
(

.......-

6/12/86
6/30/86
7/11/86
7/14/86
8/5/86
8/12/86

Jean-Charles Mourey

Beginning Dialog Manager
FlI'St Draft
Second Draft (new calls using templates, alerts, item change on the fly, ...)
Third Draft - First official release
Fourth Draft - Second official release (new parameter to NewDltem,...)
Fifth Draft - modifications and enhancements + new calls + new section.

('.~-

Dialog Manager

AJ30UT l.WS MANUAL.

This chapter describes the Dialog Manager, the tool that allows you to implement dialog boxes and
the alert mechanism, two means of communication between the application and the end user.

You should already be familiar with:

• the basic concepts and S1nlCtUI'eS behind QuickDraw, particularly rectangles, grafFom,
andpie:tures.

• the Event Manager, the Wmdow Manager, and the Control Manager.

• LineEdit, to understand editing text in dialog boxes.

Note: This manual intends, wherever possible. to describe the final version of the Dialog
Manager. Several fea:tUres might not be implemented yet. When so, a iloilo. message is
u.c;ua11y added to signal this fact. Also, some errors or inconsistencies may remain in this
draft. Please read this manual and report any problem to:

Jean-eharles Mourey (x6624)
MS22-X

Apple Computer, Inc.
20525 Mariani Avenue

Cupertino. California 95014

AppleLink address: Mome)'1

)
August 13, 1986 - Jean-Charles Mourey Page 2

(

Dialog Manager

m~E~:E..NCES WTTH THE MACIN..TOSU,

The main difference between the Macintosh Dialog Manager and the Cortland Dialog Manager is
that there is no Resource Manager on the Cortland. Since the Mac Dialog Manager is almost entirely
written to be used with a Resource Manager, the Cortland Dialog Manager had to provide some
additionnal facilities to the developer to make it useful and powerful at the same time.

The Cortland Dialog Manager provides 58 procedures and functions, allowing the programmer to
create dialogs and items in various ways, to handle dialogs and alerts, to modify the look and
behavior of the items, and to make some general modifications.

Dialogs

It has been decided that a dialog cannot be modal and modeless at the same time. There is
different calls for creating modal dialogs and modeless dialogs. This allows to create a modal dialog
more easily and the Dialog Manager does some additional checking like preventing the use of a
modal dialog as a modeless dialog and vice-versa.

It is still possible to create a modal and a modeless dialog with the same items by using the
same item templates for the two dialogs.

Thexe is two ways to create a modal dialog: NewModalDialog and GetNewModalDialog. The
second one is more easy to use since it gets all the necessary information from a template.

Items

The Mac Dialog Manager does not allow the creation or removal of items on the fly, since they
are all defined in resources.

On the Cortland, items may be created at any time, using staCk paramaters or templates.

. The following types are supponed:

Buttons, CheCk Boxes,

Radio buttons,

Set of radio buttons (not implemented on the Mac),

Scroll bars with a user procedure that allows you to properly handle scroll bar dragging
and change some other items in the dialog wbile the user is scrolling (not implemented on the Mac),

Custom Controls,

Static Text (but you have to place the carriage returns yourself),

Long Static Text (with up to 32767 characters),

August 13, 1986 - Jean--Charles Mourey Page 3

i
\ "(.

~

Dialog Manager

Editable text (with only one line of text, but with automatic Cut/Copy/Paste),

Icon ofany size (as long as their width is a multiple of 8),

User item.

The length of an editable text may be limited to a specific value (useful for example to limit the
length of Prados fue names to 15 characters).

It is possible to specify the initial value of an item at the: time of c:rearion.

Icons and user items (and also StatText) may have a "value" that the application can use for its
own purpose.

Items can be added, removed, hidden or shown on the fly.

The scroll bar is a standard dialog item an is completely handled by the Dialog Manager (unlike
the Macintosh) by using your dialog scrollbar action procedme.

There is a lot of short cuts and fc:a.nm:s implemented for editing a line of editable text. Most of
them are short cuts implemented by LineEdit and. another one is the Applc-XJCN feature which
allow to cut/copy/paste inside or between editable items and between dialogs.

When using modal dialogs and alerts, there is a standard filter that implements the automatic
Cut/Copy/Paste feature and the Return a... equivalent to the default button. It is possible to use a
custom filter without losing the benefit') of the default filter (On the Macintosh, a custom filter had
to reimplement the standaro featLn'Cs).

It is possible to go through the list of items with GetFirstItem and GetNextItem and make
whatever action you want on each item of the list.

The concept of default button is automatically handled by the Dialog Manager. A default bunqn
is visually recognized by its bold outline and is func1ionnaly equivalent to the Return key. Initially
the default button is the item with an ID 1, and it can be changed on the fly with special procedures.

In the Macintosh,. a dialog maintains two lists, an item list and a conttollist containing all the
items that are controls. It means that controls in dialog are referenced two times, one time in the
item list and one time in the control list.

In the Cortland, all the items are implemented as controls. The regular controls defined by the
Control Manager are just standard controls (except for the Scroll Bar which definition is extended
to accept user action procedure). The other item') are implemented as custom controls.

This is why there is a procedure called GetControlItem that gives you the haIlcUe to the control
defming the comsponding item. Although it is prefc:rrable to use Dialog Manager calls, you can
virtually make any Control Manager call on this control. GetControlItem would be used to make
certain very specific Control Manager calls (for scroll bars for example). It is highly recommended
to use it as rarely as possible.

Everything else is working like on the Macintosh.

August 13, 1986 - Jean-Charles Mourey Page 4

"I

.,.....

Dialog' Manager

APOlIT mE DIALOG MANAGER
The Dialog Manager is a tool for handling dialogs and alerts in a way that's consistent with the
Apple USet InteIface Guidelines.

A dialog box appears on the screen when an application needs, JDOt'e information to carry out a
command. As shown in Figure I, it typically resembles a form on which the user checks boxes
and tills in blanks.

@ B 1/2" H 11" papero B 1/2" H 141$ paper [Ole:

181 Stop printing after each page

Print the document [cancel]

)

/'
\

..... / .

"

Title:[Rnnua~ ,:::..]

1.:=======,.==:==-:==---.....
Figure 1. A Typical Dialog BOJ~ .

By convention, a dialog box comes up slightly below the menu bar, is somewhat narrower than the
screen, and is centered between the left and right edges of the screen. It may contain. any or all of
the following:

• informative or instructional text

• rectangles in which text may be entered (initially blank or containing default text that can be
ediWd)

• controls of any kind

• graphics (icons or QuickDraw pictures)

• anything else, as defined by the application.

The user provides the necessary infmmation in the dialog box, such as by entering text or clicking a
check box. There's usually a button labeled "OK" to tell the application to accept the information
provided and perform the command, and a button labeled "Cancel" to cancel the command as
though it had never been given (retracting all actions since its invocation). Some dialog boxes may
use a more descriptive word than "OK"; for simplicity, this manual will still refer to the button as
the "OK button", There may even be more than one button that will perform the command, each in
a different way,

I-- August 13, 1986 - Jean-Charles Mourey Page 5

(

...

Dialog Manager

Most dialog boxes require the user to respond before doing anything else. Clicking a button to
perform or cancel the command makes the box go away; clicking outside the dialog box only
causes a beep from the Cortland's speaker. This type is called a modal dialog box because it puts
the user in the state or "mode" of being able to work only inside the dialog box. A modal dialog
box usually has the same general appearance as shown in Figure 1above. One of the buttons in the
dialog box may be outlined boldly. Pressing the Return. key has the same effect as clicking the
outlined button or, if none, the OK button; the particula:r button whose effect occurs is called the
dialog's default button and is the preferred ("safest") button to use in the current situation. If
there's no boldly outlined or OK button, pre..c;sing Return will by convention have no effect.

Other dialog boxes do not require the user to respond before doing anything else; these are called
modeless dialog boxes (see Figure 2). The user can, for example, do work. in document windows
on the desktop before clicking a button in the dialog box. and modeless dialog boxes can be set up
to respond to the standard editing commands in the Edit menu. Clicking a button in a modeless
dialog box will not make the box go away: TIle box will stay around so that the user can perform
the command again. A Cancel button. if present, will simply stop the action currently being
performed by the command; this would be useful for long printing or searching operations, for
example..

Find teut: E~n~~.==~

Change to: [~n~T-=-·-~·J

(Change Nesct) (Change All l
Figure 2. A Modeless Dialog Box

As shown in Figure 2. a modeless dialog box looks like a document window. It can be moved,
made inactive and active again. or closed like any document window. When you're done with the
command and want the box to go away, you can click its close box or choose Oose from the File
menu when it's the active window.

Dialog boxes may in fact require no response at all. For example, while an application is
performing a time-consuming process, it can display a dialog box that contains only a message
telling what it's doing; then. when the process is complete, it can simply remove the dialog box.

The alert mechanism provides applications with a means of reporting errors or giving warnings.
An alert box is similar to a modal dialog box, but it appears only when something has gone wrong
or must be brought to the user's attention. Its conventional placement is slightly farther below the
menu bar than a dialog box. To assist the user who isn't sure how to proceed when an alert box

.""\
) August 13, 1986 - Jean-Charles Mourey Page 6

Dialog Manager

appears, the prefexred button to use in the CUII'eIlt situation is outlined boldly so it stands out from
the other buttons in the alert box (see Figure 3). The outlined button is also the alert's default
button; if the user presses the Return key. the effect is the same as clicking this button.

CAUTION: Rre you sure you want
to erase an changes to your
document?

