
HAND-HOLDING BASIC

y.'rllten -~ NEIL Bi:NNETT
In conjunction with Apple Computer, Inc.

NOTlC!

Apple Computer Inc. reserves the right to cake improvements in the product
described in this manual at any time and vithout notice.

DISclAIH~R OF ALL WARRANTIES AND LIABILITY

APPLE CC~UTER INC. A.'ID NEIL BENNETT MAKE SO \;A."\RJ.NTIES, EITHER EXPRESS OR
IHPLIEO, WITH RESPECT TO THIS MANUAL OR ~!TH RESPECT TO THE SOFTWARE
DESCl!IBED lN THIS HA.'IUAL, ITS QUALITY, PE.RFOR.'WICE, MERCHA.'iTABILlTY, Oil
'1TNESS FQR ANY PARTICULAR PURPOSE. APPLE CO~UTER INC. SOFT'.IARE IS SOLD
OR dcE~SED "AS IS." THE ENTIRE RISK AS TO ITS QUALITY AND PERFORMANCE IS
WITK · THE BUYER. SHOULD THE PROGRAMS PROV:: DEFECTIVE FOLLOWING THEIR
PU~Cl!AS!, THE llUYEll (AND NOT APPLE COMPUTER INC., ITS DISTRIBUTOR, ITS
!\£TAILER, OJ. NEIL BENNETT) ASSUMES THE ~IRE COST OF ALL NECESSARY
SE,~~1CtNC 1 ~~P~Ill, OR CORRECTION, AND ANY ISCIDENTAL OR CONSEQUENTIAL
DAkiACE$. . IN NO EVENT WILL APPLE COMPUTER INC. OR NEIL BENNETT BE LIABLE
f'OR Dll!ECT; INDIRECT, INCIDENTAL, OR CONSEQli:ENTIAL DA.~GES RESULTING FROM
ANY tiEF~CT 1H 'tHE SOFTWARE, EVEN lF APPLE C0~1JTER INC •. HAS BEEN ADVISED

~~ t~~~~t!ti~~Ll~~ oiM~~~~o~,;~Tl~~MEO;rAii!5~I~~ ~;owl~~iD~~SI~=
CONS£QUENtI.\L DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY
TO YpU. ! •

This manua1 is copyrighted. All rights are reserved. this document may
not, in vhole or part, be copied, photocopied, reproduced, translated or
reduced to 4ny electronic medium or machine readable form without prior
con~l!I!t, in vrl.ting, from Apple Compliter Inc.

1980 b)' APPLE COMPUTER INC.
10260 Randley Drive
Cµpertirio, California 95014
(408) 996-.1010

The vor~ APPLE and the Apple logo are re&istered trademarlts of APPLE
COMP1JTER J~C.

Special Deliv;try Soft11are is a trademarlt of .~;>ple Computer, Inc.

SYSTEM AUTHOR~S
ACKNOWLEDGEMENTS

It is a pleasure to recognize the contributions of those who have helped to
bring Hand-Holding BASIC to !ta current state of development. 1 wish to
express my indebtedness to Rudi Hoesa, of Sydney, Australia for providing much
guidance and encouragement; Roger Keating of Sydney, Australia for originating
the structural concept of levels and giving 1111.1Ch advise on the educational
aapecta of the system; Juris Reinfelda and Richard Miller, of the University
of Woolongong, Australia, for contributing many valuable suggestions; and
Portia Isaacson, of Dallas, Texas, for her encouragement.

l would also
COMPUTER, INC.

like to thank the SPECIAL DELIVERY SOFTWARE team at APPLE
for helping to make the system into a product.

I am grateful to my wife Judy for her patience and understanding.

H. W. Bennett
September, 198~

FOREWORD

Hand-Holding BASIC la an implementation of the BASIC programmlng language
deaigned specifically with the novice programmer in mind. Presented in four
diacrate unite, it will hold the beginning programaoer'• hand through
arithmetic expresalope, the concept of variablea, and the aystem·aupplied
functiona. It will guarantee correct entry of program atatementa and
~xpretaiona. It includes a full range of programming, program examination,
an~ debugging.

'f!irou~h the uaa of special screen display• and system commanda, Hand-Holding
BASlC put-a 11NCh of ita internal working• on public display. Aa a beginning
pr<igU11/19r , you will have the opportunity to see juat what the computer is
do~pg every atep of the way. If you've had eome programming experience, but
atill are uaeure juet how progr&Jla work, Raad•Roldiag BASIC will help ehov
,,a~ I

TABLE OF CONTENTS

CHAPTER 1, INTRODUCTION,.,, , ,,,,,, , 1

CHAPTER 2, ABOUT HAND-HOLDING BASIC •• ,,.,,,,,,,,,,,,,,,,,,,,, •• ,,,,,,2

2.1 Scope of Thia Chapter ••• 2

2.2 Syatem Description ••• ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,., •• ,.2

(1) Syntax Checking •••• ,,,,,,,,,,,,,,,,,,,,,,,, ••••••••••••••••••• 3

(2) Scre•n Diaplay••••••••••••••••••••••• • ••••••••••••••••••••••• • 4

(3) Xeyworda ••• • •• s

2. 3 1'h• Four Levela of Rand-Holding BASIC •••••••••••••••••••••••••••• ,6

iev•l 1•·•••• • •••• • ••••••••••••••••••••-•••••••••••••••••••••••• • •6

~ev,1 2•••·•••••••••6

Level 3 •••• , •••••• • • • ••••••••••• ~··••••••••••••••••••••••••••• • •••6

l,evel 4 •• • •••••• , ... 7

tHAPTER 3. USING H.Aiill-MOLDING BASIC , 9
; l.

i.
~~1 Scope of Chapter ••• , .. 9

~r1ef System Description •• 9

Loading Hand-Holding BASIC Into Your Syetem •••••••••••••••••••••• l~

3.2 Level 1. • •• • 11

Si:ope of Level 1 , •• , • , 11
, I

Carrfas• Return•··································· ~ ····•••••••••ll

l'eyworda ••••••• , ••••••••• • ••••••••••••••••••••••••••••••••••••••• 11

C:onirol Character•••••••••••••••••••••••••• J•••••••••••••••••••••12

AritluDetic Syntax •• 12

Synta~ Errors and Correction ••••••••••••••••••••••••••••••••••••• 13

Ar~thatetic Error•••14

Qrder of Evaluatioo •• 14

tlaklng Correctiona ,,,,, , 14

3.3 Level 2••1.S

Scope o! Level 2 ••• 15

Ke}"lords ••• 15

BASIC Statement••16

Using the Statement••••••••••••••••••••••••••••••••••••• • ••••••••l7

(1) LET var•exp •••17

(2) LET str•atrexp •• ••••••••••••••••••••• •• •••••••••••••••••••·2~

The Symbol Ta~le•••21

~,4 t:~v~i 3 • •• • 22

Sc~p~ of Level 3•••22
._./ '

