
Compiler Conventions
for the ORCA/M Development System

14 January 1986

Introduct ion

This technical note tells you how to Install a compiler, Interpreter,
assembler, or some combination in the ORCA programming environment. The
description Is valid for both the Apple II version of ORCA and the
upcomming Cortland version, which is called the Cortland Programmer's
Workshop, This is an overview of some of the "how" and "Why" behind the
interface between ORCA and the complier. For a description of the
GET.J..INFO and SET.J..INFO calls refered to in thIs document, see the ORCA/M
reference manual (for Apple I I implementations) or the Cortland
Programmer's Workshop ERS (for Cortland Implementations). The only
difference between the two is that pointers on the Apple I I are two bytes,
whlle the fields used for pointers on the Cortland require four bytes each.

Input Format and Conventions

Compilers must be capable of accepting ASCII files as Input. These files
consist of the standard ASCII character set with the high bit off. Lines are
separated by'the CR (SOD) character. The files themselves are stamped wit/I
a language number, described below. Whether or not control characters are
allowed in the Input flle (other then $00) is up to the implementor, but it is
recomended that at least the form feed (SOC) be accepted if it appears in
column I of an otherwise blank I1ne, A possible future version of the ORCA
editor would generate such lines, The effect of the Iine should be to do a
form feed on a printed output, which is accomplished by Simply sending the
SOC character to the printer.

As a matter of convention, all source lines are assumned to be 80 columns
long on the Apple /1 ProOOS based version of ORCA, and 255 columns on the
Cortland version. The current system editor cannot generate longer lines, so
this w1l1 not generally be a problem,

Entry and Exit Control

Control is passed to the compiler via aJSR Instruclton from ORCA.HOST.
The compiler starts by doing a GET_INFO call to ORCAHOST to read the input

parameters. On normal completion (no terminal errors) the compller returns
control to ORCAHOST with a SET....LINFO call. For maximum portability
between versions of ORCA, the GET....LINFO and SET....LINFO calls should be
done using the macros provided In the sUbroutine lIbrary. For terminal
errors, InclUde a displacement Into the text file that was being processed,
This displacement Is used by the system editor, which will display the line
that caused the problem at the top of the screen. Calling the editor Is done
automatically by ORCAHOST whenever control IS returned with the
maximum error level encountered showing anegative value. Since the error
code Is returned In a one byte field, any value over 127 Is considered
negative. Currently, terminal errors are always flagged With avalue of $FF,

Several Inputs are provided by the system. With two.exceptlons, these are
self explanatory. The comptler Is responsible for reading and using these
Inputs, and for updating any of the values that have changed via the
SET....LINFO call when the comllatlon haS completed. The KEEP parameter IS
covered In more detatl In a later section.

The second parameter which bears special comments Is the command type
entry, TYPE. This entry tells the operalng system which functions need to
be done. The three least significant bits are currently used. On entry to a
comptler, the least significant bit will always be set; this bit Indicates
that a compile Is to be performed, The next bit indicates that a Ilnk edit is
needed. Finally) the bit In posttlon 2 indIcates that the finiShed program 15
to be executed. There are four conditions that can be In effect on exit from
a comp11er. The first Is a terminal error, with a negative error code. The
second Is a normal error. In both of these cases, the setting of the TYPE
byte Is Immater1al, since ORCAHOST will not continue With further
proceSSing. (In one case It enters the EDITOR, In the other It enters the
MONITOR.) The third case Is the normal completion of a compile) In which
case the least significant bit of the TYPE byte should be cleared. This
signals to ORCAHOST that the comp11e Is finished. It Is not the
responsibility of the compller to set the next two bits; this was done by the
monitor In response to the speclflec command that started the compile.
Finally, there 15 the case where the complle stops due to encountering an
unrecognized language (covered In detail later). In that case, the TYPE byte
should not be changed.

Identlflng the Language

Each language used under ORCA Is ass Igned a unique number by the Byte
Works, This number is associated with the type of language in use. In trll:

to determ1ne the· largest alphabet1cal suffix now 1n use, and use the next
one. For example, the normal sltuatlon Is for the second language used 1n a
two language complle to f1nd a .A flle created by the f1rst language, so a .B
f1le would be created.

Keep In mind that the purpose of the root flle Is to hold the first code
segment to be executed. In many languages, I1l<e assembly language, BASIC

. and Fortran, the first SUbroutine complied is the first one to be executed. In
lang~ages like Cand Pascal, this Is not true. If the complier Is careful, It Is
reasonable to open the .A file Immediately, opening the root flle when thE:
entry code Is actually complied. (For Pascal, this would be the program
block. For C, It would be the function HmalnN.)

Naming Conventions In Object Modules

The format for Object modules varies between the Apple / / and Cortland
Implementations. This will change when we release V4.1 of ORCA/M for the
Apple II, which will conform to the convention used on the Cortland.

In both versions, It Is Important to follow several conventions when
wrlttlng names to Object modules, If the source language Is case
Insensitive, I1ke Pascal, always use uppercase letters In Ident1flers. For
fixed length names, be sure and padd unneeded characters with spaces, This
will make the Object modules created by the complier compatible With
those created by ORCA/M.

Partial Compiles

The discussion In the last section probably seems like a mess. If Is
compl1cated for a reason. That reason Is partial complies.

