
Alpha Draft .

Cortland Workshop C

Language Reference

Alpha Draft: May 26, 1986

Writer. Don Reed
Technical Publications, MS 22-K

Engineering Pan Number: 030-3133
. Marketing Pan Number. A2L6003

Finance Number: PAPOO2-21

Page Contents- i 26 May 19R6

ConLand Workshop C

Cortland -Workshop C

Language Reference

Contents

000 About this manual
000 The Cortland road map
000 The Technical Introduction
000 The machine reference manuals
000 The Toolbox manuals
000 The Conland Programming Lanugages
000 The Programmer's Workshop Manual
000 What about ProDOS?
000 All-Apple manuals
000 How to use this book
000 What this manual contains
000 Visual cues
000 Other materials you'll need
000 Language notation

Part I: Programmer's guide

000 Chapter 1: Getting started
000 About Cortland Workshop C
000 System requirements
000 Writing and running a sample program
000 Entering the sample program
000 Compiling and linking the sample program
000 Running the sample program
000 A longer sample program

000 Chapter 2: Using the Cortland Workshop C Compiler
000 About the Cortland Workshop C Compiler

Contents

AiphaDrajt Page COnlenls- ii 26 Ma)' 19f?fJ

Contents

000 Command descriptions
000 Compiler commands
000 C
000 COMPILE
000 CMPL
000 CMPLG
000 Compiler options
000 Source files, object mes and listing mes
000 Include-me search rules
000 Library Files for Compiling and Linking
000 About ProDOS/16
000 New ProDOS/16 features
000 Compatibilities
000 , Using ProDOSIl6 from C
000 About Conland tools

. 000 About libraries

Part II: Language Reference .

000 Chapter 3: The Cortland Workshop C Language
000 Language Definition
000 Data types
000 Type void
000 Type enum
000 Register variables
000 Structures
000 Return, newline, and vertical tab
000 Predefined symbols
000 Standard Apple Numeric Environment extensions
000 Constants
000 Expressions .
000 Comparison Involving a NaN
000 Functions
000 Numeric input/output
000 Numeric environment
000 About the SANE Library
000 Programming with IEEE arithmetic
000 Pascal-eompatible functions
000 Pascal-eompatible function declarations
000 Pascal-eompatible function definitions
000 Parameter and result data types
000 Implementation notes
000 Byte ordering
000 Memory-allocation characteristics
000 Types unsigned char and unsigned shon
000 Bit fields
000 Evaluation order
000 Case statements
000 Language anachronisms
000 Assignment operators
000 htitialization
000 Structures and unions
000 Compiler limitations

Con/and Workshop C

Alpha Draft Page Contents- iii 26 May 1986

Con/and Workshop C

000 Chapter 4: The Standard C Library
000 Introduction to the Standard C Library
000 Standard C Library routines
000 Error numbers
000 abs
000 atof
000 atoi
000 close
000 cony
000 creat
000 <:type
000 dup
000 ecvt
000 exit
000 exp
000 faccess
000 fclose
000 fentl
000 ferror
000 floor
000 fopen
000 fread
000 frexp
000 fseek
000 gete
000 gets
000 hypot
000 ioctl
000 lseek
000 lDalioc
000 memory
000 onexit
000 open
000 printf
000 putc
000 puts
000 rand
000 read
000 scanf
000 setbuf
000 sinh
000 stdio
000 string
000 strtol
000 trig.
000 ungetc
000 unlink
000 write

000 Chapter 5: The Cortland Interface Libraries
000 Introduction to the Cortland Interface Libraries
000 Cortland Interface Library Routines
000 Control Manager
000 Desk Manager

Contenrs

Alpha Draft Page Contents- iv 26 May 1986

Contents Cortland Workshop C

000 Dialog Manager
000 Event Manager
000 File Operations
000 Integer Math
000 Line Edit
000 Memory Manager
000 Menu Manager
000 Miscellaneous Tools
000 Print M.anager
000 QuickDraw II
000 SANE Tools
000 Scrap Manager
000 Sound Manager
000 Text Tools
000 Tool Locator
000 Window Manager

000 Chapter 6: SANE and the C SANE Library
000 The SANE data types
000 A note on terminology
000 Descriptions of the types
000 Choosing a data type
000 Values represented
000 Range and precision of SANE types
000 Example
000 The float type
000 The double type
000 The comp type
000 The extended type
000 Extended arithmetic
000 Number Classes
000 Inflnities
000 NaNs
000 Denormalized numbers
000 Exceptional conditions
000 Invalid operation
000 Underflow
000 Overflow
000 Divide-by-zero
000 Inexact
000 The Environment
000 C SANE Library constants and types
000 Exception condition constants
000 The DECSTROUTLEN constant
000 The. SIGDIGLEN constant
000 The FLOATDECllv1AL and FIXEDDECIMAL constants
000 The decform structure type
000 The decimal structure type
000 The relop type
000 The numclass type
000 The exception type
000 The haltvector pointer type
000 The rounddir type
000 The roundpre type

AlphaDrajr Page Contents- v 26 May 198(;

Conland Workshop C

000 The environment type
000 C SANE Library functions
000
Appendixes

000 Appendix A: Calling Conventions
000 C calling conventions
000 Parameters
000 . Function results
000 Register conventions
000 Pascal-compatible calling conventions
000 Parameters
000 Function results
000 Register conventions

Contents

000 Appendix B: Files supplied with Cortland Workshop C
000 C Compiler files .
000 Standard C Library include mes
000 Cortland Interface Library include files
000 Standard C Library object files
000 Cortland Interface Library object files

000 Appendix C: Comparison with Macintosh Workshop C
000 Data types
000 Register variables
000 Sauctl.lred variables
000 Pascal-compatible function declarations
000 *,... Issues for funher investigation
000
000 Appendix D: Library Index

(Contains an index entry for every define, type, enuerarion literal, global variable.
andfuncrion defined in the Standard C Library and Cortland Interface Library.)

000 Index

000 Glossary

000 Bibliography

AiphaDraj't Page Contents- vi

•

26 May 1986

About This Manual
This manual contains the infonnation about Cortland WorkshopTM C that you need when
writing C programs for the Cortlandi'M. It assumes that most readers already know the C
programming language, as defmed in Kernighan and Ritchie's The C Programming
Language. For this reason, it does not repeat their defmition of the C language, but defines
the differences between Conland C and UK and R" C. However, this manual can also be
used by those learning C for the first time. The introductory chapters tell how to write.
compile, link, and run a simple C program. From there, one can follow K and R or any
standard textbook on C. '

The Cortland road map

The Conland has many advanced features, making it more complex than earlier models of
the Apple II. To describe it fully, Apple has produced a whole suite of technical manuals.
The manuals are listed in Table A-I. Figure A-I is a diagram showing the relationships
among the different manuals. Depending on the way you intend to use the Conland, you
may need to refer to a select few of the manuals, or you may need to refer to most of them.

Table A-I. The Conlaild Technical Manuals

Title Subject

Technical Introduction to the Cortland what the Conland is

Cortland Hardware Reference machine internals-hardware

Conland Firmware Reference machine internals-firmware

Programmer's Introduction to the Cortland sample program using the toolbox

Conland Tools Reference: Part I toolbox specifications

Conland Tools Reference: Part II more toolbox specifications

Conland Function Summary toolbox pocket guide

Cortland Programmer's Workshop the development environment

Conland Workshop Assembly Language Reference'" using assembly language

Cortland Wotkshop C Reference'" using C on the Conland

Conland Workshop Pascal Reference'" using Pascal on the Conland

ProDOSI8 Technical Reference ProDOS for Apple II programs

Conland Operating System Reference ProDOS and loader for Conland

Human Interface Guidelines for all Apple computers

Apple Numerics Manual -numerics for all Apple computers

"'There is a Pocket Reference for each of these.

AiphaDrajr Page Preface- 7 26 May 1986

Con/and Workshop C Preface

Figure A-I. Roadmap to the technical manuals

Part I

Part" I

Cortland
Tools

Reference:

To use the
Toolbox...

-

Programmer's
Introduction

to the
Cortland

To start learning
to program the
Cortland... .

Cortland

'.;.:\:;::
Workshop
Assembly
Language

.- Reference

Pocket

IReference

To use
: asserobly
:: language...

Technical
Introduction

to the
Cortland

Cortland
Programmer's

Workshop
Reference

To use the
development
environment...

To start finding ~---~
out about
the Cortland...

Cortland
Hardware
Reference

To use
To use C... Pascal...

"
Cortland Cortland

Workshop .:-: : :~:' .;, Workshop
C Pascal

- Reference - Reference
I-

Pocket I Pocket IReference Reference

Cortland
Operating

System
Reference

Corti
Firm
Refer

To operate on
files... .

To learn how
the Cortland
works... _---_....

A/phaDraft Page Prefcu:e- 8 26 May 1986

Preface

The Technical Introduction

Cortland Wor:lf:shop C

The Technical Introduction to the Conland is an overview: it tells a little about a lot of
things, but it doesn't tell everything about anything. To find out all about anyone aspect of
the Conland, you should read a specific technical manual. To find out which one, read on,

The Machine Reference Manuals

The Conland Hardware Reference and the Conland Firmware Reference contain
information about the machine itself. You don't need to read these manuals to be able to
develop applications for the Conland, but they will give you a better understanding of the
machine's features. They will also provide the reasons why some of those features work
the way they do.

The Toolbox Manuals

Like the Macintosh, the Conland has a built-in toolbox that can be called by applications.
The toolbox serves two purposes: it makes developing new applications easier, and it
supports the desktop user interface.

When you first stan using the toolbox, the Introduction for Programmers provides the
recommendations and guidelines you need. It is not a complete course in programming for
the Conland; rather, it is a starting point. It explains the Conland tools and describes an
event-driven program. It includes a simple example of such a program that uses the
Conland tools, and demonstrates the way you use the Conland Programmer's Workshop
to develop the program.

For detailed specifications of the tool calls, you'l1 need the two volumes making up the
Conland Tools Reference. The Conland Function Summary is a pocket guide to the tools.
including the name and parameters for each tool call.

The Cortland Programming Languages

The Conland does not restrict developers to a single programming language. Apple is
currently providing an assembler and compilers for C and Pascal. Other compilers can be
used with the workshop, provided that they observe the standards Apple has set up.

There is a separate reference manual for each programming language on the Conland. The
manuals for the languages Apple provides are the Conland AssemBler Reference, the
Conland C Compiler Reference, and the Cortland Pascal Compiler Reference.

The Programmer's Workshop Manual

The core of the development environment on the Conland is the Conland Programmer's
Workshop, also called CPW. CPW is a set of programs that enable developers to create
and debug application programs on the Conland. The manual that describes CPW is the
Conland Programmer's Workshop manual. It includes information about the parts of the

Alpha Draft Page Preface- 9 26 May 1986

Cort/alid Workshop C Preface

work;shop that all developers will use, regardless which programming language they use:
the shell, the editor, the linker, the debugger, and the utilities.

What About ProDOS?

ProDOS on the Cortland comes in two flavors: one for compatibility with the models of
Apple II that use 8-bit CPUs, called ProDOS/8, and one that utilizes the full power of the
Cortland, ProDOS/16. Those two versions of ProDOS are described in their own
manuals, ProDOS/8 Technical Reference and ProDOS/16 Technical Reference

All-Apple Manuals

In addition to the Cortland manuals mentioned above, there are two manuals that apply to
all Apple computers. Those are Human Interface Guidelines and Apple Nwnerics Manual.

How to use this book
If you are an experienced C programmer, Chapters 1 and 2 will give you enough
information to get standard C programs running. (If you have used other Conland
programs, Chapter 1 will be redundant.) The remaining chapters tell you what you need to
write C programs that use the capabilities of Cortland.

If you are new to C, Chapter 1 will tell you what you need to go through a C textbook like
Kernighan and Ritchie. After that, y.ou can learn about the capabilities of the compiler and
this particular implementation.

What this manual contains

This manual contains the following chapters:

e About this Manual tells you about the manual.

• Chapter 1, Getting Started, describes Cortland Programmers Workshop C and takes
you through the steps of writing, compiling, linking, and running a sample program,

• Chapter 2, Using the C Compiler, describes the compiler, lists the compiler options,
and tells you which library files to compile and link with.

e Chapter 3, The Cortland Workshop C Language, describes Apple extensions to C
and clarifies aspects of the language definition as they apply to this implementation.

• Chapter 4." The Standard C Library, documents functions for standard TlO, string
manipulation, math routines, and other useful features not built,into the language.

• Chapter 5, The Cortland Interface Libraries, lists the C interfaces to the Cortland
ROM and other Cortland tool routines.

• Appendix A, Calling Conventions, tells how to write calls between C and Pascal.

• Appendix B, Files Supplied with Cortland Workshop C, contains a list of all the files
that are supplied with this product.

. Alpha Draft Page Preface- 10 26 May /9f.16

Preface Con/and Workshop C

• Appendix C, Library Index, is a combined index of identifiers in the Standard C
Library and Conland Interface Libraries.

Visual Cues

*** Boilerplate on warnings, gray boxes, etc., to be added when available. This has not
yet been written for the Grand Design. ***

Other reference material you'II need

You'll need to be familiar with these additional reference materials:

• Con/and Programmer's Workshop, Apple Computer Inc. This book describes the
CPW environment in which the C compiler operates, including the editor, linker,
debugger, and other important tools.

• The C Programming Language, Kernighan and Ritchie, Prentice-Hall, 1978. This is
a standard reference book for the C language. C is formally defined in Appendix A.

• Con/and Tools, Apple Computer Inc. This book contains everything you need to
program using the Conland ROM and associated RAM routines; it covers windows,
alert boxes, menus, graphics, and much more.

• App/e Numerics Manual.· Apple Computer, Inc. This book describes in detail the
floating-point implementation used in the Conland.

Language Notation

This manual uses certain conventions in common with other Conland language manuals.
The main purpose is to make sure you know which of three languages you're looking at:

• English is in Times Roman:

C is a very nice language with a very short name

• C is in Courier:

int ndigit [10)

• Metalanguage expressions, used in syntax diagrams to indicate things that are
replaced by C, are in Times Italic:

else if (condition)
statement

Here condition and statement are expressions that are replaced by actUal C
expressions. The else if and the parentheses are C code.

Alpha Draft Page Preface-I] 26 Ma)' 1986

Chapter 1

Getting started

About Cortland Workshop C

Conland Workshop C is a complete implementation of the C programming language. It
consists of a C compiler developed by MegaMax, Inc.; the Standard C Library; and the
Conland Interface Libraries. .

The C Programming Language by Kernighan ,and Ritchie is currently the most authoritative
written defmition of C. However, the language has changed in several ways since the
book was written. In addition, numerous details of the language defmition are open to
interpretation. Therefore, the de facto standard definition of C differs in several ways from
the language originally defined by Kernighan and Ritchie. This de facto standard is loosely
defined by the most widely used implementation of C, the Portable C Compiler (PCC).

Standard C is our name for the de facto standard definition of C as defIned and
implemented by the Berkeley 4.2 BSD VAX implementation of PCC, including the
documented Western Electric extensions.. Conland Workshop C is based on this defacto
standard (not on the proposed ANSI standard currently under development).

Apple has extended Standard C to facilitate writing programs for the Cortland. Cortland
Workshop C includes type void, enumeration data types, structure fW1ction parameters and
results, enumeration data types, and a function modifier that allows calls to and from Pascal
programs and the Conland Interface Libraries.

Conland Workshop C supportS the Standard Apple Numeric Environment (SANE). It
supportS all SANE data types and operations, and gives the C programmer full conrrol of
the numeric environment. Conland Workshop C together with the SANE library compose
a conforming implementation of extended~precisionbinary floating~point arithmetic as
specified by IEEE Standard 754. Funhermore, source programs written using only
float and double types and standard C operations compile and run without
modification.

System Requirements

You need a Conland with at least one megabyte of RAM, two 800K disk drives or one
800K drive and a hard disk, and CPW.

Alpha Draft Page]-] 26 May 1986'

Coniand Workshop C

Writing and running a sample program

Here is how to write, compile, link, and run a trivial sample program.

Entering the sample program

Chapter 1

First choose Current Language from the Options menu, then select C from the list of
languages and click the Change bunon. Next open a command file by choosing New
Command from the File Menu. It's named untitledln, where n is some unique number.

Now create a new fIle by' choosing New from the Rie menu; name it mice

Then type a program:. for example:

main ()
(

printf(She ~ells C ~hell~ by the C ~hore.\n");

Now save the program by choosing Save from the File menu.

Compiling and linking the sample program

To compile your program, enter the compile command from the command window.

For example, to compile and link mice, creating an object file she. root, enter the
following from the command window, then press RETURN:

compl ~he.Keep - she

Running the sample program

Since you are running under the shell, if you type

~he

you will get

She sells C shells. by the C shore.

immediately below it in the window.

A longer sample program

A more interesting sample program is in the file xXX.c on your CPW disk. It is reprinted in
Appendix N.

AJphaDraft '26 May 1986

Chapter 2

Using the Cortland Workshop C
Compiler

About the Cortland Workshop C compiler

You can invoke the compiler with any of three commands:

COMP

COMPL

COMPLG

compile

compile and link

compile, link, and go

The last two commands also invoke the linker. The third also executes the program.

In its simplest form, the comp command compiles the source fl.1e, but saves no object file:
it simply verifies its correcmess. To create an object me, use the keep option, described
below. .

Command descriptions

The following notation is used to describe commands:

UPPERCASE

iraLi.cs

prefix

filename

Uppercase letters indicate a command or option name

Italics indicate a variable, such as a fl.1ename or address

This parameter the pathname of a directory. It does not include a file
name. The pathname must begin with a slash (j). For example, if
you are copying a file to the subdirectory SUbdirectory on the
volume vol ume, then the prefix parameter would be:
Ivolume/subdirectory/.

A filename may be preceded by any valid prefu. For example, if a
file is named file in the subdirectory directory on the volume
volume, the filename parameter would be .
Ivolume/directory/file .The unit names .CONSOLE,
.PRINTER, .PRINTER 1, .PRINTER2, and .PRINTER3 can be
used as fllenames.

Alphll Draft Page 2· 2 26 May 1986

Chaprer2

Ala

[]

Coniand Workshop C

A vertical bar separates alternative choices. For example,
LIST ONIOFF indicates that the command can be entered as either
LIST ON or LIST OFF.

An underlined choice is the default value.

Parameters enclosed in square brackets are optional.

You can type commands into the command file whenever the cursor appears in the left
margin. You must separate the command from its parameters by one or more spaces. You
can use the right-arrow key to expand command names; you can use the up- and down
arrow keys to scroll through commands. Command names cannot be abbreviated, and are
case-insensitive. If you omit a required parameter, you are prompted for it. Any of these
commands can be placed in an EXEC command file for automatic tlxecurion.

Compiler commands

The Wor.\cshop C compiler recognizes the following commands:

C

This language command sets the Shell default language to Conland Workshop C.

COMPILE

COMPILE [+L1-L] [+SI-S]sourcefi'ie[KEEP=ourfiie] [NAMES=(seg l[,seg2[, ...]])]
[languagel =(opn'on ...) [language2=(oprion ...) ...J]

This internal command compiles (or assembles) a source flIe. Its function is identical to
that of the ASML command, except that it does not call the Linker to link edit the object
modules it creates; therefore, no load mooule is generated. See the ASML command for a
description of the parameters. See your compiler manual for the default values of the
parameters.

CMPL

CMPL [+U-L] [+SI-S]sourcefile [KEEP=ourfile] [NAMES=(segl[,seg2[, ...]])]
[languagel=(oprion ...) [language2=(oprion ...) ...J]

TIlls internal command compiles (or assembles) and links a source file. Its function and
parameters are identical to those of the ASML command. See your compiler manual for the
default values of the parameters and the language-specific options available.

AiphaDraft Page 2- 3 26 May 1986

Cortland Workshop C Chapter 2

CMPLG

CMPLG [+L1-L] [+SI-S]sourcefile [KEEP=ouifile] [NAMES=(segl[,seg2[•...]])]
[languagel =(oprion ...) [language2=(oprion ...) ... J]

This internal command compiles (or assembles), links, and runs a source file. Its function
is identical to that of the ASNfLG command. See the ASNfL command for a description of
the parameters. See your compiler manual for the default values of the parameters and the
language-specific options available.

Compiler options

The Workshop C compiler recognizes the following options:

Compiler Options

Description

If you specify +L, the compiler generates a source listing; if
you specify -L, the listing is not produced. +L is the default
unless you specify the LIST OFF directive in the source
file. The L parameter overrides the LIST directive in the
source file.... Is this true? ...

If you specify +S, the compiler produces a symbol table; the
linker (if it has been invoked) also produces an alphabetical
listing of all global references in the object module. The
CPW Assembler, for example, produces an alphabetical
listing of all local symbols following each END directive. If
you specify -S, these symbol tables are not produced. Each
language has its own default for this parameter; the CPW
Assembler defaults to +S unless you specify the SYMBOL
OFF directive in the source file. The S parameter in this
command overrides the SYMBOL directive in the source
file...... ?7 Is that true?? What are CPW defaults
for other languages??? .

The full pathname and filename of the source me.

This parameter specifies the filename of the output file. For
a one-segment program, the output module is named
ourfile.root. If the program contains more than one
segment, the first segment is placed. in outfile.root and the
other segments are placed in ourfile.a, outfile.b, and so
forth. If this is a partial compilation, other filename
extensions may be used.; see the section "Partial
Compilation" in this chapter. If the assembly is followed by
a successful link edit, then the load file is named. ourfile.

sourcefile

KEEP=owfile

+SI-S

Table I-I.

Option

+L1-L

Alpha Draft Page 2-4 26 May 1986

Chaprer2

NAMES =(seg1,seg2 ,...)

Con/ana WorksJwp C

TIris parameter has the same effect as placing a KEEP
directive in your source fIle. If you have a KEEP directive
in the source file and you also use the KEEP parameter, then
the filename in the KEEP directive takes precedence. In this
case, two object modules are produced with the extension
.RooT; one cOI'l"esponding to the parameter and one to the
directive. However, other fIles with .A or other extensions
are created only with the filename used in the directive, and
the Link Editor uses only the filename given in the KEEP
directive.
Important: Keep the following points in mind regarding
the KEEP parameter:

• If you use neither the KEEP parameter nor the"KEEP
directive, then the object modules are not saved at all. In
this case, the link edit cannot be performed, because
there is no object module to link.

• The filename you specify as ourfi/e must not be over 10
characters long. TIris is because the extension .ROOT is
appended to the name, and ProDOS does not allow
filenames longer than 15 characters.

• If a fIle named ourfile already exists, it is overwritten
without a warning when this command is executed.

TIris parameter causes the compiler to perform a partial
compilation; the operands seg1, seg2, ... specify the names
of the segments to becompiled. The CPW Linker
automatically selects the latest version of each segment when
the program is link: edited.

You assign names to segments with START or DATA
directives. The object file created when you use the NAMES
parameter contains only the specified segments. When you
link a program, the Linker scans all the files whose
filenames are identical except for their extensions, and takes
the latest version of each segment. Therefore, you must use
the same output filename for every partial compilation of a
program. For example, if you specify the output filename as
OUTFILE for the original compilation of a program, then the
compiler creates object modules named. OUTFILE.ROOT
and OUTFILE.A. In this case you must also specify the
output fIlename as OUTFILE for the partial compilation .
The new output file is named OUTFILE.B, and contains
only the segments listed with the NAMES parameter.

Note: No blanks are permitted immediately before or after
the equal sign in this parameter.

See the section "Partial Assemblies or Compiles" in Chapter
2 of the CPW Manua/ for a complete discussion of partial
assemblies.

A/phaDraft Page 2- 5 26 May 1986

Con/and Workshop C

/anguage1:(oprion ...)

Chaprer 2

This parameter allows you to pass parameters directly to
specific CPW compilers or assemblers. For each compiler
or assembler for which you want to specify options, type the
name of the language (exactly as defined in the Command
Table), an equal sign (=), and the string of options enclosed
in parentheses. The contents and syntax of the options
string is specified in the compiler or assembler reference
manual; the CPW Shell does no error checking on this
string, but passes it through to nthe compiler or assembler.
You can include option strings in the comman,d line for as
many languages as you wish; if that language compiler is not
.called, then the string is ignored.

Note: No blanks are permitted immediately before or after
the equal sign in this parameter.

Listings and error messages are sent to the command window unless you include a'
PRINTER ON directive (or equivalent) in the source file; or redirect output to another
window. disk file. or the printer in the command line. Output redirection is described in
the section "Redirecting Input and Output" in this chapter.

Important: If you are using a LinkEd file to take advantage of the advanced link
edit capabilities it provides, do nor use the ASML command. Instead, use either
the ASSEMBLE or COMPILE command to assemble or compile your program.
You can process the LinkEd file automatically by appending it to the end of your
program with an APPEND directive (or the equivalent), or you can process it
independently with the ALINK command. The Linker is described in detail in
Chapter 8.

Source Files, Object Files, and 'Listing Files

The compiler writes error and warning messages to the standard error file. The message
contains source file name, line number, and error or warning text If no errors or warnings
are detected, the compiler runs silently.

If you specify the -p option. the compiler writes progress information and summary
information to the standard error file.

C source-file names end with the suffix ".c" by convention. C object-file names consist of
the source fIle name followed by ".0" by default

Include·file search rules
If the include-fIle name is a full pathname, the compiler uses that name. A full pathname
does not begin with a colon (:) and contains at least one embedded colon. A partial
pathname either begins with a colon or does not contain a colon. (For more information
about pathname syntax, refer to Con/and Programmer's Workshop.)

If the include-file name is a partial pathname, the compiler searches for include files using
the rules shown in Table 1-2. The first file successfully opened using these rules is
included.

A/phaDraft Page 2- 6 26 May 1986

Chapter 2 Con/and Workshop C

Table 1-2. Include-file search rules

Include-File Name Example
In double quotes. ":Constants.h"

In angle brackets. <CType.h>

Search for Partial Pathname

Look in the following directories:

(1) The directory of the source file that
contains the include statement.

(2) Directories specified by the -i option.
in the order given.

(3) Directories specified by the
environment variable Cln.c/udes.

Look in the directories described under (2)
and (3) above.

Library files for compiling and linking

Appendix B, "Piles Supplied with Cortland Workshop C," contains a list of include files
and object files to be used with C. Specify the include files when compiling and the object
files when linking. For more information on linking C programs, refer to the Linker
chapter of Con/and. Progr~r's Workshop. .

In general, you will want to specify

• all of the Standard C Library files listed in Appendix B

• only the particular Cortland Interface Libraries·files you refer to in your program.

About ProDOS/16

ProDOS/16 is a new operating system for the Cortland. It is a superset of the ProOOS
used on earlier Apple rI'computers. It suppons all features of ProDOS but is more
powerful, both in additional features and in improved performance

ProDOS/16 has a new system call structure that takes advantage of the 65SC816 processor.

New ProDOS/16 features

ProDOS/16 is designed to take advantage of certain Conland capabilities and to provide
.additional progiamming convenience over ProDOS. For example:

• You can make ProDOS/16 system calls from anywhere in memory, using parameter
lists located anywhere in memory. By comparison, ProDOS calls and lists must be
in the lowest 64K of memory. .

• You can make va data transfers under ProDOSI12 to or from anywhere in
memory. ProDOS can perform VO only with the lowest 64K bytes of memory.

Alpha Draft . Page 2- 7 26 May 1986

Cortland Workshop C Chapter 2

• ProDOS/16 provides extensive support for named devices, which can be block or
character devices. ProDOS supports only block devices and requires you to refer to
a device by its volume name or its slot and drive numbers.

• ProDOSI16 supports up to four system prefixes; ProDOS supports only one.

• ProDOS allows any number of online devices; ProDOS allows only two devices
per slot.

• ProDOS/16 supports at least three block device protocols, allowing an application
to transparently use so-called "guest file systems", such as the Macintosh
hierarchical file system [or MS/DOS???]

• ProDOS/16 supports up to 16interrupt handlers; ProDOS supports only four.
Furthermore, ProDOSI16 allows for more than one method of handling unclaimed
interrupts.

• ProDOSI16 assigns each caller a unique identification number. ProDOS does not.

• ProDOS has a volume mount function, which prompts the user to mount a needed
volume; ProDOS does not.

ProDOS/16 has the following system calls that are not in ?foDOS:

CLEAR_BACKUP BIT Clears a file access bit

CHANGE_PATH Moves a file's directory within a volume

SET_LEVEL Sets the system file level

GET_LEVEL Returns the system file level

GET_DEV_NUM Returns the reference number for a named device

START_PRODOS Returns a caller identification number

END_PRODOS Releases a caller identification number

GET_PA'fH1'.lAME Returns pathname of current system program

GET_BOOT_VOL Returns name of volume that contains ProDOS/16

GET_VERSION Returns the current ProDOS/16 version

GET_ENTRY Returns ASCn string with directory information

WRITEJ'ROTECT Determines the Write~protect status of a volume

GET_DIE Returns a device information block

SAVE_STATE Saves system state when leaving an application

RESTORE_STATE Restores system state when an application returns

SET_INT_MODE Sets method of handling unclaimed interrupts

Compatibilities

ProDOS/16 is functionally upward-compatible with ProDOS. While a program requires
modification to run under ProDOS/16, ProDOS/16 supports all of ProDOS's capabilities:

• The set of ProDOS/16 system calls is a superset of the ProDOS system calls. For
nearly every ProDOS system call, there is a functionally equivalent ProDOSIl6 call,
usually with the same name.

Alpha Draft Page 2- 8 26 May 1986

Chapter 2 Conland Workshop C

• The calls are made in nearly identical ways in both systems, and the parameter lists
are laid out simalarly.

• ProDOS/16 uses exactly the same file system as ProDOS. It can read from and
write to any disk volume produced by ProDOS, and vice versa. Both physical and
logical file and volume formats are the same.

• The ProDOS/16 interrupt-handling procedures and QUIT protocol are functionally
compatible with ProDOS.

Using ProDOS/16 from C

ProDOS/16 is fully accessible from C. All ProDOS/16 calls are available through the
Cortland Interface Library for C, which provides interface ("glue") code to handle
parameter passing and routine calling. The interface code is listed in Chapter 5; the calls are
described in more detail in the Conland Tool Reference and the ProDOSI16 Reference

For example, if your program's caller ID is 1 and you wished to change a file's pathname
from /cannakerslforcl/iaccocca to /carmakers/chrysler/iaccocca, you would use the call

chanqe-path(/car.maker3/ford/iaccocca, Icar.maker3/chrY31er/iaccocca)

About Cortland tools

The Cortland User Interface Toolbox is designed so that you don't have to reinvent the
menu. All the routines you need to handle mice and menus, windows and mes, and other
aspects of the human-machine interface, are in the Cortland Interface Toolbox. It consists
of of nearly 600 routines, grouped into the following tools:

• Tool Locater
• Memory Manager
• Event Manager
• QuickDraw II
• SANE
• Desk Manager

Sound Manager
• Control Manager
• Dialog Manager
• Menu Manager
• Window Manager
• File Operations
• Scrap Manager
• Print M.anager
• Line Edit
• Miscellaneous Tools

Assembly-language programs call toolbox routines by means of call names. This is the
sequence:

1. Push space for the result (if any) onto the stack.

2. Push the input parameters onto the stack.

AiphaDraft Page 2- 9 26 Ma)' 1986

Conland Workshop C

3. Invoke the call macro.

Chapter 2

4. Pull the result (if any) from the stack.

C programs call toolbox routines by calling functions in the Cortland Interface Library for
C. These functions take care of the parameter passing. The interface library is listed in
Chapter 5; the calls are described in more detail in the Conland Tool Reference.

Appendix N is an exemplary event-driven application in C showing the use of the Cortland
tools. It is akin to the application in the Conland Tool Reference. This can be used as a
model or plundered for useful code.

About libraries

The following libraries are provided with Conland Workshop C:

• The Standard C Library (Chapter 4) is a collection of basic routines, not part of the
C language, that let you read and write files, examine and manipulate strings,
perform data conversion, acquire and release memory, and perform some
mathematical procedures.

• The Cortland Interface Libraries (Chapter 5) are a set of interfaces from C to the
Conland Toolbox. They enable you to write C programs that access the routines
described in Conlan.d Tool Reference.

• The SANE Library (Chapter 5) in the Cortland Interface Libraries provides
mathematical functions and supports floating-point arithmetic. Its routines are
documented in the Apple Numerics Manual.

..... Should the SANE Library be a separate chapter, or pan of Chapter 5?

Within Chapters 4 and 5, the material is alphabetical by function or library name. All of the
identifiers defined in the libraries are listed in a combined index in Appendix C. The fJ1es
associated with these libraries are discussed under "Library Files for Compiling and
Linking" in Chapter 2.

Alpha. Draft Page 2-10 26 May 1986

Chapter 3

The Cortland Workshop C Language

.Language Definition

The information provided in this chapter supplements The C Programming Language by
Kernighan and Ritchie. Where their language definition leaves choices to the
implementers, this chapter describes how these aspects of C have been implemented on the
Cortland. Where Apple has modified or extended their language definition, this chapter
documents the changes.

Data Types

Table 3-1 lists the arithmetic and pointer types available in Cortland Workshop C and
shows the number of bits allocated for variables of these types. Types short and long
represent 16-bit and 32-bit integers, respectively. The machine type int is a 16-bit integer
on Cortland: it is the type the 65SC816 uses most efficiently. Pointers require 32 bits.
Enumeration types are allocated either 8, '16, or 32 bits, depending on the range of the
enumeration literal values. Types char, short, int, and long use two's-complement
representation.

AiphaDraft Page3-1 26 May 1986

Conland Workshop C Chapter 3

Data T!pe Bits

char 8

unsigned char 8

short 16

unsigned short 16

int 16

unsigned int 16

long 32

unsigned long 32

enurn 8, 16, or 32

... 32

float 32

double 64

cornp 64

extended 80

Type void

Table 3m!. Size and Range of Data Types

Descri ption

range -128 to 127

range 0 to 255

range -32,768 to 32,767

range 0 to 65,535 .

range -32,768 to 32,767

range 0 to 65,535

range -2,147,483,648 to 2,147,483,647

range 0 to 4,294,967,295

depends on the range of the enumeration literals

pointer types

IEEE single-precision floating point

IEEE double-precision floating point

SANE signed integ:ra.l values

IEEE extended-precision floating point

Type void has no values and no operators. Type void may be used as a type specifier in
function declarations to indicate that the function has no meaningful return value.
Specifying type void in Pascal-compatible function declarations reduces the number of
instructions generated in calling the function. (See "Pascal-Compatible Functions" later in
this chapter.)

Type enum

Type enurn is a type analogous to the enumeration types of Pascal. Its syntax is similar to
that of the struct and union declarations:

enum-specifier:
enum { enum-lisr }
enum identifier (enum-lisr
enum idennfier

enum-lisr:
enumeration-declaration
enumeran'on-declaration , enum-lisr

enumeration-declaration:
identifier

AiphaDraft Page 3- 2 26 May 1986

Chapter 3 Con/and Workshop C

identifier .. constant-expression

The fIrst identifier in e'num-specijier, like the Stl"Ucture tag in a srruct-specijier, names a
particular enumeration. For example,

enum color (chartreuse, burgundy; claret, winedark};

enum color *cp, col;

This enumeration makes color the enumeration tag of a type describing various colors
and then declares cp as a pointer to an object of that type and col as an object of that type,

The identifiers in enum-lisr are declared as constants and may appear wherever constants
are required. If no enumerators with a constant-expression appear, the values of the
constants begin at 0 and increase by I as the declaration is read from left to right. An
enumerator with a constant-expression gives the associated identifier the value indicated;
subsequent identifiers continue the progression by I from the assigned value.

Enumeration tags and constants must be unique. They are drawn from the set of ordinary
identifiers, unlike stl"uctu.re tags and members. Objects of a given enumeration type have a
type distinct from objects of all other types.

