
Part III

The System Loader

The System Loader is a Conland Toolset that works closely with ProDOS/16. It is
responsible for loading all code and data into the Conland's memory. It is capable of static
and dynamic loading and relocating of program segments, data segments, subroutines and
libraries.

Chapter 15 explains in general terms how the System Loader works. Chapter 16 details
some of its functions and data structures. Chapter 17 gives programming suggestions for
using the System Loader. Chapter 18 shows how to make loader calls and describes each
call in detail. Chapter 19 is a complete list of System Loader error codes.

Alpha Draft 143 5/22/86

Date: August 9. 1986

Author: Lou Infeld

SUbject: System Loader ERS

Document Version Number: 00:97

Revision History

00 :00 (09/06/85)
00:01 (09/16/85)

00 :02 (09/18/85)

00:30 (11/26/85)

00:40 (01/03/86)

System Loader ERS 00:97
Lou Infeld

Initial Release
New Jump Table Entry format
Dynamic Segment Level replaced with Usage Counter
Load Segments are numbered from 1
Segment Jump Table Transfer function added
Unload ALL dynamic segments allowed
Error numbers changed
Change Segment Attributes function removed
Lock and Unlock Segment functions added
Support added for old System and binary files
The Initial Load and Segment Jump Table Load will
return an error rather than display an error
Unload priority added to segment attributes
Tool Dispatcher interface specified
library Files redefined
Load f=i1e T(~ble changed to Pathname l'able
Optional Initialization Segment supported
Memory Segment support removed
Interface to Memory Manager updated
Load Segments are again numbered from 0
Return Address Stack added
Segment Jump Tables can be linked
Pathname Tables can be linked
UsertD support added
Run Time Ubrary version control added
Position Independent Segment support added
Usage Counter is now 2 bytes
Attributes no longer needed
Memory Manager discussion added
Get UseriD call added
Controlling Program definition added
Unload "All" function moved to Memory Manager
Optional Starting Address added to Init Load
Init Load will no longer start the application
Clean Up routine added
Application Shutdown routine added
Memory Segment entry format changed
Segment Jump Table changed

Apple Confidential
August 9, 1986

1

00:50 (01/30/86)

00:60 (02127/86)

00:70 (04/16/86)

00:80 (05/07/86)

00:90 (05/19/86)

00:91 (05/27/86)

System Loader ERS 00:97
Lou Infeld

Memory Segment entry format changed
Usage Counter renamed In-Use Counter
UserlD's are now 2 bytes
Support of old binary files removed
Starting Address parameter removed from Initial Load
Initialize function added
All function numbers changed
Error $79 added
Calling sequence changed
System Loader no longer part of ProDOS
All function numbers changed
Loader Version function added
All error numbers changed
Error $1109 redefined
Errors $11 OA and $11 OB added
Pathname syntax discussion changed
Memory Segment entry format changed
Support of System Files removed
UserlD added as output from Initial Load
System Loader tool numbel" changed to 17 ($11)
Standard Tool' functions added
UserlD added to Memory Segment Table
Next UserlD removed from Memory Segment Table
File Pathname Pointer in Pathname Table made

relative
Header description added to Pathname Table
Optional Initialization Segment renamed Initialization

Segment and generalized
Shell Load Files defined
Load Segments start with 1 rather than 0
Pathname Table description expanded
Startup Load Files defined
System prefixes 0.1 and 2 defined
Loader will not allocate bank 0 memory for application
Get UserlD function redefined
"Memory not available" error removed
"System Loader busy" error added
Function number of Initial Load changed to $08
UseriD error removed from Application Shutdown
Usel"ID added as output from Application Shutdown
Function number of Initial Load changed to $07
Restart function removed from Initial Load and made $08
Pathname Table redesigned
More details about UseriD in Initial Load
Zero Page and stack allocated in Initial Load
Zero Page/stack info output in Initial Load and Restart
UserlD added as input to Cleanup Routine
Absolute Bank Segment defined
Zero Page/Stack Segment defined replacing Aux Type logic

Apple Confidential
August 9, 1986

2

~. .

00 :92 (06/06/86)

00 :93 (06/16/86)

00:94 (06/26/86)

00:95 (07/15/86)

00:96 (07/22/86)

00:97 (08/09/86)

System Loader ERS 00:97
Lou Infeld

InitialLoad-will not allocate default Zero Page/stack
Techniques used to free memory described
Function numbers and names changed
UserlD added to Segment Jump Table entry
FuJI UserlD allowed in InitialLoad
Loader supports D$ records
Memory Manager Interface revised
Restrictions section added
New input parameter added to InitLoad
Zero Page/Stack Segment renamed Direct Page/Stack

Segment
Segment Jump Table renamed Jump Table List
Segment Jump Table Segment renamed Jump Table Segment
General - automatic unload design removed:

Memory Segment Table entry format changed
"Unloaded" Jump Table entry format changed
Return Stack removed
In-Use Counter removed
Jump Table Transfer function removed
Unload Segment function added
Jump Table discussion changed

Format of Jump Table List added
References to "memory segments" changed to "memory blocks"
GetUserlD function removed .
Restart restrictions added
InitialLoad description updated
LoadSegNum description lJpdated
UserlD input added to LockSeg and UnlockSeg
UnloadSegNum description changed
Output of LoadSegNum changed to an Address
LoadSegNum can be used to load static segments
Ust of Error Codes added
UnloadSegNum description changed
LockSeg and UnLockSeg removed
Cleanup Routine description updated
Mar.(List defined
Support for cRELOC and clNTERSEG records added
Outputs and Errors changed for LoadSegName
The term NIL changed to 0 in several Tables
Restartable Flag added to UserShutdown
GetUserlD function added
GetPathname function added
Pathname Table description modified
Special Memory Flag renamed in InitialLoad

