
\ ...-

(

June 26, 1986

Scrap Manager
External Reference Specification

Steven Glass
June 26, 1986

Initial Release.

(

\.
....~...

(

THE SCRAP MANAGER

The Scrap Manager lets an application handle cutting and pasting. From the user's point of
view, all data that's cut or copied resides in the Clipboard. The Cut command deletes data
from a document and places it in the Clipboard; the Copy command copies data into the
Clipboard without deleting it from the doc\lIIlmt. The next Paste command-whether applied
to the same docUIIU:nt or another,. in the same application or another-inserts the contents of the
Clipboard at a specified place. An application that supports cutting and pasting may also
provide a Clipboard window for displaying the current contents of the scrap; it may show the
Clipboard window at all times or only when requested via the toggled command Show (or
Hide) Clipboard.

Note: The Scrap Manager was designed to transfer small amounts of data; attempts to
transfer very large amounts of data may fail due to lack of memory.

The na.ture of the data to be transferred varies according to the application. For example, in a
word processor or in the Calculator desk accessory, the data is text; in a graphics application
it's a picture. The amount of information retained about the data being transferred also varies.
Between two text applications, text can be cut and pasted without any loss of information;
however, if the user of a graphics application cuts a pict:ure consisting of text and then pastes it
into a word processor document, the text in the pict:ure may not be editable in the word
processor, or it may be editable but not look exactly the same as iI the graphics application.
The Scrap Manager allows for a variety of data types and provides a mechanism whereby
applications have some control over bow much infomwion is retained when data is
transferred. .

The desk scrap is usually stored in memory, but can be stored on the disk (in the file
clipboard in the system subdirectory of the boot volume) if there's not enough room for it in
memory. There is no requirement on where the scrap must be when an application starts or
stops (as there is on the Macintosh).

MEMORY AND THE DESK SCRAP

A large scrap can prevent an application from loading. The application can get the size of the
scrap by making a ScnpManager call. An application concerned about whether there's room
for the desk scrap in memory could be set up so that a small initial segment of the application is
loaded in just to check the scrap size. Af= ackcision is made about whether to keep the scrap
in memory or on the disk. the remaining segments of the application can be loaded in as
needed. Of coune, if there is not room for the scrap at application load time, there probably
won't be room for it later when a user tries to paste its contents into a document.

There are other disadvantages to keeping the desk scrap on the disk. The disk may be locked,
it may not have enough room for the scrap, or it may be removed during use of the application.
If the application can't write the scrap to the disk, it should put up an alert box wonning the
user, who may want to abort the operation at that point.

DESK SCRAP DATA TYPES

From the user's point of view there can be only one thing in the Clipboard at a time, but the
application may store more than one version of the information in the scrap, each representing
the same Clipboard conumts in a different form. For example, text cut with a word processor
may be stored in the desk scrap both as text and as aQuickDmw picture.

Why would an application want to do this you ask? The answer is somewhat complex.
Applications like to keep information in their own intemal format, but they also want to be able

June 26, 1986 Scrap Manager ERS Page 2

to communicate via the clipboard with other applications. So when a user cuts or copies
something to the clipboard, the application can put it there two different ways.

The intema1 way so that a subsequent paste can easily be dealt with

The public way so that if the user ttys to paste this into another application or desk
accessory. the other application can deal with it.

What is the public: way? There are two public scrap types defmed:

Text
Picture

Type. 0
Type == 1·

(

\

Applications must write at least one of these standard types of data to the desk scrap and must
be able to read both types. Most applications will prefer one of these types over the other; for
example. a word processor prefers text while a graphics application prefers pictures. An
application should write at least its preferred standard type of data to the desk scrap. and may
write both types (to pass the most information possible on to the receiving application, which
may prefer the other type).

An application reading the desk scrap will look for its preferred data type. If its.preferred type
isn'.t there. or if it's there but was written by an application having adifferent p efmTed type.
the receiving application may or may not be able to c:oovert the data to the type it needs. Ifnot,
some infonnation may be lost in the transfer process. Por. example. a graphics application can
easily convert text to a picture, but the reverse isn't true.

USING THE SCRAP MANAGER

Ifyour application supports dispIa:y of the Clipboard, you can call GetScrapCount each time
through your main event loop to check this count: If the Clipboard window is visible. it needs
to be updated whenever the count changes.

When a Cut or Copy command is given. you need to write the cut or c:opied data to the desk
scrap. Pirst call ZeroScrap to c:lear its previous contents. and then PutScrap to put the data into
the scrap. (You can call PutScrap more than once. to put the data in the scrap in different
forms.)

Call GetScrap when a Paste c:oxmwmd is given. to access data of a particular type in the desk
scrap and to get infonnation about the data. .

