
f i f j • f ! I L~ f 8 . • f > I \ J -J . J-- : I -r-
DOUBLE

ISSUE
T .M .

VoL~1- EE
Numbe[2 ON THR ~ ~ r

I j ' ' r~ru?ry1Marcrr
-+9SJ-'-------,The Magazine For Apple Ill Owners and Users~-___--.J

-J..-l----1--+-1 -t--+-+- -r .. t + t t t t --t - .. -- --- ~ .

• + t
1 isk Pal< 2: L!sting files in Pascal I

-+---!----;1~ ~~ I 1 + I -• tt p11a W hn ? t ~ t t + + t T

--+---t +- - ~ ..

--+--+-~ Pa~cat Tutbrifll be9J ns . f t ~ .. + -

I -i.- ~ .. - ...
.. ~ ..
t .. ~

1 --;-- - -+------+-----1

I ..

I • JE'jtt€w ON: Apple Writer til r t- ~ _ : :·
-+---1-+---t_i_ , Plub rnu~h mbre! . t · 1 t

- +-- +-

+ - ..

t -~ - +

t ..
--

+

IQIJ '!'tREE(..
is here ...

.. +
..

,_ i -
I

+

.. .. +

~ ,. +

~ + t
I I

~
I

- ---l
I

,_ - + ~ + .. 1 . -+-- +--
I 1 I I

• . t
+ i

I I
I

~ ~ ~

i ..
+-

~
I

+- + t

t +

i
r
t
t

+

: __ 11:-_J
t . + '

+ t - - '
j ~

l i ~

! t- -+ +

t 1 ..
I .. - .1. ..

I

. ~
I

+- - r-
1

f . l ~

I

r
I

+ +

\

I

,_ ~

1 I .. + ~ ~ ~

I
I l t ~ ~ +

t
t +

l l I

I I

t ..
I

t
I
I

+ + t +

t
+

I t

t
! t ; :

t
t t
I

+ t .. +

t +

t

..
t t - .. -

~ l
: I

ON THREE
Post Office Box 3825

Ventura, California 93006
(805)644-3514

Another open letter to our subscribers

We're back again, but we're late! Over the past few months I
have had the pleasure to put together the first and only magazine
specifically for Apple Ill owners and users. It has been a joy for
me to work those late nights in front of my trusty old Apple Ill and
I know by your support that I will be doing this for quite some time.

The delays in this issue were caused by a variety of factors
that I would like to forget. In January we mailed out a sample copy
of the magazine to all Apple dealerships in the country. As this
issue goes to press, a check consisting of spot calls to various
dealers around the country reveals that less than 10% of the dealers
who responded had received it. So much for bulk mail.

We were counting on the response from that mailing to reach many
more thousands of Apple Ill users. Because of the snail-paced
delivery, we have not yet been able to reach the number of Apple Ill
users that we need in order to run the quality publication that the
Ill deserves.

Since we do not have that large a subscription base, we are
forced to give you a February-March issue. Also a single April-May
issue is planned. For those of you worrying about your yearly
subscription fee, please don't. All subscribers will receive 12
issues regardless or whether it takes 14 or 15 months to do it. This
issue will count as one, and the upcoming April-May issue will count
as one. Come June we hope, plan and pray that we will be able to go
to a monthly format.

In your own interests I therefore ask that you give your dealer
a call and ask him to stock ON THREE. The quicker we get larger
numbers of people reading the magazine, the quicker we will be able
to go monthly. Again I thank you for your support.

Sincerely,

Bob Consorti
Editor

-ON THREE-

Ill TABLE OF CONTENTS Ill

Open Letter:
Another message to our subscribers
Bob Consorti (inside front cover)

Ask THREE:
(Letters to the Editor) 3

The Editor's Block:
Grumpy Grumblings
Bob Consorti 2

The Ill's For Me:
Al Evans 7

Ill FEATURES Ill

SOS Directory Structure
Revealed:
Bob Consorti 8

Assembling (ON) the III:
Martin Nichols 19

Disk Pak 2: Listing Files
In Pascal
Bob Consorti 13

New Products Received:
Some new, some old- all good

Ill DEPARTMENTS Ill

Basic- The Easy Way:
Back to the old grind!
Earl Curlson 28

REVIEW ON: Apple Writer III
Is it good, bad or in between?
Bob Consorti 36

ON Pascal:
THE place to learn Pascal.
Louis Hanson 30

Three Shorts - Fini!
Color, color and noise!
More demos for your III 40

ON THREE Presents - Disk Of the Month (A good buy!!)
The best buy in town is - ON THREE O'Clock Back Cover

Next Month in ON THREE
DOS file list ... Reset lock & unlock ... Reboot ... Slow-Fast ... Horses ON the III ...
Reviews: Profile, Backup III, Word Processing Language, Quick & Easy Data Master, Critical
Path Scheduling ... same old tutorials ... and more!

February-March, 1983
Volume 1 Number 2
Editor/Publisher:

Bob Consorti

Managing Consultant:
Joseph Consorti

Cover Design and Artwork:
William V. Padula
Cranford, New Jersey

Interior Artwork:
Virginia Carol

Typesetting Services:
The Typesetting Company
Van Nuys, California

Printing Services:
Ojai Printing &
Publishing Company
Ojai, California

ON THREE - THE Reference Source for the
Apple I I I is published somewhat monthly by ON
THREE, P.O. Box 3825, Ventura, California 93006.

For a copy of our Author Guidelines, please send a
self-add(essed stamped envelope (20 cents) to the
above address.

Subscription information: U.S.- $30 for 12 issues.
For first class mail, please remit an extra $10.

All foreign subscriptions should include additional
postage in the following amounts:

$8 for Canada and Mexico
$12 for Central America- Caribbean
$16 for South America- Europe- Africa
$19 for Asia - Pacific Islands · Australia

Funds should be remitted in either U.S. dollars
drawn on aU .S. bank, International Money Order,
or by a direct bank draft.

Group Rates are as follows:

2 - 9 members, $28 per subscription
10-49 members, $25 per subscription
50+ members, $22 per subscription

Group purchases must have one mailing address.

Return postage must accompany all manuscripts,
drawings, and diskettes submitted if they are to be
returned, and no responsibility can be assumed for
unsolicited materials.

All letters sent to ON THREE will be treated as
unconditionally assigned for publication and are
subject to ON THREE's right to edit and com­
ment editorially.

Dealer inquiries are welcomed. Please write to the
above address for volume pricing and terms.

ON THREE is a registered trademark of ON
THREE. Apple, Apple][, Apple I le, Apple I I I
and ProFile are registered trademarks of Apple
Computer, Inc. Opinions expressed in this maga­
zine are those of the individual authors and not
necessarily those of ON THREE. Entire contents
copyright ,c 1982, 1983 by ON THREE. All rights
reserved.

ON THREE
/// /// /// /// /// /// ///

The Editors Block:
Bob Consorti

As I sit down to write this column, I can't forget a phqne
conversation that I had this morning with a dealer. She called

to place an order and we began talking. She told me that she and
all the Apple I I I users in her area know that the Apple I I I is one
of the finest machines available today.

The conversation then went to the subject of why no one is saying
just that. Most people think that the Apple I I I is a dog that needs
to be put out of its misery. Even Apple can't figure out why the I I I
is not selling as well as the][. It seems that we are the first people,
the first magazine that is trying to remedy this situation.

How did we get in this spot? I can sum it up in one word
-Openness-. For the two and one half years the Apple I I I has
been around, if you wanted to learn the i nterna Is of SOS, the heart
and soul of the Apple I I I, you had to spend a grand or so and
attend a special workshop at Cupertino. Two and one half years
and the best technical information available is the Beta draft of the
SOS Reference Manual.

Apple has been promising that this manual would be available
'soon' since the end of1980.1fyou look on your calendar it's 1983!
Why is it taking so long? Read the article 'The I I l's For Me' in this
issue. As AI Evans says, the explosive growth of the Apple][was
the work of the "Crazies"- that strange group of people who need
the information that Apple has not been making available.

With the introduction of the IBM Personal Computer, IBM concur­
rently released all of the system reference manuals. Nothing was
held back! Lookatwherethe IBM PC istoday!TheApplel I I, with
powerful SOS is a generation ahead of anything else on the market,
yet it is lagging far behind in sales.

If the Apple I I I had been 'open' from the start, maybe we
wouldn't be in the situation we are in today. For the Apple I I I to
be the success that it deserves to be, three (hal) things must
happen.

First of all, Apple has to develop a clearer perspective on the
problems of the I I I and become committed to supporting it
better in the future. Part of this means that they should release all
technical information to the general population of Apple I I I
users, and make available any information that those people ask for.

Secondly, this magazine must publish as much of that information
as possible to spread the various 'tricks' that your I I I can be made
to do. The most important part of the magazine aspect is the flow
of ideas - the open forum, where people can ask questions - and
get answers. Before we published the letter talking about the
product by Micro-Sci that allows you to run all Apple][game
software, how many people had heard about it? Without this
forum, things can not improve.

What is the last thing that must happen for the I I I to be a success?
You guessed it- People! We have to get to as many Apple I I I users

/// /// ///

as possible. 99% isn't too
much, for without those
people, new ideas will go
nowhere, and we will be
back at the start.

/// /// /// ///

Are all these things going to happen? You bet they are! Apple
knows that there is a problem, and they aren't as naive a company
as some people perceive them to be. They will clean up their act,
and start to help the I I I become the success that it deserves.

What about us? Can ON THREE do what it needs to do? I most
certainly think so. If you look over the first two issues, you will see
some very technical articles hidden under the guise of something
useful that your Apple I I I can do. The article 'Disk Pak1' in the
January issue and the two articles 'Disk Pak2' and 'SOS Directory
Structure Revealed' in this issue, show the user how to do some
very interesting things with the I I I while giving some information
that was previously unknown.

Since I don't want this magazine to become too 'techie', we are
also going to publish as many tutorials and reviews as we can.
These are for the normal Apple I I I user who wants nothing more
than the information on which word processor or data base system
is best. We have to be a 'Jack Of All Trades' and please everyone,
or we won't be pleasing anyone!

What's left? What needs to be done? That's right! People, we
have to get to people. I want every Apple I I I owner in the
country to know about us so we can provide everyone with
the kind of information that can make the Apple I I I the
biggest hit in the computer field, but I need your help! Tell a
friend! Call your computer store and ask them to stock ON
THREE. The more people we can reach the bigger the Apple
I I I will become, so get cracking!

Wow! I think I got a little bit too emotional. Heck, I can't help it­
I want the I I I to succeed so badly! Remember, you can make a
difference- so please try.

Coming back to earth, let's take a look inside the latest issue of
ON THREE! AI Evans joins our ranks as a contributing author this
month with the article 'The I I l's For Me', a short dissertation into
the 'crazies' in this field and what they mean to the I I/. Next
month, AI will start a column entitled 'I I I to the Max'. It will
contain information that enables Apple I I I users to get the most
out of his or her machine!

In this issue I will push out a little more technical information by
explaining the format of the SOS Directory Structure and giving
examples of what it can be used for. One of these examples is a
Pascal Unit and program that allows you to 'Catalog' a disk in Pascal.

In an encore performance from last month, Martin Nichols returns
to show you some more things you can do with that second byte

Continued on page 6

February /March 1983

ON THREE
Ill Ill Ill Ill Ill Ill Ill

Ask THREE:
(Letters to the Editor)
Dear Bob:

Congratulations! It's been a long time since a new SIG (Special
Interest Group) magazine has come out with a premiere issue as
polished as ON THREE. The presentation, content, and general
"feel"of the magazine are tops. ·The graphic information alone
would be worth the year's subscription price. All the Apple I I I
users around here are equally pleased.

There is one thing I would like to comment on regarding color
monitors and the/ I /.I, too, just experienced, firsthand, the Horror
Story you described with the Amdek Color II. Being a dealer, I was
able to do something which apparently you weren't. After seeing
the glorious four colors, I sent the thing back to the distributor with
a letter to Amdek. We were given credit with no questions asked.
Besides the lack of colors, the bandwidth of the Color II is insuffi­
cient to present Apple I I I 80-column text screen in an easily
readable manner. Amdek has a reputation for producing a good
dollar vs. quality monitor for the Apple][and the Apple I I I
computers. The Amdek Video 300 green screen is a good exam­
ple. Unfortunately, the Color II does a lot to make one forget their
better efforts.

There is a fairlysimplewaytogetgood color in emulation mode on
the Apple I I I. Just make up a cable to connect to the Color Video
Port, described on pages 132 and 133 of the Owner's Guide. If a
DB-15 plug is available, this is the easiest way, but a very workable
cable can be made by soldering suitable pins on the shield and
center conductor of the cable to the monitor and plugging them
into pins 12 and 13 of the plug. Twelve is the NTSC composite
video, thirteen is ground. This video output into an Amdek Color I
looks just like the same Color I connected to an Apple][. Apple
I I I video also comes from this connection, but the Color I is hardly
readable when looking at the Apple I I I 80-column text. (The
Color I has considerably narrower bandwidth than even the Color
II). Apple I I I color, though, e.g., the Dick Cavette show on the
ProFile, or the Patterns and Brian's Colors from ON THREE look very
good on the Color I.

How do you transfer an Apple] [hi-res page to the Apple I I I? This
is something which is turning up more and more often in demos, so
there must be a fairly simple way of doing it. I have heard it's
"easy"using Pascal. Just like everything else in the world though,
anything is easy if you know how! It would be equally useful to
move Apple I I I hi-res to the Apple][, making allowances for
mode incompatibilities, of course.

Bob, if you maintain the quality exemplified in the first ON THREE, I
predict you will have to beat off potential advertisers. While your
advertising policy iscertainlyto be admired, I wonder if ON THREE
might not, in the long run, have more to offer subscribers with the
considerable amount of money which might become available
from an open group of advertisers, rather than from a limited
number of carefully screened advertisers. Looking at the matter
purely selfishly, it might even be possible to reduce subscription

Ill

rates and the price of the DOM's.

Issue 2 is anxiously awaited!

Dear Mr. Collins,

Ill Ill

Sincerely,

BarryW. Collins
Alabama

Thank you for your letter, it made my day! I hope that in future
issues we will be as worthy of your praise.

On the subject of the Amdek color monitor, as I look back I see
that I didn't give enough credit to Amdek for their other
monitors. Your letter and this line should correct that. How­
ever, I still find it unacceptable that Amdek is still advertising
their Color II as being compatible with the I I I.

A future issue will Include a program that allows a two way
transfer of Apple][and Apple I I I files. Thus, you will be able
to move pictures back and forth.

As I said in the first Issue, the decision to screen advertisers was
difficult. As we get more and more subscribers our prices will
drop. Until then, the only thing I can say is hang in there! We will
grow - but we will grow at a cautious rate.

If you have any other questions or problems, please don't
hesitate in writing again.

Sincerely,

Bob Consorti

Dear Bob,

Thanks for sending me a copy of ON THREE. Not only were we
delighted to see a magazine directed (dedicated) to the Apple
I I I, but we did get some immediate tips from some of the articles.

Please accept the enclosed check to initiate our subscription. We
presently have an Apple I I I with Monitor I I/, Apple Disk I I I,
UPIC (which will be exchanged for a Grapplerx), and an Epson
MX-100. We are presently using PFS:File, Advanced Visicalc, and
Word Juggler. We'd like to see articles and information on uses in
Business and Aviation areas.

Additionally, I have recommended to John Sullivan, the owner of
Micro Computer Store in Dayton, that he send a subscription of ON
THREE to each purchaser of a I I I system as a courtesy gesture.

You've got a winner!

February /March 1983 3

ON THREE
Ill Ill Ill Ill

Dear Mr. Farrell,

Ill Ill Ill

Best regards,

Michael K. Farrell
Ohio

I'm glad that you could use some information out of the first
issue. As we receive articles, we print them, so it may not be
very long a wait for the type of articles you desire.

Thank you for telling your dealer about us. We need all the
support that we can get, and your idea is great. Even if dealers
would just send a postcard out to their Apple I I I owners
informing them of ON THREE we would grow very fast.

Thanks again for your letter.

Sincerely,

Bob Consorti

Dear Mr. Consorti,

I am overwhelmed. What more can I say. My congratulations on a
superior publication. I have not yet read beyond page 4 of my
premiere issue, and I am already at the Pascal Editor to write you.

First the comments:

I would like to inform those thinking of buying an Epson MX-80 that
a cabling switch has to be made for the UPIC card. A switch must
also be installed to allow the 8th data bit to be grounded. This will
allow full operation, including screen dumping in both Native and
Emulation modes.

Do you have any information on screen dumps fortheMX-80.1 have
heard that the PKASO card will do it, but since I have a UPIC card, I
don'twant to invest in another piece of hardware. I have heard that
a special driver is necessary for using the MX-80 with Business
Graphics I I/. Do you suppose this driver, plus the appropriate
program combination would work?

I would like to change my keyboard layout (something that is
touted as being easily done by Apple). Using Visicalc, the
"x" could be inserted into the"-" or some other key that doesn't
require a shift. I thought of using the Jeppson Disassembler to
disassemble the Keyboard Layout file to try to decode it. Do you
know an easier way?

Are there any plans that you know of to add Auto Dial, and number
storage to ACCESS I I I (an excellent package)? I think that this
would be a very useful addition to this program.

Dear Mr. Dorman,

Sincerely,

Stephan M. Dorman, M.D.
Washington

Thank you for your letter, again I hope that we will be as worthy

Ill Ill Ill Ill Ill Ill Ill

of your praise in future issues.

A few other people have responded to the question of the
lack of color in the emulation mode. Thank you for your input.
The item about the UPIC is notable. It's amazing that Apple
named it the 'Universal' parallel interface card. With that name
you would expect that you could fix the eighth bit problem
from within software.

Anyway, the PKASO card does do screen dumping. One way
to do graphics screen dumps is to save the picture on disk and
then boot Basic or Pascal and use a program to send the
picture data to the printer. We will soon publish programs
written in those two languages to do a screen dump to an
Epson, thus a special driver or assembly language routine is
only needed if you want to print pictures from within Business
Graphics.

I've got a few letters out to find out where to get the necessary
routines for Business Graphics. When I get a reply I will publish
it in the magazine.

I'm pleased to announce that AI Evans, one of our contributing
authors, will soon show how to change the Keyboard Layout
Table. It will be published in a few months as part of his regular
column.

The problem is this- it is not a code file, it is a data file. Because
of this, programs like Dr.Jeppsons' disassembler will not work.
Without knowledge of the structure of the layout table, the
only way to decode it is by trial and error. This· obviously takes
some time, but we will show you how in just a little while.

I also have a letter out to Apple about updates to ACCESS I I I
and other Apple I I I software. When I know for sure I'll publish
it. Don't hold me to it, but I understand that at NCC in June,
Apple plans to announce quite a few updates and new pack­
ages for the I I 1.

If I can be of further assitance, please don't hesitate in writing
again.

Sincerely,

Bob Consorti

Dear Bob,

I am enthusiastic about the first issue and look foward to more
good information in the coming issues. I wish every success to your
venture.

How long do you think it might be before something equivalentto
Quality Software's "Bag of Tricks" might become available for the
I I I?Thatpackagejustsaved my hide on a bombed)[data disk, so
I've learned to appreciate what it can do. Why, you ask, am I
emulating when I have a much finer machine available? It's
because of a unique $500 digital-image analysis program that has
been written only in Integer Basic.

I've got the ProFile hard disk and the Quark series of software, both
of which make me very pleased. "Word Juggler" is far better, in my

4 February /March 1983

ON THREE
/// /// /// /// /// /// ///

judgement, that "Apple Writer I I/", but everyone has their own
preferences. the "Spooler"and "Catalyst" programs from Quark
also work very well. To avoid getting a "free" copy of your locked
software when loading it onto ProFile with "Catalyst", Quark clev­
erly "fixes" your master disk so that it will no longer boot- but it
can be reloaded onto ProFile via "Catalyst", if that need should
arise.

Storing your programs on ProFile does permit you to go from one
program to another without rebooting each time. I hope Quark
sends you their products so you can do a review (me too!- Ed.).
I've found their support to be very good. I had some trouble
getting their locked "Word Juggler" to boot on my I I/, and they
worked with me on the phone to solve the problem.

My retrospective guess is that their method of disk protection
makes the booting of "Word Juggler" susceptible to failure on disk
drives that run fast. Quark also recommended that I check the drive
hub on my I I I because some of the earlier versions had hubs
slightly out of round. If a hub on the drive is white, they recom­
mended it be replaced with a replacement kit (costs around $12
from Apple dealers) which uses a tan hub. have you heard of any
reports of Apple drive problems caused by the white hubs? At
any rate, I never did replace mine after discovering that slowing
down the slightly fast speed made the booting problem
disappear.

Some other new I I I programs you might care to review .in the
future include "Quick & Easy Data Master", "BASIC Extension"and
the OMNIPACK (statistics and DBM) series (all are unlocked).
These firms deserve our support if for no other reason than leaving
their products open for the user to tinker with.

I, too, got stuck with an Amdek Color II monitor thinking it was
compatible with the I I/. I've got to give Apple some blame for
the color-interface problems, however. It is inexcusable to put a
signal on the port and label it "RGB color output", when in fact it is
not. Does anyone know what Apple had in mind when they
designed(?) the color output on the I I/? But my story isn't as
discouraging-my Color II does "work", after a fashion. It just
provides different (and fewer) colors than what the Apple thinks it
is generating. How about a review of the relative merits of other
RGB monitors on the market-some at rather attractive prices?

My gripe is that after spending $500 dollars for the Microsoft Z-80
CP/Mcard for the/ I/, I found thatMicrosoft'sCP/M FORTRAN will
not run on it. Oh well, at least I asked first, before also buying the
FORTRAN.

A comment on the merits of driving parallel vs. serial printers with
the I I/: the story I get (though I have not verified it) is that the UPIC
output for parallel printers sets bit-8 high, which means that some
printers, which use 8-bits (such as the Epson f.AX-series Ill
Graphtrax-Pius) may have some of their features inhibited. The
serial port on the I I I can be set up to pass all8 bits when you use
the Systems Utilities Configuration Program. When I first used my
Epson printer with the high-bit set, the printer periodically
switched back and forth between italics and normal fonts, but the
anomalies disappeared when I configured the driver to transmit
the 8th bit.

Are there any programs that will run on the I I I (including the I I I

/// /// /// /// /// /// ///

dialect for CP/M) that are directed toward the specific needs of
scheduling athletic tournaments consisting of from 6 to 64 teams,
including options for rating, ranking, seeding and scheduling the
first-round pairings?

How about any programs that are particularly adapted to informa­
tion management pertaining to small to medium sized fire depart­
ments? I'm concerned that I not get involved in reinventing rolling
objects.

One last question-is there anything comparable (other than the
Pascal utility) for editing Business Basic programs in a manner
similar to GPLE for the][? If not, why not?

Dear Mr. Miller,

Sincerely,

John M. Miller
Alaska

Thank you for your letter, I enjoyed it very much.

We are now preparing a 'Stand-Alone' package that will
reconstruct blown disks and restore deleted files. Lazarus I I I
will be available in a couple of months. We have quite a few
things planned, so, many such programs will become available
in the next few months.

Quark does make very good products and we will be review­
ing some of them in the coming months. I haven't heard of any
problems caused by the white disk drive hubs. I do believe
that the change to tan hubs was economical rather than
problem oriented in nature.

Our April-May issue will feature a review of the 'Quick and Easy
Data Master' DBMS. Just as you say, we will support programs
that are unlocked. This is one of the things that we look for in a
review of a piece of software.

Consider the story on the UPIC verified. It does have the
problem you describe. You would think with a name like
'UNIVERSAL' parallel interface card, you could set the 8th bit
using the System Configuration Program.

There is not a utility presently available that simplifies the
editing of Basic programs. The reason is this - Almost before a
commercial program is written, the programmer determines
how to market it. With Apple I I I programmers the problem is
not how, but where to market it. Before ON THREE arrived on
the scene, people could not mount a successful advertising
campaign for their Apple I I I products because there was no
place they could find Apple I I I users. Now they can. In the
next few months we will see an explosion in Apple I I I
software.

I have heard of an Athletic Scheduling program for the I I I. I
have an inquiry out into where you can get more information.
When I receive the answer I will pass it on to you.l don't know
of any information management programs that exactly suits
your needs, so you will probally have to adapt to a particular
software package.

February /March 1983 5

ON THREE
Ill Ill Ill Ill Ill Ill Ill

If you have any other questions or problems, please don't
hesitate in writing again.

Sincerely,

Bob Consorti

Dear Sirs:

Enclosed is my check for $30. I find your articles and programs
excellent. I would like to see more tutorials, such as "Basic -The
Easy Way".