Apple Confidential
August 9, 1986

3

~ ~

History 5
Overview 6
Definitions 7
General 8
Memory Manager Interface 10
Restrictions 12
Data Structures 13

Globals 13
Memory Segment Table 13
Jump Table List 14
Pathname Table 15
Mark Ust 16

Functions 17
General 18
Loader Initialization ($01) 19
LoaderStartup ($02) 20
LoaderShutdown ($03) 21
LoaderVersion ($04) 22
LoaderReset ($05) 23
LoaderStatus ($06) 24
InitialLoad ($09) 25
Restart

~

($OA) 27
LoadSegNum ($OB) 28..._,.
UnLoadSegNum ($OC) 31
LoadSegName ($00) 32
UnLoadSeg ($OE) 33
GetLoadSeglnfo ($0F) 34
GetUserlO ($10) 35
GetPathname ($11) 36
UserShutdown ($12) 37
Jump Table Load 38
Cleanup 39

Error Codes 40
References 41

System Loader ERS 00:97
Lou Infeld

4

Apple Confidential
August 9, 1986

(
\

)
J

History

The Apple II under ProDOS has a very basic System Loader. It is the part of the boot
code that searches the boot disk for the first System file (any file of type $FF whose
name ends with ".SYSTEM") and loads it into location $2000. If a System program
wants to load another System program, it has to do all the work by mal<ing ProDOS
calls.

Some programming environments such as Apple II Pascal and AppleSoft Basic
provide loaders for programs running under them. The AppleSoft loader loads either
System files, Basic files or binary code files. All these files are loaded either at a
fixed address in memory or at an address specified in the file.

Since Cortland will have a large amount of "clean" memory, a more dynamic load
facility is needed. Programs should be able to be loaded anywhere that is available
in memory. The burden of determining where to load ell program should be on a
loader and not on the applications programmer. Also programs should be able to be
broken into smaller program segments which can be loaded independently.

Therefore on Cortland, there will be a relocating System Loader. Files generated by
the Linl<er will be loadable by the System Loader. The System Loader will provide a
very powerful and flexible facility not currently available on the Apple II.

System Loader ERS 00:97
Lou Infeld

5

Apple Confidential
August 9, 1986

Overview

The System Loader will load programs or program segments by first calling the
Memory Manager to find available memory. It will perform relocation during the load
as necessary and will load each segment independently. Therefore, a large
program can be broken up into smaller program segments each of which is loaded at
separate locations in memory. Program segments can also be loaded dynamically
as they are referenced rather than at program boot time. Additionally, the System
Loader can be called by the program itself to load and unload program (or data)
segments.

\
/

System Loader ERS 00:97
Lou Infeld

6

Apple Confidential
August 9, 1986

Definitigns

The Linker is the program that combines files generated by compilers and
assemblers, resolves all symbolic references and generates a file that can be loaded
into memory and executed.

The System Loader is the part of the Operating System that reads the files generated
by the Unker and loads them into memory (performing relocation if necessary).

Object Files are the output from an assembler or compiler and the input to the Linker.

Ubrary Files are files containing general program Segments that the Linker can
search.

Load Files are the output of the Linker and contain memory images which the
System Loader will load into memory. Shell Load Files and Startup Load Files are
special Load Files used by the Shell and ProDOS16 respectively.

Run Tlme Library Files are Load Files that contain general program Segments which
can be loaded as needed by the System Loader and shared between applications.

Object Module Format is the general format used in Object Files, Ubrary Files and
Load Files.

An OMF File is a file in Object Module Format (i.e. an Object File. Library File or Load
File).

A Segment is a individual component of an OMF file. Each file contains· one or more
Segments.

A Code Segment is a Segment in an Object File that contains program code.

A Data Segment is a Segment in an Object File that contains program data.

A Load Segment is a Segment in a Load File.

The Controlling Program is the program that requests the System Loader to initially
load and run other programs and is responsible for shutting these programs down
when they exit. A Finder is an example of a Controlling Program.

System Loader ERS 00:97
Lou Infeld

7

Apple Confidential
August 9. 1986

(

General

The System Loader processes files which conform to the Cortland Development
Environment's definition of a Load File (see Cortland Object Module Format ERS). A
Load File consists of Load Segments, each of which can be loaded independently.
The Load Segments are numbered sequentially from 1.

Certain Load Segments are Static Load Segments. These Segments are meant to
be loaded into memory at initial program load time and must stay in memory until
program completion.

Another general type of Load Segments is the Dynamic Load Segment. These
Segments are .c.c.1loaded at boot time. They are loaded dynamically during program
execution. This can happen automatically by means of the Jump Table mechanism
or manually at the specific request of the application. When these Segments are not
being referenced, they can be purged by the Memory Manager.

The last general type of Load Segments is the Position Independent Load Segment.
These Segments have the attribute that they can be moved while in memory.

There are several special types of Load Segments. The Jump Table segment
(KIND-$02), when loaded into memory, provides a mechanism Whereby Segments
in memory can trigger the "loading of other Segments not yet in memory.

The Pathname Segment (KIND==$04). It contains information about the Load Files
that are referenced.

The Initialization Segment (KIND=$10). It is·used for code that is to be executed
before all the rest of the Load Segments are loaded.

Absolute Bank Segments (KIND=$11) are relocatable but only within the bank
specified by the ORG field.

The Direct Page/Stack Segment (KIND=$12) defines the application's Direct Page
and stack requirements. This segment will be loaded into Bank 0 and its starting
address and length are passed to the Controlling Program who will set the Direct
Register and Stack Pointer to the start and end of this segment before transferrring
control to the program.