(Ok)

(
,

Figure 3. A Typical Alert Box

There are four standard kinds of ale:J.U-Stop. Note. Ca1.ltion and Talk.....-each indicated by a
particular icon in the tlDp left comer of the alert box. Figure 3 illustrates a Caution alert. The icons
identifying Stop. Note and Talk alerts are similar; instead of a question mark, they show an
exclamation point. an asterisk and a talJdrlg face. respectively. Other a.lerts can have anything in the
the top left COfIu::r. including blank space if desired.

The alert mechanism also provides another type of signal: S01.md from the Cortland's speaker.
The application can base its response on the number of consecutive times an alert occurs; the first
time. it might simply beep. and thereafter it may present an alert box. The sound isn't limited to a
single beep b1.lt may be any sequence of tone.,. and may occur either alone or along with an alert
box. As an error is repeated. there can also be a change in which button is the default button
(perhaps from OK to Cancel). You can specify different responses for up to four occurrences of
the same alert. .

W'lth Dialog Manager routines. you can create dialog boxes or invoke alerts.

i \
I

/ August 13, 1986 - Jean-Charles Mourey Page 7

(

-'.

..

Dialog Manager

J2.lALOG A~D AL..ERT 'iVlliDOWS
A dialog box appears in a dialog window. When you call a Dialog Manager routine to create a
dialog, you supply the same kind of information as when you create a window with a Window
Manager routine. For example, you call [Get]NewModalDialog or [Get]NewModelessDialog,
which determines how the window looks and behaves, you supply a rectangle that becomes the
portRect of the window's grafPon. and. you specify whether the window is visible or invisible.
For modeless dialogs, you also specify the window's plane (which, by convention, should initially
be the frontmost). The dialog window is created as specified..

You can manipulate a dialog window just like any other window with Window Manager or
QuickDraw routines, showing it, hiding it, moving it, changing its size or plane, or whatever-- all,
of course, in conformance with the Apple User Interface Guidelines. The Dialog Manager
observes the clipping region of the dialog window's grafPort, so if you want clipping to occur, you
can set this region with a QuickDraw routine.

Similarly, an alert box appears in an alert window. You don't have the same flexibility in defining
and manipulating an alert window. however. The Dialog Manager chooses the window definition
procedure, so that all alert windows will have the standard appearance and behavior. The size and
location of the box are supplied as part of the definition of the alert and are not easily changed. You
don't specify the alert window's plane; it always comes up in front of all other windows. Since an
alert box requires the user to respond before doing anything else, and the response makes the box
go away. the application doesn't do any manipulation of die alert window.

Figure 4 illustrates a document window, dialog window, and alert window, all overlapping on the
desktop.

Figure 4. Dialog and Alert Wmdows

August 13, 1986 - Jean-Charles Mourey Page 8

....... , ,.

Dialog Manager

ILEM...lJSTB.
To create a dialog or an alert, the Dialog Manager needs some information in order to create the
dialog or alert window. The Dialog Manager also needs to know what items the dialog or alert box
contains.

This section discusses the contents of an item list once it is created and the Dialog Manager has set
it up as necessary to be able to work with it.

An item list contains the following information for each item:

• An In number uniquely identifying the item in the dialog. All subsequent Dialog Manager
calls referring to that item will be made using the In number.

• The type of item. This includes not only whether the item is a standard control, text, or
whatever, but also whether the Dialog Manager should return to the application when the
item is clicked.

• An item descriptor like a tide for a control, a procedure pointer for a user-defined item or
text for an editable or non-editable text item.

• A display rectangle, which determines the location of the item within the dialog or alen
box.

• The initial value of a standard control, the word length of a LongStatText item, the
maximum suing length of an EditLine item, or any value you want for a UserItem.

• A flag determining whether the item should be created visible or invisible and including
item-specific information, like the family number of a radio button. or whether a scroll bar
is horizontal or vertical.

• A color table allowing to change the standard colors used to draw items in a dialog. It may
be useful for example to draw red-colored text (Custom color tables are used only for
standard controls or controls you define yourself).

There's several Dialog Manager procedures that, given a pointer to a dialog port and an item ID,
sets or returns that item's text,~ display rectangle, flags, value and color.

August 13, 1986 -- Jean-Gharles Mourey Page 9

Buttonltom

'\
"" '. ,';'

Dialog Manager

Item Types

The item type is specified by a predefined constant or combination of constants, as listed below.
Figure S illusttates some of these item types.

IconItem StatText
+ltemOlsable +ltemOlsable

i
i

Radloltem

Checkltom

UserCtlltem
+ltemDlsable

Item type

Buttonltem

ChcckItcm

I
,

~ Print the document (Caneel]
(i) 8 1/2" H 11" paper

[).............. ioOB 1/2" H 14" paper Ok

~ stop printing after each page

Choose nle Sample Memo 0
to print: MyDocument ~

CalcSheet

~
PlayMate
File 1

...

ntis:[~~Re~r"-::J pI-

Progress of printing I~BC:Ilmr_.;t."-I-

Figure S. Item Types

Menning

A standard button control.

A standaM check box control.

ScrollBarltem
+ltemDisable

EditLlne
+ltamDisable

Userltem
+ltemDisable

RadioItem

ScrollBarItcm

UserCtlItem

StatText

EditLine

A standard radio button control.

A special kind of scroll bar for dialogs.

A control defined by the application.

Static text; text that cannot be edited (Several lines allowed).

(Dialogs only) Text that can be edited; the Dialog Manager accepts text typed
by the user and allows editing (One line only).

I
./ August 13, 1986 - Jean-Charles Mourey Pa.ge 10

Dialog Manager

An icon.

A QuickDmw picture.

(Dialogs only) An application-defined item, such as a picture whose
appearance changes.

ltemDisable+<any The item. is disabled (the Dialog Manager doesn't :report events involving this
of the above> item).

UserItem.

(

The text of an EditLine item may initially'be either default text or empty. Text entry and editing is
handled in the conventional way, as in LineEdit-in fact. most of the time, the Dialog Manager
calls LineEdit to handle it:

• Clicking in the item. displays a blinking vertical bar, indicating an insertion point where text
maybe entered.

• Dragging over text in the item selects that text, double-elicking selects a word, and
triple-elicking selects the line; the selection is highlighted and then replaced by what the
user types.

• Double-elicking followed by dragging extends or shortens the selection by one word at a
time.

• TIle left and right arrow keys move the insertion point left or right by one character.

• Using the left and right arrow keys while holding down the Apple key moves the insertion
point to the beginning or the end of the line.

• Using the left and right arrow keys while holding down the Option key moves the insertion
point left or right by one word at a time.

• Clicking or using the arrows with any modifiers while holding down the Shift .key extends
or shortens the current selection.

• The Backspace key deletes the current selection or the character preceding the insertion
point.

• Control-F deletes the character following the insertion point or the current selection.

• Control-Y deletes from the insertion point to the end of the line, or the current selection.

• Control-X deletes the whole line or the current selection.

• The Apple-X, Apple-C, Apple-V commands respectively Cut, Copy and Paste the current
selection in the active EditLine item, allowing to copy and paste text between different
EditLine items (Note: the cut/copy/paste mechanism preserves the space between words).

August 13, 1986 - Jean-Charles Mourey Page 11

..

Dialog Manager

The Tab key advances to the next EditLine item in the item list, wrapping around to the 'first if there
aren't any more. In an alert box or a modal dialog box (regardless of whether it contains an
EditLine item), the Return key has the same effect as clicking the default button; for alerts, the
default button is identified in the alert template, whereas for modal dialogs it's the item in the item
list whose ID number is 1 (unless specifiedoth~).

If ItemDisable is specified for an item, the Dialog Manager doesn't let the application know about
events involving that item. For example, you may not have to be informed every time the user
types a charact.cr or clicks in an EditLine item, but may only need to look at the text when the OK
button is clicked. In this case, the EditLine item would be disabled. Standard buttons and check
boxes should always be enabled, so your application will know when they've been clicked.

Warning: Don't confuse disabling a control with making one "inactive" with the Control Manager
procedure HiliteControl: When you want a control not to respond at all to being
clicked, you make it inactive. An inactive control is highlighted to show that it's
inactive, while disabling a control doesn't affect its appearance.

Item Descrjptor and Va)yt

The item descriptor and value Contain the following informa¢ion far the various types of items:

(-".r-- Item type Item Descriptor ItemValue,
.......-

ButtonItem A pointer to the title string init value of the control

CheckItem A pointer to the title string init value of the control

Radioltem A pointer to the title string init value of the control

ScrolIBarltem A Dialog ScrolIBar Action procedure pointer oor default value if ltemDescr=O

U5¢:t11tem A control definition procedure pointer inil: value of the control

SwText A pointer to the static string application-use

LongStatText A pointer to the beginning of the text length of the text (0 to 32767)

EditLine A pointer to the default string maximum allowed length (0 to 255)

IconItem A handle to the icon application-use

PicItem A picture handle application-use

Userltem An item definition procedure pointer application-use

August 13, 1986 - Jean-Charles Mourey Page 12

',\
J

\. .,.'

Dialog Manager

Note: Whenever "application-use" is specified under "Item Value", it means that the value
parameter is not accessed by the Dialog Manager and can be used by the application for its
own purpose (use GetItemValue and SetItemValue to change this field). For example, the
application might want to store there the position of the indicator of the useritem in figure 5.
Note that SetItemValue redraws the item to display its new value.