Enumeration types are allocated the amount of space required by the smallest predefined
type that allows representation of all of the literal values specified by the enumeration. The
predefined types considered are char and uns igned char (8 bits), short and
unsigned short (16 bits), and intand unsigned int (32 bits).

Register Variables

Most versions of C suppon register variables. Their function is undefll1ed in Conland as Q

result of the small number ofregisters available on the 65SC816 microprocessor, Use of
the register declaration causes the compiler to generate code at least as efficient as that
generated by the same program without re g i s t e r declarations.

Structures

Structures may be assigned, passed as parameters, and returned as function results. The
left and right sides of a stl"uctu.re assignment must have identical types. Similiarly, actual
and formal parameters must have identical types. Equality comparison for stl"uctu.res has
been implemented, provided the structures have the same type.

Warning: -In functions that return structures, if an interrupt occurs during the
return sequence and the same function is called reentrantly during the interrupt, the
value returned from the first call may be corrupted. The problem can occur only in
the presence of interrupts. Recursive calls are quite safe.

A/phaDraft Page 3- 3 26 May 1986

ConLand Workshop C

Return, Newline, and Vertical' Tab

Chapter 3

Retmn is the usualline-tennination character on .the Conland and is represented by \r (a
backslash character followed by a lowercase r). The newline character is represented by \no
Vertical tab is represented by \v.

Predefined Symbols

LINE' is a predefined preprocessor symbol whose value is the current line number
Within the current source file. _FILE' is a predefIned preprocessor symbol whose value
is a character.string consisting of the current file name. Each symbol begins and ends with
an underscore character.

The symbol Cortland is predefmed for use in conditional compilation. U>II Any others?
u* The symbol has the value 1, as if a statement of this fonn had appeared at the
beginning of the source code: .

#define Cortland 1

Standard Apple Numeric Environment Extensions

Conland Workshop C has built-in support for the Standard Apple Numeric Environment
(SANE). The language together with the SANE library support compose a scrupulously
confomring extended-precision implementation of the JEEE Standard for Binary Roaring
Point Arithmetic (754). SANE provides an extra data type and basic functions for
application development Our C recognizes the SANE data types, uses SANE for all C
floating-point operations and conversions, and correctly handles NaNs (Not-a-Number)
and infmities in comparisons and in ASCII-binary conversions. Funher:more, source
programs from other C implementations, if they were written using only float and
double types and standard C operations, will compile and run in Conland Workshop C
without modification.

Much of SANE is provided through the run-time library sanelib and its include file
sane. h. However, to use extended-precision arithmetic" efficiently and effectively I and to
handle JEEE NaNs (Not-a-Number) and infinities, some extensions to standard Care
required including use of the extended data type.

A change from double to extended as the basic floating-point type is the most salient
change to standard C. Since C was originally developed on the DEC PDP-II, the PDP-II
architectUre is reflected in standard C in the use of float and double as floating-point
types, with double as the basic type: floating-point expressions are evaluated to
double, anonymous variables are double, and floating-point parameters and function
results are passed as doubles. However, the low-level SANE arithmetic (as well as the
floating-point chips Intel 8087, Motorola 68881, and Zilog 28070) evaluates arithmetic
operations to the range and precision of an SO-bit extended type. Thus, extended
naturally replaces PDP-II double as the basic arithmetic type for computing purposes.
The types f loat (IEEE single), double, and comp serve as space-saving storage types.
just as f loa t does in standard C.

AJphaDraft 26 May 1986

Chapter 3 Cortland. Workshop C

The IEEE Standard specifies two kinds of special representations for its floating-point
formats: NaNs (Not-a-Number) and infInities. Cortland Workshop C expands the syntax
for I/O to accommodate NaNs and infinities, and includes the treatment of NaNs in
relationals as required by the IEEE Standard..

The SANE extensions to standard C are backward compatible: programs written usine:
'only float and double floating-point types and standard C operations compile andrun
without modification. SANE does not affect integer arithmetic.

**'" Does the term long double, used in the proposed ANSI C Standard, have any
meaning here? It might be useful to make long double mean extended, and vice
versa. "''''*
The Apple Numerics Manual contains detailed documentation of the Standard Apple
Numeric Environment.

Constants

Numeric constants that include floating-point syntax-a point (.) or an exponent field--or
that lie outside the range of long are of type extended. Decimal-te-binary conversion
for numeric constants is done at compile time (and hence is governed by the default
numeric environment; see "Numeric Environment" in this chapter).

Expressions

The SANE typeS-float, (iouble, comp, and extended--can be mixed in
expressions with each other and with integer types in the same manner that f loa t and
double can in standard C. An expression consisting solely of a SANE-type variable,
constant, or function is of type extended. An expression formed by subexpressions and
an arithmetic operation is of type extended if either of its subexpressions is.
Expressions of type extended are evaluated using extended-precision SANE arithmetic,
with conversions to type extended generated. automatically as needed. Parentheses in
extended-type expressions are honored: the compiler will not rearrange tenns in
violation of parentheses. Initialization of external and static variables, which may include
expression evaluation, is done at compile time; all other evaluation of extended-type
expressions is done at run time.

Comparison Involving a NaN

The result of a comparison involving a NaN operand is unordered. The usual trichotomy
of comparisons is expanded to less «), greater (», equal (==), and unordered. For
example, the negation of "a less than b" is not "a greater than or equal to b" but "(a greater
than or equal to b) OR (a and b unordered)". The sanelib function relation tests all
four alternatives.

Alpha Draft . Page 3- 5 26 May 1986

Con/and. Workshop C

Functions

Chapter 3

A numeric actual parameter passed by value is an expression and hence is of ext ended or
integer type. All extended-type argumerits are passed as extend.eds. Similarly,
all results of functions declared float, double, comp, or extended are returned as
extendeds.

Numeric Input/Output

In addition to the usual syntax accepted for numeric input. the Standard C Library function
scanf recognizes "INF" as infinity and "NAN" as a NaN. NAN may be followed by
parentheses, which may contain an integer (a code indicating the NaN's origin). INF and
NAN are optionally preceded by a sign and are case insensitive. The scanf specifiers for
SANE types extend standard C as follows: conversion characters f, e, and g indicate type
float; lf, le, and 19 indicate type double; mf, me, and mg indicate type comp; and
ne, nf, and ng indicate type extended.

The Standard C Library function printf writes infinities as (-) INF and NaNs as
(-) NAN (ddd.) ,where (-) is the optional minus sign and ddd. is the NaN code.

Numeric Environment

The numeric environment refers to rounding direction, rounding precision, halt enables.
and exception flags. IEEE Standard defaults-rounding to nearest. rounding to extended
precision, and all halts disabled-are in effect for compile-time arithmetic (including
decimal-to-binary conversion). Each program begins with these defaults and with all
exception flags clear. Functions for managing the environment are included in the library
sanelib. The compiler, in optimizing, will not change any part of the numeric
environment, including the exception-flag setting, which is a side effect of arithmetic
operations.

About the SANE Library

The SANE library rounds out the IEEE Standard implemenrationand provides the basic
tools for developing a wide range of applications. The SANE library includes the
following:

• logarithmic, exponential, and trigonometric functions

• financial functions

• random niunbet generation

• binary-decimal conversion

• numeric scanning and formatting

• environment control

• . other functions required or recommended by the IEEE Standard

A/phaDraft Page 3- 6 26 May 1986

Chapter 3 Con/and Workshop C

Additional infonnation can be found under the SANE entry in Chapter 4, "Cortland
Interface Libraries."

Programming with IEEE Arithmetic

Conland Workshop C's automatic use of the extended type produces results that are
generally better than those of other C systems. Extended precision yields more accuracy
and extended range avoids unnecessary underflow and overflow of intermediate results.
The programmer can funher exploit the extended type by declaring all floaringopoint
temporary variables to be type extended. This is both time- and spaceoefficient, since it
reduces the number of automatic conversions between types. External data should be
stored in one of the three smaller SANE types (float, double, or comp), not only for
economy but also because the extended fonnat may vary between SANE
implementations. As a general rule, use float, double, or comp data as program
input; extended arithmetic for computations; and float, double, or comp data as
program output.

In many instances, IEEE arithmetic allows simpler algorithms than were possible without
IEEE arithmetic. The handling of infinities enlarges the domain of some formulas. For
example, 1+1/x2 computes correctly even ifx2 overflows. Running with halts disabled (the
default), a program will never crash due to a floatingopoint exception. Hence by
monitoring exception flags a program can test for exceptional cases after the fact. The
alternative of screening out bad input is often infeasible, sometimes impossible.

Pascal-Compatible Functions

The function-calling conventions used by Cortland Workshop C and Pascal differ radically
in the order of parameters on the stack, the type coercions applied to parameters, the
location of the return result, and the number of scratch registers. C has been extended to
allow function calls between these languages. The specifier pascal in a function
declaration or definition indicates a Pascal-compatible function.

Pascal-Compatible Function Declarations

A function or procedure written in Pascal (or written in assembly language following
Pascal calling conventions) can be called from Conland Workshop C. For example, the
DrawText procedure is defined in Pascal as:

PROCEDURE DrawText (textBuf: Ptr;
firstByte, byteCount: INTEGER);

The CPW syntax. for declaring this procedure as a C function is:

extern pascal void DrawText();

To make the code more readable, we can list the parameters in a comment:

extern pascal void DrawText();·
/* Ptr textBuf;

Alpha Draft Page 30 7 26 May 19R6

Con/and Workshop C

short firstByte, byteCount;
extern; .,. I

Chapter 3

Pascal-Compatible Function Definitions

A function definition (the actual function), like a function declaration, can also be preceded
by the pas cal specifier. The function then adheres to Pascal-compatible calling
conventions and can be called from Pascal. For example, the following C function can be
called from Pascal:

pascal void MyText(byteCount,textAddr,numer,denom)
short byteCount;
Ptr textAddr;
Point numer,demon;

The corresponding Pascal function declaration is

PROCEDURE MyText(bytecount: INTEGER; textAddr: Ptr;
numer,denom: Point);

For compatibility with Pascal and assembly language, the compiler convens the names of
Pascal-compatible functions to uppercase before writing them to the object fIle. When they
are called in C programs, these routines should be capitalized exactly as they were declared
in C. Pascal-compatible functions whose names differ only in their capitalization will
become duplicate declarations when their names are converted to uppercase by the
compiler; therefore such names should be avoided.

Parameter and Result Data Types

C and Pascal support different data types. Therefore when writing a Pascal-compatible
function declaration in C, a translation of the parameter types and function-result type (from
Pascal to C) is required. Often this translation is trivial, but other cases are surprising.

Table 3-2 below summarizes this translation. Find. the Pascal parameter or result type in
the first column. Use the equivalent C type found in the second column when declaring the
function in C. Comments in the table point out unusual cases which may require special
attention.

Table 3-2. Parameter and Result Data Types

Pascal Data Type C Equivalent Comments

boolean

var boolean

boolean result

enumeration

A/phaDrafi

Boolean Boolean is defined in fIle Types. h
as enum {false, true}.

Boolean III In C, false is zero and true is
often considered nonzero.

Boolean In Pascal, false is zero and true
is one.

enum Use identical ordering of the

Page 3- 8 26 May 1986

Chapter 3 Coniand Workshop C

«128 or >255 literals) enumera tion literals.

enumeration short Pascal passes enumeratior:.s
(128 to 255 literals) with 128 or more literals as words.

var enumeration enum *
«128 or >255 literals) .

var enumeration short '"
(128 to 255 literals)

enumeration result enum
«128 or >255 literals)

enumeration result
(128 to 255 literals) short

char short Surprise! Pascal passes chars as 16-
bit values.

var char char ..
char result short

integer short 16-bit signed values.
var integer short ..
short result short

longint int or long 32-bit signed values.
var longint int .. or long .. *** long only??? ***
longint result int or long *** long only??? ***
real extended .. Pascal passes real parameters as

extended by address.
var real float ..
real result float Pascal returns real results by value.

double extended .. Pascal passes doub 1 e parameters as
extended by addr~ss.

var double double ..
double result double The caller supplies the address of the

double result.

comp extended .. Pascal passes comp parameters as
ext ended by address.

var comp comp ..
comp result comp The caller supplies the address of the

comp result.

extended extended .. Pascal passes extended parameters
by address.

var extended extended ..
extended result extended The caller supplies the address of the

extended result.

pointer pointer 32-bit addresses.

AiphaDraft Page 3- 9 26 May 1986

ConLand Workshop C

var pointer pointer ..
pointer result pointer

array (1 or 2 bytes) short
array (3 or 4 bytes) int or long
array (5 or more bytes) array

var array array
array result

record (l to 4 bytes) struct

record (5 or more bytes~ struct 1<

var record (any size) struct ..
record result (lor 2 bytes) short

reco rd result (3 or 4 bytes) int or long
record result (1 or 2 bytes) struct

set (1 to 7 elements) char

set (8 to 16 elements) short

s et (~17 elements) struct
\

var set (l to 7 elements) char •
var set (8 to 16 elements) short 1<

var set ~17 elements) struct ..
set result (l to 7 elements) char
set result (8 to 16 elements) short
set result ~17 elements) struct

Chapter 3

Pascal passes small arrays by value.
*** long only??? ***
Pascal passes larger arrays by

address.

C does not allow array results.

Pascal passes small records by
value.

Pascal passes larger records by
address.

Pascal returns small records by
value.

*Illlll long only??? ***
The caller supplies the address of the

record result.

Pascal passes sets with 1 to 7
elements as bytes.

Pascal passes sets with 8 to 16
elements as words.

Pascal also passes larger setS by
value.

Pascal returns small sets by value.

The caller supplies the address of the
set result.

Implementation Notes

A number of details in any language definition are left to the diSC'r'erion of its individual
implementations. Most programs do not rely on these details and therefore yield the same
results on the various implementations. However, knowledge of the major differences
between implementations can help you avoid reliance on language semantics that vary from
implementation to implementation. TIlls section explains several areas of the language
defInition that are specific to Workshop C.

Byte Ordering

On the 65SC816, the microprocessor used in the Cortland, the least significant byte of a
short or long integer has the lowest memory address. This byte ordering is also used on

ALpha Draft Page 3· 10 26 May 1986

Chapter 3 Con/and Workshop C

ffiM/370 and 28000 processors. The PDP-II family, VAX, 8086, and NSI6000 use a
different ordering. Programs that rely on the order of the bytes within words and longs
will not work correctly on both classes of machines.

Memory-Allocation Characteristics

The Workshop C compiler optimizes memory allocation in various ways. Static and global
variables are not necessarily allocated in the order in which they are specified. (However.
the order of fields within records is preserved.) Static variables may be allocated as if they
were automatic if their values are always set before being referenced. Automatic and static
variables that are never used may not be allocated at all. Programs should not rely on the
compiler's allocation algorithms.

Types runs iqned char and uns iqned short

Types uns igned char and uns igned short are supported by the Cortland C
compiler and by many implementations of PCC, although they are not required by the basic
C language definition. The VAX implementation of PeC and the Cortland C compiler
differ in the way they evaluate expressions involving these types. For example, the
negation operator subtracts an unsigned short from 216 under pce (this seems like a
bug), and from 232 under Conland Workshop C.

Bit Fields

Workshop C provides bit fields that are unsigned, as do all MC68000 versions of pee of
which we are aware. However, V AX. implementations of C may support signed bit fields.
In the following example, implementations using unsigned bit fields will set i to 3;
implementations using signed bit fields will set ito -1:

struct lint field:2;} x;
x.field - 3;
i - x.field;

Evaluation Order

Conland Workshop C does not defme the evaluation order of certain expressions.
Expressions with side effects, such as function calls and the "++" and "- -" operators, may
yield different results on different machines or with different compilers. Specifically, when
a variable is modified as a side effect of an expression's evaluation and the variable is also
used at another point in the same expression, the value used may be either the 'value before
modification or the value after modification.

Programs that rely on the order of evaluation in these situations are in error. The function
call

f (i, H+)

is an example of an expression whose value is undefined.

Alpha Draft Page 3-11 26 May 1986

Con/and. Workshop C

Case Statements

Chapter 3

Some implementations of C, including PCC, allow cases of a switch statement to be
nested within compound statements. Cortland Workshop C considers this an error. The
following switch statement compiles using pce but generates an error message using
the Cortland Workshop C compiler. The error is that "case 2:" is within the if statement.

switch (i)

case 1:
if (j) (

case 2:
i - 3:

Language Anachronisms

Several constructs formerly considered part of the C language are now considered
anachronisms. When you specify the -z84 compiler option, anachronistic constructs are
compiled and flagged with a warning message. Otherwise they are considered invalid.
The anachronisms are described below.

Assignment Operators: The -op form of assignment operators is not supported.
Alternate interpretations are accepted without warning. In particular,

x -- 5:

x .,'" 5:

x -, p:

is interpreted as x - (-5) :

is interpreted as x .. ('" 5) :

is interpreted as x III ('pI;

Initialization:. The equal sign that introduces an initializer must be present The
anachronism

int i 1:

is considered an error.

Structures and Unions: References to members of structures and unions must be ·to
the appropriate structure or union. For example, the reference a.b is illegal if b is not a
member of a. References to components of nested struCtures and unions must be fully
qualified (Le. all intermediate levels of the reference must be specified).

The names of structure and union members do not conflict with the names of ordinary
variables in the same scope. Funhermore, a particular member name may be used in
several structures and unions in the same scope.

Compiler Limitations

On the Cortland, the total size of all declared global variables, static variables, and strin g
constants cannot exceed 32K bytes. Allocate large global arrays on the heap
u* correct? UlIl in order to avoid exceeding this limit.

AJphaDraft Page3-12 26 May 198tJ

Chaprer 3 Conland Workshop C

Automatic variables are limited to 32K bytes.

It is impossible to compile very large functions on the Cortland because the compiler's
internal data structures cannot fit in memory. As functions approach this limit, compilation
time increases noticeably. This problem can be alleviated by eliminating unnecessary
include mes, reducing the number of global declarations, compiling large functions
separately, and rewriting large functions as two or more smaller functions.

Alpha Draft Page 3- 13 26 May 1986

Chapcer4 ,Cortland Workshop C

Chapter 4

The Standard C Library

Introduction to the Standard C Library

This chapter describes the Standard C Library provided with Conland Workshop C. After
an introductory discussion of error-number conventions. the chapter is arranged
alphabetically by library header. Several library routines-functions and macros-may be
grouped under a single header. For example. a number of trigonometric functions are
documented under the header "trig." '

All of the identifiers in the Standard C Library are listed in the Library Index. Appendix C.

Note: Remember that identifiers in C are case sensitive and should be spelled
exactly as shown in the synopsis.

The library routines under each header are documented as follows:

• NAME. Lists the names of the library routines. followed by a descriptive phrase.

• SYNOPSIS. Shows the code you need to add to your program when using these
library routines. Indicates libraries you need to include at compile time.

• DESCRlPTION. Discusses the library routines and their input and output.

• DIAGNOSTICS. Describes error conditions.

• RETUR..."'l' VALlJE. Describes the values returned by the routines.

• NOTE. Contains remarks.

• WAR...l\l1NG. Gives cautions.

• SEE ALSO. Provides the names of other library routines related to the ones
described in the current document.

/

A/phaDraft Page 4· 1 26 MCI)' 1986

NAME

Introduction to error numbers similar to those in lJNIXi""1 operating systems.

SYNOPSIS

Jinclude <errno.h>

extern int errno;

DESCRIPTION

Many pf the Standard C Library functions have one or more error returns. An error
condition is indicated by an otherwise impossible returned value. This is almost
always -1; see descriptions of individual functions for details. An error number is
also made available in the external variable erma. The variable erma is not cleared
on successful calls, so it should be tested only after an error has been indicated.

The error name appears in brackets following the text in a library function
description; for example,

"The next attempt to write a nonzero number of bytes will signal an error.
[ENOSPC]"

Not all possible error numbers are listed for each library function because many
errors are possible for most of the calls. Some UNIX operating system error
numbers do not apply to Cortland and are not documented in this manual.

Here is a list of the error numbers and their names as defined in the <errno.h> tile:

1 [EPERM] Not owner.
Typically this error indicates an attempt to modify a me in a
way that is not permitted.

2 [ENOENT] No such file or directory
This error occurs when a file whose filename is specified
does not exist or when one of the directories in a pathname
does not exist.

5 [EIO] I/O error
Some physical I/O error has occurred. This error may in
some cases be signaled on a call following the one to which
it actually applies.

6 [ENXIO] No such device or address
I/O on a special file refers to a subdevice that does not exist.
or the I/O is beyond the limits of the device. This error may
also occur when, for example, no disk is present in a drive.

Alpha Draft Page 4- 2 26 May 1986

Standard C Library Error Numbers Corrland Workshop C

9 [EBADF] Bad me number
Either a file descriptor does. not refer to an open me, or a
read (or write) request is made to a me that is open only for
writing (or reading).

12 [ENOMEM] Not enough space
The system ran out of memory while the library call was
executing.

13 [EACCES] Permission denied
An attempt was made to access a me in a way forbidden by
the protection system.

17 [EEXIST] File exists
An existing me was mentioned in an inappropriate context
e.g., open(file,O_CREAT+O_EXCL).

19 [ENODEV] No such device
An attempt was made to apply an inappropriate system call to
a device-e.g., read a write-only device.

20 [ENOTDIR] Not a directory
An object that is not a directory was specified where a
directory is required-e.g., in a path prefix.

21 [EISDIR] Is a directory
An attempt was made to write on·a directory.

22 [EIN\'AL]] Invalid argument
Some invalid argument was provided to a library function.

23 [ENFILE] File table overflow
The system's table of open flles is full, so temporarily a call
to open cannot be accepted.

24 [EMFILE] Too many open files
No program may have more than 20 file descriptors open at
a time.

28 [ENOSPC] No space left on device
During a write to p.n ordinary file, there is no free space left
on the device.

29 [ESPIPE] illegal seek
An lseek was issued incorrectly.

30 [EROFS] Read-only file system
An attempt to modify a file or directory was made on a
device mounted for read-only access.

NOTE

Calls that interface to the Cortland VOsystem-e.g., open, close, read, wrire. ioer!.
and others-set the external variable MacOSErr as well as errno. This manual

Alpha Draft Page 4- 3 26 May 1986

Conland Workshop C Error Numbers Standard C Library'

documents only errno values. The equivalerit Cortland ROM error-return values set
in *** variable name? *** are documented in ConlandTools. The appropriate
include file for most values of *** variable name? *** is. <fJ.les.h>.

Alpha Draft 26 May 1986

Standard C Library

NAME

abs-return integer absolute value

SYNOPSIS

int. abs (i)
int ii

DESCRIPTION

abs Cortland Workshop C

Function abs returns the absolute value of its integer operand.

, NOTE

The absolute value of the negative integer with largest magnitude is undefIned.

SEE ALSO

floor.

A/phaDraft Page 4- 5 26 May 1986

Cortland WorksJwp C

NAME

atof-conven ASCII string to floaring-point number

SYNOPSIS

extended a~of (nptr)
char *nptr;

DESCRIPTION

Standard C Library

\.

Function atofconverts a character string pointed to by rlptr to an extended-precision
floating-point number. The fIrst unrecognized character ends the conversion.
Function atofrecognizes an optional string of white-space characters (blanks or
tabs), then an optional sign, then a string of digits optionally containing a decimal
point, then an optional "e" or "E" followed by an optionally signed integer. If the
string begins with an unrecognized character, atofrerums a NaN.

DIAGNOSTICS

Function atofhonors the floaring-point exception flags-invalid operation,
underflow, overflow, divide by zero, and inexact-as prescribed by the Standard
Apple Numeric Environment (SANE).

SEE ALSO

scanf, str2dec, dec2num.
Apple Numerics Manual.

AlphaDrajr Page 4- 6 26 May 1986

Standard C Library

NAME

atoi, atol-conven string to integer

SYNOPSIS

int atoi (st::)
char "str;

long atol (str)
char "str;

DESCRlPTION

atoi Cortland Workshop C

The character string str is scanned up to the fIrst nondigit character other than an
optional leading minus sign (-). Leading white-space characters (blanks and tabs)
are ignored.

Function atoi returns as an integer the decimal value represented by str.

Function arol returns as a long integer the decimal value represented by str.

NOTE

Overflow conditions are ignored.

SEE ALSO

atof, scanf, stno!.

Alpha Draft Page 4- 7 26 May 1986

Corrland Workshop C

NAME

close--close a me descriptor

SYNOPSIS

int close (fildes)
int fildes;

DESCRIPTION

close Standard C Library

Variablefildes is a file descriptor obtained from a crear or open call. Function close
closes the me descriptor indicated by fildes.

Function close fails if fildes is not a valid open file descriptor. [EBADF]

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

NOTE

This routine provides facilities used in the Integrated Environment; for more
infonnation, refer to Corrland Programmer's Workshop.

SEE ALSO

creat, open.

Alpha Draft Page 4- 8 26 May 1986

Standard C Library

NAME

COnY Conland Workshop C

toupper, tolower, _tDupper, _tolower, toascii-translate characters

SYNOPSIS

#include <ctype.h>

int toupper (c)
int c:

int tolower (c)
int c;

int _toupper (c')

int c;

int - tolower (c)
int c;

int toascii (c)
int c;

DESCRlPTION

Functions toupper and tolower have as domain the range of gelc: the integers from
-1 through 255. If the argument of toupper represents a lowercase letter, the result
is the corresponding uppercase letter. If the argument of tolower represents an
uppercase letter, the result is the corresponding lowercase letter. All other
arguments in the domain are returned unchanged. '

Macros _toupper and _tolower produce the same res1,1lts as functions toupper and
tolower but have restricted domains and are faster. Macro _loupper requires a
lowercase letter as its argument; its result is the corresponding uppercase letter.
Macro _tolower requires an uppercase letter as its argument; its result is the
corresponding lowercase letter. Arguments outside the domain cause undefined
results.

Function toascii yields its argument by turning off all bits that are not part of a
standard ASCII character; it is intended for ~omparibi1ity with other systems.

SEE ALSO

ctype, getc.

Alpha Draft Page 4· 9 . 26 May 1986

Cortland Workshop C

NAME

creat--create a new me or rewrite an existing file

SYNOPSIS

int creat (pach)
char ·path;

DESCRIPTION

StaniJ.ard C Library

Function crear creates a new file or prepares to rewrite an existing me named by the
pathname pointed to by path. If the file exists, the length of its data fork is
truncated to O.

Function crear(parh) is equivalent to

Upon successful completion, a nonnegative integer (the file descriptor) is returned
and the me is open for writing. The file pointer is set to the beginning of the file.
A maximum of about 30 mes may be open at a given time; the actual maximum
depends upon the current system environment.

RETURN VALUE

Upon successful completion, a nonnegative integer (the file descriptor) is returned.
Otherwise, a value of -1 is returned and ermo is set to indicate the error.

NOTE

This routine provides facilities used in the Integrated Environment; for more
infonnation, refer to Cortland Programmer's Workshop.

SEE ALSO

close, lseek, open, read, 'Nrite.

A/pha Draft Page4-10 26 May 1986

Standard C Library ctype Conland Workshop C

NAME
isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint,
isgraph, iscntrl, isascii

--classify characters

SYNOPSIS

#include <c~ype.h>

int isalpha (c)
int c;

DESCRIPTION

These macros classify character-coded integer values by table lookup, returning
-nonzero for true, zero for false. Macro isascii is defined on all integer values: the
rest are defined only where isascii is true and on the single non-ASCII value EOF
(-1).

Macro
isalpha

isupper

islower

isdigir

i.sxdigir

isalnum

isspace

ispuncr

isprinr

isgraph

isCTl11"1

isascii

DIAGNOSTICS

Returns TRUE if•••

e is a letter.

e is an uppercase letter.

e is a lowercase letter.

e is a digit [0-9].

e is a hexadecimal digit [0-9], [A-F), or [a-f].

e is alphanumeric (letter or digit).

e is a space, tab, return, new line, vertical tab, or form feed.

e is a punctuation character (neither control nor
alphanumeric).

e is a printing character, code 040 (space) through 0176
(tilde).

e is a printing character, similar to isprint except false for
space.

e is a delete character (0177) or an ordinary control character
(less than 040).

e is an ASCII character, code less than 0200.

If the argument to any of these macros is not in the domain of the function, the
result is undefined.

NOTE

These macros do not support the Cortland extended character set.

AlphaDrajr Page4-11 26 May 1986

Cortland Workslwp C

NAME

dup Stand.ard C Library

\
'.'

dup-duplicate an open file descriptor

SYNOPSIS

int dUp (fildes)
int fildes;

DESCRIPTION

Variablefildes is a file descriptor that has been obtained from a creat, dup, orlentl
call. The new me descriptor returned by dup is the lowest one available. It has the
following in common withfildes:

• Same open file.

• Same file pointer.

• Same access mode: read, write, or read/write.

Because the new me descriptor andfildes share the same file pointer, a seek on
fildes affects a subsequent read or write on the new file descriptor, and vice versa.

The function call dup(fildes) is equivalent to

fcnel (fildes, F_DUPFD, 0)

Function dup fails if one or more of the following are true:

• Variablefildes is not a valid open me descriptor. [EBADF]

• Too many file descriptors are currently open. [EMFILE]

RETIJR.~ VALUE

Upon successful completion a nonnegative integer, the file descriptor, is returned.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO

creat, close, fend, open.

Alpha Draft Page 4· 12 26 May 1986

Standard C Library

NAME

ecvt, fcvt-convert floating-point number to string

SYNOPSIS

. char *ecvt(value, ndigit, decpt, sign)
extended value:
iot ndigit, *decpt, *sign:

char *fcvt(value, ndigit, decpt, sign)
extended value:
int ndigit, *decpt, *sign:

DESCRIPTION

Conland Workshop C

Function ecvrconvens value to a null-terminated string of ndigit digits and returns a
pointer to this string as the function result The low-order digit is rounded.

The decimal point is not included in the returned string. The position of the decimal
point is indicated by deepr, which indirectly stores the position of the decimal point
relative to the returned string. If the int pointed to by deepr is negative, the decimal
point lies to the left of the returned string. For example, if the string is "12345" and
deepr points to an int of 3, the value of the string is 123.45; if deepr points to -3,
the value of the string is .00012345 .

If the sign of the converted value is negative, ~he word pointed to by sign is
nonzero; otherwise it is zero.

Functions fcvr and ecvr provide fixed-point output in the style of Fortran F·formlu
output, with the following difference in the interpretation of ndigir:

o In feve, ndigir specifies the number of digits to the right of the decimal point.

o In ecvt, ndigit specifies the number of digits in the string.

NOTE

The string pointed to by the function result is static data whose content is
overwritten by each call.

SEE ALSO

printf, num2dec, dec2sO'.
Apple Numerics Manual.

AlphaDrajr Page4-13 26 May 1986

Con/and Workshop C

NAME

exit, 3xit-terrninate the current application

SYNOPSIS

void exit (status)
int status;

void _exit (status)
int status;

DESCRIPTION

Standard C Library

Function exit terminates the current application, closing all of the open me
descriptors. It also causes stdio cleanup actions before the application terminates.

Function _exit circumvents all cleanup.

RETURN VALUE

Variable status is returned to the Conland Workshop Shell: zero for normal
execution and nonzero for errors.

SEE ALSO

onexit.

A/phaDraft Page4-14 26 May 1986

Standard C Library

NAME

e:xp CortLand Workshop C

exp, log, log 10, pow, sqn--exponential, logarithm, power, square-root functions

SYNOPSIS

Jfinclude <math.h>

extended e~p(x)

extended x;

extended log'(x)
extended x;

extended loglO (x)
extended x;

extended pow (x, y)
extended x, y;

extended sqrt(x)
extended x;

DESCRIPTION

Function exp returns eX, where e is the natural logarithm base.

Function Log returns the natural logarithm (base e) of x.

Function Log10 returns the logarithm base ten of x.

Function pow returns xY.

Function sqrt returns the square root of x.

For spedal cases, these functions return a NaN or signed infInity as appropriate.

DIAGNOSTICS

These functions honor the floating-point exception flags-invalid operation,
underflow, overflow, divide by zero, and inexact-as prescribed by the Standard
Apple Numeric Environment (SANE).

SEE ALSO

hypot,' sinh.
AppLe Numerics ManuaL.

Alpha DrCT/t Page 4· 15 26 May 1986

Con/and Workshop C

NAME

faccess-**'" ? ***

SYNOPSIS

faccess Standard C Librar)'

int faccess (char *fileName, usigned int cmd, ."J;

DESCRlPTION

F_DELETE, F_RENA.ME, F_OPEN (internal use only)

Extended CPW file information: FGTABINFO, F_STAB INFO, F_GFOl'.IIi'.'FO.
F_SFONTINFO

A/phaDraft 26 May 1986

Standard C Library

NAME

fciose Cortland Workshop C

fclose, fflush--close or flush a stream

SYNOPSIS

tinclude <stdio.h>

int fclose (stream)
FILE ·stream;

int ffl~sh (stream)
FILE ·stream;

DESCRIPTION

Functionfclose causes any buffered data for srream to be written out; stream is then
closed.

Functionfclose is performed automatically for all open files upon calling exit.

Functionfflush causes any buffered data for stream to be written out; stream
remains open.

DIAGNOSTICS

These functions return 0 for success or EOF if an error was detected (such as trvin g
to write to a file that has not been opened for writing). . -

SEE ALSO

close, exit, fopen, setbuJ.

Alpha Draft Page4-11 26 May 1986

Corrland Works/U;p C

NAME

. fcntl-file control

SYNOPSIS

tinclude <fcntl.h>

fen11 Standard C Library

int fcntl (fildes, cmd, arg)
int fildes;
unsigned int cmd;
int arg;

DESCRlPTION'

Functionfentl provides control over open files. Variablefildes is an open file
descriptor obtained from a creal, open, or fentl call. Variable cmd is one of the
following values:

F_DUPFD (return a new file descriptor):

Lowest numbered available me descriptor greater than or equal to argo

Same open me as the original file.

Same file pointer as the original file (Le., both file descriptors share one file
pointer).

Same access mode (read, \Vrite, or read/\Vrite).

F_GETFD,F_SETFD,F_GETFL,F_SETFL

These commands are no.t supponed on Conland.

Functionfeml fails if one or more of the following are true:

Variablefildes is not a valid open me descriptor. [EBADF]

More than about 30 file descriptors are currently open; the exact number
permissible depends upon the current system environment. [EMFILE]

Variable arg is negative or greater than the highest allowable file descriptor.
[EINVAL]

RETURN VALUE

Upon successful completion, the value returned is a new me descriptor.
Otherwise, a value of -I is returned and ermo is set to indicate the error.

SEE ALSO

close, dup, open.

Alpha Draft Page 4· 18 26 May 1986

Standard C Library .

NAME

jerror Con/and Workshop C

ferror, feof, c1earerr, fl1eno-stream status inquiries

SYNOPSIS

tinclude <stdio.h>

int feof (stream)
FILE "'stream;

int ferror (stream)
FILE "'stream;

void clearerr (stream)
FILE "'stream;

int fileno (stream)
FILE "'stream;

DESCRIPTION

Functionjeojreturns nonzero when endqofQfile has previously been detected
reading the named input stream; otherwise, it returns zero.

Functionjerror returns nonzero when an I/O error has previously occurred reading
from or writing to the named stream; otherwise, it returns zero.

Function ciearerr resets the error indicator and endeof-file indicator to zero on the
named stream.

Functionfileno returns the integer file descriptor associated with the named stre::un;
see open.

NOTE

All these functions are implemented as macros; they cannot be declared or
redeclared.

SEE ALSO

open, fopen.

Alpha Draft Page 4· 19 26 May 1986

Conland Workshop C

NAJv1E

floor Standard C Library

floor, ceil, fmod, fabs-floor, ceiling, mod, absolute value functions

SYNOPSIS

tinclude <math.h>

extended floor (xl
extended x;

extended ceil (xl
extended x;

extended fmod(x, yl
extended x, y;

extended fabs(x)
extended x;

DESCRIPTION

Function floor returns the largest integer (as an extended-precision number) not
greater than x.