I have found a partial solution to Mr. Scattergood's question,
(January issue), regarding color in Apple)[Emulation. My local
Apple dealer, (Byron Johnson, of Candid Computers), rigged up
an adapter that combines the RGB signals from the color video port
into a composite color signal. This allows me to use an Amdek
Color I monitor with my I I/. The color quality is good in both
Apple I I I and in the Emulation mode. The resolution is not high
enough for word processing, but this is not a problem, since a
color monitor and black-and-white monitor can be used either
individually or simultaneously.

Also, I have had an adapter made which combines the two joystick
ports into one. This allows me to use a joystick, (Cursor I I I), for
Apple)[games in the Emulation mode.

I have found that some Apple][games will run on the Emulation
mode, and some won't. Theonlywaytoknowifagamewill work is
to try it out before buying it. Could you have someone test the
Apple][games and publish a list of games that are compatible
with Apple][Emulation?

Dear Mr. Cade,

Sincerely,

JohnR. Cade
California

I thank you for your last letter, and I think you'll be pleased to
learn that we are planning more tutorials like "Basic- The Easy
Way''. The Pascal tutorial starts this month, and upcoming will
even be tutorials on some of the major application programs!

As an answer to your question, please read the following
letter. We received it just a few days after yours. It's amazing
how a single forum for information can spread new ideas so
quickly.

We're pleased to be of service, and we hope we can help you
in the future.

Sincerely,

Bob Consorti

Dear Sirs:

I very much enjoyed the premiere issue of ON THREE and I am
looking forward to the next issue. I use my Apple I I I in business,

Ill Ill Ill Ill Ill Ill Ill

microcomputing consulting and sales, and for personal uses and I
feel it is the best system available so I was very happy to see your
publication.

Recently I acquired a product for my I I I that I was quite pleased
with, that is the Gameportl I I by Micro-Sci, the company that sells
disk drives for Apple computers. Gameport I I I is a board that
plugs into any slot on an Apple I I I and enables the user to play
any of the Apple)[games using an Apple)[joystick or hand
controllers. I have a TG Products Joystick and their emulation disk
but I could only play a few of the games I had. I have not found an
Apple][game that could not be played with the Gameport I I I
installed so I would highly recommend it to everyone. The price for
the board and the emulation modifier disk is $74.95.

I read your advertising policy for vendors in your premiere issue
and was impressed with the way you will be handling advertising.
Thanks again for a great publication, I have already recommended
it to several of my friends.

The Editor's Block: continued

Sincerely,

Roger N. Dietrich
South Dakota

of keyboard data. Louis Hanson makes a switch from Visicalc to
Pascal, and in this issue starts the Pascal tutorial. Earl Curlson
continues his popular column 'Basic- The Easy Way'.

The Apple I I I product spotlighted this month is Apple Writer
I I I. The review may not be as comprehensive as last months', but
it will show you many of the program's strong, and (ah!) weak
points.

Next time we get the old presses a runnin', reviews will be the big
item. Check the New Products Received section fori nformation on
upcoming reviews. We will have more tutorials, and who knows
what else! Until then, happy I I l'ing! Ill

The I I l's For Me: continued

what you're doing. I'll answer all mail and trade ideas for ideas,
software for software. The Apple I I I is a system of unknown
potential. Let's make it more than its designers ever dreamed of.

Here's an anecdote which may be apocryphal, but summarizes my
point so well I can't pass it up:

A friend of mine was responsible for the video at Steve Wozniak's
US festival last summer. Woz stopped in at the trailer to get out of
the heat and said something like "Boy, I wish Apples could do
graphics like that." My friend had to explain to him that all the
graphics for the festival were, in fact, being generated by Apple
]['s. Ill

6 February /March 1983

ON THREE
Ill Ill Ill Ill Ill Ill Ill

The I I l's For Me
I'm an "old-timer" in this field. I bought my Apple][before disk

drives and Applesoft, in the days when the "Red Book" was the
only documentation. Back in those dark ages, the only microcom­
puter programmers were "crazies", people with nothing better to
do than disassemble machine language to see what made the
monitor tick. The Wizard Woz himself, when he built the original
Apple, had no particular intention other than to build a computer
which was easy for him to use and which he could program to play
Breakout.

The Apple I I I is a natural evolution of the][. It's a little faster and
has more graphics capacity, along with a great keyboard and an
80-column display. Many of the "tricks" that could be played on
the][by means of direct RWTS calls, customized graphics routines,
customized routines in the 1/0 hooks, Applesoft "ampersand"
routines, "hidden" routines above the DOS buffers, etc. are "built
in" to the I I I as SOS calls. In many ways, the/ I I is a][which has
fewer "knobs and switches" at the user/application level but is
almost incredibly "adjustable" at the programmer/system level.

However, playing with these knobs and switches is not generally a
part of business-oriented systems or application programming.
Unless we have "crazies" working with the system to find out what
it 'will' do, as compared to what it was intended to do, the
capacity of the Apple I I I will never be approached, let alone
developed as fully as the]('s capabilities have been.

The Apple I I I has been out for about two years. Who can tell me
how they made those horses run in the original demonstration
program? Where's a program to make my computer say anything
other that ''I'm Okay. Machine status normal"?

What can we do with 256K of memory, anyway? According to my
computer, with SOS and Pascal loaded and full graphics, this
leaves me with enough free memory space for a complete 64K
computer and about 20K left over.

Or, for example, how about this: An Apple I I I device driver
doesn't necessarily have to drive a device. It's just a machine­
language program which can do anything allowed on the" device­
driver" level. One thing a device driver is allowed to do is "queue
an event"; force the execution of a specified section of code (and
"event-handler") after the boot process is completed but before
control is handed over to the "system interpreter". An "event­
handler" is a piece of machine code which has access to the
higher "interpreter" level and is allowed to do just about anything,
including make any SOS call.

One possible SOS call sets the .CONSOLE driver to recognize a
specified key as an "attention event" so that subsequently, when­
ever this key is pressed, control will pass to the "event-handler"
originally set up by the above device driver.

If this sets off a torrent of possibilities in your mind, you're a
"crazy", and the future development of the Apple I I I depends
directly on you. Be advised that we are few in number and Mom
Apple can't support us as she did the Apple][pioneers. Woz is
out; she prefers to deal with middle management now. The sad

Ill Ill Ill Ill Ill Ill Ill

by AI Evans

times of cost-effectiveness has beset the computer revolution.
Research like this is always hard to justify; you don't know what
you'll find or how useful it will be.

Fortunately, none of this changes what your Apple I I I is- except
to the extent that it affects what you think it is. Nobody knows what
microcomputers are for yet! Many pretend to know; they have to in
order to be able to say "The microcomputer of 1990 will look
like ... " or "Sales will increase X% in the business market andY% in
the personal market by 1985 ... " But let's look at the record:

In the early 1970's, less than ten years ago, competent experts were
saying that BASIC could not be implemented on a microcomputer.
Two teenagers proved them wrong and became Microsoft. Their
BASIC language is now running on nearly every microcomputer
made. When I bought my first Apple (can it really be less than five
years ago?), the same competent experts were stating categori­
cally that microcomputers were fine for personal use, but just not
reliable enough to be used in business.

Even more recently, after I had been using that same Apple in
business for almost two years with absolutely no serious problems,
capable machine language programmers were telling me that the
two games I desired most (a pinball machine and a pool table)
could never be written.

Fortunately, they didn't tell Bill Budge or IDSI, because both Raster
Blaster and Pool1.5 became available shortly thereafter. And both
of these, along with many other "impossible"programs, are still
running on that same Apple][.

Soherewearea little later, with the Apple/ I/. The blind men have
decided they definitely know what the elephant is now. They
support those who repeat their litany ofVisicalc, Word Processing,
General Ledger, Accounts Receivable, Accounts Payable, Net­
working, Business Graphics, data Management... And indeed,
computerization of these functions can and will streamline the
American way of doing business. But these experts do not and can
not recognize the reality that much of the technology which makes
it possible, both hardware and software, is the work of "crazies".
There is no space on the balance sheet for these "unknown
quantities".

Back in 1978, Ted Nelson published and rnany of us signed a
pledge that began: "The purpose of computers is human freedom.
I am going to help make people free through computers. I will not
help the computer priesthood confuse and bully the public. .. "
Now the public is the user, running pre-packaged software which
is mostly written for money by a second-generation computer
priesthood, probably including many who signed that pledge four
years ago and forgot it And like the old, many of this new com­
puter priesthood are afraid of those whose objective is to make the
computer more useful to the individual by teaching the individual
to better use the computer.

So where does that leave us? Relatively down, but not out. We
have to fall back and regroup. And mainly, we have to communi­
cate, share the arcana we uncover. For a start, write me and tell me

Continued on page 6

February /March 1983 7

ON THREE
Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill

SOS Directory Structure Revealed by Bob Consorti

I nthisarticle I will explain the format of the directory of Apple/ I I
disks. Many exciting avenues will be opened, and I will present

examples of what can be done with this information.

If you just want to gain 4 extra blocks of disk space, read the related
article 'Disk Pak1' in last month's issue. If you want to see how to list
the files on a directory, read the article 'Disk Pak2' in this month's
magazine, but if you want to know the why behind the how,
read on.

WARNING!!!!!!!!
The reader should feel free to experiment with the concepts
shown here, but at all times please keep a back-up copy of any disk
you fool with. During the course of the past few months I have
ruined many disks with a few simple key-strokes, so I will say again
BACK-UP THINE STUFF!!

Format of information on
Apple ///Diskettes
To start off, the Apple I I I uses the same 5&1;4 inch, soft-sectored
floppy disks that the Apple][does. As on the)[(Dos 3.3), each
disk can store 140-K bytes of information. On the I I I a small
amount of that space is reserved for the directory & booting
information, so a total of 136.5-Kor273 blocks are left for the user.

When a disk is formatted (by the disk formatter utility) for use, it is
divided into 35 concentric tracks with 16 sectors per track. Each
sector can hold up to 256 bytes of info. SOS stores information in
two-sector units called blocks, thus each block contains 512 bytes
of data. These blocks are numbered from 0-279 decimal or 0-117
hexadecimal.

When the/ I I is turned on (or whenever you boot a new disk) the
system turns on the internal drive and attempts to read blockO into
the RAM at loc. AOOO hex. Block 0 contains the second stage boot
routine which then takes over and tries to read in the files needed
for the operation of the I I/.

Thus, on all Apple I I I SOS disks, block 0 is reserved for booting
information and cannot be used for storage purposes. Likewise,
block 1 is considered used but all it contains is two 1's followed
by510 zeroes.lnthearticle 'Disk Pak1' of last month's issue you can
learn how to use this and other blocks which normally are reserved.

In addition, each disk contains a directory that tells where files are
stored on that disk. On all Apple I I I SOS disks, the directory
begins on block 2 of the diskette.

The first four bytes in block 2 are very interesting, they are 00 00 03
00. To understand what these bytes mean we must remember that
SOS can be asked to 'CREATE pathname,CATALOG,Iength' where
length is the number of bytes you want the directory to be.
"Aha" you shout, now you're beginning to see the picture. (If you
can see it this quickly you must be on top of things 'cause it took
me weeks to get this far.)

On a directory block, the first four bytes are a pointer to the last and
next blocks of that directory. I liken it to the Apple]['s directory
link-byte: There are 2 bytes per link-info, so if either 2-byte record
has zeroes in both bytes there is no link. Any other number
indicates the last or next block of the directory (Low-byte,
high-byte)

So in block 2, the first 2 bytes (00 00) mean that this is the first
block of the directory, and the next 2 bytes (03 00) show that
there is more to the directory, and the next block is #0003. The first
4 bytes of block #3 are 02 00 04 00, showing that the last block of
the directorywas#0002 &the next block of the directory is#0004.
Similarly in block #4 we get 03 00 05 00, but in block #5 we have
04 00 00 00. These bytes show the last directory block is #0004
and the third and fourth bytes tell that there aren't any more
directory blocks- thus block #0005 is the last block of the main
directory.

In the BASIC manual it says that a one block long directory will hold
up to 12 files. Since it didn't take into account the directory name
(it also takes up a file position) we will say that one directory block
can hold 13 file positions. Si nee we have seen there are 4 blocks in
the main directory, simple arithmetic shows that there are (4 blocks
X 13 files/block)= 52 file positions available on a standard main
directory. 52 -1 (for the directory name)= 51 which is the number
of files the manual says will fit on the main directory. On some of
the disks that come with the system this is not the case and only 12
files will fit on a block.

We have just seen that blocks 0-5 are used for booting and
directory info. We still need some way of knowing which blocks
are used and which are free. Block #0006 contains this information,
which I will call the 'block bit-map'. The arrangement of 1 'sand O's
within each binary byte shows SOS which blocks are used and
which are free.

Each byte of block #6 can control the status of 8 blocks of disk
space, so 280 blocks I 8 blocks per byte= 35 bytes needed for a
normal diskette. If a bit in the block bit-map contains the value 1,
the block corresponding to that bit is free. If a bit in the map
contains the value 0, the block corresponding to that bit is currently
in use. The block bit map for a typical disk might appear as follows:

1st byte - 2nd byte - 3rd byte -4th-35th
bits (0-7)-00000001 11101001 11111111 all11111111 ('FF')

block designated-0123456 7 -89ABCDEF-1 0 thru 17-18 thru 117
(in hexadecimal)

On this disk we can see that blocks '0-6' are used; 7-A' are free; 'B'
is used; 'C' is free; 'D&E' are used; and 'F-11 T are all free.

If you are counting along with us, you will see that for a very large
disk drive, more than one block 1s needed for the block bit map.
Since one block can be the block map for up to 4096 blocks, a
hard disk drive will use a few of them. The largest disk that you will
ever attach to your I I I will use no more than 8. For these hard disk
drives, the block bit map will start in block #0006 and go up to
block #OOOD, depending on how many blocks are needed.

We have already seen how the first 4 (0-3) bytes of block 2 work,
so starting in byte #4 are successive 39-byte record entries. I have

8 February /March 1 S.83

ON THREE
/// /// /// /// /// /// /// /// /// /// /// /// /// ///

discovered 3 different types of file entries: 1- The directory name, 2- A subdirectory name, 3- Regular files.

On the main (or root) directory in block 2, the first file position holds the directoryfileand it is in the following format. I am going to use the
relative byte in my numbering method, that is to say, byte#4ofblock2 (the beginning ofthefirst position in the directory)will become byte
#0:

0

1-F

10-17
18-19
1A-18

1C
1D-1E

1F
20

21-22
23-24
25-26

Typical Value

F6

42 41 53 49 43 31
00 .. 00

'BASIC1'
75 00 .. 00

05 A3
00 oc

01
00 C3

27
oc

09 00
06 00
18 01

Meaning

The least significant nibble (LSN) is the length of the file name. See figure 1.0 for an explanation of
the MSN.
The name of the file, or in this case name of the main directory.

Undetermined
The day, month & year the file was created. See figure 1.1 for an explanation.
The. minute and hour the file was created. See figure 1.2 for an explanation.
The volume number, from 0-255. In this case volume #1.
Undetermined
The number of bytes per file entry.
The number of file entries per block.
of files on this directory. (LB,HB)
Location of the block bit-map. (LB,HB)
of blocks on this disk. (LB,HB)

For a subdirectory name entry, the format is the same as the directory name entry except for bytes 23-26:

23-24

25-26

Typical Value

02 00

08 27

Meaning

A pointer to the block number of the start of the directory (or subdirectory) on which this subdirectory
is located.
Undetermined.

For a regular file entry on any directory the format is as follows:

0
1-F

10
11-12
13-14
15-17
18-19
1A-18
1C-1D

1E

1F-20
21-22
23-24
25-26

Typical Value

2A
53 4F 53 2E 48 45 52

4E 45 4C 00 .. 00
'SOS.KERNEL'

oc
07 00
26 00

00 4A 00
75 A1
00 oc
00 00

01

00 00
75 A1
00 oc
02 00

Meaning

The LSN is the length of the file name. See figure 1.0 for an explanation of the MSN.
The file name.

\

Type of file. See figure 1.3
Starting block of the file. (LB,HB)
of blocks in the file. (LB,HB)
of bytes in the file. (LB,HB, higher-byte)
The day month & year the file was created. See figure 1.1
The minute and hour the file was created. See figure 1.2
Undetermined.
File status-locked if this byte < 80, -unlocked if this byte>= 80.
Note: You can use different values to put a different type of lock on the file.
Undetermined.
Day, month & year file was last modified.
The minute and hour of the files last modification.
Block # of the beginning of the directory on which this file exists.

Now how does SOS know where all the blocks of a particular file are on a disk? According to what's been said, the directory information
only gives the starting block and the number of blocks in the file.

There are two situations to consider. First, say your file is a short 'HELLO' program of about 250 bytes. As you can see, SOS can store that
entire file in one block so no other linking information is needed. But what happens if you have a 5 block long file?The answer is quite simple,
bytes# 11&12 of the file's directory entry point to the block containing the block map of that file, which holds the linking information
needed if a file is longer than 1 block.

February /March 1983 9

ON THREE
Ill Ill Ill Ill Ill Ill Ill

So for our 5 block file, if bytes# 11& 12 of the file's directory entry
are 4C 00, the block map for that file would be in block #004C. In
block #4C we might find 4D 4E 4F 50 51 00 .. 00. In this case the
entire file would be in blocks 40-51. What happens if the block# is
> 256? The answer to this question is also very simple. In SOS
notation, the block# (0000-FFFF) is represented in the block map
by two bytes (LB,HB) where the LB is situated in the 1st 256 byte
half of the block& the HB is situated in the 2nd 256 byte half of the
block.

Simple arithmetic shows that one block can be the block map of a
file with up to 256 blocks in it. That is not enough because SOS is
able to handle much largerfiles.lfthere are more than 256 blocks in
a particular file, byte#'s 11& 12will now point to a block that holds
the blocks of the file's block map. Got that!?! Well, for a hypotheti­
cal 260 block file whose starting block is #0007, block 7 might
contain 08 09 00 .. 00, indicating that blocks 08 & 09 contain the
file's block map.

Wait', you scream. How does SOS know that it's not just a two
block long file, but a pointer to the file's real block map? Since I
don't know the code structure for SOS.KERNEL I can't tell you
exactly, but I think it's a combination of some information in two
places. First, the file entry will tell how many blocks is in the file, and
from this SOS knows if the file is greater than 256 blocks long the
first block is a pointer to the file's block map. Secondly, the MSN of
the first byte of the file entry gives the exact information on how to
read the file in. Figure 1.0 gives this information on the MSN.

Extra blocks for free
(weiiJ almost free}
Since we can't make the disk grow, we are going to have to get
those extra blocks I have been promising you. If you remember I
mentioned that block #1 contains nothing but two 1's & 510
zeroes. This is the first block we can gain. While marked 'in-use',
when I have freed it up and then used it I have had no problems
while using the BASIC interpreter, but...

The Pascal system seems to dislike what I have done to my disks. It
will store and retrieve info. on the blocks I have freed up but if you
list the directory, it will list out all right, but it will then give the
message: WARNING the directory structure is damaged on this
volume:'. Since I have not had any problems besides that warning
message in Pascal, I think it is okay to use the increased capacity
disks in all applications, and I am doing so.

4 minus 1 leaves 3, so where are we going to get 3 more blocks?
You guessed it: the directory! The main directory uses 4 blocks and
can hold 52 files (counting the directory name). If we free up all
but one block of the directory we will have room for 12 files, which
is more than enough for me. With the Apple I I /'s hierarchical file
structure and ability to create subdirectories, I doubt most people
would need more than 12 files on the main directory, but if you
want to, you can later add a block or two back to extend your
directory.

Wait a minute! What happens if one of the directory blocks you free
up has file entries on it? The files will become inaccessible, and
will be lost. So to make sure you don't lose any of your files you
must do one of the following:

Ill Ill Ill Ill Ill Ill Ill

1-lf you just want to make data disks that can hold 277 blocks of
info., format a blank disk and use the techniques presented
later to free up those extra blocks, and then make as many
copies of this disk as you will need.

2-lf you have a disk that already has programs and or data on it,
use the 'Copy files' command of the system utility disk to
transfer those files onto a disk that has been 'freed-up'. You can
put up to 12 files on the new main directory, but no more!

To free block #1 we must simply change the block bit map to
show that it is free. For block #'s 3-5 we must not only change the
block bit map, we also have to delete the references to these
blocks on the root directory. If we don't do this, SOS will have no
way of knowing that those blocks may have been used for storing
data, and it could try to store a file entry over important informa­
tion. There are two ways to doth is, first we could write a program,
using the Pascal language, to read in the blocks and make the
changes needed. While possible (see the article 'Disk Pak1' in last
month's issue), it takes a bit of code and even more time. The
second way, which we wi II use here, takes only a minute to update
a disk and wi II provide valuable knowledge of the workings of the
I I/.

Todothiswe must learn one more thing aboutthe/ I/, how to get
into and use the monitor mode. When we are in the monitor mode
we will have access to the fast 'Read/Write a block' routine which
makes this process easy. To get into the monitor mode first SAVE
any program you have been working on because we will be
resetting the entire system and you will lose any program or data
that is in memory. Begin by pressing the 'CTRL' key & the 'Open
Apple' key and hold them down while pressing and releasing the
'RESET button. You should now see a right arrow and a flashing
underscore character (the prompt). From here you can enter the 80
column mode by pressing the 'ESC key, then '8' & finally press
'RETURN'.

We can now read or write a block to a formatted disk in the internal
drive. To do this we must understand the command which is:

Blck<Addr1.Addr2Cmd

where 'Bick' is the block# (in hex.) that you want to access,
'Addr1' is the starting address in memory where you want the

first block to be read into,
'Addr2' is the end address in memory that you wish to fill,

'Cmd' is the command, either an 'R' or a 'W' for read or write.

For our purposes a similar, but shorter, form of the above com­
mand will be used, that is: Blck<Addr1Cmd, where everything is
the same as above, but only 1 block can be accessed at once. This
will circumvent some of the dangers of this routine because you
can only destroy (over-write) one block at a time.

Therefore, the command 0000<2000R will read the OOOO'th block
of the disk into memory starting at loc. 2000 & the command
0000<2000W will write out the same block we just read in.

Valid block numbers are 0-117 hex., and valid memory locations to
read into are from OCOO to BFFF & from DOOO to EFFF. Loc.'s
COOO-CFFF house the 1/0 and soft switches like the Apple][, while
Loc.'s FOOO-FFFF contain the monitor and some more soft switches
(FFEF-the memory bank select, FFDO-the zero page switch, and

10 February /March 1983

ON THREE
Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill

FFDF-the environment byte). Loc.'s 400-BFF are the text screen area, and the first four pages are reserved for zero pages and a stack area.

Getting back to business, format a disk and before putting any files on it place the formatted disk in the internal drive of the///. Get into the
monitor mode and issue the following command: 0002<0C00Rthisreadsblock2 intomemoryatloc. OCOO. Byte0C02 should containa03,
this is the link-info. that we want to delete, so type OC02:00. This change makes the main directory 1 block long but it does not free up the
blocks we just 'de-linked'. Since we have finished with this block we can write it back to the disk with the command: 0002<0COOW.

Some people ask me why only the first block of the directory is de-linked, and it is a very good question. The answer is, when you erase the
linking info. in the first block you automatically cut off the other blocks in the directory and thus de-link the others also. It's like an Apple Ill
with 3 external drives, if they are all connected properly everything works. However, if the first extra drive is not plugged in, it and the others
connected to it will not be seen by the system and will be considered 'off-line', or just not there.

Now, we only have to modify the block bit map and we will be done. Read it in with the command: 0006<0COOR, and observe loc.
OCOO. this is the first byte of the block bit map and, as previously stated, controls the status of the first 8 (0-7) blocks. It can normally have only
two values, a 00 ora 01. The ()()tells that all the blocks in that subgroup (0-7) are used whilethe01 says thatonlythe 7th block is free. Since
we want block #'s 1 &3-5 marked free, we must find the hexadecimal equivalent of the binary number 01011100 or 01011101, where the
right most bit is a 0 or a 1, depending on the original value.

If the value of byte OCOO is a 00 we must change it to 01011100 or 5C hex. If it is a 01, change it to 01011101 or 5D hex. Once you have
changed byte OCOO to the new value you can write it back to the disk with the command: 00060COOW . All done!! See, it wasn't too
hard. ooo'< oc.o t;:,'v-../

Now, if you boot a BASIC disk and catalogthediskyoujustupdated, you will see that you nowhave4extra blocksofdiskspace! On an SOS
disk only 3 blocks are needed, block 0-the booting info., block 2-the main directory, block 6-the block bit map. A fuii138.5K-bytes of
storage is now available on each diskette.

