
p
. I'

Subject: Dumpboj

Credits : By The Byte Works Inc.
Copyright 1986
Written by Phil Montoya

What Is Dumpobj'?

Dumpobj is a powerful object module formatter. It's main task
is to visually display object modules in easy to read format so that
compiler writers can easily and quickly observe the output from the
compiler. It also aids in debugging the linker because load modules
can be displayed as well. In addition, .using several options in
conjunction, Dumpobj can sucessfully display files of any type in hex
format or 65816 disassembled format. This capability should not be
confused with a disassembler. Dumpobj only displays information
and is not designed to be used interactively.

Syntax

dumpobj [switches] filename [names=(segment_names, ...)]

Options

+x Dump in hex format. The default is to dump the file in
opcode format.

+d Dump in 65816 disassembley format. The default is to
dump the file in opcode format.

- h Don't show headers. If the output format is hex, the
header is now dumped in hex. For other output formats,
the header is simply not printed. The default is to print
headers.

-5 Writes short headers instead of long headers. An
abbreviated header is printed that is the same as a
single segment output from the current scan utility.
Used in conjunction with the -0 option the output will be
equivilant as the current scan utility. The default is to
print long headers.

"0 The body of the segment is supressed. Instead, only
headers are written. The default is to print the body.

.. f Supresses check of file type. Normally, the utility only
accepts object modules, load modules, and libraries.
This allows any file type to be used. This can be handy
for looking at files that have improper file types, but is
really intended to let you dump files in hex format using ~

this utility. The default is to check file types.

-a Normally, the left columns of the dumps include the
displacement into the segment, the hex (for object
format and assembley format) and the PC (for assembley
format). This option suppresses that. The default is to
ouput these values.

•m Default for 65816 disassembled listings is .for full
native mode. This causes the disassembly to start with
short memory registers .

.. i Default for 65816 disassembled listings 'is for full
native mode. This causes the disassembly to start with
short memory registers.

An optional NAMES=(seg1 seg2.•.) parameter allows dumping
of selected segments from an object module.

Notes

1. You can either use '+' or '.' for each option. This
maintains compatibility with the rest of the system.

ego dumpboj·j +i ..m +m <file:> is valid and is the
same as dumpobj <file:>.

2. It is best to use the '..h' option in conjunction with the
'..f' option if the file is not in object module format.
Anytime the header is printed, the file is assumed to be
in object module format and information from the header
is used to scan to the next segment. This may fail if the
assumed header is not in correct form (ususaJly an error
will occur). If the header is not printed and there is not

file checking, then a different mechanism is used to scan
the file which will work sucessfully for any type of file,

3. The disassembler does it's best to correctly disassemble
and object module. It can resync itself if it gets out of
alignment in constant opcodes. It also tries to keep
track of rep and sep instructions. Anytime an rep or sep
with an immediate value occurs then the corresponding
state of the registers is written via the longa and longi
directives. These directives are also written at the
begining of each segment, an reflect the state of the
registers going into that segment. This will not work if
an expression with a label was used as the operand of
the rep or sep instruction.

ie: (in original source)

rep #$30
sep #$20*2
rep #Iabel

works!
works!
will not work!

4. For opcode dumps the expressions are' written in postfix
form. For disassembled dumps the expressions are
written in infix form.

5. Our hope was that the disassembler option could produce,
without modification, a source file that could be used by
the assembler to create an equivalant object module.
This is sort of the case. The differences lie in that
the assembler resolves all relative branches and
zero page equates so it is not possible to create local
labels or use numonics on globally defined labels. There
are simply some transformations that happen that don't
allow us to create an exact duplicate of the source
without making assumptions of how the object module
was created. This is not what we want to do. On the
other hand it is reasonable to assume that the two object
modules once linked would produce identical load files.