Function ceil returns the smallest integer not less than x.

Whenever possible, fmod returns the number fwith the same sign as x, such that

x =iy +ffor some integer i, and lfl'< Iyl. IfY is zero, fmod returns a Nat'\;.

Function f ab s returns lxl.

SEE ALSO

abs, rint, setround.
Apple Numerics ManUal.

Alpha Draft Page 4- 20 26 Ma)' 1986

Standard C Library

NAME

fopen Cortland Workshop C

fopen, freopen, fdopen-open a stream

SYNOPSIS

tinclude <stdio.h>

F!LE *fopen (filename, type)
char *filename, *type:

FILE -freopen (filename, type, stream)
char -filename, -type:
FILE -stream:

FILE -fdopen (fildes, type)
int fildes:
char -type;

DESCRlPTION

Functionfopen opens the me named by filename and associates a stream with it.
Functionfopen returns a pointer to the FTI..E structure associated with the stream..

Variable filename points to a character string that contains the name of the file to be
opened.

Character string type is has one of the following values:

r open for reading.

w truncate or create for writing.

a append: open for writing at endeof-file, or create for writing.

r+ open for update (reading and writing).

w+ truncate or create for update.

a+ append: open or create for update at endeof-file.

Functionfreopen substitutes the named me for the open stream. The original
stream is closed, regardless of whether the open ultimately succeeds. Function
freopen returns a pointer to the FILE structure associated with stream.

Functionfreopen is typically used to attach the previously opened streams
associated with stdin, stdout, and stderr to other files.

Functionfdopen associates a stream with a me descriptor by formatting a file
structure from the file descriptor. Thus, fdopen can be used to access the file
descriptors returned by open or crear. (These calls open mes but do not return
pointers to a FILE structure.) The type of stream must agree with the mode of the
open file.

When a file is opened for update, both input and output may be done on the
resulting stream. However, output may not be directly followed by input without
an interveningfseek or rewind, and input may not be directly followed by output

Alpha Draft Page4-21 26 May 1986

Conland Workshop C fopen Standard C Library

without an interveningfseek, rewind, or an input operation that encounters end-of-'
me.

When a file is opened for append (Le., when rype is "a" or "a+"), it is impossible to
overwrite information already in the file. Functionfseek may be used to reposition
the file pointer to any position in the me, but when output is written to the file the
current me pointer is disregarded. All output is written at the end of the file and
causes the file pointer to be repositioned at the end of the output.

DLA.GNOSTICS

Functionsfopen andfreopen return a null pointer on failure.

SEE ALSO

open, fclose.

Alpha Draft Page 4- 22 26 May 1986

Standard C Library

NAME

fread, fwrite-binary input/output

SYNOPSIS

tinclude <stdio.h>

int fread(ptr, size, nitems, stream)
char ·ptr:
int size, nitems:
rILE ·stream:

int fwrite(ptr, size, nitems, stream)
char ·ptr;
int size, nitems:
FILE ·stream;

DESCRIPTION

Corrland Workshop C

Function/read copies nitems items of data from the named input stream into an
array beginning at ptr. An item of data is a sequence of bytes (not necessarily
terminated by a null byte) of length size. Function/read stops appending bytes if
an end-of-file or error condition is encountered while reading stream or if nitems
items have been read. Functionfreaa' leaves the me pointer in stream, if defined,
pointing to the byte following the last byte read if there is one. Function/read does
not change the contents of stream.

Functionfwrite appends at most nitems items of data to the named output stream
from the array pointed to by ptr. Functionfwrite stops appending when it has
appended nitems items of data or if an erior condition is encountered on stream.
Functionfwrite does not change the contents of the array pointed to by pcr.

The variable size is typically

sizeof (·ptr)

where the pseudo-function sizeo/ specifies the length of an item pointed to by pIT.
If ptr points to a data type other than char it should be cast into a pointer to char.

DIAGNOSTICS
Functions tread and fwrite return the number of items read or written. If nitems is
zero or negative, no characters are read or written and zero is returned by both/read
andfwrite.

SEE ALSO

fopen, getc, gets, printf, putc, puts, read, scanf, stdio, write.

Alpha Draft Page 4· 23 26 May 1986

Corrland Workslwp C

NAME

frap Standard C Library

frexp, Idexp, modf-manipulate pans of floating-point numbers

SYNOPSIS

extended frexp(value, eptr)
extended value;
int *eptr;

extended ldexp(value, exp)
extended value;
int exp;

extended modf(value, iptr)
extended value, *iptr;

DESCRIPTION

Every nonzero number can be written uniquely as x· 2n, where the mantissa
(fraction) x is in the range 0.5 S Ixl < 1.0, and the exponent n is an integer.
Functionfrap returns the mantissa of an extended value and stores the exponent
indirectly in the location pointed to by eprr. Note that the mantissa here differs from
the significand described in the Apple Numerics Manual, whose nonnal values are
in the range 1.0 S Ixl < 2.0 .

Function ldexp returns the quantity value· 2eXP.

Function.modfreturns the signed fractional pan of value and stores the integral pan
indirectly in the location pointed to by iprr.

DIAGNOSTICS

Function ldexp honors the floating-point exception flags-invalid operation,
underflow, overflow, divide by zero, and inexact-as prescribed by the Standard
Apple Numeric Environment (SANE).

SEE ALSO

10gb, scalb.
Apple Numerics Manual.

Alplul Draft Page 4- 24 26 May 1986

Standard C Library

NAME

fseek Cortland Workshop C

fseek, rewind, ftell-reposition a file pointer in a stream

SYNOPSIS

tinclude <stdio.h>

int fseek (stream, offset, ptrname)
fILE "stream;
long offset;
int ptrname;

void rewind (stream)
fILE "'stream;

long ftell (stream)
fILE "stream;

DESCRlPTION

Functionfseek sets the position of the next input or output operation on the stream.
The new position is at the signed distance offset bytes from the beginning, the
current position, or the end of the me, when the value of prrname is 0, 1, or 2,
respectively.

The call

rewind (stream)

is equivalent to

fseek(stream, OL, 0)

except that no value is returned.

Functionsfseek and rewind undo any effects of ungetc.

After fseek or rewind, the next operation on a me opened for update may be either
input or output.

Function feell returns the offset of the current byte relative to the beginning of the
file associated with the named stream.

DIAGNOSTICS

Functionfseek returns nonzero for improper seeks; otheIWise it returns O. An
example of an improper seek is anfseek on a file that has not been opened via
fopen.

SEE ALSO

lseek, fopen.

Alpha Draft Page 4- 25 26 May 1986

Cortland Workshop C

NANtE

gerc Standard C Library

getc, getchar, fgetc, getw-get character or word from'stream

SYNOPSIS

#include <stdio.h>

int getc (stream)
FILE ·stream:

int getchar ()

int fgetc(stream)
FILE ·stream:

int getw (stream)
FILE ·stream:

DESCRIPTION

Macro getc returns the next character (Le., byte) from the named input stream. It
. also moves the file pointer, if defined, ahead one character in srream. Macro getc

cannot be used if a function is necessary; for example, you cannot have a function
pointer point to it.

Macro getchar returns the next character from the standard input stream, stdin.

Functionfgetc produces the same result as macro getc;fgetc runs more slowly than
getc but takes less spac~ per invocation.

Function gerw returns the next "word" (Le., four bytes) from the named input
stream so that the order of bytes in the stream corresponds to the order of byes in
memory. Function gerw returns the constant EOF upon end-of-file or error. Since
EOF is a valid integer vaIue,jeofandferror should be used to check the success of
gerw. Function gerw increments the associated file pointer, if defined, to point to
the next word. Function gerw assumes no special alignment in the file.

DIAGNOSTICS

These calls return the integer constant EOF at end-of-fIle or upon an error.

NOTE

Becaus~ it is implemented as a macro, getc treats incorrectly a stream argument with
side effects. In particular, getc(ljof++) doesn't work as you would expect. Use
fgete(ljof++) instead.

SEE ALSO

fclose, ferror, fopen, fread, gets, pute, scanf, stdio.

Alpha Draft Page 4- 26 26 May 1986

Standard C Library

NAME

getS Cortland Works/wp C

gets, fgets-get a string from a stream

SYNOPSIS

#include <stdio.h>

char "'gets(s)
char "s;

char "fgets(s, n, stream)
char "s;
int n;
FILE "stream;

DESCRlPTION

Function gets reads characters from the standard input stream stdin into the array
pointed to by s until a newline character is read or an end-of-file condition is
encountered. The newline character is discarded and the string is terminated with a
null character.

Functionfgets reads characters from stream into the array pointed to by s until n~l
characters are read, or a newline character is read and transferred to s, or an end-of·
file condition is encountered. The string is then terminated with a null character.

DIAGNOSTICS

If end-of-file is encountered and no characters have been read, no characters are
transferred to s and a null pointer is returned. If a read error occurs, a null pointer
is returned. Otherwise s is returned. (A read error will occur, for example, if you
attempt to use these functions on a file that has not been opened for reading.)

SEE ALSO

ferror, fopen, fread, getc, scanf, stdio.

A/phaDrafr Page 4- 27 26 May 1986

NAME

hypot-Euclidean distance function

SYNOPSIS

firiclude <math.h>

extended hypot (x, y)
extended x, y;

DESCRIPTION

Function hYPol returns

sqn (x *' x + y *' y)

taking precautions against unwarranted overflows.

DIAGNOSTICS

Function hYPol honors the floating-point exceptio.n flags--invalid operation,
underflow, overflow, divide by zero, and inexact-as prescribed by the Standard
Apple Numeric Environment (SANE).

SEE ALSO

sqn.
Apple Numerics Manual.

• Alpha Draft Page 4- 28 26 May 1986

Standard C Library

NAME

ioctl-control a device

SYNOPSIS

tinclude <ioctl.h>

int ioctl (fildes, crnd, arg)
int filedes;
unsigned int crnd;
long *arg;

DESCRIPTION

Conland Workshop C

Function ioerl communicates with a me's device handler by sending control
information and/or requesting status information. Variable emd indicates which
device-specific operations ioerl must perform. Here are the control values:

• FlOINTERACTIVE returns 0 if the device is interactive, -1 if not.

• FlOBUFSIZE returns, in bytes, the optimal buffer size for this device; the
buffer size is in a long integer pointed to by argo

• TIOFLUSH tells the device handler to throwaway terminal input.

• FlOLSEEK and FlODUPFD are reserved for operating system use.

Function ioerl fails if one or more of the following are true:

• File descriptor fildes is not valid or is not open. [EBADF]

• Variables requesr or arg are not valid for the device handler associated
withfildes. [Eil'IrvAL]

RETtJR..T\l VALlIE

If an error has occurred, a value of -1 is returned and errno is set to indicate the
error.

AlphaDrajr Page 4- 29 26 May 1986

Corr/and Workshop C

NAME

lseek-move read/write file pointer

SYNOPSIS

/seek Standard C Library

long lseek (fildes, offset, whence)
int fildes;
long offset;'
int whence:

DESCRIPTION

A file descriptor,ji/des, is returned from a crear or open call. Function {seek sets
the file pointer associated withfi/des as follows:

If whence is 0, the pointer is set to offset bytes.

If whence is 1, the pointer is set to its current location plus offset.

If whence is 2, the pointer is set to the size of the me plus offset.

Upon successful completion, the resulting pointer location as measured in bytes
from the beginning of theme is returned.

The me pointer remains unchanged and {seek fails if one or more of the following
are true:

File descriptoIjildes is not open. [EBADF]

Variablewhence is not 0, 1, or 2. [EINVAL]

The resulting file pointer would be negative. [EtNVAL]

Some devices are incapable of seeking. The value of the file pointer associated with
such a device is undefined.

RETURN VALUE

Upon successf'.J completion, a nonnegative integer indicating the file pointer value
is returned. OmeI'VIise, a value of -1 is returned and ermo is set to indicate the
error.

NOTE

In previous versions of the Standard C Library, tell(filedes) was a function that
returned the current file position. It is equivalent to the. call

lseek(fildes,OL,I) .

SEE ALSO

creat, open.

A/phaDraft Page 4- 30 26 May 1986

Scandard C Library

NAME

malIoc, free, realloc, calIoc, cfree-main memory allocator

SYNOPSIS

char *rnalloc(size)
unsigned'size;

void free(ptr)
char *ptr;

char *realloc(ptr, size)
char *ptr;
unsigned size;

char *calloc(nelern, elsize)
unsigned nelern, elsize;

cfree *** '? ***

DESCRIPTION

Conland Workshop C

Functions malloc andfree provide a simple general-purpose memory allocation
package. The memory that is allocated for a program's use is known as the
"storage arena." The storage arena expands as malloc is called.

Function malloe returns a pointer to a block of at least size bytes suitably aligned for
any use. The argument tofree is a pointer to a block previously allocated by
maUoe; after free is performed this space is made available for funher allocation.

Undefined results occur if the space assigned by malloe is overrun or if some
random value is handed tofree.

Function malloe allocates the f:trst sufficiently large contiguous reach of free space it
finds. It calls "'** proeedwe name? *** (see Conland Tools) to get more memory
from the system when there is' no suitable space already free.

Function realloc changes the size of the block pointed to by pcr to size bytes and
returns a pointer to the (possibly moved) block. The contents are unchanged up to
the lesser of the new and old sizes. If no free block of size bytes is available in the
storage arena, realloe asks malloc to enlarge the storage arena by size bytes and then
moves the data to the new space. If prr is null, realloe is equivalent to mafloe,

Function calloc allocates space for an array of nelem elements of size elsi:.e. The
space is initialized'to zeros.

Function cfree **'" ? **'"
DIAGNOSTICS

Functions malloc I reafloc, and calloc return a null pointer if there is no available
memory or if the storage arena has been detectably corrupted by storing outside the

Alpha Draft Page 4- 31 26 May 1986

Cortland Workshop C Standard C LibrClJ)'

bounds of a block. When this happens the block pointed to by ptr may have been
destroyed.

Alpha Draft 26 May 1986

Standard C Library

NA.\1E

memory Conland Worksfwp C

memccpy, mernchr, memcmp, memcpy, memset-memory operations
.SYNOPSIS

char *mernccpy(51, 52, c, n)
char *sl, *s2:
int c, n;

char *rnernchr(s, c, n)
char *s;
int c, n;

int memcmp(sl, 52, n)
char *sl, *52;
int n;

char *memcpy(51, 52, n)
cha r *51, *52 :
int n;

char *me~et(5, c, n)
char *5;
int c, n;

DESCRlPTION

These functions operate efficiently on memory areas (arrays of characters bounded
by a count, not tenninated by a null character). They do not check for the overflow
of any receiving memory area.

Function memccpy copies characters from memory area s2 into s1, stopping after
the fIrst occurrence of character c has been copied or after n characters have been
copied, whichever comes fIrSt. It returns either a pointer to the character after the
copy of c in s1 or a null pointer if c was not found in the fIrst n characters of s2.

Function memchr returns either a pointer to ~e flrst occurrence of character c in the
fIrSt n characters of memory area s or a null pointer if c does not occur.

Function memcmp compares its arguments, looking at the flrst n characters only. It
returns an integer less than, equal to, or greater than 0, depending on whether s1 is
less than, equal to, or greater than s2 in the ASCII collating sequence.

Function memcpy copies n characters from memory area s2 to s1. It returns s1.

Function memset sets the flrst n characters in memory area s to the value of
character c. It returns s. .

WARNING

Overlapping moves may yield unexpected results.

. Alpha Draft Page4-33 26 May 1986

Conland Workslwp C

NAME

onexir Srandard C Library

onexit-register a function for program termination

SYNOPSIS

#include <stdio.h>

int onexit (func);
void ('''func) () ;

DESCRlPTION

Function onexir registers the exit function pointed to by fune, to be called without
arguments at program termination.

The nwnber of exit functions is limited to *** ? ***.

RETUR.~ VALVES

The function returns a nonzero value if the registration succeeds.

WARNING

If any function is registered more than once, the behavior is undefIned.

SEE ALSO

exit.

Alpha Draft Page 4· 34 26 May 1986

Srandmd C Library open Conland Workshop C

NAME

open--open for reading or writing

SYNOPSIS

tinclude <fcntl.h>

int open (path, of lag)
char ·path:
int oflag;

DESCRIPTION

Variable path points to a pathname naming a file. Function open opens a me
descriptor for the named file and sets the me status flags according to the value of
of/ago The value of of/ag is constructed by or-ing flag settings; for example,

To construct of/ag, fust select one of the following settings:

O_RDONLY Open for reading only.

0_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

Then optionally add one or more of these additional settings:

The file pointer is set to the end of the me prior to each
write.

If the me does not exist, it is created.

If the file exists. its length is truncated to 0; the mode and
owner are unchanged.

The file's resource fork is opened. (Normally the data fork
is opened.) .

I/O is restricted to a subset of the me (currently, the selection
in a window).

The following setting is valid only if O_CREAT is also specified:

O_EXCL Function open fails if the file exists.

Upon successful completion a nonnegative integer. the file descriptor. is returned.
The file-pointer used to mark the current position within the file is set to the
beginning of the file.

The named me is opened unless one or more of the following are true:

• O_CREAT is not set and the named file does not exist. [ENOEN1l

• More than about 30 file descriptors are currently open. The actual limit
varies according to runtime conditions. [EMFILE]

• O_CREAT and O_EXCL are set and the named file exists. [EEXIST]

Alpha Draft Page4-35 26 May 1986

RETURN VALUE

open Standard C Libra?)'

Upon successful completion, a nonnegative integer (the me descriptor) is returned;
otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO

close, creat, 1seek, read, write.

Alpha. Draft Page 4· 36 26 May 1986

Standard C Library

NAME

printf Cortland Workshop C

printf, fprintf, sprintf-print formatted output

SYNOPSIS

tinclude <stdio.h>

int printf(format (, argo) ...
char *format:

int fprintf (stream, format (, argo) ...)
FILE *stream:
char *format:

int sprintf (s'tr, format (, argo) ...
char *str, format:

DESCRlPTION

Function prinrfplaces formatted output on the standard output stream srdour.
FunctionJPrinrfplaces formatted output on the named output stream. Function
sprinrf places formatted output, followed by the null character (\0), into the
character array pointed to by srr; it's your responsibility to ensure that enough
storage is available. Each function returns the number of characters transmitted (not
including the \() in the case of sprint/), or a negative value if an output error was
encountered.

Each of these functions converts, formats, and prints its args under control of the
format. The format is a character string that contains two types of objects: plain
characters, which are simply copied to the output stream, and conversion
specifications, each ,of which results in fetching zero or more args. The results are
undefmed if there are insufficient args for the format. If the format is exhausted
while args remain, the extra args are ignored.

Each conversion specification is introduced by the character %. After %, the
following appear in sequence:

• Zero or more flag characters, which modify the meaning of the conversion
specification.

• An optional decimal digit string specifying a minimum field width. If the
convened value has fewer characters than the field width, it will be padded to
the field width on the left (default) or right (if the left-adjustment flag has been
giyen); see below for flag specification.

• A precision that gives the minimum number of digits to appear for the d, 0, u,
x, or X conversions, the number of digits to appear after the decimal point for
the e, E, and f conversions, the maximum number of significant digits for the
g and G conversions, or the maximum number of characters to be printed
from a string in s conversion. The format of the precision is a period (.)
followed by a decimal digit string; a null digit string is treated as zero.

Alpha Draft Page4-37 26 May 1986

Con/and Workshop C . print!- Standard C Library

• An optional 1specifying that a following d, 0, u, x, or X conversion character
applies to a long·integer argo The 1option is ignored in this implementation
since integers and long integers both require 32 bits.

e A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk (>II) instead of a digit
string. In this case, an integer arg supplies the field width or precision.. The arg
that is actually convened is not fetched until the conversion letter is seen; therefore.
the args specifying field width or precision must appear immediately before the arg
(if any) to be convened.

The flag characters and their meanings are:

The result of the conversion will be left·justified within the field.

.+ The result of a signed conversion always begins with a sign

(+ or -).

blank If the fmt character of a signed conversion is not a sign, a blank
will be prefixed to the result. This implies that if the blank and +
flags both appear, the blank flag will be ignored.

4; This flag specifies that the value is to be convened to an "alternate
form." For c, d, s, and u conversions, the flag has no effect. For
o conversion, it increases the precision to force the fmt digit of the
result to be a zero. For x (X) conversion, a nonzero result will
have "Ox" ("OX") prefixed to it. For e, E, f, g, and G
conversions, the result will always contain a decimal point, even if
no digits follow the point (Normally, a decimal point appears in
the result of these conversions only if a digit follows it.) For g
and G conversions, trailing zeros in the fractional part will not be
removed from the result (as they nonnally are).

The conversion characters and their meanings are:

d,o,u,x,X The integer arg is converted to signed decimal (d), unsigned octal
(0), decimal (u), or hexadecimal notation (x and X), respectively;
the letters "abcdef' are used for x conversion and the letters
"ABCDEF' for X conversion. The precision specifies the
minimum number of digits to appear; if the value being converted
can be represented in fewer digits, it will be expanded with leading
zeros. The default precision is 1. The result of converting a zero
value with a precision of zero is a null string.

f The float, double, comp, or extended arg is converted to decimal
notation in the style "[-]ddd.ddd", where the number of digits
after the decimal point is equal to the precision specification. If the
precision is missing, it is assumed to be 6; if the precision is
explicitly 0, no decimal point appears. Infinities are printed as
"[-]INF' and NaNs are printed as U[-]NAN(ddd)" where ddd is a
code indicating why the result is not a number.

e,E The float, double, comp, or extended arg is converted in the style
"[-]d.dddddd", where there is one digit before the decimal paine
and the number of digits after it is equal to the precision; when the
precision is missing, it is assumed to be 6; if the precision is zero.

A/phaDraft Page 4· 38 26 May 1986

Standard C Library prin:f Conland Workshop C

g,G

c

s

%

EXAMPLES

no decimal point appears. The E format code produces a number
with "E" instead of "e" introducing the exponent. The exponent
always contains at least twO digits. Infinities are printed as "BiF'
and NaNs are printed as "[-]NAN(ddd)", where ddd is a code
indicating why the result is not a number~

The float, double, comp, or extended arg is printed in style for e
(or in style E in the case of a G format code), with the precision
specifying the number of significant digits. The style used depends
onthe value converted: style e is used only if the exponent
resulting from the conversion is less than -4 or greater than the
precision. Trailing zeros are removed from the result. A decimal
point appears only if it is followed by a digit.

The character arg is printed.

The arg is taken to be a string (character pointer) and characters
from the string are printed until a NULL character 0£)) is
encountered or the number of characters indicated by the precision
specification is reached. If the precision is missing, it is taken to
be infinite, so all characters up to the flrSt null character are
printed. If the string pointer arg has the value zero, the result is
undefined. A null arg yields undefmed results.

Print a %; no argument is convened.. In no case does a
nonexistent or small field width cause truncation of a field; if the
result of a conversion is wider than the field width, the field is
simply expanded to contain the conversion result. Characters
generated by prinrf and fprinrf are printed as ifpure had been
called.

To print a date and time in the form "Sunday, July 3, 10:02", where weekday and
month are pointers to null-terminated strings:

printf("%s, %s %d, %.2d:%.2d", weekday, month, day, hour, min);

To print pi to five decimal places:

printfl"pi - %.Sf", pil)):

SEE ALSO

dec2stI', ecvt, num2dec, putc, scanf, stdio.

Alpha Draft Page 4- 39 . 26 May 1986

CPW C Language Reference

NAME

PUle Standard C Library

putc, putchar, [putc, putw-put character or word on a stream

SYNOPSIS

tinclude <stdio.h>

int putc(c, stream)
char c:
FILE ·stream:

int putchar(c)
char c:

int fputc(c, stream)
char c:
FILE ·stream:

in~ putw(w, stream)
int w:
FILE ·stream:

DESCRIPTION

Macro pute writes the character e to the output stream at the position pointed to by
the me pointer, if one is deflned. Macro putchar(c) is equivalent to

putc(c, stdout).

FunctionJPwe behaves like macro pute. FunctionJPutc runs more slowly than pute
but takes less space per invocation.
Function pUM writes the "word" w (Le., four bytes) to the output stream at the
position pointed to by the file pointer, if one is defIned. This function neither
assumes nor causes special alignment in the file.

Output streams, with the exception of the standard error stream stderr, are by
defaulc buffered if the output refers to a fIle and line-buffered if the output refers to
a window. File stderr is by default unbuffered, but use of/reopen causes it to
become buffered or line-buffered. When an output stream is unbuffered
information, it is queued for writing on the destination file or window as soon as
written; when it is buffered, many characters are saved up and written as a block;
when it·is line-buffered, each line of output is queued for writing on the destination
window as soon as the line is completed (Le., as soon as a newline character is
written or terminal input is requested). Function serbuj may be used to change the
stream's buffering strategy.

DIAGNOSTICS

On success, these functions each return the value they have written. On failure,
they return the constant EOF. This occurs if the file stream is not open for writing
or if the output file cannot be grown. Because EOF is a valid integer,ferror should
be used to detect pUM errors.

Alpha Draft Page 4-40 26 May 1986

Sl/JJ'J/:iard CLibrary

NOTE

CPW C .lAnguage Reference

Because it is implementerl as a macro, pure treats incorrectly a stI'em1 argument with
side effects. In particular, putc (c, Vf-+--+-); doesn't work as you would expect.
Functionpurc should be used instead.

SEE ALSO

fclose, ferro!, fopen, £read, getc, printf, puts, setbuf, stdio.

Alpha Draft Page 4-41 26 May 1986

CPW C Language'Reference

NAME

puts Standard C library

puts, fputs-write a string to a stream

SYNOPSIS

#include <stdio.h>

int puts(s)
char *s;

int fputs(s, stream)
char *s;
FIl.E *stream;

DESCRIPTION

Function puts writes the null-terminated string pointed to by s, followed by a
newline character, to the standard output stream stdout

FunctionJPuts writes the null-terminated string pointed to by s to the named output
stream.

Neither function writes the terminating null character.

DIAGNOSTICS

Both routines return EOF on error. This occurs if the routines try to write on a file
that has not been opened for writing.

NOTE

Function puts appends a newline character whileJPuts does not.

SEE ALSO

ferror, fopen, fread, printf, pute, stdio.

A/phaDraft Page4-42 26 May 1986

Standard C Library

NAME

qsort-quicker sort

SYNOPSIS

qsort CPW C Language Reference

void qsort «char *) base, nel, sizeof (*base), compar)
unsigned int nel;
int (*compar ();

DESCRIPTION

Function qsorr is an implementation of the quicker-sort algorithm. It sortS a table of
data in place.

Variable base points to the element at the base of the table. Variable nel is the
. number of elements in the table. Variable compar is the name of the comparison

function, which is called with two arguments that.point to the elements being
compared. The function returns an integer value as follows:

NOTE

Function Result

<0
o

>0

Meaning

The first argument is less than the second argument.

The first argument is equal to the second argument.

The first argument is greater than the second argument.

The pointer to the base (If the table should be of type pointeNo-element, and cast to
type pointer-to-character. The value returned should be cast into type pointer-to
element.

The comparison function ignores data in the table that is not part of the elements
being compared.

AlphaDrajt Page4-43

./

26 May 1986

CPW C Language Reference

NAME

rand, srand-simple random-number generator

SYNOPSIS

int rand (

void srand(seed)
unsigned seed;

DESCRIPTION

Standard C Library

Function rand uses a multiplicative congruential random-number generator \Vith
period 232 that returns successive pseudorandom numbers in the range from 0 to
215_1.

Function srand can be called at any time to reset the random-number generator to a
specific seed. The generator is initially seeded with a value of 1.

SEE ALSO

randornx.

AlphaDrafr Page4-44 26 May 1986

· Standard C Library

NAME

read-read from fIle

SYNOPSIS

int read(fildes, buf, nbyte)
int fildes;
char "'buf;
unsigned nbyte;

DESCRIPTION

CPW C Language Reference

File descriptor fildes is obtained from a crear or open call.

Function read attempts to read nbyre bytes from the file associated with fildes into
the buffer ppinted to by buf

On devices capable of seeking, the read starts at a position in the file given by the
file pointer associated withfildes. Upon return from read, the file pointer is
incremented by the number of bytes actually read.

Nonseeking devices always read from the current position. The value of a file
pointer associated with such a file is undefined.

Upon successful completion, read returns the number of bytes actually read and
placed in the buffer, this number may be less than nbyre if the fIle is associated with
a window or if the number of bytes left in the file is less than nbyte bytes. A value
of 0 is returned when an end~of-me has been reached.

Function read fails iffildes is not a valid me descriptor open for reading. [EBADF]

RETh"R"l VALUE

Upon successful completion a nonnegative integer is returned indicating the number
of bytes actually read. Otherwise, -1 is returned and errno is set to indicate the
error.

SEE ALSO

creat, open, stdio.

AlphaDrcjt Page4-45 26 May /986

CPW C Language Reference

Alpha Draft Page4-46

Standard C UbrOJ)'

26 May 1986

NAME

scanf, fscanf, sscanf--conven formatted input

SYNOPSIS

finclude <stdio.h>

int scanf(format (, pointer) ...)
char *format;

int fscanf (stream, format (, pointer) '")
FILE: *stream:
char *format.;

int sscanf (s, format· (, pointer) ...)
char *5, *format:

DESCRIPTION

Function scanfreads characters from the standard input-stream stdin. Function
fscanfreads characters from the named input stream, stream. Function sscanfreads
characters from the character string s. Each function convens the input according to
a control string (format)' and stores the results according to a set of pointer
arguments that indicate where the convened output should be stored.

Functionformat, the control string, contains specifications that control the
interpretation of input sequences. The control string consists of characters to be
matched in the input stream and/or conversion specifications that stan with %. The
control string may contain:

• White-space characters (blanks and tabs) that cause input to be read up to the
next non-white-space character, except as described below.

• A character (any except %) that mu~t match the next character of the input
stream. To match a % character in the input stream, use "%%".

• Conversion specifications beginning with the character % and followed by an
optional assignment suppression character"', an optional numeric maximum
field width, an optionall, m, n, or h indicating the size of the receiving
variable, and a conversion code.

An input field is defined relative to its conversion specification. The input field
ends when the first character inappropriate for conversion is encountered or when
the spe~ified field width is exhausted. After conversion, the input pointer points to
the inappropriate character.

A conversion specification directs the conversion of the next input field; the result is
placed in the variable pointed to by the corresponding argument, which is a pointer
to a basic C type such as int or float.

Assignment can be suppressed by preceding a format character with
Assignment suppression causes an input field to be skipped; the field is read and

Alpha Draft Page4-47 26 May 1986

Conland Workshop C scar(. Standard C lJbrary

\.

convened but not assigned. Therefore pointer should be omitted when assignment
of the corresponding input field is suppressed.

The format character dictates the interpretation of the input field. The following
format characters are legal in a conversion specification, after %:

% A single % is expected in the input at this point; no assignment is done.

The conversion characters d, U, 0, and x may be preceded by I or h to
indicate thp.t a pointer to long or shon, rather than int, is in the argument
list. The I is ignored in this implementation because ints and longints
are both 32 bits.

d A decimal integer is expected; the corresponding argument should be an
integer pointer.

u An unsigned decimal integer is expected; the corresponding argument
should be an unsigned integer pointer.

o An octal integer is expected; the corresponding argument should be an
. integer pointer.

x A hexadecimal integer is expected; the corresponding argument should
be an integer pointer.

The conversion characters e,f, and g may be preceded by I, m, or n to
indicate that a pointer to double, comp, or extended, rather than float, is
in the argument list.

e,f,g A floating-point number is expected; the next field is convened
accordingly and stored through the corresponding argument, which
should be a pointer to a float, double, comp, or extended, depending on
the size specification. The input format for floating-point numbers is an
optionally signed string of digits, possibly containing a decimal point.
followed by an optional exponent field consisting of "E" or "e" followed
by an optionally signed integer. In addition, infinity is represented by
the string "INF', and NaNs are represented by the string "N~'\j''',

optionally followed by parentheses which may contain a string of digits
(the NaN code). Case is ignored in the infinity and NaN strings.

s A character string is expected; the corresponding argument should be a
character pointer to an array of characters large enough to accept the
string; a terminating null character ('{) is added automatically. The input
field is terminated by a white-space (blank or tab) character.

c A character is expected; the corresponding argument should be a
character pointer. The normal skip over white space is suppressed in
this case; to read the next non-white-space character, use "% Is". If a
field width is given, the corresponding argument should refer to a
character array; the indicated number .of characters is read.

The left bracket introduces a scanset format. The input field is the
maximal sequence of input characters consisting entirely of characters in
the scanset. When reading the input field, string data and the normal
skip over leading white space are suppressed. The corresponding
pointer argument must point to a character array large enough to hold the
input field and the terminating null character ('{), which will be added
automatically. The left bracket is followed by a set of characters (the
scanset) and a terminating right bracket.

Alpha Draft Page4-48 26 May 1986

Standard C Library scarrf Conland Workshop C

The circumflex (1\), when it appears as theftrst character in the scanset,
serves as a complement operator and redefines the scanset as the set of
all characters l112J. contained in the remainder of the scanset string.

The n'ght bracket (J) ends the scanset. To include the right bracket as an
element ofthe scanset, it must appear as thefirst character (possibly
preceded by a circumflex) of the scanset; otherwise it will be interpreted
synraetically as the closing bracket.

A range of characters may be represented by the constructfirst-lasr; thus
the scanset [0123456789] may be expressed [0-9]. To use this
convention,first must be less than or equal to last in the ASCn collating
sequence; otherwise the minus (-) will stand for itself in the scanset.
The minus will also stand for itself whenever it is the first or the last
character in the scanset

Function scanfconversion terminates at EOF, at the end of the control string, or
when an input character doesn't match the control string. In the latter case, the
unmatched character is left unread in the-input stream.

Function scanfreturns the number of successfully matched and assigned input
items; this number can be zero when an early mismatch between an input character
and the control string occurs. If the input ends before the first mismatch or
conversion, EOF is returned.

EXAMPLES

Example 1. The call

int i; float x; char name(50);
scanf ("%d%f%s"', &i, &x, name);

with input

25 54.32E-1 hartwell

will assign the value 25 to i, and the value 5.432 to x; fU¥11e will contain
"hartwell\O".

Example 2. The call

int i; extended x; char name(50);
scanf("%2d%nf%*d %[0-9)", &i, &x, name);

with input

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the string "500" in name. The
next call to getchar will return "a". .

Example 3. The call

inc i;
scanf("answer1-%d", &il;

Alpha Draft Page 4- 49 26 May 1986

Conland Workshop C

with input

answerl~51 answer2-45

scar(Standard C Ubrary

will assign the value 51 to i since "answerl" is matched explicitly in the input
stream; the input pointer will be left at the space before "answer2".

DIAGNOSTICS

These functions return EOF on end of input and a short count for missing or illegal
data items.

NOTE
Trailing white space is left unread unless matched in the control string.

The success of literal marches and suppressed assignments is not directly
determinable.

SEE ALSO

atof, dec2num, getc, printf, stdio, srr2dec, smol.
Apple Nwnerics Manual.

Alpha Draft 26 May 1986

Stant:iard C Library

NAME

setbuf Cortland Workshop C

setbuf, setvbuf-assign buffering to a stream

SYNOPSIS

*include <stdio.h>

void setbuf (stream, buf)
FILE *stream;
char *buf;

int setvbuf (stream, buf, type, size)
FILE *stream;
char *buf;
int type;
int size;

DESCRlPTION

Function serbuf is used after a stream has been opened but before it is read or
written. Function serbufcauses the character array pointed to by buf to be used
instead of an automatically allocated buffer. If bufis a null character pointer,
input/output will be completely unbuffered.