There is one more thing that you might have noticed, when you catalogued the new disk, SOS only had to search through 2 blocks of
information (the 1 block long directory and the 1 block long block-bit map) instead of the normal 5. This change has resulted in a slight
decrease in the time needed to locate a file.

Yes, there is room for one more file!
The most frustrating part of the past few months has been trying to figure out why some disks would only hold 11 files on the main directory.
All subdirectory blocks could hold 12, and I was at a loss to explain this difference. Since the first directory block holds the directory name I
expected it would hold 12 more files, for a total of 13, but no!!

At the peak of frustration I found that the first block of a subdirectory would hold 12 files in addition to the subdirectory name file. At this
point I felt like burning all my SOS disks, and I stopped trying to figure it out for a few weeks. A little while later it came to me and I felt like a
real jerk 'cause it isn't that hard to understand.

I compared a subdirectory and a main directory and found that on a main directory, byte 20 of the directory name entry contains a ·oc but
on a subdirectory it held a 'OD'. Eureka! This byte controls the # of entries per directory block!

Using the methods presented earlier I changed that byte in the directory entry to 'OD' and sure enough I was able to store a total of 13 files on
the main directory blocks. As a sort of a review, lets go ahead and change it.

Get into the monitor and read in the first block of the directory with the command '0002<0COOR', now enter 'OC24:0D' & then write it back to
the disk with the command '0002<0COOW'. DONE!!!

Anotherthingthatfrustrated me was the fact that the Pascal system forthe/// has the same error. Since it had the newSOS 1.1, I expected it
to have the correct directory structure, and when it didn't I thought there might be something in there that I couldn't see.

I traced down the error to a single byte on the old SYSTEM. UTILITY disk. One lousy byte had me going without sleep for a few days! Anyway
this is only a problem with disks formatted by the old (Version 4.0) of the SYSTEM. UTILITY disk. The new version (which everyone should
have by now) does it the right way. However, the new 'BASIC disk, Vetsion 1.1 also has this problem.! think that the Pascal system disks and
the BASIC disks were initially formatted with the old version and wer~ subsequently duplicated, and that is why they have the incorrect
structure. You should check byte 24 of block #2 of any disk you may have copied from the master disks. If it's not 'OD', change it!

That's all folks. Have fun using the ideas presented here, but remember to try it out on an empty disk first. If you make an error you could easily
lose an entire disk. Coming soon I will present a program that does a complete verification of your disks. You will be able to stop those 'Bad
Blocks' before they ruin your important data!

February /March 1983 11

/// /// /// ///

The MSN of a file's directory entry acts as a
flag for SOS in determining how to read
the file described in the file's directory
entry.

(See the article on the meaning of a file's
'block map' and how SOS reads a file's
blocks)

Value of
Byte# 18, 19

00 00
01 00
01 01
00 02
00 AO
00 A1
00 A2
81 A2

Value of
Byte# 1A, 1 B

00 00
01 00
20 00
oc 01
oc 17

Resulting Date
MONTH/DAY /YEAR

00/00/00
00/01/00
08/01/00
00/00/01
00/00/80
08/00/80
00/00/81
04/01/81

Resulting Time
HOUR: MINUTE

00:00
00:01
00:32
01:12
23:12

ON THREE
/// /// /// /// /// /// /// /// /// ///

Figure 1.0

MSN Explanation:
1-Tells that the file's block length is 1 and the block is data.
2-Tells that the file's block length is greater than 1 but less than 256 in length, and that the first

block of the file is the file's block map, not data.
3-Tells that the file's block length is greater than 256 blocks in length, and that the first block

of the file is a pointer to the files block map.
D-Shows that this file is a 'Catalog' or directory file.
E-Shows that this is a sub-directory.
F-Shows that this is a main directory.

Figure 1.1

Explanation:

byte #19- An even LSN sets the months 0-7.
An odd LSN sets the months 8-12.
The MSN sets the year according to year= INT (Byte 19/2+.5) & if byte 19 is
odd year=year-1.

byte #18- This sets the day & month according to month=INT (Byte 18/32) & day=INT
((byte 18/32-month) *32+.5) & if byte #19 is odd month= month+ 8.

Figure 1.2

Explanation:

byte #1A- Controls the minute (0-59)
byte #1 B-+ Controls the hour (0-23)

Values greater than 59 or 23 (dec.) are treated as 0 by the Pascal filer, but Basic sees them as
they are, with no checking to find if they are legal.

Figure 1.3
Byte# 10 controls the type of file in the following format:

From BASIC From BASIC From Pascal From Pascal

Value Type Value Type Value Type Value Type

00 UNKNOWN 08 FOTO 00 Unknown 08 Fotofile
01 BAD 09 BASIC 01 Bad file 09 Basicprog
02 PASCOD OA DATA 02 Codefile OA Basicdata
03 PASTXT OB WPTEXT 03 Textfile OB WPtext
04 TEXT oc SYSTEM 04 Asciifile oc Sosfile
OS PASDTA OD RESERV 05 Datafile OD Datafile
06 BINARY OE RESERV 06 Datafile OE Datafile
07 FONT OF CAT 07 Fontfile OF Directory

12 February /March 1983

ON THREE
Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill

Disk Pak2: listing Files In Pascal by Bob Consorti

How many times has this happened to you? Working with a
program, you need to retrieve information from a certain file,

only you have forgotten its name. No problem right?- all you need
to do is catalog the disk. Oh no! You can't do that from within the
program. A few minutes later, after you boot a disk that you can
catalog a disk with (Basic, Pascal filer ...) and see that the darn file is
named 'XYZ01.3' instead of 'XYZ01.2' you mutter to yourself -
"There's got to be a better way ... ".

Since these computers are supposed to save us time, there does
have to be a better way!- and here it is. A program written in Basic
can give the user the option of CATALOGing a directory because
the word 'CATALOG' is part of its vocabulary. Pascal, however, has
no similar command. True, you can usethefilerto list the directory,
but we need something that we can use within a program.

The Pascal Intrinsic Unit list-Stuff' (Program Listing #1) is the
answer. It gives Pascal programs the ability to list the files on any
directory or subdirectory. Thus, all programs written in Pascal can
now give the user the option of seeing a complete file listing.
Extremely versatile - it will send the output wherever you want
('.CONSOLE', '.PRINTER', disk-file ...), list the files on an arbitrary
sized viewport, and it even returns error messages if anything goes
wrong.

list-Stuff' gives the user the option of pressing the 'ESCAPE' key to
exit the listing. Thus, if you are in the middle of a two hundred file
listing and want to exit -Press 'ESCAPE'. Another thing that 'List­
Stuff' allows is the starting and stopping of the listing whenever a
key is pressed. This comes in handy if you want to temporarily stop
the listing and don't want to type 'CONTROL-7'.

This Unit is based on the information in the article 'SOS Directory
Structure Revealed'. That article is for those of you who want to
know the why behind the how, and aren't satisfied with typing in
the programs. If you want to learn a little more, by all means read it­
you may well get something out of it.

Disk Pak2: Internals
I wrote this routine as an Intrinsic Unit so that all Pascal programs
could easily use it. Though, you can easily change it to a Segment
Procedure if needed. I tried to make the program as simple and
easy to read as possible, so it is not as fast as a Basic CATALOG or a
Pascal Filer List command. However, it does give quite a bit of
information that those commands do not.

I promised myself not to use assembly language (too hard to read),
but promises are made to be broken. In the interests of some kind
of execution speed I used the SOS call 'VOLUME' to determine the
number of free blocks available on a volume. All of the file informa­
tion parsing is done in Pascal so you can understand it easier.

Turning now to the Unit list-Stuff', we see that the Pascal host
program can communicate with the Unit through the means of the
PUBLIC procedure 'List-50S-Directory'. As the listing says, the call­
ing program must give 'List-50S-Directory' three things. The path­
name of the directory you want to list, the path name of the output

file, and the number of lines on the current viewport. The Unit will
list the directory (if possible), and return with an error code and
message if anything goes wrong.

On an interesting note, I used the compiler option '($E+]' to allow
forprovatefileswithinthe 'IMPLEMENTATION' of a UNIT. While not
mentioned in any of the Pascal manuals supplied with the Pascal
language system, the upcoming Apple I I I Pascal Technical Refer­
ence Manual documents it. By using this option, you will regain the
1 K bytes of the 1/0 buffer used for the file when the UNIT
terminates.

The TYPE definitions tell the story well, a Root Entry (the volume
name & info.) and a File Entry (the file name & info.) are both
records containing the various fields corresponding to the informa­
tion stored in the disk directory. This is done so that we can read
the directory block directly into the record.

While correct on paper, there is a problem. When you PACK a
variable in Apple I I I Pascal, the fields within the records can not
cross a word boundary. Thus, to be packed correctly- all the fields
must have a length of a multiple word (an even number of bytes).
That's right, each directory record on the disk is 39 bytes long. It
complicated matters somewhat, and that is the reason for the
MOVELEFT's in the procedures 'Get-root-info' and 'Get-file-info'.

I used a rather complicated routine in opening the output file.
While most of the time you will be sending the output to the
console, you may want to get a hardcopy of the listing. The
procedure 'Set-Out-device' checks if the output file is on a disk
and if so it adds a '.TEXT' to the end of it so that it generates a Pascal
Textfile and not an Ascii file. Complex 1/0 error checking assures
that the program will not crash, even when you type in a non­
existing directory or bad file name.

The code 'CHR (xx DIV 10 + 48) and CHR (xx MOD 10 + 48)' is used
extensively throughout the routine to give a formatted screen
output. It will write out a two digit number, but instead of leading
spaces, it gives leading zeroes.

One interesting piece of information that the routine returns when
listing a directory is this: It writes out the number of blocks that the
files data occupies and the number of blocks that the entire file
takes up on the disk. These are not the same due to SOS using some
overhead 'housekeeping' blocks. The routine will also list the
number of bytes that the file uses. Since a file may be up to 16
megabytes long, this can be a big number and that is why I used
Long Integers in computing them.

Program Listing #2 is the assembly language routine that returns the
number of free blocks of the device name passed to it. It is fairly
simple and will only return the number of free blocks if a block
device name is passed to it. A volume name or subdirectory will
not work!

Program Listing #3 is the Pascal program that uses the Intrinsic Unit
'List-Stuff' to list the contents of any directory. This program is also
very simple. Notice that we set up a window on the screen with

February /March 1983 13

ON THREE
Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill

the dimensions 20X80. We then call the procedure List-50S­
Directory with the appropriate parameters. Notice that the pro­
gram never properly ends because 2+2 never stops being equal to
4. To leave the program, type 'ESCAPE' and then 'RETURN' when
asked for the output fi I e.

To use this Unit, type in Program Listing #1 and compile it with the
name liST.STUFF'. Next, type in Program Listing #2 and assemble it
with the name VOLUME'. Now, use the linker to join together the
assembly language routine (Listing #2) and the Unit (Listing #1).
Since you may not have that much experience we will go through it
step by step.

First, make sure the linker (SYSTEM.LINKER) is available on one of
your disks. At the main command level, type the l' key- but don't
press 'RETURN' yet. When the prompt says 'Host file?', enter liST-
.STUFF'. Now if all goes well, the next prompt should say lib file?'. SOS_Bl_k
Forth is one, enter VOLUME'. Since these are the onlyfileswewant Paraatli
linked, when the prompt again says lib file?', press 'RETURN'. Press ~.~r!:~
'RETURN' once again when the screen reads 'Map file?'. Finally, Pa~am3
when the screen says 'Output file?', type in liST.STUFF'. There, all Parall4
done! We now have a useable library Unit. Param5

Paramo
Next, use the librarian to add the Unit to your SYSTEM. LIBRARY. At ~!~!:~
the main command level X)ecute the file liBRARY.CODE'. When
the screen prompts you with 'Output file -·, enter 'NEW.LIB'. Begin
Make sure that the diskette you are putting 'NEW. LIB' on has enough
room to hold the sum of the old library and a little bit more. When
the screen prompts you with 'Input file-+', enter '.D1/SYSTEM.­
LIBRARY'. Now type'=' to copy all the library segments from the old
library to the new one.

When the disk drives have stopped making noise, type 'N' then
'LIST.STUFF' and now press 'RETURN'. Now look on the screen
under the prompt 'Output file -· and find the first two slot
numbers that aren't occupied. Type 1 <space> 1st empty slot
number <space> and then 2 <space> 2nd empty slot number
<space>. Finally type 'Q' and then enter any copyright notice you
want to include. Lastly, use the filer to remove the old 'SYSTEM.­
LIBRARY' and to transfer this new library onto your system diskette
with the new name 'SYSTEM.LIBRARY'.

Once you have correctly installed it, all of your programs can use it.
Finally, type in Program Listing #3 and compile it. You can now
execute this file and test the new Unit.

That's about it for now. Next time I wi II present another handy uti I ity
that will allow you to list the files on an Apple][DOS 3.3 diskette
from Apple I I I Pascal. If you think this is leading somewhere,
you're right. In just a little while, you will be able to inexpensively
transfer Apple/ I I SOS and Apple]((e) DOS 3.3 text and graphics
files! Ill

Disk Pak2: Program Listing #2

.MACRO Pop
PLA
STA 7.1
PLA
STA 7.1+1
.ENDII

.MACRO Push
LDA 7.1+1
PHA
LDA 'X.l
PHA
.ENDM

.PROC
JMP

.EQU
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
. BYTE
.BYTE
.BYTE
.BYTE

Pop
Pop
Pop
Pop
Pop
Pop
LDY
STY
STY
LDA
STA
LDA
STA
LDA
STA
BRK
.BYTE
.WORD
STA
LDH
STA
LDA
STA
TYA
INY
STA
LDA
STA
LDA
STA
Push
RTS

.END

SOS Volume,S
Begin

t

Return
ErrPtr
FreB!ks
TotBlks
Vol Name
DevNa;e
100
Parall4
Para112
IVolName
Paraa3
IDevNa11e
Paraal
104
Para110

Voluae
SOS Blk
fErrPtr. Y
Para11/
~FreBlks,Y
Param5
fTotBlks, Y

fErrPtr,Y
Param8 ·
fFreBlks, Y
Paraatb ·
iTotBlks,Y
Return ·

Return .EQU
Volume .EQU
DevName .EQU
VolName .EQU
TotBlks • EQU
FreBlks .EUU
ErrPtr • EQU

0
OC5
OEO
OE2
OE4
OEb
OE8

{ iiiiiiiiiiiiiitiiiiiiitiiiiiiiiiiiiiiiiiliiiiiiiiiiii }

14

{ t Disk Pak2: Get Volume Info i }
{ * --------------=------=---- * }
{ t This asseably language procedure will return * }
{ t I of free blocks, the I of total blocks and i } { * the voluae name of the device name passed to it. * }
{ iiiiiiiiiiiliiiiiiiiiiiitiiiltitiiiiiiiiiiiiiiiiiiiil }

Ill Ill Ill Ill

;Pull a word fro11 the stack

;Push it back on

;Set up the parameter area

;Issue SOS call I CS !Volume)

;Set up pointer to parameters
;Store the error code high byte

;Store the free blocks high byte

;Store the total blocks high byte

;Store the error code low byte

;Store the free blocks low byte

;Store the total blocks low byte

ON THREE
Ill Ill Ill Ill Ill Ill Ill

Disk Pak2: Program Listing #3

PROSRAH Li s t _it ;

(fUUUUUUUiUUUiUIUUUUUUUUUUUUiUIUUIUUUUUUUU }
(. --------------------------- . }
{ i Disk Pak2: List_it : Copyright 1982, 1983 by : i }
{ t ------------------ : 0 N T H' R E E : i l
{ i by Bob Consorti February-ftarrh, 1983 : i }
{ i -------------------------- i }
{ t i }
(t This prograa uses the Intrinsic unit 'List_Stuff' to list the t l
{ i contents of any directory. Note that you ran define the nuaber of i l
{ t lines to be listed per fag e. Thus, you ran set a viewport and list t l
{ t the files according to he size of that text window. i l
(t i }
(IUilUiUUUUiUutUUUUUUiUiUUUUUUiUUUUUiUUUUUut }

USES List_Stuff;

CONST Bell = 7;
Top_ viewport = 2;
noraal = 17:
inverse = I B;
Escape = 27;
Clear _viewport = 28;

TYPE Counter = INTEGER;

(Contains the routines to list a directory l

(Causes a beep on the internal speaker l
{ Sets the top of the rurrentl y defined viewport l
{ Sets noraal video output !White on Blarkl l
{ Sets inverse video output !Black on llhitel l
{ The ASCil nuaber of the ESCAPE character }
{ Hoaes the cursor and rl ears the viewport l

VAR In_Path, Out Path: STRING; (The input and output files l
Error asg: SiRING• (Holds the error aessagl! and nuaber l
Error -rode: INTEGER· (returned by the Intrinsic Unit List_Stuff l
Line(on_window: INTEGER; { The nuaber of lines in thl! current viewport l

PROCEDURE Set titles;
VAR i: Counter;

BEGIN

{ Sets thl! aain pagl! hl!ading for the entire prograa l

WRITE ICHR !Clear viewport));
IIRITE !'Disk Utility Pak2'l;
60TOXY loO 01;
IIRITELN d:opyright 1'1821 1983'1;
IIRITE ('by Robert Consorti'l;
SOTOXY 164 21 •
IIRITELN Fby ON THREE' l;
FOR i := I TO 10 DO

IIR ITE ! '--------:' I ;
IIR ITE (CHR IT op VI e•rort l l

END; { of PROCEDUR'E Se _titles l

PROCEDURE Print Error; (Routine to print out the error aessage }
VAR Ch: CHAR; -

BEGIN
IIRITELN lCHR !Bell I l;
IF !LENGTH !Error asgl = 01 THEN

IIRITELN l'IIARNII16: Error I', Error rodel
ELSE -

IIRITELN !'IIARNIN6: ', Error asgl;
SDTOXY 10 231; -
WRITE <CHR linvl!rsel, 'Press any key to continue', CHR lnoraalll;
READ !KEYBOARD, Chl

END; (of PROCEDURE Print_Error l

PROCEDURE Set Paths;
BEGIN -

IIRITELN ICHR !Clear viewportll:
IIRITELN I' !RETURN for ",CONSOLE", ESCAPE RETURN to exi tl' I;
IIRITE !'Enter 11here I should send the listing-> 'l;
READLN lOut Pathl;
IIRITELN• -
IF !LENGTH !Out Pathl = 01 THEN

Out_Path := •:coNSOLE';

Ill Ill Ill Ill

IF !Out Path [!J = CHR !Esrapell THEN
EXIT lPROBRAHI:

WRITE !'Enter the directory to I i st - > 'I;
READLN lin Pathl

END; (·of PRnCEDURE Set_Paths l

Ill Ill Ill

BESIN { "ain prograa l
Set titlesi
Lines on 111ndow := 20; { There are twenty lines on this vie11port l
REPEAT -

Gl!t_Paths;
Error _code : = 0;
Error asg : = ";
List SOS_Dirertory lin Path, Out_Path, Lines_on_•indow, Error _rode, Error _asgl;
IF !Error rode 0 01 TREN

Print Error
UNTIL 12 + 2 0 41

END. (Of PROGRA" List_It }

Disk Pak2: Program Listing #1
UNIT Li st_Stuff;

{$E+ l { This roapiler option allows for private files "ithin the UNIT l

(tiUUUututUUUUUUUUUUUUUUUUUUUUUUUiUUUUUUU l
{ l --------------------------- t }
(t Disk Pak2: Directory Lister Unit : Copyright 1982, 1983 by : l l
(t -------------------------------- : 0 N T tl R E E : t l
(I by Bob Consorti : February-Harrh, 1983 : i l
{ • ------------------------ t }
{ t This Intrinsic Unit gives any Pascal progna the ability to list the i l
(l files on any directory or subdirectory. Thus, all prograas 11ritten t l
(t in Pascal ran now givl! the user the option of seeing a coaplete file t l
(i listing. i l
{ l • }
(i Please read the article and the prograa List_It to see how to install t l
{ t and use this Intrinsic Unit. t l
{ t * }
< ttttttttataaaaaaaaauuaatmtumumuuuamauauauuuaautuaaau 1
INTRINSIC CODE 24; (Only one segaentt files are private to this UNIT l

(because of the '1:+' roapiler option sho~~n above. l
INTERFACE

PROCEDURE List_SOS_Dirertory IVAR Pathnaae, Out_Path: STRING;
VAR Lines on Minda•,
Error: INTEGER; YAR Error _aessage: STRIN61;

I IIPLEHENTA TI ON

(iiiittaiittiiUUiataitauauauaauauaauatuiiUlUlUUUUlUUUUUl }
< a ' l
(t The procedure 'List_SOS Directory' is PUBLIC and ran be used by your t l
(t Pascal host prograa as lollows: i l
{ t • }
(t INPUT to List SOS Directory: a l
(t II Pathnaae-- The directory you unt to list. a l
(t 21 Out Path - llhere to send the listing. a l
(t 31 Lines_on_windo• - The current nuaber of vertical lines in the a l
{ I viewport, Used to deterai ne llhere to aake a i l
{ l page break when listing to the '.CONSOLE'. i l
< t a >
(t Output froa List SOS_Directory: a l
(t II The I i sted oi rectory. i }
(a 21 Error - The error rode las indicated by IORESULTI for the last i l
(l roapleted Input/Output operation. a l
{ i 31 Error aessage - The STRING consisting of the error aessage for the i l
(i - IORESULT. If eapty, the error is not included in i l
(I in the 'Error type ARRAY. i }
{ t - ll
< ataaaaaaatttututatmmaaaauatuuaauauuauauuuuuuauuuuau l

February /March 1983 15

ON THREE
Ill Ill Ill Ill Ill Ill

PROCEDURE SOS_Voluae (VAR Dev_Naaei Vol Naae, Tot_Blocks, Free_Blocks,
Ret _Code!; E TERNAL;

Ill

PROCEDURE List SOS_Directory;
CONST nona! = -17t { Sets norul video output !White on Black! l

inverse= IH; { Sets inverse video outfut !Black on White> l
c I ear_ viewport = 28; { Holl!s the cursor and c ears the viewport l

TYPE Counter
Byte
Point

= INTEGER;
= 0 .. 255;
= RECORD

Last_blk: INTEGER;
Next blk: JNTESER

END• -
Lgth_rec = PACKED RECORD

Len: 0 .. 15;
Typ: 0 .. 15

END•

{ Following are the TYPE definitions l
{ that are the building blocks of the l
{ the directory structure. l

String15 = STRlNG £151;
Fileklnd = !Unknown, Badfile, Codefile, Texthle, Asciifile, Datafile,

Binarl, Fontfile~ Fotofile1 Basicprog, Basicdata, WPtext,
Sosfi e~ F type!.>, F _typel4 1 Sos_directoryl;

F i ller I = PACKED RtCORD
wiO, wll, w12, w13: Byte;
wt4, w15, wlo, w17: Byte

END•
Date rec = PACKED RECORD

- Day: 0 .. 31;
"onth: 0 •• 12;
Year: 0 .. 99

END•
Ti 11 rec = PAcKED RECORD

- "inute: Byte;
Hour: 0 .. 31t
Filler: 0 .. 1

END;
Vol nu1 = Byte·
F il f er2 = PACKED RECORD

wiD: Byte;
w!E: Byte

END•
Entry info = PACKED RECORD

- Byte per entry: Byte;
File -entries per block: Byte

END• - - -
Root_Entry= RECD~D { This is the root directory definition }

Len: Lgth rec •
hae: Strfng!S;
Mastel: Filler!·
Create date: Dale rec;
Creat(tiae: Tia(rec;
Vol: Vol OUij
Naste2: Filler2•
Entry: Entry inlo•
Files on diri INTEGER;
Bit 1ap foe: INTEGERt
Blks on-disk: JNTESEH

END• - -
File_Entry= RECORD { This is a file definition l

Len: Lgth rec •
la1e: StrfngtS;
F type: Filekind·
Sfart blk: INTEGER;
Nu1_blks: INTEGER;
Nua_bytes: PACKED ARRAY £0 .. 21 OF Byte;
Create date: Date rec;
Create)ill!: Tiae:rec;
lias tel: INTESER;
F _status: Bytet
Naste2: INTESEH;
"od_date: D~te_rec;
"od ti1e: T11e rec;
Dir-start: INTE'&ER

END; -

Ill Ill Ill Ill Ill Ill

Dir_List =RECORD
Last_Next: Point;
Root: Root Entry•
Files: PACKED ARRAY [0 .. 121 OF File Entry