The procedure for a userItem draws the item; for example, if the item is a clock, it will draw the
clock with the current time displayed. When this procedure is called, the cunent port will have
been set by the Dialog Manager to the dialog window's grafPort. The procedure must have two
parameters, a dialog pointer and an item ID. For example'... this is how it would be declared if it
were named MyItem:

MyIt:lIIDm

input: theDialog:LONG
itemID:WORD

output: none

pointer to the dialog's grafport
ID of item to draw

(

TheDwog is a pointer to the dialog windoW; in case the procedure draws in more than one dialog
window, this parameter tells it which one to draw in.
ltemID is the item ID; in case the procedure draws more than one item, this para.meter tells it which
one to draw.

Display Reej;an2Ie

Each item in the item list is displayed within its display rec:tangle:

• For standard controls, scroll bars and user controls, the display rectangle becomes the
control's enclosing rectangle.

• For an EditLine item, it becomes UneEdit's view rectangle. The text is clipped if there's
more than will fit in the :rectangle. In addition, the Dialog Manager uses the QuickDraw
procedure FramcRect to draw a rectangle outside the display rectangle.

• StatText and LongStatText items are displayed in exactly. the same way as EditLine items,
except that a rectangle isn't drawn outside the display rectangle and it is possible to have
more than one line of text by inserting eatriage return characters in the text.

• Icons and QuickDraw pictures are scaled or clipped to fit the display rectangle. For
pietu:res, the Dialog Manager calls the QuickDraw procedure DrclwPietu:re and passes it the
display rectangle.

• If the procedure for a userItem draws outside the item's display rectangle. the drawing is
clipped to the display rectangle.

/ August 13, 1986 - Jean-Charles Mourey Page 13

........ : .. :.

Dialog Manager

Note: Clicking anywhere within the display rectangle is considered a click in that item. Ifdisplay
rectangles overlap, a click in the overlapping area is considered a click in whichever item
comes first in the item list.

By setting the invisible flag, you can make the item invisible. This might be useful, for example,
ifyour application needs to display a number ofdialog boxes that are similar except that one item is
missing or different in some of them. You can use a single dialog box in which the item or items
that aren't cw:rendy relevant are invisible. To remove an item or make one reappear, you just make
it visible or invisible. Note the following, however:

• Instead of making an item invisible and visible. you can use the RemoveItem procedure
which completely removes the item from the item list.

• The rectangle for a statText item must always be at least as wide as the first character of the
text; a good rule of thumb is to make it at least 20 pixels wide.

• To change text in a statText item, it's easier to use the Dialog Manager procedure
Para.mText (as described later in the "Dialog Manager Routines" section).

Item ID

Each item in an item list is identified by an item ID, a unique number in the list allowing you to
further reference this item. By convention, the OK button in an alert's item list should have an ID
of 1 and the Cancel button should have an II> of 2. The Dialog Manager provides predefined
constants equal to the item ID for OK and Cancel:

ok
cancel

equ 1
equ 2

In a modal dialog's item list, the item whose ID is 1 is assumed to be the dialog's default button
(unless specified otherwise); if the user presses the Return key. the Dialog Manager normally
returns the ID of the default button, just as when that item is actually clicked.

In conformance to the Apple User Interface Guidelines, the Dialog Manager automatically
boldly-oudine the default button, unless there is no default button (no button item with ID 1).

Note: Ifyou don't want any default button, you should not create any item with an ID L

Item FJae

The Item Flag parameter contains most of the time the same as dle Ctrl Flag value that you would
pass to NewControl to create a control. It may contain the family number of a radio button, or
whether a scroll bar is vertical or horizontal. For more details, see the Control Manager ERS.

Note: You should not use itemFlag to boldly-outline a button, since the Dialog Manager handles
the concept of default button fO! you.

August 13, 1986 - Jean-Charles Mourey Page 14

Dialog Manager

)lIALOG ltECORDS

To create a dialog, you pass information to the Dialog Manager in parameters or in a template; the
Dialog Manager incorporates the information into a dialog record. The dialog record contains the
window record for the dialog window, a handle to the dialog's item list, and some additional fields.
The Dialog Manager creates the dialog window by calling the Wmdow Manager function
NewWmdow and then setting the dialog type in the dialog :record to indicate whether it ic; a modal
or a modcless dialog. The routine that creates the dialog returns a pointer to the dialog port, which
you usc thereafter to refer to the dialog in Dialog Manager routines or even in Wmdow Manager or
QuickDraw routines (see "Dialog Pointers" below). The Dialog Manager provides routines for
handling events in the dialog window and disposing of the dialog when you're done.

You can do all the necessary operations on a dialog without accessing the fields of the dialog record
directly.

lljalQg Pointers

A DialogPtr is a pointer to the dialog's port, very much as a WindowPtr. Don't assume that it is
also a pointer to the dialog record or even the window record, because it's NOT!

Accessing the Dialog Record aDd~I1emRecorWi

The structure of a Dialog Record is private.

To get or change information about a dialog, you pass the dialog pointer to a Dialog Manager
routine. You'll never access information directly in the record.

To get or change information about an item in a dialog, you pass the dialog pointer and the item ID
to a Dialog Manager routine. You'll never access information directly through the handle to the
item, except for some rare cases.

,

-- August 13, 1986 - Jean-Charles Mourey Page 15

(

Dialog Manager

When you call a Dialog Manager routine to invoke an alert, you pass it a pointer to the alert
tempWe, which contains the following:

.. An alert ID used by the Dialog Manager to deal with stages between the different alerts.

.. A rectangle., given in global coordinates, which determines the alert window's size and
location. It becomes the portReet of the window's grafPort. To allow for the menu bar
and the border around the portRect, the top coordinate of the rectangle should be at least 25
points below the top of the screen.

.. Information about exactly what should happen at each stage of the alert.

.. A list of items.

Every alert has four stages, couesponding to consecutive occmrences of the alert: The first three
stages correspond to the first three occurrences, while the fourth stage includes the fourth
occummce and any beyond the fourth. (The Dialog Manager compares the current alert's ID to the
last alert's ID to determine whether it's the same alert.) The actions for each stage are specified by
the following three pieces of infcmnat:ion:

.. which is the default button-the OK button (or, if none, a button that will perform the
command) or the Cancel button. For an alert, the Ok button shoud have an ID 1 and the
Cancel button an ID 2-

.. whether the alert box is to be drawn

.. which of four sounds should be emitted at this stage of the alert

The alert sounds are determined by a sound procedure that emits one of up to four tones or
sequences of tones. The sound procedure has one parameter, an integer from 0 to 3; it can emit any
sound for each of these numbers, which identify the sounds in the alert template. For example,
yo~ might declare a sound procedure mu:ned MySound as follows:

MySound

input: SoundNo : WORD

output: none

number of the sound

If you don't write your own sound procedure, the Dialog Manager uses the standard one: Sound
number 0 represents no sound and sound numbers 1 through 3 represent the corresponding number
of short beeps, each of the same pitch and duration. The volume of each beep depends on the
current speaker volume setting, which the user can adjust with the Control Panel desk accessory.

For example, if the second stage of.an alert is to cause a beep and no alert box, you can just specify
the following for th~t stage in the alert template: Don't draw the alert box, and use sound number

August 13, 1986 - Jean-Charles Mourey Page 16

.' '_.

Dialog Manager

one. If instead you want, saYt two successive beeps of different pitcht you need to write a
procedure that will emit that sound for a particular sound nWnbel\ and specify that number in the
alert template. The Cortland Miscellaneous Tools FWEntry procedure allows to call from a 16-bit
environment the Apple /I firmware which has routines for emitting sound (The standard sound
procedure calls the BELL routine at SFBDD); for more complex sounds, you can use the Sound
Tools.

Note: When the Dialog Manager detects a click outside an alert box or a modal dialog box, it emits
sound number 1; thus, for consistency with the Apple User Interface Guidelines, sound
number 1 should always be a single beep.

Internally, alerts are treated as specl.a1 modal dialogs. The alert routine creates the alert window by
calling NewModalDialog and every item with GetNewDItem. The Dialog Manager works with the
dialog created by NewModalDialog. just as when it operates on a dialog window, but it disposes of
the dialog before returning to the application. Normally your application won't change the dialog
record for an alert; however, there is a way that this can happen: for any alert, you can specify a
procedure that will be executed repeatedly during the alert, and this procedure may access the
dialog. For details, see the alert routines under "Invoking Alerts" in the "Dialog Manager
Routines" section.

August 13, 1986 - Jean-Charles Mourey Page 17

(

..

Dialog Manager

USING T.1!E UIALOG MANAGER.
Bdore using the Dialog Manager, you must initialize the Memory Manager, QuickDraw, the Event
Manager, the Window Manager, the Control Manager, and LineEdit, in that order. The first Dialog
Manager routine to call is DialogStartup, which initializes the Dialog Manager. Ifyou want the font
in your dialog and alert windows to be other than the system font, call SetDAFont to change the
font.

Where appropriate in your program, call NewModalDialog, NewModelessDialog or
GetNewModalDialog to create any dialogs you need. Then call NewDltem or GetNewDltem for
each new item you want to add to the dialog. When you no longer need a dialog, you'll usually call
OoseDialog.

In most cases, you probably won't have to make any changes to the dialogs from the way they're
defined at their creation. However, if you should want to modify an item in a dialog, you can call
one of the GetItemXXX calls to get information about the item and SetItemXXX to change it. In
some cases it may be appropriate to call some other routine to change the item; for example, to
move a control in a dialog, you would get its handle from GetControlItem and then call the
appropriate Control Manager routine. There are also two procedures specifically for accessing or
setting the content of a text item in a dialog box: GetIText and SetlText.