BUFSIZ, a constant defined in the <stdio.h> header me, indicates how big an array
is needed:

char buf[BUFSIZ];

A buffer is normally obtained from rna/lo.c at the time of the flrst gere or pure on the
file, except that the standard error stream steierr is normally not buffered. Output
streams directed to windows are either line buffered or unbuffered.

Function servbuf is used after a stream has been associated with an open me but
before it is read or written. If bufis not a null pointer, the array it poiryts to is used
instead of an automatically allocated buffer. Variable size specifies the size in bytes
of the array to be used; servbufworks most efficiently when size is a multiple of
BUFSlZE.

Variable rype determines how stream is buffered:

• _IOFBF causes input/output to be file buffered.

• _IOLBF causes output to be line buffered. The buffer is flushed when a
newline character is written, when the buffer is full, or when input is
requested.

• _IONBF causes input/output to be completely unbuffered. Variables but
and size are ignored.

RETIJRN VALUE

Function servbufreturns nonzero if an invalid value is given for rype or size.

Alpha Draft Page 4· 51 26 May 1986

Conland Workshop C

NOTE

setbuf Standard C Library

The buffer must have a lifetime at least as great a,s the open stream. Be sure to close
the stream before the buffer is deallocated.

If you allocate buffer space as an automatic variable in a code block, be sure to
close the stream in the same block.

If bufis null and the system cannot allocate size bytes, a smaller buffer will be
allocated.

SEE ALSO

fopen, getc, malIce, putc.

Alpha Draft Page4-52 26 May 1986

Standard C Library

NAME

signal Conland Workshop C

sigset, sighold, sigrelease, sigpause-signal handling

SYNOPSIS

#include <Signal.h>

SignalHandler * sigset (sigMap, newHandler)
SignalMap sigMap;
SignalHandler *newHandler;

void _sig_dfl (sigNo, sigState, sigEnabled)
SignalMap sigNo;
SignalMap sigState;
SignalMap sigEnabled:

SignalMap sighold (sigMap)
SignalMap sigMap;

void sigrelease (sigMap, prevEnabled)
SignalMap sigMap;
SignalMap prevEnabled;

void sigpause (sigMap)
SignalMap sigMap;

DESCRIPTION

..* Of all the routines in the Standard C Library, these are the most likely to differ
from their Macintosh counterpans. Please let me knO'iV of any differences so that I
can change this description-DR ***

Introduction to Signal Handling: C programs that provide procedures to
handle software interrupts-known as signals-should use these procedures,
which support signal handling under the Conland Programmer's Workshop. A
signal is similar to a hardware interrupt in that its invocation can cause program
control to be temporarily diverted from its normal execution sequence; the
difference is that the events that raise a signal reflect a change in program state
rather than hardware state. Examples of signal events are stack overflow, heap
overflow. software floating point errors, and Command-period interrupts.

The <Signal.h> include rlie defines the constants, types, and procedure definitions
for handling signals.

Signals·can be caught, held and released, and/or ignored. The default action of any
signal raised is to close all open files, execute any exit procedures installed with
onexir, and terminate the program. No signal-handling calls are required to execute
a normal termination on receipt of a signal. If a program requires special handlin g
of a signal, or chooses to ignore it, sigser lets you replace the default procedure
with a user procedure. You can also temporarily "hold" (that is, suspend) action on
a signal by calling sighold. You may want to do this before entering a critical
section of code. The signal can then be restored by calling the procedure sigrelease,
whereupon its signal-handling procedure will take effect if the signal was raised

Alpha Draft PageA· 53 26 May 1986

Cortland Workshop C Standard C library

since the preceding call to sigho,ld. Your program may also wait until one or more
signals are raised by calling the sigpause procedure.

A signal is represented by a bit in the integer SigMap. The signal-handling
procedures accept a SigMap which can specify several signals as a group. Refer to
several signals at once by adding or or-ing their bits together. Refer to all signals at
once by using the value SIGALLSIGS.

Cu.rrently, the only software interrupt provided by the ConIand Progranuner's
Workshop Integrated Environment is Command-period, which is represented by
the value SIGINT. As additional software interrupts are provided by the Integrated
Environment, new values will be added to this unit to represent them; the signal
handling procedures will then accept these new signals.

The sigset Function: Function sigset replaces the current signal handler (the
procedure to be executed upon receipt of the signals specified in sigMap) with a
user-supplied signal handler. The default signal handler may be set or restored by
specifying SIG_DFL to the current signal handler. The signals may be ignored
entirely by specifying SIG_IGN to the current signal handler.

Function sigset returns the previous SignalHandler pointer. If this pointer must be
restored in another pan of the program, save the return value and restore it with
another call to sigset. Multiple signals may be set with one call to sigset by or-ing
signal values together in sigMap, but in this case sigset cannot, of course, return all
previous values and its return value is meaningless. To correctly save multiple
previous signal handlers, call sigser separately for each signal.

The _sig_dfl Function: This is the default procedure SIG_DFL; it is not
intended for use by the program directly. It is documented here as an example of a
user-supplied signal handler that uses standard C calling conventions.

The fIrst parameter, sigNo, is the signal that is being raised. Although it is declared
as a SigMap, its value contains at most one signal bit; it can therefore be compared
for equality against a signal name, for example, SIGINT. The same signal handler
may trap several signals with common code and then inspect sigNo if special
handling of particular signals is required.

The parameters sigState and sigEnab/ed provide runtime information about current
active signals. Bianap sigState describes all raised signals, including signals held
by calls to sighold. Bianap sigEnab/ed describes all signals currently enabled. By
default, all signals are enabled, but they may be disabled by holding them.

, Upon entry to a user-supplied signal handler, all signals are temporarily suspended;
therefore the handler is not required to lock out recursive or nested calls to signal
handlers. The signal state is restored upon normal return from the signal handler.

Signals cannot be raised while executing in ROM or in the Cortland Progranuner' s
Workshop shell. If a signal event occurs while executing outside the user
application, the signal state is set and the signal handler is executed as soon as
program control returns to the application code. Since a signal can interrupt the
application program at any point, there is no protection against heap corruption if a
signal handler executes calls that modify the state of the heap. Since most buffered
I/O potentially modifies the heap, print! and similar calls are not recommended in
signal handlers unless they call exit to avoid returning to the application progT:lm.

AiphaDrafi Page4-54 26 May 1986

Staru:iard C Library signal Cortland Workshop C

Even then, the caller must be careful of interaction between exit and onexit
procedures.

The sighold Function: The sighold function, along with sigrelease, permits
temporary suspension and restoration of signals. Before a program enters a critical
section of code, it should call sighold with a signal map of signals to suspend or
with the identifier SIGALLSIGS, which represents all signals. Function sighold
returns a SignalMap representing the list of signals already being held; this value
should be saved for use as the prevEnabled parameter in the subsequent call to
sigrelease. If the signal event (such as Command-period) occurs after a call to
sighold is made, the event is recorded in the signal state but the signal handler is not
executed.

The sigrelease Function: Funcion sigrelease lets you reenable signals that
were held by a previous call to sighold by specifying their corresponding bits in
sigMap. Signals that were already on hold when you called sighold should be
specified to sigrelease in the prevEnabled parameter to permit correct handling of 0

nested calls to sighold. If any of the signal events occured while they were held,
their signal handling routines will take effect immediately after the return from
sigrelease. Signal events do not stade; multiple occurrences of signal events which
are being held do not yield multiple invocations of the signal handler when the
signal is released.

The sigpause Function: A call to sigpause suspends program activity until a .
signal event is recorded for any signal not currently held. It is intended for signal
synchronization, though in the current implementation its application is limited: it is
included here in order to provide a complete signal envirorunent model.

Alpha Draft Page 4· 55 26. May 1986

Cortland Workshop C

NAME

sinh Standard C Library

sinh, cosh, tanh-hyperbolic functions

SYNOPSIS

.include <math.h>

extended sinh (x)
extended x;

extended cosh (x)
extended x;

extended tanh (x)
extended x;

DESCRlPTION

Functions sinh, cosh, and tanh return, respectively, the hyberbolic sine, cosine,
and tangent of their argument.

DIAGNOSTICS

Functions sinh, cosh, and tanh honor the floating-point exception flags-invalid
operation, underflow, overflow, divide by zero, and inexact-as prescribed. by the
Standard Apple Nwneric Environment (SANE).

SEE ALSO

Apple Numerics Manua.i.

A/phaDraft Page4-56 26 May 1986

Standard C Library

NAME

stdio-standard buffered input/output package

SYNOPSIS

*include <stdio.h>

FILE *stdin, *stdout, *stderr;

DESCRIPTION

Conland Workshop C

The standard I/O package constitutes an efficient user-level I/O buffering scheme.
The inline macros gere and pure handle characters quickly. Macros gerehar and
purehar, and the higher-level routinesjgere,fgers,jprinrf, jpure,fpurs,fread,
jseanf,fwrire, gers, gerw, printf, purs, purw, and seanj all use gere and pure; they
can be freely intermixed. .

Any program that uses the standard I/O package must include the header fIle of
pertinent macro definitions. The functions and constants mentioned in the standard
I/O package are declared in the header file and need no further declaration. The
header file is included as follows:

finclude <stdio.h>

A me with associated buffering is called a stream and is declared to be a pointer to a
defmed type mE. Functionjopen creates cenain descriptive data for a stream and
returns a pointer to designate the stream in all further transactions. Normally, there
are three open streams with constant pointers declared in the <stdio.h> header file
and associated with the standard open fIles:

srdin (standard input me)

stdout (standard output me)

stderr (standard error file)

A constant NULL (0) designates a nonexistent pointer.

An integer constant EOF (-1) is returned upon end-of-file or error by most integer
functions that deal with streams. See the descriptions of the individual functions
for details.

The constants and the following functions are implemented as macros: gere,
gerehar, pure, purehar,jeoj,ferror, clearerr, andfileno. Redeclaration of these
names should be avoided.

NOTE

File <stdio.h> includes defmitions other than those described above, but their use is
not recommended.

DIAGNOSTICS
Invalid stream pointers cause serious errors, possibly including ·program
termination. Individual function descriptions describe the possible error conditions.

AlphaDraji Page4-57 26 May 1986

CortLand Workshop C

SEE ALSO

Standard C Library

open, close, Iseek, read, \1fI'ite, fclose, ferror, fopen, fread, fseek, getc, gets,
print!, putc, puts, scanf, setbuf, ungetc.

ALpha Draft . Page 4-58 26 May 1986

Standard C Library

NAME

string Conland Workshop C

streat, strncat, strcmp, strncmp, strcpy, strncpy, strlen,strchr, StITchr, strpbrk,
strspn, strcspn, stTtok

-string operations

SYNOPSIS

char *5trcat (51, 32)
char *31, *52;

char *strncat (51, s2, n)
char *51, *s2;
int n;

int strcmp (51, s2)
• char *sl, *52;

int strncmp (sl, s2, n)
char *sl, "52;
int n;

char *strcpy (51, s2)
char *sl, *s2;

char *strncpy (51, s2, n)
char *51, *s2;
int n:

int strlen (5)
char lOS;

char *strchr (s, c)
char *5, e;

char *strrchr (5, c)
char lOS, c;

char "strpbrk (sl, 52)
char *51, *52;

int str5pn (51, 52)
char *51, *52;

int strcspn (51, 52)
char *51, *s2;

char *strtok (51, 52)
char *51, *52;

DESCRIPTION

The arguments s1, s2, and s point to strings (arrays of characters t.enninated by a
null character). The functions strcat, strncat, strcpy, and strncpy all alter sl : These
functions do not check for overflow of the. array pointed to by sl.

Alpha Draft Page 4-59 26 May 1986

Conland Workshop C string Standard C Library

Function srreat appends a copy of string s2 to the end of string s1. Function strneat
appends at most n characters. Each function returns a pointer to the null-terminated
result.

Function srremp perfonns a comparison of its arguments according to the ASCII
collating sequence and returns an integer less than, equal to, or greater than 0 when
s1 is less than, equal to, or greater than s2, respectively. Function srrnemp makes
the same comparison but looks at a maximum of n characters.

Function strepy copies string s2 to string s1, stopping after the null character has
been copied. Function srrncpy copies exactly n characters, truncating s2 or adding
null characters to s1 if necessary. The result is not null-terminated if the length of
s2 is n or more. Each function returns s1.

Function srrlen returns the number of characters in s, not including the terminating
null character.

Function srrehr (srrrehr) returns a pointer to the first (last) occurrence of character e
in string s; it returns a null pointer if e does not occur in the string. The null
character terminating a string is considered to be part of the string. In previous
versions of the Standard C Library, srrehr was known as index and srrrehr was
known as rinde:x.

Function srrpbrk returns a pointer to the first occurrence in string s1 of any
character from string s2, or a null pointer if no character from s2 exists in s1.

Function srrspn returns the length of the initial segment of string s1 that consists
entirely of characters from string s2.

Function srrespn returns the length of the initial segment of string s1 that consists
entirely of characters not from string s2.

Function srrtok considers the string s1 as a sequence of zero or more text tokens
separated by spans of one or more characters from the separator string s2. The fIrst
call (with pointer s1 specified) returns a pointer to the first character of the first
token and writes a null character into s1 immediately folIoing the returned token.
The function keeps track of its position in the string between calls. Subsequent
calls for the same string must be made with a null pointer as the fIrst argument. The
separator string s2 may be different from call to call. When no token remains in s1,
a null pointer is returned.

WARNING

Overlapping moves may yield unexpected results.

Alpha Draft Page 4- 60 26 May 1986

Standard C Library

NAME

stnol-convert string to integer

SYNOPSIS

srnol Cortland Workshop C

long strtol (str, ptr, base)
char "'str;
char "'*ptr;
int base;

DESCRlPTION

Function strtol returns a long integer containing the value represented by the
character string str. The string is scanned up to the fIrst character inconsistent with
the base (decimal, hexadecimal, or octal). Leading white-space characters are
ignored. 6

If the value of ptr is not null, a pointer to the character tenninaring the scan is
returned in *ptr. If no integer can be formed, *ptr is set to str and zero is returned.

If base is zero, the base is determined from the string. If the first character after an
optional leading sign is not 0, decimal conversion is done; if the °is followed by x
or X, hexadecimal conversion is done; otherwise octal conversion is done.

The function call atol(str) is equivalent to

strtol (str, (char *"')NULL, 10)

The function call atoi(str) is equivalent to

(int) strtol (str, (char ",*) NULL, 10)

NOTE

Overflow conditions are ignored.

Apple base conventions ($ for hexadecimal, % for binary) are not supported.

SEE ALSO

atof, atoi, scanf.

Alpha Draft Page 4- 61 26 May 1986

Cortland Workshop C

NAME

trig Stan.dard C Library

sin, cos, tan, asin, acos, atan, atan2-trigonometric functions

SYNOPSIS

Hnclude <math.h>

extended sin (x)
ext.ended x;

extended cos (x)
extended x;

extended tan (x)
extended x;

extended asin (x)
ext. ended x;

extended acos (x)
ext. ended x;

extended atan (x)
ext.ended x:

extended atan2 (y, x)
extended x, 'I;

DESCRlPTION

Functions sin, cos, and tan return, respectively, the sine, cosine, and tangent of
their argument, which is in radians.

Function asin returns the arcsine of x, in the range -Tt(2 to Tt/2.

Function acos returns the arccosine of x, in the range 0 to Tt.

Function atan returns the arctangent of x, in the range -Tt(2. to Tr./2.

Function atan2 returns the arctangent of y/x, in the range -Tt to Tt, using the signs of
both arguments to detennine the quadrant of the return value.

For special cases, these functions return a NaN or infinity as appropriate.

DIAGNOSTICS

These functions honor the floating-point exception flags-invalid operation,
underflow, overflow, divide by zero, and inexact-as prescribed by the Standard
Apple Numeric Environment (SANE).

AiphaDrafi Page 4- 62 26 May 1986

Sran.dard C Library

NOTE

trig Conland Workshop C

Functions sin, cos, ·and tan have periods based on the nearest extended-precision
representation of mathematical1t. Hence these functions diverge from their
mathematical counterpans as their argument becomes far from zero.

SEE ALSO

Apple Numerics Manual.

Alpha Draft Page 4- 63 26 May 1986

Conland Workshop C

N~\1E

ungerc Standard C Ubrary

ungetc-push character back into input stream

SYNOPSIS

tinclude-<stdio.h>

int ungetc (c, stream)
char c:
FILE *stream:

DESCRIPTION

Function ungerc insens the character c into the buffer associated with an input
stream. That character, c, will be returned by the next gerc call on that stream.
Function ungerc returns c and leaves the fIle stream unchanged.

One character of pushback is guaranteed provided something has been read from
the stream and the stream is actually buffered.

If c equals EOF, ungerc does nothing to the buffer and returns EOF.

Function/seek erases all memory of inserted characters.

DIAGNOSTICS

For ungerc to perform correctly, a read must have been performed prior to the call
of the ungerc function. Function ungerc returns EOFif it can't insert the character.
If stream is srdin, ungerc allows exactly one character to be pushed back onto the
buffer without a previous read statement

SEE ALSO

fseek, getc, setbuf.

Alpha Draft Page 4- 64 26 May 1986

Standard C Library

Nh\1E

unlink-remove a me

SYNOPSIS

int unlink (path)
char *pathi

DESCRIPTION

W1link Conland Workshop C

Function unlink deletes the file named by the pathname pointed to by path.

RETURN VALUE

Upon successful completion, a value of Q. is returned. Othenvise, a value of -1 is
returned and ermo is set to indicate the error.

Alpha Draft Page 4- 65 26 May 1986

Con/and Workshop C

NAME

. write-write on a file

SYNOPSIS

int write (fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

DESCRIPTION

Standard C library

File descriptor ft/des is obtained from a crear or open call.

Function write attempts to write nbyte bytes from the buffer pointed to by but to the
file associated with theft/des. Internal limitations may cause write to write fewer
bytes than requested; the number of bytes actually written is indicated by the return
value. Several calls to write may therefore be necessary to write out the contents of
buf.

On devices capable of seeking, the actual writing of data proceeds from the position
in the file indicated by the file pointer. Upon return from wrire, the file pointer is
incremented by the number of bytes actually written.

On nonseeking devices, writing always starts at the current position. The value of a
file pointer associated with such a device is undefined.

If the O_APPEND me status flag is set-see open-the me pointer is set to end-of
file prior to each write.

The file pointer remains unchanged and wn'te fails if fildes is not a valid me
descriptor open for writing. [EBADF]

If you try to write more bytes than there is room for on the device, write writes as
many bytes as possible. For example, if nbyte is 512 and there is room for 20
bytes more on the device, write writes 20 bytes and returns a value of 20. The next
att~mpt to write a nonzero number of bytes will signal an error. [ENOS PC]

~TURNVALUE

Upon successful completion the number of bytes actually written is returned.
Otherwise, -1 is returned and ermo is set to indicate the error.

SEE ALSO

creat, Iseek, open.

A/phaDraft Page4~ 66 26 May 1986

ChapterS Conland Workslwp C Language Reference

. Chapter 5

The Cortland Interface Libraries

Introduction to the Cortland Interface Libraries

This chapter contains the C defmition of the Cortland Interface Libraries. For complete
documentation of these libraries, see Cortland Tools.

After an introductory description of the interface, the chapter is arranged alphabetically by
library header. All of the identifiers in the Cortland Interface Ljbraries are listed in the
Library Index, Appendix C.

A/phaDraft Page 5- J 26 May 1986

NAME

C interface to the Cortland Tools Reference

SYNOPSIS

U* This list of Hnclude files is approximate. Some files need to be added
below.***

tinclude <Controls.h>
tinclude <Oesk.h>
tinclude <Oialogs.h>
tinclude <Events.h>
tinclude <Files.h>
tinclude <QuickDrawII.h>
tinclude <Input.h>
tinclude <Memory.h>
tinclude <Menu.h>
tinclude <SANE.h>
'include <Sound.h>
tinclude <Text.h>
'include <Tools.h>
#include <Window.h> .
#include <Misc.h>

U. Any of these? •••

tinclude <types.h>
tinclude <strings.h>
tinclude <quickdraw.h>
#include <fonts.h>
'include <scrap.h>
tinclude <printing.h>
tinclude <segload.h>
tinclude <devices.h>
finclude <disks.h>
'include <soupd.h>
#include <serial.h>
tincl~de <error.h>

/* Control Manager
/* Desktop Environment
/" Dialog Manager
/'" Event Manager
/* File Operations Manager
/" Graphics Core Tools
/* Input Tools
/* Memory Manager
/* Menu Manager
/* Standard Apple Numerics
/* Sound Tools
/* Text Editor
/* Tool Locator
/* Window Manager
/* Miscellaneous Tools

:* common defines and types
:* string conversions
:* QuickDraw
:* Font Manager
:* Scrap Manager
:* Printing Manager
:* Segment Loader
:* Device Manager
7* Disk Driver
7* Sound Driver
:* Serial Drivers
:" System Error Handler

'O/
'O/
'O/
'O/
'O/
,,/
'O/
'O/
'O/
'O/
'O/
'O/
,,/
'O/
'O/

.. .,
"7
".,.. .,
.. .,
""1.. .,
""1

..... I am not sure the following belongs here: the MPW C Reference doesn 't include this.
*••

/*
APWtypes.h (version 1.0, 13 May 1986)

Standard types, macros and constants for Apple II xx C
Copyright 1986 Apple Computer Inc.

*/

'define nil °
tdefine NULL °

Alpha Draft PageS- 2 26 M(1)' 1986

Conland b'l1erface Library Imerjace Conland Workshop C

typedef enum (false, true) Boolean:
typedef char *Ptr:
typedef Ptr *Handle:
typedef long (*ProcPtr) ();
typedef ProcPtr *ProcHandle;
typedef short OSErr;
typedef long Fixed;
typedef long Frac;

tdefine String(size) struct(\
unsigned char length: unsigned char text(size];)

typedef String(2SS) Str25S, *StringPtr, **StringHandle;

struct Rect{
short top,left,bottorn,right;

) ;

fdefine bitO
#define bitl
fdefine bit2
#define bit3
#define bit4
#define bitS
#define bit6
#define bit7
#define bitB
#define bit9
#define bitlO
#define bitll
tdefine bit12
#define bit13
tdefine bit14
#define bitlS

DESCRlPTION

OXOOOl
OX0002
OX0004
oxoooe
OX0010
OX0020
OX0040
oxooeo
OX0100
OX0200
OX0400
oxoeoo
OX1000
OX2000
OX4000
OX8000

The C Interface provides C programs with access to all of the libraries defined in
Cortland Tools Reference. Constants, types, and library routines are provided.
The list of libraries appears above.

Header Files: Include the ".h" files in C programs to declare the defines,
types, and functions provided by these libraries. Each library definition
lists the includes necessary for use of that library. Functions whose
declarations can be inferred from calls have been omined from the header
files. List the includes in the order in which the libraries are listed above.

Object File: The interface code is contained in file *** filename? ***.
Link this file with the C program and other libraries. Not all functions
require interface code. The linker includes interface code for only those
routines that are called.

Interface Implementation: Most library routines are declared as
external Pascal routines with trap numbers, and are trapped to directly by

Alpha Draft Page 5- 3 26 May 1986

Corr/and Workshop C Interface Con/and Interface Library

compiled code. *** True? u* Other routines are declared to be C routines
and are called through interface glue.

Parameter Types: The C interfaces expect structures (including Points)
to be passed by address. String parameters are nu1l4 terminated C strings
unless otherwise indicated. ResTypes and OSTypes can be expressed as
character literals; for example, 'MENU'.

Spelling and Capitalization: The spelling and capitalization of
identifiers is exactly as specified in Corr/and Too/s Reference. Constants.
variables, parameter names, fields within structures, and enumeration-type
elements begin with a lowercase letter. Routines and data types begin with
an uppercase letter. Letters that begin new words in English are capitalized.
All other letters are lowercase. When a name includes an acronym, the case
of the entire acronym is determined by the case of the first letter (e.g.,
GetOSEvent, teJustLeft). .

A/phaDraft Page5-4 26 May 1986

Con/and Interface Library

NAME

controls-Control Manager

SYNOPSIS

controls Con/and Workshop C

"'** This is the Mac code. The Cortland code will resemble it in functionality but
differ in form. Stay tuned. "'** .
Hnclude <types.h>
lIinclude <quickdraw.h>
lIinclude <controls.h>

/* Control Definition Procedures IDs */

lIdefine pushButProc 0
#define checkBoxProc 1
#define radioButProc 2
#define useW'Font 8
#define scrollBarProc 16

/* FindControl Result Codes */

'defi~e inButton 10
'define inCheckbox 11
lIdefine inUpButton 20
'define inDownButton 21
#define inPageUp 22
'define inPageDown 23
'define inThwnb 129

/* DragControl Axis Constraints */

#define noConstraint 0
#define hAxisOnly 1
'define vAxisOnly 2

/* Messages to Control definition function */

#define drawCntl 0
#define testCntl 1
'define calcCRgns 2
#define initCntl 3
#define dispCntl 4
'define posCntl 5
'define thwnbCntl .6
#defin~ dragCntl 7
#define autoTrack 8

typedef struct ControlRecord {
struct ControlRecord **nextControl;
struct GrafPort *contrlOwner;
Rect contrlRect;
unsigned char contrlVis;
unsigned char contrlHilite;
short contrlValue;
short contrlMin;

A/pha Draft Page5-5 26 May 1986

Cortland Workshop C controls Coniand Interface Librar;

short
ProcHandle
Handle
ProcPtr
long
Str255

ControlRecord,

contrlMax;
contrlDefProc;
contrlData;
contrlAction;
contrlrfCon;
contrlTitle;

*ControlPtr, **ControlHandle;

\,

/* Initialization and Allocation */

ControlHandle NewControl{theWindow,boundsRect,title,visible,va:~e,

min,max,~rocID,refCon)

struct GrafPort *theWindow;
Rect *boundsRect;
char ~title;

Boolean visible;
short value;
short min;
short max;
short procID;
long refCon;

pascal ControlHandle GetNewControl{controlID,theWindow)
short controlID;

. struct GrafPort *theWindow;
pascal void DisposeControl(theControl)

ControlHandle theControl;
pascal void KillControls{theWindow)

struct GrafPort *theWindow;

/* Control Display */

void SetCTitle {theControl, title)
ControlHandle theControl;
char *title;

void GetCTitle{theControl,title)
ControlHandle theControl;
char *title;

pascal void HideControl{theControl)
ControlHandle theControl;

pascal void ShowControl{theControl)
ControlHandle theControl;

pascal void DrawControls{theWindow)
struct GrafPort *theWinddw;

pascal void HiliteControl{theControl,hiliteState)
ControlHandle theControl;
short hiliteState;

pascal void UpdateControls{theWindow,upd~te)

Gra~Port *theWindow;
RgnHandle update;

/* Mouse Location */

short TestControl {theControl, thePoint)
ControlHandle theControl;
Point *thePoint;

short rindControl{thePoint,theWindow,theControl)
Point *thePoint;
struct GrafPort *theWindow;

Alpha Draft Page 5- 6 26 May 1986

Conland Inurface Library conrrois Cortland Workshop C

ControlHandle *theControl;
short TrackControl(theControl,startPt,actionproc)

ControlHandle theControl;
Point *startPt;
ProcPtr actionProc;

1* Control Movement and Sizing *1

pascal void MoveControl(theControl,h,v)
ControlHandle theControl;
short h,v;

void DragControl(theControl,startPt,limitRect,slopRect,axis)
ControlHandle theControl;
Point *startPt;
Rect *limitRect;
Rect *slopRect;
short axis;

pascal void SizeControl(theControl,w,h)
'ControlHandle theControl;
short w,h;

1* Control Settings and Range *1

pascal void SetCtlValue(theControl,theValue)
ControlHandle theControl;
short theValue;

pascal short GetCtlValue(theControl)
ControlHandle theControl;

pascal void SetCtlMin(theControl,minValue)
ControlHandle theControl:
short minValue;

pascal short GetCtLMin(theControl)
ControlHandle theControl:

pascal void SetCtlMax(theControl,maxValue)
ControlHandle theControl;
short maxValue;

pascal short GetCtlMax(theControl)
ControlHandle theControl;

1* Miscellaneous Utilities *1

pascal void SetCRefCon(theControl,data)
ControlHandle theControl;
long data;

pascal long GetCRefCon(theControl)
ControlHandle theControl;

pascal void SetCtlAction (theControl, actionProc)
Con~rolHandle theControli
ProcPtr actionProc;

pascal ProcPtr GetCtlAction(theControl)
ControlHandle theControl;

USER ROUTINES

pascal void MyAction()
pascal void MyAction(theControl,partCode)

ControlHandle theControli
short partCode;

Alpha Draft Page5-7 26 May 1986

Corrland Workshop C coruro/s Con/and Interface Library

pascal long MyControl(varCode,theControl,message,param)
short varCode;
ControlHandle theControl;
short message;
long param;

DESCRIPTION

The Control Manager provides routines for creating and manipulating controls (for
example: buttons, scroll bars).

For more detailed information see the Control Manager chapter of theCortLand
Tools Reference.

ALpha Draft Page 5- 8 26 Ma)'1986

Con/and InJerface Library

NAME

desk-Desk Accessory Manager

SYNOPSIS

desk Con/and Workshop C

*** Code for this will be added later. ***

DESCRIPTION

The Desk Accessory Manager supports small co-resident application programs like
calculators, calendars, and such. (One of these can be a switcher.)

. There are two kinds of desk accessories on the Conland: classic desk accessories
that can run with old-style applications (like Apple Works), and new desk
accessories that run in the Conland desktop environment. The Desk Accessory
Manager checks to see which environment it is in and makes sure that a desk
accessory can run in that environment before calling it

One classic desk accesory is built in: the Control Panel.

For more detailed information see the Desk Accessory Manager chapter of Cortland
Tools Reference.

Alpha Draft Page 5- 9 26 May 19«.6

Conland Workshop C

NAME

dialogs-Dialog Manager

SYNOPSIS

dialogs Cortland Interface LibrOl)'

U>/r Code for this will be added later. U>/I

DESCRIPTION

The Dialog Manager suppons dialog boxes and the alert mechanism. It creates and
displays dialog boxes, alertS the user by a sound, and flnds out the user's
responses to the boxes and sounds.

For more detailed information see the D~alog Manager chapter of Cortland Tools
Reference. .

Alpha Draft Page5-1O 26 May 1986

Con.land InJerface Library

NAME

events-Event Manager

SYNOPSIS

/"

evenJs Conland Workshop C

eventTypes.h -- type definitions used by the event manager (ve=s~:~

1.0, 13 May 1986)

C Interface to the Apple II xx Libraries.
Copyright 1986 Apple Computer Inc.

"/

tdefine nullEvent 0
tdefine MouseDown 1
fdefine MouseUp 2
fdefine KeyDown 3
fdefine undefined4Event 4
fdefine autoKey 5
fdefine update 6
fdefine undefine7Event 7
fdefine activate 8
fdefine switch 9
fdefine DeskAccessory 10
fdefipe deviceDriver 11
Jdefine Application1 12
fdefine Application2 13
Jdefine Application3 14
Idefine Application4 15

#define KeyPad
fdefine ControlKey
Idefine OptionKey
#define CapsLock
fdefine ShiftKey
fdefine AppleKey
Jdefine BtnOState
#define Btn1State
fdefine ChangeFlag
fdefine ActiveFlag

bit13
bit12
bitll
bitlO
bit9
bit8
bit7
bit6
bit1
bitO

typedef int Point: /* a structure: "/
struct eventRecord{

short int what:
long int message:
long int when:
Point where:
short int modifiers:

I :

Jdefine DupStartup
#define ResetErr
Idefine EMNotActive
Jdefine IllEvent
Jdefine IllButton
#define LargeQueue

Alp.ha Draft

OX0601
OX0602
OX0603
OX0604
OX0605
OX0606

Page 5-11 26 May 1986

Conland Workshop C

Jildefine NoMemory

1*

0:<0607

events Cortland Interface Library

EventMgr.h -- Event Manager (version 1.0, 13 May 1986)

C Interface to the Apple II xx Libraries
Copyright 1986 Apple, Computer Inc.

*1

tinclude <APWtypes.h>
Jilinclude <eventTypes.h>

1* standard housekeeping functions - present in every manager T/
extern pascal void EMBootInit();
extern pascal void EMStartUp (/*ZeroPage,QueueSize, XMinClamp,

XMaxClamp,YMinClamp,YMaxClamp,ProgramIO*/) :
1* short
ZeroPage,QueueSize,XMinClamp,XMaxClamp,YMinClamp,YMaxClamp,Prograffi::;
extern pascal void EMShutOown();
extern pascal int EMVersion();
extern pascal void EMReset();
extern pascal Boolean ~ctive();

1* More Housekeeping *1

extern pascal short int DoWindows();

/**.**.****************~************************/

1* Toolbox event manager routines *1
1**************·_·****'·_********·_·************/

1* Accessing Events *1

extern pascal Boolean GetNextvent(/*EventMask,EventPtr*/);
1* unsigned short EventMask; eventRecord *EventPtr;*1

extern pascal Boolean EventAvail(/*EventMask,EventPtr*/):
1* unsigned short EventMask; eventRecord *EventPtr; *1

1* Reading the Mouse *1

extern pascal void GetMouse(/*MouseLocPtr*/);
1* Point *MouseLocPtr *1

extern pascal Boolean Button (/*ButtonNum*/) ;
1* shart int ButtonNum *1

extern pascal Boolean StillDown(/*ButtonNum*/);
1* short int ButtonNum; *1

extern pascal Boolean waitMouseUp(/*ButtonNum*/);
1* short int ButtonNum; *1

1* Miscellaneous Routines *1

A/phaDraft Page 5-12 26 Ma)' 1986

Conland Interface Library eyents Conland WorksJwp C

extern pascal long TickCount () ;

extern pascal long GetDblTime() ;

extern pascal long GetCaretTime() ;

extern pascal void SetSwitch () ;

/*************************************w*****/
1* Operating system event manager routines *1
1***/

1* Posting and Removing Events *1

tdefine EventPosted 0
tdefine EventNotDesiganted 1
extern pascal short PostEvent(/*EventCode,EventMsg*/);
1* short EventCode; long EventMsg; *1

extern pascal short FlushEvents(/*EventMask,StopMask*/);
1* short EventMask,StopMask; *1

/* Accessing events *1

extern pascal Boolean GetOSEvent(/*EventMask,EventPtr*/);
1* short EventMask; EventRecord *EventPtr; *1

extern pascal Boolean OSEventAvail(/*EventMask,EventPtr*/);
1* short EventMask; EventRecord *EventPtr; *1

extern pascal void SetEventMask(I*TheMask*/);
1* short TheMask; *1

1*****************_·***-*******-******-*****-***/
1* The Journaling Mechanism *1
I********************************w*****~********/

1* TO BE DEFINED, IF ANY *1

DESCRlPTION
The Event Manager provides access to the Cortland keyboard, keypad, and mouse.
An application is organized. as a loop containing a call to the Event Manager
followed by a series of conditional (switch) statements. These conditional
statements.detennyne the program's operations on the basis of the information
returned. by the Event Manager. The Event Manager also reports events within the
application that may require a response: for example, changing one window may
cause lUlother window to become visible and need. to be redrawn.

The Cortland Event Manager was designed. to be as much like the event manager on
the Macintosh as possible. The main difference is that the Macintosh has two event
managers, one calling the other. The Cortland has only one.

Alpha Draft Page5-I3 26 May 1986

CortLand WorksJwp C

NAME

files-File Operations Manager

SYNOPSIS

fiLes Cortland Interface Library

u,," Code for this will be added later. u*

DESCRIPTION

The File Operations Manager controls the exchange of information bet\Veen_an
application and meso It makes calls to ProDOSI16.

For more detailed information see the File Operations Manager chapter of ConLand
TooLs Reference. .