END; -

Ill

VAR lnfile: FILE: { Directory path to list }
Device: TEXr; { Where to send the listing l
File count, Line count Count : Counter; { Te1poraries used for control l
Blod buf: PACKED ARRAY [0 .. 5111 OF Byte; { Buffer variable l
File_fype: ARRAY £0 .. 151 OF STRING [!OJ; { An array of file types }
Error type: ARRAY [1 •• 1271 OF STRING; { An array of error 1essages }
Direcfory: Dir _List; { A directory block l

PROCEDURE Set Error types;
YAR i: Counter; -

{ Sets the error aessages l

BESIN
FOR i : = I TO 127 DD { Null out the strings, }

Error type [iJ := "; {or you will get errors.
Error_type £21 :='Bad unit nu1ber';
Error _type [3] := 'Illegal operation';
Error type !41 :='Illegal directory spec';
Error)ype £51 :='Lost unit- no longer on line';
Error type £71 := 'Illegal pathna1e';
Error)ype [8} := 'No roo•- insufficient space on diskette';
Error type [91 := 'No unit - unit is not on line';
Error-type !101:= 'No such file in specified directory';
Error -type [II J := 'Duplicate pathnue';
Error)ype £121:= 'Atte1pt to open an already open file'•
Error type £161:= 'Write-protect error - diskette is protected';
Error-type £361:= 'Device not available';
Error -type !371: = 'Resource not avai l.ilble';
Error)ype !451:= 'Invalid block nu1ber';
Error _type !641:= 'Device error -bad address or data on disk';
Error _type £681:= 'Can"t find the specified subdirectory';
Error type !691:= 'Yoluae not found';
Error-type £701:= 'File not found';
Error)ype [731:= 'Directory full';
Error type £781: = 'Illegal access attupted';
Error-type [801:= 'File busy';
Error-type £871:= 'Duplicate voluae error'

END; { IJf PROCEDURE Set_Error _types l

::g~~DURE Set_File_types; { Sets the file types l

File type [OJ:= 'Unknown '; File type [I]:= 'BadBlocks ';
File-type [2] := 'PascalCode'; File-type £31 := 'PascalText';
File-type !41 := 'Ascii '; File-type !51 := 'PasciilData';
Fil(type £61 := 'Binary '; Fil(type £71 := 'FontData ';
F\le_type !81 := 'Picture '; F\le_type [9] := 'BilsicProg ';
F1le_type [101:= 'BasicDilta '; F1le_type £111:= 'llpText ';
File type £121:= 'SOSfile '; File type £131:= 'Diltafile ';
File-type !141:= 'Datafile '; File-type [151:= 'Directory'

END; Cof PROCEDURE Set_File_types } -

PROCEDURE Trap 10 error; { If lin error occurs, leave the unit }
BESIN - - { with an approprillte error 1essage. l

IF !IORESUL T 0 Ol THEN
BEGIN

Error := IDRESULT·
Error aessage := Error type [Error!;
CLOSninfilel; -
CLOSE IDevicel;
El!T !List SDS Directory)

END - -
END; { Of PROCEDURE Trap_IO_error >

PROCEDURE Set Out device;
VAR i: Counter; -

{ Sets the appropriate output file }

16 February /March 1983

ON THREE
Ill Ill Ill Ill Ill

BEGIN
IF I LENGTH lOut Path l = 0 l THEN

BEGIN -
Error := 7; (An illegal Pathna1e }
Error _1ess~ge : = 'You 1ust supply a pathnue!';
CLOSE llnhlel;
CLOSE I Device);
EXIT (List SOS Directory)

END - -
ELSE

BEGIN
FOR i := I TO LENGTH lOut Pathl DO

IF lOut Path [iJ IN ['a~ .. 'z'Jl THEN

Ill

Out Path [iJ := CHR lORD lOut Path £ill - 321;
IF IIDut Path 0 '.CONSOLE'> AND lOut Path 0 'll'll THEN

IF I lOut Path 0 '.PRINTER' l AND lOut Path 0 '.SPRINTER' l AND
lOut Path 0 '.PPRINTER' l AND lOut Path 0 '16' ll THEN

lnPOS I'. TEll' 1 Out Path I = Ol IHEN
IF I LENGTH lOut Patfil < II l THEN

(t!OCHECK- >
Out_Path := CONCAT IOut_Path, '.TEXT' l;

REIIRITE lDevicel Out Pathl;
CLOSE !Device, OCK>j
Trap 10 error;
REIIRlTt I Device, Out pathl;

!SlOCHECK + > -
Trap 10 error

END - -
END; (Of PROCEDURE Set_Out_Device >

PROCEDURE Open_Directary; (Open the dirl!ttory far use }

Ill

PROCEDURE Check far valid directory·, (Deteraine if it's a directory }
BEGIN - - -

!tiOCHECK- }
Count := BLOCKREAD Unfile, Black buf, ll;

!SIOCHECK+ > -
Trap 10 error; (These are the 'signature bytes' }
IF llBlack buf [OJ 0 Ol OR (that should al11ays be '0' & '39' >

I Block "buf !35J <> 39ll THEN (on an Apple II I SOS directory. >
BE&IR

Error := 7; (Nat a valid directory }
Error 1essage := 'Nat a valid directory';
CLOSnlnfilel;
CLOSE IDevicel;
EIIT (List SOS Directory>

END - -
END; (Of PROCEDURE Check _far _valid_directory I

BE&IN { "ain of Open_Directory }
!SIOCHECK- >

RESET Unfile, Pathnall!l;
{tiOCHECK+ >

Trap 10 error;
Ched far valid directory

END; < Of PROCEDURE Open_Directary I

PROCEDURE Bet root info; { Set the volu1e infar~ation I
VAR te1p: INT£6ER;-

BE& IN
NOVELEFT !Block buf [OJ, Directory, 4l;
IIITH Directory.Raat DO

BE& IN
NOVELEFT IBlock_buf [4J, Len, ll;
Na1e := ' '•
NOYELEFT IBlod_buf £51, Na1e !11, 27l;
te1p := len.len;
NOYELEFT lte1p, Na1e, 1l;
Vol := 0;

~~itiH ~~\~~t-~~~ m~·. ~:~te~1.; 101
END -

END; { Of PROCEDURE &et_root_info >

Ill Ill Ill Ill Ill Ill Ill

PROCEDURE Set_file_info lnu1: INTEGER>; { Set the file infonation >
CONST offset = 4;

bytes per entry = 39;
VAR i: Caunfer··

la•_byte, hrst, teip: INTE6ER;

BE& IN
first : = ORD lnu1 = 121;
FOR i : = first TO 12 DO

BE& IN
la11 byte := lbytes per entry a il +offset;
IIITII Directory.Filis £il DO

BE& IN
NOYELEFT IBlock_buf !low_byte +OJ, Len, II;
Naae := ' '·
NOYELEFT IBiock_buf !low_byte + 11, Nil! [IJ, !Sl;
te111 := len.len;
NOYELEFT lt11p, Naae, II;
F type : = Unkno•n;
NIJYELEFT I Block buf !Ia• byte + 161, F type II;
"OVELEFT IBlock-buf Uo11-byte + 17l, Shrt Llk, 71•
NDYELEFT I Block "buf Uo11-byte + 241, Create date, bl;
F Status := 0; - - -
NIJYELEFT I Block buf [low byte + 3011 F StatusL 1l;
NOYELEFT IBlock"buf uo.-byte + 31J, llaste2, ~I

END - -
END

END; { Of PROCEDURE &et_file_info >

PROCEDURE Sholl root info; { llrite out the root lvaluael inforlition }
BEGIN - -

IIITH Directory.Raat DO
BE& IN

IIRITE ICHR lclear vie1111ortll;
IIRITE I Device, Naie, ' ('I;
IIITH Create date DO

IIRITE !DeVice, CHR l1onth DIY 10+48!, CHR laonth NOD 10+481, 'I',
CHR lday DIY 10+48) CHR I day NOD 10+481 'I',
CHR I year DIY 10+48i, CHR I year NOD 10+4BI, ' '1;

IIITH Create tile DO ·
IIRITE !Device, CHR lhour DIY 10+481, CHR (hour NOD 10+481, ':',

CHR l1inute DIV 10+481l CHR lainute IIOD 10+4811;
IIRITELII 1Device1 'I ', 'Voluae 1', Yall;
IIRITELN IDeviceJ

END
EID; { Of PROCEDURE Sho•_roat_info }

PROCEDURE Show disk i nfa; FIIIIIARD;
PROCEDURE Do_i £; FORIIARD;

PROCEDURE Ne11 p.age l"essage: STRIII&I;
VAR Ch: CHAR;-

{ Dec! are these n011, so 111 can use }
{ thea in 'Sh011 file info' in cue }
{ the user presses '"ESCAPE' to exit >

{ Proipts the user to press a key for aore files, or to end }
BE&IN ·

&OTOIY 10 23l;
IIRITE ICHA linversel, Nessage, CHR lnon.alll;
READ I KEYBOARD, ChI ;
IIRITE ICHR lclear V1e11portll

END; { Of PROCEDURtNo_page }

PROCEDURE Sho1 file info lnUI: INTE6ERI; { llrite aut the files info, }
YAR i 1 T~IP_counteri Counter;

bzg_~nt: INTE&ER [81; { Use LON& INTE&ERS in printing out the nuaber I
{ of bytes IEOFI th.at the file occupies. }

PROCEDURE Do he.ader; { llrite out "the title display }
BE&IN -

IIRITE !Device, ' Type Blks File Nue 'l;
IIRITELN 1Device1 'Created Tiae Nodified Tiae Phys EOF'I;
Line count := Lzne count + 5

END; COf PROCEDURE na_header I

February /March 1 883 17

ON THREE
Ill Ill Ill Ill Ill Ill

FUNCTION Keypress: BOOLEAN;
VAR CharCount: INTEGER;

{ The standard function; tests to see }
{ if a key has been pressed. }

BEGIN
CharCount : = 0;
UNITSTATUS II, CharCount, 21l;
Keypress : = Char Count 0 0

END; { Of FUNCTION Keypress l

PROCEDURE Check Keypress;
VAR Ch: CHAR; -

BE BIN
IF Keypress THEN

BE BIN

{ Tests to see if a key has been pressed. l
{ If so, in the case it's an 'ESCAPE' the l
{ disk 1nfo is shown. Otherwise, it waits l
{ unti I the user presses another key to l
{ continue the listing. l

READ I KEYBOARD L ChI ·T
IF ICh = CHR !L7l I HEN

BEGIN
Show disk info;
mnDo 1tl

END -
ELSE

READ !KEYBOARD, Chi
END

END; { Of PROCEDURE Check_Keprrss l

PROCEDURE Check console; { Chrcks for various options l
BEGIN -

IF HOut Path 0 '.CONSOLE' I AND lOut Path 0 'It'll THEN
WRITE 1'.'1 -

ELSE
IF !Line count = Lines on window) THEN

BEBIN- - - •
New page I' Press any key for tore' l;
Lin! count := 2 { The end of a page - so take a new one.

END -
END; { Of PROCEDURE Ched_console l

PROCEDURE Printline ti: Counter!; { Writes out one parsed file line }

PROCEDURE llrite blks nul I nut: INTESERl; { llri te out the nulber of }
VAR t!tp: INTESER; - { blocks used by the file l
BEGIN

te1p := nut;
IIRITE !Device, CHR tte1p DIY 10000+48) l; tetp := tetp "OD 10000;
IIRITE I Device, CHR tte1p DIY 1000+48) I; te1p := te1p "OD 1000;
IIRITE (Device, CHR lte1p DIY 100+48llt.,A te1p := teap ~D lOOt
IIRITE tDeviceJ CHR tte1p DIY 10+481, l.l1K ltetp "DD 10+481, ' 'l

END; { Of PRDCEuURE llri te_blks_nut }

PROCEDURE Do_date_recs !Dater Date_rec; Tile: Tite_recl;

BE& IN { llri te out one parsed date record in }
IIITH Date DO { the fort "onthiDayiYear Hour:"inute l

WRITE !Device, CHR ltonth DIY 10+481, CHR l1011th "OD 10+481, 'I',
CHR I day DIY 10+48l CHR I day "DD 10+481 'I',
CHR I year DIY 10+481, CHR I year "DD 10+481, ' 'I;

IIITH Tile DD
WRITE I Device, CHR lhour DIY 10+481, CHR lhour "OD 10+481 ~ ':',

. CHR ltinute DIY 10+48! 2 CHR ltinute ~D 10+481, ' l
END; { Of PROCEDURE Do_date_recs 1

PROCEDURE Do_blocks IF _type: Filekind; Nut: INTESERI;

(Write out the nuaber of blocks that the file itself hkes }
{ up. This does not take into account the header blocks. }

Ill Ill Ill Ill Ill

BEGIN
IF IF type = Sos_directoryl THEN

Write bl ks nul (Null
ELSE - -

IF INua = ll THEN
Write blks nut INual

ELSE - -
IF INua (: 257) THEN

Write blks nu1 (Nut - 1l
ELSE - -

Ill Ill

Write blks nut \Nut - ROUND INu1 I 2S7 + 0.5l - 1l
END; ! Of PROCEDURE Do_blocks l

BE&lN { "ain of Printline l
IIITH Directory.Files [il DO

BE SIN
IF IF status < 128) THEN { The file is lacked }

WRITE I Device, 't' I
ELSE

WRITE !Device, ' 'l;
WRITE IDevice, File type rDRD (F_typell, ' 'l;
Do blocks IF type, ~u1 bl ksl;
WR1TE IDevic! Nate, ,. ': (16 • Len.Lenll;
Do date recs !create date, Create tile);
Do-date-recs ("od date, "ad titefi
llrfte bfks nut INii1 blksl; -
WRITELN ID!vice, Nul bytes [OJ + Nut bytes [I] * big_int +

Nul bytes tZJ l big int * bfg inti
END - - -

END; { Of PROCEDURE Printline }

BEBIN { "AIN of Show file info l
big int:= 2S6; - -
i :i ORD !nut = 12!;

Ill

IF li = ll THEN { If •e get here, it's the first lrootl block }
Do header;

REPEAT ! Until the black is e~pty or there l
WITH Directory.Files £i J DO { are no tore files to list. }

IF I Len. Typ 0 01 THEN
BESIN C If the file slot isn't e1111ty, print it.

Printline lil;
File count := File count + I;
line-count := Line-count + 1;
Checf console; { Randles end of page and output not to '.CONSOLE'
Check:Keypress { Check to see if the user wants to >

END; (te~porarily stop the listing or leiVe. }
i := i + 1

UNTIL (li = 13l OR (file count = Directory.Root.Files an dirll
END; { Of PROCEDURE Shaw_Hle_info } - -

PROCEDURE Shall disk info; (Show the volue inforution }
VAR Y _Nate: STRIN6;-

Tot_blks, Fre_blh, Err: INTE6ER;

BE& IN
WRITELN IDevicel;
IIITH Directary.Root DO

BE& IN
WRITE !Device, File count, ' Files listed, 'I;
IIRITELH 1Device1 Files.on.dir 1 ' Files on this directory' l;
IF ILen. Typ = hi THEN { It it's a root volute, get }

BESIN { the root volute infortation. }
SOS Volute IPathnate, Y Nate, Tot blks, Fre blh, Errl;
IF 1Err = OJ THEN - - -

BE&IN
WRITE !Device, 'Free Blocks: ', Fre Blksl •
WRITE IDevice, ' Blacks Used: ', !Tot blks - Fre Blksll;
MRITELN !Device, ' Total Blocks: ', Tiit blksl -

END -
ELSE

IIRITELN !Device, Blks on disk, ' Total blocks on this disk'!
~D - -

END;

Program listing continued on page 39

18 February /March 1983

ON THREE
Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill

Assembling (ON) the I I I by Martin Nichols

l ast month I presented some assembly language functions that
made it easier for your Business Basic and Pascal programs to

tell if the ENTER key or a key on the numeric keypad had been
pressed. One of the functions also returned the second byte of
keyboard data. Included was a Basic program that enabled the
user to tell the status of all the bits of the second byte.

That program was not too easy to understand, so I am going to
implement what that program did as a new group of assembly
language routines. Just like last month, these routines can be
INVOKE'd from Basic and L)inked from Pascal.

Simply put, we are going to make assembly language functions that
wi II tell the user if certain keys C Closed Apple, Open Apple, AI pha
Lock, Control and Shift) are being pressed. Program listings #1 and
#2 show how easy these new functions are to use from both Basic
and Pascal.

To use these functions, very simple Basic statements like 'Pressed=
EXFN%. AlphaLock' will return a one in the variable 'Pressed' if the
Alpha Lock key is being pressed and a zero if it's not. Program
listing #4 is the documentation for these assembly language func­
tions. It gives a fair amount of information on how to use these
routines.

Program listing #3 are the assembly language routines that make
these tricks very easy. As you can see, there are eight functions in
this module. One for each of the bits of the second byte of
keyboard data. Each one is very simple. First they load the accumu­
lator with the appropriate mask for the bit to be tested, and then
use the 'BIT' command to compare the mask value with the second
byte of keyboard data.

I've received some mail saying that you can already do some of
these functions from Basic and Pascal with no assembly language
routines, other than the ones that are supplied with the system. This
is true, but they are much harder to read and understand.

Part of what the Apple I I I does so well is to allow the user to
expand the languages of the machine with easily invokable or
linkable modules. I think that people would much rather use the
one line statement 'Pressed= EXFN%.AiphaLock' over a twenty or
so line subroutine to test if the Alpha Lock key is being pressed.

To use these routines in your programs, use the Pascal editor to
enter the assembly language routines in listing #3. Assemble it and
name it 'KBDFLAG'. The file that the assembler creates will contain
the useable assembly language functions, and its name will be
'KBDFLAG.CODE'. To show that this can be used as an invokable
module, use the filer to change its name to 'KBDFLAG.INV'.

If you wanttotestthese routines using Pascal, type in and compile
program listing #2. Then, use the linker to link them into the Pascal
host program. From Basic, just boot a Basic disk and type in
program listing #1. Make sure the assembly language routines are
available and run it.

Once you have the program running (Basic or Pascal), press any of

the special keys and the program will tell you what you've pressed!
If you have any questions you can refer to the documentation
program (Listing #4).

Next time I will show you how to 'lock up' and 'un-lock' the RESET
key in addition to a way to have your I I I reboot without having to
press 'CONTROL RESET'. Also I will include a procedure that allows
you to cut your Apple I I Is' speed in half. This last one is for those
of you who feel that life is going by too fast.

Until then, write and tell me what you want your I I I to be able to
do. I will try my best to accomodate you. Ill

Assembling (ON) the///:
Program Listing #1

0 REI! UUUUUtutttUUUUUUUtuUUUUUUUUUUUUUUUUUU
I RE" t ----------------------- t
2 REI! t Key-Things: KbdFlag invokable aodule : Copyright 1982, 1983 t
3 REI! t !Part 2! BASIC t!st prograa. 0 N T H R E E l
4 REI! t ------------------------------------- : February-Harch, 1983
5 REI! t by l!artin Nichols ------------------------
6 REI! t
7 REI! t This prograa will t!st the state of all the bits of the second t
8 REI! t byte of keyboard data. Here's the easy ny to tell if the Alpha t
9 REI! l lock, control, shift, open apple, closed apple and aore are being t
10 REI! t pressed. Through very sitple state1ents like 'keyX=EXFNl.Shift' l
II REI! t you can deteraine a Ntalth of inforaation that your prograas can t
12 RE" t use to aake life a little easier for the user. t
13 RE" t l
14 REI! utUUUUutlutUUUUtuUUUUUUUUUUUUUUtUUUUUI
15 INYOKE'KBDFLAS.INV':SOTO 50
20 PRINT CHRt(l7+5witchl;:PRINT Key.typi!SINual:Nua=Nua+I:RETURN
50 TEIT:HO"E:ON KBD SDTO 200
60 VPOS=IO:PRINT USIN6'56C';'<-- PRESS CONTROL-E TO EXIT -->•
70 Key. typeSIIl='Special key !Keypad, Arrows, Space, Escape and Tab keys! •

:Key.typetl2l='Keyboard is on':Key.typetl3l='Ciosed Apple'
80 Key. typeS 14! ='Open Appl e•: Key. typeS 15! ='Alpha lock': Key. typeS 16! =

'Control' :Key. typeS 17! ='Shift • :Key. typeS IS! ='Any key•
90 Nut= I : VPOS= I
100 Switch= EXFNl.Special :SOSUB 20
110 Switch= EXFNl.KybdOn:SOSUB 20
120 Switch= ElFNl.ClosedApple:SOSUB 20
130 Switch= EXFNl. OpenApple: SDSUB 20
140 Switch= ElFNl.Alphalock:SOSUB 20
150 Switch= EXFNl.Control:SOSUB 20
160 Switch= EIFNl. Shift: SOSUB 20
170 Switch= EXFNl. Any key: SOSUB 20
180 SOTO 90
200 IF KBD=5 THEN NORIIAL:YPDS=I2:END
210 ON KBD SOTO 200
220 RETURN

February /March 1983 19

ON THREE
/// /// /// /// /// /// ///

Assembling (ON) the///:
Program Listing #2

PROSRA" Pascal_kbdflag_test;

{ lliiiilliiiiUtitltiiliiUiiittUtttttitttttUttttttuttuliUiiUIUIIIItiU
{ • ---------------------- *
{ I Key-Things 1Part2l: Pascal test progril : Copyright 1982, 1983 by : i
{ I --------------------------------------- 0 N T H R E E : i
{ I by "artin Nichols : February-"arch, 1983 : i
{ i -----------------------
{ i This prograa Mi 11 check the status of the keyboard special keys and
{ I tore using the external asse1bl y language routines that are declared
(I beloM. After coapiling this prograa, use the Llinker to link together i
{ I the asseably language routines to this host prograa. i
(• *
{ I When you run this progra1, see hoM easy it is to deteraine the state
{ I of all the aodi her keys by pressing thea.
{ I
{ IIUUUtUUUUUUIIUitUUUtUUIUUUUUUiUUUUUIUUiUUiU }

CONST Ctrl_E = 5; { Provide a aeans for the user to exit the prograa. l

VAR Nut: INTEGER;
Key_ type: ARRAY [1 .. 81 OF STRING;
Ch: CHAR;

FUNCTION Special: INTEGER; EXTERNAL;
FUNCTION Kybdon: INTEGER; EXTERNAL;
FUNCTION Closedapple: INTEGER; EXTERNAL;
FUNCTION Openapple: INTEGER; EXTERNAL;
FUNCTION Alphaloi:k: INTEGER; EXTERNAL;
FUNCTION Control: INTEGER; EXTERNAL;
FUNCTION Shift: INTEGER; EXTERNAL;
FUNCTION Anykey: INTEGER; EXTERNAL;

{ Thl!se are the routines that you }
{ can use to very easily deterline }
{ the state of all the bits of the }
{ second byte of keyboard data. l

FUNCTION Keypress: BOOLEAN;
VAR Charcount: INTEGER;

{ Tests to see if a key has been pressed. l

BEGIN
Char count : = 0;
UNITSTATUS (1, Charcount, 211;
Keypress : = Char count <> 0

END; { Of FUNCTION Keypress l

PROCEDURE Initialize;
BEGIN

{ Set up the progra1 variables. }

Key_type [1J :='Special key !Keypad, ArroMs, Space, Escape and Tab keys!';
Key_type [21 := 'Keyboard is on';
Key_type [3] := 'Closed Apple';
Key_type [41 :='Open Apple';
Key_type [51 := 'Alpha lock';
Key_type [o1 := 'Control';

/// /// ///

Key_type (7] := 'Shift';
Key_type [81 := 'Any key';
Nut := 1;

/// /// /// ///

WRITE ICHR 12Bl l { Clear the screen for use. }
END; { Of PROCEDURE Initialize l

PROCEDURE Display ISMitch: INTEGER!; { Show the line in either inverse
BEGIN { or nor1al, depending on the state }

WRITE ICHR (17 + Switchll; {of the variable 'S•itch'. l
IIR ITELN t Key_ type [Nutll ;
Nut := Nut + 1

END; { Of PROCEDURE Display }

PROCEDURE Test;
BEGIN

{ Perfor1 the test of the second byte of keyboard data. }

Nut := 1;
Display ISpeciall;
Display IKybdonl;
Display tClosedapplel;
Display IOpenapplel;
Display IAlphalodl;
Display !Contrail;
Display IShiftl;
Display tAnykeyl;
GOTOXY 10, Ol

END; { Of PROCEDURE Test l
{ So bad to the top of the screen for tore. }

PROCEDURE Exit_proapt; { Tell the user hoM to exit the progra1. }
BEGIN

SOTOXY t 13, 91;
WRITELN I'<-- PRESS CONTROL-E TO EXIT -->' l;
SOTOXY tO, Ol

END; { Of PROCEDURE Exi t_Pro1pt }

BEGIN { l'lai n Progril l
lni ti alize;
EKi t_Pro1pt;
REPEAT

IF Keypress THEN
READ I KEYBOARD, Chl;

Test
UNTIL lORD !Chl = Ctrl_El

END. { Of PROSRAI'I Pascal_kbdflag_test l

20 February /March 1983

ON THREE
/// /// /// /// /// /// ///

Assembling (ON) the///:
Program Listing #3

; uuuaauaamuuuuauamamuumuuuuuuumauumuumuu
• ---------------------- *
a Key-Things !Part2l: Kbdflag assl!lbly : Copyright 1982, 1983 by : *
a language routines. 0 N T H R E E I *
a -------------------------- I February-"arch, 1983 I I
I by "artin Nichols ------------------ I

• • I These asse1bl y language routines will enable your Basic or Pastil I
I pragra1s to easily deter1ine the status of all the bits of the second I
a byte of keyboard data. You will be able to tell when the user is
1 pressing the shift key, when they are pressing any of the other 10difier I

·-~~~ . • • I To use in you Basic progra1s, assuble this routine using the Pascal I
a assubler, and then invoke it as you 11auld any other invokable 1adule. I

' . .
; I For use in Pascal, declare each of these routines EITERNAL FUNCTIONS *
; I and use the linker to link thu into your PilScal host pragru. I
; . .
; ************uumuaumumuuaaamuuuauuauuuuuuumaaam

·"ACRO Pop ; Pull a word fro• the stack
PLA
STA 11
PLA
STA 11+1
.END~

·"ACRO Push ;Push it back an
LDA 11+1
PHA
LDA 11
PHA
.END"

.~RO Open
Pap Return
PLA ;Discard 4 bytes stack bias
PLA ; (for .FUNC ani yl
PLA
PLA
LDA 100 ; Zero the address 'Result' because
STA Result ; you never kn1111 whit it uy cantiin.
STA Result+ I
PHP ;save status, then disable interrupts
SEl
LDA Envr1t ; save enviran~~nt
STII Env
LDA 173 ;Use a n111 uviron•ent register
STA Envr1t ;Do this to get at the 'COOO' l/0 space.
.ENDII

/// /// /// /// /// /// ///

·"ACRO Close
LDA Env ;restore environ1ent
STA Envnt
PLP ;restore status !including interrupts)
Push Result ; &ive an ans11er
Push Return ;Ca1e bitk fra1 non 50S-land
.END"

Return • EQU 0
Result • E!IU 2
Env .EQU 4
Kbdflag .E!IU OC008
Envr1t • EQU OFFDF

- Function Special -
;
;If a special key !See pages 135 and 165 of the Standard Device Drivers "anuall
;11hich consists of Escape, Tab, Space, the cursor control keys, and keys on the
;nu11ric keypad, but not the 'RETURN'!!! key, is pressed, the BASIC sbte~ent
; • inti = EXFNI.Special' 11ill return a value of I in the variable 'inti'. If the
;key just pressed was nat a so-called special key, the function will return a 0
;in the variable 'intl'.

