
A]p)]p)eJDlm A
MeJDl1Ul C!illls

INITIALIZATION AND TERMINATION ROUTINES

MenuBootlnit

input: None.
output: None.

Called when SetTSPtr is called.

(not completed)

.... "

MenuStartup

input: userID:WORD - user ID that the Menu Manager can use, mainly to allocate memory.
zeropg:WORD - zero page Menu Manager can use, must be on page boundary.

output: None.

Initiali.zes system menu bar with no menus, and makes it the cummt menu bar.
Calls Desktop in the W'mdow Manager to reserve space for the bar.
Menu Manager opens a grafPort.
Calls DrawMe.nuBar to draw an empty system menu bar.

MenuShutDown

input: None.
output: None.

CoSes the Menu Manager's pott and frees any allocated menus.

MenuVersion

input: None.

output: version:WORD - Menu

Manager's version number.

MenuReset

input: None.
output: None.

Does nothing.

August 13, 1986

(not completed)

(

..

NewMenuBar

inputs: theWindow:LONG - pointer to window's port, owner of menu bar, zero for system.

output: BarHandle:LONG - handle of menu bar.

NewMenuBar will create a default menu bar with no menus. MenuStartup calls
NewMenuBar to create a default system menu bar. Ifyou are only going to use one
system menu bar, NewMenuBar will not have to be called. The default size of the menu
bar is, upper left comer matches the port, and the width is the width is the width of the
screen. The height of the bar is 13. The menu bar is visible and. has default colors of black
text on a white background.

NewMenu

input: MenuString:LONG - pointer to a menu!item line list.

output: MenuHandle:LONG - handle of menu, zero if error.

NewMenu allocates space for a menu and its items. You pass a pointer to a menulitem line
list which is a text string that describes the menu title and its items. See MENU LINES AND
ITEM LINES for the format needed. The MenuHandle returned can then be inserted in a
menu bar via an InsertMenu call.

Call DisposeMenu to deallocate the menu when finished.

August 13, 1986

DisposeMenu

input MenuHandle:LONG - previously allocated via NewMenu.

output None.

Frees the memory used by MenuHandle. The menu will no longer be usable.

Warning: The menu is not taken out of the menu list, call DeleteMenu to do
that. To delete a menu from the menu list and free it's memory you
could do something J..ike this:

(
FixMenuBar

pha
pha
pea MenuID
_GetMHandle

pea MenuID
_DeleteMenu

_DisposeMenu

Space for returned handle.

ID of menu to delete.
Get the handle of the menu.
Leave menu handle on stack.

ID of menu to delete from list.
Delete menu from list.

Handle still on stack.
Deallocate menu record.

input None.

output MenuHeightWORD - height of the menu bar.

This routine will compute standard sizes for your menu bar and menus~

FJXMenuBar will search all the menu title fonts and use the tallest one to compute the
height of the menu bar, add it to Bar.top, and store it in Bar.bottom. It will set the
TItleWidth width for every menu TItleWidth that is given as zero. FiIWly it will call
CaIcMenuSiu for each menu in the menu bar.

August 13, 1986

(

CalcMenuSize

input: newWldth:WORD - number of pixels wide the menu should be, or zero.
newHeight:WORD - number of pixels high the menu should be, or zero.
MenuNum:WORD - menu ID number.

output: None.

This call lets you set menu dimensions, or have the Menu Manager do it. The Menu
Manager will calculate the width for you ifnewWidth is zero,and the height ifnewHeight is
zero.

To compute the width the Menu Manager will find the widthest item in the menu plus room
for a mark and command key. A default width will be used if the menu does not contain any
item text.

To compute the height, the Menu Manager will add up the font height of each item plus four,
or use the value found in the font index of ltemFlag if bit 14 of ItemFlag is set.

This routine is called for each menu by the Menu Manager when F"IXMenuBar is called.

