit. Remember that the content will have already been erased using
the window port's background pa.ttel:n, and the visRgn is set to the area needing to be redrawn.

Warning: Do not change ports or perform a SetOrigin call while in your draw
content routine.

Ifbit 4 in wFrame of the NewWindow parameter list is set, the window will have an infonnation
bar. An information bar is the width of window and a bit higher than the system font. It will
appear just above the content region.

The Window Manager draws the information bar, but it is up to the application to draw any .
information inside. Your application can do this by storing the address of an information bar draw
routine in wlnfoDefProc of the NewWindow parameter list (also set bit 4 of wFrame). When the
standard window frame ddProc draws the c..'IIlpty information bar, it will also call wInfoDefProc.
The inputs to your routine will be:

InfoBar:LONG
InfoData:LONG
theWindow:LONG

August 13, 1986

Pointer to information bar enclosing RECT.
wInfoRefCon value from NewWindow parameter list.
Pointer to window's port.

\. i'
....., ..;,.,..

An information bar draw routine that just prints a string might look like this:

InfoDe£Proc START
,
theWmdow
InfoData
InfoBar

equ 6
equ theWmdow+4
equ InfoData+4

phd

tse
ted

Save the current direct page.

Switch to direct page in stack.

.,
; - Position the pen at the text swting point ---------------

ldy #lefcside
1da [InfoBar],y
clc
adc #20
pha

ldy #top_side
lda [InfoBar],y
lOW
adc i\\10
pha

(Where left_side equals 2.)
Get the left side of the information bar,

plus a tab over,
to get a starting x position. (pass to _MoveTo.)

(Where top_side equals 0.)
Get the top side of the information bar,

plus enough to vertically center the text.
to get a starting y position. (Pass to _MoveTo.)

Move the pen to the starting point

,
; -- Print the text on the information bar----------.-----

pea infoSttgl-16
pea infoStrg
_DrawString

August 13, 1986

Pass high word of string.
Pass low word of string.
Print the string.

,
; - All done, now clean-up stack and return to Wmdow Manager---

ply

lda 2,s
sta <14
leln O,s
sta <12

tse
c1c
adc #12
tes

tya
ted

rtl

END

Get original direct page back.

Move return down over input parameters."'orks because stack and direct page are equal.

Now move stack pointer over input parameters.

Number ofbytes of input parameters.
New !ttaek.

Restore Oliginal direct page.

Back to Wmdow Manager.

~",...
I

I have taken some libe.tties h~, such as taking for granted the color and writing mode of the pen
when the text is written. When en=ed, the CUt'X'eIlt port is the Wmdow Manager's. It is
permissible to change the pen loc:ation~ color, and writing mode: without saving the original pon
state, However, that's a,s much as you should do without first saving the pan state, and then
restoring it on exit.

Another liberty taken is when the text is centered vertically. You should make QuickDraw calls to
find font height, find the: InfoBar height, and then actually center the text You should always use
InfoBar as offsets into the information bar interior, they could be different from time to time.

And of course 'infoStrg' would have to be defined.

,
-.J

August 13, 1986 y~ell[J]J

MAKING A WIKDOW ACTIXE= ACTIVAIE EV:E.~

A number ofWmdow Manager routines change the state of a window from inactive to active or
from active to inactive. For each such change, the Wmdow Manager generates an activate event,
passing along the window pointer in the event message. The activeFlag bit in the modifiers field of
the event record is set if the window has become active, or cleared if it has become inactive.

When the Event Manager finds out from the Window Manager that an activate event has been
generated, it passes the event on to the application (via the GetNext.Event f1lIlction). Activate
events have the highest priority of any type ofevent.

Usually when one window become:; ~lJCtive another becomes inactive, and vice versa, so activate
events are most commonly generat.ed in pairs. When this happens, the Window Manager generates
first the event far the window becoming inactive, and then the event for the window becoming
active. Sometimes only a single activate event is generatred, such as when there's only one
window in the window list, or when the active window is permanently disposed of (since it no
longer exists).

Activate events for dialog and alert windows are handled by the Dialog Ilvla.nager. In response to
activate or inactivate events for windows created di.rectly by your application, you might take
actions such as the following:

- Inactivare controls in inac:tive window, and act:ivate controls in active windows.

- In a window that contains text being editc~, remove the highlighting or blinking cursor
ftum the text when the window becomes inactive and restore it when the window
becomes ac:tive.

- Enable or disable a menu or certain menu items as appropriate to match what the user
can do when windows become active or inactive.

August 13, 1986

llEEUfiNG YOUR OWN WINPOWS

Yau may want to define your own type of window - maybe a round or hexagonal window, or even
a window shaped like an apple. QuickDraw and the Window Manager make it possible for you to
do this.

To define your own type of window, you write a routine that can will dupicate some \Vindow
Manager functions. When the Window Manager needs to do something it will call your routine and
not its own. The address of the routine is passed to CreateWindow. The inputs to your routine
will be:

varCode:WORD - operation needed to be perfor.med.
theWindow:LONG - pointer to the window's port.
Param: LONG - flag uSE~d by some messages.

Output will be:
outCome: LONG - returIled flag.

Offsets into the stack are:

Param
theWmclow
varCode
outCome

=4
==Param+4
== theWmdow+4
==varCode+2

Yom routine mu.c;:t strip off the three input parameters, and return via RTI.... So, the shell of your
defProc routine might be:

August 13, 1986

MyWindow

actions

START
Ida 12,8
as! a
tax
Ida >acti.ons,x
pha
rts

de i2'draw_wind-1'
de i2'test hit-!'
de i2'eale-='rgns-I'
de i2'init wind-I'
de i21dll:wind-!'
END

Get varCode.