To handle events in a modal dialog. just call the ModalDialog procedure after putting up the dialog
box. If your application includes any modeless dialog boxes, you'll pass events to IsDialogEvent
to learn whether they need to be handled as part of a dialog, and then usually call DialogSelect if so.
Before calling DialogSelect, however, you should check whether the user has given the keyboard
equivalent of a command, and you may want to check for other special cases, depending on your
application. You can support the use of the standard editing commands in a modeless dialog's
editText items with DigCut, DIgCopy, DIgPaste, and DIgDelete.

A dialog box that contains EditLine items normally comes up with the insertion point in the flrst
such item in its item list. You may instead want to bring up a dialog box with text selected in an
EditLine item, or to cause an insertion point or text selection to reappear after the user has made ~
error in entering text. For example, the user who accidentally types nonnumeric input when a
number is :required can be given the opportunity to type the entry again. The SelIText procedure
makes this possible.

For alerts, if you want other sounds besides the standard ones (up to three short beeps), write your
own sound procedure and call ErrorSound to make it the current sound proCedure. To invoke a
particular alert, call one of the alert routines: StopAlert, NoteAlert, CautionAlert, or TalkAlert for
one of the standard kinds of alert, or Alert for an alert defined to have something other than a
standard icon (or nothing at all) in its top left comer.

Fmally, you can substitute text in StatText items with text that you specify in the ParamText
procedure. This means, for example, that a document name supplied by the user can appear in an
error message.

) August 13, 1986 - Jean-Charles Mourey Page 18

/
'.

Dialog Manager

!lJALOG MANAGER ~OUnliES

Initialization and ShutDoWD

DialogBoo'l:Ini'l:

input: none

Call • 1

output: none

DialogBootlnit is called at initialization time. It does nothing.

DialogS'l:ar'l:up

input: ProgramID : WORD

Call • 2

ID to use with the Memory Manager

(

output: none

Call DialogStar'tUp once before all other Dialog Manager routines, to initialize the Dialog Manager.
DialogStartup does the following initiali7.1ltion:

• It installs the standard sound procedure.

• It passes empty strings to ParamText.

• It sets the dialog font to the System font.

• It sets the alert stage to 1.

Note: The Dialog Manager shaIes its zero page with the Control Manager, so it does not need a
special zero page. Note that the Control Manager must be present in order for the Dialog
Manager to run, even if you do not have any standard control items in your dialogs.

J:rrorSound.

input: soundProc:LONG

output: none

Call t 7

pointer to a sound procedure

ErrorSound sets the sound procedure for alerts to the procedure pointed to by sound.Proc; if you
don't call ErrorSound, the Dialog Manager uses the standard sound procedure. (For details, see
the "Alens" section.) If you pass NIL for sound.Proc, the standard procedure will be used instead.

Note: The sound procedure is also called by ModalDialog with a Sound Number of 1, when the
user clicks outside the dialog. .

August 13, 1986 - Jean-Charles Mourey Page 19

(
Dialog Manager

input: FontHandle : LONG

Call • 8

handle to the new font

output: none

For subsequently created dialogs and alerts, SetDAFont causes the font of the dialog or alert
window's grafPort to be set to the font having the specified font number. If you don't call this
procedure, the system font is used. SetDAFont affects statText, EditLine items and standard
controls.

DiaJ.oqShutDoWD

input: none

output: none

Call t 3

DialogShutDown shuts down the Dialog Manager and frees up any memory allocated by the Dialog
Manager.

(
""'\•. ~~~~..

input: none

output: dVersion:WORD

input: none

Call t 4

Dialog Manager's version number.

Call t 5

output: none

DialogReset resets the dialog font to the system font, clears the ParamText strings, reset the sound
procedure to the standard sound procedure and reset the alert stage.

DiaJ.oqStatus

input: none

Call t 6

output: status:WORD - TRUE if Dialog Manager is active

DialogStatus returns TRUE if the Dialog Manager has been initialized. It would return FALSE
before a DialogStartup and after a DialogShutDown.

August 13, 1986 - Jean-Charles Mourer Page 20

Dialog Manager

Creatim: and pisposing oLDjalogs

Call • 10

input: dBoundsRect:LONG pointer to the window bounds rectangle
dVisible:WORD TRUE if dialog is visible, FALSE if not
dRefCon:LONG any value you'd like to associate with

the dialog's window.

output: theDialog:LONG pointer to dialog port, zero if error.

(

NewModalDialog creates a modal dialog as specified by its PlU."aIDCters and returns a pointer to the
port of the new dialog. It allocates memory for it.

dBoundsRect, a rectangle given in global coordinates, determines the dialog window's size and
location. Remember that the top coordinate of this rectangle should be at least 25 points below the
top of the screen for a modal dialog. to allow for the menu bar.

If the dVisible parameter is TRUE, the dialog window is drawn on the screen. If it's FALSE, the
window is initially invisible and may later be shown with a call to the Wmdow Manager procedure
ShowWmdow.

Note: NewModalDialog generates an update event for the entire window contents, so the items
aren't drawn immediately. It allows you to do some processing on the items before to draw
them. However. if you change the value of an item or its text, the Control Manager draws
the item immediately. If you find that all the items should be drawn at the same time, try
making the dialog invisible initially and then calling ShowWmdow on the dialog to show it.

RefCon is the dialog window's reference value, which the application may store into and access for
any purpose.

NewModalDialog sets the font of the dialog window's grafPort to the system font or, if you
previously called SetDAFont, to the specified font. It also sets the dialog type in the dialog record
to Modal_Type.

August 13, 1986 - Jean-Charles Mourey Page 21

Dialog Manager

Call • 11

input: dBoundsRect:LONG pointer to window bounds rectangle.
dTitle:LONG pointer to string for dialog's title,

zero if no title.
dBehind:LONG pointer to window the dialog should be

behind.
dFlag:WORD Bit vector describing the dialog's

frame.
dRefCon:LONG any value you'd like to associate with

the dialog's window.
dFullSize:LONG pointer to RECT to be used as content's

zoomed size.

output: theDialog:LONG pointer to dialog port, zero if error.

--.../
\
.k..--

Uke NewModalDialog (above), NcwModelessDialog creates a dialog as specified by its parameters
and returns a pointer to the new dialog. Instead of making a modal dialog, NewModelessDialog
creates a modelcss dialog, as described under "Dialog and Alert Wmdows".

The dBoundsRect. dVlSible and dRcfCon parameters have the same value as in NcwModalDialog.

dTItle is the title of the modeless dialog box.

The dBehind parameter specifies the window behind which the dialog window is to be placed on
the desktop. Pass -1 ($FFFFFFFF) to bring up the dialog window in front of all other windows.

dFlag allows you to describe the window's frame of the dialog (close box, ...) .

dFullSize is a pointer to a rectangle describing the size and location of the dialog after the dialog is
zoomed in.

August 13, 1986 - Jean-Charles Mourey Page 22

Dialog Manager

Call • 50

input: DialogTemplate:LONG pointer to a dialog template

output: theDialog:LONG pointer to dialog port, zero if error

GetNewModalDialog (like NewModalDialog) creates a modal dialog and returns a pointer to the
port of the new dialog. But, instead of getting its parameters from the stack, it gets them from a
template whose definition follows:

pi'alggTemplate:

BoundsRect:RECT
Visible:WORD
RefCon:LONG
Iteml:LONG
Item2:LONG

ItemN:LONG
Terminator:LONG ZERO

dialog bounds rectangle
TRUE if dialog is to be visible
any value you want (application-use)
pointer to first item's template
pointer to second item's template

pointer to last item's template
item list terminated by a nil pointer.

(......... -

The beginning of a dialog template contains the same values you would pass to NewModalDialog,
except that BoundsRect is the actual rectangle, not a pointer.

The iteml, item2,... itemN fields are pointers to item templates for each of the items you want to
figure in the dialog. The last pointer must be 0 to signal the end of the list.

C.loseDia.loq

input: theDialog:LONG

output: none

Call • 12

pointer to dialog port

CoseDialog removes theDialog's window from the screen and deletes it from the window list, just
as when the Wmdow Manager procedure CoseWindow is called. It releases the memory occupied
by the following:

• The data structures associated with the dialog window (such as the window's structure,
content, and update regions).

• All the items in the dialog (except for pictures and icons, which might be shared
resources), and any data structures associated with them. For example, it would dispose
of the region occupied by the thumb of a scroll bar, or a similar region for some other
control in the dialog.

,
"

\
, :
,/ August 13, 1986 - Jean-Charles Mourey Page 23

..

Dialog Manager

Creatina- and remQyina- items;

input: theDialoq:LONG
ItemID:WORD

ItemRect:LONG
ItemType : WORD

ItemDescr:LONG

ItemValue:WORD

optional ItemFlaq : WORD

opti01lal ItemColor: LONG
I.,

Call • 13

pointer to dialoq this item belonqs to.
item identifier for all item-related
dialoq manaqer calls.
pointer to the display rectanqle.
Button, Check, UserCtl, StatText,
EditLine,PicItem,UserItem...
strinqptr, textptr, procptr, iconhandle
or pichandle.
init.value, text lenqth, max lenqth, 0,
or any other value.
includes visible/invisible flaq (0 for
default flaq).
pointer to item's default color table
(0 for default) .

(
' ..,/.

output: none.

Adds a new item to the dialog's item list.