.FUNC Speciai,O

Open

LDA 180 ;Begin test to see if a special key 11as pressed
BIT Kbdflag
BEll Dane

LDA 101 ;If we get here it's a special key
STA Result ; Store the chancter

Dane Close ;Ti1e to go hOle
RTS

- Function KybdDn -

If the Keyboard is on !See page 165 of the Shndard Device Drivers llanuall
the BASIC shte1ent 'intl = EXFNl.KybdDn' •ill return a villue of 1 in the
variable 'intl'. If the keyboard is off, the function will return a 0 in
the variable 'intl'.

.FUNC KybdDn,O

Open

LDA 140 ;Begin test to see if the keyboard is an
BIT Kbdflag
BEll Dane

LDA 101 ; If n get here the keyboard is an
STA Result ; Save thr ans~~~r

Dane Close ;Back we go!
RTS

February /March 1983 21

ON THREE
/// /// /// /// /// /// ///

- Function ClosedApple -

If the Closed Apple key !See page 165 of the Standard Device Drivers "anuall
is being pressed down in conjunction with another key, the BASIC shteaent
'intl = EIFN'l.ClasedApple' will return a value of 1 in the variable 'intl',
If it is nat being pressed, the function •ill return il 0.

.FUNC ClosedApple,O

Open

LDA 120 ;Begin test to see if the Closed Apple key is
BIT Kbdflag ;bting pressed.
BNE Done

LDA 101 ; If we get here the test is true
STA Result ; Save the answer

Dont Close ;Back we go!
RTS

- Function llpenApple -

If the Open Apple key !See pilge 165 of the Standard Device Drivers "anuall
is being pressed down, the BASIC stateaent 'intl = EIFNl.DpenApple' will
return a value of I in the variable 'intl'. If the Open Apple key is not
being pressed, the function will return a 0 in the Vlriable 'int1'.

.FUNC OpenApple,O

Open

LDA 110 ;Begin test to see if the Open Apple key is
BIT Kbdflag ;begin pressed.
BNE Done

LDA 101 ; If we get here the Open Apple key is pressed
STA Result ; Save the answer

Done Close ;Back we ga!
RTS

- Function Alphalack -

If the Alpha Lack key !See page 165 of the Shndard Device Drivers "anuall
is being pressed down, the BASIC statnent 'inU: • EIFNZ.Alphalack' will
return a value of I in the Vlriilble 'inti'. If it is not being pressed,
the function will return a 0.

;FUNC Alphalock,O

Open

LDA 108
BIT Kbdflag
BNE Done

;Begin test to see if the Alpha Lack key is
;being pressed.

/// ///

LDA
STA

101
Result

/// /// /// /// ///

; If we get here the Alpha Lock key is pressed
;Save the answer

Done Close ;Back 111 go!
RTS

- Function Control -

If the Control key !See page 165 af the Standard Device Drivers "anual I
is being pressed down, the BASIC statnent 'intl = EIFNl.Control' will
return a value af I in the variable 'inti'. If it is not being pressed,
the function will return a 0.

• FUNC Control, 0

Open

LDA 104 ;Begin test to see if the Control key is
BIT Kbdflag ;being pressed.
BNE Done

LDA 101 ; If we get here the Control key is pressed
STA Result ; Save the answer

Done Close ;Back we go!
RTS

- Function Shift -

If the Shift key !See page 165 of the Shndard Device Drivers "anual I
is being pressed down in conjunction with another key, the BASIC shteaent
'intl = EIFNl.Shift' will return a value of I in the variable 'intl'.
If it is not being pressed, the function •ill return a 0.

.FUNC Shift,O

Open

LDA 102 ;Begin test to see if the Shift key is
BIT Kbdflag ; being pressed,
BEQ Done

LDA 101 ; If we get here the Shift key is being pressed
STA Result ; Save the answer

Done Close ;Back 11 go!
RTS

- Function Anykey -

If Any key !See page 165 of the Standard Device Drivers "anuall
is being pressed down, the BASIC statetent 'int% = EIFNl.Anykey' •ill
return a value of I in the variable 'intl', If it is not being pressed,
the function •i 11 return a 0.

.FUNC Anykey,O

22 February /March 1983

/// /// /// /// /// ///

Open

ON THREE
/// /// /// /// /// /// /// ///

460 PRINT' After being deiined in your Pascal progru it till be called
just as any ather'

LDA 101 ;Begin test to see if any key is pressed. 470 PRINT'function. Reaeaber it returns an INTE&ER value so you can't
assign it to a nan-' BIT Kbdflag

BEll Dane

LDA 101 ; If we get here the test is true
STA Result ; Save the answer

Dane Close ;Back 11 go!
RTS

.END ;Of Assellbly

Assembling (ON) the///:
Program Listing #4

480 PRINT' integer type variable with out converting it first. Froa
Pascal you aust also'

490 PRINT'reaetber to Llink before you can eXecute the file. ':RETURN
1000 ~ --- Special key status
1010 titleS='-- Special key --•:&OSUB 300:RE" Page 1
1020 PRINT TABI5l'The SPECIAL Function returns a value of 1 if the

lut key pressed was a'
1030 PRINT"special key. A special key is defined on pages 47-49 and

pages 135-137 in the'
1040 PRINT'Standard Device Drivers "anual. llith the exception of the

RETURN key 1 whenever'
1050 PRINT'a special key is pressed this function will return a 1. If

the last key pressed'
10 RE" aamamuauutmmaumauuammuumuaauuauauuuaa
~ ~· . 1060 PRINT'was not a special key, this function will return a value of 0. •

30 RE" t Kbdflag Invakable Module Dacuaentltian t

% ~· •
50 RE" t ICI Copyright 1982, 1983 by ON THREE t

~ ~· .
10 RE" aaaummuamuumumuuuuamuamuuaaaaaauaaumu
80 • TEIT:tiUeS=CHRSU5l+'--- KBDFLA6 INVOKABLE "ODULE ----':60SUB 300
90 PRINT:PRINT' Before illy Invakable "odule till be used, it aust be

loaded into the':PRIIT'systea by the following Coaaand Foraat:•
100 PRINT:PRINT'liNVOKE KBDFLA&.INV':PRINT:PRINT'where KBDFLAS.INY till be

the naae of this or another Invokable "odule. ':PRINT:&OSUB 200
110 titlet=CHRSU51+'-- KBDFLA& INVOKABLE MODULE ----':6DSUB 300
120 PRINT:PRINT TABIBI;'Select docuaentation on: ':PRINT
130 PRINT TABI201;'1 Reading the Special key status':PRINT TA81201;'2

Reading the state of the keyboard'
140 PRIN-T TABI20l; '3 Reading the state of the open Apple key"': PRINT

TABI20l;'4 Reading the state of the closed Apple key•
142 PRINT TABI201; '5 Reading the state of the Alpha Lock key':PRINT

TABI201;'6 Reading the shte of the Control key'
144 PRINT TAB1~1;'7 Reading the state of the Shift key':PRINT TA81201;

'8 Reading the Any key status•
146 PRINT TA8120l; '9 End':PRINT
150 PRINT TA818l;'llhich option ';:INPUT aS:x=CDNVILEFTtlaS,2ll:

IF x<O THEN x=O
160 OM X &OTO 1000,2000,3000,4000,5000,6000,7000,8000,180
170 PRINT TABIBl;'Pleue enter 1, 2, 3, 41 51 61 7, 81 or 9':VPDS=

YPOS-2: &DTO 150
180 HOME: END
200 VP05=24:PRINT USIN6'76c'; 'Press any key to Continue.'; :BET aS: RETURN
300 PRINT CHRSU41:HM:PRINT USIN6'76c';titleS:PRINT:RETURII
400 PRINT:PRINT TABI5l'The Couand.Forut is:':PRINT
410 PRINT'lteyl=EXFN%. ';funcnueS:PRINT
420 PRINT TA815l'This coaund should noraally be used right after a

keyboard read such'
430 PRINT'as a BET or INPUT froa BASIC or a READ or READLN froa Pascal.

It can also be'
440 PRINT'used froa Pascd with the follDIIing statl!ll!llt:':PRINT
450 PRINT'FUNCTION '; funcnaaes; ': INTE&ER; EXTERNAL;' :PRINT

1070 funcnaaeS='Special':&OSUB %0:60SUB 200:60SUB 300:REII Page 2
1100 PRINT TABI5l;'You can also use this function fro• the !Mediate

Executi an aade of BASIC'
1110 PRINT'by entering the follo•ing stateaents:':PRINT
1120 PRINT"lkeyl=EIFN%.Special: PRINT keyl':PRINT
1130 PRINT TABI5l;'l'll bet you entered the above line by pressing

RETURN. If you did the'
1140 PRlNT"screen will respond with:':PRINT
1150 PRINT"lO':PRINT
1160 PRINT TAB I 51; 'It returned a zero because the last key pressed

!RETURN! was not one of•
1170 PRINT'the special keys. N1111 try this! Enter the line again, but

instead of pressing'
1180 PRINT'RETURN, hit the EIITER key on the nuaeric keypad. You should

no11 be greeted 1ith:'
1190 PRINT'li':PRINT
1200 PRlNT'because the last key pressed (ENTER! was on the nuaeric

keypad and thus one'
1210 PRINT' of the special keys. •
1999 605UB 200:6DTO 110:~ &a back to •nu
2000 REM --- Keyboard state
2010 titleS='-- Keyboard state -':60SUB 300:RE" Page I
2020 PRINT TABI5l; 'The KYBOOII Function returns 1 value of I if the

keyba1rd is on. I will'
2030 PRlNT'adait it's an alaost useless function but it is included

to provide a 1ethod of'
20% PRINT'nading the status of all the bits in the second byte of

keyboard data. If the'
2050 PRINT'hyboiird is ever off (call 11 if yours ever does i tl the

function •ill return a'
2060 PRlNT'value of 0. •
2070 funcnaaeS='KybdOn':&OSUB %0
2999 &OSUB 200:60TO 110: REII &a back to •nu
3000 REM ~ Open Apple
3010 titleS='-- Open Apple --':&OSUB 300:REM Page 1
3020 PRINT TABISl; 'The OPENAPPLE Function returns a value of 1 if the

1 ast key pressed ~as'

February /March 1983 23

ON THREE
/// /// /// /// /// ///

3040 PRINT'the Open Apple key, If the last key pressed was not the
Open Apple key it will'

3050 PRINT'return a value of 0. This function will only return a value
of I for the tiae'

3060 PRINT'that the key is being pressed. When the Open Apple key is
released the function'

3070 PRINT'will return a value of 0. ':PRINT
3080 PRINT TAB15l;'The Co11and For.at is:':PRINT
3090 PRINT'! keyX=EXFNl.OpenApple':PRINT
3100 PRINT TABI5l;'This co11and does not have to be used right after a

keyboard read but it'
3110 PRINT'can be used directly to see if the key has been pressed. It

can also be used'
3120 PRINT'fro1 Pascal with the following state~ent. ':PRINT
3130 funcna~eS='OpenApple':SOSUB 450
3999 SOSUB 200:60TO IIO:RE" So back to 1enu
4000 RE" --- Closed Apple
4010 titleS='-- Closed Apple --':SOSUB 300:RE" Page I
4020 PRINT TA815l; 'The ClOSEDAPPlE Function returns a value of I if

the last key pressed was •
4030 PRINT'pressed in conjunction with the Closed Apple key. If you

press the letter 'A', •
4040 PRINT'and at the saae ti1e press the Closed Apple key, this

function will return a 1. •
40SO PRINT'If the last key pressed was not pressed at the sa1e ti11

as the Closed Apple key';
4060 PRINT' lor after> the function will return a value of 0. •
4070 Funcna1eS='ClosedApple':SOSUB 400:60SUB 200:60SUB 300:RE" Page 2
4100 PRINT TABISl; 'After this function returns a 1 it will cont.inue

to return a 1 each tiae'
4110 PRINT'it is called until another key is pressed that is not

pressed at the sa1e tiae'
4120 PRINT'the Closed Apple key is being held. In other words, this

function will retain on•;
4130 PRINT'until it is explicitly turned off. ':PRINT
4140 PRINT TABISl; 'Unlike other functions that are 'on' only as long

as their speci fie key is'
41SO PRINT'being pressed, this function ri!1ains on until another key

turns it off. The keys';
4160 PRINT'that will turn it off are any of the regular ones that are

not being held at the';
4170 PRINT'saae tile as the Closed Apple key. •
4999 60SUB 200:60TO IIO:RE" So back to aenu
5000 RE" --- Alpha lock
SOlO titleS='-- Alpha lock -':60SUB 300:REII Page 1
S020 PRINT TAB IS); 'The AlPHALOCK Function returns a value of 1 if the

Alpha Lock key is being'
5030 PRINT'pressed. If the Alpha Lock key is not being pressed the

function will return a'
5040 PRINT'value of 0. ':PRINT
50SO PRINT TABI51; 'The Co11and For.at is:':PRINT
SOIIO PRINT'lkey%=EXFNl.Alphaloct ':PRINT
S070 PRINT TA815l; 'This function should be used directly, without

using a SET or INPUT first. •
SOBO PRINT'By calling this function you will be able to easily

deteraine the state of the'

/// /// /// /// /// /// /// ///

5090 PRINT'Alpha Lock key. It can also be used fro• Pascal with
the following stateaent:':PRINT

SIOO funcna•eS='Alphalock':SOSUB 4SO
5999 GOSUB 200:5010 IIO:REI'I Go back to aenu
6000 REI! --- Control key
bOlO title$='-- Control key --':&OSUB 300:RE" Page 1
11020 PRINT TABISl;'The CONTROL Function returns a value of 1 if the

Control key is pressed. •
6030 PRINT'lf the Control key is not being pressed the function will

return a value of 0. •
6040 PRINT'This function will only return a 1 as long as the key is

being pressed, as soon •
oOSO PRINT' as the key is released this function will return a 0. ':PRINT
bObO PRINT TABI5l;'The Coaaand Foraat is:':PRINT
6070 PRINT'! keyX=EXFNl.Control": PRINT
6080 PRINT TABI5l;'This function can be used directly, without using a

SET or INPUT first.'
6090 PRINT'By calling this function you will be able to easily deteraine

the state of the'
6100 PRINT'Control key. It can also be used fro1 Pascal with the

following stateaent: ':PRINT
bl10 funcnaaeS='Control':SOSUB 4SO
6999 SOSUB 200:SOTO IIO:RE" So back to 1enu
7000 REI! --- Shift key
7010 title$='-- Shift key --':60SUB 300:RE" Page I
7020 PRINT TAB 151; 'The SHIFT Function returns a value of 1 if the last

key pressed was pressed'
7030 PRINT'in conjunction with the ShiH key. This function will return

a value of 1 until'
7040 PRINT'another key is pressed that was not pressed at the saae tilt

as the Shift key.'
70SO funcnaae$='5hift':6DSUB 400
7999 SOSUB 200:60TD IIO:RE" Go back to aenu
8000 RE" --- Any key
8010 titleS='-- Any key --':&OSUB 300:REI'I Page 1
8020 PRINT TAB lSI; 'The ANYKEY Function will return the value 1 if a key

us pressed direct! y•
8030 PRINT'before this function was called. Possible uses include testing

to see if a key'
8040 PRINT'was pressed during the execution of a prograa. It's al1ost

like the BASIC ON KBD';
BOSO PRINT'stateaent, in that it will tell if a key wu pressed during

progra1 execution.'
80110 funcnaae$='AnyKey':60SUB 400
8999 &OSUB 200:SOTO IIO:RE" Go back to aenu

24 February /March 1983

ON THREE
Ill Ill Ill Ill Ill Ill Ill

Products Received
The products outlined below have been received by ON THREE

for the purpose of review. Some have been reviewed in the
past and many wi II be reviewed in the future. The products have all
been given the ON THREE 'stamp of approval'. This is only an
indication that a product works as advertised and is not an endor­
sement of the product by ON THREE.

PFS: FILE & REPORT
With PFS: File you can create a file, search and update any item or
group of items in the file, and print sorted information. Information
management at its best, these programs are extremely easy to use.

All PFS products are designed so that a novice can master them in
less than an hour. Reviewed in the January issue of ON THREE, these
programs received an A- and a B- respectively.

Available from most authorized Apple dealers, these programs are
made by Software Publishing Corporation and are priced at $175
and $125 respectively, for the Apple I I/.

Software Publishing Corporation, 1901 Landings Drive, Mountain
View, California 94043. (415) 962-8910.

QUICK & EASY DATA MASTER
Quick & Easy Data Master is a program that creates custom
applications software and report forms designed to your specifi­
cations. This package creates an unprotected Business Basic data
base program as per your specifications.

The ideal data base program is one that you can design exactly the
way you want it: prompts, edits, error messages, headers, titles,
c.omputed data, interactive files, report forms, etc. to your specifi­
cations. You design it and Quick & Easy will create it for you.

Intended for the more serious computer user who knows how to
program in Basic, this package is not very hard to use, but it does
require some thought. Sold by Advanced Software Technology,
Inc., it is priced at $69.95. To be reviewed in the April-May issue.

Advanced Software Technology, Inc., 7899 Mastin Drive, Overland
Park, Kansas 66204. (913) 648-4442.

CRITICAL PATH SCHEDULING
If you are involved in project management and tired of the hassels
of project scheduling, the Critical Path Scheduling System is for
you! It is a management tool for defining and analyzing the overall
concepts of a project and provides a powerful method for sched­
uling the many tasks necessary to complete the project ON TIME
AT THE LOWEST POSSIBLE COST.

Armed with the information that this system provides, the manager
is better prepared to make decisions regarding the impact any task
will have on the project and permits him to be instrumental in
guiding the project rather than just monitoring its progress.

Ill Ill Ill Ill Ill Ill Ill

This is a very 'User Friendly' system, and it has an excellent tutorial
/user manual. Comprehensive reports make a manager's life a lot
easier. Developed by Great Divide Software, it has a suggested
retail price of $495. To be reviewed in the April-May issue.

GL·PLUS
To many managers, accounting and the preparation of financial
reports are time consuming chores that have to be struggled
through. But now, at last, accounting can be simplified.

GL-PLUS is an accounting system designed for the Apple I I I
computer. It is a flexible, easy to use, journal-based General Ledger
system. The computer and GL-PLUS combine to provide you with a
tool. A tool to make your accounting chores easier. GL-PLUS auto­
matically guides you through entries and then automatically sorts
and posts them.

Report preparation is a "snap" with GL-PLUS. You select the report
you wish and the rest is done automatically. GL-PLUS includes a
PLUS. The PLUS is a built-in accounts receivable and accounts
payable capability that can be implemented anytime you desire.

Another 'User Friendly' system, flexible reporting and ease of use
make an excellent accounting package. Developed by Great
Divide Software, it has a suggested retail price of $495. To be
reviewed in the June issue.

Great Divide Software, Inc., 8060 West Woodard Drive, Lakewood,
Colorado 80227. (303) 337-0383. Ill

Continued from poge 29

200 FOR loop.2=10 TO 1 STEP-1
210 VPDS=loop.2:HPOS=15
220 PRINT FN Neg.SQR!valuel
230 value= FN Decre1ent!valuel
240 NEXT loo~.2
250 VPOS=12:HPOS=24
260 PRINT"- They are the sa1e both ways!"
270 FOR Colu1n=l TO 80
272 PRINT"-";
274 NEXT Colu1n
276 VPOS=16:HPOS=9
280 PRINT"So1e Randol nu1bers•
290 VPOS=14
300 FOR loop.3=12 TO 77 STEP 12
310 SOSUB 60000
320 NEXT loop.3
330 VPOS=16:HPDS=48
350 PRINT"So1e aore Randol nu1bers•
390 VPOS=14
400 FOR loop.4=12 TO 77 STEP 12
410 SOSUB 61000
420 HPOS=40
430 PRINT te1p
440 NEXT loop.4
450 VPOS=21
460 PRINT"What's going on?"
470 PRINT"The second colu1n isn't rando1!"
480 PRINT:END
60000 PRINT loop.3* FN Rnd.1001-loop.3l
60099 RETURN
61000 telp=loop.4t FN Rnd.1001-loop.4l
61099 RETURN

February /March 1983 25

ON THREE
Ill Ill Ill Ill Ill Ill Ill

Basic - The Easy Way
To start off, let me apologize for the error in last months' column.

On page25, in the third paragraph of the right hand column, the
line '30 LET M% = M% x 1' should read '30 LET A%= A% x 1'.1 hope
it didn't confuse you too much.

This column is one of a series that is designed to teach you how to
use Apple I I I Business Basic. Learning a computer language is
seldom easy and if you missed the first installment, it will be even
harder. Therefore, if you don't have it, I suggest you try to get a
copy.

I hope you have been practicing, we have a lot to do today! The
program at the end of last months' article is reproduced here as
program listing #1. This month we are going to learn all about
functions, 'FOR ... NEXT' loops and subroutines: So take an hour or
so and follow along, you will learn a lot. We will start this month
with loops, so please pull up a chair and continue reading!

Looping around
'

Last month we made a small program that printed out the number
from 0 through 99 using an 'IF' statement. You may not have known
it, but that was a loop. If you look on pages 110 & 111 of the Basic
manual you will see the definition of a loop. Very simply, a loop
describes program statements that are carried out over and over
again.

The reserved words 'FOR' and 'NEXT' in Business Basic let your
programs perform a group of statements a number oftimes. Pages
111 through 115 show you how to use them. If you look at the first
program under the 'FORand Next' title, you will see it is very similar
to last months' small program that counted from 0 to 99. This one
counts from 0 to 5.