August 13, 1986
I File View lIZIL:::=-----J

RppendiH A 1s.....J

(

USER INTERACTION ROUTINES

MenuSeled

input TaskRec:LONG - pointer to Task record which contains point of button down.
BarHandle:LONG - handle of menu bar, zero for system menu bar.

output None ('TaskData' field ofTask record contains return IDs).

Called when the a button goes down on a menu bar (see FindWindow if using the Window
Manager). The routine will take c:are of drawing highlighted titles, pulling down menus, and
user interaCtion. This is handled automatically for the system menu bar when using
TaskMaster in WIndow Manager.

Ifa selection is made the low order WORD of the 'TaskData' element in the Task record will
contain the 10 number of the item selected, and the high order WORD will contain the
menu's ID number. If there is a selection, the menu's title will be left highlighted. See
HiliteMenu to redraw the title as normal.

Ifno selection is made by the user the low order WORD of the 'TaskData' element in the
Task record will be zero.

BarHandle becomes the cmrent menu bar.

The stt'UCt1.1fe ofTaskRec is:

.', .• r what
message
when
where
modifiers
TaskData

August 13, 1986

WORD
LONG
LONG
LONG
WORD
LONG

Event record portion, unchanged from GetNextEvent.

Extended portion for TaskMaster.

(File Vi.",)ltB1........--,:---_........J

RppendiH R L 6

"r'"

,-'

MenuKey

input TaskRec:LONG - pointer to Task :record which contains the character to check.
BarHandle:LONG - handle of menu bar, zero for system menu bar.

output None ('TaskData' field ofTask record contains return IDs).

Maps the given character to the associated menu and item for that character. When you get a
key-down event with the Command key held down-or auto-key event, if the command
being invoked is repeatable-call MenuKey with a pointer to a Task record that contains the
character and the state of the modifier keys (the format is the same as an Event record, see
Event Manager). The match will only occur if it is indicated in the Task record that the
command key was down. MenuKey highlights the appropriate menu title if the key
matches, and returns Selection.

The items are searched starting with the first menu in the menu list and all the items in the
menu starting with the first. Then the second menu, and so on. The given key is compare
with every item's primary keyboard equivalent ofevery item. If no match is found, the cycle
is repeated, this time comparing to each item's alternate keyboard equivalent.

There generally there should never be more than one item in the menu list with the same
keyboard equivalent, but if there is, MenuKey returns the first one it encounters.

MenuKey will not convert lower case characters to upper case. Ifyou want to match on
either upper or lower case, set the primary character to the upper case character and the
alternate to the lower case character.

If a selection is made the low order WORD of the 'TaskData' element in the Task record will
contain the ID number of the item selected, and the high order WORD will contain the
menu's ID number. If there is a selection, the menu's title will be left highlighted. See
HlliteMenu to redraw the title as normal.

Ifno selection is made by the user the low order WORD of the 'TaskData' element in the
Task record will be zero.

BarHandle becomes the current menu bar.

See MenuSelec:t for a description ofTaskRec.

August 13, 1986
Oil. Vie",-===:

RppendiH R 1z....J----1

(
MenuRefresh

input: RedrawRoutine:LONG - address of routine in your application.

output: None.

Note: This is called only when using the Menu Manager without the
Wmdow Manager.

RedrawRoutine is called when the Menu Manager can not restore the screen under a menu.
F1I'St the Menu Manager will try to allocate a buffer large enough to save the screen pan
before it draws the menu. If the buffer is allocated the screen will be restored from it and
then deallocate the memory buffer. If the buffer can not be allocated the Menu Manager will
try to call the Wmdow Manager (via the call the Wmdow Manager made to MenuRefresh
during initialization) to refresh the screen when the menu goes away. Ifno buffer can be
allocated and the Wmdow Manager isn't installed, the Menu Manager will call
RedrawRoutine to refresh the screen under the menu.

The Redra.wRoutine should look something like this:

Refresh.,
reccaddr

START

equ 6 Offset down stack to REef pointer.