NOTE

An I/O completion routine cannot reliably access any globals, strings. or other
functions outside its segment.

u,," This is true for Mac. What is true for Cortland? **'"

WARNIN"G

The low-level routines that use strings take as input and return as output pointers to
Pascal-style strings (string length in fIrst byte). HO'Never. the high-level routines
use C-style strings (terminated by a null character) as input and output parameters.

ALpha Draft Page 5-14 26 May 1986

NAME

intm.ath-Imeger Math

SYNOPSIS

1*
FixMath.h -- Fixed Point Math (version 1.0, 13 May 1986)

C Interface to the Apple II xx Libraries
Copyright 1986 Apple Computer Inc.

*1

tinclude <APWtypes.h>

1* standard housekeeping functions - present in every manage= -/
extern pascal void IMBootInit();
extern pascal void IMStartUp();
extern pascal void IMShutDown();
extern pascal int IMVersion();
extern pascal void IMReset();
extern pascal Boolean IMActive();

tdefine BadParams
tdefine 8adChar
tdefine IntOverflow
tdefine StrOverflow

OXOBOl
OXOB02
OXOB03
OXOB04

struct SDivResult {
short remainder, quotient:

} ;

struct UDivResult (
unsigned short remainder, quotient:

) ;

struct LDivResult (
long remainder, quotient;

l ;
struct LMulResult (

long MostSig, LeastSig;
l ;

extern pascal long ~ultiply(/*il,i2*/);

1* int il, i2; "*1

extern pascal LMulResult LMultiply(/*il,i2*/):
I * long il, i2; * I

extern pascal SDivResult SDivide(/*numerator,denominator*/);
1* short numerator, denominator; *1

extern pascal oDivResult UDivide(/*numerator,denominator*/);
1* unsigned short numerator, denominator; *1

extern pascal LDivResult LDivide<l*numerator,denominator*/);
1* short numerator, denominator; *1

AlphaDrafr Page 5· 15 26 May 1986

Cortland Workshop C intmath Cortland Interface Libraries

extern pascal Fixed FixRatio(/*numerator,denominator-/);
1* short numerator, denominator; *1

extern pascal Fixed FixMul(/*f1,f2*/);
1* Fixed f1,f2; *1

extern pascal void Int2Hex(/*i,str,len-/);
1* unsigned short i; Ptr str; int len; *1

extern pascal void Long2Hex(/*1,str,len*/);
1* unsigned long 1; Ptr str; int len; *1

extern pascal unsigned short Hex2Int(/*str,len*/);
1* Ptr str; int len; *1

extern pascal unsigned long Hex2Long(/*str,len*/);
1* Ptr str; int len; *1

Jdefine UnsignedFlag 0
Jdefine SignedFlag 1
extern pascal void Int20ec(/*i, str, len, flag*/);
1* int i; Ptr str; int len, flag; *1

extern pascal void Long20ec(/*1, str, len, flag*/);
1* long 1; Ptr str; int len, flag; *1

extern pascal int Dec2Int(/*str, len, flag*/);
1* Ptr str; int len, flag; *1

extern pascal long Dec2Long(/*str, len, flag*/);
1* Ptr str; int len, flag; *1

typedef long HexString4;
extern pascal HexString4 Dec2Int(/*i*/);
1* unsigned short i; *1

DESCRIPTION

The Integer Math toolset includes several routines for working on data of types
short, int, long, fixed, and fnc (that is, fractional part). It has routiens for
multiplication, division, square root, some trigonometric functions, rounding, and
conversions between data types.

For more detailed information see the Integer Math chapter of Con/and Too/s
Reference.

A/phaDraft Page5~ 16 26 May /986

Cortland Interface Libraries

NAME

lined-Line Editor

SYNOPSIS

lined Cortland Workshop C

*** This is the Mac code. The Cortland code will resemble it in functiona1ity bur
differ in form. Stay tuned. u*

#include <types.h>
#include <textedit.h>

#define teJ'ustLeft 0

#define teJ'ustCenter 1
#define teJ'ustRight (-1)

typedef char Chars(32001);
typedef Chars *CharsPtr, **CharsHandle;

typedef struct TERec (
Rect destRect;
Rect viewRect;
Rect selRect;
short lineHeight;
short fontAscent;
Point selPoint;
short selStart;
short selEnd;
short active;
ProcPtr wordEreak;
ProcPtr clikLoop;
long clickTirne;
short clickLoc;
long caretTirne;
short caretState;
short just;
short teLength;
Handle hText;
short recalBack;
short recalLines;
short clikStuff;
short crOnly;
short txFont;
Style txFace;
short txMode;
short txSize;
struct GrafPort *inPort;
ProcPtr highHook;
ProcPtr caretHook;
short nLines;
short lineStarts(16001);

TERec, *TEPtr, **TEHandle;

/* destination rectangle */
1* view rectangle */
/* select rectangle */
/* current font lineheight */
/v current font ascent */
/* selection point (rnouseLoc) */
/* selection start */
/v selection end */
/* !- 0 if active */
/* word break routine */
/v click loop routine */
/* time of first click */
/* char. location of click */
/* time for next caret blink */
/* on/active booleans */
/* fill style */
/* length of text below */
/* handle to actual text */
/* !- 0 if recal in background */
/* line being recalulated */
/* click stuff (internal) */
/* set to -1 if CR Line breaks or.:: •
/* text Font */
/* text Face */
/* text Mode */
/* text Size */
/* GrafPort */
/* highlighting hook */
/* highlighting hook */
/* number of lines */
/* line starts */

. /* Initialization and Allocation */

pascal void TEInit()

AlphO. Draft Page5-17 26 May 1986

Con/and Workshop C lined Con/and Interface Ubraries

pascal TEHandle TENew(destRect,viewRect)
Rect *destRect, *viewRect;

pascal void TEDispose(h)
TEHandle h;

!* Accessing Text */

pascal void TESetText (text, length,hTEl
Ptr text;
long length;
TEHandle hTE;

pascal CharsHandle TEGetText(hTEl
-TEHandle hTE;

/* Insertion Point and Selection Range */

pascal void TE!dle(hTE)
TEHandle hTE;

void TEClick(pt,extend,hTEl
Point *pt;
800lean extend;
TEHandle hTE;

pascal void TESetSelect(selStart,selEnd,hTEl
long selStart;
long selEnd;
TEHandle hTE;

pascal void TEActivate(hTEl
TEHandle hTE;

pascal void TEDeactivate(hTE)
TEHandle hTE;

/* Editing */

pascal void TEKey(key,hTE)
short key;
TEHandle hTE;

pascal void TECut(hTEl
'rEHandle hTE;

pascal void TECopy(hTEl
TEHandle hTE;

pascal void TEPaste(hTE)
TEHandle hTE;

pascal void TEDelete(hTEl
TEHandle hTE;'

pascal void TEInsert (text, rength,hTEl
Ptr text;
long length;
TEHandle hTE;

/* Text Display and Scrolling */

pascal void TESetJust(just,hTEl
short just;
TEHandle hTE;

pascal void TEUpdate(rUpdate,hTEl
Rect *rUpdate;
TEHandle hTE;

pascal void TextBox(text,length,box,just)

A/phaDraft Page5-18 26 May 1986

Conland Interface Libraries lined Conland Workshop C

Ptr text;
long length;
Rect "'box;
short j~st;

pascal void TEScroll(dh,dv,hTE)
short dh;
short dv;
'rEHandle hTE;

pascal void 'rESelView(hTE)
TEHandle hTE;

pascal void TEPinScroll(dh,dv,hTE)
short dh;
short dv;
'rEHandle hTE;

pascal void TEAutoView(auto,hTE)
Boolean auto;
TEHandle hTE;

I'" Scrap Information *1

OSErr TEFromScrap()
OSErr TEToScrap()
Handle TEScrapHandle()
long TEGetScrapLen()
void TESetScrapLen(length)

long length;

1* Advanced Routines *1

void SetWordEreak(wBrkProc,hTE)
ProcPtr wBrkProc;
TEHandle hTE;

void SetClikLoop(clikProc,hTE)
ProcPtr clikProc;
TEHandle hTE;

pascal void TECalText(hTE)
TEHandle hTE;

USER ROUTINES

Pascal Boolean MyWordEreak(text,charPos)
Ptr text.;
short. charPos;

Pascal Boolean MyClikLoop()

DESCRIPTION

The Line Editor accepts text typed by the user and perfonns standard editing
functions in response to calls from applications. Its functions include
• inserting and deleting text
• using the mouse to select text
• cutting and pasting text

For more detailed infonnation see the "Line Editor" chapter of the Cortland Tools
Reference..

Alpha Draft PageS- 19 26 May 1986

Con/and Workshop C

NOTE

Con/and Inurface Libraries

The user routines highHook and caretHook are callerl with register conventions and
therefore can't be C routines.

..... True for Cortland??? **'"

Alpha Draft Page5-20 26 May 1986

Conland Interface libraries

NA!\1E

memory-Memory Manager

SYNOPSIS

memory Corrland Workshop C

MMtypes.h ~- general types for Memory Manager (version 1.0, :3
May 1986)

C Interface to the Apple II xx Libraries
Copyright 1986 Apple Computer Inc.

typedef unsigned short MMUser:D;
typedef long int MMSize;
typedef unsigned short PurgeLevel;

#define
#define
#define
'define
'define
#define
'define
tdefine

"define
"define
"define
"define
tdefine
tdefine

/*

MMnoError
MMFullErr
MMNilErr
MMNotNilErr
MMLockErr
MMPurgeErr
MMHandleErr
MMIDErr

MMFixedBank
MMFixedAddr
MMPageAlign
MMNoSpecMem
MMWithinSank
MMFixed

o
Ox0201
Ox0202
Ox0203
Ox0204
Ox0205
Ox0206
Ox0207

bitO
bit1
bit2
bit3
bit4
bit14

MemoryMgr.h -- Memory Manager (version 1.0, 13 May 1986)

C Interface to the Apple II xx Libraries
Copyright 1986 Apple Computer Inc.

*/

"include <APWtypes.h>
tinclude <MMtypes.h>

/* standard housekeeping functions - present in every manager -/
extern pascal void MMSootInit();
extern pascal int MMAppllnit();
extern pascal void MMAppQuit();
extern pascal int MMVersion();
extern pascal void MMReset();
extern pascal Boolean MMStatus();

/* Allocating Memory */

Alpha Draft PageS- 21 26 MG)' 1986

Cortland Workshop C memory Conland Interface Libraries

extern pascal Handle
NewHandle(/*SlockSize,Owner,Attributes,Location*/) ;
/* MMsize SlockSize; MMUserIO Owner; short Attributes; Ptr
Location; */

extern pascal void ReallocHandle(/*TheHandle,BlockSize,

Owner, Attributes, Location*/) ;
/* Handle TheHandle; MMSize SlockSize; MMUserIO Owner;

short Attributes; Ptr Location */

/* Freeing Memory */

extern pascal void OisposHandle(/*theHandle*/);
/* Handle theHandle; */

extern pascal void OisposAll(/*Owner*/);
/* MMUserIO Owner; */

extern pascal void PurgeHandle(/*theHandle*/);
/* Handle theHandle; */

extern pascal void PurgeAll(/*Owner*/);
/* MMUserIO Owner */

/* Information on blocks */

extern pascal MMSize GetHandleSize(/*theHandle*/);
/* Handle theHandle; */

extern pascal void SetHandleSize(/*newSize,theHandle*/);
/* MMSize newSize; Handle theHandle; */

extern pascal Handle FindHandle(/*location*/);
/* Ptr location; */

extern pascal MMSize FreeMem();

extern pascal MMSize MaxSlock();

extern pascal MMSize TotalMem();

/* Other properties of block */

extern pascal void HLock(/*theHandle*/);
/* Handle theHandle; */

extern.pascal void HLockAll(/*Owner*/);
/* MMUserIO Owner; */

extern pascal void HUnlock (/*theHandle*/) ;
/* Handle theHandle; */

extern pascal void HUnlockAll(/*Owner*/);
/* MMUserID Owner; */

extern pascal void SetPurge(/*newPlevel,theHandle*/);
/* PurgeLevel newPlevel; Handle theHandle; */

Alpha Draft Page 5- 22 26 May 1986

Cortland Interface Libraries memory Conland Workshop C

extern pascal void Set?urgeAll(/*new?level,Owner*/);
/* PurgeLevel newPlevel; MMUserID Owner; */

1* Copying Data */

extern pascal void BlockMove(/*Source,Dest,Count*/);
1* Ptr Source,Dest: MMSiie Count; *1

DESCRlPTION

The Memory Manager controls use of memory for by application programs.
Keeping memory usage under contIol of the Memory Manager makes it possible to
have co-resident applications like desk accessories. Programs call the memory
Manager to request (allocate) memory, release (deallocate) memory, and find out
how much memory is free.

For more detailed information see the Memory Manager chapter of Conland Tools
Reference.

Alpha Draft Page 5- 23 26 May 1986

Cortland Workshop C

NAME

menus--Menu Manager

SYNOPSIS
/*

menus Cort/{]JU}, Interface Ubran'es

MenuMgr,h -- Menu Manager (version 1.0, 13 May 1986)

C Interface to the Apple II xx Libraries
Copyright 1986 Apple Computer Inc.

*/

#include <APWtypes.h>
#include <eventTypes.h>

Jdefine TheOneWithID a
Jdefine HeadOfList 1
fdefine LastInList 2
fdefine TheOneBeforeID -1

/* standard housekeeping functions - present in every manager -I
extern pascal void Boo~Mmgr();

extern pascal void TermMenus();
extern pascal int MmgrVersiqn();
extern pascal void MmgrReset();

struct ItemRecord(
struct ItemRecord *NextItem;
unsigned short ItemId;
unsigned long ItemName;
unsigned char ItemChar;
unsigned char ItemCheck;
unsigned char ItemFlag;

} ;

struct MenuRecord{
struct MenuRecord *NextMenu;
unsigned short MenuId;
unsigned short MenuWidth;
unsigned short MenuHeight;
procPtr MenuProc;
unsigned short TitleWidth;
StringPtr TitleName;
unsigned char MenuFlag;
struct ItemRecord *ItemList;

} ;

struct· MenuBar (
long *NextCtrl; /* pointer to next control - !!!!!!! wi
unsigned char CtrlType;
Rect Bar;
unsigned char FallDown;
unsigned char 8arColor;
unsigned char InvertColor;
unsigned char Outline;
unsigned char 8arFlag;
struct MenuRecord *MenuList;

) ;

A/phaDraft . Page5-24 26 May 1986

Conland Interface lJbraries menus Conland Workshop C

struct TwoShort {
unsigned short Divide, XOR;

} ;

extern pascal MenuRecord
*NewMenu(/*textColor,background,MenuString*/) ;
1* short textColor, background; StringPtr MenuString; *1

extern pascal void DisposeMenu(/*MenuList*/);
1* MenuRecord *MenuList; *1

extern pascal unsigned short FixMenuBar(/*theBar*/);
1* MenuBar *theBar; *1

extern pascal void CalcMenuSize(/*newWidth,newHeight,MenuPtr*I);
1* unsigned short newWidth,newHeight; MenuPtr 777; *1

1* drawing and user interaction routines *1

extern pascal void MenuSelect(/*eventRec,theBar*/);
1* eventRec 777; MenuBar *theBar; *1

extern pascal void MenuKey(/*eventRec,theBar*/);
1* eventRec 777; MenuBar *theBar; *1

extern pascal void CheckFallDown(/*eventRec,theBar*/);
1* eventRec 777; MenuBar *theBar; *1

extern pascal void MenuRefresh(/*RedrawRoutine*/);
1* ProcPtr RedrawRoutine; *1

1* Drawing *1

extern pascal void DrawMenuBar();

extern pascal void HiliteMenu(/*Hilite,MenuNum*/);
1* Boolean Hilite; unsigned short MenuNum; *1

extern pascal void FlashMenuBar();

1* Menu and Item Shuffling *1

extern pascal void InsertMenu(/*AddMenu,InsertAfter*/);
1* MenuRecord *AddMenu; unsigned short InsertAfter; *1

extern pascal void DeleteMenu(/*MenuNum*/);
1* unsigned short MenuNum; *1

extern"pascal void Insertltem(/*Addltem,InsertAfter,MenuNum*/):
1* ItemRecord *Addltem; unsigned short InsertAfter, MenuNum; *1

extern pascal void Deleteltem(/*IternNum,MenuNum*/) ;
1* unsigned short IternNum, MenuNum; *1

1* Menu Bar Access *1

extern pascal void SetSysBar(/*NewBar*/);
1* MenuBar *NewBar; *1

Alpha Draft Page5-25 26 May 1986

Con/and Workshop C menus Con/and Inrerjace Libraries

extern pascal MenuBar *GetSysBar();

ex~ern pascal void SetMenuBar(/*TheBar*I);
1* MenuBar *TheBar; *1

extern pascal MenuBar *GetMenuBar();

extern pascal short CountMitems(/*MenuNum*I);
1* unsigned MenuNum; *1

extern pascal void SetFalArea(/*FallHeight*I); ~

1* short FallHeight *1

extern pascal short GetFallArea();

extern pascal void
SetBarColors(/*NewBarColor,NewInvertColor,NewOutColor* I);
1* unsigned short NewBarColor,NewInvertColor,NewOutColor; */

extern pascal unsigned long GetBarColors();

extern pascal void SetTileStart(/*XStart*I);
1* unsigned short XStart; *1

extern pascal unsigned short' GetTileStart () ;

1* Menu Record Access Routines *1

extern pascal MenuRecord *GetMenuPtr(/*LookFor,MenuNurn*/);
1* short LookFor; unsigned short MenuNum; *1

extern pascal void SetTileWidth(/*NewWidth,MenuNurn*I);
1* unsigned short NewWidth, MenuNum; *1

extern pascal unsigned short GetTileWidth(/*MenuNurn*I);
1* ,unsigned short MenuNum *1

'define MenuFlag OXFF7F
tdefine MenuTileFlag OXFFBF
tdefine HighlightFlag OXFFDF
tdefine MenuKindFlag OXFFE7
tdefine EnableMenu OXOOOO
tdefine DisableMenu oxooeo
tdefine NormalTile OXOOOO
tdefine InvertTile OX0040
tdefine RedrawHighlight OXOOOO
tdefine XORHighlight OX0020
'define TextMenu OXOOOO
'define ColorMenu OX0008
Jdefine ApplicationMenu OX0010
extern pascal void SetMenuFlag(/*NewState,FlagMask,MenuNum*I);
1* unsigned short NewState,FlagMask,MenuNum *1

extern pascal unsigned short GetMenuFlag(/*MenuNurn*I);
1* unsigned short MenuNurn; *1

extern pascal void SetMenuTile(/*NewStrg,MenuNurn*/);

A/phaDraft Page 5- 26 26 May 1986

Conland Interface Libraries menus Corrland Workshop C

1* StringPtr NewStrg; unsigned short MenuNum; *1

extern pascal StringPtr GetMenuTile(/*MenuNum*/);
1* unsigned short MenuNurn; *1

extern pascal void SetMenuID(/*NewID,MenuN~~*/);

1* unsigned short NewID,MenuNurn; *1

1* Item Record Access *1

extern' pascal IternRecord *GetItemPtr (/*LookFor, IternNurn*/);
1* unsigned short LookFor,IternNum; *1

extern pascal void SetItem(/*NewStrg,IternNurn*/);
1* StringPtr NewStrg; unsigned short IternNurn; *1

extern pascal StringPtr .*GetItem (/* IternNurn* /) ;
1* unsigned short IternNurn; *1

extern pascal void EnableItem (/ *IternNurn* /) ;
1* unsigned short IternNurn; *1

extern pascal void OisableItem(/*IternNurn*/) ;
1* unsigned short IternNurn; *1

extern pascal void CheckItem(/*Checked,IternNurn*/);
1* Boolean Checked; unsigned short IternNurn; *1

extern pascal void SetIternMark(/*Mark,IternNurn*/);
1* unsigned short Mark, IternNurn; *1

extern pascal unsigned short Get IternMark (/*IternNurn*/) ;
1* unsigned short IternNurn; *1

#define Bold OXOOOl
#define Italic OX0002
tdefine Underscore OX0004
extern pascal void SetItemStyle(/*ChStyle,IternNurn*/);
1* ,unsigned short ChStyle,IternNurn; *1

extern pascal unsigned short GetItemStyle(/*IternNurn*/);
1* unsigned short IternNurn; *1

#define ItemUnderline OX0040
tdefine IternNoUnderline OXFFBF
#define IternXORHighlight OX0020
#define IternRedrawHiglight OXFFDF
extern pascal void SetItemFlag(/*Newvalue,IternNurn*/);.
1* unsigned short NewValue, IternNurn *1

extern pascal TwoShort Get ItemFlag (/*IternNUrn*/) ;
1* unsigned short IternNurn; *1

extern pascal void SetItemID(/*NewID,IternNurn*/);
1* unsigned short NewID, IternNurn; *1

extern pascal void SetIternBlink(/*Count*/);
1* unsigned short Count; *1

Alpha Draft Page 5· 27 26 May 1986

Conland Workshop C Conland lnJerface Libraries

1* Miscellaneous routines *1

extern pascal void MNewRes();

extern pascal void

extern pascal void

DESCRIPTION

The Menu Manager provides routines for creating and using menus. The
application calls the Menu Manager whenever the user gives a command, whether
from the menu by using the mouse or by typing a command key, to find out which
command it is. For more detailed information see the Menu Manager chapter of
Conland Tools Reference.

WARNING

The names of desk accessories stan with a null byte. The output parameter from
GetMenultem will return a string that begins with a null byte when a desk accessory
is selected from the Apple menu. OpenDeskAcc skips ov.er the null byte when
interpreting its parameter.

..'" True for Conland? *...

-Alpha Draft 26 May 1986

Conland Interface Libraries

NAME

mise Conland Workshop C .

mise-Miscellaneous Tools for talking to hardware

SYNOPSIS

This code will be added later.

DESCRlPTION

The Miscellaneous Tools include
• Routines to access battery-backed-up RAM
• Clock routines
• Routines to access peripheral cards
• Routines to change finnware vectors
• Ro~tines to manage the heartbeat interrupt queue
• Routines for directly accessing the mouse
• Interrupt-control routines

For more detailed information see the "Miscellaneous Tools" chapter of the
Cortland Tools Reference.

Alpha Draft PageS- 29 26 May 1986

Conland Workshop C

NAME

printing-Printing Manager

SYNOPSIS

printing Conland Interface Libran'es

"'** This is the Mac code. The Cortland code will resemble it in functionalitv but
differ in form. Stay tuned. *** .

tinclude <types.h>
#include <quickdraw.h>
#include <printing.h>

1* Printing Methods *1

#define
#define

bCraftLoop
bSpoolLoop

o
1

1* draft printing *1
1* spooling *1

1* Printer specification in prStl field of print record *1

tdefine
tdefine

bCevCItoh
bCevLaser

1 1* ImageWriter printer *1
3 1* LaserWriter printer *1

1* Maximum number of pages in a spool file *1

#define
tdefine

iPFMaxPgs
iP rPgE' ract

128 1* max pages in a spool file *1
120 1* paper units per inch -I

1* Result codes *1

#define
tdefine
tdefine
tdefine
#define

noErr 0
iPrSavPFil
iIOAbort
iMemFullErr
iPrAbort

1* no error *1
(-1) 1* saving spool file *1

(-27) 1* I/o abort error *1
(-108) 1* not enough room in heap zone -,

128 1* application or user requestec a::::=-: .'

1* Printer Driver Control Call Parameters *1

'define iPrCevCtl 7 1* device control *1
tdefine lPrReset OxOO010000 1* reset printer *1
tdefine lPrLineFeed oxO 0030 000 1* start new line *1
#define lPrLFSixth OxOOO3FFFF 1* standard 1/6" line feed -;
tdefine lPrPageEnd OxOO020000 1* start new page *1
tdefine iPrBitsCtl 4 1* bit map printing *1
tdefine lScreenBits 0 1* configurable *1
tdefine lPaintBits 1 1* n x 72 dots *1
tdefirre iPrIOCtl 5 1* text streaming *1

1* Printing Resources *1

#define sPrCrvr
tdefine iPrDrvrRef

1* Type definitions *1

typedef Rect *TPRect;

".Print" 1* Printer Driver resource name -I

(-3) 1* Printer Driver reference number °1

Alpha Draft Page5-3D 26 May 1986

Cortltind 1merjace Libraries printing CortLand Workshop C

typedef struct TPrPort
GrafPort gl?ort;
QDProcs gl?rocsj
long lGParaml;
long lGl?aram2;
long lGParam3;
long lGl?aram4;
Boolean fOurl?tr;
Boolean fOurBits;

Tl?rl?ort, *TPPrPort;

typedef struct TPrln!o
short iDev;
short iVRes;
short iHRes;
Rect rl?age;

Tl?rlnfo;

(

1* graph port to draw in *1
1* pointers to drawing routines *1
1* internal *1
1* internal *1
1* internal *1
1* internal *1
1* internal *1
1* internal *1

(

1* printer information *1
1* printer vertical resolution *1
1* printer horizontal resolution *1
1* page rectangle *1

~

typedef enum (feedCut,feedFanfold,feedMechCut,feedOther) ~Feed:

typedef struct Tl?rStl
short wDev;
short il?ageV;
short il?ageH;
char bPort;
TFeed feed;

Tl?rStl;

1* high byte specifies device *1
1* paper height *1
1* paper width *1
1* printer or modem port - ignored -I
1* paper type *1

typedef enum (scanTB,scanBT,scanLR,scanRL) TScan;

typedef struct TPrXlnfo (

short iRowBytes; 1* bytes per row *1
short iBandV; 1* vertical dots *1
short iBandH; 1* horizontal dots *1
short iDevBytes; 1* size of bit image *1
short iBands; 1* bands per page *1
char bl?atScale; 1* used by QuickDraw *1
char bUlThick; 1* underline thickness 'Ill
char bUlOf!set; 1* underline offset *1
char bUlShadow; . /* underline descender *1
TScan scan; 1* scan direction *1
char bXlnfoX; 1* not used *1

Tl?rXlnfo;

typedef struct Tl?rJob
short iFstl?age; 1* first page to print *1
short iLstl?age; 1* last page to print *1
short iCopies; 1* number of copies *1
char bJDocLoop; 1* printing method *1
Boolean fFromUsr;· 1* true if called from application -I
I?rocl?tr pldlel?roc; 1* background procedure *1
Stringl?tr pFileName; 1* spool file name *1 777
short iFileVol; 1* volume reference number *1
char bFileVers; 1* version number of spool file *1
char bJobX; 1* not used *1

Tl?rJob;

typedef struct TPrint {

ALpha Draft Page'S- 31 26 May 1986

Conland Workslwp C printing Conland Interface Libraries

iPrVersion; 1* Printing Manager version *1
prInfo; 1* printing information *1
rPaperi 1* paper rectangle *1
prStli /* style information *1
prlnfoPTi 1* copy of prlnfo *1
prXInfoi 1* band information *1
prJ'obi /* job information *1
printX(19J 1* internal *1

*TPPrint, **THPrinti

short
TPrlnfo
Rect
TPrStl
TPrlnfo
TPrXInfo
TPrJ'ob
short

TPrint,

typedef struct TPrStatus (
short iTotPagesi 1* total number of pages *1
short iCurPagei 1* page being printed *1
short iTotCopiesi 1* number of copies *1
short iCurCopYi 1* copy begin printed *1
short iTotSandsi 1* bands per page */
short iCurSandi 1* band being printed *1
Boolean fPgDirty; 1* true if started printing page *1
Boolean fIrnagingi /* true if imaging *1
THPrint hPrint; /* print record */
TPPrPort pPrPort; 1* printing port *1
PicHandle hPic; 1* internal */

TPrStatusi

1* Initialization and Termination *1

pascal void PrOpene)
pascal void PrClose()

1* Print Records and Dialogs *1

pascal void PrintDefault(hPrint)
THPrint' hPrint;

pascal Boolean PrValidate(hPrint)
THPrint hPrint;

pascal Boolean PrStlDialog(hPrint)
THPrint hPrint i

pascal Boolean PrJ'obDialog(hPrint)
THPrint hPdnti

pascal void PrJ'obMerge(hPrintSrc,hPrintDst)
THPrint hPrintSrc,hPrintDsti

1* Document Printing *1

pascal TPPrPort PrOpenDoc(hPrint,pPrPort,pIOBuf)
THPrint hPrint i

TPPrPort pPrPorti
Ptr- pIOBuf;

pascal void PrCloseDoc(pPrPort)
TPPrPort pPrPort:

pascal void prOpenPage(pPrPort,pPageFrame)
TPPrPort pPrPort:
TPRect pPageFramei

pascal void prClosePage(pPrPort)
TPPrPort pPrPort;

1* Spool Printing *1

A/phaDrajt Page 5-032 26 May 1986

Con/and Interface Libraries prinring Conland Workshop C

pascal void PrPicFile(hPrint,pPrPort,pIOBuf,pDevBuf,prStatus)
THPrint hPrint;
TPPrPort· pPrPort;
Ptr pIOBuf,pDevEuf;
TPrStatus *prStatus;

/* Handling Errors */

pascal short PrError()
pascal void PrSetError(iErr)

short iErr; .

/* Low Level Driver Access */

pascal void PrDrvrOpen()
pascal void PrDrvrClose()
pascal void PrCtlCall(iWhichCtl,lParaml,lParam2,lParam3)

short iWhichCtl;
long lParaml,lParam2,lParam3;

pascal Handle PrDrvrDCE()
pascal short PrDrvrVers()

DESCRlPTION

The Printing Manager supports printing on a variety of devices. Programs that call
Printing Manager routines should be linked with file PrintCalls.o.

••• True? •••

For more detailed infonnation see the Printing Manager chapter of Cortland Tools
Reference.

NOTE

The current Pascal implementation has additional constants and data types that
aren't documented in Cortland Tools Reference because they're not generally used.

**. True? •••

This interface follows the Conland Tools Reference.

Alpha Draft, PageS-33 26 May 1986

Conland Workshop C

NAME

quickdraw2-QuickDraw II

SYNOPSIS

quickdrcrw2 Con/and Interface Libraries

**'" This is the Mac code. The Cortland code will resemble it in functionality but
differ in form. Stay tuned. ***

tinelude <types.h>
tinelude <quiekdraw.h>

1* 16 Transfer Modes *1

tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
#define
tdefine
tdefine
tdefine
tdefine
#define
tdefine
#define

"reCopy
"reOr
sreXor
sreSie
notSreCopy
notSreOr
notSreXor
notSreSie
patCopy
patOr
patXor
patSie
notPatCopy
notPatOr
notPatXor
notPatSie

o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1* QuiekOraw Color Separation Constants *1

tdefine normalSit 0
#define inverseSit 1
#define red:Bit 4
#define greenSit 3
#define blueSit 2
*define eyanSit 8
#define . magentaSit 7
*define yellowSit 6
*define blaekBit 5
'define blaekColor 33
*define whiteColor 30
#define redColor 205
tdefine greenColor 341
#define blueColor 409
Mefine cyanColor 273
'define magentaColor 137
*define yellowColor 69

/* Picture Comments *1

#define picLParen 0
*define picRParen 1

/* Type Style Constants' *1

/* RGB Additive Mapping *1

/* CMYBk Subtractive Mapping *1

/* Colors Expressed in these Mappings •

,Alpha Draft Page5-34 26 May 1986

Conland lmerface Libraries quickdraw2 CorrLand Workshop C

fdefine
fdefine
tdefine
fdefine
fdefine
tdefine
tdefine
fdefine

normal
bold
italic
underline
outline
shadow
condense
expand

OxOO
OxOl
Ox02
Ox04
OxOS
OxlO
O~20

Ox40

/* Types */

typedef
typedef
typedef

unsigned char Pattern(S):
short Bits16(16):
enum (frame,paint,erase, invert, filll GrafVerb:

/* typedefs Style, Point, and Rect appear in file TYPES */

typedef struct FontInfo
short ascent:
short descent:
short widMax;
short leading:

FontInfo:

typedef struct BitMap
Ptr baseAddr:
short rowBytes:
Rect bounds:'

BitMap;

typedef struct Cursor
Bits16 data;
Bits16 mask:
Point hotSpot;

Cursor:

typedef struct PenState
Point pnLoc:
Point pnSize:
short pnMode:
Pattern pnPat:

PenState:

typedef struct Region
short rgnSize:
Rect rgnBBox:
short rgnData(O);

Region, *RgnPtr, **RgnHandle:

typedef struct Picture
short picSize:
Rect picFrame:
short picData(O):

Picture, *PicPtr, **PicHandle:

.typedef struct Polygon
short polySize:
Rect polyBBox;

Alpha Draft Page 5· 35 26 May 1986

Conland Workshop C quickdraw2 Cortland InJerface Libraries

Point polyPoints(O):
Polygon, *PolyPtr, **polyHandle;

typedef struct QDProcs
ProcPtr textProc;
ProcPtr lineProc;
Procptr rectProc:
ProcPtr rRectProc;
ProcPtr ovalProc:
ProcPtr arcProc;
ProcPtr polyProc;
Procptr rgnProc:
ProcPtr bitsProc:
Procptr commentProc;
ProcPtr txMeasProc;
ProcPtr getPicProc:
ProcPtr putPicProc:

QDProcs, *QDProcsPtr:

typedef struct GrafPort
short device;
BitMap portBits:
Rect portRect;
RgnHandle visRgn:
RgnHandle clipRgn;
Pattern bkPat;
Pattern fillPat;
Point· pnLoc;
Point pnSize:
short pnMode:
Pattern pnPat;
short pnVis:
short txFont;
Style txFace;
short txMode;
short txSize;
long spExtra;
long fgColor;
long bkColor:
short colrsit;
short patStretch;
PicHandle picSave;
RgnHandle rgnSave;
PolyHandle polySave;
QDProcsPtr grafProcs;

GrafPort, *GrafPtr;

;* Ext~rnal Variable Declarations *;

extern struct qd {
char private(78J;
long randSeed;
BitMap screenBits;
Cursor arrow;
Pattern dkGray;
Pattern ltGray:
Pattern gray;
Pattern black:

AlphaDrafr Page 5- 36 o 26 May 1986

Cortland Interface Libraries quickdraw2 Con/and Workshop C

Pattern
GrafPtr

qd:

white:
thePort:

1* GrafPort Routines *1

pascal void InitGraf(globalPtr)
Ptr globalPtr;

pascal void OpenPort(port)
GrafPtr port:

pascal void InitPort(port)
GrafPtr port;

pascal void ClosePort(port)
GrafPtr port:

pascal void SetPort(port)
GrafPtr port:

pascal void GetPort(port)
GrafPtr *port:

pascal void GrafDevice(device)
sho"rt device:

pascal void SetPortBits(bm)
BitMap *bm;

pascal void PortSize(width,height)
short width, height;

pascal void MovePortTo (leftGlobal, rightGlobal)
short leftGlobal,rightGlobal:

pascal void SetOrigin(h,v)
short h,v:

pascal void SetClip(rgn)
RgnHandle rgn:

pascal void GetClip(rgn)
RgnHandle rgn:

pascal void ClipRect(r)
Rect *r:

pascal void BackPat(pat)
Pattern *pat:

1* Cursor Routines *1

pascal void InitCursor()
pascal void SetCursor(crsr)

Cursor *crsr:
pascal void HideCursor()
pascal void ShowCursor()
pascal void ObscureCursor()

1* Line Routines *1

pascal void HidePen()
pascal void ShowPen()
pascal void GetPen(pt)

Point *pt; .
pascal void GetPenState(pnState)

PenState *pnState:
pascal void SetPenState(pnState)

PenS tate *pnState:
pascal void PenSize (width, height)

short width, height;

Alpha Draft
""