As it says, there is another way of constructing those types of
loops. The next program on that page does just that. Using a
'FOR ... NEXT' loop, it also prints out the numbers from 1 to 5. The
general form of a 'FOR ... NEXT' loop is - 'FOR variable = start TO
finish', 'statements to be executed', 'NEXT variable'.

This statement first assigns the number that 'start' represents to the
'variable'. It them performs the statements to be executed and
reaches the 'NEXT'. The 'NEXT' statement increments the 'variable'
by one (adds one to it) and then sees if it is less than the number
that 'finish' represents. If the new value of the 'variable' is still less
than 'finish', the statements are executed again. If not, the loop is
finished and the program continues with the statements that fol­
lowed the 'NEXT' (if any).

What all this means is that the group of program statements
between the 'FOR' and the 'NEXT' are executed a number oftimes,
determined by the values of 'start' and 'finish'. The control variable
must be either an integer or a real number. It can not be a string or a
long integer!

The part on the nesting of a loop inside another loop is good. One
thing that the manual does not mention is one of the most impor­
tant things you should talk about when teaching about loops. I

Ill Ill Ill Ill Ill Ill Ill

by Earl Curlson

hope that this next line becomes engraved inside your head
forever. You must never alter the control variable from within the
loop.

What the heck does that mean, right? Consider the following
program:

10 FOR variable = 1 TO 10
20 PRINT variable;"";
30 variable = variable - 1
40 NEXT variable

If you type it in and run it you will get a screenful of the number'1'.
Can you see? For this loop to end, the value of the control variable
must sooner or later reach the number10. But because we alter the
value of the variable in line #30, it never gets to be 10.

In this small program it is easy to tell why it's not working. However,
if you have a program of many hundreds or thousands of lines, you
could accidentally change the value of the control variable and this
program could give you many headaches trying to figure out why
it's not working.

It's not that hard to do either. Just a few months ago I spent two
days trying to figure out why a program wasn't working. I was so
sure that everything was right! It was driving me crazy unti II noticed
that I had somehow exchanged two statement lines. That's right! I
committed a very bad programming error, I accidentally altered
the value of the control variable from within the loop.

If you read through page 115 you wi II see that a 'FOR ... NEXT' loop
can get even more fancy. If you've been following along, you may
have remembered that even though you can use real numbers for
the control variable, when the program hits the 'NEXT' statement, it
only increments the control variable by one.

Is there are way to change that? Yes! When used in a 'FOR' state­
ment, the Business Basic clause 'STEP' forces the 'NEXT' statement
to increment or decrement the control variable by the amount
specified. Pages 114 through 115 show the different possibilities.

You can now use a 'FOR ... NEXT' loop to count by 10's or 20's.
Backwards, forewards, with fractions- almost anything is possible!
To show off your new found ski II, write a program that counts from
-2 to -5 by .5 and prints out each value. If you have any problems,
the answer is just below.

10 FOR variable= -2 TO -5 STEP -.5
20 PRINT variable
30 NEXT variable

Wow! Would you believe that you just learned all there is to know
about 'FOR .. NEXT' loops! To become a real expert though, you
should test yourself by writing small programs that do nothing
more than count. If you take a little time and practice, things will be
much easier in the coming months. That's enough for now, take a
break and when you come back we will learn about another of
Business Basics' powerful features- subroutines!

26 February /March 1983

ON THREE
Ill Ill Ill Ill Ill Ill Ill

Subroutines For All
Let's say that you are working on a program and you see that two or
more parts of it are exactly the same. In other words, throughout
the program, statements are repeated. If you don't want to type
them all in in the first place, or if you want to reduce the size of the
program, you can use a subroutine.

The Business Basic manuals have a description of subroutines on
pages 115 through 118, but it is rather cryptic and not easily
understood. If you read the next few paragraphs you should get a
good understanding of the 'GOSUB- RETURN' statements.

Much as the 'FOR ... NEXT' construct allows you to execute a number
of statements over and over, the 'GOSUB - RETURN' mechanism
allows different parts of a program to use the same routines. For
example, say that throughout your program you need to put a short
delay loop. If you had to type it in twenty different times, you
would waste precious memory and time.

Using a subroutine, you would only have to type it in once!
Whenever you wanted to use it you would type 'GOSUB xxxxx',
where xxxxx is the line number of the subroutine. Atthe end of the
subroutine you would put 'RETURN'. Below is an example.

10 PRINT "I think I'll waste some time."
20 GOSUB 1000
30 PRINT "Well, that was nice. I think I'll do it again!"
40 GOSUB 1 000
50 PRINT "All finished, time to end."
60 END
1 000 FOR waste = 1 TO 5000
1010 NEXT waste
1020 RETURN

When you run the above program, the computerwill print the line 'I
think I'll waste some time.' and then seem to stop for a few
seconds. Then it will print the line 'Well, that was nice. I think I'll do
it again!' and wait a few more seconds before finishing up with the
line 'All finished, time to end.'.

What the computer does when it reaches a 'GOSUB' statement is
this: It GOes to the SUBroutine indicated by the line number
following the 'GOSUB', and it remembers where it came from.
When you are finished with the subroutine, the statement 'RETURN'
tells the computer to go back to wherever it came from.

You may be wondering by now what line #60 does. As it says, it
ENDs the program. If it wasn't there, after the program finished
executing the statement at line #SO it would go down to line
#1000 and after a few seconds of looping around, it would hit the
'RETURN' statement in line #1020. Since the subroutine wasn't
called with a 'GOSUB' and it doesn't know where to 'RETURN' to, it
will give an error message.

Just as 'FOR ... NEXT' loops can be nested one inside another,
subroutines can be nested inside other subroutines. Thus, one
subroutine can call another subroutine and so on. Page 116 tells
that you can't do this more than 23 times or you will get an error.

Remember that when a 'GOSUB' occurs, the program remembers
where it came from. When you have nested subroutines, at times it
is necessary to tell the computer to forget where it came from. If

Ill Ill Ill Ill Ill Ill Ill

this isn't done, the computer may do something you don't want it
to do.

The command to make the computer forget this information is
'POP'. It has the affect of jumping out of one level of subroutine
nesting. This command is described on pages 117 and 118. Since
we aren't going to use it today, I will hold off on a detailed
discussion for a little while.

There! We're done with subroutines. For now, that is. We wi II come
back to them in a page or so. We're going to talk about functions in
a moment or two, so you may want to take another short break. No,
not a week!

Functionally Speaking
Since I am going to write part of the column on them,l guess that I
should tell you what a function is! It is just another way to get the
computer to give you some type of information. Now, this informa­
tion will always be in the form of one of the types of information
that Apple I I I Business Basic understands. A function will return
information in the form of either an integer, real number, string or a
long integer.

Say that you are an engineer or mathematician and you need to find
out the sine of the number 1.9. If you have a calculator you'll
probably type in the number and hit the sine key. Looking at what
you just did, you gave the calculator a number and you told it to
find that numbers' sine.

You supplied a value for the machine to evaluate, we will say that it
is called an argument. The machine performed some operation on
the value and returned another value.

This is the exact thing that occurrs in Business Basic. A function
takes an argument and returns a value. Since it returns a value you
must tell the computer what to do with it. For example, the
statement 'SIN (1.9)' in Business Basic causes the computer to find
the value of the sine of the number 1.9. But since a function returns
a value, where are we going to put it?

That's right- an assignment statement! You can use the line 'A= SIN
(1.9)' to store the value that the function returns in the real number
variable 'A'. Once you have captured the number you can print it
out for the whole world to see with the statement 'PRINT A'.

What's that you're saying? Can I omit the assignment statement and
just type 'PRINT SIN (1.9)'?Whydon'tyou try it and see for yourself.
Test your computers' limits and see what it can and can't do. That's
the only way you are going to learn, so give it a whirl.

By now I think you have a pretty good idea about what functions
are, so if you'll turn to page 54 in the Business Basic manual you will
see that they have devoted an entire section to functions. That's
right - they are very important.

What I want you to do is to start on page 54 and read through page
65. This will give you information and examples on all of the
standard functions that the Apple I I I uses. Don't worry, I will be
right here to help if you have a problem.

Your first problem is on page 55. The line ')WIDTH=*3.3' is a

February /March 1983 27

ON THREE
/// /// /// /// /// /// ///

mistake and should read ')WIDTH=3.3'. See, not even Apple is
perfect! Pages 57 through 65 contain all the functions that operate
on and return string values. There are quite a few, and with them
you can perform most any operation that you would want to do to
a string - and more!

Just as a check, you do remember what strings are, right? Good,
but for my sanity, I'll repeat it. Apple I I I Business Basic can
represent what are called 'Strings' by enclosing the text that you
want to manipulate within double quote marks. Thus, the state­
ment 'A$= "This is a test string"' tells the computer to find room in
memory for the variable with the name 'A' and the type string. Then
the computer assigns the words 'This is a test string' to that variable.

Getting back down to earth, in addition to being able to convert
from base 10 to base 16 through the use of the 'HEX$' and 'TEN'
functions, we have the 'INSTR' function. This very powerful routine
will tell you if a string is contained in another string. This is very, very
useful for programming. Its' description is on pages 63-64.

While the string functions are very important, we are going to
concentrate on another type of function this month. If you look
over our sample program you will see a number of functions that
work on just numbers- not strings. These are appropriately called
numeric functions and are discussed on pages 65 through 70.

The ones we will discuss today are 'SQR', 'INT', 'RND' and the user
defined functions. By now you may be thinking that it's an awful lot
to remember. You're right, it is. The trick is knowing what to
remember and what to look up. Yes, you know you can look up
things. Many times I can't remember the exact way to use one of
the reseNed words. When I can't, I just look it up in the manual.

Getting back to work, the function 'SQR' is described on page 68. It
simply returns the positive square root of the number given as an
argument. So if you type 'PRINT SQR (4)', the computer will
respond with a '2'. Likewise, 'PRINT SQR (5)' will return 2.23607.

As with other functions, you may assign it to a variable. Thus you
can use the line 'num = SQR (3)' and 'num' will contain 1.73205. If
you assign the value of the square root function to an integer type
variable, as in 'num% = SQR (3)', the integer variable 'num%' will
contain a 2. As you can see, it rounds the number up to the next
highest number. If you try to take the square root of a negative
number you will get an error message.

The next function we will discuss is 'INT'.It is described on page 66
of the Business Basic manual. It returns the largest whole number
that is less than or equal to the value given as the argument. Thus the
statement 'PRINT INT (8.7)' will return an 8, while 'PRINT INT (7.9)'
will return a 7. 'PRINT INT (-11.3)' will return a 12. This function is
very usefull in removing unwanted numbers after the decimal
point.

The function 'RND' is also very useful. It is described on pages 66 &
67. It will return a random positive real number between 0 and 1.
For many uses it is very important. Like all of the other functions, you
must give it an argument. 'RND' uses the value of the argument in a
special way. If you supply 'RND' with a zero, it will return the last
random number generated. An example follows.

Type in 'PRINT RND (1)'and you will get some random number

/// /// /// /// /// /// ///

between 0 and 1. Say it's .302972. If you type 'PRINT RND (0)' you
will get .302972 again. E\l'en though the 'RND' function returns
random numbers, using a zero as an argument tells it to return the
last random number it made. This argument is called a 'seed' and
what the 'RND' function returns is dependent on what you 'seed'
the random number generator with.

If the 'seed' is positive, the function will return a new random
number each time it is used.lfthe 'seed' is negative, it will return a
random number sequence that will follow the same pattern each
time the function is called with a positive argument. Thus, you can
force Business Basic to return numbers that are random, but can be
repeated if you use the same negative number as the initial 'seed'.

A different sequence is initiated by each new negative argument.
The primary reason forth is is to initialize a repeatable sequence of
random numbers. This is invaluable when debugging a program
that uses 'RND'.

Now that we have a few of the basic functions down pat, we are
set to tackle the hard one - User Defined Functions! These are
functions that the user can create out of any of the built-in func­
tions. This is described on pages 70 through 72.

While hard to describe, they are very easy to make and use. Lets go
ahead and make one for practice. How about a function that takes
the square root of a number and then adds 1 to it? Why not, right?
What we need is something that performs the following function:
'sqr.plus1 (x) = SQR (x) + 1 '.Type in the following program:

10 DEF FN sqr.plus1 (x) = SQR (x) + 1
20 PRINT FN sqr.plus1 (4)
30 PRINT FN sqr.plus1 (100)

If you run the above program, you will get a 3 and an 11 as answers.
The program first DEFines a new FuNction with the name 'sqr.plus1'
in line #10. Then the function is called first in line #20 with the
argument 4. The function then takes over and proceeds to take the
square root of the number 4. This result is added with 1 and the
result is returned and printed. In line #30, the function is called
with the argument 100. Just as before, the function takes the square
root of the argument and adds 1 to it. This result is then returned
and printed out.

An important thing to learn is that while line #10 defines the new
function 'sqr.plus1 'with the variable 'x', that variable does not have
to be used to communicate with the function. Just as a regular
function will work with any value passed to it (notjustthe number
in the variable 'x'), user defined functions allow you to give any
variable as an argument.

Say you're an engineer or mathematician and you need to use the
hyperbolic functions. At first glance, the built-in functions of Busi­
ness Basic don't seem to have what you're looking for. However, if
you remember that you can build new functions out of the built-in
ones, and jog your memory (and some books), you can come up
with the necessary formulas.

The hyperbolic sine can be computed with the following function.
'sinh (x) = (EXP (x)- EXP (-x)) I 2'.1fyou define a function with the
line '10 DEF FN sinh (x) = (EXP (x)- EXP (-x)) I 2', you can use the
new function with an assignment statement like '20 value= FN sinh

28 February /March 1983

ON THREE
/// /// /// /// /// /// ///

(1.41421)'.After you run the program, the value of the variable
'value' should be 1.93507.

If you look over the examples on pages 70through 72, you will see
that the uses of these user defined functions are almost endless.
Practice with these definitions and by all means make up your own!
Like I said last month, if you want to learn how to program in
Business Basic, you will have to do all the examples I give and
more.

Guess what folks? That's right- after all we learned so far, we are
ready to look at program listing #1 and understand it! Starting at the
top we see that the first four lines are user defined function
definitions.

Line #1 0 contains a function that takes the value of the argument,
adds 1 to it and returns the result. Line #20 has a function that does
the opposite: it returns the value of the argument minus 1. These are
appropriately called Increment & Decrement.

Line #30 is also very simple. It defines the function with the name
'Neg.SQR'. What it does is take the square root of the argument and
multiply it by -1. That is all that this function does. I've gotten some
mail about negative square roots and their applications, so let me
put this to rest. I only intended for the function to take a square root
and multiply it by-1, as instructional into what you can do with user
defined functions - nothing more.

Anyway, line #40 is a function definition whose function will return
a random number from 0 to 99. It uses the argument 'seed' to be
the argument for the 'RND' function. This can and does produce
some surprising results when used in the program. When the 'RND'
function returns a value, it is multiplied by 100 to produce a
random real number. I wrote this function to return only whole
numbers and that is the reason for the 'INT statement.

Line #SO clears and moves the cursor up to the left hand corner of
the screen. Then the statements in I i ne #60 move the cursor down
to the 28th column of the 6th row. Line #70 then prints out some
words and we get to line #80. Here the cursor is moved down to
the 12th row and line #90 prints out some more words.

Lines #100-140 are the programs first loop. As you can see the
control variable (the one that is incremented) is 'loop.1 '.This loop
goes from 1 all the way up to 10. Line #11 0 takes the value of the
variable 'value', which is initially zero, and uses the 'Increment'
function to add one to it. The next line moves the cursor to the first
column of the line specified by the variable 'loop.1 '.

If you remember, this loop goes from 1 to 10, so what line #120
does is move the cursor from row 1 to 10 on the screen. We do it so
that we can print out the numbers at certain places on the screen.
Line #130 uses the function 'Neg.SQR' to take the square root of the
value of the variable 'value', which will also go from 1 to 10, and
multiplies it by-1. After the function is finished, it prints the result in
the specified column and row.

Lines #200-240 are almost a mirror (reverse) image of the last five
lines. This loop goes from 10 down to 1 (note the STEP value of-1).
Line #21 0 positions the cursor on the line specified by the variable
'loop.2', but just as important, it positions the cursor at the 15th
column of that line. This causes the numbers to be printed starting

/// /// /// /// /// /// ///

on the bottom row (#10) and working up to the first row side by
side with the first numbers that were printed.

Lines #250-260 print out some more text, while lines #270-27 4 use
a 'FOR .. .NEXT' loop to print out a line of dashes'-' that cuts the
screen in half. Lines #276-280 prints out some more words, while
line #290 positions the cursor for the next printing.

The exciting stuff starts at line #300. Here we see there is a fairly
simple loop whose control variable is 'loop.3'. It starts at 12 and
goes up to 77- but the 'STEP' size is 12. That is to say, as the loop is
executed, 'loop.3' takes on the values 12, 24, 36, 48, 60, 72. Line
#310 does a 'GOSUB' down to line #60000.

Here we perform one statement and then 'RETURN'. That one
statement is fairly complicated though. What it does is print out a
number. This number is computed from a multiplication of the
result of the function 'RND.1 00' and the value of 'loop.3'. When it
calls the function, it passes as the argument, the negative value of
the variable 'loop.3'.

If you remember what the 'RND' function does, when we give it a
negative value, it returns the same values over and over when given
the same argument. When the loop that starts at line #300 finishes,
the loop at line #400 begins.

This loop starts at 12 and goes up to 77, just like the last loop. Line
#410 causes the subroutine at line #61000 to be executed. If you
look at the difference between line #60000 & 61000, you will see
that the only change is in the variable names.

When you run this program, the last two columns that are printed
are the same. Since these numbers are random, you would expect
that they would be different- but they aren't. If you remember our
discussion about the 'RND' function, you will see why these two
columns are the same.

That's right! Because they both use the same numbers as argu­
ments, they form a repeating sequence. See, once you know what
the words mean, it gets a whole lot easier.

If you don't see how and 'why' everything works, study the pro­
gram a little more. You have to practice or you will never learn
Business Basic. That's all for this time. Next issue we will take a
closer look at strings and learn about Apple Business Basic 1/0
(input/output). If you want to work ahead, read the parts of the
manual concerning strings. That should be enough to satisfy you
until next time! Coming up soon we're going to make a 'Hello'
program that will perform many useful functions. Until them,
remember- if you get discouraged, don't give up- try harder!///

10
20
30
40
50
60
70
80
90
100
110
120
110
140

DEF FN Incrementlnuml=num+l
DEF FN Decrementinuml=nua-1
DEF FN Neq.SQP.Inumi=SQRinumli-1
DEF FN Rnd.!OOiseedi=INTIRNDiseedlt1001
TEXT:HOHE
VPOS=6:HPOS=28
PRINT"Negative square roots from 1 to 10"
VPOS=12
PRINT"Goina down •. ~.6oing up'

FOR loop.!=! TO lv
value= FN lncrementlvaluei
VPOS=ioop.l:HPOS=l
PRINT FN NeQ.SQP.\valuel
NEXT loop.l-

Continued on page 25

February /March 1983 29

ON THREE
Ill Ill Ill Ill Ill Ill Ill

ON Pascal
H ellothere! This column is for those ofyouwhowantto learn the

remarkable Pascal computer language. I will teach, guide and
prod you until you have a good working knowledge of what Pascal
is- and what it can do for you. Alongthewaywewilllearn how to
use all the elements of the Apple I I I Pascal system, including the
Editor, which doubles as a fine word processor.

As a start, we should first think of why we need to use Pascal.
Perhaps you ascribe to the bel1ef that Basic causes brain damage,
and would like to keep your sanity. Maybe it's because many of the
programs contained in this magazine are written in Pascal, and you
want to know what you are typing in. Or quite possibly it's that you
just want to learn new things and you hear that Pascal is THE'
computer language to use.

For whatever the reason, I am glad that you are still reading, it must
mean that you have some interest. Why Pascal? Good question! I
hope I can give a good answer. Before we get down to business,
let me say that this column is not just for people who already know
how to program. Indeed, it may be easier for those of you who
don't have other computer language quirks to unlearn.

The computer language Pascal was defined by computer scientist
Niklaus Wirth. His initial objective was to make a language that
could be used to teach students good programming skills. As its
popularity spread, other people began to see that Pascal was a
very good language.

At the University of California at San Diego, a very important version
of Pascal was developed. Called UCSD Pascal, it is the basis of
Apple I I I Pascal. It uses what is called 'P-Code', which will be
described in a few lines. One of the wonders of Pascal is that it can
be transported from one computer to another very easily. Since
UCSD Pascal is available on just about every computer made, most
any program you write on your computer can be used on another
computer that has UCSD Pascal.

This opens tremendous possiblities for software marketing. Write
one applications package and you can use it on scores of comput­
er systems. As some advertisements say, the same pacakge can run
on an Apple to a Zenith. While there are some limitations, this does
describe the abilities of UCSD Pascal.

Sounds pretty good, right? Well, before you do run out and spend
about $200 on the Apple I I I Pascal package, let me tell you some
more of its good and bad points. Yes - it does have some bad
points! The minimum configuration is a 128K Apple I I I with at
least one external disk drive. Two external drives are recom­
mended, while a Profile hard disk is best.

The Apple I I I Pascal system consists of three diskettes that con­
tain all the files needed to implement UCSD Pascal on the I I I, and
four instruction manuals that tell you just about everything you
need to know about the package. One of the nicest features is the
Editor. Used to create and modify the program statements you
type in, it can be used to write letters and do other word process­
ing tasks.

Ill Ill Ill Ill Ill Ill Ill

by Louis Hanson

If you have used Basic, you know that you can type 'PRINT 821 +
180', press the 'RETURN' key and the result '1001' will be imme­
diately printed on the screen. To get the same result in Pascal takes
a bit more of work. You need to know how to use the Editor and
Compiler to get it to work. The Pascal program to add 821 and 180
is below.

PROGRAM Additio~st;
BEGIN

WRITELN (821 + 180)
END.

To make it work, you have to use the editor to create the lines of text
above. Then you have to save the file on disk and exit the editor.
Next you must compile the program to a form the computer can
execute. Finally, you Run the program to get the answer (1001).

Seems like a lot of work, doesn't it? If you make an error in typing in
a Basic statement, it is usually immediately detected and you
simply retype the line. With Pascal, the error is not found until you
compile the program (or later). If you want to fix it, you must go
back to the editor and fix the mistake. After fixing it, you then have
to re-compile it.

As you can see, Basic is better for short programs. As programs get
longer, in Basic they get harder to read and understand. One of
Pascal's big points is its readability. Because Pascal allows (and
encourages) many comments, it is much more legible as the size
gets bigger than a comparable Basic program.

By now you must be asking yourselves, "What is this Compiling bit
about?" The answer is a little complicated and will take a few
paragraphs. The Basic language is called an interpreter because
when a program is "RUN", the system scans each line of your
program for words it understands. As it finds these words, bui It in
instructions are called that performs the action that those words
mean. For example, when the Basic interpreter sees the line PRINT
"Hello", control is passed to a section of the interpreter that
handles 'PRINT' statements. Here, the print instruction is turned into
a set of machine language instructions that the computer can
execute directly.

This scanning and interpreting takes up a lot of time. Consequently,
the time that a Basic program takes is much slower than what a pure
machine code version of the same program would take. With
Pascal you must first type in the program and then Compile it. The
Compiler converts your Pascal statements into a set of instructions
that the computer can use directly. These instructions are called
the 'object code', while the original statements are called the
'scurce code'. When you Run a Pascal program, it is this 'object
code' that is executed. Thus a Pascal program will be able to go
faster than its Basic counterpart because there is little scanning and
interpreting, just execution!

If you noticed I said that the Compiler produces 'object code' and
not machine language. This is due to the fact that we are working on
a P-Code version of the language. For all of you who have been
waiting for me to explain what P-Code means, here goes!

30 February /March 1983

ON THREE
/// /// /// /// /// /// ///

When UCSD pascal was in its infancy, it was determined that it
would take years to write a Compiler for each different computer
that produced machine language that each individual computer
could execute. It was decided that the UCSD Compilerwould put
out 'P-Code' instead of machine code. Compilers would put out
the same P-Code regardless of the computer used. Thus, only one
general Compiler was made for all computers.

This 'P-Code' is a set of instructions that needs to be interpreted
(like Business Basic) to work. The P-Code interpreter (SOS.INTERP
on the Pascal system disks) analyzes each P-Code instruction and
performs the matching action for that instruction. Since the P-Code
has already been scanned for errors during compilation, the Pascal
interpreter can work much faster than the Basic interpreter.