The possible item types are: ButtonItem, CheckItem, RadioItem, ScrollBarItem, UserCtlItem,
StatText, LongStatText, EditLine, IconItem, Picltem, Userltem.

Ifyou add ltemDisable to the ltemType, the dialog manager will handle the actions on this disabled.
item without reporting anything to te application.

For a Button item [, Check item, Radio item], the itemDescr parameter is a pointer to the title of
the button [, check box, radio button] and the itemValue is the initial value of the control (useful for
check boxes and radio buttons)•

. For a StatText item, the itemDescr parameter is a pointer to a string containing the static text and
the itemValue is not used. You can have several lines of text in the same item by inserting carriage
returns (AScn 13=$OD) inside the string. Here is an example of a typical string you would use for
aStatText item:

StaticStr dc i1 'EndStaticStr-StaticStr-l'
dc c'Do you want to save',h'OD'
dc c'before quittinq?'

EndStaticStr anop

For a one line static text item, you can use the macro STR:

StaticStr str 'File not found'

August 13, 1986 -- Jean-Charles Mourer Page 24

Dialog Manager

For a LongStatTm item, the itemDescr parameter is a pointer to the beginning of the text ending
and the itemValue is the word length of the text (0 to 32767). Here is an example of typical
itemDescr and itemValuc parameters you would use for a LongSwText item:

itemDucr is apointer to thefollowing text:

myLonqText de e 'This is a really very •.. ', h ' OD '
de e'very ... very ... ' ,h'OD'

de e'lonq text, that eontains',h'OD'
de e'more than 255 eharaeters',h'OD'
de e'so that I need a LonqStatText',h'OD'
de e'item to print it in a single item'

EndLonqText anop

and itemVaJue is: EndLonqText-myLonqText

(
".~.

For an EditLine item. the itemDescr parameter is a pointer to the default string containing the
default text that first appears in the item when the dialog comes up and itemValue is the maximum
allowed length of the editable string (0 to 255). Here is an example of typical itemDescr and
itemValue parameters you would use for an EditLine item:

itemDucr is apointer to the following string:

EditLStr de i1'EndEditLStr-EditLStr-1' ; default string
de e 'Untitled ,

EndEditLStr anop

and itemValue is: 15 (maximum length for a FroDos file name)

Ifyou pass zero for itemDescr, the line will have 00 default text in it.

If the item is the first EditLine item to be created., it will be the Cl.m"ent active EditLine item and the
default text (if there is any) will be selected.

For a ScrollBar item, the itemDescr is a pointer to a special action procedure that will be called
during initialization time and scrolling. This procedure will be able, for example, to change the
appearance of different items in the dialog in real-time, while the user is scrolling the scroll bar and
without reporting anything to the application. In fact, if the scrollbar item is disabled, the
application will not even know that the user clicked in it!

August 13, 1986 - Jean-Charles Mourey Page 2S

'"

Dialog Manager

The definition of a Dialog ScrollBar Action Procedure follows:

MyDia~oqSc:o~~Ba:

input: command: WORD
dialoq:LONG
ScrollBarID:WORD

output: result:WORD

see list of possible commands below.
dialoq the scroll bar is in.
item ID of scroll bar.

depends on command (see below) .

Command Result Comments

GetInitView (1) initview view size at creation (called before control is allocated)

GetInitTotal (2) init total total size at creation (called before control is allocated)

GetInitValue (3) starting valur- value at creation (called before control is allocated)
r .'

ScrollLineUp (4) new value scroll one line up and retmn new scroll bar value

ScrollLineDown (5) new value scroll one line down and return new scroll bar value

.' ScrollPageUp (6) new value scroll one page up and return new scroll bar value
(---\

....,/
,;'>"'" ScrollPageDown (7) new value scroll one page down and return new scroll bar value

ScrollThumb (8) new value get thumb position, scroll to that position and return new
correct value (usually the same).

For the first three calls. do not make any reference to the scroll bar control because these calls are
made before to allocate the controL

The calls from ScrollLineUp to ScrollPageDown should first call GetItemValue on ScrollBarID to
get the previous value of the scroll bar. then do some changes (like changing an icon or the text of a
StatText item. or adding or removing items from the dialog). and finally returns the new value of
the scrollbar.

For ScrollThumb. you should first call GetItemValue on ScrollBarID. GetItemValue returns the
new thumb position. You can then do whatever changes you want to do. and then returns either the
value you got from GetItemValue or any value you find suitable.

Your Dialog ScrollBar Action procedure will be called by NewDltem just before to create a
ScrollBar item and by ModalDialog when the user clicks in a ScrollBar item.

Note that ModalDialog will set the new scrollbar value according to the result returned by your
procedure.

August 13, 1986 - Jean-Charles Mourey Page 26

""-,
!

Dialog Manager

For an Icon item, itemDescr is a handle to an icon and itemValue is not used. The icon record
contains the following fields:

ioonReot
ioon1maqe

equ 0
equ ioonReot+8

; bounds reot (width is multiple of 8)
pixel imaqe (ioon bitmap)

For a Picture item, itemDescr is a picture handle almost defined and itemValue is not
used.

For a UserControl item, itemDescr is a pointer to a control definition procedure, as defined in the
Control Manager ERS, and itemValue is the initial value of the control

For a User item, itemDescr is a pointer to an item definition procedure and itemValue is not used.
The definition of an item definition procedure folkt-vs:

MyI1: lUll

The procedure for a Userltem draws the item; for example, if the item is a clock, it will draw the
clock with the current time displayed. When this procedure is called, the current port will have been
set by the Dialog Manager to the dialog window's grafPort.

TheDialog is a pointer to the dialog window; in case the procedure draws in more than one dialog,
this parameters tells it which one to draw in.

ltemID is the item 10; in case the procedure draws more than one item, this parameter tells it which
on~todraw.

(
:.......

input:

output:

theOialoq:LONG
item10:WORD

none

pointer to the dialoq I s qrafport
10 of item to draw

August 13, 1986 - Jean-Charles Mourey Page 27

Dialog Manager

input: theOialog:LONG
ItemTemplate:LONG

Call • 51

pointer to dialog port
pointer to an item template

output: none

GetNewDltem (like NewDltem) adds a new item to the dialog's item list. But, instead of getting its
parameters from the stack, it gets them from a template whose definition follows:

ItemTemplate:

itemIO:WORD
itemRect:RECT
itemType : WORD
itemDescr:LONG
itemValue:WORD
itemFlag:WORD
itemColor:LONG

Number uniquely identifying the item
display rectangle, in local coordinates
Type of item (Button, Check, . Scroll ...)
Item Descriptor
Item Value
Bit vector flag 1(0 for default)
Pointer to color table (0 for default)

(
~../. '.

!
,.........

Most of the item template fields are the same as those you would pass to NewDltem, except:

• ItcmRect contains the actual display IeCtangle, not a pointer to it.

• The dialog that will contain the item is not specified in the template. This allows you to
have dialog-independent items and repeat them among several dialogs (useful for OK,
Cancel•••• buttons).

input: theoialog:LONG
ItemIO:WORD

.output: none.

Call t 14

pointer to dialog port
10 of item to be removed

\.

Removes the given item from the dialog and erases it from the screen.

August 13, 1986 - Jean-Charles Mourey Page 28

(
Dialog Manager

Handling Dialog Eyents

Call • 15

input: filterProc:LONG pointer to a filter procedure to be
called repeatdly

output: itemHit:WORD ID of item hit.

(
\

,......
. (

Call ModalDialog after creating a modal dialog and bringing up its window in the frontmost plane.
If the front window is a modaldialog, ModalDialog repeatedly gets and handles events in the
dialog's window; after handling an event involving an enabled dialog item, it returns with the item
10 in itemHit. Normally you'll then do whatever is appropriate as a response to an event in that
item.

Note: If the front window is not a modal dialog (for instance, if it is a regular window or a
modeless dialog), modaldialog :retums immediately with itemHit set to r~

ModalDialog gets each event by calling the Event Manager function GetNextEvent. If the event is a
mouse-down event outside the content :region of the dialog window, ModalDialog emits sound
number 1 (which should be a single beep) and gets the next event; otherwise, it filters and handles
the event as described below.

Note: Once before getting each event, ModalDialog calls SystemTask ."'''' not called yet, a
Desk Manager procedure that must be called :regularly so that desk accessories will work
properly.

The filterProc parameter determines how events are filtered. If it's NIL, the standard filterProc
function is executed; this causes ModalDialog to return the ID of the default button (1 usually) in
itemffit if the Return key is pressed ands~ the Apple-XlCIV commands for Cut/Copy!l?aste
operations inside the dialog. If filterProc Isn't NIL, ModalDialog filters events by executing the
function it points to. Your filterProc function should have three parameters and :return a Boolean
value. For example, this is how it would be declared if it were named MyFtlter:

MYl'i;U~.u:

input: theDialog:LONG
theEvent:LONG
itemHit:LONG

output: result:WORD

pointer to the dialog port.
pointer to the Event.
pointer to itemHit.

TRUE if must return.

A function result of FALSE tells ModalDialog to go ahead and handle the event, which either can
be sent through unchanged or can be changed to simulate a different event. A function result of
TRUE tells ModalDialog to :return immediately rather than handle the event; in this case, the
filterProc function sets itemHit to the item number that ModalDialog should :return.

Note: If you set the bit 31 of the filterProc parameter to 1 before passing it to ModalDialog, the
standard filter procedure will also be called after your filter procedure. It allows you to

\. August 13, 1986 - Jean-Charles Mourey Page 29

(

..,

/

Dialog Manager

define a custom filter procedure and still get the benefits of the Cut/Copy/Paste feature and
the Return alternative for the default button, for consistency with the Apple User Interface
Guidelines. .