Page 5- 37 26 May 1986

Con/and Workshop C

pascal void PenMode(mode)
short mode:

pascal void PenPat(pat)
Pattern *pat:

pascal void PenNormal()
pascal void MoveTo(h,v)

short h,v:
pascal void Move (dh,dv)

short dh,dv:
pascal void LineTo(h,v)

short h,v;
pascal .void Line (dh,dv)

short dh,dv:

/* Text Routines */

quickdrCl'N2 Con/and. Jmerface Libraries

pascal void TextFont(font)
short font:

pascal void TextFace(face)
Style face:

pascal void TextMode(mode)
short mode:

pascal void TextSize(size)
short size;

pascal void SpaceExtra(extra)
long extra:

pascal void DrawChar(ch)
short chI

void DrawString(s)
char *13:

pascal void DrawText(textBuf,firstByte,byteCount)
Ptr textBuf:
short firstByte,byteCount;

pascal short CharWidth(ch)
short chI

short StringWidth(s)
char *13:

pascal short TextWidth(textBuf,firstByte,byteCount)
Ptr textEuf:
short firstEyte,byteCount;.

pascal void MeasureText(count,textAddr,charLocs)
short count;
Ptr textAddr,charLocs:

pascal void GetFontInfo(info)
E'ontInfo *info:

/* Drawing in Color */

pascal void E'oreColor~color)

long color:
pascal void EackColor(color)

long color:
pascal void ColorBit(whichBit)

short whichBit;

/* Rectangle Calculations */

pascal void SetRect(r,left,top,right,bottom)

Alpha Draft Page 5- 38

Conland Interface libraries quickdraw2 Cortland Workshop C

Rect *r:
short left,top,right,bottom;

pascal void otfsetRect(r,dh,dv)
Rect *r:
short dh,dv:

pascal void InsetRect(r,dh,dv)
Rect *r:
short dh,dv:

pascal Boolean SectRect(srcRectl,srcRect2,dstRect)
Rect *srcRectl,*srcRect2,*dstRect:

pascal void OnionRect(srcRectl,srcRect2,dstRect)
Rect *srcRectl,*srcRect2,*dstRect:

Boolean PtlnRect(pt,r)
Point *pt:
Rect *r:

void Pt2Rect(ptl,pt2,dstRect)
Point *ptl, *pt2:
Rect *dstRect:

void PtToAngle(r,pt,angle)
Rect *r:
Point *pt:
short *angle:

pascal Boolean EqualRect(rectl,rect2)
Rect *rectl,*rect2:

pascal Boolean EmptyRect(r)
Rect *r:

/* Graphical Operations on Rectangles */

pascal void FrameRect(r)
Rect *r:

pascal void PaintRect(r)
Rect *r:

pascal void EraseRect(r)
Rect *r:

pascal void InvertRect(r)
Rect *r:

pascal void FillRect(r,pat)
Rect *r:
Pattern *pat:

/* Oval Routines'*/

pascal void FrameOval(r)
Rect *r:

pascal void PaintOval(r)
Rect *r:

pascal.void EraseOval(r)
Rect *r:

pascal void InvertOval(r)
Rect *r:

pascal void FillOval(r,pat)
Rect *r:
Pattern *pat:

/* RoundRect Routines */

pascal void FrameRoundRect(r,ovalWidth,ovalHeight)

Alpha. Draft Page5-39 26 May 1986

Con/and Workshop C quickdraw2 Con/and Inrerface Libraries

Rect *r;
short ovalWidth,ovalHeight;

pa~cal void PaintRoundRect(r,ovalWidth,ovalHeight)
Rect *r;
short ovalWidth,ovalHeight;

pascal void EraseRoundRect(r,ovalWidth,ovalHeight)
Rect *r;
short ovalWidth,ovalHeight;

pascal void InvertRoundRect(r,ovalWidth,ovalHeight)
Rect *r;
short ovalWidth,ovalHeight;

pascal void FillRoundRect(r,ovalWidth,ovalHeight,pat)
Rect *r;
short ovalWidth,ovalHeight;
'Pattern *pat;

/* Arc Routines */

pascal void FrarneArc(r,startAngle,arcAnglel
Rect *r;
short startAngle,arcAngle;

pascal void PaintArc(r,startAngle,arcAngle)
Rect *r;
short startAngle,arcAngle;

pascal void EraseArc(r,startAngle,arcAngle)
Rect *r;
short startAngle,arcAngle;

pascal void InvertArc(r,startAngle,arcAngle)
Rece. *r;
short startAngle,arcAngle;

pascal void FillArc (r, startAngle, arcAngle, pat)
Rect *r;
short startAngle,arcAngle;
Pattern *pae.;

/* Region Calculations */

pascal RgnHandle NewRgn()
pascal void DisposeRgn(rgn)

RgnHandle rgn;
pascal void CopyRgn(srcRgn,dstRgn)

RgnHandle srcRgn,dstRgn;
pascal void SetEmpe.yRgn(rgn)

RgnHandle rgn;
pascal void SetRectRgn(rgn,left,t.op,right,bot.tom)

RgnHandle rgn;
short left,top,right,bot.tom;

pascal. void RectRgn(rgn,r)
RgnHandle rgn;
Rect *r;

pascal void OpenRgn()
pascal void CloseRgn(dstRgn)

RgnHandle dstRgn;
pascal void Offset.Rgn(rgn,dh,dv)

RgnHandle rgn;
shore. dh,dv;

pascal void InsetRgn(rgn,dh,dv)
RgnHandle rgn;

A/phaDrafr Page 5· 40 26 May 1986

Conland Interface Libraries quickdraw2 Coreland Workshop C

short dh,dv;
pascal void SectRgn(srcRgnA,srcRgnB,dstRgn)

RgnHandle srcRgnA,srcRgnB,dstRgn;
pascal void UnionRgn(srcRgnA,srcRgnB,dstRgn)

RgnHandle srcRgnA,srcRgnB,dstRgn;
pascal void DiffRgn(srcRgnA,srcRgnB,dstRgn)

RgnHandle srcRgnA,srcRgnB,dstRgn;
pascal void XorRgn (srcRgnA, srcRgnB,dstRgn)

RgnHandle srcRgnA,srcRgnB,dstRgn;
Boolean PtlnRgn(pt,rgn)

Point *pt:
RgnHandle rgn;

pascal Boolean RectlnRgn(r,rgn)
Rect *r;
RgnHandle rgn;

pascal Boolean EqualRgn(rgnA,rgnB)
RgnHandle rgnA,rgnB;

pascal Boolean EmptyRgn(rgn)
RgnHandle rgn;

1* Graphical Operations on Regions *1

pascal void FrameRgn(rgn)
RgnHandle rgn:

pascal void PaintRgn(rgn)
RgnHandle rgn;

pascal void EraseRgn(rgn)
RgnHandle rgn;

pascal void InvertRgn(rgn)
RgnHandle rgn;

pascal void FillRgn(rgn,pat)
RgnHandle rgn;
Pattern *pat:

1* Graphical Operations on Bit Maps *1

pascal void ScrollRect(r,dh,dv,updateRgn)
Rect *r;
short dh,dv;
RgnHandle updateRgn;

pascal void CopyBits(srcBits,dstBits,srcRect,dstRect,mode,maskRgn)
BitMap *srcBits,*dstBits;
Rect *srcRect,*dstRect;
short mode;
RgnHandle maskRgn;

pascal void SeedFill (srcPtr, dstPtr, srcRow, dstRow, height, words, seedJ-i, see::::":)
Ptr srcPtr,dstPtr;
short srcRow, dstROw, height, words;
short seedH,seedV;

pascal void CalcMask (sr=ptr,dstPtr, srcRow,dstRow, height, words)
·Ptr srcPtr,dstPtr:
short srcRow,dstRow,height,words;

pascal void CopyMask(srcBits,maskBits,dstBits,srcRect,maskRect,dstRect)
BitMap srcBits,maskBits,dstBits;
Rect *srcRect, *maskRect, *dstRect:

1* Picture Routines *1

Alpha Draft Page 5- 41

./

26 May 1986

CortLand Workshop C quickdraw2 ConLand Imerjace Libraries

pascal PicHandle OpenPicture(picFrame)
Rect *picFrame:

pascal void PicComment(kind,dataSize,dataHandle)
short kind,dataSize:
Handle dataHandle:

pascal void ClosePicture()
pascal void DrawPicture(myPicture,dstRect)

PicHandle myPicture:
Rect *dstRect:

pascal void KillPicture(myPicture)
PicHandle myPicture:

1* Polygon Calculations *1
,

pascal PolyHandle OpenPoly()
pascal void ClosePoly()
pascal void KillPoly(poly)

PolyHandle poly:
pascal void O££setPoly(poly,dh,dv)

PolyHandle poly:
short dh,dv:

1* Graphical Operations on Polygons *1

pascal void Framepoly(poly)
PolyHandle poly:

pascal void PaintPoly(poly)
PolyHandle poly:

pascal void ErasePoly(poly)
PolyHandle poly:

pascal void InvertPoly(poly)
PolyHandle poly:

pascal void FillPoly(poly,pat)
PolyHandle poly:
Pattern "pat:

1* Point Calculations "I

void AddPt(srcPt,dstPt)
. Point *srcPt,"dstPti

void SubPt(srcPt,dstPt)
Point *srcPt,"dstPti

pascal void SetPt(pt,h,v)
Point "pt:
short h,v:

Boolean EqualPt(ptl,pt2)
Point "ptl, *pt2:

pasca~ void LocalToGlobal(pt)
Point *pt:

pascal void GlobalToLocal(pt)
Point "pt:

1* Miscellaneous Utility Routines *1

pascal short Random()
pascal Boolean GetPixel(h,v)

short h,v:
void StuffHex(thingPtr,s)

ALpha Draft Page5-42 26 May /986

ConLand Interface Libraries quickdraw2 Conland Workshop C

Ptr thingPtr:
char *s:

pascal void ScalePt(pt,srcRect,dstRect)
Point *pt:
Rect *srcRect,*dstRect:

pascal void MapPt(pt,srcRect,dstRect)
Point·*pt:
Rect *srcRect,*dstRect:

pascal void MapRect(r,srcRect,dstRect)
Rect *r,*srcRect,*dstRect:

pascal void MapRgn(rgn,srcRect,dstRect)
RgnHandle rgn:
Rect *srcRect,*dstRect:

pascal void MapPoly(poly,srcRect,dstRect)
PolyHandle poly:
Rect *srcRect,-dstRect:

/* Bottleneck Interface */

pascal void SetStdProcs(procs)
QDProcsPtr procs:

void StdText(byteCount,textAddr,numer,denom)
short byteCount:
Ptr textAddr:
Point *numer, *denom:

void StdLine(newPt)
Point *newPt:

pascal void StdRect(verb,r)
GrafVerb verb:
Rect *r:

pascal void StdRRect(verb,r,ovalWidth,ovalHeight)
GrafVerb verb:
Rect *r:
short ovalWidth,ovalHeight:

pascal void StdOval(verb,r)
GrafVerb verb:
Rect *r:

pascal void StdArc(verb,r,startAngle,arCAngle)
GrafVerb verb:
Rect *r:
short startAngle,arcAngle:

pascal void StdPoly(verb,poly)
GrafVerb verb:
PolyHandle poly:

pascal void StdRgn(verb,rgn)
GrafVerb verb:
RgnHandle rgn:

pascal void StdBits(srcBits,srcRect,dstRect,mode,maskRgn)
BitMap *srcBits;
Rect *srcRect,*dstRect:
short mode:
RgnHandle 'maskRgn:

pascal void StdComment(kind,dataSize,dataHandle)
short kind,dataSize:
Handle dataHandle;

pascal short StdTxMeas(byteCount,textAddr,numer,denom,info)
short byteCount:
Ptr textAddr:

ALpha Draft PageS- 43 26 May 1986

Cortland Workshop C qui~kdraw2 Conland Interface Libraries

Point *numer, *denom; .
rontInfo *info;

pascal void StdGetPic(dataPtr,byteCount)
Ptr dacaPtr;
short byceCount;

pascal void Stdl?utPic(dataPtr,byceCount)
ptr dataPtr;
short byteCount;

USER ROUTINES

pascal void MyText(byceCount,textAddr,numer,denom)
short byteCount;
pt.r textAddr;
Point numer,denom;

pascal void MyLine(newPt)
Point newPt;

pascal void MyRect(verb,r)
GrafVerb verb;
Rect *r;

pascal void MyRRect(verb,r,ovWd,ovHt)
GrafVerb verb;
Rect *r;
short ovWd,ovHt;

pascal void MyOval(verb,r)
GrafVerb verb;
Rect *r;

pascal void MyArc(verb,r,startAngle,arcAngle)
GrafVerb verb;
Rect *r;
short startAngle,arcAngle;

pascal void MyPoly(verb,poly)
GrafVerb verb;
PolyHandle poly;

pascal void MyRgn (verb, rgn)
GrafVerb verb;
RgnHandle rgn;

pascal void MyBits(srcSits,srcRect,dstRect,mode,masKRgn)
BitMap *sreSits;
Rect *srcRect,*dstRect;
short mode;
RgnHandle maskRqn;

pascal void MyComment(kind,dataSize,dataHandle)
short kind,dataSize;
Handle dataHandle;

pascal short MyTxMeas(byteCount,textAddr,numer,denom,info)
short byteCount;
Pt~ textAddr;
Point *numer,*denom;
rontInfo *info;

pascal void MyGetl?ic(dataPtr,byteCount)
Ptr dataPtr;
short byteCount;

pascal void MyPutPic(dataPtr,byteCount)
Ptr dataPtr;
short byteCount;

Alpha Draft Page5-44 26 May 1986

Conland Interface Libraries

DESCRIPTION

quickdraw2 Cortland Workslwp C

QuickDraw n is the Cortland graphics package. It is based on a subset of the
Macintosh QuickDraw subroutines, which support the operations useful in menus
and windews, such as drawing lines, drawing text characters, and filling areas. In
addition, QuickDraw II supports Cortland's standard display mode, the new color
super Hi-Res Graphics. .

For more detailed information see the QuickDraw chapter of Conland Tools
Reference.

WARNING

User routines MyText and MyLine are not identical to their counterparts StdText
and StdLine. Point parameters to MyText and MyLine are passed by value; the
corresponding parameters to StdText and StdLine are passed by reference.

U$ True for Cortland? lI<U

Alpha Draft Page 5- 45 26 May 1986

Conland Worbhop C

Alpha Draft

quickdraw2 Conland1ruerface Libraries

26 May 1986

NAME

sane-5ANE Numerics

SYNOPSIS

U* This should be exactly like the Macintosh SANE C library. Is it? **"'

#include <sane.h>

1* Decimal Representation Constants *1

#define SIGDIGLEN
#define DECSTROUTLEN

20
80

1* significant decimal digits
1* max length for decimal st=:~;

1* Decimal Formatting Styles *1

#define FLOATDECIMAL

#define FIXEDDEClMAL

1* Exceptions *1

o

1

#define
#define
#define
#define
tdefine

INVALID
UNDERFLOW
OVERFLOW
DIVEYZERO
INEXACT

1
2
4
8

16

1* Ordering Relations *1

#define

#define
tdefine
tdefine

GREATERTHAN

LESSTHAN
EQUALTO
UNORDERED

o

1
2
3

1* Inquiry Classes *1

tdefine
tdefine
tdefine
#define
tdefine
#define

SNAN
QNAN
INFINITE
ZERONUM
NORMALNUM
DENORMALNUM

o
1
2
3
4
5

1* Rounding Directions *1

tdefine
tdefine
tdefine
tdefine

TONEAREST
UPWARD
DOWNWARD
TOWARD ZERO

o
1
2
3

1* Rounding Precisions *1

.ALpha Draft Page 5- 47 26 May 1986

Cortland Workshop C ConlOJUi Jnrerface Libraries

Jdefine EXTPRECISION 0
tdefine D8LPRECISION 1
tdefine FLOATPRECISION 2

typedef short exception; 1* sum of INVALID ... INEXAC:

~ypedef shor~ relop; 1* relational operator

typedef short numclass; /* inquiry class

typedef shor~ rounddir; 1* rounding direction

typedef short roundpre; /* rounding precision

typedef short environment;

<t,

..'

typedef struct decimal
char sgn, unused;
short exp;
struct (unsigned char

) decimal;

1* sign 0 for +, 1 for
1* decimal exponent

length, text(SIGDIGLEN1, unused}
1* significant digits

S '_·-':I'

.. i

.. ,

typedef struct decform
char style, unused;
shor~ digits;

decform;

1* FLOATDECIMAL or FIXEDDECI~~L <t /

typedef void (*haltvector) ();

1* Conversions between Binary and Decimal Records */

void num2dec(f/x,d)
decform *f:
ex~ended x;
decimal *d;

ex~ended dec2num(d)
decimal *d:

/* d <-- x, according to fo~.at ~

1* returns d as extended 11' ,/

1* Conversions between Decimal Records and ASCII Strings */

void dec2s~r(f,d,s)

decform *f;
decimal *d;
char *s;

1* s <-- d, according to formac f '"

void itr2dec(s,ix/d/vp)
char *5;
short *ix, *vp:
decimal *d;

1* on input ix is starting index into Sf on
1* output ix is one greater than index of ~as~<t:

I'" character of longest numeric subst=i:lg; <t.'

1* boolean vp .. Its begining at given ix is a "/
1* valid numeric string or a valid prefix of ",'
/* some numeric .string" "/

/* Arithmetic, Auxiliary, and Elementary Functions *1

extended fabs(x)

Alpha Draft

1* absolute value

Page 5- 48 26 May 1986

"/

Cortland Interface Libraries

extended x;
extended remainder (x,y,quo)

extended x,y;
short *quo;

extended sqrt(x}
extended x;

extended rint(x}
extended x;

extended scalb(n.x)
short n;
extended x;

extended 10gb (x)
extended x;

extended copysign(x,y}
extended x,y;

extended nextfloac(x,y)
extend,ed x,y;

extended nextdouble(x,y}
extended x,y;

extended nextextended(x,y}
extended x,y;

extended 10g2 (x)
extended x;

extended log (x)
extended x;

extended 10g1 (x)
extended x:

extended exp2(x}
extended x;

extended exp(x}
extended x;

extended exp1(x}
extended x;

extended power(x,y}
extended x,y;

extended ipower(x,i}
extended x;
short i;

extended compound(r,n}
extended r,n:

extended annuity(r,n)
extended r,n;

extended tan (x)
extended x;

extended sin (x)
extended x;

extended cos (x)
extended x;

extend~d atan (x)
extended x;

extended randomx(x)
extended *x;

/* Inquiry Routines *1

numclass class float (x)
extended x;

numclass classdouble(x}

Cortland Workshop C

/* IEEE remainder: quo <-- 7 low or~er

/* bits of integer quotient x/y,
/* -127 <- quo <- 127
1* square root

1* round to integral value

/* binary scale: x * 2 A n;

/* binary log:
/* binary exponent of normalized x
/* y with sign of x

/* next float representation after
/* (float) x in direction of (floa:)
/* next double representation after
/* (double) x in direction of (doub:el
/* next extended representation af~e= x
/* in direction of y
1* base-2 log

/* base-e log

/* 10g(1 + x)

1* base-2 exponential

1* base-e exponential

/* exp(x} - 1

/* general exponential: x y

/* integer exponential: x ,

/* compound: n + r} A n

/* annuity: (1 - (1 + r) A (-n) } / r

/* tangent

1* sine

/* cosine

/* arctangent

/* returns next random number; updates
/* x integral,' 1 <- x <- 2 A 31 - 2

/* class of (float) x

, /* class of (double) x

w /

· ,

w ..

WI

·;
Wi

W /

y 1f/

~ / .

.. ;

" ;'

.. /

tt/

• I

" .I

,,/

",

W I

" ,

wi

WI

X,' 'll'

" /

" ..I

AiphaDrajr Page 5- 49 26 May 1986

Cortland Workshop C

extended x;
nurnc~ass classcomp(x)

extended x;
nurnclass classext.ended (x)

extended x;
long signnurn(x)

extended x;

Conland Interface Libraries

/* class of (comp) x

/* class of x

/* returns ° for +, 1 for -

/* Environment Access Routines */
/* An exception variable encodes the exceptions

whose sum is its value */

\

void setexception (e,s)
exception e;
long s;

long testexception(e)
exception e;

void sethalt(e,s)
exception e;
long s;

long testhalt(e)
exception e;

void setround(r)
rounddir r;

rounddir getround()
void setprecison(p)

roundpre p;
roundpre getprecsion()
void setenvironment(e)

environment e;
void getenvironment(e)

environment *e;
void procentry(e)

environment *e;
void procexit(e)

environment e;
haltvector gethaltvector()
void sethaltvector(v)

haltvector v;

/* Comparision Routine */

/* clrs e flags if s is 0, sets e ::ags T

/* otherwise; may cause halt

/* returns 1 if any e flag is set, "/
/* returns ° otherwise T '

/* disables e halts if s is 0, -;
/* enables e halts otherwise "I

/* returns 1 if any e halt is enabled, ";
/* returns 0 otherwise Tj

/* sets rounding direction to r "/

/* returns rounding direction -;
/* sets rounding precision to p "'

/* returns rounding precision .,
/* sets environment to e TI

/* e <-- environment "j

/* e <-- environment; "o'
/* environment <-- IEEE default
/* temp <--exceptions; enviro~~e~t <-- e: T

/* signals exceptions in temp "/
/* returns halt vector "j

/* halt vector <-- v ";

relop relation(x,y)
extended x,y;

/* returns relation such that
/* "x relation y" is true

TI
T /

/* NaNs and Special Constants */

extended nan (c)
unsigned char c;

extended inf ()
extended pi ()

DESCRIPTION

/* returns NaN with code c

/* infinity
/* pi

"I

• ,I

• I

These routines together with Apple's C language fully support the Standard Apple
Numeric Environment (SANE). They provide a scrupulously conforming
implementation of extendedaprecision floating-poine arithmetic as specified by IEEE

AlphaDrajr Page5 a 50 26 May 1986

Conland Interface Libraries Conland Workshop C

Standard 754. The SANE Tool Set contains the same routines as Pack 4, Pack 5,
and Pack 7 of the Macintosh Toolkit.

The Standard Apple Numeric Environment is documented in the Apple Numerics
Manual.

Alpha Draft PageS-51 26 May 1986

Con/and Workshop C

NAME

scheduler-Scheduler

SYNOPSIS

This code will be added later.

DESCRlPTION

scheduler Con/and Inteiface Libraries

The Scheduler makes it possible to delay the execution of tasks that require non
reentrant system code whenever that code is already in use. Non-reentrant
resources indicate that they are in use by modifying a flag called the Busy Word.
The Scheduler maintains a queue of processes waiting to use non-reentrant
resources. By keeping track of the Busy Word, the Scheduler determines when to
activate the next process in the queue.

For more detailed infonnation, see the "Scheduler" chapter of the Con/and Tools
Reference.

A/phaDraft PageS-52 26 May 1986

Conland Interface Libraries

NAME

scrap-Scrap Manager

SYNOPSIS

scrap Conland Workshop C

*** This is the Mac code. The Cortland code will resemble it in functionality but
differ in form. Stay tuned. "'** .

• include <types.h>
.include <scrap.h>

.define noScrapErr
tdefine noTypeErr

(-100)
(-102)

1* desk scrap isn't initialized *j

1* no data of the requested ~ype */

typedef struct ScrapStuff
long scrapSize;
Handle scrapHandle;
short scrapCount;
short scrapState;
Stringptr scrapName;

ScrapStuff, *PScrapStuff;

1* Getting Desk Scrap Information *1

pascal PScrapStuff InfoScrap()

1* Keeping the Desk Scrap on the Disk *1

pascal long UnloadScrap()
pascal long LoadScrap()

1* Reading from the Desk Scrap *1

pascal long GetScrap (hDest, theType, offset)
Handle hDest;
ResType theType;
long *offset;

I- Writing to the Desk Scrap *1

pascal long ZeroScrap()
pascal long PutScrap(length,theType,source)

long length; •
ResType theType;
Ptr source;

DESCRIPTION

The Scrap Manager provides a mechanism for cutting and pasting between
applications and desk accessories.

For more detailed information see the Scrap Manager chapter of the Cortland Tools
Reference.

AlphaDrajr PageS-53 26 May 1986

Corr/and Workshop C

NAME

segload--Segment Loader

SYNOPSIS

segioad Con/and In!erface Libraries

*'II'" This is the Mac code. The Cortland code will reseIIlble it in functionality but
differ in form. Stay runed. *'II'"

#include <types.h>
#include <segload.h>

/* Message returned by CountAppFiles */

#define appOpen
#define appPrint

typedef struct AppFile
short vRefNum;
OSType fType;
short versNum;
Str255 fName;

AppFile;

o
1

/ * Open the document (s) '* /
/* Print the document(s) '*/

/* volume reference number '*/
/* file type */
/* version number */
/* file name */

pascal void UnloadSeg(routineAddr)
Ptr routineAddr;

void CountAppFiles(message,count)
short *message,*count;

void GetAppFiles(index,theFile)
short index;

. AppFile *theFile;
void ClrAppFiles(index)

short index;
void GetAppParms(apName,apRefNum,apParam)

char *apName;
short *apRefNum;
Handle *apParam;

pascal void txitToShell()

DESCRIPTION

The Segment Loader is the part of the Conland Toolbox that lets you divide your
application into several parts and have only some of them in memory at a time.
When an application ~tarts up, the Segment Loader also provides it with a list of
files to open or print.

*** True? *'II.

For more detailed information see the Segment Loader chapter of the Con/and
Tools Reference.

AlphaDraft . Page5-54 26 May 1986

Coniand Interface Libraries

NAME

sound-Sound Manager

SYNOPSIS

sowui Con/and Workshop C

**- This is the Mac code. The Cortland code will resemble it in functionality but
differ greatly in fonn. Stay tuned. u_

tinclude <types.h>
tinclude <sound.h>

1* Mode values for synthesizers *1

tdefine
tdefine
tdefine

sWMode
ftMode
ffMode

(-1)

1
o

1* square-wave synthesizer *1
1* four-tone synthesizer ~I

1* free-form synthesizer *1

1* Free-Form synthesizer *1

typedef unsigned char FreeWave(30001);

typedef struct
short
Fixed
FreeWave

FrSynthRec,

FrSynthRec
mode;
count;
waveBytes;

*FrSynthPtr;

1* always ffMode *1
1* "sizing" factor *1
1* waveform description *1

1* Square-Wave synthesizer *1

typedef struct.Tone (
short count;
short amplitude;
short duration;

Tone;

typedef Tone Tones(5001];

1* frequency *1
1* amplitude, 0-255 *1
1* duration in ticks *1

typedef struct
short
Tones

SWSynthRec,

SWSynthRec
mode;
triplets;

*SWSynthPtr;

1* always swMode *1
1* sounds *1

1* Four-Tone Synthesizer *1

typede~ unsigned char Wave(256);

typedef Wave *WavePtr;

typedef struct
short
Fixed
long
Fixed
long

FTSoundRec
duration;
sound1Rate;
sound1Phase;
sound2Rate;
sound2Phase;

1* duration in ticks *1
1* tone 1 cycle rate *1
1* tone 1 byte offset *1
1* tone 2 cycle rate *1
1* tone 2 byte offset ~I

A/phaDraft PageS-55 26 May 1986

Cortland Workshop C sound· Corr/and Interface Libraries·

Fixed
long
Fixed
long
WavePtr
WavePtr
WavePtr
WavePtr

FTSoundRec,

sound3Rate:
sound3Phase:
sound4Rate:
sound4Phase;
soundlWave;
sound2Wave:
sound3Wave:
sound4Wave:

*FTSndRecPtr:

/* tone 3 cycle rate */
/* tone 3 byte offset */
/* tone 4 cycle rate */
/* tone 4 byte offset */
/* tone 1 wave form */
/* tone 2 wave form */
/* tone 3 wave form */
/* tone 4 wave form */

typedef struct FTSynthRec {
short mode:
FTSndRecPtr sndRec:

} FTSynthRec, *FTSynthPtr;

/* always ftMode */
/* tones to play */

void StartSound(synthRec,numBytes,completionRtn)
Ptr synthRec:
long numBytes:
ProcPtr completionRtn;

void StopSound ()
Boolean SoundDone()
void GetSoundVol(level)

short *level:
void SetSoundVol(level)

short level

DESCRIPTION

The Sound Manager is a Cortland device driver for handling sound and music
generation in a Cortland application. It provides access to the Ensoniq chip.

For more detailed information see the Sound Manager chapter of Corr/and Tools
Reference.

A/phaDraft PageS-56 26 May 1986

Conland Interface Libraries

NAME

text-Text Screen Tools

SYNOPSIS

textscreen Conland Workshop C

*** The code for this will be added later. "'**

DESCRIPTION .

The Text Screen Tools make it possible for applications to use the text maodes
without switching modes and moving to bank zero.

For more detailed information see the TextEdit chapter of Conland Tools
Reference.

Alpha Draft 26 May 1986

Con/and Workshop C

NAME

toolloc-Tool Locator

SYNOPSIS

This code will be added later.

DESCRIPTION

too/Joc Con/fJlId InJerface Libraries

The Tool Locator provides the mechanism for dispatching tool calls. It allows tool
sets to reside either in ROM or in RAM, transparently to an application.

For more detailed information see the Tool Locator chapter of Con/and Tools
Reference.

A/phaDrafr PageS-58 26 May 1986

Cortland Interface Libraries

NAME

types--common defines and types

SYNOPSIS

types Cortland Workshop C

Ulir This is the Mac code. It is not known how the corresponding ConIand code
will resemble it. Stay tuned. u*

*include <types.h>

fdefine nil 0
tdefine NULL 0

typedef enurn {false, true) Boolean;
typedef char *Ptr;
typedef Ptr *Handle;
typedef long (*ProcPtr) () i

typedef ProcPtr *ProcHandle;
typedef long Fixed;
typedef unsigned long ResType;
typedef long OSType;
typedef short OSErr;
typedef short Style;
typedef struct Point

short V;
short h;

) Point;
typedef struct Rect

short top;
short left;
short bottom;
short right;

Rect;

tdefine String(size) struct {\
unsigned char length; unsigned char text(size)i)

typedef String(2SS) Str2SS, *StringPtr, **StringHandle:

DESCRIPTION .

These defines and types are shared by several Conland libraries.

The define String approximates Pascal strings. It creates a struct, not an array.
Remember to use & when passing structs as parameters.

Alpha Draft PageS-59 26 May 1986

Cortland Workshop C

NAME

windows-Window Manager

SYNOPSIS

windows Cortland Inierface Libraries

'Ii This is the Mac code. The Cortland code will resemble it in functionality but
differ in form. Stay tuned. u*

tinclude <types.h>
tinclude <quickdraw.h>
tinclude <windoW3.h>

/* Window Definition Procedure ID3 */

tdefine documentProc 0
'define dEoxProc 1
#define plainDBox 2
tdefine altDBoxProc 3
tdefine noGrowDocProc 4
tdefine rDocProc 16

/* Type3 of Windows */

#define dialogKind' 2
'define userKind 8

/* rindWindow Re3ult Codes */

'define inDesk 0
'define inMenuBar 1
'define inSysWindow 2
'define inContent 3
'define inDrag 4
'define inGrow 5
'define inGoAway 6
'define inZoomln 7
'define inZoomOut 8

/* Axi3 Con3traints for DragGrayRgn */

'define noCon3traint 0
'define hAxisOnly 1
#define ~AxisOnly 2

/* Mes3ages to window definition function3 */

fdefine wDraw 0
fdefine wHit 1
'define wCalcRgns 2
fdefine wNew 3
'define wDispose 4
'define wGrow 5
#define wDrawGlcon 6

/* defProc Hit Test Codes */

Alpha Draft Page 5- 60 2Q May 1986

Cortland Inrerface Libraries

fdefine wNoHit 0
fdefine wlnContent 1
tdef.ine wlnDrag. 2
tdefine wlnGrow 3
fdefine wInGoAway 4
fdefine wInZoomln 5
tdefine wlnZoomOut 6

tdefine deskPatID 16

typedef GrafPtr WindowPtr;

windows Corrland Workshop C

typedef struct WindowRecord
GrafPort port;
short windowKind;
Boolean visible;
Boolean hilited;
Boolean goAwayFlag:
Boolean spareFlag;
RgnHandle strucRgn;
RgnHandle contRgn;
RgnHandle updateRgn;
ProcHandle windowDefProc;
Handle dataHandle;
StringHandle titleHandle;
short titleWidth;
struct ControlRecord **controlList;
struct WindowRecord *nextWindow;
PicHandle windowPic;
long refCon;

WindowRecord, *WindowPeek;

1* Initialization and Allocation *1

pascal void InitWindows()
pascal void GetWMgrPort(wPort)

GrafPtr *wPort:
WindowPtr NewWindow (wStorage,boundsRect, title,visible,proc::,ber.~~~,

goAwayFlag,refCon)
Ptr wStorage;
Rect *boundsReci;
char *title:
Boolean visible;
short procID:
WindowPtr behind;
Boolean goAwayFlag;
long refCon;

pascal. WindowPtr GetNewWindow (windowID, wStorage,behind)
short windowID:
Ptr wStorage;
WindowPtr behind;

pasc?l void CloseWindow(theWindow)
WindowPtr theWindow;

pascal void DisposeWindow(theWindow)
WindowPtr theWindow;

1* Window Display *1

Alpha Draft Page 5- 61 26 May 1986

Con/and Workshop C windows Con/~/meifoceUbrori~

void SetWTitle(theWindow,title)
WindowPtr theWindow:
char "'title;

void·GetWTitle (theWindow, title)
WindowPtr theWindow;
char *title;

pascal void SelectWindow(theWindow)
WindowPtr theWindow;

pascal void HideWindow(theWindow)
WindowPtr theWindow;

pascal void ShowWindow(theWindow)
WindowPtr theWindow;

pascal void ShowHide(theWindow,showFlag)
WindowPtr theWindow;
Boolean showFlag:

pascal void HiliteWindow(theWindow,fHiLite)
WindowPtr theWindow;
Boolean fHiLite:

pascal void BringToFront(theWindow)
WindowPtr theWindow:

pascal void SendEehind(theWindow,behindWindow)
WindowPtr theWindow;
WindowPtr behindWindow:

pascal WindowPtr FrontWindow()
pascal void OrawGrowIcon(theWindow)

WindowPtr theWindow;

/* Mouse Location */

short FindWindow(thePt,theWindow)
Point *thePt;
windowPtr *theWindow:

Boolean TrackGoAway(theWindow,thePt)
WindowPtr theWindow:
Point *thePt;

pascal Boolean TrackBox(theWindow,thePt,partCode)
WindowPTr theWindow: .
Point ·thept:
short partCode;

/* Window Movement and Sizing */

pascal void MoveWindow(theWindow,hGlobal,vGlobal,front)
WindowPtr theWindow;
short hGlobal,vGlobal;
Boolean front:

void OragWindow(theWindow,startPt,boundsRect)
WindowPtr theWindow:
Point *startPt:
Rect *boundsRect;

long GrowWindow(theWindow,startPt,sizeRect)
windowPtr theWindow:
Point *startPt.:

. Rect *sizeRect;
pascal void SizeWindow(theWindow,w,h,fUpdate)

WindowPtr theWindow;
short w,h:
Boolean fUpdate;

A/phaDraji Page 5- 62 26 MaY 1986

Conland Interface lJbraries windows Cortland Workshop C

pascal void ZoornWindow(theWindow,partCode,front)
WindowPtr theWindow;
short partCode:
Boolean front:

1* Update Region Maintenance *1

pascal void InvalRect(badRect)
Rect "'badRect:

pascal void InvalRgn(badRgn)
RgnHandle badRgn:

pascal void ValidRect(goodRect)
Rect "'goodRect:

pascal void ValidRgn(goodRgn)
RgnHandle goodRgn:

pascal void BeginUpdate(theWindow)
WindowPtr theWindow:

pascal void EndUpdate(theWindow)
WindowPtr theWindow;

1* Miscellaneous Utilities "'I

pascal void SetWRefCon(theWindow,data)
WindowPtr theWindow:
long data;

pascal long GetWRefCon(theWindow)
WindowPtr theWindow;

pascal void SetWindowPic(theWindow,pic)
WindowPtr theWindow:
PicHandle pic;

pascal PicHandle GetWindowPic(theWindow)
WindowPtr theWindow;

long PinRect(theRect,thePt)
Rect "'theRect:
Point "'thePt:

long DragGrayRgn(theRgn,startPt,lirnitRect,slopRect,axis,actionProc)
RgnHandle theRgn:
Point "'startPt:
Rect "'lirnitRect:
Rect "'slopRect:
short axis;
ProcPtr actionProc:

I'" Low-Level Routines "'I

pascal Boolean CheckUpdate(theEvent)
struct EventRecord *theEvent:

pascal void ClipAbove(window)
WindowPeek window:

pascal void SaveOld(window)
WindowPeek window:

pascal void Dra~New(window,update)

WindowPeek window;
Boolean update:

pascal void PaintOne(window,clobberedRgn)
WindowPeek window:
RgnHandle clobberedRgn;

pascal void PaintBehind(startWindow,clobberedRgn)

Alpha Draft Page 5- 63 26 May 1986

Conland. Workshop C windows Conland Interface Libraries

WindowPeek startWindow;
RgnHandle clobberedRgn;

pascai void CalcVis(window)
WindowPeek windpw;

pascal void CalcVisBehind(startWindow,clobberedRgn)
WindowPeek startWindow;
RgnHandle clobberedRgn;

USER ROUTINES

pascal MyAction()

pascal long MyWindow(varCode,theWindow,message,param)
.short varCode;
WindowPtr theWindow;
short message;
long param;

DESCRlPTION

The Window Manager provides routines for creating and manipulating windows. It
creates them, activates them, moves them, resizes them, and closes them in
response to calls from an application. It keeps track of overlapping windows and
posts an event so the application can redraw newly uncovered windows. When the
user presses the mouse button, the Window Manager tells the application which
pan of which window the cursor was in.