Xe~wor-d I! •••••• •. • ••••••••••••••••••••••••••••••••••• ; ••••• 22

~th~.~a ti<:ill Operators ••• 23

Artthmeti~ Functions ••• , ••• 23 .,.
jrt~onom•~ ric Functiona., ••• 23

" 1. Expqil1111.t lal/loga rithmic fun ct ions 24

~peci4l Apple 11 Functions ••••••••••••••••••••••••••••••••••••••• 24

' 'I
3.5 ~ve1 .~ •.••••••••• , •• •• 25

Sco~e of level 4 ••• ••• , ... 25
. i

8AS~t S~at~ments••••••••••••••••••••••••••••; ••••••••• ; •••••••••• 25

~onk rot sF·atements ••• 26

Input Statement •• 29

Read, and Restore ~tatement•••••••••••••••i••••••••••••••••3~
I

Declarations., •••)~

Sp.cial Func.tions: POL and BTN , , ••••••••••• 32

lte)'wordl. ,; • .. • 32

$ctf•na .. , t•·······: •.••.......................•.•. 39

Command Screen ... 39

User Priat Screen••39

Llat•Ttace Scteen ••••••••••••••• ••••• •••••• •• •••• ••••••• ••••••••• 49

Chronological Trace Screeft••••••••••••••••••••••••••••••••••·••••49

Monitor Screeo •••••••••••••••••••••••••••••• ••••••••••••••••••• • • 4~

l'ORLOOP Sc teen •••••••••• •• •••••••• •••••••• ••••••••••••••••••••••• 41

SllJlllll8ty of HAND-HOLDING BASIC Screen Controla •••••••••••••••••••• 42

Static Ettora •• 43

0,-namic Errors ••••..••••••••••••••••••••••••••••••••••.• ~ •••••••• 45

The Demonstration Progr••••••••••••••••••••••••• ••••••••• ••••••••47

~zp~rilllenta vith the Demonstration ••••••••••••••••• ••••• ••••••••• 59

.l,ova Thy ~aighbor •• 52
I

~~E~ 4, APP!NDICES ••••••••••••••••••••••••••••••••••••••• ~·••••••59
1i I· _ .
APP!NDIX Ai S~tttn~ Up the Apple 11 Syatem ••••••••••••••••••••••••••• 69

i.Pi>f:NDl:JI: Bf Notea Regarding Copy Protection •••••••••••••••••••••••••• 62
f,

APPE1mµ c: .BAStC Statements Uaed In Rand-Bolding BASIC 63

APPENDIX D: Rand-~olding BASIC ICeyvorda •••••••••••••••••••••••••••••• 64

CHAPTER 1

INTRODUCTION

The purpose of thia manuel ia to teach the feature• of Hand-Holding BASIC.
Chapter 1 describes the organiz:ation and scope of the manual; Chapter 2
pre•ents an overview of Hand-Holding BASIC; Chapter 3 provides instructions on
bow to use the ayatem; and Chapter 4 contain• Appendices.

To run Hand-Holding BASIC, you will need an Apple II, one disk drive (16
ilec'tor), and a minim- of 481t of memory. Additional features are provided
that uae the game paddles; however, these are not absolutely required.
I .

Wtiila thh manual Will teach you about Hand-Holding BASIC, it ta not a
t)ltorial on progra.aaaling techniques. For that 'kind of 1nformat1on, you will
have to refer to one of the many BASIC language programming tutorials readily
svs1lable.

If y(>u read Cha~ter 2 by itself, you will learn about the overall structure of
Rand-Holding i!ASJC. If you read Chapter 3 by itself, you vill learn the
hat- functions and language state...,nta. Chapter. 2 ·and 3 are
c:a:.pl~iiieat.lry. You should use them together.

· 1 1 • · I

'lei.~ , •hould also remember that learning to program a COClputer ia, in a sense,
~:i.k'e , learning to play chesa or bridge. · Too can".t be expected to read a boolt
~f inaiructiona and then sit down and play a flawleaa game, or write a
fla1-l'99• . program. · There are certain kinda of knowledge that come only frc><a
•i'pe~Unl:•~ · You should, therefore, read until you get curious enough to
f•Pi~ifl\en~• Then ~xperiment until you have to look back at thh manual for an
exrr!lnatip~· .

1'h1le the •Y•tem la rather unyielding on rules of language structure, there
uaually ia more than one way to approach &Z1Y problem. lf you're curious, try
~t first o~e way and then another way. No programming book i. n the world is
gof n8 to f•ll you exactly how to do everything . Ther.e la nearly always a
better solution to any programming problem.

Perhap~ fh• mo•t important thing you can learn from your beginning programming
e~periencee is th,t you can gain as much f rom your mistakes aa you can from
you~ auc.ceeses• tou should look carefully at all of the kinds of programming
eri:on ~h,t Rand-Holding BASIC will detect and then deliberately set up
situattona to create each one of them. If you don't know how to make an error
happen, tbe11 you may)\ave a difficult t fme find! ng the cause of errors when
~he~ Oc:i:ut.

You'll nevet find out whether _some.thing . . will - or -won~t wort. unleae you try tt.
Experltaietit, experiment, experiment. Push your ayatem to ita limits. You
can't ' b~~ak your computer from the keyboard.

Thi~ .,.0ual aaaumes that your Apple II system la correctly aet up. If you're
not aure that the ayste• iB ready to go, see Appendix A.

Page l

CHAPTER2

ABOUT HAND-HOLDING BASIC

2.1 Scope Of This Chapter

Chaptar 2 diacuaaea the design of Hand-Bolding BASIC. It does not provide
1 ... tl'\lctioo. for uaing Band•Bolding BASIC. It• aim ia to present the
badr.ar;,.;nd infonaation that vill aalte the system more understandable. Chapter
3 vll~ preaent inatructiona for using the system. ending vith a demonstration
.progra.. that includes experiments, and a saiaple problem for you to develop.
~dit:f. teat, and adapt to your :intenata.