You can use the filterProc function, for example, to treat a typed character in a special way (such as
ignore it, or make it have the same effect as another character or as clicking a button); in this case,
the function would test for a key event with that character. As another example, suppose the dialog
box contains, a userltem whose procedure draws a clock with the cummt time displayed. The
filterProc function can call that procedure and return FALSE without altering the CUl'I'eIlt event

Ifyou want the filter procedure to handle a special event and prevent Moda1Dialog from handling it,
but without actually leaving ModalDialog, change the what field of the Event Record to
nuIlEvent and returnS FALSE.

ModalDialog handles the events for which the filterProc function returns FALSE as follows:

• In response to an activate or update event for the dialog window, ModalDialog activates or
updates the window.

• If the mouse button is pressed in an EditLine item, ModalDialog responds to the mouse
activity as appropriate (displaying an insertion point or selecting text). If a key event
occurs without the Apple key held down and there's an EditLine item, text entry and
editing are handled in the standard way for such items. If the Apple key is being held
down, the typed character does not go to LineEdit except for left and right arrows. In
either case, ModalDialog returns if the EditLine item is enabled or does nothing if it's
disabled. If a key-down event occurs when there's no EditLine item, ModalDialog does
nothing.

• If the mouse button is pressed in a standard or user control, ModalDialog calls the Control
Manager function TrackControl. If the mouse button is released inside the control and the
control is enabled., ModalDialog returns; otherwise, it does nothing.

• If the mouse button is pressed in a scroll bar item, ModalDialog calls the Control Manager
function TrackControl with a special action procedure that calls your Dialog ScrollBar
Action procedure.

• If the mouse button is pressed in any other enabled item in the dialog bOx, ModalDialog
returnS. If the mouse button is pressed in any other disabled item or in no item, or if any
other event occurs, ModalDialog does nothing.

August 13, 1986 - Jean-Charles Mourey Page 30

;

i
\,

''.
!

IsDiaJ.ogEvlIIiIn't

input: theEvent:LONG

output: result:WORD

Dialog Manager

Call t 16

pointer to the Event Record

TRUE if theEvent is a Dialog Event.

If your application includes any modeless dialogs, call IsDialogEvent after calling the Event
Manager function GetNextEvent. or the Wmdow Manager function TaskMaster.

Warning: Ifyour modeless dialog contains any EditLine items, you must call IsDialogEvent (and
then DialogSelect) even ifGetNextEvent ~tums FALSE; otherwise your dialog won't
receive null events and the caret won't blink.

Pass the cmrent event in theEvent. IsDialogEvent determines whether theEvent needs to be handled
as part of a dialog. If theEvent is an activate or update event for a dialog window, a mouse-down
event in the content region of an active dialog window, or any other type of event when a dialog
window is active, IsDialogEvent retums TRUE; otherwise, it returns FALSE.

When FALSE is returned, just handle the event yourself like any other event that's not
dialog-related. When TRUE is returned, you'll generally end up passing the event to DialogSelect
for it to handle (as described below), but :fitst you should do some additional checking:

. • In ~cial cases, you may want to bypass DialogSelect or do some preprocessing before
calling it. If so, check for those events and respond accordingly.

For cases other than these, pass the event to DialogSelect for it to handle.

.. / August 13, 1986 - Jean-Charles Mourey Page 31

(..~.

D:La.logSe.lec:t.

input: theEvent : LONG
theDialoq:LONG

itemHit:LONG

output: result:WORD

Dialog Manager

Call t 17

pointer to the Event Record
address of variable to store the dialog
pointer in it
pointer to itemHit

TRUE if event involved an enabled item

(
\

You'll nonnally call DialogSelect when IsDialogEventreturns TRUE. passing in theEvent an event
that needs to be handled as part of a modeless dialog. DialogSelect handles the event as described
below. If the event involves an enabled dialog item, DialogSelect returns a function result of
TRUE with the dialog pointer in theDialog and the item number in itemHit; otherwise, it returns
FALSE with theDialog and itemHit undefined. Nonnally when DialogSelect returns TRUE, you'll
do whatever is appropriate as a response to the event, and when it returns FALSE you'll do
nothing.

If the event is an activate or update event for a dialog window, DialogSelect activates or updates the
window and returns FALSE.

If the event is a key-down or auto-key event and the Apple key is held down, DialogSelect returns
FALSE.

If the event is a mouse-down event in an EditLine item, DialogSelect responds as appropriate
(displaying a caret at the insertion point or selecting text). If it's a key-down or auto-key event
without the Apple key being held down and there's an EditLine item, text entry and editing are
handled in the standard way. In either case, DialogSelect returns TRUE if the EditLine item is
enabled or FALSE if it's disabled. If a key-down or auto-key event is passed when there's no
EditLine item, DialogSelectreturns FALSE.

Note: To treat a typed character in a special way (such as ignore it, or make it have the same effect
as another character or as clicking a button), you need to check for a key-down event with
that cha.ractcf before calling DialogSeleet. .

If the event is a mouse-down event in a control, DialogSelect calls the Control Manager function
TrackControl. If the mouse button is released inside the control and the control is enabled,
DialogSelect returns TRUE; otherwise, it returns FALSE.

If the event is a mouse-down event in any other enabled item, DialogSelect returns TRUE. If it's a
mouse-down event in any other disabled item or in no item, or if it's any other event, DialogSelect
returns FALSE. .

Note: If the event isn't one that DialogSelect specifically checks for (if it's a null event, for
example), and there's an EditLine item in the dialog, DialogSelect calls the LineEdit
procedure LEIdle to make the caret blink.

\
..J August 13, 1986 - Jean-Charles Mourey Page 32

D.lqCUt.

input: theDialog': LONG

output: none

Dialog Manager

Call t 18

pointer to the dialog'

DlgCut checks whether theDialog has any EditLine items and, if so, applies the LineEdit procedure'
LECut.to the CUJ:'.rendy selected EditLine item. You can call DlgCut to handle the editing command
Cut when a modeless dialog window is active.

input: theDialog':LONG

output: none

Call • 19

pointer to the dialog'

DlgCopy is the same as DIgCut except that it calls LECopy, for handling the Copy command.

/
\

D.lqPllst.e

input: theDialog':LONG

output: none

Call t 20

pointer to the dialog'

.'--
DlgPaste is the same as DIgCut except that it calls LEPaste, for handling the Paste command.

D.lqDe.let.e

input: theDialog':LONG

output: none

Call t 21

pointer to the dialog

DlgDelete is the same as DIgCut except that it calls LEDelet.e, for handling the Oear command.

DrllwDill.loq

input: theDialog:LONG

output: none

Call t 22

pointer to the dialog

DrawDialog draws the contents of the given dialog box. Since DialogSelect and ModalDialog
handle dialog window updating, this procedure is useful only in unusual situations. You would
call it, for example, to display a dialog box that doesn't require any response but merely tells the
user what's going on during a time-consuming process.

August 13, 1986 - Jean-Charles Mourey Page 33

/
\

Dialog Manager

Inyoking Alerts

Call t 23

input: AlertTemplate:LONG pointer to an alert template
filterProc:LONG pointer to filter used by ModalDialog

output: itemHit:WORD ID of item Hit.

This function invokes the alert defined by the alert template. It calls the current sound procedure. if
any. passing it the sound number specified in the alert template for this stage of the alert. If no alert
box is to be drawn at this stage, Alert returns a function result of -1; otherwise, it creates and
displays the alert window for this alert and draws the alert box.

Alert gets its parameters for an alert template. The definition ofan alert template is as follows:

AlertTemplate:

(
.....

BoundsRect:RECT
AlertID: WORD
stagel:BYTE
stage2:BYTE
stage3:BYTE
stage4:BYTE
Iteml:LONG
Item2:LONG

alert bounds rectangle
number uniquely identifying the alert
first stage of alert
second stage of alert
third stage of alert
fourth stage of alert
pointer to first item's template
pointer to second item's template

ItemN:LONG pointer to last item's template
Terminator:LONG ZERO item list terminated by a nil pointer.

A stage byte is a bit vector containing the following bit fields:

Bits 0-2
Bits 3-5
Bit 6
Bit 7

Sound Number to emit at this stage (0 to 3)
Unused
Default button ID minus 1 (only 1 or 2) .
Flag indicating if the alert should be drawn.

Note: Alert creates the alert window by calling NewModalDialog and GetNewDItem for each item
in the alert, and does the rest of its processing by calling ModalDialog.

Alert repeatedly gets and handles events in the alert window until an enabled item is clicked, at
which time it returns the item number. Normally you'll then do whatever is appropriate in response
to a click of that item. .

Alert gets each event by calling the Event Manager function GetNextEvent. If the event is a
mouse-down event outside the content region of the alert window. Alert emits sound number I
(which should be a single beep) and gets the next event; otherwise, it fllters and handles the event
as described below.

,,
............

August 13, 1986 - Jean-Charles Mourey Page 34

/
\

('
"

Dialog Manager

The filterProc parameter has the same meaning as in ModalDialog (see above). If it's Nll..., the
standard filterProc function is executed, which makes the Return key have the same effect as
clicking the default button. If you specify your own filterProc function and want to retain this
feature, you must set the bit 31 of the filterProc parameter to 1. You can find out what the cmrent
default button is by calling GetDefButton on the dialog pointer for the alert passed to your filter
procedure.