Let's face It, no matter how fast a computer gets, there will be people
trying to develop programs that push the resources of the machine to the
limit. On an Apple /I, compiling a 500 line program Is Quite an undertaking
with the compilers avallable at the moment. You certainly don't make a
casual change to aprogram using Manx Con the Apple I I - It takes too long
to compile. If you are using macros extensively, the same Is true under
ORCA/M.' Partial complles provide some relief from long compile times by
allowing the compiler to recompJle only the parts of aprogram that hav€'
changed,

To accomplish this, the compiler should split the program Into Individual
code segments. The ORCA/M assembler does this at the beginning of each

code segment. Small-C does so for each function definition. The only
critical requirement that must be met Is that the order of these units
should not matter. Since It Is not possible to Ndrop throughNthe end of aC
function, C, for example, fulfllls this requirement.

When a partial complle Is done, the complier scans the source code looking
for the start of code segments, When one Is found, It Is complied, and the
code segment Is sent to the Object module. If the code segment Is the first
cOde segment that will be executed when the program Is run, delete the old
root flle and create anew one. Otherwise, open a new output file using the
next avallable alphabetical suffix. All new code segments go In that object
module. .

When the l1nker does Its thing, It starts With the root module, and·lln~s that
segment. It then scans all of the object modules, and starts With the one
With the highest alphabetical suffix. It then works Its way back to the .A
fl1e, Ignoring any segments which It has already found. This way, it always
uses the most recent version of each segment.

To see how to pick up the list of names for apartial complle, see the
documentation for GET...LINFO,

Interpreters

Up untll this point, the fact that a language might be an Interpreter (or at
.least might not need the services of a link editor) has been Ignored.
Interpreters can be executed under ORCA, With some l1mltatlons. The most
severe Is that the Interpreter could never make calls to code compiled by a
compiler, since the l1nk editor cannot be used to combine the Interpreted
code with the complied code.

The only speCial requirement to make an Interpreter work properly IS to
remember to clear all three bits of the TYPE byte before dOing a SET.l.INFO
to return control to ORCAHOST. This Is because the Interpreter itself
executes the program, so linking and seperate execution are not needed.

command processor, the number Is coupled wIth the name or the compl1er
used to translate the riles. For example, ASM6502 Is the name or the
ORCA/M macro assembler, as configured to assemble 6502 code. This Is
also the name of the command used to tell the system that new ffles should
be sent to this program when they are assembled, ana is the auxiliary field
name that shows up in the directory when the file is cataloged.

ThIs number must appear as the fourth byte of an assembler or compi ler, m
case the number must be changed by the user ror some reason. For example,
there may be two pascal compliers avallable some day, and for some reason,
someone may wish to uniquely identify both compilers on the same system.
Perhaps more to the point is the current situation where two versions of the
advanced I1nker are available.

All languages should have a meta-command that corresponds to the ORCA/M
APPEND directIve; thls is a command that transfers control to another fi Ie
Whenever this command is used, the complier must check the first byte of
the auxillty field or the appended file to make sure that the value of that
byte matches the fourth byte of itself. If the bytes do not matCh, the new
ffle ,is of another language. The complier should then close the object
module It Is generating, and do a SET....LINFO command to transfer control
back to ORCAHOST.

The following table shows the language numbers which have been asslgned
so far. Inclusion of a language in this table does not Indicate that there is
any Intentlonon the part of any party to produce a complier ror that
language. If you are writing a complier for a language not listed here,
please apply to the Byte Works for a language number. We w11l be happy to
assign one, insuring that your finished prOduct wiJJ not have future conllets
With other languages.

Number Name Use

o
1
2
3
4
5
6
7
8
9

PRODOS
TEXT
ASM6502
ASM65816
BASIC

. PASCAL
EXEC
C
FORTRAN
ADA

ProDOS TXT file
Text formatter
6502 assemb ler
65816/65802 assembler
BASIC compl1er
Pascal complier
Command files
Ccompller
FORTRAN complier
ADA compller

10 FORTH FORTH Interpreter
11 CFORTH FORTH compIler
12 IBASIC BASIC Interpreter
13 LISP LISP Interpreter
14 MODULA Modula 2 complier
15 PROLOG Prolog Interperter
16 PILOT PIlot Interpreter
17 LOGO Logo Interpreter
18 COBOL COBOL complier
19 ASMZ80 Z80/8080 assembler
20 ASMZ8000 Z8000 assembler
21 ASM6800 6800 assemb ler
22 ASM8085 8085 assembler
23 ASM65C02 65C02 assembler (usually combIned

wIth I), 24 ASM68000 68000 assembler
25 ASM8086 8086/8088 assembler

The Re locatabIe Output FIle

The output from a compIler under ORCA should be In the form of one or more
relocatable flies, which are then processed by the lInk editor. The KEEP
variable passed to and from ORCA HOST via SET....LINFO and GET-LINFO calls
Is the key to determlnalng the names and number of fIles to generate.

BasIcally, each program consIsts of a relocatable fIle that ends with the
characters ".ROOT". If, for example, the program Is saved under the name
MYFILE, the program consIsts of the relocatable fOe MYFILE.ROOT. The root
fOe, as It Is called, contaIns the entry poInt for the program, and Is always
placed at the begInnIng of the executable file by the lInk editor. If a
program uses any subroutines, these appear In subsequent flies WIth

• ascendIng alphabetical endIngs, I1ke MYFILE.A and MYFILE.B,

ThIs Is all keyed off of the KEEP number. If the output file Is to be kept at
all, the KEEP varIable wIll be I, 2 or 3 on entry to the compIler. A value of 1
IndIcates that no output fIles have been opened, so the compIler shOuld start
by producIng a root file from the fIrst SUbroutine. A value of 2 IndIcates
that the root file was created by a prevIous language, and that the complIer
should start by creating a fIle with the suffIX ",AU, This IS a faIrly rare
occurrance, sInce the normal sItuation Is for the first language used to
create both a root fIle and a .A file. In that case, the keep number wIll be 3.
When the keep number Is 3, the compi ler should search the output dlrector~'