T~ ah1!11ld follow the auggeationa in the introduction and take the time to
dtii•ently re-4 Chapter• 2 and 3 of thi• "'4nual.

i2 S~em OesCrfptlon
,)

aafnd-~61~-ng 11,\SIC is an f.mple..entation of the BA.SIC progr&..ming language .
d~lit$D•i1 ' •l>eciftcall7 for beginning progr81111era. It has been · vtHten in
coo.f~dce !If.th the American National .Standards Institute (ANSI) standard .for

· ·~oi~l ~j\Sic~
I ' t1'1 · ' 11ui el~~n~a of Hand•Holdin4 BASIC are as follova:
I \/; f; '
~~~~c vati~blea: A-Z & A~-z9 

Q.ie· dialendond array• 

Tw~-~i~ensional arraja 

$tri~g v11ri•bleal A.$·Z$ 

A.BS ATll ·(Xis EXP INT LOG &JllD SCN SIR SQ!l TAN 

Let 

LET atrl•str2 

Page 2 



Control COTO lnu• 

For 

Next 

Print 

Input 

Dal:a 

Ile ad 

Iles tore 

tr exp THEN lnu• 

COSUll lnu• 

llETUllli 

ON exp GOTO lou111 ••••••• 1oua 

STOP 

.FOil var•expl TO exp2 STEP exp3 

NEXT var 

PRINT. ite111 p i te111 ·p •••• p item. 

INPUT var ••• • • ,var 

DATA datu111 •••• ,datua 

R!Ao var, •••. .,var 

RESTORE 

OPTION BASE D 

DIM var(o), DIH var (n.•) 

R.iodomiza ; · RJ.NDOHIZ! 

P.e111ark : REM remark-string 

The programming skills that you learn using Hand-Holding BASIC vill be 
d.l.rectly t)'e.osfer~ble to other BASIC syetema. 

It ta here that Hand-Holding BASIC'• ailllilaritiee to other versions of BASIC 
c"1"e to ao ~nd. The language set, the syntax, and the general computational 
cap,abilidee !lre the same, but the envtrolllllent in which it ie housed ie not. 
Band-Hoidiqg B~IC makes its innermo•t workings accessible to the user in 
thr~e ~•1•: · dyn8Jllic syntax checking; maintenance of six screen displays; . and 
a •peci•l set of keywords that allow an unprecedented level of interaction. 
These three factors are defined in more detail as follows: 

(1) Syntax Checking 

The word ·ayutax• ref era to the ·gra.iamar· of a computer language. Thu•, 
"""n we use the word "syntax•, the reader will know that we are referring 
to the rules of grammar for Band• Bolding BASIC. 

The syntax of any prograa statement muat be correct in order for it to 

Page 3 



execute. In the courae of typing • statement you may attespt to enter an 
incorrect character. If ao, your ayst... will reject the faulty 
character. It vill beep :o let you Ir.now that you·ve made a mistake, and 
then it will give you another chance. If you attempt to enter a second 
incorrect character, the ayatea will agaia reject lt and beep. At thie 
point it will display a Uat of those charactera that· are acceptable 
(called the aelect array)~ It will not allov you to proceed further 
until an acceptable· character ha• been entered. 

Bj doing syntax checking at the point of keyboard entry, 
BASIC teache• you correct ayotax vitb inetantaneoua 
.P~ltclt.1dea any aynt:ax errora at execution ti-. 

(2) Screen Displays 

Rand• Holding 
feedback and 

l!.ver;r prograauoer dreams of the perfect prograa···the one that executes 
abitolutelY perfectly the first time. This rarely happena. Programmera 
mu$t learn a set of diagnoatic techniques along With thdi: prograaimlng 
air.Uh~ Theae techniques ueually involve auch thing• as printing trace 
~~~-~g·~-~t ·certain prograa poiota, printing o.it intenaedtate values of 
Varifbliea• or ae~ting brealr.pointe at suspected trouble spots.

'I · . I .
Uitimetelj, an alert programmer will isol~te and correct his bugs. But
·the tr•dl U.onal diagnosUc approach has drawbacks. Yheo - a fault -h
i~d l~t~d, thO! pl'j>llt-~ nor..;.lly notes the fault,- halts execution, and
~tudies th~ progrll. - listing to find out why the fault occurred.
~an~ 1-HQ1din11 BASlC . !'ill permit much of thia diagnostic ""rk to be done
dyna:Uic:allt :wl tllout ioterrupti·ng program execution thr6ugh the uae of n ·a
a l.x fC reen dhplaya.

' ! ..

You can also switch from screen to screen by the use ·of special control
th.racl:eni Thia will not affe;,t the prograa's execution. You can halt
ex~cudon iit any time by pressing the space bar. The.ii restart it by
pre'••in~ t~• car:rbge retur11 (RETIJRN) key. You can switch frOG screen to .
scl-eeil 'While execution is halted. You can also adjust prQgram execution
speed from the key\.oard or the Apple gacie paddles. You cao single•atep
t~r~ugh ; prograai.

·~. , fhe Com111.and Screeo la the ooe froca which all <>or-mal keyboard
entrie' are made: Programming, editing, and system commands. The
fom11111n~ Scree.a also include• dynamic information about which prograa
~tep ii!' being executed, and FORLOOP and subroutine activity •

. 2. 'fhe User Print Screen display• only progra1rdireeted- print and
lnpu~ stateme11ta. - Diagnostics occur while allowing the Output Screen
~p remain intact.

If you are oot viewing the User Print Screen when an output i• being
.,Tinted, a flashing ·o· will appear 1o the upper right hand portion of
the screen you·re watching to let you k..~ow about it. If you watch a
pi:-ogr~ run to completion on the User Print Screen (when an END
•tatement ta executed), the display will aut0111atically switch back to

Page 4

the Command Screen, and you vill have to switch back to the User Print
Screen to aee the final linea of output.

3. The Liet-Trace Screen (LTRACE) display• the portion of the prograa
being executed 1o source lieting form. The next •tateaeot to be
executed 1• highlighted. If you e1ogle-atep through a progra.. while
watching the List-Trace Screen. you can watch how tbe progr&.111 1•
executing.

4, The Chronological Trace Screen (CTRACE) dtaplaye a listing of the
program atatementa aa they are executed. It also shows the oa.mea of
variable• and their value• aa they are calculated. Single-stepping
through a program ·while vievtaa the Chronological Trace Screen h
another way of seeing· exactlj> how a prograa i• being executed.

5. The Monitor Screen diaplay• a continuoua record of the values of
up to eight .n0111inated variables aod the progras lioea in which they
attaioad thoae valuea. It shows the lioea frOCl which currently active
aubioutioea have been calied. The Mooitor· Screen will. permit you to
chiick variable• without· having . to watch the ·Chronological Trace
Screen.