Go to action haIlcUer.

Routine to draw the window's frame.
Routine that find a window region at a given point
Compute the window's sttuetRgn and contRgn.
Do additional initi.'l1ization.
Do additional disposal.

··Draw window frame.
··jmp exit
END

START
··Find what area of the window the point in Param is located.
··jmp Cl'dt
END

··Compute the window's struetRgl1 and eontRgn.

·jmp exit
END

init_wind START
··Perfonn additional initialization.
··jmp exit
END

kill_wind START
·

Pert'onn additional disposal.

jmp exit
END

August 13, 1986

..

exit START

Ida 205
sta 1205
Ida 105
sta 11,8

tsc
sec
she #10
tes

rtl
END

varCode will be:
wDraw =0
wHit =1
wCalcRgns =2
wNew =3
wDispose =4

Move return address.

Strip off input parameters.

Return to Window Manager.

Draw window frame.
Tell what region mouse button was pressed in.
Calculate wsttueRgn and wcontRgn.
Do any additional window inilializarion.
Take any additional disposal actions.

The following sections tell you what is expected is l'espOnse to the vatCode.

wDraw .. Draw Window Frame

Param:
wDrawFrame =0
wInGoAway =1
wInZoom =2

Draw the window's entire frame.
DI'3.W go-away region.
Draw zoom region.

Bit 31 =1
=0

Highlight.
Unhighlighted.

The entire window frame should be drawn as an inactive window.
The entire window frame should be drawn as an active window.
The go-away region should be drawn as unhighlighted.
The go-away region should be drawn as highlighted.
The zoom region should be drawn as unhighlightecL
The zoom region should be drawn as highlighted.

Your routine should draw ill the current grnfPoxt, which will be the Window Manager port. The
Window .Manager win request this operation only if the window is visible.

Param
$00000000
$80000000
$00000001
$80000001
$00000002
$80000002

August 13, 1986 fll[23]

wHit m Find What Region a Point Is In

Param equals the point to check. The vertical coordinate is in the low-order WORD and the
horizontal coordinate in the high-order WORD. The Wmdow Manager will request this operation
only if the window is visible. Your routine should determine where the point is in your window
and then return:

wNoHit
winContent
wInDrag
wInGrow
wInGoAway
wInZoom
wInInfo
wlnFrame

=: 0 Not on the window at all
=: 19 In window's content region.
=: 20 In window's drag (title bar) region.
=: 21 In window's grow (size box) region.
=: 22 In window's go-away (close box) region.
== 23 In window's zoom (zoom box) region.
E 24 In window's information bar.
z Z7 In window, but not any of the above areas.

Usually. wNoHit means the given point isn't anywhere within the window, but this is not
necessarily so.

August 13, 1986

wCalcRgns • Calculate Window's Regions

Your routine should calculate the window's enti.re region and its content region based on the current
grafPort's portRect. The Window Manager will request this operation only if the window is
visible. When you calculate regions for your window, do not alter the clipRgn or visRgn of the
window's grafPort. The Wmdow Manager and QuickDraw take care of this for you. Altering the
cIipRgn or visRgn may result in damage to other windows.

wNew • Initialization

After initializing fields as appropriate when creating a new window, the Wmdow Manager sends
the message wNew to your routine. This gives your routine a chance to perform any initi.a1ization it
may require. For example, because the sttueture of the window record is not documented you
made want to allocate your own record sttuct:uI'e, initialize it, and store its pointer via SetWRefCon.

wDispose • Remove Window .

The W"mdow Manager's CloseWindow and DisposeWindow procedures send this message so your
routine can catTY out any additional action.~ requm::d when disposing of the window. The routine
might, for cxat:IJq)le, release space lhat was allocated by the initialize routine.

wGrow • Draw the Outline of the Window

Param is a pointer to a REcr (rectangle). Your routine should draw an outline image of your
window that would fit the given rectangle. TIle Wmdow Manager requests this operation
repeatedly as the user drags inside tJ1C grow region. Your routine should use the grafPort's current
pen pattern and pen mode, which are set up so one call will draw the outline and next will erase it
(XORmode).

August 13, 1986

IkfinitiODS

highlighted

Ulllhigblighted

active

inactive

The frame of the window is drawn in full detail. Generally the frontmost
window is the only highlighted window on the screen. However, any window
could be highlighted, even all the windows.

Opposite of highlighted. Generally all the windows behind the frontmost
window are unhighlighted. However, even the frontmost window can be
unhighlighted.

In this document it only means the frontmost window on the screen. But
generally it also means it is highlighted. This should also be the window your
application acts on when the user types, gives commands, or whatever is
appropriate to the application.

Ally windows behind. the frontmost (active) window. Generally these window
will be unhighlighted.

,..;...---------------.......Title

Inactive and
unhighlight€ld.

Active and
highlighted:

window list
or list An intemallink:ed list of an the window records created by NewWmdow and

not removed by a CloseWmdow or DisposeWmdow call. The first visible
window in this list is the active window.

top window
or top The first window in the window list. However, the top window is not the

active window unless it is visible.

bottom window
or bottom The last window in the window list.

August 13, 1986

	v5_02_01
	v5_02_02