DUring the initial load, the System Loader has all the information needed to resolve
all inter-segment references between the Static Load Segments. But dUring the
dynamic loading of Dynamic Load Segments, it can only resolve references in the
Dynamic Load Segment to the already loaded Static Load Segments. Therefore, the
general rule is that Static Segments can be referenced by any type of segment but
Dynamic Segments can only be referenced through JSL calls through the Jump
Table.

If the System Loader is called to perform the initial load of a program, it will load all
the Static Load Segments and the Segment Jump and Pathname Tables (if they

System Loader ERS 00:97
Lou Infeld

8

Apple Confidential
August 9, 1986

exist). A RAM based Memory Segment Table will be constructed during this
process.

\.j; If the System loader is called during an interrupt and it is already processing a
request. a BUSY error ($1105) will result.

.J System Loader ERS 00:97
Lou Infeld .

9

Apple Confidential
August 9, 1986

(

Memory Manager Interface

The System Loader and the Memory Manager work closely together.

When the System Loader loads Static Segments, it calls the Memory Manager to
allocate corresponding memory blocks which are marked as unpurgeable and
unmoveable. Dynamic Segments are marked as purgeable but locked. Position
Independent Segments are marked as moveable.

When the System Loader unloads a specific segment, it calls the Memory Manager
to purge the corresponding memory blocks. However, if the Controlling Program
wishes to unload all segments associated with a UserlD (application shut-down), it
calls the System Loader Application Shutdown function which calls the Memory
Manager to first purge all Dynamic Segments for the UserlD and then make all the
Static Segments purgeable. The purpose of this is to keep an application in
memory, if possible, in case it needs to be re-Ioaded in the near future. This will
greatly speed up. a Finder or Switcher. The complication occurs when the Memory
Manager has to actually purge one of the segments of a User. The System Loader
must then purge all the remaining segments. Otherwise, the program will not have
all its static segments in memory when it is re-Ioaded and executed.

The relationship between a Load Segment in a Load File and the corresponding
memory block is very close. The average Load Segment will be loaded into a
memory block having the attributes:

Locked
Fixed
Purge Level=O (for Static)
Purge Level=1 (for Dynamic)

Depending on the ORG, KIND, BANKSIZE and ALIGN fields in the Segment Header,
other memory attributes will be used:

if ORG>O, the "Fixed Address" attribute is set.
if BANKSIZE=$1 0000, the "May not cross bank boundry" attribute is set.
if 0<BANKSIZE<$1 0000 then use Align factor=MAX(BANKSIZE,ALlGN)

otherwise use Align factoraALlGN:
if O<Align Factor<=$100, the "Page Aligned" attribute is set.
if Align Factor>$100, Bank Alignment is forced (not an attribute).
if bit 5 of KIND=1, the "Fixed" attribute is removed.
if KIND indicates Absolute Bank Segment, the "Fixed Address" attribute is

removed and the "Fixed Bank" attribute is set.
if KIND indicates Direct Page/Stack Segment, the "Fixed Banl<" and "Page

Aligned" attributes are set.

\...,./ System Loader ERS 00:97
Lou Infald

10

Apple Confidential
August 9, 1986

(
...-....

\

A memory block can be locked by a call to the System Loader. However, the other
attributes must be changed through Memory Manager calls. Since the Memory
Handle for a memory block is stored in the Memory Segment Table, Memory
Manager information is accessible. Other memory block information that may be
useful to a program are:

Start location
Size of segment
UserlD
Purge Level (0 • UnPurgeable

1 • Least Purgeable
3 • Most Purgeable)

Also, if the Memory Handle is NIL (i.e the Memory Address is 0), the memory block
has been purged.

System Loader ERS 00:97
Lou Infeld

11

Apple Confidential
August 9, 1986

\ ". "

(

Restrictions

The Object Module Format and the Linker have general capabilities above what is
needed or desired for the Cortland computer. The System Loader, on the other
hand, is designed specifically for the Cortland computer. Therefore, there are certain
abilities that are not supported or are restricted. This section will list these
differences.

The NUMSEX field of the Segment Header must be O.
The NUMLEN field of the Segment Header must be 4.
The BANKSIZE field of the Segment Header must be <=$10000.
The ALIGN field of the Segment Header must be <=$10000.

If any of the above is not true, the System Loader will return with a "Segment is
foreign" error ($11 OB). The BANKSIZE and ALIGN restrictions will be enforced by
the Unker and should not make It to the Load File.

ALIGN and BANKSIZE can be any multiple of 2. The Memory Manager, and
therefore the System Loader, can not handle so general a requirement. The Memory
Manager can currently only be told that a memory block be page aligned or not cross
a bank boundary. The Memory Manager may handle Bank Alignment in the near
future. All is not lost, however, because the System Loader will fulfill the general
requirements in the following, somewhat inefficient, way:

Any value of BANKSIZE other than aand $10000 will result in a memory block
that is either page aligned (if BANKSIZE<=$100) or bank aligned (if
BANKSIZE>$100). Since the Linker will make sure that the segment is
smaller than BANKSIZE, the requirement- that the segment not extend past the
BANKSIZE boundary will be met (there will be wasted space in the memory
block however).

Any value of ALIGN will be bumped to either page alignment or bank
alignment.

If there is a BANKSIZE other than a and $10000 and a non-zero ALIGN, the
maximum of the two will be used to determine the alignment to be used.

. ..-/
System Loader ERS 00:97
Lou Infeld

12

Apple Confidential
August 9, 1986

pata Structures

Globals

SEGTBL
JMPTBL
PATHTBL
USERID

.... Absolute address of Memory Segment Table

.... Absolute address of Jump Table Ust

.... Absolute address of Pathname Table

.... UserlO of current application

Memory Segment Table

The Memory segment Table is a linked list. Each entry corresponds to one memory
block known to the System Loader. These memory blocks were the result of loading
Load Segments from a Load File. The format of each entry in the Memory Segment
Table is:

(where:

Next entry handle
Previous entry handle
UserlD
Memory Handle
Load File Number
Load Segment Number
Load Segment Kind

.... 4 bytes

.... 4 bytes

.... 2 bytes

.... 4 bytes

.... 2 byte

.... 2 bytes

.... 2 bytes

"Next entry handle" is the memory handle of the next entry in the Memory Segment
Table. This handle is 0 in the last entry.