Each computer can use the same general Pascal Compiler, but
each must have its own interpreter. Big deal, huh? We traded
writing a Compiler for just our machine into writing an interpreter
for just our machine. Well, it seems that the interpreter is very
simple to write for any machine. Because each computer system
compiles into the same P-Code, compatibility is not a problem.
With minor restrictions, you can execute the P-Code of one com­
puter on another.

Since UCSD Pascal was so easy to adaptto all systems, its popular­
ity has spread until today most every micro and mini computer has
it. Now it's about time to get started. This month we will learn how
to use the Editor and Filer. We will also write our first Pascal
program. So kick off your boots, roll up your sleeves and let's get
cracking!

The Filer
Once you get the Pascal package for the Apple I I/, the first thing
you should look at is the 'Introduction, Filer, and Editor' manual. It
holds most of the information needed to start using Apple I I I
Pascal. If you turn to the Preface you will see that this is the book to
start with. Reading the overview in chapter 1, you should follow the
instructions and make copies of your Pascal system diskettes.

Also in chapter 1 you will find information on rearranging the files
on the diskettes. This is very important! If you have a Profile hard
disk drive, follow the instructions in the Profile manual to put the
Pascal files on the hard disk. This will result in a tremendous speed
increase when operating the Pascal system. If you only have one
external disk drive (excluding high density drives), you will find
working conditions impossible. The only remedy is to buy another
disk drive. C'mon, the prices aren't that high!

If you don't have a hard disk drive, to use this article series as a
tutorial, you must transfer the file 'SYSTEM.FILER' from PASCAL 1 to
the disk in your second external drive and then delete 'SYSTEM­
.FILER' from PASCAL 1. Since you can't delete the file by using the
Filer (it's sort of like committing suicide), use the System Utilities
Disk to transfer and delete the file. The reason for this is we are
going to need some space on PASCAL 1 to put programs, and with
the Filer there, there just isn't enough room.

Since this is your introduction to Apple/ I I Pascal, we should start
at the begining. As with all languages on the/ I/, you have to boot
the appropriate disk to use the language. Insert the copy of PAS­
CAL 1 into the built-in drive and either turn on the computer or

/// /// /// /// /// /// ///

press 'CONTROL RESET'. In about thirty seconds a screen like the
one on page 4 will appear.

On pages 4 and 5 you will also find information on the 'Prompt
lines'. The mail level command prompt line is the single most
important place in Apple/ I I Pascal. From here you can invoke and
enter the Editor to make your Pascal programs, the Filer to perform
file operations, the Compiler to translate the program you wrote
with the Editor to a form the computer can execute, the Assembler
to make assembly language routines that your Pascal programs can
use, and the Linker to link together your Pascal and Assembly
language routines.

Chapter 2, "The Command level", describes all of the options
available from the command prompt line. It may not be the best of
reading but it does have some important information. We aren't
going to learn all of those commands today, but you may want to
look it over for the future.

Right now we are going to start using the Pascal system, so you
should have booted the system as described a couple of para­
graphs ago. When the command prompt line appears, press the 'F'
key once and see what happens. The disk drive will make some
noise and in a few moments the Filer prompt line will appear.
Chapter 3 describes the operation of the filer, so open the manual
to page 30 and follow along.

As the chapter says, the Filer manipulates files. The first few pages
give a brief overview of the options of the filer and their use. The
rest of the chapter describes in depth the options and how to use
them.ln the next few paragraphs we will discuss these options and
what they are for.

In many ways the Filer is a 'mini' System Utilities Program.lndeed, it
does most of the things that the System Utility Program does, and a
few that it doesn't! Just as the System Utilities Filer can list the files
on a directory, the Pascal Filer can do the same thing. At the Filer
command level, press the 'L' key once. Pages 4 7 to 52 tell how to
use this command. Generally, just type in the pathname of the
directory that you want to list. After typing 'L', enter something like
'.01' or '.02' and the specified directory will be listed to the
screen. You can also send the listing to a printer or disk file by
entering a destination file specification as described on page 51. If
youwanttosend a listing of the files of the disk in the internal drive
to the printer, you would enter (after typing 'L') '.01, .PRINTER'.

If you have a hard disk storage system, you probably use subdirec­
tories. When listing the contents of a directory with the list com­
mand, at times it is helpful to see the contents of all the subdirecto­
ries. The 'E' command of the Filer does this. It is described on
pages 51 and 52 of the manual. At the Filer command level, type
the 'E' key and enter the directory name. Just like the 'L' command,
you can send the listing anywhere.

If a device driver with the name ·.PRINTER' is not configured into
your system, you will get an errormessagewhentryingto print to it,
as in the above commands. How can you find out what devices are
configured into your system? You could use the System Configura­
tion program to do it, but the Pascal Filer has a command that
allows you to see all volume names, device names and the device
numbers of all the input and output devices whose drivers have
been configured into the system. To use this command, from the

February /March 1 S.83 31

ON THREE
/// /// /// /// /// /// ///

Filer command level type V' for Volumes. This is described on
pages 46 to 47.

The Filer also allows you to transfer files from one place to another.
These transfers can be quite complex and they are described on
pages 52 through 61. You can copy file to file, volume to volume,
subdirectory to subdirectory and more! Since we won't be doing
muchtransferingyet,l'm notgoingtospend much time discussing
this command. If you want to learn everything there is to know,
read the above mentioned pages and follow the examples.

You can also use the Filer to create new subdirectories and reserve
space on a disk fora file. This command can be used by typing 'M'
for make. Page 62 and 63 tell all the options of this command.
When you're finished reading those pages, give yourself a test. Try
to use the Make command of the Filer to create a subdirectory
named 'TEST.DIR'. After typing 'M' you should enter' .D2/TEST.DIR!'.
This will create a one block long subdirectory named 'TEST.DIR' on
the disk in drive #2.

The Change command allows you to rename any or all of your files.
It is described on pages 63 to 68. After reading over that informa­
tion, use the command to rename the subdirectory you just made
with the name 'NEW.SUBDIR'. The command sequence is 'C'- to
invoke the Change command, '.02/TEST.DIR, .D2/NEW.SUBDIR'

The Filer option 'R' for Remove, lets you delete files from your
diskettes. After reading over the decription on pages68 to 70, use
the command to delete the subdirectory we have been working
with. By now you should be able to figure it out without my saying
how, so I won't!

Since we aren't going to use Apple)[formatted disks, I am not
going to discuss the Krunch or eXamine commands. One of the
ones we are going to discuss is the Zero command. It will delete all
the files on a directory or subdirectory. The description is on pages
71 and 72. Since this command deletes one file at a time, it takes a
while. Therefore, you should limit its use to erasing the files on a
subdirectory. This is because it is much fastertojustformatthe disk
if you want to erase all the contents.

The Prefix command of the Filer is very useful. It is described on
pages 73 through 75. As the manual states, it is a big timesaver. You
can set the Prefix to whatever subdirectory you are working on and
then only refer to the local path name. My hard disk has a subdirec­
tory named 'PASCAL' and on that subdirectory is another subdirec­
tory with the name WORK. AREA'. This is where I store all the Pascal
files that I am currently working on. When I boot up Pascal, I use the
Filer to set the Prefix to '.PROFILE/PASCAL/WORK.AREA'. After
doing this, I can simply use the local name (the name of the files in
the subdirectory WORK.AREA') when Editing, Compiling etc. the
files I am working on.

The Filer also allows you to read and change the system clock with
the Date command. Even if you don't have a working clock
installed in your system, the Pascal Filer will remember the date that
it was last used, and use that when saving or updating file informa­
tion. To read or change the date, look over pages 75 and 76 and
then press 'D' at the Filer command level. Now enter the current
date and press return. You should see the disk in the internal drive
come on for a second or two while the date information is stored
on disk. Yes, that's how the computer remembers the last time it

/// /// /// /// /// /// ///

was used. This date information is stored in the file 'SYSTEM.MIS­
CINFO' on the boot disk.

The Alter command of the Filer can be used to change a files type,
write-protect status and date of last modification. It is described
on pages 76 and 77. To use it, type 'A' at the Filer command level
and then follow the instructions as listed on the above mentioned
pages. For now you will probably only need this command to
write protect your files so that you can't accidentally delete them.

One handy utility option is the Bad Blocks command. It will find
any blocks on your diskettes that are damaged and not useable.
Described on pages84 to86, itisverysimilartotheVerifyoption of
the System Uti I ity program. You should use it everytime you format
a disk, to check for flaws.

Once you're finished using the Filer, you can use the Quit option to
return to the main command level. To use it, just type 'Q' and the
main command level prompt line will come up again. In a few
paragraphs we will learn about the workfile and its related com­
mands, but for now we're done talking about the Filer.

That's it! You now know how to use just about all of the commands
of the Filer. You're right, it is a lot of information. But if you want to
learn Pascal, you're going to have to read and read and read. And
when you finish reading, you have to test your knowledge by
practicing. If I could hold your attention this far, you must have
enough interest to practice. Before we continue, first take a break.
You deserve it! When we start again, we are going to jump on over
to the Editor and learn how to use it to write Pascal programs!

The Editor
Before trying to use the Editor, make sure you have a copy of
PASCAL2 in the second disk drive. At the main command level
press the 'E' key once. This invokes the file 'SYSTEM.EDITOR' from
the disk. Chapter 4 (pages 92 through 154) describe the functions
of the Editor. This chapter contains very helpful information for
learning how to start using the Editor.

If you read through the first three pages you will come to a page
titled 'Starting a New File'. If you have been following along, your
screen should look like the one under the first paragraph of page
95. Sincewearestartinga new file, when you get this prompt, just
press 'RETURN'. Congratulations, you're now 'in' the Editor.

Just as the Filer and the main command level have their own
prompt lines, the Editor has one. It is shown on page 94. As with
the other prompt lines, to use one of the options, simply press the
appropriate key. This month we are going to learn the 'I, D, R, A, J
and Q' options. These are the Insert, Delete, Replace and Adjust
keys, and the Jump and Quit commands.

Press the 'I' key once to get into the insert mode. If you look at the
prompt line you will see that it has changed as shown on page 95.
These are the options available at this level. You can type in text,
use the left arrow key to remove the character to the left of the
cursor, press 'CONTROL X' to delete an entire line, 'CONTROL C' to
acceptthetextyoujusttyped in, and 'ESCAPE' to return to the main
prompt I i ne of the Editor without accepting the text you just typed.

The best way to learn is to try, so at the Editor command level press

32 February /March 1983

ON THREE
/// /// /// /// /// /// ///

'I' to insert some text. Now enter the lines below, remembering that
at the end of a line press 'RETURN'. Don't forget the semicolon at
the end of the first line!

PROGRAM AdditioQ.lest;
BEGIN

WRITELN (821 + 180)
END.

After you type in the line 'WRITELN (821 + 180)' and press 'RETURN'
you will have a problem. The cursor will drop down and be flush
with the 'W' in 'WRITELN' instead of being flush with the left side of
the page. To make the cursor be flush with the left edge of the
screen, type 'CONTROL C' to get to the Editor command level and
then 'A'. This is the Adjust command. As the new prompt line says,
you can press 'L' to move the cursor to the left of the screen, 'R' to
move it to the right, 'C' to center the line the cursor is on, or use the
arrow keys to move the line. For our example, press l' to move the
cursor over to the left of the viewport and then press 'CONTROL C'
to exit the Adjust mode.

When you finish the last line ('END.') press 'CONTROL C' to have the
computer acceptthe text you just typed in. As soon as you do that,
you will again see that Edit prompt line. This means that the
computer has stored the lines you just typed in. Since we would
like to see the computer execute the program we must compile it.
Type 'Q' for quit and you will be greeted with a screen like the one
on page 102. These are the options of the Quit command.

Since our program is small and doesn't take up much space, we
can use the workfile to store our programs. Type 'U' for Update.
Once you do this, the disk drive will make a little noise and then
stop. You just saved the lines you just typed in to the disk file with
the name 'SYSTEM.WRK.TEXT on your boot disk. This is a very
special file, which we will discuss further in a moment.

Now that the file is stored on disk, you can exit the Editor with a
press of the 'E' key. Again, the disk should make a little noise and
the main command level prompt will appear. Since we have to
translate the lines we just wrote to a form that the computer can
execute, we must Compile the program. To do this, simply press
the 'C' key.

The computer will search for the file 'SYSTEM.COMPILER' on all of
the disks in the system. If it doesn't find the file, you can't compile
your program and you will get an error message. If all goes well,
some strange lines will appear telling you that the Compiler is
running and it is translating the lines of text you wrote into a form
that the computer can execute. If all goes well, in a few moments
the main prompt line will appear again. Thistellsyou that you made
no typing errors that the Compiler could detect and the program is
read to Run.

You may be wondering how the Compiler knew what program to
compile, so here's the answer. If you remember, when we saved
the file we had the computer store it in the file '.D1/SYSTEM.WRK­
.TEXT.As I said, it isaveryimportantfile. Whenyoutrytocompilea
program, the Compiler looks on the disk in the boot (internal) drive
for a file with the name 'SYSTEM.WRK.TEXT'. If found, it compiles
that fi I e. If you are not using the workfi le, it wi II ask you what file to
compile. We will later learn how to save the file somewhere other
than the workfile, but for now it makes things a little easier and

/// /// /// /// /// /// ///

quicker so we will use the workfile.

If you didn't have any errors in your program, and it compiled
without a hitch, you can press the 'R' key to Run your program.
Under the prompt line will be the line 'Running .. .', and under that
the program will write the value of 821 + 120 (1001). Congratula­
tions, you just wrote, compiled and executed your first Pascal
program!

Press the T key to enter the Filer and then press the l' key to listthe
files on a disk. When the prompt appears, enter '.D1' and then
press 'RETURN'. This command will list all the files on the diskette in
drive #1.1n that listing you will see the files 'SYSTEM.WRK.TEXT' and
'SYSTEM.WRK.CODE'. The first you should recognize as the file with
the lines you wrote and then compiled. What is the second one,
though?

If you look back, you will remember that we compiled the file
'SYSTEM.WKR.TEXT'. Since the computer can not execute that file,
the Compiler made another file- the 'object code' of the first file.
This is the file that was Run. The word 'code' is the key! The file with
the program lines that you typed in has the suffix '.TEXT'. This is the
text file. The file that the Compiler created had a suffix of '.CODE'.
This is the code file that was created by the Compiler and later
executed with the Run command.

Say that you no longer want to add 821 and 180, but you want to
multiply 27 by 8. We obviously need to change the program, so
type 'Q' to exit the Filer, and the press 'E' to enter the Editor. If you
remember the lasttimewe used the Editor, it asked us for the file to
use. Now, since there isaworkfile, the Editorautomaticallyreads in
the text from the file 'SYSTEM.WRK.TEXT'. After a few seconds you
should see the Editor prompt line and be ready to change the
program.

While in the Editor, you can use the four cursor control keys to
move anywhere within the file that you are currently working on.
Use those keys to position the cursor over the plus'+' sign. Now
press the 'D' key once. If you look at the prompt line, it now says
'>Delete' and some more words that indicate what you can do
with this option. Press the space key once and the plus sign will
disappear. To make the change permanent, press 'CONTROL C.
Since we want to multiply and not add, press the 'I' key to insert
more text and then type'*' and press 'CONTROL C.

We just changed the addition to a multiplication, but we need to
fix the numbers. We can now learn the Jump command to speed
the change. The cursor should be somewhere in the middle of the
lines on the screen. To move it to the beginning of the file, press the
'J' key. A new prompt line will appear. Press the 'B' key and the
cursor will immediately jump to the beginning of the file. You can
also jump to the end of a file by pressing 'J' and then 'E' forend.lt
doesn't matter if you type the letters in lowercase or uppercase
letters, the computer understands what you mean.

Since we changed the program from addition to multiplication,
we may as well change the name of the program. Use the 'J' key to
move the cursor to the beginning of the file and press the space
bar a few times to position the cursor over the 'A' in 'Addition'. Hit
the 'D' key to enter the delete mode and then press the space bar
eight times. Now press 'CONTROL C' to make the changes perman­
ent. Finally, press the 'I' key to insert new text and then enter

February /March 1883 33

ON THREE
Ill Ill Ill Ill Ill Ill Ill

'Multiplication' and 'CONTROL C' to finish up the insertion.

Before we got sidetracked with the Jump command, we were
going to change the number 821 to 27 and the number 180 to 7.
We can use the Replace option of the Editor to accomplish this.
With the cursor at the beginning of the file, press 'R' and then enter
'/821/ /27 /'. The Editor will then find the characters '821' and
replace them with '27'. Likewise you can change the number 180to
7. This command is described in a little more detail on pages 130
to 135.

We could have used the Delete and Insert commands to perform
this change, but it is very important to know many different
methods of doing things. There are a number of other helpful
commands that we will get to know, but for now the few that we
have mentioned will be more than enough to get us through our
beginning programming attempts. As I said, the Editor can double
as a fine word processor and if you have ever used a word
processor you should see what I mean.

Since we have changed our program, we can now save it back on
the disk and leave the Editor. Press ·a· to exit the Editor, and then
·u· to Update the work file. After some disk activity, press·~· to exit
the Editor. Now press the 'R' key to run the program and ... Hey wait
a minute, we still get 1001 asananswer!Whatwentwrong?Oops,
we forgot to compile the program! Because we didn't compile the
updated program, the computer executed the old 'SYSTEM.WRK­
.CODE' when we hit 'R'.

To compile the updated program, press the 'C' key to begin. Since
we are still using theworkfile, the Compiler didn't ask us fora file to
compile- it just used the workfile. After a few seconds the main
level command prompt line will come up again and the compila­
tion will be done. Now press the 'R' key and you will be greeted
with 216, which is the result of the multiplication 27 * 8.

One of the most important things in learning something new is not
being afraid to make mistakes. The more mistakes you make at the
start, the quicker you will beabletocorrectthem down the road a
few months. Therefore, lets put an error in our program and learn
how to fix it.

At the main command level, type 'E' to enter the Editor. Since we
are going to make an error on purpose, let's change the first word
'PROGRAM' to 'PROGRAN'. Position the cursor over the 'M' in
'PROGRAM' and hit the 'D' key once. Now press the space bar once
to delete the letter, and then 'CONTROL C. Next Insert the letter 'N'
where the 'M' was. To finish, press ·a· and then 'U' to quit and
Update the file.

At the main command level hit 'C' to compile this new program.
Ouch! What happened? The Compiler stopped with a weird
message. Something about an error in one of the lines. To see
exactly what error and where it occured, press 'E' to go to the
Editor. After a few moments the computer will display the error
message 'Error in declaration part. Type <space>'. Once you
press the space bar, this handy little feature returns the cursor over
the offending part of the program. In our case it is at the end of
'PROGRAN'.

When you think about it, this Pascal system is very nice because it
can tell you not just where your errors are, but what type of error it

Ill Ill Ill Ill Ill Ill Ill

was! This is very useful in debugging long and complex programs.

If you have been following along, you know that you have had to
wade through a few pages of things that aren't terribly exciting.
After all, you did start reading this column with the impression that
you were going to learn Pascal, right? Well, the Pascal system
comprises three disks of programs and hundreds of pages of
reading. I think the keyword here is 'system'. Pascal isn't just a
language, it's an idea- a feeling- a lot to learn!

Before we can really start in on the language, we must do the
backround work. We have to learn about the Filer, the Editor, the
Compiler and other features of the system, or we wi II never be able
to figure out what Pascal is all about. Therefore, I think that if you
want to learn Pascal you have to be very, very patient. You'lllearn
Pascal, but it isn't going to happen overnight.

At this point in time, if you have been following my lead, you
should have a good idea about what the Pascal system is all about.
You have used the Filer to create, modify and delete files. You used
the Editor to make the source text for your Pascal programs, and
you used the Compiler to compile that source text into a form the
computer can understand. You have done all of the basic opera­
tions necessary to use the Pascal system, so what are we waiting
for? Let's learn Pascal!

First Steps
If you've been following along, up to this point we have been
reading out of the 'Introduction, Filer, and Editor' manual. Now we
are going to take that big step and look into the 'Programmer's
Manual Volume 1'. If you open up that book and look at pages 2
through 6, you will see a fairly good introduction to the Pascal
language.

As it says on page 3, Pascal programs doesn't have line numbers.
This free-form method of program design allows a much more
readable program than in Basic or Fortran. This and other features of
Pascal make programs much easier to write and maintain than
equivalent programs written in other languages.

Page 5 shows the general structure of a Pascal program. Just as is
shown, all Pascal programs have a number of parts. To start a Pascal
program, the word 'PROGRAM' must come at the beginning of the
file, followed by the nameyouwantto program to be called and a
semicolon. Note that this is not the same as the name of the file
stored on the disk.

Some of the optional items that also can be included are the
declarations of all variables and data types. If you don't know what
these words mean, don't worry- I'll tell you in a little while. Next
comes function and procedure definitions. The last part of a Pascal
program is the word 'BEGIN' followed by any number of state­
ments that are separated by semicolons, and the word 'END',
followed by a period.

If you look back at the two programs which we already made, after
the word 'PROGRAM' we put the names 'Addition-Test' and
'Multiplication-Test'. This is the program heading. Next in our
programs came the word 'BEGIN'. This tells the compiler that the
lines following this word are the main part of the Pascal program.ln
the PROGRAM 'Addition-Test', the next lines read 'WRITELN (821 +

34 February /March 1983

ON THREE
/// /// /// /// /// /// ///

180);'. This is a Pascal statement that prints out to the screen the
result of whatever is inside its parenthesis. In our example, the
computer added the numbers 821 and 180 and then printed out
the sum to the screen. The exact meaning of 'WRITELN' is it instructs
the computer to Write a LiNe to the screen.

Enter the Filer by pressing the 'F' key and then hitthe 'N' key. After a
second or two, when the new prompt line comes up, press 'Y'. If
you remember, we have been working with the 'Workfile'. When­
ever we enter the Editor it checks for a workfile. If it finds one, it
loads it from the disk whether we wanted to use it or not. Since we
now want to write another program we can use the 'N' command
of the Filer to remove theworkfile from the disk. You should not use
the Remove command to do this because the New command
updates some pointers in memory to say that there isn't a workfile
anymore. Since the Remove command doesn't - don't use it.

Anyway, after you press 'Y' to confirm the removal of the workfile,
the disk will make a little noise and theworkfileswill begone. Now
Quit the Filer and press 'E' to begin editing a new program.
Because there is no workfile, the Editor will now prompt you for a
file to load. Just press 'RETURN'. Enter the program below, remem­
bering to type a semicolon after all the 'WRITE' and the first
'WRITELN' statement.

PROGRAM T exJ.,.T est;
BEGIN

WRITE ('This is the first part of the line, ');
WRITE ('this is the second, ');
WRITELN ('and this is the last.');
WRITELN ('This is another line.')

END.

After you finish, remember to press 'CONTROL C' to accept the
lines you just typed. Now hit 'Q' to exit the Editor and then ·u· to
Update the workfile. Next, compile the program and press 'R' to
execute the file. You should be greeted with 'This is the first part of
the line, this is the second, and this is the last.' on one line, and on
the next line will be the words 'This is another line.'.

You just learned three new things about Pascal. In the 'WRITELN'
statements we used before, there were only numbers. Now you
can see that it can display textual information also. To get the
'WRITELN' statement to print out text and not numbers, enclose
what you want printed within single quote · marks.

Isn't that great? We can print out text in additon to numbers. But
what is that 'WRITE' statement? If you remember the meaning of
'WRITELN' you should see that they are quite similar. 'WRITE' prints
out the information within its parenthesis to the screen, but doesn't
drop on down to the next line when it is done. This explains why
the first three Write statements print out only one line of text on the
screen.

To test our fledgling knowledge of Pascal, let's make a couple of
intentional errors. Enter the Editor and delete the semicolon after
the first 'WRITE' statement. Now Quit the Editor and Update the file.
Compile the program and in the middleofthecompilationyouwill
get an error message. Press 'E' to enter the Editor to see the mistake.
In a few moments the line "Illegal symbol (maybe missing or extra
';'on line above)"will appear. Press the space bar to continue. The
cursor will be right after the second 'WRITE'.

/// /// /II 1// Ill 1/1 ///

See how nice the system is? It tells you almost exactly what you did
wrong so you can correct it. This is a whole lot better than some
language compilers, whose short error messages are undeci­
pherable.

A semicolon must always separate two consecutive statements.
Since we deleted one in the above program, that gave us an error,
you should be able to see why we got the error. But why aren't
there semicolons between the 'BEGIN' and the first 'WRITE', and
the last 'WRITELN' and the 'END.'? How can we justify this apparent
contradiction? You probably see the answer. 'BEGIN' and 'END'
are not statements!