Note: ZeroSc:rap. PutScrap. and GetScrap all keep track of whether the scrap is in
memory Of on the disk, so you don't have to worry about loading it first. After any of
these c:al1s the scrap will be in memory again.

PRIVATE SCRAPS

Instead of using the desk scrap for storing data that's c:ut and pasted within an application,
advanced programmers may want to set up a private scrap for this purpose. In applications that
use the standard text or picture data types. it's simpler to use the desk scrap. but if your
application defines its own private type of data. or if it's likely that very large amounts of data
will be cut and pasted. using a private scrap may result in faster cutting and pasting within the
application.

The format of a private scrap can be whatever the application likes. since no other application
will use it. For example. an application can simply maintain a pointer to data that's been cut or

June 26. 1986 Scrap Manager ERS Page 3

(

copied. The application must, however, be able to convert data between the format of its
private scrap and the format of the desk scrap.

Note: The LineEdit scrap is a private scrap for applications that use LincEdit. LineEdit
provides routines for accessing this scrap; you'll need to transfer data between the
LincEdit scrap and the desk scrap.

Ifyou use a private scrap, you must be sure that the right data will always be pasted when the
user gives a Paste command (the right data being whatever was most recently cut or copied in
any application or desk accessory), and that the Clipboard., ifvisible, always shows the current
data. You should copy the contents of the desk scrap to your private scrap at application
startup and whenever a desk accessory is deactivated (call GetSaap to access the desk scrap).
When the application is tenninat.ed or when a desk accessory is activated, you should copy the
contents of the private scrap to the desk scrap: Call ZeroScrap to clear its previous contents,
and PutScrap to write data to the desk scrap.

- If transferring data between the two scraps means converting it, and possibly losing
information, you can copy the scrap only when you actually need to. at the time something is
cut or pasted. The desk scrap needn't be copied to the private scrap unless a Paste command is
given before the first Cut or Copy command since the application started up or since a desk
accessory that changed the scrap was deactivated. Until that point, you must keep the contents
of the desk scrap intact, displaying it instead of the private scrap in the Clipboard window if ,
that window is visible. Thereafter, you can ignore the desk scrap until a desk accessory is '
activated or the applicatioa is terminated; meither of these c::ases. you must copy the private
scrap back to the desk scrap. Thus whatever was last cut or copied within the application will
be pasted if a Paste command is given m a desk accessory or in the next application. Ifno Cut
or Copy commands are given within the application, you never have to change the desk scrap.

To fmd out whether a desk accessory has changed the desk scrap, you can check: the
ScrapCount. Save the value of this field when one of your application's windows is
deactivated and a system window is activated. Check each time through the main event loop to
see whether its value has changed; if so. the contents of the desk scrap have changed.

If the application encountr:rs problems m ttying to copy one scrap to another. it should alert the
user. The desk scrap may be too large to copy to the private scrap, in which case the user may
want to leave the application or just proceed with an empty Clipboard. If the private scrap is
too large to copy to the desk scrap. either because it's disk-based and too large to copy into
memory or because it exceeds the maximum size allowed for the desk scrap, the user may want
to stay in the application and cut or copy something smaller.

SCRAP MANAGER ROUTINES

SaapBootInit Internal routine called at load time to initialize the scrap manager.

No Stack Parameters

Call made by an application before it makes any other scrap
manager calls.

No Stack Parameters

ScrapShutdown

June 26, 1986

Call made by an application before shutdown if it has called
ScrapStartup.

Scrap Manager ERS Page 4

ScrapVersion

No Stack Parameters

Returns the version number of the Scrap manager

Stack Before Call
I pmNms~ I
I gpoufor vusUm I
I Ie-SP

Stack Alter Call
I pnMous~ I
I wr.ritm fIJImber I
I Ie-SP

Resets the Scrap Manager.

No Stack Parameters

This is called when the systmn n:set (CONTROL-RESET is pressed).

Always =turns true: the scrap manager is always active.

Stack Before Call
I pnviofIS CtJIfUrIU I
I IptIIUfor I»oiaft I

(' I Ie-SP
\

Stack Alter Call
I previous COlll41llS I
I l100ktm remb I
I Ie-SP

UnloadScrap UnloadSaap writes the desk scrap from memory to the
scrap tile, and releases the memory it occupied.

No Stllek Parameters

If the desk scrap is already on tlie disk, UnloadSaap does nothing.

I..oadSaap reads the desk scrap from the scrap me into
memory.

No Stack Parameters

If the desk scrap is already in memory, it does nothing. If the clipboard f1le cannot be found,
no error is returned. This is just J.ikc loading an empty clipboard file.