"Previous entry handle" is the memory handle of the previous entry in the Memory
Segment Table. This handle is 0 in the first entry.

"UserIO" is the UserlD associated with this segment. It is needed in case the
"Memory Handle" is NIL and the UserlD can therefore not be determined directly
from the Memory Manager.

"Memory Handle" is the handle of the memory block obtained from the Memory
Manager. More information about the segment is available through this handle (e.g.
UserlD, Purge Priority).

"Load File Number" corresponds to the Load File or Run Time Ubrary File from which
the segment was obtained. If this number is 1, this segment is in the initial Load File.

"Load Segment Number" is the segment number of the Load Segment in the Load
File.

"Load Segment Kind" is the KIND field from the Segment Header of this segment.

System Loader ERS 00:97
Lou Infeld

13

Apple Confidential
August 9, 1986

Jump Table list

The Jump Table list (or Jump Table) is the mechanism that allows programs to
reference segments that are loaded into memory only when they are needed. The
Jump Table is a linked list containing the UseriD and Handle to each Jump Table
Segment (KIND=$02) that the System Loader has encountered. Any Load File and
Run lime library File may contain a Jump Table Segment. The format of each entry
in the Jump Table list is:

where:

--_._.._----._.._._---_...........

Next entry handle
Previous entry handle
UserlD
Memory Handle

-- 4 bytes
-- 4 bytes
-- 2 bytes
-- 4 bytes

(
\------

"Next entry handle" is the memory handle of the next entry in the Jump Table Ust.
This handle is 0 in the last entry.

"Previous entry handle" is the memory handle of the previous entry in the Jump
Table list. This handle is 0 in the first entry.

"UserID" is the UserlD associated with this Jump Table Segment.

"Memory Handle" is the handle of the memory block associated with this Jump Table
Segment.

When the linker encounters a JSL to an external Dynamic Segment, it creates an
entry in the Jump Table Segment. It then links the JSL to the Jump Table Segment
entry it just created. The format of this entry in the Jump Table Segment is:

UserlD (2 bytes)
Load File Number (2 bytes)
Load Segment Number (2 bytes)
Load Segment Offset (4 bytes)
jsl Jump Table Load Function

where the Load File Number, Segment Number and Offset refer to the location of the
external reference. The rest of the entry is a call to the System Loader Jump Table
Load function. The UserlD and the actual address of the System Loader function
will be patched by the System Loader dUring Initial Load. This format is considered
the "unloaded" state of the entry.

When the JSL instruction actually executes, control is transferred to the Jump Table
entry which in turn transfers to the System Loader. The System Loader extracts the
segment information from the Jump Table entry, the file information from the

'- .. j
System Loader ERS 00:97
Lou Infeld

14

Apple Confidential
August 9, 1986

(

\.,J

Pathname Table and loads the Dynamic Segment. changes the entry in the Jump
Table to its "loaded" state and transfers to the location in the just loaded segment.
Typically, the location in the loaded segment is a subroutine and when it exits with a
RTL, control is eventually transferred to the location following the original JSL
instruction.

The loaded state of a Jump Table entry is very similar to the unloaded state except
that the JSL to the System Loader Jump Table Load function is replaced by a JML to
the extemal reference. A typical loaded entry would look like this:

UserlD (2 bytes)
Load File Number (2 bytes)
Load Segment Number (2 bytes)
Load Segment Offset (4 bytes)
jml external reference

pathname Table

The Pathname Table is created by System Loader to remember the pathnames
associated with each Load File it comes across. At initial load, the System Loader
creates the first entry in the Pathname Table from the pathname specified in the
Initial Load function call. During the load, if the System loader comes across a
Pathname Segment (KIND=$04), it adds all the pathname entries to the Pathname
Tablo. If Run Time Ubrary Files are referenced during program execution. other
Pathname Segments may be added.

Each entry in the Pathname Table is in the following format:

Next entry handle (4 bytes)
Previous entry handle (4 bytes)
UserlD (2 bytes)
File Number (2 bytes)
File Date (2 byt~s)

File Time (2.bytes)
Direct Page/Stack Address (2 bytes)
Direct Page/Stack Size (2 bytes)
File Pathname (Pascal string)----,- _.

where:

"Next entry handle" is the memory handle of the next entry in the Pathname Table.
This handle is 0 in the last entry.

"Previous entry handle" is the memory handle of the previous entry in the Pathname
Table. This handle is a in the first entry.

J System Loader ERS 00:97
Lou Infeld

15

Apple Confidential
August 9, 1986

-..

(

"UserID" is the UserlD associated with this entry. In general, each Load File and
each Run Time Library will have a different UseriD and one entry in the Pathname
Table. When a Run Time Library is first encountered during an Application
execution, the System Loader will have a Run Time Library type of UserlD assigned
to it.

"File Number" is a number assigned by the Unker or System Loader for a specific
Load File. File number 1 is reserved for the initial Load File.

The "File Date" and "File Time" are ProDOS directory items that the Linker retrieved
during the link process. The System Loader will compare these values with the
ProDOS directory of the Run Time Library File at run time. If they don't compare, the
System Loader will not load the requested Load Segment. This facility guarantees
that the Run Time Library File used at link time is the~ Run Time Library File
loaded at execution time.