6,. T~~ word -loop- in c0<1puter vocabulal'Y refera to a group of
program statement• that are executed repeatedly. It ia the repetitive
aspect of thia technique that give• ri••· to thi• term -loop• in the
context of nearly all cocputer iaoguagea. Altho;,gh the word LOOP .ta
0ot a part of the Rand-Holding 3ASIC language, we will understand that
the term FORLOOP does refer to the gelleral u!le of the word •toop·.

The FORLOOP Screen displays the FOR statemen.t source line, the initial
value of the index, the liciit of the· index, the iodelt · iocrement, and
the current value of the index. Uae of the FciRLOOP Screen will allow
you to check the values associated with a PORLOOP while the progr&.111 ta.
rllnn.in., without separate dlsgnoatic print statements.

(3) Keywords

There are a number of special COC"'8nda lo Rand-Holding BASIC called
lt~yworda, which give you more infort:l4tion about what'• going on inside
the system. fhese 'keywords will be discussed in core detail io the next
aectloo. Meanwhile. let an example suffice.

Suppoae you were debugaing a progras in which the variable BS waa
11uspect. lo traditional syate::H, it would be up to you to find the
place• where BB was used 1n the program listing, sod then to inaert
iaesaagea or breakpoint• as you saw fit. In Rand-Holding BASIC, all you
~ould have to do is to type the lte7"0rd BREAXPIND BB aod the ayste111 would
~ind all occurrences of BS and aet breakpoint• on them.

Page 5

' ·'

in Level a l and 2. It will also detect and report functioo errors in the
caae of function arguments that are out of 'bounda.

level 4

Level 4 permits you to combine the lessons of Levele 1, 2, and 3 into
real programming. It includes use of all the BASIC statements outlined
1n Section 2.2, as well as two epecial functions that allow use of the
Apple game paddles: POL (paddle) a~d :!TN (button). Level 4 introducea a
large aet of keywords that pertain to progra:otng, debugging, saving, and
retrieving your programs.

These keywords a.re summarized as fol!ova:

All of the following keywords pertai:> to the setting .or turning ·
off of breakpoints in various ways. The ter= ·1nu11· refers to a
.line number.

BREAX· lnu11
BREAXFINli lnu111
BREAXFIND var
BREAxFIND d~
BRlliLIST '
NOBU~
NOl\Rulc lhu11

~--r--~---~-~-~--------~-----------------------------~--------
i!•let• indtv!dual atatementa or grou;>• .of statements from .a
.pro~.ram: ·

D-;L 1 n1i11
\:>E:I. lnuml,lnum2

,;.l,...,-.:.~-.. --"------------
~d1t a ape~iftc statement:

!:~IT lnull

~------~---~-.:.-----
Find progr11m statement& containing the referel'.lced ite:na:

txfm lnu111
fIN'i> vu
fIND var•

Page 7

Set and remove variable• to be displayed on the Monitor Screen:

MONITOR var
NOMONITOR
NOMOIHTOR var

Liat all variables specified for monitoring:

MONlTORLIST

~--------------------~--
Clear the progr4111:

NrJ
r-·-----~-'"!'··-----,·--- -'.--:-~-- --------~----~.:.._,.~ .. .; .. ~_: _______________ _
~dju't program a.peed e.ither from the keybord .. o.r by use
Dl ii ~1111 p1d1H1·;

#c~+n
PACE•Pl>L(n)

~ ·~ ~ ~~~,,,.··;•• --~"""":·-.~------ .. --~------------------------·------
Sava prOJ•""'• on a disk and later retrieve them:

RotLOUT nama
~O~lUf na11e

r·T-r.'"!'• .. -..;. ... ~?-·----.;. _~-._----~-----: ________________ ~-----·

,eatn progrAlll exj!cutiorj:
' !
RU~

~-~-·--·--------------~---------------------------------------
Level 4 givu you access to. au· six si:reen displ~ys. Control characters
le~ YP'! a'Wi t .ch f-rom screen to screen. A .special set of collUllanda w111

· !'~f~)'~U to halt ('\nd restore) maintenance ·Df four of the six. screens in
OJ!'~;>l' ' to. apeed up program execution. Special commands allow you to set
·Prfgrii,a ' ,P~f!d at aingle-•tep or full speed during execution.

llh~n th~ keyvord RUN ~· entered, Hand-Holding BASIC checks the
for at~ti~ errors before execution begins. Static errors
branchi~g to non-existent ltnea, improper FORLOO!j structure, and
or atsaing END statements. Static errors vill be reported
dl:•gnbtUC mesHge, and execution 'Will not take place. ·

program
include

multiple
'With a

l.e~;l 4 alao checka for certain
pnly during execution. If one of
re~rted 'With a diagnoatic mesaage,

kind• of errors vhich can be detected
these ta encountered, it 'Will be
and execution will be halted.

Page g

CHAPTER 3

USING HANI>HOLDING BASIC

3.1 Scope of This Chapter

C~aptar 3 is intended to help you learn the unique features of Hand-Holding
BASIC. It is not intended to be a tutorial on programming practice. To learn .
BASIC programming, you should refer to one of the many beginning BASIC
tutorial• that are available.

Hand-Holding BASIC was written in accordance with the American National
Standard. for Minimal BASIC, ANSI publication X3.6ll·l978. There are inevitably
&!nor variation• from one version of BASIC to another. .A aummaey Ust .of the
function• and command• of Hand-Holding BASiC can be found in Chapter 4,
A~pandiz •·

~
Bri,ef System DescriptiOn

I

!l!1~·Holdi11g BASIC 1• built of the element• prescribed . as atanda.rd for BASIC.
On~c you have learned how to program using Hand-Holding BASIC, you should be
feadtly _able to procee~ to Apple~a Integer BASIC, Applesoft BASIC, or Apple
f 11 Jlusin•'!• BASI.C and learn tha enhancement• that each has to offer.

There are two unique f eaturea
l~vel• ·· it will not rermit 7ou to

of Rand-Holding BASIC. Fi-rat, and at all

eq~er I tiliiilqi ~QiltllUllll I 1n~orr1~t
•yntax. lecondly, at Level 4 ' Hand·Holding BASIC will let you see (painlessly)
• number of the things that happen during the execution of a computer
prngr&'!'• It ts a powerful debugging tool aa ·well a• an instructional aid.

Hand-Holding BASIC i• presented in four levels, as follows:
<

Lev~l 1: Periait4 ~he evaluation of arithmetic expreaaiona
only, tncluding the use of parentheses.

Level :t: I11cludes all of Level l; introduces the concept of
variables.