June 26, 1986 Scrap Manager ERS Page 5

Clears the contents of the scrap.

No Stack Parameters

ZeroScrap does not care if the scrap is memory or on disk. You must call Ze:roScrap before the
fU'St time you call PutScrap.

ZeroScrap also changes ScrapCount .

PutScrap

Stack Before Call
I prrtNWus CDNeI'lU
I IMgth
I Sattp'1'ype
I Srt:Ptr
I

Stack After Call
I pnviDUI CDl'llmflS

I

Appends specified data to data in the scrap of the same
type.

I
I LONGlNT
I WORD
I POINTER
I<-SP

I
I<-SP

(

If the scrap is on the disk it loads first. The length parameter indicates the number of bytes to
write, and the ScrapType is the data type.

Warning: Don't forget to call ZeroScrap ifyou want to clear its previous contents.

Note: To copy the LineEdit scrap to the desk scrap, use the LineEdit function
LEToScrap.

GetScrap

Stack Before Can
I Fevimu CDNeI'IU
I DatHt11t1!J6
I Sattp'1'ype
I

Stack Alter Can
I prrtNWus CDNeI'IU
I

Copies the scrap information of the appropriate type to
the specified handle setting the handle to the correct size.

I
IHANDU
I WORD
Ie-SP

I
Ic-SP

Note: To copy the desk scrap to the LineEdit scrap, use the LineEdit function
LEFromScrap.

,

"

GetScrapCount

Stack Before Call
I previous COfIWIU

I ~frnWeger

I

Returns the current scrap count.

I
I
Ic-SP

Stack After Call

June 26, 1986 Scrap Manager ERS Page 6

I
I INTEGER
Ic,SP

ScrapCount is a count that changes every time ZeroSaap is caned. You can use this count for
testing whether the contents of the desk scrap have changed, since if ZeroScrap has been
called, presumably PutScrap was also called. This may be useful if your application supports
display of the Clipboard or has a private scrap.

GetScrapState Returns the scrapState flag. This is zero if the scrap is currently
on the disk and non-zero if it is in memory.

Stack Before Can
I previous ctHfU1IU

I IfJfI"frwWeger
I

Stack After Can
I previous COIIleItlS
I ScrapCOWIl
I

I
I
Ic-SP

I
I INTEGER
I<-SP

ScrapState is aetually 0 if the scrap should be on the disk. This may not be the case because
a user can delete the Clipboard file.

(
-."".

GetScrapHandle

Stack Betore Can
I previous Ct»llDlU

I Spdufor Ittwile
I St:mpType
I

Stack After Can
I pmIioUI ctHfU1IU
I H-*ToSaap
I

Returns acopy of the handle far the scrap of the
specifted type.

I
I LONG
I WORD
I<.SP

I
I LONG
I<-SP

This call is provided so that users can access the scrap without making a copy of it. This may
be important in situations where memory is in short supply.

\ '

'-....J

Stack Before Can
I pnvWus COIIle1tlS
I SptJ.ce for Size
I St:mpType
I

Stadt After Call
I previous COIIle1tlS

I Size
I

Returns the size of the specified scrap.

I
I LONG
I WORD
Ic·SP

I
I LONG
I<·SP

June 26, 1986 Sctap Manager ERS Page 7

(
\

\,

GetScrapPath

Stack Betore Call
I ~conlenu

I ~forPoiIIW'
I

Stad: After Call
I ~CI»WnlS
I PoiIIW' to Palh
I

SetScrapPath

Stack Betort Call
I ~ConleIIU
I PIlIhPtr
I

Stack After Call
I [1HVimu~

I

Returns a pointer to the pathname used for clipboard me.

I
I LONG
Ic..Sp

I
I POINTER
Ic-SP

sets the intemal pointer to the clipboard rue to the
specified value.

I
I POINTER
Ic-SP

I
Ic-SP

June 26, 1986 Scrap Manager ERS Page 8

(

Differences from the Macintosh Scrap Manager

It appears that the Macintosh Scrap Manager is capable of writing to the scrap while it is on
disk without bringing it into memory. I don't see an easy way to do this so all calls to
PutScrap, GetScrap and ZeroScrap do a LoadScrap if the scrap is on disk.

The Macintosh Scrap Manager's internal data sttuetures are public. The Cortland scrap
manager data structures are private. There are individual calls to provide access to any of
the internal variables available on the Macintosh.

The data sttuetures used by the Macintosh are different from those used on the Cortland.

Questions to be Answered

How will We assign scrap types? On the Macintosh, the types are four AScn characters
(equivalent to lOng integers). This ERS uses integers for the type (sixteen bit integers). Is
there any reason not to do this?

June 26, 1986 Scrap Manager ERS Page 9