The "Direct Page/Stack" Address and Size is the information about the Direct Page
and Stack buffer that was allocated during the Initial Load of this Load File (not
applicable to Run Time Library Load Files). This allows the Restart function to
resurrect an application without performing a Get File Info call on the Load File.

The "File Pathname" is the pathname of this entry. ProDOS 16 supports 8 prefixes.
three of which have fixed definitions:

0/ u Boot volume
1/ • Application SUbdirectory (out of which the application is running)
2J • System Library SUbdirectory (initially /BOOT/SYSTEM/L1ES)

The pathname must be a complete pathname except if either prefix 1/ or '2J are used.

Mark Ust

The Mark Ust is created by System Loader to remember the file locations of the
relocation dictionary of each Load Segment. The format of the Mark List is:

Next Available Slot (4 bytes)
End of Table (4 bytes)
Segment Number (2 bytes)
File Mark (4 bytes)
Segment Number (2 bytes)
File Mark (4 bytes)
Segment Number (2 bytes)
File Mark (4 bytes)

(

\..J

...
Segment Number (2 bytes)
File Mark (4 bytes)

System Loader ERS 00:97
Lou Infeld

16

Apple Confidential
August 9, 1986

(

...,.'

where:

"Next Available Slot" is the relative offset of the next empty entry in the Mark List.

"End of Ust" is the relative offset to the end of the Mark Ust.

The Mark List is initially large enough for 100 Marks and grows larger as needed.

I

\,

System Loader ERS 00:97
Lou Infeld

17

Apple Confidential
August 9, 1986

Functions

General

Since the System Loader is a Cortland Tool, its functions are called by making calls
through the Cortland Tool mechanism. The calling sequence for System Loader
functions is the standard Tool calling sequence. Space for the output parameter (if
any) is pushed on the stack followed by each input parameter in the order specified
in the function description. This is followed by:

Idx #$11 +FuncNuml8
jsl Dispatcher

where "FuncNum" is the System Loader function number and the "$11" is the Tool
Number for the System Loader. Upon return, the A register will contain the status
and the Carry will be set if an error occurred. If there is output, each output
parameter must be pulled off the stack In the order specified in the function
.description.

The Jump Table Load function does nc1 use the above calling sequence. It can not
be called by an application directly but is called indirectly by a Jump Table entry. In
this case the absolute address of the function is patched by the System Loader.

.~.,
System Loader ERS 00:97
Lou Infeld

18

Apple Confidential
August 9, 1986

(

Loader Initialization

Function Number: $01
Input: none
Output: none
Errors: none

This function will initialize the System Loader. It should only be called at system
initialization time. All System Loader tables are cleared and no assumptions are
made about the current or previous state of the system.

System Loader ERS 00:97
Lou Infeld

19

Apple Confidential
August 9, 1986

)

\: ')-_.-.'

LoaderSt8rtup

Function Number:
Input:
Output:
Errors:

$02
none
none
none

(

This function does nothing and need not be called.
./

"..~j . System Loader ERS 00:97
Lou Infeld

20

Apple Confidential
August 9, 1986

'..J

loadetShutdown

Function Number: $03
Input: none
Output: none
Errors: none

This function does nothing and need not be called.

System Loader ERS 00:97
Lou Infeld

21

Apple Confidential
August 9, 1986

", : ~ -

LoaderYerslon

Function Number:
Input:
Output:
Errors:

$04
none
Loader Version (2 bytes)
none

>', This function will return the Version Number of the System Loader.

System Loader ERS 00:97
Lou Infeld

22

Apple Confidential
August 9, 1986

loaderBeset

Function Number:
Input:
Output:
Errors:

$05
none
none
none

(

This function does nothing and need not be called.

.~'

,./ System Loader ERS 00:97
Lou Infeld

23

Apple Confidential
August 9, 1986

LoaderStatus

Function Number:
Input:
Output:
Errors:

$06
none
Status (TRUE or FALSE 2 bytes)
none

This function will always return TRUE since the System Loader will always be in the
initialized state.

,
./ System Loader ERS 00:97

Lou Infeld
24

Apple Confidential
August 9, 1986

Errors:

Output:

Inltialload

Function Number:
Input:

(

$09
UserlD (2 bytes)
Address of Load File Pathname (4 bytes)
Don't Use Special Memory Flag (2 bytes)
UserlD (2 bytes)
Starting Address (4 bytes)
Address of Direct Page/Stack buffer (2 bytes)
Size of Direct Page/Stack buffer (2 bytes)
$0000 • Operation succcessful
$1104· File not Load File
$1105 • System Loader is busy
$1109 • SegNum out of sequence
$11 OA· Illegal load record found
$1108 - Load Segment is foreign
$OOxx· ProDOS error
$02xx· Memory Manager error

A Controlling Program (such as ProDOS, Basic, Switcher, etc.) will call the System
Loader to perform an "Initial Load".

If a complete UserlD is specified, the System Loader will use that when allocating
memory for th~ Load Segments. If the Main ID portion of the UserlD is 0, a new
UserlD is obtained from the UserlD Manager based on the Type portion of the
UseriD. If the Type portion is 0, an Application type UserlD is requested from the
UserlD Manager.

If the Don't Use Special Memory Flag is TRUE (Le. not 0), the System Loader will
NOT load any static load segments into Special Memory. However, dynamic load
segments will be loaded into any memory.

ProDOS is called to open the specified Load File using the input pathname. If any
ProDOS errors occurred or if the file is not a Load File type ($83-$8E), the System
Loader will return the appropriate error.

If the Load File was successfully opened, the System Loader, adds the Load File
information to the Pathname Table, and calls the Load Segment by Number function
for each Static Load Segment in the Load File.

If an Initialization Segment (KIND=$10) is loaded, the System Loader will
immediately transfer control to that segment in memory. When the System Loader
regains control, the rest of the static segments are loaded normally.