Alert handles the events for which the filterProc function returns FALSE as follows:

• If the mouse button is pressed in a control, Alert calls the Control Manager procedure
TrackControl. If the mouse button is released inside the control and the control is enabled,
Alert returns; otherwise, it does nothing.

• If the mouse button is pressed in any other enabled item, Alert simply returns. If it's
pressed in any other disabled item or in no item, or if any other event occurs, Alert does
nothing.

Before returning to the application with the item number, Alert removes the alert box from the
screen. (It disposes of the alert window and its associated data structures, the item list, and the
items.)

Note: The Alert function's removal of the alert box would not be the desired result if the user
clicked a check box or radio button; however, nonnally alerts contain only static text, icons,
pictures, and buttons that are supposed to make the alert box go away. If your alert
contains other items besides these, consider whether it might be more appropriate as a
dialog.

St.opAle:t. Call t 24 *** without icon ***

input: AlertTemplate:LONG pointer to an alert template
filterProc:LONG pointer to filter used by ModalDialog

.output: itemRit:WORD ID of item Hit.

StopAlert is the same as the Alert function (above) except that before drawing the items of the alert
in the alert box, it draws the Stop icon in the top left comer of the box (within the rectangle
(10,20)(42,52». The Stop icon has the following ID:

stoplcon equ 0

Stop Note Caution

• aLII!
ILII!
al

Talk

\

Figure 7. Standard Alert Icons

August 13, 1986 - Jean-Charles Mourey Page 35

..

"

. '~.!

Dialog Manager

Call t 25 *** witbout icon ***

input: AlertTemplate : LONG pointer to an alert template
filterProc:LONG pointer to filter used by ModalDialog

output: itemHit:WORD ID of item Hit.

NoteAle:rt is like StopAlert except that it draws the Note icon, which has the following ID:

note Icon equ 1

Caut.ionAlerl Call t 26 *** witbout icon ***

input: AlertTemplate:LONG pointer to an alert template
filterProc:LONG pointer to filter used by ModalDialog

output: itemHit:WORD ID of item Hit.

CautionAlert is like StopAlert except that it draws the Caution icon, which has the following ID:

cautionIcon equ 2'

(
-','
'" Call • 28 *** witbout .speech (yet) u*

input: AlertTemplate:LONG
filterProc:LONG

pointer to an alert template
pointer to filter used by ModalDialog

output: itemHit:WORD ID of item Hit.

TalkAlert is like StopAlert except that it draws the Talk icon, which has the following ID:

talklcon equ 3

,
""\

,j...'

and it then calls the Sound Tools to actually SPEAK the alert with a synthetic voice.

August 13, 1986 - Jean-Charles Mourey Page 36

(
\

Dialog Manager

ManipuJatim: Items in DiaJo2s and Alerts

Pa:amTex-e Call t 27

input: paramO:LONG pointer to string "0 (zero-no change)
param1:LONG pointer to string "1 (zero-no change)
param2:LONG pointer to string "2 (zero-no change)
para.m3:LONG pointer to string "3 (zero-no change)

output: none

ParamText provides a means of substituting text in statText items: paramO through param3 will
replace the Special strings 'I\()' through '''3' in all statText items in all subsequent dialog or alert
boxes. Pass empty strings for parameters not used.

You may pass NIL for parameters not used or for strings that are not to be changed.

For example, if the text is defined as 'Cannot open document I\()' and docName is a string variable
containing a document name that the user typed, you can call ParamText(docName,' ',' ',' ').

(
input: theDialog:LONG

itemID:WORD

output: theControl:LONG

Call t 30

pointer to the dialog port
Unique number identifying the item.

handle to the control.

Given the ID of an item. GetControlItem returns a handle to the control for this item. You can then
make calls the Control Manager to change the behavior of this item.

Warning: Be very careful with GetControlItem, because, by using directly the Control Manager,
you bypass the Dialog Manager and could destroy some datas used by the Dialog
Manager. It is however safe to use GetControlItem on standard controls (like Buttons,
Check Boxes and Radio Buttons). It is a little bit less safe to use it with dialog scroll
bars. And it is definitely unsafe to use it with text items. Whatever you do, do not
change the CtrlRefCon field in the Control Record of any controL

Note: A list of Dialog Manager calls are provided to change the attributes of items. Whenever
possible, it is highly recommended to use these calls instead of Control Manager calls.

\ August 13, 1986 - Jean-Charles Mourey Page 37

Dialog Manager

"\
\ }

input: theDialog:LONG
itemID:WORD
theString:LONG

Call • 31

pointer to the dialog
ID of item in dialog
pointer to a string to put the text in.

output: none

Given the ID of a StatText or EditLine item in a dialog box, GetIText returns the text of the item in
the text parameter.

Note: The space for the string must be allocated (must exists) before to call GetIText.

input: theDialog: LONG
itemID:WORD
theString:LONG

output: none

Call t 32

pointer to the dialog
ID of item in dialog
pointer to the new text string.

(
,-

Given the ID of a StatText or EditLine item in a dialog box" SetIText sets the text of the item to the
specified text and draws the item. For example, suppose the exact content of a dialog's text item
cannot be determined until the dialog is created, but the display rectangle is already defmed, call
SetIText with the desired text.

input: theDialog:LONG
i temID : WORD
startSel:WORD
endSel:WORD

output: none

Call • 33

pointer to the dialog
ID of item. in dialog
start of selection
end of selection

Given a pointer to a dialog and the item ID of an EditLine item in the dialog box, SelIText does the
following:

• If the item contains text, SelIText sets the selection range to extend from character position
stanSel up to but not including character position endSel. The selection range is inverted
unless stanSel equalsendSel, in which case a blinking vertical bar is displayed to indicate
an insertion point at that position.

• If the item doesn't contain text, SelIText simply displays the insertion point.

For example, if the user makes an unacceptable entry in the EditLine item, the application can put
up an aIen box reporting the problem and then select the entire text of the item so it can be replaced

August 13, 1986 - Jean-Charles Mourey Page 38

(
\

I

Dialog Manager

by a new entry. (Without this procedure, the user would have to select the item before making the
new entry.)

Note: You can select the entire text by specifying 0 for stanSel and 32767 for endSel. For details
about selection range and charactl:r position, see the LineEdit ERS Manual.

Get:. It:.emType

input: theDialog:LONG
itemID:WORD

output: itemType:WORD

Call t 38

pointer to the dialog
ID of item in dialog

type of item, including ItemDisable bit

GetItemType retmns the type of the specified item (ButtonItem, RadioItem, StatText,...), If the
item is disabled (from the dialog manager point of view), the returned value is the type plus
ItcmDisa.ble.

(

Set:. It:.emType

input: itemType : WORD
theDialog:LONG
itemID:WORD

output: none

CaJ:l t 39

type of item, including ItemDisable bit
pointer to the dialog
ID of item in dialog

SetItemType changes the specified item to the new desired type. If you want the item to be disabled
add ItemDisable to itemType.

Note: SetItemType does not redraw the item. This a.llows you to change the type of several items,
and then redraws all the changes at the same time.

Warning: Changing the type of an item can be very dangerous, since the structure of two items of
, different typeS can be very different. And what is the interest of changing the type of an

item, except to change the ItemDisable status, which can be done easily by
SetItemDisa.ble.

Get:. It:.emBoz

input: theDialog:LONG
itemID:WORD
itemBox:LONG

output: none

Call t 40

pointer to the dialog
ID of item in dialog
pointer to space to store the rect in

GetItemBox returns the display rectangle of the specified item in the variable itemBox.

August 13, 1986 - Jean-Charles Mourey Page 39

(
Dialog Manager

input: theDialog: LONG
itemID:WORD
itemBox:LONG

output: none

Call. 41

pointer to the dialog
ID of item in dialog
pointer to the new display rectangle

SetItemBox changes the display rectangle of the specified item to itemBox.

input: theDialog:LONG

output: firstItem:WORD

Call • 42

pointer to the dialog

ID of first item in dialog, 0 if none

GetF'lI'StItem returns the ID of the first item in the dialog. If there is no item in the dialog (just after
NewModalDialog or NewModelessDialog. for example), GetF'lI'StItem returns zero.

Warning: Since there may be some collisions between an item of ID zero and no item at all, you
should not have any item with an ID of zero.

(
input: theDialog:LONG

itemID:WORD

output: nextItem:WORD

Call • 43

pointer to the dialog
ID of item in dialog

ID of next item in dialog, 0 if no more

GetNextitem returns the ID of the next item in the dialog after itemID. If itemID is the last item in
the dialog, GetNextItem returns zero. .

Warning: Since there may be some collisions between an item of ID zero and no item at all, you
should not have any item with an ID of zero.

Ge'tDefBu't'tOD

input: theDialog:LONG

output: DefButID:WORD

Call • 55

pointer to the dialog

ID of dialog default button, or zero

GetDefButton returns the In of the default button item in the dialog. If the dialog does not contain
any default button, GetDefButton returns zero.

i
\ August 13, 1986 - Jean-Charles Mourey Page 40

\.

Dialog Manager

input: DefButID : WORD
theDialog:LONG

output: none

Call • 56

ID of new default button
pointer to the dialog

SetDefButton sets the ID of the default button to DefButID.

Warning: DefButID must be the ID of a button item. Also, if you do not call SetDefButton to
specify explicitely which button is the default button, the Dialog Manager assumes that
the item of ID 1 is the default button. So, be sure that either there is no item with an ID
1or it is a button.