(

,~""

..
Needed operations to redraw the
screen inside the given REef.

,
; Remove the given pointer from the stack:

address down

the return

Jda a,s

sta 4,s
Jda 2,s
sta 6,s

pIa

pIa

111

Move the return

the stack.

Move the stack back to

address.

Return to the Menu
Manager.

August 13, 1986

,
\.

",.'.';"',.'

DRAWING

DrawMenuBar

input: None.

output: None.

Draws the current menu bar, along with any menu titles on the bar.

HiliteMenu

input: Hilite:WORD • FALSE to draw normal, TRUE to highlight the title.
MenuNum:WORD • menu's ID. .

output: None.

MenuNum is the the menu's ID. Its title is drawn using the menu bar's normal color if Hilite
is FALSE, or hilite color ifTRUE. HiIiteMenu should be called with Hilite FALSE, and
the menu ID of the selected menu, after the application has finished acting on a menu
selection.

FlashMenuBar

input: None.

output: None.

This will redraw the entire current menu bar using the bats hilite color and then again using
its normal color.

, J
..J August 13, 1986

r Fil. View ...L....---,:--_--l

RppendiH R L9

(

.MENU AND_ ITEM SHUFFLING

InsertMenu

input: Ad.dM:enu:LONG _. handle of menu to insert.
InsertAfter:WORD - menu ID, zero to insert at front.

output: None.

Inserts AddMenu into the current menu bar after InsertAfter, or at the front of the list if
InsertAfter is zero. DrawMenuBar should be called to redraw the new menu bar after
InsertMenu.

DeleteMenu

input: MenuNum:WORD - menu ID of menu to delete.

output: None.

MenuNum is take out of current menu bar. DrawMenuBar should be called to redraw the
new menu bar after DeleteMenu. The menu is not deallocated, call DisposeMenu to do
that.

InsertItem

input: AddItem:LONG - address of item line to insert.
InsertAfter:WORD - item ID, zero to add to front, $FFFF to append to end of menu.
MenuNum:WORD - menu ID number to add item to, zero for first menu.

output: None.

Inserts an item into the ltemList after InsertAfter. IfInsertAfter is zero, the item will be
inserted at the front of MenuNum. If InsertAfter is $FFFF, the item will be appended at the
end of MenuNum. IfMenuNum is zero, the menu will be considered the first menu. Call
CalcMenuSize to resize the menu if needed afterward. See 1v1ENU LINES AND ITEM
LINES for the definition of an item line.

\

August 13, 1986
(Fill' Yil'w ~~_----'

RppendiH R 11O....J

(
\

(

DeleteItem

input: It:emNum:WORD • item In of item to delete.

output: None.

ItemNum is taken out of YtemI jst of its menu in the cum:nt menu bar. Call CalcMenuSize
to resize the menu ifneeded afterward.

August 13, 1986

(MENU BAR ACCESS

SetSysBar

input BarHandle:LONG • handle of new system menu bar.

output None.

Handle of new system menu bar is given. The system menu bar becomes the current menu
bar.

GetSysBar

input None.

output BarHandle:LONG - handle of the system menu bar.

Returns the handle of the system menu bar.

SetMenuBar

input BarHandle:LONG - handle of current menu bar.

output None.

Handle of menu bar to make current is given. If you want the system menu bar to be the
current menu bar, pass zero for BarHandle.

GetMenuBar

input None.

output BarHandle:LONG· handle of current menu bar.

Returns the handle of the current menu bar.

August 13, 1986

[File- Yie,,#"
Rppendi'H R L--12-~----I

Hilite Color:

Outline Color:

..• , .. ~/.

/. ~ ..
1-

CountMItems

input: MenuNum:WORD - menu's ID.

output: NumOOtems:WORD - nUJJlbcr of items in menu.

Rewms the number of items, including any dividing lines, in the menu.

SetBarColors

input: NewBarColor:WORD - nonnal bar color.
NewInvertColor:WORD - selected bar color.
NewOutColor:WORD - Outline color in bits 7-4.

output: None.