If the Direct Page/Stack Segment (KIND:::$12) is loaded, its starting address and
length are returned as output. This buffer is treated as a locked dynamic segment
and is therefore purged at Application Shutdown.

-..J System Loader ERS 00:97
Lou Infeld

25

Apple Confidential
August 9, 1986

(

If any of the static segments could not be loaded, the System loader will abort the
load and return the error.

After all the Static Load Segments have been loaded, return is made to the
Controlling Program with the starting address of the first Load Segment (not an
Initialization Segment) of File Number 1. Note that the Controlling Program is
responsible for setting up the stack and Direct Page registers and actually
transferring control to the loaded program.

I

\
\J

System Loader ERS 00:97
Lou Infeld

26

Apple Confidential
August 9, 1986

Errors:

Function Number:
Input:
Output:

\........."

(

Restart

$OA
UserlD (2 bytes)
UserlD (2 bytes)
Starting Address (4 bytes)
Address of Direct Page/Stack buffer (2 bytes)
Size of Direct Page/Stack buffer (2 bytes)
$0000 • Operation succcessful
$1101 • Application not found
$1105 • System Loader is busy
$1108· UserlD error
$OOxx· ProDOS error
$02xx· Memory Manager error

A Controlling Program (such as PreDOS. Basic. Switcher. etc.) can call the System
Loader to perform a "restart" of an application still in memory. Only software that is
"reentrant" can be successfully restarted. For a program to be "reentrant", it must
initialize its variables and not assume that they will be preset at Load time. The
Controlling Program must determine whether a given program can be restarted.

An existing UserlD (ignoring the Aux ID) must be specified. otherwise the System
Loader will return error $1108. If the UserlD is not known to the System Loader,
error $1101 will be returned.

Applications can be "restarted" only if all the segments in the Memory Segment table
with the specified UserlD are in memory. Note these segments are the application's
static segments. If this is the case, the System Loader resurrects the application by
calling the Memory Manager to lock and make all its segments unpurgeable. The
UserlD and the starting address obtained from the first segment are returned as well
as the Direct Page/Stack information from the Pathname Table.

If there is a Pathname Table entry for the UserlD but not all the segments are in
memory, the Cleanup Routine will be called to purge the UserlD (and any other
"deceased" UserlDs) from all its tables, call the UserlD Manager to delete the UserlD
and then perform an Initial Load instead of a Restart. In this case, a new UserlD will
be established for the application.

\.-.J System Loader ERS 00:97
Lou Infeld

27

Apple Confidential
August 9, 1986

Output:
Errors:

Function Number:
Input:

(
'.

....

\ --..

lOldSegNum (load Segment by Nymber)

SOB
UserlD (2 bytes)
Load File Number (2 bytes)
Load Segment Number (2 bytes)
Address of segment (4 bytes)
$0000 • Operation succcessful
$1101 • Segment not found
$11 04 • File not Load File
$11 05 • System Loader is busy
$1107· File Version error
$1109 • SegNum out of sequence
$110A· Illegal load record found
$1108 • Segment is foreign
$OOxx· ProDOS error
$02xx· Memory Manager error

This function will load a specific Load Segment into memory. This is the workhorse
function of the System loader. Normally, a program will call this function to manually
load a Dynamic Load Segment. If a program calls this function to load a Static Load
Segment, the System loader will nsn patch any existing references to the newly
loaded segment.

First the Memory Segment Table is searched to see if there is an entry for the
requested Load Segment. If there is already an entry, the handle to the memory
block is checked to verify it is still in memory. If it is still in memory, this function does
nothing further and returns without an error. If the memory block has been purged,
the Memory Segment "able entry is deleted.

Next the "Load File Number" is looked up in the Pathname Table to get the Load File
pathname.

Next the Load File type is checked. If it is not a Load File (types $B3·$BE), error
$11 04 is returned.

Next the Load File's "last_mod" value is compared to File Date and File Time values
in the Pathname Table. If these values do not match, error $1107 is returned. This
indicates that the Run Time Ubrary File at the specified pathname is D..Q1 the Run
Time Ubrary File that was scanned when the application was linked together.

ProDOS is then called to open the specified Load File. If ProDOS has a problem, its
error code is returned.

Next the Load File is searched for a Load Segment corresponding to the specified
"Load Segment Number". If there is no segment corresponding to the "Load
Segment Number", error $1101 is returned. If the SEGNUM field does not
correspond to the "Load Segment Number", error $1109 is returned. If the NUMSEX
and NU MLEN fields are not "0" and "4", error $11 OB is returned.

System Loader ERS 00:97
Lou Infeld

28

Apple Confidential
August 9, 1986

(

If the Load Segment is found and its Segment Header is correct, a memory block is
requested from the Memory Manager of size specified in the LENGTH field in the
Segment Header. If the ORG field in the Segment Header is not 0, a memory block
starting at that address is requested. Other attributes are set according to Segment
Header fields (see Memory Manager Interface section).

If the UserlD specified is not 0, it is used as the UserlD of the memory block. If the
UserlD specified is 0, the memory block will be marked as belonging to the UserlD of
the current User (in USERID).

If the requested memory is not available, the Memory Manager and the System
Loader will try several techniques to free up memory:

The Memory Manager will purge memory blocks that are marked purgeable

The Memory Manager will move moveable segments to enlarge contiguous
memory

The System Loader will call its Cleanup routine to free its own unused internal
memory

If all these techniques fan, the System Loader will return with the last Memory
Manager error.

Once enough memory is available, the Load Segment is loaded into memory and
the relocation dictionary (if any) is processed. Note only the following Object Module
Format records are supported by the System Loader:

LCONST ($F2)
DS ($F1)
RELOC ($E2)
INTERSEG ($E3)
cRELOC ($F5)
clNTERSEG ($F6)
END ($00)

Any other records encountered will result in a $11 OA error.