For more detailed information see the Window Manager chapter of Corrland Tools
Reference.

Alpha Draft Page 5· 64 26 May 1986

SANE SANE Data Types

Chapter 6

Conland Workshop C

SANE and the C SANE Library

This chapter describes the Standard Apple Numeric Environment (SANE) and the routines
contained in the SANE library CSANELib.o. SANE is the basis for all floating-point
mathematical calculations performed by Cortland Workshop C. It meets all requirements
for extended-precision floating-point arithmetic as prescribed by IEEE Standard 754.
The chapter contains three parts:

• A discussion of the floating-point data types provided. by SANE.
• A description of the constants and types used. in the C SANE library.

,. A description of the functions contained. in the C SANE library.

SANE ensures that all floating-point operations are performed. consistently and that they
rerum the most accurate results possible.

SANE provides an easy-to-use, flexible environment for floating-point calculations. It
gives you extremely accurate results without extra coding. You can write C programs that
use only the standard C float type and be confident that your results are as accurate as
possible within that format

Programmers who are interested. in precision beyond that possible using only the float type
can use the other floating-point types provided. as an extension to C by SANE. In additIOn.
the SANE library contains numerical functions not found in standard C and routines for
controlling the environment in which floating-point calculations are performed.

If you are using CPW C for advanced. numerical programming, you might be interested in
the complete and detailed. description of SANE, which is contained in the Apple Numerics
Manual, available from your Apple dealer.

The SANE Data Types

Conland Workshop C supplements the float type with three others: double,
extended, and compo

A Note on Terminology

SANE' is designed. to be a generic system that can be used. with a variety of high-level
languages. SANE provides the three floating-point types specified. by the IEEE Standard
(where they are called. single, double, and extended). CPW C uses the SANE type
single as the C type float.

Descriptions of the Types

AlphaDrajr • Page 6·1 26 May 1986

Cortland Workshop C SANE Data Types SANE

The float. type is the smallest format for use with floating-point numbers. It stores
floating-point numbers using 32 bits of storage.

The double type is twice the size of the float type. It uses 64 bits for storage.

The ext.ended type is larger yet-it uses an 80-bit format. All arithmetic involving real
type values is done using the extended type.

The comp type stores integral values in a 64-bit format. Arithmetic done with operands of
type comp uses the extended type. Results assigned to a variable of type comp are
convened from extended.

Choosing a Data Type

Typically, picking a data type requires that you determine the trade-offs between

• fIxed- or floating-point form
• precision
• range
• memory usage

The precision, range, and memory usage for each SANE data type are shown in Table 5-1.
SANE Data Types.

Many programs require a counting type that counts things (pennies, dollars, widgets)
exactly. Using SANE, you can write a program that deals with monetary values by
representing these values as integral numbers of cents or mils, which can be stored exactly
in the comp type. The sum, difference, or product of any two comp values is exact if the
magnitude of the result does not exceed 263-1 (that is, 9,223,372,036,854,775,807). ThIS
number is larger than the U.S. national debt expressed in Argentine peSos. In addition,
comp values (for example, the results of accounting computations) can be mixed with
extended values in floating-point computations (such as compound interest).

Arithmetic with comp-type variables, like all SANE arithmetic, is done internally using the
extended type for arithmetic. There is no loss of precision, as conversion from comp to
extended is always exact. You can save by storing numbers in the comp type, which is
20 percent shoner than extended (64 versus 80 bits).

Values Represented

The floating-point types (float, double, and extended) store binary representations
of a sign (+ or -), an exponent, and a significand. A represented number has the
value

± signijicand ,. 2exponent

where the significand has a float bit to the left of the binary point (that is,
o ~ signijicand < 2).

AlphaDrajt Page 6-2 26 May 1986

SANE SANE Data Types Con/and Workshop C

Range and Precision of SANE Types

The range and precision of the floating-point types supported by SANE and CPW C are
shown in Table 5-1. Decimal ranges are expressed as chopped two-digit decimal
representations of the exact binary values.

Table 5-1. SANE Data Types

Type identifier :float double eomp extended
Size (bytes:bits) 4:32 8:64 8:64 10:80
Binary exponent range
Minimum -126 -1022 16383
Maximum 127 1023 16383

Signific~d
precision

Bits 24 S3 63 64
Decimal digits 7-8 15-16 18-19 19-20

Decimal range
(approximate)

Min negative -3.4E+38
Max neg norm -1.2E-38
Max neg denorm -1.SE-45
Min pos denorm 1.5E-4S
Min pos norm 1.2E-38
Max positive 3.4E+38

-1.7E+308
-2.3E-308
-5.0E-324

5.0E-324
2.3E-308
1.7E+308

=9.2E18 -1.1E+4932
-1.7E-4932
-1.9E-4951

1.9E-4951
1.7E-4932

...9.2EI8 1.1E+4932

Infmities

NaNs

Example

Yes

Yes

Yes

Yes

No

Yes

Yes

Yes

Using the float type. the largest representable number has

signijicand

exponent
value

= 2 - 2-23
= 1.111111111111111111111112
=127
(2 - 2-23) '" 2127

,...3.403 '" 1038

the smallest representable positive normalized number ,has

significand =1
=1. 2

exponent =-126
value =1 .. 2-126

Alpha Draft Page 6-3 26 May 1986

Conland Workshop C SANE Data Types

""1.175 >II 10-38

SANE

and the smallest represenuble positive denonnalized number has

significand.

exponent
value

The float. Type

=2-23
=0.0000000000000000000000 12
=--126
=2-23 '" 2-126

-10401 >II 1O-4S

A 32-bit float number is divided into three fields as shown below.

u. copy of figure on page 16 of Apple NUmerics Manual """*

Figure 6·1: float type

The value v of the number is determined by these fields:

\

IfO < e < 255,

If e : °and/-= 0,
If e: °and/: 0,
Ife: 255 and/: 0,
If e : 255 and/-= 0,

The double Type

then v: (-1)S '" 2(e-127) >II (lj).
then v: (-1)$ "'2(-126) >II (OJ).

then v: (-1)S '" 0.
then v : (-1)$ '" -.
then v is a NaN.

A 64-bit double number is divided into three fields as shown below.

"""* copy of top figure on page 17 of Apple Numerics Manual """.

FIgure 6·2: double type

The value v of the number is determined by these fields:

IfO<e<2047,

If e : °aIld/-= 0,
If e : °and/::: 0,
If e: 2047 and/: 0,
If e: 2047 and/-= 0,

The C omp Type·

then v: (-1)S "'2(e-l023) '" (1./).
then v : (-1)S *2(-1022) '" (OJ).
then v::: (-1)S * 0.
then v : (-1)$ • -.
then v is a NaN.

A 64-bit comp number is divided into two fields as shown below.

AiphaDrafr Page 6-4 26 Ma)' 1986

SANE SANE Data Types Coniand WorksJuJp C

*** copy of bottom figure on page 17 of Apple Numerics Manual **'"
Figure 6·3: Comp type

The value v of the number is determined by these fields:

If s : 1 and d : 0,
Otherwise,

The ext ended Type

then v is the unique comp NaN.
v is the two's-complement value of the 64-bit representation,

An 80-bit extended format number is divided into four fields as shown below.

*** copy of figure on page 18 of Apple Numerics Manual ***
Figure: 6-4: Extended Type

The value v of the number is determined by these fields:

If 0<: e < 3'4.767,
If e: 32767 and/: 0,
If e == 32767 and/~ 0,

then v: (-I)S *2(e-16383) • (i./).
then v == (-I)S *00, regardless of i.
then v is a NaN, regardless of i.

Extended Arithmetic

While the CPW C types float, double, and comp are intended for economical data
storage, the extended type is the foundation for all arithmetic computation. As specified
by the IEEE Standard, all basic arithmetic operations, including addition, subtract,
multiply, divide, and square root, yield the best possible results. In CPW C these
operations produce extended results, so they are accurate to a precision of 19 decimal
digits, throughout a range exceeding 10-4900 to 1()+4900.

CPW C takes advantage of extended arithmetic by storing all non-integer numeric
constants in the extended format, and by evaluating all non-integer numeric expressions to
extended, regardless of the types involved. For example, the entire right side of the
assignment below will be computed in extended before being convened to the type of
the left side:

float x, a, b, c;

x - (b + sqrt(b * b '- a * c)) / a;

With no special effort by the programmer, CPW C performs computations using extended
precision and range. Extra precision means smaller roundoff errors, so that results are
more accurate, more often. Extra range means overflow and underflow are rarer, so that
programs work more often.

Alpha Draft Page 6-5 26 May 1986

Con/and Workshop C SANE Data Types SANE

By following a few simple programming practices you can exploit the ext ended type,
beyond what CPW C does for you automatically. .

Declare variables used for intennediate results to be of type ext ended. TItis practice is
illustrated in the following example, which computes a sum of products.

float sum;
float x(N], y[N);
int i;
extended t;

t .. 0.0;
for (i .. 0; i < N; i++)

t .. t + x[i] * y(i];
sum ... t;

Had t been declared as float, like the input arrays x and y and the result sum, each time
through the loop the assignment to t would have caused a roundoff error at the limit of
float precision. In the example, all roundoff errors are at the limit of extended precision,
except for the one caused by the assignment of t to sum. TItis means roundoff errors will
be less likely to accumulate to produce an inaccurate result

Declare fonnal value parameters and function results to be of type extended. rather than
float. double, or compo This saves CPW C from having to do unnecessary
conversions between numeric types, which may result in loss of accuracy. The example
below illustrates this practice.

tinclude <SANE.h>
extended area (radius)

extended radius;

return pill * radius * radius;

Number Classes

Representations in the SANE data fonnats fall into five classes:

• Nonnalized numbers-like 3 . O. 75.8, -2 . Je7 8 and all others that can be
represented with a leading significand bit of 1.

• Zero--+O. 0 and -0 . O.
• Infinities-positive and negative infiniry.
• NaNs-short for Not-a-Number.
• Denormalized numbers-nonzero numbers that are too small for normalized

representation. .
Infinities: Infinities are special SANE representations that can arise in cwo ways
from operations on finite values:

• When a operation should produce an exact mathematical infiniry (such as 1 . 0/0 . 0).
the result is an infinity.

A/phaDraft Page 6-6 26 May 1986

SANE SANE Data Types Conland Workshop C

• When an operation produces a number with magnitude too great for the number's
intended floating-point format, the result may (depending on the current rounding
direction) be an infInity.

Library CSANELib.o contains a function inf that returns the constant INF, which has
the value positive infinity. INF also represents infinity for input and output of floating
point values. Infmities behave like mathematical infinities. For example,
1- INF = - INF. Infinities can be helpful even when "infmity arithmetic" is not the goal.
For example, if X""X is too large for the extended format, the expression
1 + 11 (X"'X) still computes to the correct value of 1.0 (assuming overflow halts are
off).

Try this:

main()
(

extended x;

x .. le4000;
printf("x'" x .. %f \0", x '" x);
priotf("l/ (x '" x) %f \0", 1 / (x '" x));
printf("l + 1/ (x'" x) %f \n", 1 + 1/ (x;' x));

NaNs: Another special SANE representation is a NaN (Not-a-Number). A NaN is
produced whenever an operq.tion cannot produce a meaningful numeric result. For
example, 0.0/0.0 and sqrt (-1.0) yield NaNs.

Each time a NaN is generated, an associated NaN code is returned as pan of the NaN's
representation. This code tells you what kind of operation caused the NaN to be created.
NaN codes, shown in Table 5-2, can help with debugging.

Table 5-2. NaN Codes

Code Meaning
1 Invalid square root, such as sqrt (-1 . 0)
2 Invalid addition,· such as· (+ INF) - (+INF)
4 Invalid division, such as 0 . 0 I 0 . 0
8 Invalid multiplication, such as 0 .0 '" INF
9 Invalid remainder, such as X REM 0
17 Attempt to convert invalid ASCn string
20 Result of converting the comp NaN to floating-point format
21 Attempt to create a NaN with a zero code
33 Invalid argument to trig routine
34 -Invalid argument to inverse trig routine
36 Invalid argument to log routine
37 Invalid argument to xi or xJ routine
38 Invalid argument to financial function

The statement x = 0.0 I 0 . 0 will produce the result NAN(004) provided the invalid
operation halt is off. NAN (004) , nan (4) , and NaN are examples' of acceptable input for
reading a NaN into a SANE variable at execution time. At compile time, you specify a

AiphaDraft Page 6-7 26 May 1986

Con/and Workshop C SANE Data Types SANE

\'.

NaN by means of the nan function provided in CSANELib.o. See thefconstants page in
the C SANE Library section of this chapter for more infonnation about the nan function.

- -
Denormalized Numbers: Whenever possible, SANE stores values in normalized fonn:
the most significant bit of the significand is a one, rather than a zero.

However, when a very small number is being stored, and the exponent is the smallest
possible negative value, it is possible to store still smaller values by storing leading zeroes.
For example,

1.0..02 * 2-126 - smallest normalized float

0.1..02>11 2-126 _ still smaller denormalized float

Because of denorrnalized numbers, IEEE arithmetic has the desirable property -that A !=8 if
and only if A - B !... O. In most non-IEEE arithmetics, A - B will "flush to zero" if
A-B is too small for normalized representation, even though A and B may be different
values.

Exceptional Conditions

Exceptional conditions can arise from floating-point calculations in a number of cases. For
example, multiplying two very large values can result in a value too large to be represented
in one of the CPW C data fonnats. Or an operation such as 0 . 0/0 . 0 can be perfonned.

SANE provides a way for a program to determine when a floating-point calculation has
resulted in one of these exceptional conditions by setting a flag when an exception occurs.

The SANE environment includes a haft setting for each of the five exceptions. The halt
setting determines whether the occurrence of the exception halts the program. The CPW C
default setting is the IEEE Standard default, which calls for all halts clear (off). You can
access the halt settings by using the testhal t function and the sethal t function.

Exceptional 90nditions fall into five categories:

• invalid operation
• underflow
• overflow
• divide-by-zero
• inexact

Invalid Operation: The invalid operation exception arises when operands for an
operation are invalid. so that a meaningful numeric result is impossible. For example,
o.0/0 . 0 and s qrt (-1 . 0) are invalid operations.

Underflow: Underflow occurs when a result is both denormalized and has lost
significant digits through rounding. For example, to return the result of:

Alpha. Draft 26 May 1986

SANE SANE Data Types Con/and Workshop C

(l.VV\./vV1V\J\.,fVv\JVVV\A/VVVV\,,1V12" 2-126) /2

to the float format, a leading zero would be introduced and the last significant bit would
be lost in rounding. This result:

0.100000oOOOOOOOOOOOOOOOO002 '" 2-126

would be rerurned and underflow would be signaled.

Overflow: The condition of calculating a value that is too large to fit in the format of its
designated type is called overflow. The destination format must be one of the floating
point types; if the destination format is an integer type, the invalid exception occurs.

Divide-by-Zero: The divide-by-zero exception occurs :ovhen a fmite nonzero number is
divided by zero. It also occurs when an operation on finite operands produces an exact
infmite result. For example, the operation 1 . 0/0 . 0 (which results in INF) and the
operation log (0 .0) (which results in -INF) both signal divide-by-zero.

Inexact: The inexact exception occurs if the rounded result of an operation is not identical
to the mathematical (exact) result. (Thus, any time overflow or underflow occurs, the
inexact exception is signaled.) For example, the operation 2 . 0/3 . 0 signals inexact,
regardless of the floating-point format used.

The Environment

The SANE environment consists of :

$ rounding direction
• rounding precision
• exception flags
• halt settings

The C SANE library includes functions that allow you to detennine the current status of the
environment. These functions can be used to flag exceptional conditions and to control
optional environment settings. For example, you may be working with very small values
and need to know exactly when underflow occurs. Or you might want to have floating
point conversions rounded downward.

The standard rounding direction is TONEAREST. You can find out the current rounding
direction by using the getround function. You can change the rounding direction by
using the setround function.

The following routine saves the current rounding direction, computes a function using
TOWARD ZERO rounding, and finally restores the saved rounding direction.

rounddir r;
extended x, y;

AlphaDrafr Page 6-9 26 Maj' 1986

Cortland Workshop C SANE Data Types SANE

r ... getround();
setround(TOWARDZERO) ;
y ... f (x) ;

setround(r) ;

Normally, all CPW C floating-point calculations return results that are rounded to extended
precision and range. However, the rounding precision can be set to f loa t or
double precision and range. Results will still be returned in the extended fonnat.
There is no perfonnance benefit in setting float or double rounding precision. You
can access the rounding precision by using the setprecis ion function and the
getprecision function. These functions are useful if you want to use SANE to
perfonn calculations and then simulate the results you would get if you used a system that
did not provide extended-precision arithmetic.

The entire SANE environment (rounding direction, rounding precision, exception flags,
and halt settings) can be encoded in a value of type environment The procedl.lI'es described
below access the CUJTent SANE environment as a whole. They are useful for managing the
environment so that routines run with the environments they require and for controling the
exception information passed between routines.

When your program begins, the environment will reflect the IEEE standard
environment defaults:

• Rounding direction-TONEAREST
• Rounding Precision-EXTENDED
• All exception flags cleared.
• Halt on INVALID, UNDERFLOW, and DIVBYZERO

To reinstall the IEEE standard defaults, use the statement

setenvironrnent(O) ;

The following routine runs under the IEEE default environment., while not affecting its
caller's environment:

TRANSLATE FROM PASCAL TO C
PROCEDURE P; .
VAR

SaveEnv:Environrnent;
BEGIN
GetEnvironrnent(SaveEnv) ;
SetEnvironrnent(O);

SetEnvironrnent(SaveEnv) ;
END;

The statement

procentry (&e) ;

is equivalent to

Alpha Draft Page 6-10 26 May 1986

SANE

getenvironment(&e) ;
setenvironment(O) ;

SANE Data Types Cortland Workshop C

The procentry and procexit functions can be used in routines to selectively hide
spurious exceptions from the routine's caller. For example:

extended arccos (x)
extended x;

environment e;

procentry (&e) ;
x .. atan(sqrt((LO-x) / (LO+x)));
setexception(DIVBYZERO, 0);
procexit (e) ;
return x;

The statement

procentry (&e)

saves the caller's environment in e and sets IEEE defaults, So exceptions cannot halt the
routine. If x--l, the computation of the right side of the assignment to acos will signal
DIVBYZERO, even thoughacos will be assigned the correct value, pi () /2. The
function call

setexception (DIVBYZERO, false)

clears the DIVBYZERO flag, so the caller never sees it If x > lor x <-1, the
computation of acos will appropriately signal INVALID. The procexit function will
resignal INVAL ID after restoring the caller's environment, so if the caller's environment
calls for halts on invalid., the halt will occur.

AlphaDrafr Page 6-11 26 May 1986

C SANE Library Constants and Types
This section explains each of the constants and types used in the C SANE library.

Exception Condition Constants

Table 5--3 defines the exception condition constants:

Table 5-3. Exception Condition Constants

DIVBYZERO 8
INEXACT 16

Exception
INVALID
UNDERFLOW
OVERFLOW

Constant
Value
1
2
4

Event Causing
Exception
Operation not meaningful-NaN result
Accuracy lost-result too small
Result too large for number
representation
Division of nonzero number by zero
Rounded result not same as exact
math result

Example
sqrt(-1.0)
(e xp2 (1 63 8 3 . 0))
exp2(16384.0)

1.0/0.0
1.0/3.0

The exception condition constants are used to define the value of a variable of type
exception.

For example, if e is a variable of type except i on, then

e - INVALID + OVERFLOW + DIVBYZERO

gives e a value that represents these three exceptions collectively.

The set except ion and sethalt procedures each take arguments of type
exception.

The testexception and testhalt functions each return a value of type
exception.

The DECSTROUTLEN Constant

DECSTROUTLEN defInes the maximum output length of a decimal string~ it is defined by
this declaration:

'define DECSTROUTLEN 80

The SIGDIGLEN Constant

A/phaDraft Page 6-12 26 May 1986

SANE Constanrs and Types Macintosh Workshop C

The S IGD IGLEN constant represents the number of significant digits in a floating-point
value; it is defined by this declaration:

fdefine SIGDIGLEN 20

The FLOATDECIMAL and FIXEDDECIMAL Constants

These constants represents the style of decimal representation in a number of type
decforrn:

tdefine FLOATDEClMAL
tdefine FlXEDDEClMAL

The decform Structure Type

o
1

1* floating point */
1* fixed point */

A strUct of type decform (decimal format) is defined by this declaration:

typedef struct decform (
char style, unused;
short digits;

) decform;

A decform structure holds the specifications for the format of a decimal number.

• The s t:.yle variable specifies the decimal representation as either FLOATDECIMl.... :
or FIXEDDEClMAL.

The di gits variable holds the number of significant digits for FLOATDEC I~t;':

style or the number of digits to the right of the decimal point for FlXEDDECIM.;':
style.

The num2dec function takes a decform argument It uses the information in dec:c::,=-:-.
to determine the format for the string returned in the function result. . .

The decimal Structure Type

A strUct of type decimal is defined by this declaration:

typedef struct decimal (
char sgn, unused;
short exp;
struct (unsigned char

decimal;

The relop Type

1* sign 0 for +, 1 for
1* decimal exponent

length, text (SIGDIGLEN), unused}
1* significant digits

sig; .,

Alpha Draft Page 6-13 26 May 1986

Macintosh Workshop C Constants and Types SANE

The re lop (relational operator) type is defIned by this declaration:

eypedef short relop: /* relational operator */

A result of this type is returned by the relation function, describe.d later.

The numclass Type

The numclass type is defined by this declaration:

eypedef short numclass: /* inquiry class */

Table 14-4. Number Class Descriptions

Number Class
SNAN
QNAN
INFINITE
ZERONUM
NORMALNUM
DENORMAL~

Value
o
1
2
3
4
5

Meaning
Signaling NaN
Quiet NaN
Infinity or -Infmity
0.0 or -0.0
Normalized number
Denormalized number

Quiet NaNs are the usual kind produced by floating-point operations. Signaling Na.:.'Js,
potentially useful for flagging uninitialized varaibles, are discussed in the Apple Numerics
Ma.nu.ol.

The numclass type is used to return results from the inquiry functions, describe.d below.

The exception Type

A variable of type exception holds an integer value that corresponds to the value of one
of the exception constants, or to a sum of two or more of the exception constants. The
exception type is defined by this declaration:

eypedef short exception: /* sum of INVALID ... INEXACT */

The setexception, testexception, sethalt, and testhalt functions all take
arguments of type exception.

.
The haltvector Pointer Type

A variable of type haltvector points to the address to which control is transferred when
a halt occurs. The ha 1t vect or type is defIned by this declaration:

typedef void (*halevector) ():

The gethaltvector and sethaltvec'tor functions take arguments of type
hal t vector.

AiphaDraji Page 6-14 26 May 1986

SANE

The rounddir Type

Constants and Types Macintosh Workshop C

The rounddir (rounding direction) type is defined by this declaration:

typedef short rounddir; /* rounding direction */

The rounddir type is used to detennine how values are to be rounded, when rounding
becomes necessary during arithmetic operations or conversions. The setround function
takes an argument of type rounddir, The get round function returns a value of type

.rounddir.

The roundpre Type

The roundpre (rounding precision) type is defined by this declaration:

typedef short roundpre; / * rounding preci3 ion *I);

Rounding precision can be used to simulate arithmetic with only float or double
precision. The setprecision function takes an argument of type roundpre, The
getprecis ion function returns a value of type roundpre .

The environment Type

A variable of type environment holds a value that represents the settings of the SA!'I'E
environment. For example, a setting of 0 represents the default IEEE setting (including no

. halts set). The environment type is defined with this declaration:

typedef :short. environment;

You use a variable of type environment with these environmental access routines:
setenvironment,getenvironment,procentry,andprocexit,

A/phaDraji Page 6·15 26 M(1)' 1986

Macintosh Workshop C -Constants and Types SANE

C SANE Library Functions
This section includes a description of each of the function's in the C SANE Library. These
include

• SANE arithmetic functions
• conversions between decimal, string, and binary representation
• elementary transcendental functions
• functions that save and restore environmental settings
• functions that handle exceptional conditions
• functions that provide constants for NANs, INF, and 1t
• financial functions
• IEEE recommended functions
• functions that determine the class of a numeric value

a random number function
• a relationship function
• functions that set rounding direction and precision

Trigonometric functions are provided in the Standard C Library: the tan, sin, cos, and
atan functions are implemented with SANE arithmetic and conform to the IEEE Standard.
The Standard C Library also provides asin, acos, and atan2 functions. All of these
functions are documented in Chapter 3.

More information on SANE functions can be found in the Apple Nwnerics Manual.

Note: Any function with a fonnal parameter of any of the floating-point types can
be passed a value of any floating-point type.

Alpha Draft Page 6-16 26 May 1986

C SANE Library

NAME

Macintosh WorkshOp C

remainder, rint-SANE arithmetic functions

SYNOPSIS

tinclude <SANE.h>

extended remainder (x,y,quol
extended x,y;
short *quo;

extended rint (xl
extended x;

DESCRIPTION

/* IEEE remainder; quo <-- 7 :ow or~e=

/* bits of integer quotient x/y,
/* -127 <- quo <- 127

/* round to integral value

The remainder function returns the remainder of the division of its tvv'o extended
arguments :xIy, as specified by the IEEE Standard. This function returns an exact
remainder of the smallest possible magnirode. The result is computed as

x-n*y

where n is a nearest integral approximation to the quotient :xIy. For example,
remainder (9,0,5. 0, q) returns -1.0, because -1 = 9-2"'5.

The integer variable argument quo receives the seven low-order bits of n as a value
between -127 and 127; this is useful for programming functions, like the

. trigonometric functions, that require argument reduction.

The rint function takes an extended argument and rounds it to an integral value
in the extended fonnat. Note that all sufficiently large floatingdpoint values are
integral. The result depends upon the rounding direction, which can be changed
using the setround function.

SEE ALSO

fabs, sqrt.

AlphaDrajr Page 6-17 26 May 1986

Macintosh Workshop C

NAME

conversions C SANE Library

num2dec, dec2num, dec2str, str2dec
--conversions between decimal, string, and binary representation

SYNOPSIS

tinclude <SANE.h>

void num2dec(f,x,d)
decform *f;
extended x;
decimal *d;

extended dec2num(d)
decintal *d;

void dec2str(f,d,s)
decform *f;
decimal *d;
char *s;

void str2dec(s,ix,d,vp)
char *s;
short *ix, *vp;
decimal *d;

DESCRIPTION

1* d <-- x, according to format :

1* returns d as extended

1* s <-- d, according to format f

1* on input ix is starting index into s, =~

1* output ix is one greater than index c: ~as~'

1* character of longest numeric subs~=~~g:

1* boolean vp • "s begining at given ix ~s a
1* valid numeric string or a valid prefix ::
1* some numeric string"

The num2dec function converts a numeric value x to a decimal struc-: d. Here
are some examples; the headings represent the effects of different dec fori.:
parameters for x =123.45 and sgn =0:

style digits trp sig

FLOATDEClMAL 6 -3 6, "123450"

FLOATDEClMAL 2 1 2, "12"

FlXEDDEClMAL 6 ..{) 9, "123450000"

FlXEDDEClMAL 2 -2 5, "12345"

The dec2num function takes a decimal argument and converts it to type
extended.

The d'ec2 str function converts a struct of type decimal to a string value using
the specifications in the decform struct.

The str2dec function takes a string argument and convens it to a struct of
type decimal. It scans the string in s and returns the result in d. On input. the
index variable i.x is the starting index into the string; on output, the value of ix is
one greater than the index of the last character in the numeric substring just parsed.
The longest possible numeric substring is parsed; if no numerip substring is
recognized, i.x remains unchanged. If the entire input string, beginning at ix I is a

ALpha Draft Page 6-18 26 May 1986

C SANE Library conversions Macintosh Workshop C

valid numeric string or a valid prefix of a numeric string, the function sets vp to 1
to indicate successful completion.

A/phaDraft Page 6-19 26 May 1986

Macintosh Workshop C

NAME

ele:ms C SANE Library

logl, log2, expl, exp2, ipower, power--elementary transcendental
functions

SYNOPSIS

finclude <SANE.h>

extended logl(x)
extended x;

extended log2(x)
extended x;

extended expl (x)

extended x;

extended exp2(x)
extended x;

extended ipower(x,i)
extended x;
short i;

extended power(x,y)
extended x,y;

DESCRIPTION

/ * log (1 + x)

/* base-2 log

/* exp(x) - 1

/* base-2 exponential

/* integer exponential: x A i

/* general exponential: x A y

The log1 function returns the base-e logarithm of 1 plus o4. For x near 0, log1(x)
is more accurate than 10g(l.O+x).

The log2 function returns the base-2logarithm of x.

The e xp 1 function returns eX-I. For x near 0, exp 1 (X) is more accurate than
e xp (X) - 1. O.

The exp2 function returns 2 raised to the power of x: 2.%.

The ipower function returns the value of x, raised to the integer power of i: xi.

The power function returns the value of x, raised to the floating-point power of y:
xY,

SEE ALSO

atan, cos, exp, log, sin, tan.

A/phaDraft Page 6-20 26 May 1986

C SANE Library

NAME

environmem Macintosh WorksJwp C

getenvironment, setenvironment, procentry, procexit,
gethaltvector, sethaltvector

-save and restore SANE environmental settings

SYNOPSIS

#include <SANE.h>

void getenvironment(e)
environment *e:

'void setenvironment(e)
emrironment e:

void procentry(e)
environment *e:

void procexit(e)
environment e:

haltvector gethaltvector()

void sethaltvector(v)
haltvector v:

DESCRlPTION

/* e <-- environment

/* sets environment to e

1* e <-- environment:
/* environment <-- IEEE de:au::

/* temp <--exceptions: environmer.: <-- e: '
/* signals exceptions in temp

/* returns halt vector

/* halt vector <-- v

The getenvironment function assigns the current settings of the environment to
variable e. .

The setenvironment function sets the effective environment to the one
specified in e.

The procentry function saves the current environment (the rounding direction,
rounding precision, exception flags, and halt settings) in e and then sets the
environment to the IEEE defaults.

The procexit function temporarily saves the current exception flags, sets the
effective environment as encoded in e, and then signals the temporarily saved
exceptions.

The gethal tvector function returns as its function result the address of a halt
vector.

.The sethaltvector function sets in v the address of a halt vector.

A/pha Draft Page 6-21 26 May 1986

Macintosh Workshop C

NAME

exceptions C SANE Library

setexception, testexception, testhalt, sethalt--exceptionnl
conditions

SYNOPSIS

tinclude <S~E.h>

#define
#define
tdefine
#define
tdefine

INVALID
UNCERFLOW
OVERFLOW
CIVBYZERO
INEXACT

1
2
4
8

16

void setexception(e,s)
exception e;
long s;

1* clrs e flags if s is 0, sets e
1* otherwise; may cause hal~

long testexception(e)
exception e;

long testhalt(e)
exception e;

void sethalt(e,s)
exception e;
long s;

DESCRIPTION

1* returns 1 if any e flag is sec,
1* returns 0 otherwise

1* returns 1 if any e halt is enab:e~,

1* returns 0 otherwise

1* disables e halts if s is 0,
1* enables e halts otherwise

The C SANE library defInes a constant for each kind of exception: invalid,
underflow, overflow, divide-by-zero, and inexact.

If parameter sis 0, setexception signals the exceptions encoded in e;
otherwise it clears the exception flags specified. bye. For example,

setexception(OVERFLOW + INEXACT, 0);'.
This statement signals the overflow and inexact exceptions. If halt on overflow or
inexact were set, this statement would halt the program.

The testexception function takes an argument of type exception and returns 1
if any of the exceptions encoded. in e are set.

Following the set exception function call above, the call

testexception(OVERFLOW + INVALID);

would return a value of 1.

The testhalt function returns 1 if any of the flags indicated bye is set;
otherwise it returns O.

Alpha Draft Page 6-22 26 May 1986

C SANE Library e:xception.s Macintosh Workshop C

The sethalt function lets you enable or disable exceptions. Enabled exceptions
cause your program to halt when they occur, disabled exceptions allow your
program to continue processing when they occur. If s is 0, the exceptions in e are
enabled; otherwise they're disabled.

Alpha Draft Page 6-23 26 May 1986

Macintosh Workshop C

NAME

!consta;nt.S C SANE Library

inf, nan, pi-functions that return a constant value

SYNOPSIS

#include <SANE.h>

extended in! ()

extended nan (c)
unsigned char c;

ex'tended pi ()

DESCRlPTION

lir returns INF

1* returns NAN with code c

lir returns the value of pi

The in f function returns the constant INF.

The nan function returns a NaN associated with the code given as an argument.
The SANE NaN error codes arc shown in Table 5-2 in the "Number Classes"
section earlier in this chapter.

The pi function returns the nearest extended approximation to the mathematical
value of 1t.

A/phaDraft Page 6-24 26 May 1986

C SANE Library

NAME

Macintosh Workshop C

compound, annuity-financial functions

SYNOPSIS

*include <SANE.h>

extended compound(r,n)
extended r,n;

extended annuity(r,n)
extended r,n;

DESCRIPTION

/* compound: (1 + r) A n

/* annuity: (1 - (1 + r) A (-n)) / ~

In the compound function, r specifies the interest rate per period as a decimal
(.1075), not as a percent (10.75%); n specifies the number of periods. The
function returns (1+r)lI, which is the principal plus accrued compound interest on
an original investment of one unit.

In the annuity function, r specifies the interest rate; n specifies the number of
periods. The function returns (1-(I+rrll)/r, which is the present-value factor of an
ordinary annuity.