Nonnal Color: bits Q..3 =text color when not selected.
bits 4-7 =background color when not selected.
bits 8-15 =zero.
Negative to not change nonnal color.

bits Q..3 :II text color when selected.
bits 4-7 l1li background color when selected.
bits 8-15 =zero.
Negative to not change hilite color.

bits Q..3 = zero.
bits 4-7 =color of menu bar outline, menu outline, underlines, and

dividing lines
bits 8-15 == zero.
Negative to DOt change outline color.

Color of cw:rent menu bar is set to given values that are not negative. Call DrawMenuBar
to draw menu bar in new colors.

August 13, 1986
r Fil. View ...'-- r-----J

AppendiH A L13

/

(

GetBarColon

input: None.

output: Colors:LONG - colors of menu bar.

R.etumed menu bar colors are returned in one LONG of which:

bits 31-24 =zero.
bits 23-18 =color of menu bar outline, menu outline, underlines, and dividing lines
bits 19-16 =zero.
bits 15-12 =background color when selected.
bits 11-8 =text color when selected.
bits 7-4 • background color when not selected.
bits 3-0 =text color when not selected.

SetTitle.l:ttart

input: XStartWORD - menu bar title starting position.

outpUt: None.

XStart is the number ofpixels from the left side of the menu bar that the titles should start.
Xstart should be at least 1. Zero will over write the left side outline of the menu bar. 127 is
the maximum value allowed.

GetTitleStalrt

input: None.

output XStartWORD - menu bar title starting position.

XStart is the number of pixels from the left side of the menu bar that the titles start from

August 13, 1986

!

..

~NU RECORD ACCESS ROUTINE-.S.

GetMHandle

iDput: MenuNum:WORD - menu ID.

output: MenuHandle:LONG - handle of menu, zero iferror.

Handle of menu with an ID number that matches menuNum is returned, or zero if the menu
is not foWld.

SetTitleWidtb

input: NewWidth:WORD - new width of title.
MenuNum:WORD - menu ID.

output: None.

Sets the width of a title. This is the area where the user can select a menu and the area that is
inverte:d when the title is highlighted.

GetTitile'Width

input: MenuNum:WORD - menu ID.

output: TheWidth:WORD - width of title, zero if error.

Returns the width of a title. This is the area where the user can select a menu and the area
that is invc:rted when the title is highlighted.

,

August 13, 1986
(File Yit'w~

AppendiH A15

(
\ SetMenuFlag

input: NewValue:WORD - new bit value to set or clear.
MenuNum:WORD - menu ID.

output: None.

Possible NewValues:

EnableMenu
DisableMenu
UnhiliteMenu
HiliteMenu
ColorReplace
XORhilite
StandardMenu
CustomMenu

$FF7F
$0080
$FFBF
$0040
$FFDF
$0020
$FFE"l
$0010

Menu will not be dimmed and will be selectable.
Menu will be dimmed and not selectable.
Menu will appear in its highlighted state.
Menu will appear in its normal (unhighlighted) state.
The menu's title and background will be redrawn to hilite.
The menu's title area will be XORed to hilite.
The menu will be considered a standard menu.
The menu will be considered acustom menu.

(
\

Ifyou change a flag that affects the appearance of a menu title you should also call
DrawMenuBar after SetMenuFiag to redraw the titles in their new state.

GetMenuFlag

input: Me:nuNuoo:WORD - menu ID.

output: MenuState:WORD - desired bits from MenuFlag.

Returns MenuNum.MenuFlag (see MENU RECORDS for definition).

SetMenuTitle

input: NewStrg:LONG - Address of string to replace ltemName.
MenuNum:WORD - menu ID.

output None.

The value in NewStrg is moved into the menu's TitleName.

August 13, 1986
(Fn. View ..I.----.,~---l

RppendiH R L16

(

"

GetMenuTitie

input McnuNum:WORD - menu ID.

output TheTitle:LONG - pointer to TitleName.