. I
ievel 3: Includes all of Levels 1 and 2; introduces system·

defined function•~

tkvel 4: Include• all of Level• 1, 2, and 3; permits the full
range of programming, screen viewing optiona,
editing, and debugging tools.

In addttioa to the normal BASIC commands, Hand-Holding BASIC includes a number
of control command• called keywords. Each level allows all the options

Page 9

contained in lower levela. Therefore these keyworda are introduced and
explained once, and only once, where they first occur.

Even if you feel familiar with the BASIC language and method of arithmetic
evaluation, you should still look at the sections describing Level• l, 2, and
3 to be sure that you recognize the keywords and understand what they do.

loading Hand-Holding BASIC Into Your System

To load Hand-Holding BASIC into your Apple II, insert the system · disk in
drive 1 and turn the powec un. Your Autoboot ROM ahould load the operating
9yate.. and program without further action on your pa~t. (If . you have trouble,
tefer to Appendix A}.

The titat .acre4in you see 'should contain the name of the '· prograll' and the
~opy'r_i~ht notice , e·tc. When that appea-ra, preaa the apace bar and you.r acreea·

.,houlJ look Hlr.e 1 tb~ one abo1111 keiov. ,.

FIGURE 1. Level l Screen.

Now Y<>¥'re ready to proceed with Level 1.

Page 10

I '

3.2 level 1

Scope of Level 1

L•vel l instruct• you in the method of the computer"a evaluation of arithmetic
expression•· It enforces the rules of arithmetic syntax and introduces the
4a~ociated Hand-Holding BASIC lteyworda.

Conioge Retums

A~fer you type in •.statement or a command, you shonld al.,ays pres•. the RETURN
~~y to .ay . to the the computer, ·now it" s your turn·. IJ1i w111 ·· use the
ilY,.bol<CR> to refer to the RETURN lu!y. .This .is also called a -cattiage
re·tjir\1- upon occasi"on. Therefore, remember ' that " whenev:er you see the
itrlob(il(CR) .on t .he acre en .or in. the manual, we are .. referring. to. the RETURN .. k , ., . . '
' i:f,t '

fl,e ~eyw.;rda inHoduced with Level l (and permiuible with all other levels)

p~:

l, SE.LECT. '!'he adect ·function displays .(above the line being entered)
those chara:ctera that are valid to bl! typed · .• t the curren:t poi~t of
entrji. SELECT will be turned oh 'autoiilatkally whenev'er two "coriaecutive"

•1n~·~ •itvo u1 11~• anG mn1G grf 1ucom1n~111y wn1n tn1 nm mrm
entry is made.

I~ , may also be turned on manually by . entering SELECT(CR) whenever the ·
cursor ·is at i\;~ leftmost p<)'sition, . and will remain on until turned off
by enterin. NOSELECT<CR> similarly. If .the S!!lect function is turned OD

manually, the ,elect array will be presented with eacll ''keystroke whether.
or' ~ot an error has been made.

2. NOSELEf:T. Turns off the select function.

3, FINETRACE. The FINETRACE function displays a series of lines
I ahqw the stepa teken to evaluate the expr~ssion you have entered.

a~ep h displa7e4 each time you· press the apace bar.

that.
One

If you enter an expression that produces an arithmetic error. you will be
offered the opportunity to have the FINETRACE function show you where the
,rror occurred. You may accept that opportunity by pressing <CR>;
och•rw1••· just continue aa you wish. FINETRACE may also be turned OD by
entering FINETRACE(CR) whenever the curaor ia at 1ta leftmost position,
and will remain on until turned off by entering NOFINETRACE<CR>
rl~11!1arly.

Page 11

4. NOFINETR.ACE. Turns off the Fl ~C:TRACE function.

5. LEVELn. Entering LEVELn(CR) takes the system to the Rand- Holding
BASIC level speclfled by n (in the case o f Level 1, n can be 2, 3, or
4) .

Control Characters

Con t rol characters available in Level l and their functions are as follows:

CTRL"X cancels the ll ne cu r ren.t'ly on display and returns t he scre"n . to the
condition it wa.s fn before the llM was cancelled.

CTiti.-1 . OPeh• a space for you to insert new char <1cters at the pos!t lon· of the
cutsor, lt moves ell the cha~acters at . . o z: to the right of t ·he cursor, further
~~ ~'1* f 1Jiht for e~ch nev character. yo_u insert.

'' cTiu.~O delete• the character under the curoor and moves all the characters on
thl. rlght .;,f the cur~qr tO Che left one poslt10Q respectively.

Artthmetic Syntax
: ~ \ I ' ' . '

L•vel 1 allows the entry of numbers, the four arlt.hmetlc functions (add,
••fbtracL lnul t lply, a r d dl vlde.>, and paren~hesea. The general syntax for
Level l . 1s ·

;.hefe orera¥
pai"entl!eaeli.

oper~nd operatot oper~Bd •••

i s c:onsldered to be a number, o r' an ·e xpression · eobeddec!
An op~ rat~r is one of the arithmer1c symbols +,-.•. or /.

' i : .
Thi! ex~~ptlon to tlJe op<?rand·operator-op~rand rul e 1a that the + or • -symbola,
when . use<l follovina a hother operator, wi_ll be l nterpre.ted as -an ipcHca.tl<>n · of
a1gne4 al:' ithmetlc , Thus, while

an<!

6- *)

ate not penalss ible ,

'
2++~

4+-2

6*- l

llnd

Page 12

6/-3

are.

Numbers as operands (the definition of an operand will be expanded in Level
2) have a maximum penntssible length of eight digits. Any number greater than
9999999 muat be expressed .in scientlfle notation (aa a power of 10) . Thua,
~00~00011 (1 x 10.7) must be expressed aa, and will be reported as, 1E7.

Th~ symbol ••• stands for exponentiation. This symbol is made on the Apple II
ii.eyboard by shHt·N. -

'rt\•· dynamic range of the system is from •l .85El7 to l .85El7. Numbers in the.
range from II to +• l.85E·l9 wlll be treated as If, -

~ar•!ntheae• may. be ne.sted up to seven i~vels deep; and _arithme_Uc operations
·-~y b~ ehalned ~tog.ether to the rlgh,t limit of the screen,- such as

~ 2+(3*(5/7·(4+(9*(6·(7·-8/2+1)))))))
:11 ' •

~e~ you linter "the eighth character frOG1 the right hand slde of the screen,
t\ie h'ghllghi:ed m~ssage END·8 will appear in the upper right corner of the
di!!pl•l'• . 1f you continue to enter characters, that message wt 11 change to
~~0-7, END•6 1 ~n? so · on, untll lt flashea AT END, after which no more
~haractera may be added.