Here is an example of how the annu i t Yfunction can be used:

main()
(

extended loan, payment, interest, periods:

printf("Loan amount: ");
scanf("%nf", &loan);
printf("Annual interest rate (E.g. enter 10% as 0.1): "):
scanf("%nf", &interest):
printf("Number of years: ");
scanf("%nf", &periods);
payment· loan / annuity(interestf12, periods*12);
printf("Your payment is: %8.2f \n", payment);

In this example, given a loan amount of $120;000 and an interest rate of .1075 per
year for 30 years, the payment will be $1120.18.

Alpha Draft Page 6·25 26 May 1986

Macintosh Workshop C

NAME

IEEE C SANE Libra!)'

scalb, 10gb, copysign, nextf1oat, nextdoub1e,
next extended

.-recommended IEEE functions

SYNOPSIS

*include <SANE.h>

extended scalb(n,x)
short n;
extended x;

extended logb(x)
extended x;

extended copysign(x,y)
extended x,y;

extended nextfloat(x,y)
extended x,y;

extended nextdouble(x,y)
extended x,y;

extended nextextended(x,y)
extended x,y;

DESCRIPTION

1* binary scale: x * 2 A n;

1* binary log:
/* binary exponent of normal':"zec. :.:

1* Y with sign of x

1* next float representation af~e=

1* (float) x in direction of (f:'::a:, .

1* next double representation af:e:
1* (double) x in direction of (dc~=:'e,

1* next extended representati::n af:e: ~ •
1* in direction of y

The scalb function scales x by the power of two specified by n. The value 2nx is
returned in extended format.

The 10gb function returns the largest power of two that does not exceed the
magnitude of x. For example,

logb(-65535.0)

yields 15 because 215 S 65535 < 216.

The copysign function returns the value ofy with the sign of x. For example.
copysign(2.0, -3.0) yields 3.0.

The nextfloat function returns the next value that can be represented in float
format after x, in the d.irection of y.

The nextdouble function returns the next value that can be represented in double
format after x, in the direction y.

The next ext ended function returns the next value that can be represented in
extended fonnat after x, in the direction ofy.

Alpha Draft Page 6-26 26 May 1986

C SANE Library IEEE Macintosh Workshop C

NOTE

Additional IEEE recommended functions are described on the inquiry page.

A/phaDraft Page 6-27 26 May 1986

Macintosh Workshop C

NAME

inquiry C SANE Library

classfloat, classdouble, classextended, classcomp,
signnum

-determine the class of a numeric value

SYNOPSIS

Jinclude <SANE.h>

numcla~~ cla~~float(x)

extended x;

numcla~~ cla~sdouble(x)

extended x;

numcla~~ cla~~extended(x)

extended x;

numcla~~ cla~~comp(x)

extended x;

long ~iqnnum(x)

extended x;

DESCRlPTION

/* cla~~ of (float) x

/* cla~~ of (double) x

/* cla~~ of x

/* cla~~ of (comp) x

/* returns 0 for +, 1 for -

These functions are IEEE recommended functions (in addition to those on the IEEE
page). The result of each of these functions is of type numclass.

The classfloat function determines the number class of its extended
argument as if it were type float. For example,

cla,,~float(l.O)

classfloat(le-310)

The first function call returns NORMALNUM, the code for a normalized number. The
second call returns ZERONUM, the code for zero (because le-31O rounds to +0 in
the extended format).

The classdouble function determines the number class of its extended
argument as ifit were type double. For example,

. classdouble (0. 0/0.0)
cla~~double(le-310)

The first example returns QNAN, the code for a quiet NaN. The second example
returns DENORMALNUM, the code for a denonnalized number (because le-310 is
denormalized in the double format).

The clas sextended function determines the number class of its extended
argument. For example,

Alpha Draft Page 6-28 26 May 1986

C SANE Library Macintosh Workshop C

classextended(l.O/O.O)
classextended(le-310)

The first example returns INFINITE, the code for infinities. The second example
returns NORMALNuM, the code for a nonnalized number.

The classcomp function determines the number class of its extended argument as
if it were type compo For example,

classcomp(l.O)
classcomp(O.l)

The first example returns NORMALNUM, the code for a nonnal number. The second
example returns ZERONUM, the code for zero. (Remember that comp stores
integral values.)

The s ignnum function indicates the sign of x: it returns 1 if x is negative, aif x is
positive.

Alpha Draft Page 6-29 26 May 1986

Macinrosh Workshop C

NAME

rQ1'liiornx C SANE Library

randomx-next extended random number

SYNOPSIS

tinclude <SANE.h>

extended randornx(x)
extended *x;

DESCRIPTION

/* returns next random num; upda~es x; •
/* x ineeqral, 1 <- x <= 2"3: - 2

The randomx function takes a variable argument of type extended which
contains an integral value in the range IS r S 231_2. It returns the next random
number in sequence within the same range. Variable x is updated to the val ue
returned. The randomx function uses this algorithm:

NewX ::: (7S • OldX) mod (231_1)

SEE ALSO

rand.

Alpha Draft Page 6-30 26 May /986

C SANE Library

NAME

reiarion Macintosh Workshop C

r'elation-specify relationship between two arguments

SYNOPSIS

tinclude <SANE.h>

Jdefine
tdefine
tdefine .
Jdefine

GREATERTHAN
LESSTHAN
EQUALTO
UNORDERED

o
1
2
3

relop relation(x,y)
extended x,y;

DESCRIPTION

1* returns relation such'that
1* "x relation y" is true

The relation function returns a value that specifies the relationship between the
two arguments as greater than, less than, equal to, or unordered.

For example,

relation(O.l, nan(O))

returns UNORDERED, since all comparisons involving NaNs are unordered.

Alpha Draft Page 6·31 26 May 1986

Macintosh Workshop C

NAME

rounding C SANE Librar:

getround, setround, getprecision, setprecision-rounding
direction and precision

SYNOPSIS

tinclude <SANE.h>

#define '1'ONEARES'1' 0
tdefine UPWARD 1
tdefine DOWNWARD 2
tdefine '1'OWARDZERO 3

tdefine EXTPRECISION 0 1* extended *1
tdefine DBLPRECISION 1 1* double *1
tdefine FLOATP REC I SION 2 1* float *1

rounddir getround()

void setround(r)
rounddir r;

roundpre getprecision()

void setprecision(p)
roundpre p;

DESCRIPTION

1* returns rounding direction

1* sets rounding direction to r

1* returns rounding precision

1* sets rounding precision to p

The rounding direction can be set to nearest, upward, downward, or toward
zero. The default rounding direction is to nearest. The rounding precision may
be set to extended., double, or float. The default rounding precision is extended.

The get round function returns the current rounding direction as a value of type
rounddir.

The setround function sets the effective rounding direction to the one indicated
by p.

The getprecision function returns the current rounding precision.

The s-etprecis ion function sets the desired rounding precision.

A/phaDraft Page 6-32 26 May /986

Appendix A

Calling Conventions
*** Needs engineering edit!! ***

Conland Workshop C uses two different function-calling conventions: C calling
conventions and Pascal-comp~tible calling conventions.

C Calling Conventions

This section describes the normal C calling conventions. It explains how function
parameters are passed, hew function results are returned, and how registers are saved
across function calls. This information is useful when writing calls between C and
assembly language. .

Parameters

Parameters to C functions are evaluated from right to left and are pushed onto the stack in
the order they are evaluated. Characters, integers, and enumeration types are passed as
sign-extended 32-bit values. Pointers and arrays are passed as 32-bit addresses. Types
float, double, comp, and extended are passed as extended 80-bit values. Structures are
also passed on the stack. Their size is rounded up to a multiple of 16 bits (2 bytes). If
rounding occurs, the unused storage has the highest memory address. The caller removes
the parameters from the stack.

Function Results

..... On Cortland, function results are returned in a global variable, not on the stack. The
conventions for returning function results are srill being defined......

Register Conventions

No registers are preserved across function calls. Tool calls have their own conventions for
returning error codes in the A register.

Pascal-Compatible Calling Conventions

This section describes the conventions used for calling Pascal functions from C and for
functions written in C that use Pascal-compatible calling conventions. These conventions
differ from the usual C calling conventions defined in Chapter 2; they also differ from the
calling conventions used by the Pascal compiler.

Alpha Draft PageA-j 26 May 1986

Con/and Workshop C

Parameters

Appendix A

Parameters to Pascal-compatible functions are evaluated left to right and are pushed onto
the stack in the order they are evaluated. Characters and enumeration types whose literal
values fall in the range of types char or unsigned char are pushed as bytes. (This requires :l

16-bit word on the stack. The value is in the high-order 8 bits; the low-order 8 bits are
unused.) Short ints and enumeration types whose literal values fall in the range of types
short or unsigned short are passed as 16-bit values. Ints,long ints, and the remaining
enumeration types are passed as 32-bit values. Pointers and arrays are passed as 32-bit
addresses. SANE types float, double, comp, and extended are passed as extended 80-bit
values; however this doesn't correspond to the Pascal compiler's calling conventions, so a
compiler warning is given. Table 2-2 shows the recommended way to pass SA~"E-type

values to Pascal. Sauctures are also passed by value on the stack, and also yield a
compiler warning. Their size is rounded up to a multiple of 16 bits (2 bytes). If rounding
occurs, the unused storage has the highest memory address. The function being callen
removes the parameters from the stack.

Function Results

UII! On Cortland, function results are returned in a global variable, not on the stack. The
conventions for returning function results are still being defined. UII!

Register Conventions

No registers are preserved across function calls. Tool calls have their own conventions for
returning error codes in the' A register.

AiphaDrajr PageA-2 26 May 1986

Files

Appendix B

Supplied with Cortland
Workshop C

Cortland Workshop C is intended for use with the Cortland Programmer's Workshop. The
files listed below are on the Cortland Workshop C release disk, which contains the C
compiler, the Standard C Library, and the Cortland Interface Library. These files may be
used directly from the release disk or copied to a hard disk.

C Compiler Files
File Name Size

C ?K
Instruction 2K
:MakeFJ.le 2K
Sample.c 10K
Sample.r 2K

Comments

MegaMax C compiler

instructions for building sample programs
sample program makefl1e
sample C program
sample resource maker input

Standard C Library Include Files
File Name Size Comments

CType.h 2K character types
ErrNo.h 3K C library error numbers
FCntl.h 2K file control
IOCtl.h 3K input/output control
Math.h 1K math functions
StdlO.h 2K standard input/output
Values.h 2K numeric parameters
VarArgs.h 1K variable argument list processing
Signal.h 1K signal handling

Cortland Interface Library Include Files
File Name Size Comments

AppleTalk.h. 2K AppleTalk Manager
Controls.h 3K Control Manager
Desk.h lK Desk Manager
Devices.h lK Device Manager
Dialogs.h 3K Dialog Manager
Disks.h 2K Disk Manager

ALphaDrajr Page B·] 26 May 1986

CortLand Workshop C

Error.h
Events.h
Files.h
Fonts.h
Graf3D.h
Memory.h
Menus.h
OSEvents.h
OSUti1s.h
Packages.h
Printing.h
QuickDraw.h
Resources.h
Retrace.h
SANE.h
Scrap.h
SegLoad.h
Serial.h
Sound.h
Strings.h
TextEdit.h
Too1Utils.h
·Types.h
Windows.h

1K
2K
7K
2K
2K
lK
3K
lK
2K
3K
4K

13K
3K
lK
2K
lK
lK
2K
2K
lK
3K
3K
lK
4K

System Error Handler
Event Manager
File Manager <HFS>
Font~ager

Gra.f3D interface
Memory Manager
Menu Manager
Operating System Event Manager
Operating System Utilities
Package Manager and packages
Printing Manager
Quickdraw
Resource Manager
Vertieal Retrace Manager
SANE Numerics
Scrap Manager
Segment Loader
Serial Drivers
Sound Driver
string conversions
TextEdit
Toolbox Utilities
common defines and types
Window Manager

Appendix B

(Standard C Library Object Files
File Name Size Comments

CRuntime.o 7K execution starting point for use with C libraries
Math.o 5K C Library math functions
StdCLib.o 26K Standard C library

Cortland Interface Library Object Files
File Name Size Comments

CInterface.o 21K Cortland Interface Libraries
CSANELib.0 5K SANE library
PrintCal1s.o Printing Manager routines

ALpha. Draft Page B-2 26 May 1986

Appendix C

Comparison with
Macintosh Workshop C

Data Types

The following data types are implemented differently in CPW and :MPW C.

Data Type

int
unsigned int
enum

CPW
16
16

8 or 16

Size in bits

MPW
32
32

8, 16 or 32

Register V.ariables
Register variables are not supported in Cortland Workshop C due to the small number of
registers available on the 65816. Use of the register declaration will cause the compiler to
generate code at least as efficient as that generated by the same program without register
declarations.

Structured Variables

Structures may be assigned, passed as parameters, and rerurned as function results in both
versions of C. Cortland Workshop C allows equality comparison for structures; MPW C
d~soot .

Pascal-Compatible Function Declarations
A function or procedure written in Pascal (or written in assembly language following
Pascal calling conventions) can be called from either MPW C or Cortland Workshop C.
For example, the DrawText procedure is defmed in Pascal as:

PROCEDURE DrawText (textBuf: Ptr;
firstByte, byteCount: INTEGER);

Alpha Draft PageC-j 26 May 1986

Conland. Workshop C

The MPW syntax for·such a declaration is:

pascal void DrawTextCtextSuf, firstSyte, byteCount)
Ptr textSuf;
short firstSyte, byteCount;
extern;

The CPW syntax for this declaration is:

extern pascal void DrawTextC);

Appendix C

To make the CPW form more readable, we can list the parameters in a comment: .

extern pascal void DrawTextC);
Itt Ptr textSuf;
short firstSyte, byteCount;
extern; ttl

In addition, in MPW C the word extern may be followed by a constant, which is
interpreted as a 16-bit 68000 instruction that replaces the usual subroutine call (JSR)
instruction in the calling sequence. This allows mct traps to the Macintosh ROM. For
example:

pascal void OpenPortCport)
GrafPtr port;
extern OxA86F;

*** Issues for further investigation ***
U* How do the C's implement byte-sized elements of structures? Are they padded to
word·length? ***

A/phaDraft PageC-2 26 May /986

Appendix D

Library Index

About the Library Index

The Library Index contains an index entry for all the defines, types, enumeration literals,
global variables, and functions defmed in the Standard C Library and the Cortland Interface
Libraries.

• Column 1 contains an alphabetical list of the index entries.

• Column 2 specifies the type of declaration (for example, "literal') for the index entry.

• Column 3 contains the library header under which documentation for the index entry
can be found. If column 3 contains "(C)" following the library header--for example.
"abs(C)"-look in Chapter 3, The Standard C Library. Otherwise look in Chapter 4,
The Cortland Interface Library. These chapters are organized alphabetically by library
header except for the first entry in each, which contains introductory material.

Alpha. Draft PageD-] 26 May 1986

Cortland Workshop

C Pocket Reference

Writer: Don Reed., Apple Technical Publications Department
Alpha Draft: 26 May 1986
Part Number: PAPOO2-21

Copyright © 1986 Apple Computer Inc. All rights Reserved

Cortland WorksMp C Pocket Reference

Contents

The compiler
Compiler commands
Compiler options (table)

Language specification
Size and range of data types (table)
Reserved words .
Operator precedence
Identifiers

The Standard C Library

ASCII Table

Cortland Workshop CPocket Rejerent:e 3

Cortland Workshop C Pock.J!c Referen.ce

The compiler

Compiler commands

COMPILE [+Lj-L] [+SI-S]sourcefi/e [KEEP:outfi/e] [NAMES=(segl[,seg2[,...]])]
[language] =(oprion ...) (/anguage2:(option ...) ...]]

CMPL [+LI-L] [+SI-S]sourcefi/e [KEEP:outfi/e] [NAMES=(segl[,seg2[,...]])]
(/anguagel:(option ...) [language2:(option ...) ...]]

CMPLG [+LI-L] [+SI-S]sourcefi/e [KEEP=outfi/e] [NAMES=(segl[,seg2[, ...]])]

4

[language] =(option ...) [language2=(option ...) ...]]

Compiler options

Option

.::11-L
=.S]-S

sourcefile

KEEP=outfile

Description

+L produces source listing.

+S produces symbol table

The full pathname and filename of the source me.

Filename of output file.

Cortland Workshop C Pocket Reference 5

Cortlan.d Workshop C Pocut RefereN:e 6

N AMES=<seg1,seg2 ,...)

languagel :(oprion ...)

Partial compilation of segments segl, seg2,...

Options for languagel.

Language specification

Size and range of data types
Type Bits Range
char 8 -128 to 127
unsigned char 8 0 to 2.55

+

short 16 -32,768 to 32,767
u:lsigned short 16 o to 65,535
i:lt 16 -32,768 to 32,767
u:isigned int 16 oto 65,535
long 32 -2,147,483,648 to 2,147,483,647
unsigned long 32 o to 4,294,967,295
e:ium 8, 16, 32 enumerated types
'" 32 pointer types
float 32 ±1.5E-45 to ±3.4E38
double 64 ±S.OE-324 to ±1.7E308
comp 649.2E18 to -+9.2E18
extended 80 ±1.9E-4951 to ±1.1E4932

.
Cortland Workshop C Pocket RejerefIJ:e 7

Corrland Workshop C Pocket Rejerefll:e

Reserve'd words

8

\.

int
char
float
double
struct
union
long
short
unsigned
auto

extern
register
typedef
static
goto
return
sizeof
break
continue
if

else
for
do
while
switch
case
default
entry

+

Operator precedence

...

Operator
() [) ->

++

" / %
+
« »
< <= >
-- !=
&
A

Associativity
left to right

(type) * & sizeof righttoleft
left to right
left to right
left to right

>a: left to right
left to right
left to right
left to right

Cortland Workslwp C Pocket Refereru:e 9

Cortland. Workshop C Pocut Refererr.ce

SeSe

I I
"? :
= += -=

+

left to right
left to right
left to right
right to left
right to left
left to right

10

+

Character constants

new-line
horizontal tab
vertical tab
backspace
carnage return
fonn feed
backslash
single quote
bit pattern

nl (If)
ht
vt
bs
cr
ff
\
I

\0[0-1] [0-1]

\n
\t
\v
\b
\r
\f
\\
\'
\0[0-7] [0-1]

Cortlan.d Workshop C POCUI Rejeren.ce II

CortlaJUi Work.5hop C Pocke.t RejereflCe

Equivalent data types
Pascal Data Type

boolean

Va! boolean

boolean result

+

C Equivalent

Boolean

Boolean ...

Boolean

Comments

Defined in me Types.h as enum
{false,true}.

. In C, false is zero and true is often
considered nonzero.

In Pascal,false is zero and true is
one.enumeration

+

(<128 or·>255 literals)

enumeration
(128 to 255 literals)

var enumeration
(<128 or >255 literals)

var enumeration
(128 to 255 literals)

enumeration result
(<128 or >255 literals)

enumeration result

enum

short

enum '"

short '"

enum

Use identical ordering of the enumeration
literals.

Pascal passes enumerations with 128 or
more literals as words.

Cortland WorksJuJp C Pocket Referent::t! 13

CortLand Workshop C Pocut Reference 14

(128 to 255 literals)

char
var char
char result

integer
var integer
short result

longint
var longint
longint result

short

short
char *
short

short
short
short

int or long
int * or long $

int or long

Pascal passes chars as 16-bit values.

l6-bit signed values.

32-bit signed values.
*•• long only??? ...
_•• long only??? _••

real extended '" Pascal passes real pa..ramet.ers as extended
by address.

var real float >II

real result float Pascal returns real results by value.

double extended >II Pascal passes double parameters as
extended by address.

var double double iii

double result double The caller supplies the address of the
double result.

comp extended >II Pascal passes comp parameters as
extended by address.

CortltJJUi Workshop C Pocket RefereN:e 15

Cortland WorksJwp C Pocket RefereN:e 16

\,

var comp
comp result

extended

var extended
extended result

pointer
varpointer
pointer result

+

comp·
comp

extended •

extended •
extended

pointer
pointer *
pointer

The caller supplies the address of the
comp result.

Pascal passes extended parameters by
address.

The caller supplies the address of the
extended result

32-bit addresses.

+

.,.

array (lor 2 bytes)
array (3 or 4 bytes)
array (5 or more bytes)
var array
array result

record (1 to 4 bytes)
record (5 or more bytes)
var record (any size)
record result (lor 2 bytes)
record result (3 or 4 bytes)

short
int or long
array
array

struct
struct ...
struct •
short
int or long

Pascal passes small arrays by value.
>II*'!< long only??? ..*
Pascal passes larger arrays by address.

C does not allow array results.

Pascal passes small records by value.
Pascal passes larger records by address.

Pascal returns small records by value.
.** long only??? ***

Cortland Workshop C PocJut Refere~e 17

Cortland Work.rfuJp C Pocket Re{eref1C1t 18

record result (lor 2 bytes)

set (1 to 7 elements)

set (8 to 16 elements)

set (~17 elements)
var set (l to 7 elements)
var set (8 to 16 elements)
var set ~17 elements)
set result (l to 7 elements)

+

struct

char

short

struct
char •
short •
struct lit

char

The caller supplies the add.ress of the
record result.

Pascal passes sets with 1 to 7 elements as
bytes.

Pascal passes sets with 8 to 16 elements
as words.

Pascal also passes larger sets by value.

Pascal returns small sets by value.

;.

set result (8 to 16 elements)
set result ~17 elements)

Error numbers

short
struct The caller supplies the address of the set

result

Number
1
2

Name
[EPERM]
[ENOENT]

Meaning
Not owner
No such file or directory

Cart/aNi Workshop C Rocket Refere~e 19

Cortland Worlc.shop C Pocket Refert!1'lCe 20

\

5
6
9
12
13
17
19
20
21
22
23
24

...

[EIO]
[ENXIO]
[EBADF]
[ENOMEM]
[EACCES]
[EEXIST]
[ENODEV]
[ENOTDIR]
[EISDIR]
[ElNVAL]]
[ENFILE]
[EMFILE]

I/O error
No such device or address
Bad me number
Not enough space
Permission denied
File exists
No such device
Not a directory
Is a directory
Invalid argument
File table overflow
Too many open files

...

+ -

28
29
30

[ENOSPC]
[ESPIPE]

, [EROFS]

No space left on device
ruegal seek
Read-only file system

The Standard C library
erma

#include <errno.h>
extern int errno;

Cortlaru:J. Workshop C Pocut RefereN:e'

..... ???

21

CortlaJ1d Workshop C POCUI Referen&e

abs
int abs (i)
int i;

atof
extended atof (nptr)
char *nptr;

atoi, atot
int atoi (str)
char *str;

long atol (str)
char *str;

close
int close (fildes)
int fildes;

Cortlan.d Workshop C Pocket Reference 23

Cort/Q/ld Worlc.shop·C Pocut Referen.ce

toupper, tolower, _toupper, _tolower, toa~cii

finclude <ctype.h>

int toupper (c)

int c;

int tolower (c)
int c;

int _toupper (c)
int c;

int -tolower (c)
int c;

24

int toascii (c)
int c:

creat
int creat (path)
char ·path:

isalpha, isupper, is lower, isdigit, isxdigit, isalnum, isspace, ispunct,
isprint, isgraph, iscntrl, isascii

tinclude <ctype.h>

int isalpha (c)

Cortland Workshop C Pocket Refere~e 25

. l.

Cortland Workslwp C Pocket Reference

int c;

int i"a"cii (c)
int c;

dup
int dup (HIde,,)
int fildes;

+

26

+

+

exit, exit
void exit (status)
int status;
void _exit (status)
int status;

exp, log, loglO, pow, sqrt
#include <math.h>

extended exp (x)
extended Xi

Cortlarui Workshop C Pocket Reference 27

Corrland. Workshop C POCU! Reference

extended log (x)
extended x;

extended 10g10 (x)
extended x;

extended pow (x, y)
extended x, y;

extended sqrt(x)
extended x;

28

-+-

+-

faccess
int faccess (char "fileName, usigned int cmd, _);

fclose, rflush
*include <stdio.h>

int fclose (stream)
FILE "stream;

int fflush (stream)
FILE' "stream;

CortlaJUi Workshop C Pocket Refer~fIC~

Cortland. Workshop C PocUt Rejerefl&e

fcntl
#include <fcntl.h>

int fentl (filde~, cmd, arg)
int filde~;

unsigned int cmd;
int arg;

fen"or, fear, clearerr, fileno
.include <stdio.h>

int feof (~tream)

J()

+

...

FILE *stream:

int ferror (stream)
FILE *stream;

void clearerr (stream)
FILE *st.ream;

int fileno (stream)
FILE *stream:

Cortland Workshop C Pocket Reference 31

\

Corr/and Workshop C Poclut Reference

noor, ceH, tmod, fabs
#include <math.h>

extended floor (x)
extended x;

extended ceil (x)
extended x;

extended fmod(x, y)
extended x, y;

+

J2

+

~xtended fab~(x)

extended x;

fopen, freopen, fdopen
tinclude <stdio.h>

FILE *fopen (filename, type)
char *filename, *type;

FILE *freopen (filename, type, stream)
char *filename, *type;
FILE *stream;

Cart/and Wortrhop C Pocket Rejeren.ce 33

Corrland Worbhop C Pocket Rej'ereflt:e

FILE *fdopen (filde~, type)
int f ilde:s;
char *type;

fread, (write
#include <:stdio.h>

int fread(ptr, :si%e, nitem~, :stream)
char *ptr;
int :si%e, nitem:s;
FILE lit:stream;

+

.;.

int fwrite(ptr, size, nitems, stream)
char *ptr;
int size, nitems;
FILE *stream;

frexp, Idexp, modf
extended frexp(value, eptr)
extended value;
int *eptr;

extended ldexp(value, exp)
extended value;

Cortland Work$Mp C Pocket Referen.ce 15

Cart/and Workshop C Poclut Refererv:e

int exp:

extended modf(value, iptr)
extended value, *iptr:

fseek, rewind, ftell

finclude <stdio.h>

int fseek (stream, offset, ptrname)
rILE *stream;
long offset:

+

36

.;.

int ptrname;

void rewind (stream)
FILE '" s-tream;

long ftell (stream)
FILE "'stream;

getc, getchar, fgetc, getw
tinclude <stdio.h>

int getc (stream)

Cart/and Workshop C Pocket Reterence 37

Cortland Workshop C Pocket RefereN:e

FILE "'stream;

int getchar ()

int fgetc(stream)
FILE "'stream;

int getw(stream)
FILE "'stream;

gets, fgets
'include <stdio.h>

38

+

char *gets(s)
char *s;

'char *fgets (s, fi, stream)
char *s;
int fi;

FIl.E ·stream;

hypot
tinclude <math.h>

extended hypot (x, y)

Cart/and Work.shop C PocJut Refere/I.Ce 39

Cortland Workslwp C Pocket Referetu:e

extended x, y;

ioctl
tinclude <ioctl.h>

int ioctl (fildes, cmd, arg)
int filedes;
unsigned int cmd;
long *arg;

Iseek
long lseek (fildes, offset, whence)

+

+

int fildes;
long offset;
int whence;

malloc, free, realloc, calloe, cfree
char *malloc(size)
unsigned size;

void free(ptr)
char *ptr;

char *realloc(ptr, size)

Cortland Worlc.shop C POCUl RejerelfCe 41

Cortland Workshop C Pocut Reference

char *ptr;
unsigned size;

char *calloc(nelem, elsize)
unsigned nelem, elsize;

cfree *** ? ***

memccpy, memchr, memcmp, memcpy, memset
char *memccpy(sl, s2, c, n)
char *31, *32;
int c, n;

+

...

char *mernchr(5, c, n)
char *5;
int c, n;

int memcmp(sl, 52, n)
char *51, *s2;
int n;

char *memcpy(sl, 52, n)
char *51, *s2:
int n;

Corl/and Workshop C POWI Referen.ce

..

43

Cortland Workshop C Pocut Referen.ce

char *memset(s, c, n)
char *s:
int c, n;

onexit
tinclude <stdio.h>

int onexit (func);
void (-func) ();

open
tinclude <fcntl.h>

int open (path, oflaq)
char "'path;
int oflaq;

printf, fprintf, sprintf
#include <stdio.h>

...

int printf(format
char "'format:

, arq J •••)

int fprintf (stream, format [, arq J •••)
FILE "'stream;

Cortland WorJc.rlwp C Pocket Referent:e 45

Cortland Workshop C Pocut Reference

char *format;

int sprintf (str, format (, arg J ••.)
char *str, format;

putc, putchar, fputc, putw
tinclude <stdio.h>

int putc(c, stream)
char c;
FILE *stream;

... ...

+

int putchar(c)
char c;

int fputc(c, stream)
char c;
FILE "'stream;

int putw(w, stream)
int w;
FILE ""stream;

Cortland Workshop C Pocic£t Refere~e

Cortland Worlcshop C Pocket Reference

puts, fputs
*include <stdio.h>

int puts(s)
char *13;

int fputs(s, stream)
char *s;
FILE !stream;

qsort
void qsort ((char *) base, nel, sizeof (*base), compar)

+

+

unsigned int nel;
int (*compar ();

rand, srand
int rand (

void :s rand (seed)
unsigned seed;

read
int read(fildes, buf, nbyte)
int fildes;

Cortland Workshop C Poclut RejereflCe 49

Cortltmd Workshcp CPocut Refereru:e

char *buf;
unsigned nbyte;

scanf, fscant,. sscanf
#include <stdio.h>

int scanf(format
char *format;

, pointer) ...)

int !scanf (stream, format (, pointer) ...)
FILE "stream;
char "format;

/

+

int sscanf (s, format (, pointer) '")
char *s, *format;

setbuf, setvbuf
#include <stdio.h>

void setbuf (stream, buf)
FILE *stream;
char *buf;

int setvbuf (stream, buf, type, size)
FILE *stream;

Cortland Workshop C Pocket Rejereru:e

...

51

Corrland WorlGshcp C Pocut Refere1l&e

char ;'buf;
int type;
int size;

sigset, sighold, sigrelease, sigpause
tinclude <Siqnal.h>

SiqnalHandler ;, siqset (siqMap, newHandlerl
SiqnaLMap siqMap;
SiqnalHandler ;,newHandler:

void _siq_dfl (siqNo, siqState, siqEnabledl

52

+

SiqnalMap sigNo;
SignalMap sigState;
SignalMap sigEnabled;

SignalMap sighold (sigMap)
SignalMap sigMapi

void sigrelease (sigMap, prevEnabled)
SignalMap sigMap;
SignalMap prevEnabled;

void si9Pause (sigMap)

Cortland Workshop C Pod:et RefereltCe

...

53

Corrland WorksJwp CPocfc4t Reference

SignalMap sigMap;

sinh, cosh, tanh
tinclude <math.h>

extended sinh (xl
extended x;

extended cosh (xl
extended x;

extended tanh (xl

+
+

...

extended x:

stdio
tinclude <stdio.h>

FILE *stdin, *5tdout, *5tderr:

strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen,strchr, strrchr,
strpbrk, strspn, strcspn, strtok

char *5trcat (51, 52)
char *51, *52;

...

.Cortland Workshop CPocUt Refere~e .55

Corr/and Workshop C Pocket Refereru:e

char *3trncat (31, 32, n)
char *31, *:s2;
int n;

int strcmp (:s1, :s2)
char *31, *s2;

int :strncmp (:s1, s2, n)
char *sl, *s2;
int n;

char *strcpy (sl, s2)

+

56

+

+

char "'sl, "'s2;

char "'strncpy (sl, s2, n)
char "'sl, "'152;
int n;

int strlen (15)
char "'15;

char "'strchr (15, c)
·char "'s, c;

Cortland WorksJwp C POcUt Refereru:e 51

Cortland Workslwp C Pocket Reference

char *strrchr (s, c)
char *s, c;

char *strpbrk (sl, s2)
char *sl, *s2;

int strspn (sl, 32)
char *31, *s2;

int strcspn (sl, s2)
char *31, *32;

.58

.;.

char *5trtok (51, 52)
char *51, *52;

strtol
long strtol (5tr, ptr, base)
char *str;
char **ptr;
int base;

sin, cos, tan, asin, BeDs, atan, atan2
.include <math.h>

Cortland WorksJwp C Pocut Reference 59

CortlQlld Workshop C Pocket Reference
f.iJ

extended sin (x)
extended x;

extended cos (x)
extended x;

extended tan (x)
extended x;

extended a"in (x)
extended XI

+

+
+

ext.ended aces (xl
extended x;

extended atan (xl
extended XI

extended atan2 (y, xl
extended x, y;

. ungetc
Hnclude <stdie.h>

Cortlcw:i Workslwp C Poclut Reference 61

Cortland Workshop C Pocket Reference

int ungetc (c, stream)
char c;
FILE *stream;

.unlink
int unlink (path)
char *path;

w'rite
int write (fildes, buf, nbyte)
int fildes;
char *buf:

+

un:! igned nbyte;

ASCII Table

Cortland Workslwp C PocUt Reference

+

Corr/aNi WorksJwp C Pocut Reference

Cbar Dec Oct Hex Char Dec Oct Hex Char Dec Oct Hex Char Dec Oct Hex
nul 0 0 0 sp 32 40 20 @ 64 100 40 96 140 60
soh 1 1 1 ! 33 41 21 A 65 101 41 a 97 141 61
stx 2 2 2 34 42 22 B 66 102 42 b 98 142 62
etx 3 3 3 ,. 35 43 23 C 67 103 43 c 99 143 63
eot 4 4 4 S 36 44' 24 0 68 104 44 d 100 144 64
e:nq S 5 5 I/(, 37 45 2S E 69 105 45 e 101 145 65
ack 6 6 6 .t: 38 46 26 F 70 106 46 f 102 146 66
bel 7 7 7 39 47 27 a 71 107 47 g 103 147 67
bs 8 10 8 40 50 28 H 72 110 48 h 104 150 68
ht 9 11 9 41 51 29 I 73 III 49 i 105 151 69
If 10 12 A • 42 52 2A 1 74 112 4A j 106 152 6A
vt 11 13 B + 43 53 2B K 75 113 48 Ie 107 153 68
ff 12 14 C 44 54 2C L 76 114 4C 1 . 108 154 6C
a 13 15 0 45 55 2D M 77 115 40 m 109 155 6D

+ +

so 14 16 E 46 56 2E N 78 116 4E n 110 156 6E
si 15 17 F I 47 57 2F 0 79 117 4F 0 111 157 6F

dle 16 20 10 0 48 60 30 P 80 120 50 p 112 160 70
del 17 21 11 1 49 61 31 Q 81 121 51 q 113 161 71
dc2 18 22 12 2 SO 62 32 R 82 122 52 r 114 162 72
dc3 19 23 13 3 51 63 33 S 83 123 53 s 115 163 73
dc4 20 24 14 4 52· 64 34 T 84 124 54 I 116 164 74
nak 21 2S 15 5 53 65 3S U 85 125 55 u 117 165 75
syn 22 26 16 6 54 66 36 V 86 126 56 v 118 166 76
etb 23 27 17 7 55 67 37 W 87 127 57 w 119 167 77
can 24 30 18 8 56 70 38 X 88 130 58 x 120 170 78
em 25 31 19 9 57 71 39 Y 89 131 59 y 121 171 79
sub 26 32 lA 58 72 3A Z 90 132 5A z 122 172 7A
esc 27 33 IB 59 73 3B [91 133 5B (123 173 7B

fs 28 34 1C < 60 74 3C \ 92 134 SC I 124 174 7C

CortlaNi WorkshtJp C POcUt RefereTlt:t 65

Corrland Work.shcp C Pocket Reference 65

+

gs 29 3S 10
rs 30 36 IE
\IS 31 37 1F

Char Dec: Oct Hex

..
>
'7

Char

61 7S 30
62 76 3E
63 77 3F

Dec: Oc:t Hex

) 93 13S SO
1\ 94 136 SE

95 137 SF
Char Dec Oct Hex

125 175 7D
126 176 7E

del 127 177 7F
Char Dec Oct Hex

+

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14