A new entry is added to the Memory segment Table.

Finally, the System Loader returns with the Memory Handle of the memory block.

Note that since Load Segments in a Load File are numbered sequentially starting at
1, to find Load Segment 5, the System Loader must scan through the first 4 Load
Segments before finding Load Segment 5. Each Load Segment Header must be
processed because Load Segments as well as Load Segment Header are variable
length. It is simpler than it sounds because Load Segments start on block
boundaries and the number of blocks in each Load Segment is the first field in the

...../ System Loader ERS 00:97
Lou Infeld

29

Apple Confidential
August 9, 1986

....

(
\ .
..... j

Segment Header. The following logic sample will load the first block of a specified
Load Segment:

segnum:=Load Segment number;
fileid:=Load File;
open(fileid) ;
block:=O;
for i:=1 to segnum do

begin
seek(fileid,block); {find block}
get(fileid); {read block}
block:=block+fileidA.8LKCNT; {add BLKCNT to block}

end;

\J System Loader ERS 00:97
Lou Infeld

30

Apple Confidential
August 9, 1986

Output:
Errors:

Function Number:
Input:

(
'"._,~J

UnlQadSegNym (Unload Segment by Nymber)

SOC
UserlD (2 bytes)
Load File Number (2 bytes)
Load Segment Number (2 bytes)
none
$0000 - Operation succcessful
$1101 - Segment not found
$1105 - System Loader is busy
$OOxx - ProDOS error
$02xx - Memory Manager error

This function will unload a specific Load Segment that is currently in memory.

The System Loader searches the Memory Segment Table for the "Load File
Number" and "Load Segment Number". If there is no such entry, error $1101 is
returned. .

Next the Memory Manager is called to make the memory block purgeable using the
Memory Handle in the table entry.

All entries in the Jump Table referencing the unloaded segment are changed to their
"unloaded" states.

If the input UserlD is 0, the UserlD of the current user (in USERID) is assumed.

If both the Load File Number and the Load Segment Number are specified, the
specific Load Segment is made purgeable whether it is static QL dynamic. Note, if a
static segment is unloaded, the application can not be ReStarted. If either input is 0,
only dynamic segments will be made purgeable.

If the input Load Segment Number is 0, all dynamic segments in the specified Load
File are unloaded.

If the input Load File Number is 0, all dynamic segments for the UserlD are
unloaded.

System Loader ERS 00:97
Lou Infeld

31

Apple Confidential
August 9, 1986

Errors:

Output:

Function Number:
Input:

(
\

" .. '

LoadSegName (Load Segment by Name)

$00
UserlO (2 bytes)
Address of Load File Name (4 bytes)
Address of Load Segment Name (4 bytes)
Address of segment (4 bytes)
Load File Number
Load Segment Number
$0000 - Operation succcessful
$1101 • Segment not found
$1104· File not Load File
$1105 • System Loader is busy
$1101· File Version error
$1109 • SegNum out of sequence
$11 OA· Illegal load record found
$11 OB - Load Segment is foreign
$OOxx - ProOOS error
$02xx - Memory Manager error

This function will load a named Load Segment into memory.

The Load File type is checked. If it is not a Load File (types $B3-$BE), error $1104 is
returned.

ProOOS is then called to open the specified Load File. If ProOOS has a problem. its
error code is returned.

Next the Load File is searched for a Load Segment corresponding to the specified
"Load Segment Name". If there is no segment with Segment Name requested, error
$1101 is returned.

Now that the System Loader has located the requested Load Segment (and knows
the Load Segment Number), it checks the Pathname Table to see whether the Load
File is represented. If so, it uses the File- Number from the table. Otherwise, the
System Loader adds a new entry to the Pathoame Table with an unused File
Number.

Next the System Loader attempts to load this Load Segment by calling the Load
Segment by Number function. If the Load Segment by Number function returns an
error, the Load Segment by Name function, in turn, returns this error. If the Load
Segment by Number function is successful, the Load Segment by Name function
returns the Load File Number, the Load Segment Number and the Memory Address
of the segment in memory.

\. ~J
System Loader ERS 00:97
Lou Infeld

32

Apple Confidential
August 9. 1986

Unloadseg

Function Number:
Input:
Output:

Errors:

$OE
Address in Segment (4 bytes)
UserlD (2 bytes)
Load File Number (2 bytes)
Load Segment Number (2 bytes)
$0000 • Operation succcessful
$1101 • Segment not found
$1105 • System Loader is busy
$OOxx· ProDOS error
$02xx· Memory Manager error

This function will unload the Load Segment which contains the specified address.

The Memory Manager is called to locate the memory block containing the specified
address. If no memory block contains the address 9 error $1101 is returned. The
UserlD associated with the Handle of the memory block returned by the Memory
Manager is extracted (from the Memory Managers internal table). The Memory
Segment Table is scanned looking for the UserlD and Handle. If an entry is not
found, error $1101 is returned.

If the entry in the Memory Segment Table is for a Jump Table Segment, the specified
address should be pointing to the Jump Table entry for a dynamic segment
reference. The Load File Number and Segment Number of the Jump Table entry
are o>ctraeted.

If the entry in the Memory Segment Table is not for a Jump Table Segment, the Load
File Number and Segment Number of the Memory Segment Table entry are
extracted.

The UnloadSegNum function is now called to actually unload the segment. The
outputs of this function can be used as input to other System Loader functions.