Jt your sta~ement 18 incomplete
you ' wtll liave _to back.space
order proc~ed any further.

1
Synrax E;rqrs and Correction

(as in the case of imbalanced paranthesea),
to_ delete _ the statement, or els• use CTRL·X in

Wl)enever you J11.aka a syntax error, your Apple will ·bee·p ·co ie·t you know a'bout
l t• 1(you thi!"li enter a correct character, you may proceed in a normal
fashion.

If you inak~ tvo syntax errors in a row, Hand-Holding BASIC vtll assume that
you need ' help and it will turn on the SELECT function. To go on from that
point, you must enter one of the. characters presented in th• SELECT ARRAY.

It would be well for .you to experiment a bit to see how the syntax erro.r and
correct ton work. Try --entering -these- o:xpre-ssiona-·-just as they appear belov,
then see 1f you can make them correct. Also, note the .contents of the SELECT
ARRAY each time it appears.

2+*4

3+(4*7 <cR)

3+4i>7) <CR>

Page 13

2 ••

1234567899

Arithmetic Errors

You·ve alre•dy learned that Hand-Holding BASIC will not permit you to make a
syntax error. Correct syntax _is not , however, .a gu<1raotee aga.inst arithmetic
err«?>:a such as dlViding by zero or calculating a result that•s outside the
nu,..ric range of the. system. For example, en~er ~he. e.x.P.ressJon:.

(3~S-(7*2))/(3~-(6*4)·(3*2))<CR>

the re.sult. should be :

' Ali.tTHMETIC ERROR l/'>

Pf{ESS <cp FOR SLOW l10TION REPLAY

the 8y~bo~ *(CR?• mean• the RETURN key on the Apple keyboard.

thh ~·ssage iqdicatea that you have attempted to divide by zero. Presa (CR)

ani:I then the space b<!r two '!r three times. \/hat you•re seeing are the steps
by , wh~Fh 'H;and-Jiolding BASIC evaluated the expression. The error will be
repPr~Td in ~he step in which it occurred. .

You· ~~ri c~lculat~ a result outside th.e numeric. range of the system "ccailed an
overfl .otof cond~tion) by dividing a very large number by a very small number or
by mull:i'plying very large numbers. It is also possible to achieve a numeric
overflow through repetitive addition of numbers. In the case of an overflow,
the err~r~ will be reported as:

~lTHHETIC ERROR exp

where exp will be. the arithmetic operation th'!t cau11ed the overflow.

" . I
Order of ratuatloj'l

As you Jidgh t
there are r\.iea

. I

haye guessed from watching the first F~NETRACE example above,
fdr evaluating arithmetic expressions. .These are:

1 1 Eya~~ate parenthetical expressions: start with the innermost.

2. P!!X'f!'rm lligned arithmetic.

3. ~ltiply or divide where possible (left to right).

+• A4d or subtract where possible (left to rigtit).

Page 14

An example of the order of evaluation will be shown in Level 2. However, it
ts important that you understand the order of evaluation. Confusion could
result tn puzzling answers in your later programming, expecially when numbers
are stored into variables. For example, evaluate these four expressions using
Level l.

9*4/12*2

4*9/12*:?

9*(4/12*2)

(9*4)/(12*2)

Ob;,ioualy, the aame mix of ·numbers a·nd operations has &.iven us a variety of
.ani1wera.

l!l general, you can control the .order of .evaluation by using parentheses to
•r9';'P operations so that the computations occur according to the order you
in~end.

rook at the tule• for the order of evaluation and see if you can figure out
wh.)' you •ot th• answers you did.

~aldrg Corrections

S*m~where along the lirie you will inevitably make a mistake.
~rh~r· You won't be able to make one of th~se, but_

· ·tY~graphic1l1 mistake such as inverting two numbers, putting
~Ugh, or perhaps omitting a parenthesis.

I

Not a syntax
you may _make a
in an extra

Yo~ can edit lines as you are entering them, or by typing the edit command
(i!:DIT ~nn_n) where nnnn is the line num~er to be edited.

lf you want to charige a character, pr·ess the b;,ck arrow key until the cursor
ill over .. the incorrect character. Type the new character. It will replace
~h~ old , one~ and th~ cursor will move one place to the right. Use the forward
arr.ow ~r ~Q move t)le curaor back to where you want it.

It you ~ant to delete a character, u-se the back arrow key to put the cursor
ovP.r t~e character you want to delete, then press CTRL-D. The unwanted
character will d1$appear, and the characters to the right of the cursor vill
moye . l~ft one place. If you wish to delete a ,serles of characters, move the
cursor to the leftmoat one, then press CTRL-D as many · - times as necesaary •
. Al~l!lirnatively , to delete rapidly, enter CTRL-D, then press the REPT key and
hol4 it dovn. The system will delete as many characters ss you want, until
j~Q- litt your fingers.

Use th• forward arrow key to move the cursor right again to the end of the
line, slpce automatic syntax checking doea not occur unless the cursor passes

Page 15

over each character in the statement.

lf you want to insert characters, first keep in mind that they will be
inserted at the location of the cursor. Hove the cursor to the desired
position and press CTRL-1. A blank space vill appear at the the cursor, and
the other characters will be are pushed l position right. Type the characters
you want to lnsert,and use the forvard arrow key to· return the cursor to the
end of the line.

Returning the cursor to the end of the 11 ne is important because Hand-Hold Ing
BASIC !itl l enter (and guarantee correct syntax) only the characters. that the
cursor has passed over.

Hake a few mistakes on purpose and experiment with the correction procedures
until you feel comfortable with them.

3.3 level 2

scope of level 2

L"vl)l :? i~trod'!ces t~e concept of variables and the LET definition statement.
Level 2 perm1lj; the eva)uation of expressions containing variable• according
.to ~h.0 , rules established by Level 1. lt reinforces the necessity of defining
vada~~"~ bl!fqre thet. are used Ir. expressions, and lets you see (through the
use lo£ the SYtlBOLS tal4e>. a list of variahles and their current values. . r ,

I

IC : r8s eywo ·.

The keywords Introduced with Level 2 (and then permissible with Levels 3 and
4) are listed below. All keywords introduced in Level l remain permissible in
Level 2. ·

The SYkBO~S keywO~d switches the Level 2 display f ·rom the COMMAND• screen
to the MONITOR screen and causes all defined variables and their curren·t
values ~o ~e displayed. To return to the Command Screen, press <CR>.