G.~:t~.mlI'laq

input: theDialog:LONG
itemID:WORD

output: itemFlag:WORD

Call • 44

pointer to the dialog
ID of item in dialog

Bit vector Flag of item,

(-i
\ \

GetitemFlag returns the bit vector flag for the specified item. For standard controls, itemFlag is
equivalent to the CtrlFlag field in the Control Structure. For the other types of items, itemFlag may
have special meanings. For example, for a picture item, a bit in the flag specifies if the picture
should be clipped or stretched to fit in the display rectangle. For an icon item, the flag tells if the
icon is a "Finder-type" icon or an "Alert_Type" icon (icon with a mask versus icon without a
mask).

S.t:ttemJl'laq

input: itemFlag:WORD
theDialog:LONG
itemID:WORD

Call t 45

new flag for item
pointer to the dialog
ID of item in dialog

output: none

SetItemFlag changes the bit vector flag of the specified item to the new desired flag. See
GetItemFlag for more details.

Note: SetItemFlag does not redraw the item. So, do not use SetItemFlag to change the invisibility
status. Use the HideDItem and ShowDItem procedures instead.

August 13, 1986 - Jean-Charles Mourey Page 41

"

Dialog Manager

input: theDialoq:LONG
itemID:WORD

output: itemValue:WORD

Call t 46

pointer to the dialoq
IO of item in dialog

Current value of item

GetltemValue returns the cum:nt value of the specified item. For standard controls, itemValue is the
cmrent value of the control. For the other types of items, itemValue may have special meaning
···more details to come*.......

Set:I t:emVaJ.ue

input: itemValue:WORD
theDialoq:LONG
itemIO:WORD

output: none

Call t 47

new value
pointer to the dialoq
ID of item in dialoq

SetltemValue sets the value of the specified item to the new desired value and redraws the item. See
GetltemValue for more details.

(Get:It:emCoJ.02:

input: theDialoq:LONG
itemID:WORD

output: itemColor:LONG

Call t 48

pointer to the dialog
IO of item in dialoq

Pointer to current color table

GetitemColor returns a pointer to the CUITent color table for the specified item ***more details to
come··....

input: itemColor:LONG
theDialoq:LONG
itemIO:WORD

output: none

Call t 49

pointer to new color table
pointer to the dialoq
ID of item in dialoq

SetItemColor sets the color table of the specified item to the new desired color table, See
GetItemColor for more details.

,

\. ..
August 13, 1986 - Jean-Charles Mourey Page 42

(
\

Dialog Manager

Call t 52·

input: none

output: alertStage:WORD current stage of the alert

GetAlertStage tetums the stage of the last occummce of an alert, as a number from 0 to 3.

Call t 53

input: none

output: none

ResetAlertStage resets the stage of the last occurrence of an alert so that the next occur.rence of that
same alert will be t:reated as its IlI'St stage. This is useful, for example, when you've used
ParamText to change the text of an alert such that from the user's point of view it's a different alert.

Default:ri.lt:er Call • 54

input: theDialog:LONG pointer to the dialog port

(theEvent:LONG pointer to the event
\'" itemHit:LONG pointer to itemHit

output: result:WORD TRUE if must return

DefaultFilter calls the standard default filter used by ModalDialog or Alert when no user fllter
procedUte is specified. Given a pointer to an event involving dialog items, DefaultFilter filters the
Apple-X, Apple-C, Apple-V keys to make them cut, copy and paste, and intCl'ptets the Return key
as a click in the default button.

DefaultF'l1ter tetums TRUE in teSult if the default button has been clicked in and itemHit contains
its ID number, and ifa Cut/Copy/Paste operation has been made on an enabled EditLine item.

ltid.eDIt:em

input: theDialog:LONG
itemID:WORD

output: none

Call • 34

pointer to the dialog port
ID of item to hide

.....

HideDltem erases from the dialog the specified item. The item is not removed from the item list. It
can be shown again by just calling ShowDltem.

If the item. is already invisible, HideDltem. does nothing.

August 13, 1986 - Jean-Charles Mourey Page 43

(

SbovDItem

input: theDialog:LONG
itemID:WORD

Dialog Manager

Call * 35

pointer to the dialog port
ID of item to show

output: none

ShowDltem makes visible anitem that has been created invisible or has been hidden by HideDItem

If the item is already visible, ShowDltem does nothing.

FmdDltem returns the ID of the item located at the specified point in the specified dialog. If there is
no item at this location or if thePoint is outside the dialog. FmdDltem returns zero.

thePoint must be in global coordinates.
(-t\,

,--

input: theDialog:LONG
thel?oint:LONG

output: itemHit:WORD

O'pdateDialo.CJ

input: theDialog:LONG
UpdateRgn:LONG

output: none

Call t 36

pointer to the dialog port
point in global coordinates (passed as
a long word)

ID of item located at thel?oint, or zero

Call * 37

pointer to the dialog port
handle to the region to update

UpdateDialog redraws only the part of the dialog that is in the specified update region.

If UpdateRgn was pan of a region to update in an up-coming update event for the dialog. you
should call ValidRgn to prevent the Dialog Manager to redraw this particular region twice.

DisableItem

input: theDialog:LONG
itemID:WORD

output: none

Call t 57

pointer to the dialog port
ID of item to disable

DisableItem disables the specified item (Warning: disabled is different from deactivated). If the
item is already disabled, DisableIt.em does nothing.

\ August 13, 1986 - Jean-Charles Mourey Page 44

Dialog Manager

input: theDialog:LONG
itemID:WORD

Call t 58

pointer to the dialog port
ID of item to enable

(

output: none

Enableltem enables the specified item (Warning: enabled is different from active). If the item is
already enabled, Enableltem does nothing.

August 13, 1986 - Jean-Charles Mourey Page 45

Dialog Manager

MARY MANAGER

Constants

** Booleans
*
The size of a boolean is a WORD. Its possible values are:

FALSE: 0 (ZERO)
TRUE: any non-zero value

** Errors returned by the Dialog Manager
* (Note that the Dialog Manager may also return errors coming
* from the Window Manager, Control Manager, Memory Manager
* and LineEdit)
*
BadItemType
NewItemFailed
ItemNotFound

equ $150A
equ $150B
equ $150C

; item is not of appropriate type
; creation of item failed
; item does not exist

(

......

** Item Types
*
ButtonItem
Checkltem
Radioltem
ScrollBarItem
UserCtlltem
StatText
LongStatText
EditLine
Iconltem
Picltem
Userltem
ItemDisable

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

10
11
12
13
14
15
16
17
18
19
20
$8000

standard button control
; standard check box control

standard radio button control
; special scrollbar control for dialogs
; custom control
; static text
; long static text (up to 32767 chars)
; editable line of text (dialog only)
; icon
; QuickDraw picture
; custom item (dialog only)

add to any of above to disable

** Item IDs of standard OK and Cancel buttons
*

,- -".

ok
cancel

equ 1
equ 2

August 13, 1986 - Jean-Charles Mourey Page 48

Dialog Manager

".

". icon IDs of alert icons
'*
stoplcon equ 0
noteIcon equ 1
cautionIcon equ 2
talklcon equ 3

; bounds rect (multiple of 8)
; pixel imaqe (icon bitmap)

o
iconRect+8

equ
equ

'*'* structure of an icon
'*
iconRect
iconImaqe

'*
'* Dialog ScrollBar Commands
'*
GetInitView equ 1 ; view size at creation
GetlnitTotal equ 2 · total size at creation,
GetInitValue equ 3 · value at creation,
ScrollLineUp equ 4 · scroll one line up.,
ScrollLineDown equ 5 ; scroll one line down
ScrollPageUp equ 6 ; scroll one page up
ScrollPageDown equ 7 ; scroll one page down

(.... l~ ScrollThumb equ 8 ; scroll to thumb position

Data Types

TYPE
DialogPtr - WindowPtr;

ItemTemplate:

itemID:WORD
itemRect:RECT
itemType:WORD
itemDescr:LONG
itemValue:WORD
itemFlag:WORD
itemColor:LONG

Number uniquely identifying the item
display rectanqle, in local coordinates
Type of item (Button, Check, Scroll ...)
Item Descriptor
Item Value
Bit vector flag (0 for default)
Pointer to color table (0 for default)

..
'-"

August 13, 1986 - Jean-Charles Mourey Page 47

Dialog Manager

pialogTemplate:

BoundsRect:RECT
Visible:WORD
RefCon:LONG
Iteml:LONG
Item2:LONG

ItemN:LONG
Terminator:LONG ZERO

AlertTemplate:

BoundsRect:RECT
staqel:BYTE
staqe2:BYTE
staqe3:BYTE
staqe4:BYTE
Iteml:LONG
Item2 : LONG .

dialoq bounds rectanqle
TRUE if dialoq is to be visible
any value you want (application-use)
pointer to first item's template
pointer to second item's template

pointer to last item's template
item list terminated by a nil pointer.

alert bounds rectanqle
first staqe of alert
second staqe of alert
third staqe of alert
fourth staqe of alert
pointer to first item's template
pointer to second item's template

(ItemN:LONG pointer to last item's template
Terminator:LONG ZERO item list terminated by a nil pointer.

Stage Bit vector:

""~"

Bits 0-2
Bits 3-5
Bit 6
Bit 7

Sound Number to emit at this staqe (0 to 3)
Unused
Default button ID minus 1 (only 1 or 2) .
Flaq indicatinq if the alert should be drawn.

\ .. August 13, 1986 - Jean-Ch~rles Mourey Page 48

	v5_09_01
	v5_09_02
	v5_09_03