..J System Loader ERS 00:97
Lou Infeld

33

Apple Confidential
August 9, 1986

{
\,

-',

GetLoadStglnfo

Function Number:
Input:

Output:
Errors:

$OF
UserlD (2 bytes)
Load File Number (2 bytes)
Load Segment Number (2 bytes)
Address of User Buffer (4 bytes)
filled User Buffer
$0000 ~ Operation succcessful
$11 01 ~ Entry not found
$11 05 ~ System Loader is busy
$OOxx· ProDOS error
$02xx ~ Memory Manager error

(

This function will return the Memory Segment Table entry corresponding to the
specified Load Segment.

The Memory Segment Table is searched for the specified entry. If the entry is not
found, error $1101 is returned. If the entry is found, the contents except for the link
pointers are moved into the User Buffer.

System Loader ERS 00:97
Lou Infeld

34

Apple Confidential
August 9, 1986

GetUser'p

Function Number:
Input:
Output:
Errors:

$10
Address of Pathname (4 bytes)
UserlD (2 bytes)
$0000 E Operation succcessful
$11 01 • Entry not found
$1105 • System Loader is busy
$OOxx· ProDOS error
$02xx· Memory Manager error

(
\.... j

This function will search the Pathname Table for the specified Pathname. If a match
is found, the corresponding UseriD is returned. If the input Pathname does not start
with prefix 1/ or 2/, it is first expanded to a full pathname before the search. A
Controlling Program can use this function to determine whether to perform a Restart
of an application or an Initial Load.

System Loader ERS 00:97
Lou Infeld

35

Apple Confidential
August 9, 1986

GetPathname

Function Number:
Input:

Output:
Errors:

$11
UserlD (2 bytes)
File Number (2 bytes)
Address of Pathname (4 bytes)
$0000 • Operation succcessful
$1101 • Entry not found
$1105 • System Loader is busy
$OOxx· ProDOS error
$02xx· Memory Manager error

(

This function will search the Pathname Table for the specified UserlD and Fil~

Number. If a match is found, the address of the Pathname in the Pathname Table is
returned. ProDOS uses this call to get the pathname of an existing application so
that it can set the Application prefix before restarting it.

,
\

I

System Loader ERS 00:97
Lou lnfeld

36

Apple Confidential
August 9, 1986

UHrShutdQwn

Function Number:
Input:

Output:
Errors:

$12
UserlD (2 bytes)
Restartable Flag (2 bytes)
UserlD (2 bytes)
$0000 • Operation succcessful
$1105 • System Loader is busy
$OOxx· ProDOS error
$02xx· Memory Manager error

(

This function is called by the Controlling Progra.m to close down an application which
has just terminated. If the UserlD specified is 0, the current UserlD (USERID) is
assumed.

If the Restartable Flag is FALSE (0), all Memory Blocks for the UserlD (with the AuxlD
set to 0) are purged and the Cleanup Routine is called to purge the System L.oader's
internal tables of the UserlD. The application can not be Restarted.

If the Restartable Flag is TRUE (not 0), the Memory Manager is called to purge all
Dynamic Segments. The Memory Manager is again called to make all the Static
Segments purgeable for the specified UserlD. The application i.s now in a "zombie"
state and can be resulTElcted by the System Loader very quickly because all the
static segments are still in memory. However, as soon as anyone static segment is
purged by the Memory Manager for whatever reason, the System I.oader must
reload the application from its original Load File.

System Loader ERS 00:97
Lou Infeld

37

Apple Confidential
August 9, 1986

Jymp Table Load

Function Number:
Input:

Output:
Errors:

none
UserlD (2 bytes)
Load File Number (2 bytes)
Load Segment Number (2 bytes)
Load Segment Offset (4 bytes)
none
$0000 • Operation succcessful
$1101 • Segment not found
$1104 • File not Load File
$1105 • System Loader is busy
$OOxx· ProDOS error
$02xx· Memory Manager error

(

This function is called by an "unloaded" Jump Table entry to load a Dynamic Load
Segment.

This function calls the Load Segment by Number function with the the Load File
Number and Load Segment Number. If any errors occurred t the System Loader will
report a System Death.

If the Load Segment by Number function has sucessfully loaded the segment the
Jump ""ble entry is made "loaded'" by repla.cement of the JSL to thEt \lump Table
.L.nad. function with a JML to the absolute address of the reference in thEt Dynamic
Load Segment.

The System loader will now transfer control to the absolute address.

") System Loader ERS 00:97
Lou Infeld

38

Apple Confidential
August 9, 1986

Cleanup Routine

Function Number:
Input:
Output:
Errors:

none
UserlD
none
none

\ .i--'

This function is internal to the System Loader. Its function is to cleanup the System
Loaders internal tables in order to free memory.

If the UserlD is 0, the Memory Segment Table is scanned and all dynamic segments
for .all. UseriD's will be purged.

If the UseriD is not 0, all Load Segments (both dynamic.ami static) for that UserlD will
be purged. In addition, all entries for the UseriD in the Memory Segment Table and
PaUlname Table will be removed and the UserlD itself will be deleted.

System Loader ERS 00:97
Lou Infeld

39

Apple Confidential
August 9, 1986

-'.

(
\)..........

$0000
$1101
$1102
$1103
$1104
$1105
$1106
$1107
$1108
$1109
$110A
$110B

System Loader ERS 00:97
Lou Infeld

Error Codes

Operation successful
Segment /Application/Entry not found
not used
not used
File is not a Load File
Loader is busy
not used
File version error
UserlD error
SegNum out of sequence
Illegal load record found
Segment is foreign

Apple Confidential
August 9, 1986

40

(

References

"Object Module Format ERS" by Lou Infeld -- Apple Computer
"ProDOS ORCAIM Users Guide" _. The Byte Works
"Cortland Development Environment Core" .. The Byte Works
"The Tool Locator ERS", by Steve Glass - Apple Computer

System Loader ERS 00:97
Lou Infeld

41

Apple Confidential
August 9, 1986

	v5_07_01
	v5_07_02