Returns a pointer to the title of a menu.

SetMenuID

input NewID:WORD - new 10 to be assigned.
MenuNu.m:WORD - c:ur.rent menu 10.

output None.

The menu is assigned the given ID numbex.

/ August 13, 1986

(Fill' Vil'\!(~__.......J

AppendiH A IE..J

(
....-

SetItem

input: NewStrg:LONG • Address of string to replace IremName.
ItmlNum:WORD • item ID.

output: None.

The item's ItemName pointer is replaced with NewStrg.

GetItem

input It.emNum:WORD • item ID.

output: ItemStrg".LONG:: pointer to ItemName.

Returns a pointer to an item's text string.

EnableUem

input Iteml'Twn:WORD· item ID.

output None.

Item will appear as nonna! and selectable.

August 13, 1986

f Fil. View~:-- __

RppendiH R l18...J

I
\.

.. ,/

DisableItem

input: ltemNum:WORD - item !D.

output: None.

Item will appear dimmed and will not be selectable.

Cbecldtem

input: Checked:WORD - TRUE to check item, FALSE to uncheck item.
ItemNum:WORD - irem m.

output: None.

Item will appear with a check mark to the left of the item's text, or nothing will appear if
Checked is zero.

SetItemMark

input: Mar.k:WORD - charactex- to mark item with, zero for no mark.
ltemNum:WORD - item D).

output: None•

Item will appear with the character given to the left of the item's text, or the mark will not
appear ifMark is zero.

GetItemMark

input ltemNum:WORD - item !D.

outpUt: Mark:WORD - chaIac:ter that marks item, zero := no mark.

August 13, 1986
r Fil" View EB

AppendiH A 19

SetItemStyle

input: ChStyle:WORD - text style to use on item's text.
ItcmNum.:WORD - item ID.

output: None.

Bits in ChStyle are set to enable special text drawing. Bits affected are:

$0001 - Bold.
$0002 - Italic.
$0004 - :UndetSgm~.

Bits 0-2 ofchStyle are all used to set the item's text style. For example:

chStyle == $0007
chStyle == $0005
chStyle :::: $0000

The item is printed as bold italic and underscored.
The item is ptinted as bold and underscored.
The item is printed as plain (no bold italic or underscore).

GetItemStyle

input: ItemNum:WORD - item U).

output: OiStyle:WORD - text style tJO use on item's text.

Bits in ChStyie are set tJ(> enable special text drawing. Bits affected are:

$0001 - Bold.
$0002 - Italic.
$0004 - lIndrnG!:G.

SetItemF1ag

input: NewValue:WORD - new bits to set.
ltemNum:WOlm - item ID.

output: None.

This call is used to set desire st.ates of an item. Input flags are:

Underline item.
Not underline an item.
Use XOR highlighting.

August 13, 1986

~

$0040
$FFBF
$0020

C]l1C!' Y;e~
AppendiH A 20 J

(
\

Use redraw highlighting.

August 13, 1986

$FFDF

GetItemFlag

input ItemNum:WORD • item lD.

output Divide:WORD· current underline value.
XOR.;WORD • current highlighting method.

Outputs are:

OldDivide 0 == no underline
OldXOR 0 == redraw to highlight

1 == underline
1 == XOR to highlight

SetItemID

input NewlD:WORD· new lD to be assigned.
ItemNum:WORD • current item lD.

output: None.

The item is assigned the given lD number.

SetItemBlink

input: CountWOIll • number of times item should blink when selected.

output None.

1bis call affects all menu bars, system and window. When an enabled item is selected by the
user the item blinks briefly to conform the ehicee. Normally, your application shouldn't be
concerned with this blinking; the user sets it with the Control Panel desk accessory. If
you're writing a desk accessory like the Control Panel. though, SetItemBlink allows you .
to control the duration of the blinking. The Coum parameter is the number of times menu
items will blink.