BASIC Statements

LET var•exp

n.·~ f-E'r statement ~ans -assign to the variable var the value of the
exprea~~on exp.• Var may be any single letter of the alphabet, A-Z, or a

· let~er 1olloved by a digit to the range 0-9: AO, Al, A2, ••• , A9; BO, ••• ,
B9; · ••• ; Z0-Z9. Exp may be a single number, a single variable, .or a
coaibinatlon of numbers and variables that conform to the rules of

Page 16

arithmetic syntax.

LET str•strexp

This LET statement means "assign to the string variable str the contents
of the string expression strexp". Str may be any letter of the alphabet
followed by a dollar sign, A$-Z$. The dollar sign identifies the
variable as a string variable, and A$ is as different from A or Al as AO
is from Z9. A string expression ls another string variable or a literal.
"Literal" constants can be part of a string expression. A "literal· is
any combination of alphanumeric characters except quotation marks.
"Literal·" constants must be enclosed in quotation cark.s •.

Essentially, string variables ceao words. A string variable can be all
nu.mbers, · such as .tn the example of· LET .A$~"198_1 ", but you ·cannot perfona
ar it.hmet le .ope rat ions among st r lng variables or between, ~tring and
·numerical variables.

'UT. stringl•strlng2

Tpls LET statement means "assign to the ·string variable striiigl the
alphapumeric contents presently stored in string variable string2," Both
stringl and string2 must confor.a to the above definition of string.

lJair:ig the Stateaaents

~ i) ~S't var•e~P
i

I

Ac~~rding
~~Ok. lik.tt

to its definition, a LET statement of the type LET var-exp may
any of these:

LET A-3

t,ET A•3+2

Ll::T l,~B

LET A•ll+3

Th~ most important concept to grasp
although it looks' like an algebraic
I/hat happens inside the computer is
th" right side of the equal sign
res~cve~ for the variable na"" on
e.quation such as X • X + I would
statement that looks like this:

about the LET statement is that
equation·, it most .definitely is not.
that the value of the expression on
is placed in the memory location

the left. So, while an algebraic
be ll>'!aningless, you can have a LET

Page 17

LET x-x+i

What this statement means is ·1et the value of X plus 1 be placed in the
1111e1110ry location reserved for x.· This statement, often called a counter,
la used time and again in progr8dllling. In order to understand how it
works, you must understand the difference between an algebraic equation
and the LET statement.

There are really only three rules you have to understand about LET
statements:

~· You must put a blank space between the word LET and the variable .name
that follows . it.

2. Whatever var!ablea are on the right aide of the equal sign must
~lready have been defined (given a value).

). Whatever 18 on the right aide of the equal sign must follow the
l.yotax rulu explained in Level l.

fr1, ~of ~xample (doo•t forget (CR>),

~od then ev•luate some expressions using A.
:1 '

d
>N

lfov 1~.fl.'ne ji.nother varJable

Let li-2
and eval~te sol!le e:1tpte1Jslon•. with it and A.

At~

A+B+l

M-2*B
I

·(A+J5)*2

ra~~ iof th• emphaa1a of Level 2 is to teach you that you must define
Yarla~le• before you use them in expressions. Try evaluating:

A+m
You should . receive the meHag•:

Page 18

C NOT DEFINED, GIVE VALUE NOW

LET C•

Thi• message means that the syste~ didn't know what to do because it
didn't have all the information it needed.

~ow eater 1 for C and aee what happena.

Next,. redefine variables A and B with:

LET A•3

and evaluate the expression:

A+(2*3+,(A*B)+B)+7

If you didn't make any mi•take•, you should now aee:

Hpw ~id the computer get from the expression to the result? It followed
e*act~y the ~a~e rules for the order of evaluation explained in Level 1,
except that it substituted the variable values when they were needed.
Turn on the FINETRACE function (look back to the instructions for Level 1
f.f 70~ doo,'t remember how). enter the. expression · above, and begin

' pteaaiag the space bar. Your screen should develop like this:

t•C2*3+(3*8)+B)+7

t~C2*3+(3*6)+B)+7

,;.+(2*3f(lS)+a)+7

Af(2*3+18+B)+7

A+(6+18+B)+7

A+(241-B)+7

J.+(24+6)+7

A+(39)+J

A+3,..7

3+3jJ+7

33+7

49

Page 19

THE RESULT IS 4~

Also, note how the parenthesea were dropped when they were no longer
neceaaary.

Now try:

A+(2*3+(A*D)+7

arl~ the space bar.

Tou should have made it to the second step before you were asked to enter
a value .for D. Enter 6 and .•tart pressing .the .apace bar a.gain.

Notl ce that tha evaluation didn't resume !rOfl where you left off, but
tnstead went back to the beginning. This will happen every time tou're
Jn flNETRACE and you've forgotten ·co de fine a variable.

~~· t forge~ to turn off the FINETRAC£ before going on.

(2) LET str=stte~p

~ccpr~ing ~0 i~• 4ef lnition, a LET atat~ent of the type

l~t ijb·•hteral
! f I I '

Giay i'ooll ui..e- any of these:

LET ~-"I« NA!iE"

LET· A$~·i 981"
I

d:t P$~'°PART !!O+ L3777A"
I

i.ET ?$•"HIS NAME IS • JOllN'"
I

A LET a~ate111ent of the type

.-. ' LET str•strexp, which 1• the only kind of string manipulation allowed
in Hand·llolcU,ng BASIC, has only one form, such as :

or

LET k$•D$

Theta are three rule• you have to follow vi th the string LET statements:

~. 'tou lnu•t type a .bl'!nk between the word LET and
the string variable name that follovs it.

Page 20

2. A literal string to the right ·of the equal sign must
be inside quotation marks.

3. A literal string itself may not contain quotation
marks. You may use a single quote if you wish.

You won't be able to do anything with literals or string variables until
you get to Level 4 where the PRINT statement is available but you can get
aome idea . of how they work in Level 2. First, enter:

LET N$•"K¥ NAME"

Now enter1

N$(CR>

and obae,rve the result. Now enter:

LtT il$•"HlS NAMr

followed by:

H$(CR)

liow t.ry:

LET H$•N$

encl:

H$<CR>

No~ you s~ould be able to see the words:

MY NA111!