You should think of these non-statements as nothing more than the
separators of different parts of the program. Statements within the
separators need to be separated by semicolons, but semicolons
are not needed to separate the statements from the separators.

This is one of the most important things we will learn. Since Pascal
is block structured, and in each program there will be many small
program pieces, there are going to be a lot of 'BEGIN's and 'END's.
Though there are many of them, the are NOT statements.

Get into the Filer and use the 'N' command to delete our workfile.
Now Quit the Filer and enter the Editor. Type in the following
program, Compile and run it.

PROGRAM Compact; BEGIN WRITELN ('Wow, it works!') END.

One of the nice features of the Pascal compiler is that it allows you
to write your program in a free-form manner that is easy to read. As
you can see the above program works just fine. In all of the
previous programs, the extra lines and spaces were added only to
make it more readable. The compiler can tell what you mean if you
follow the few simple rules.

There is no set way of adding spaces or formatting your program,
some people add lines and lines of extra indentation etc. to make
their programs as easily understood as possible. I can't force you to
add those spaces, but think of it this way. If you just finished writing
a very long program and you had to debug (fix errors) it, which
program would you rather read, the one with no indentation, or the
one that has many extra spaces?

Congratulations, by now you have reached an important level of
understanding Apple I I I Pascal. The thirty or so single letter
commands that you have learned are the ones that you will use
most of the time in the future. In the past few pages you used them
to Edit, Compile, Run and change your first Pascal programs. In the
coming months, the programs you type in wi II get a I ittle longer and
more complicated, but you will be doing the same things that we
did today- Edit, Compile, Run and change your programs.

It's about time to pack it in. You learned a lot about the Pascal
system today. Next time we will learn some more of the com­
mands of Pascal. If you like to work ahead, you should type in and
compile the program on page 6 of the Programmers manual, and
read through chapters 2 and 3. If you have any problems with this
lesson, I will answer letters, so write me in care of ON THREE and
keep on trying!

February /March 1983 35

ON THREE
Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill

REVIEW ON: Apple Writer I I I by Bob Consorti

Managing written information, that is what word processing
is all about, and that is what Apple Writer I I I does. How

easy does it work? Are there any bugs in the system? These are the
questions people ask, and these are the questions that I'm going to
try to answer.

Apple Writer///
This program is one in a series of word processing programs
written by Paul Lutus. He wrote the popular Apple Writer][for the
Apple][, and this version is an extension of that program. However
it's not just an Apple][copy (as many Apple I I I programs are),
but a completely new version that has some unbelievable features.

As all word processors do, with Apple Writer I I I you type
information in on the keyboard and it is stored in the computers
memory. Once you have it in the computer you can do all sorts of
neat things to the text. Since this aspect of word processing is very
similar for all computers I'm not going to go into the detail of how
each different function works. Instead I will tell of the features
which makes this program different from the rest.

This program requires a 128K Apple I I I and just the internal disk
drive to work. A printer and extra disk drive are optional but come
in handy. One of the programs weak points is that if you have a
256K computer, you still can only use about 64K of memory. In
other words, don't go out and spend hundreds of dollars on a
memory upgrade and expect Apple Writer I I I to use the extra
memory. I'm told that this will NOT be corrected in the future, so it
may affect your purchase of this program.

There are three program disks in the package. It comes with two
copy protected boot disks and one copyable utility disk. As is
standard with Apple Special Delivery Software, they come with a
90 day warranty. The copy protection scheme used discourages
multiple writings to the disk, so try to get your system configuration
right the first time. After you write a new SOS.DRIVER file on the disk
a few times, it refuses to boot and gives you an 1/0 error.

While we are on the subject of shortcomings, lets turn to the
instruction manual for a moment. While fairly thorough and well
written, the darn thing doesn't have an index! Any time you need to
look up one of the many features of the program, you have to
search through the Table of Contents. Since it is five pages long,
you are in for a lot of searching. Even though they try to make up for
no index with a tear out reference card, it isn't the same thing! I
don't know why Apple allowed this, and as far as I'm concerned it
is unexcusable! The whole reason for computers is to make our
lives a little easier, and this type of instruction manual does not help
- it hinders.

The program has a variety of very nice features. As with most
programs of this type, there is a 'Data' line at the top of the screen.
Here you can find information on how much memory is left, how
much is used, the current position of the cursor in the file and the
pathname of the file you are working on. Unlike many other pro­
grams, Apple Writer I I I allows you to 'toggle' this line on and off.
Thus, if you get tired of looking at it, one press of the 'ESCAPE' key

will erase it and another will restore it!

If you are new to word processing, there is a thing called Wrap­
Around'. This feature allows you to type information into the
computer and as the words reach the right side of the screen, if
they won't fit on the line, the whole word is brought down to the
next line. Thus you only need to insert a Carriage Return at the end
of a paragraph. Apple Writer I I I allows you to toggle this feature
also.

Another nice touch is the ability to 'see' these Carriage Returns. This
is particularly helpful in the situation when you get a printout that
you didn't expect. Sometimes you accidentally type in a Return
and you don't know it. This feature allows you to see where all the
Returns are in your text.

When typing in text, one feature that I don't like is where the cursor
is. Instead on being over the character, it goes between them,
splitting up words as it goes. Justa small point that I don't care for.

You can have a split screen display for working on one part of your
file while displaying another. This is a very handy and sophisticated
tool. Instead of relying on your memory when retyping in a com­
mon phrase, you can use the split screen and see the other portion
of the file!

Apple Writer I I I has the standard character and word delete, but
the way that it implements these functions leaves something to be
desired. Some programs use the numeric keypad as a special
functions area. One key to delete a word, another restore a word,
etc. This word processor uses 'CONTROL W' to delete and restore
a word. Since the Apple I I I makes it possible for the programmer
to make an extraordinary program, I sometimes wonder why many
programmers don't fully use the abilities of the machine.

You can toggle the word Wrap-Around' by pressing 'CONTROL Z'.
This is another handy feature not normally found on word proces­
sors at this level. Perhaps the single best (well, one of a few)
features of this program is the built-in Help screens. These provide
a summary of most all the features found in the language. By
pressing Open Apple- Question mark, a menu appears. Simply
type in the number of the command you want explained, and in a
moment it is displayed on the screen. It is savery helpful, that many
of the newer Apple I I I programs are incorporating it.

Another of the remarkable things that Apple Writer I I I does is the
Load and Save command. Like other word processors, you can
save and load a file to and from a disk. Unlike others, this program
allows you to save portionsofthefile in memorytothedisk,load a
particular segment of the file on the disk, append a file in memory
to a disk file and more!

You can search a disk file for a particular phrase or string, and load it
selectively into memory. This command lets you even load and
save a file from the text in memory. Thus you can repeat sections of
text very easily. You can also preview the contents of a disk file
using the load command. When used, the text in the disk file is
displayed on the screen but not stored in memory. The instruction

36 February /March 1983

ON THREE
/// /// /// /// /// /// ///

manual shows you how to access all of these features with good
examples.

Another of the features of Apple Writer I I I is the SOS Commands
Menu. Invoked by typing 'CONTROL 0', you can Catalog the files
on a disk drive, rename, lock, unlock, and delete files. With this
menu you can also set the Prefix so you only have to type in a local
pathname, and even look at and set the current date and time.

The Catalog command has a slight problem that may give you a
headache ortwo.ltwill only tell you the number of bytes in the file
MOD 65536. Thus, if you have a very big file C> blocks), it will
give you the wrong End Of File.

The 'TAB' key is fully functional and will go to every eighth column
position when pressed. The user can very easily set a new Tab
stop, delete an old one, or purge all Tab stops. You can also save
the new tab settings to disk to be used later.

Apple Writer I I I allows the user to set up a glossary and later
invoke the glossary entries as macros. Simply put, you can tell the
computer that whenever you type 'CONTROL Ga', the words
'Apple Writer I I I' will appear. This allows you to write words or
phrases that are difficult to type just once. From then on, only two
key strokes will bring up any of the phrases you defined.

There is even a feature that allows you to change the case of any
word or phrase without having to retype it. Just press 'CONTROL C'
and then move the cursor over the word or character to be
changed, and it will change case.

One of the most interesting features is the ability to change the style
of font that is printed on the text screen. There are four extra fonts
on the boot disk and you can change to any one of them at any
time. If you like your characters to have a slant, be gothic looking, or
have any other style, Apple Writer I I I can give it to you.

The Find command lets you search through the text in memory fora
particular word or phrase and also lets you change it. Very power­
ful, you can use this command with special delimiters to search for
Returns, and ·even use wildcards to search for any sequence of
characters.

Underlining, super and subscripts and footnotes are all supported,
though some are a little hard to use. For instance, the underlining
command forces you to replace any spaces within the text you
want underlined to the underscore character. This is time consum­
ing and is a very good example of what needs to be changed with
this program.

Since one of the most important parts of word processing is
printing the text file to a printer, we will now discuss the strong and
weak points of Apple Writer I I l's Print commands.

Togetintothe 'Print Mode' of Apple Writer I I I, press'CONTROLP'
and then enter a question mark. Displayed now is a list of the
present printing format values. You can change the margins, spec­
ify how many lines to be printed per page, and even have page
numbers and titles be printed on each page.

You can set the number of blank lines to be printed between each
printed lines. Thus single, double and triple spacing are very easy.

/// /// /// /// /// /// ///

You can also change the device to which the text will be printed.
However, if you send the text to the .CONSOLE, you will not be
able to seethe text as it will appear on the printed page because it
does not have a left-right scrolling ability. This is a serious defi­
ciency and should be corrected.

At times you may want your printed text to be justified in a
particular manner. You can force a left, center or right justification­
but the fill justification feature has a very serious problem which
makes it unworkable.

If you specify fill justification, spaces are added to the line, to line
up both the right and left margins so they are flush. However, each
line is fill justified they same way. Starting atthe left margin, spaces
are added to the line to fill justify it. This is a serious error because
when you look at the printed page, there is more spacing at the left
than at the right, and you get a section of text that is 'right heavy'.

Second year computer science majors are taught that this is an
unacceptable practice and are shown how to correct it. It is really
very simple. When you need to fill justify a number of lines, choose
a random starting point within the line where to start adding
spaces. This method gives a truly random look to the spaces in
printed text and is the standard method for formatting during a fill
justify. I don't know why this program doesn't have this feature, and
until it does I would suggest that you don't use the fill justify mode.

While the print commands of Apple Writer I I I are for the most
part standard, it does allow you to paginate your documents by
adding titles, page numbers etc. However it does have some
problems that should be fixed.

The last of Apple Writer I I /'s features that we will discuss is WPL,
or Word Processing Language. This is the most revolutionary feature
of Apple Writer I I I. What is it? Just a language within a language,
essentially a Basic interpreter that allows you to automate many of
the repetitious chores associated with word processing.

You can use it to automatically print form letters, each with a
different name and address that is stored in another file and is
called up by WPL and inserted in the right places in your
document.

WPL will translate one series of statements to another quickly and
easily. Persons who use typewriter shorthand can use WPL to
translate it back into recognizable sentences without operator
intervention.

You can useWPL in a variety of tasks to do anything that you would
have done by hand- only faster, automatically and it doesn't make
mistakes!

Since WPL is really a computer language, ON THREE will periodi­
cally publish useful WPL programs and instructions on how to use
them. We had hoped to have a special on WPL ready for this issue,
but as usual we got behind and it didn't make the deadline. We
will publish it next issue because it is a good introduction to Word
Processing Language and tells just what makes WPL so revolution­
ary. If you have written a particularly interesting program in WPL I
want to hear from you!

February /March 1983 37

ON THREE
Ill Ill Ill Ill Ill Ill Ill

Utilities Diskette
One of the diskettes included with the Apple Writer I I I package
is the Utilities disk. This contains a utility program which allows you
to transfer Apple Writer][files to Apple Writer I I I files and
vice-versa. You can also use this program to transfer Mail List
Manager files to a form that can be used by Apple Writer I I/.
Once the Mail List Manager files are in the format for Apple Writer
I I I files, they can be used in form letters and other things that
Apple Writer I I I and WPL can do.

The program is written in Pascal and if you have Pascal you can
execute it as any other Pascal code file. If you want to do this, you
must first copy the dependent Units from the Utilities Diskette
'SYSTEM. LIBRARY' to your own 'SYSTEM.LIBRARY' for it to work.

You must have one external drive for the program to work. The
Apple Writer I I I operating manual has instructions for using the
Utilities diskette in Appendix C and D. If you use Apple Writer][
and Apple Writer I I I files, this utility is very handy.

Product Training Pak
The Apple Writer I I I Product Training Pak is a tutorial manual and
diskette that will introduce you to the Apple Writer I I I word
processor.lfyou are new to computerized word processing this is
a very helpful package to use to learn Apple Writer I I/. If you are
using your computer in your office and you want to teach your
secretary how to use it, this manual is invaluable.

Starting from the very simplest of commands, the tutorial teaches
the novice user most all of the functions that are required to
operate the word processor. loading, and Saving of files are all
covered, in addition to how to use the Help screens.

Simple character insertion, deletion and replacement are covered.
The manual also tells how to access the SOS commands menu and
how to use it. Basic printing operations are also covered.

Even WPL is given a few pages. The demonstration disk that comes
with the Product Training Pak contains many example WPL pro­
grams that the tutorial shows how to use. A form letter filling
program automatically writes out letter after letter using a mailing
list on another one of the disk files. WPL printing of files is also
shown, as well as a program that changes fonts.

Also on the disk are a number of very interesting files. They were
originally deleted, but with a little expertise you can restore them
(see lazarus I I I' in a future issue). One of them is the text file of
the Product Training Pak instruction manual! You will beabletosee
the instruction manual on your screen!

Since the Product Training Pak is a very useful addition for novice
users, I would recommend purchasing it when you buy the main
program. If you have any fears about word processing, it will do a
lot to alleviate them.

Summary
Apple Writer I I I is certainly a good word processor, but should
you purchase it for your computer? Well, that's your decision, but
let me say that if Apple Writer I I I didn't have WPL I would

Ill Ill Ill Ill Ill Ill Ill

recommend that you didn't buy it. There are quite a few things that
should be changed in the program before it is one of the quality
items that Apple I I I users deserve. However, because Apple
Writer I I I has WPL, the good points outweigh the bad points and I
think it is a good word processor.

Equipment used in this review:

128K Apple I I I
1 external floppy drive

Program: Apple Writer I I I for the Apple I I I
Version: Interpreter created 9118181
Contents: Program, Backup and Utilities Diskettes.

User's manual.
Programming language: Assembly and WPL
Operating System: Standard SOS
Copy Protected: Yes
Disk Warranty: 90 days
Backup disk included: Yes
Cost: $225.00

Program: Apple Writer I I I Utilities
Programming language: Pascal
Operating System: Standard SOS
Copy Protected: No
Cost: Included with Apple Writer I I I

Product Training Pak:
Contents: Tutorial manual

Sample Data Files Diskette.
Cost: $40.00

The Bottom Line

Apple Writer I I I

Performance: Good
Documentation: Poor-Fair
Ease of use: Fair-Good
Error Handling: Good
Over All Rating: B-

38 February /March 1983

ON THREE
/// /// /// /// /// /// /// ///

New_page <~Press any key to continue~)
END; { Of PROCEDURE Show_disk_info }

/// /// /// ///

PROCEDURE Do_it; { Performs the listing of the directory }
BEGIN

Get_root_info;
Show_root_info;
Get_file_info <12>;

{ The root block has 12 files positions }
{ plus a root volume name on it. }

IF <<Out_Path <> ~.CONSOLE~> AND <Out_Path <> ~-1~)) THEN
WRITE <~Writing.~>;

Show_file_info (12>;
WHILE <NOT EOF <Infile>> DO

BEGIN
{SIOCHECK- }

Count := BLOCKREAD <Infile, Block_buf, 1>;
{$IOCHECK+ }

Trap_IO_error;
Get_file_info <13>;
Show_file_info (13>

END;
Show_disk_info

END; { Of PROCEDURE Do_it }

{ All other directory blocks have }
{ 13 file positions available. }

BEGIN { MAIN of List_SOS_Directory }
Set_Error_types;
Set_File_types;
Set_Out_device;
File_count := 0;
Line_count := 0;
Open_Directory;
Do_it;

{$IOCHECK- }
CLOSE <Infi le>;
CLOSE <Device, LOCK>;

{$IOCHECK+ >
Trap_IO_error

END; { Of PROCEDURE List_SOS_Directory }

BEGIN
{ This is the initialization, which occurs }
{ before the host program is executed. }

END. { Of UNIT List_Stuff }

Errata: Opps, a mistrake I
If you purchased the January Disk of the Month, you are no doubt
wondering why the program 'FONTDEMO' on the back side of the
disk doesn't work. To fix it make the following changes to the
program.

20
110

340

aS="aX":i=l
IF MID$(b$,3,4><>"FONT" THEN 10
O:ELSE a$(i>=b$:n$=MID$(b$,16,1
S>:FOR j=1 TO 15:IF MIDS<nS,j,l
><>" " THEN NEXT
IF kS<>" " THEN NEXT:ELSE END

Since you can't save the program back to the diskette (it has no
write-protect notch), save the file on another disk. To use,
transfer the subdirectory 'FONTS' and all the files in it to the other
disk.

February /March 1983

/// ///

39

ON THREE
Ill Ill Ill Ill Ill Ill Ill

Three Shorts - Fini!
Once again, kick off your boots and soothe that aching head to the
sights and sounds of ON THREE! The first two programs are graphic
demos, while the last is a sound demo! It will give you a chorus of
weird noises.

To use the program "Bob's Blocks", just type it and and enter
"RUN". No other files are needed. For the program "Bob's Lines",
you need to have the file "BGRAF.INV" on a disk named "/BASIC"
in one of your drives. If this file is elsewhere, make the appropriate
change to line #100. If the program can not find that file, it will
hang, and you will have to press the RESET key to stop it.

The program "Bob's Noises??" uses the ".AUDIO" driver to gener­
ateweird sounding noises. If the ".AUDIO" driver is not configured
into your system, you will get an error message.

ON THREE will pay $25 for any short demonstration program used
in this space, so send in your favorite today, and we will see you
next time in ON THREE. Ill

0 REH tttttttttttttttttttttttttttttttttttttlttl
1 REit a Bob's Blocks l
2 REH t ------------ t
3 REM a This sitple little progra1 shows how t
4 REM t fast the Apple/// can display diff- t
5 REM l erent colors on the screen. Just t
6 REM t type in the progra• and enter 'RUN'. t
7 REM a This works best with a color 1onitor t
8 REM t but is still okay without one. t
9 REH ttt
10 x.leftl=O:x.righti=O:y.topi=O:y.boti=O
20 loop.colori=O:back.colorX=20:clear.viewX=28
30 blacki=O:white%=15
40 text.aode1=16:color.tode1=1
50 PRINT CHRfttext.todell;CHRflcolor.todell
60 HOltE
99 ON KBD SOTO 1000
100 FOR loop.colorl=black% TO white%
110 SOSUB 200
120 PRINT CHRflback.colorll;CHRStloop.color%};
130 PRINT CHRS!clear.view%>;
140 NEXT loop.colorl
150 SOTO 100
200 x.leftX=RNDI1lt40:x.rightl=RNDt1li40
210 IF x.leftl>x.right% THEN SWAP x.leftl,x.rightl
220 y.topl=RNDt1li24:y.botl=RND111t24
230 IF y.topl>y.botl THEN SWAP y.topX,y.botl
240 WINDOW x.lefti,y.topl TO x.rightZ,y.botl
250 RETURN
1000 IF KBD=27 THEN POP:TEXT:HOHE:END
1010 ON KBD SOTO 1000
1020 RETURN

Ill Ill Ill Ill Ill Ill

0 REit tttttittttttttttttttttttttttttttttttttttt
1 REM t Bob's Lines t
2 REit t ----------- t
3 REH t Another very short progra1, it will t
4 REM l draw lines on your graphics screen. t
5 REM t It pickes randal endpoints for the t
6 REH t lines so you will get a colorful t
7 REM t straw affect. To use, take sure you a
8 REit t have '/BASIC/BSRAF.INV' on line. t
9 REH ttt
100 ON ERR INVDKE"/BASIC/BSRAF.INV"
110 PERFORM initgrafix:OFF ERR
120 xdisti=140:ydistX=192:aodel=3:bufl=1

Ill

130 PERFORM grafixtodelltodel,lbufli:PERFORM grafixon
140 PERFORM fillport
199 ON KBD SOTO 1000
200 FOR al=O TO 1000
210 PERFORM pencolortlRND!11t16i
220 PERFOR" tovetollRNDtlltxdistX,lRNDt1ltydist1}
230 PERFORM lineto!IRNDt1ltxdistl,IRND!lltydistll
240 NEXT
250 SOTO 200
1000 IF KBD=27 THEN POP:TEXT:HOME:END
1010 ON KBD SDTO 1000
1020 RETURN

0 RE" tt
1 REM t Bob's Noises?? t
2 REH t -------------- t
3 REM l Up to now we have used this colu1n to t
4 REM t show off the graphics capabilities of t
5 REM t the ///, This progra• shows you so1e t
6 REM t of the different sounds the Apple Ill t
7 REM t can take. Just type it in and enter t
B REM t the coaaand 'RUN'. t
9 REM tttltttttttttttttttttttttttttttttttttttttt
100 PRINT CHRfl14l;:REH Turn off the screen
110 countl=O:ti•e%=1:c.vall=16383:todel=128:voll=63
120 DPENI1,".audio":60TO 499
200 PRINTil;CHRf!eodeXl;CHRftvolll;
210 PRINTil;CHRStcountl-256tiNT!countl/256ll;
220 PRINTil;CHRftiNT!countl/256ll;
230 PRINTI1;CHRfltiael-256tiNT!titel/256ll;
240 PRINTI1;CHR$llNT!tilel/256ll;
250 RETURN
499 ON KBD GOTD 1000
500 FOR a%=1 TO 1000
510 countl=INTCRNDC1ltc.val%l
520 SOSU& 200
530 . NEXT
540 SOTO 500
1000 IF KBD=27 THEN CLDSEI1:TEXT:HOME:END
1010 ON KBD SOTO 1000
1020 RETURN

40 February /March 1983

Disk Of the Month
Calling all you busy professionals, would you like to have the
programs in this month's issue?What's that? You don't havetimeto
type them in yourself? Well, just buy the disk!

This disk contains all the programs contained in the January and the
February-March issues of ON THREE. Included are Disk Pak1 :, which
will give you extra disk space; Disk Pak2, which lists the files on a
directory using Pascal; both of the Key-Things programs; all of the
Graphics and Sound Demos and more!

To discourage piracy, we have priced these disks so low, that
everyone can afford one.

Buy one nowforthe low, low price of$9.95 (Pius$1.50 for postage
and handling).

Group rates are as follows:

2- 9 disks: $7.50 apiece+ $3 total shipping
10-24 disks: $7.00 apiece+ $4 total shipping

over 24 disks: $6.50 apiece + $5 total shipping

Group rates must have one mailing address. Please use the att­
ached envelope for orders. If envelope is missing, send to:

ON THREE
Attn: ORDER DEPT.
P.O. Box 3825
Ventura, California 93006

ON THREE O'Clock
How would you likeaworkingclock/calendarforyour Apple/ I/?
Just as it was originally intended, a plug in clockchipwith a battery
backup.

With ON THREE O'Clock installed, any time you save or modify a
file, the current date and time will be stored on disk. Thus you will
now be able to tell which file you last worked on, etc.

Extremely easy to install and adjust, this is the one you have been
waiting for!

This package contains comprehensive instructions and a Six Month
Warranty! Try to get that deal anywhere else!

What's the best part?- The price! While others are selling theirs for
$60 and up, we have broken the $50 barrier. Heck, we broke the
$40 barrier!

For only $39.95 (plus $2.50 for postage and handling) you can get
the best little clock in town!

Group rates are as follows:

2 - 9 clock sets: $36.50 apiece + $5 total shipping
10- 24 clock sets: $33.25 apiece+ $7 total shipping
over 24 clock sets: $31.00 apiece + $9 total shipping

Group rates must have one mailing address. Please use the
attached envelope for orders. If envelope is missing, send to:

ON THREE
Attn: ORDER DEPT.
P.O. Box 3825
Ventura, California 93006

	Another Open Letter to Our Subscribers

	Table of Contents

	The Editors Block

	Ask Three: Letters to the Editor

	The ///'s For Me

	SOS Directory Structure Revealed

	Disk Pak2: Listing Files in Pascal

	Assembling on the ///

	Products Received

	Basic - The Easy Way

	On Pascal

	Review On: Apple Writer ///

	Three Shorts - Fini!