August 13, 1986
r File View ~1Imc:::::: :J

Appendhr A l ~..J--"""

/'
(

MISCEL.LANEOUS ROUTINES

GetMenuMgrPort

input: None.

output: McnuMgrLONG· pointer to Menu Manager's port.

Getting the Menu Manager's port might be useful ifyou would like to change its font.

MNewRes

input: None.

output: None.

Called when the screen resolution changes. Menu Manager makes needed adjustments for
the new resolution and redraws the Clm"ent system menu bar.

InitPalette

input: None.
output None.

Call when youve changed the color palattes. "Ibis will reinitize the palettes needed
for the color Apple logo in the system menu bar.

August 13, 1986
(Fill!'y~

AppendiH A ~

I

Constants

Masks for MenuFlag:

M_INVIS $04
M STANDARD $10
M NO XOR $20
M NORMAL $40
M ENABLED $80

mDrawMsq 0
mChooseMsq 1
msizeMsq 2
mDrawTile 3

Posiible inputs to SetMenuFIag:

EnableMenu' $FF7F
DisahleMenu $0080
OnhiliteMenu $FFBF

(- HiliteMenu $0040
\ ColorReplace $FFDF

\, ...,./
XORhilite $0020
StandardMenu $FFE7
CustomMenu $0010

FASLE ifmenu is visible (not completed).
FALSE if menu is a standard (not custom) menu.
TRUE if menu title is highlighted using XOR
TRUE ifmenu title is highlighted.
FALSE ifmenu is disabled.

Draw menu command.
Hit test item command.
Compute menu size command.
Draw menu's title command.

Menu will not be dimmed and will be selectable.
Menu will be dimmed and not selectable.
Menu win appear in its highlighted state.
Menu will appear in its normal (unhighlighted) state.
l'be menu's tid.!:: and background will be redrawn to hilite.
The menu's titlc~ area wiJll be XORed to hilite.
The menu will be considered a standard menu.
The menu will be considered a custom menu.

Possible NewValue input to SetItemFlag:

'.

Onderltem
NoOnderltem
XORHilite
NoXORHilite

August 13, 1986

$0040
$FFBF
$0020
$FFDF

Underline item.
Do not underline item.
Use XOR highlighting on item.
Use redraw highlighting on item.

CFn. Vi.w ~I
flppendiH R 24]

Data Types

TaskRec (TaskMaster record):

what 0 Inteqer Same as event record.
messaqe 2 Lonqlnt Same as event record.
when 6 Lonqlnt Same as event record.
where 10 Lonqlnt Same as event record.
modifiers 14 Inteqer Same as event record.
TaskData 16 Lonqlnt Return for ID numbers.
TaskMask 20 Inteqer Unused.
TASKREC_SIZE 22 Size ofTaskRec.

MENUBAR (Menu Bar Recm'd):

CtrlNext 0 Handle Not used.
CtrlOwner 4 l?ointer PointCr' to menu bar's window.
CtrlRect 8 RECT Enclosing rectangle.
CtrlFlaq 16 Byte Bit flags.
CtrlHilite 17 Byte Not used..
CtrlValue 18 Inteqer Not used.
Ctrll?roc 20 Pointer Not used.

,; .- CtrlAction 24 l?ointer Not used.
CtrlData 28 Longlnt Reserved for QrlProc's use.
CtrlRefCon 32 Longlnt Reserved for application's use.
CtrlColor 36 l?ointer Menu bats color table.
MenuList 40 Handle [] Menu bar's color table.

MENU (Menu record):

MenuID 0 Integer Menu's ID number.
, MenuWidth 2 Inteqer Wldth of menu.

MenuHeiqht 4 Inteqer Height of menu.
Menul?roc 6 Pointer Menu's definition procedure.
MenuFlag 10 Byte Bit flags.
TitleWidth 11 Integer Width of menu's title.
Tit"leName 13 Pointer Menu's title.

August 13, 1986

	v5_05_01
	v5_05_02