The sy"=bpl Table . I

From the ii ttle el(pedment with string variables, you may have guessed that
you can find the Value of a variable by entering its name and then <CR). You
c-4'°" Try lt with A, B, and c. -

Ti\ei'e~s '" easier way . Type:

SYt-iBOLS(Clt)

N0w your screen should say MONITOR in the upper right and down the left side
silou1 4 be ·the list:

Page 21

B 6

c l

D 6

H$ "MY NAME"

N$ "MY NAME"

and at the bottom:

6/6

' Thia screen telle you three i;hings. Fint, it. h a Mont.tor Scre_en. It tells
yo.u what'a going on inside the computer. You can no longer deffne variables
or •val~a te expressions as you could with the Command Screen. Second, it
giveil. i 'o(l the Symbol Table, and the names and values of all the variables
ypu~v• jlefined so far. Third, 1t tells you how many variables have been
11$ted so far and how many you've defined. The first 6 means· six varlablea
lil!ted ; .t~e second 6 111eana six variables defined. The computer will list
sigh~ v$rtablf/• at a time. For eXHple, if you had defined 27 variables, the
Ura~ p~~.' e wo1,1ld say 8/27. fress the space bar to get to a new page, and .lt
woµi~ say 16/27, and so on.

. . ' . .

~ny ff•~ you are looking at the Symbol Table on the Monitor Scr~en you can
rie.turn tQ ~he Com111&nd Screen by preasing <CR) • . :;

3.4 Level 3

Scope bt Level 3

Level 3 int;oduces th~ m.athematicai operation of exponentiation and system
functio1!<1· Level 3 peI111ita you to select whether arguments of trigonometri_c

-·funj:tion& wiU be- ej<pressecl in radians .or degrees.

KeY'#Qtds . ' ..

The keywords introduced
4) ~Te listed below.
permt11e1t/l• in Level 3.

in Level 3 (which are then permi.ssi-ble tn Level
All keywords introduced in Levels 1 and 2 remain

DEGRE~S. Caused the system to treat the arguments of trigometric
fuqctiona aa expressed tn degrees. Radians ia the system default.

li.ADIAN$, Retu.rna the system to the state of treating arguments Jn
w;lt~ of racUana. Radiana is the system default.

Page 22

Mathematical Operators

The character " (shift N) causes the exponentiation of an expression and
the general form is A"B, which means "A raised to the power of B". Thua,
2"2•4, 2".5•1.41421; 2"(1/3)•1.259919.

ln the definitions of functions that follow, all the functions that
accept arguments will be Ahown in the general form

FUNCTION (arg),

where •arg" represents the argument ·of the function. Arguments can be

~onatanta, variables, oc expressions containing constan.ts, varfab!es, or
other functions, as long as the expr.esa·iona are consistent with the rules
(:.f syntax. If the system encounters an unacceptable value for the .
~rgument, the function will return the message FUNCTION ERROR, together
~ith the function at fault.

Ari~~l!Mltic Functiona
•

A~~~ar•) re~urna the absolute value of arg.

)!iT(arg)· returns the largest integer no greater than arg. For example
. J~t(l.14159) ~ill be 3; Ih"T(-3.14159) vill be -4.

RND r1turnl 1 p11udo~r1ndo1 fraction b1tw11n o,o and O,jjjj'''i RND
acceptJ no ar~menta. Sea also RA.';OO!ilZE in the discusalon of Level 4.

SGN(arg) returns an indication of the algebraic sign of arg.

sCN(arg} la •l if arg ia negative, 0 if .arg ia O, and 1 if arg ta
P?~itiye.

the square root of arg. The value of arg for sqr(.arg)

Trigonom~tric Functions

si:~Carg) returns the sine of the angle whose value . la equal ~o arg.

cos Car~) returns the cosine of the angle whose value is equal to arg•

T"*'(arg) return• the tangent of the· angle whose value ia equal to arg.

A'tN(arg) return• the angle whose tangent ia equal to the value of arg.

'
Re~em~er, the system will assume the value of arg for SIN, COS, and TAN
t~ be in radians, and will return A1'N in radians, unleaa degree• have

Page 23

been specified.

Exponential/Logarithmic Functions

!XP(arg) returns the value of the constant e (2.71828 • ••) raised to the
arg power; that is, EXP(arg)·e·arg.

LOC(arg) return• the value of the natural logarithm of erg. The value of
arg_ for LOC(arg) mu~t be positive.

Sp0cfal AJ:>ple II Functions

1.nt.(n) .return& a number between 11 and 255 that reflects the aetting on
~h' Apple gama paddle specified by n. Permissible _value. of n are 11 and

~· .
~tl{n) retkrna a 1 or 11, indicating whether or not the button on the +hpl, ga~ paddle (specified by u) h depressed. It return• a 1 1f it
t~~ ·an1 \I Jf it la not• PendHible value& for n are II and 1 •
. '-1 : ·

JlND l• often uaeci in computer a!mulatiooa to determine the chance of an
•"•n~- 0ccurring auch u slot machine wheels, the dealing of cards, or the
f?~f of cl~c•• Aq expre~aion such aa:

,, µt l>l~lN't(6*RND+l)
.. !"11 •
cou14 represent the roll of a die.

t •• ·• of PDL a nd .BTN will also be discuued. briefly in Level 4.
~~~-.;while , to get eo- idea ·of iiow they work, you can ·(after you 
~etermin• which paddle is which) enter 

:PJ>L(~~<cR) 
a fev times With .th<! ~ob at diff~rent aetti.nga and see what numbers come 
l>aclt1 an_d: 

.,, , ' I 

BTN~")<C!p 

pnce wi~b the button left alone, and once with it de.pr.eased. 

I 
'rhe foilowing are some examples of ayntac_tically correct expre s s ions 
~e~nS fut1Ctions . These are only examples and by no ceana suggest 
lf~lt,tiona or •the only way to do i·t. • You are, as always, encouraged to 
exper:l.111ehi to learn as much as you can about how thia _portion of 
Rapd-ijold~na BASIC works. 

LET C•SQR(A·2+a· 2> 

L£1' !ll• ( .. B+SQR(B· 2-4*A*C))/(2*A) 

Page 24 



L£T S•SQR(l·COS(Z2*P/180)-2) 

LET Q2•Ql+4*EXP(Q0/2) 

LET Z2•ATN(Y/X) 

3.5 Scope of Level 4 

Levei 4 brtnga you other tools you#ll need to write. debug, and execute 
co•piete proarame In llA~I,, Tllut tooll tall !lit& ~hru categories: 

I. ·Addit"ional keywords which allow you· to alter apeclfic portions of a 
program or to exam! ne a progra:a i n specific detail. 

2. Six screen display• provide different perspecttvea about vhat#a going 
on during prograaa execution. 

3. Tlie BASIC statements themselves. 

Flr~t. let's deflne the Hand•Holding BASIC atatementa. 
I 

aASlC Statements 

Each BASIC state~ent must have a ·line number. Line numbers are limited to a 
~ximum of four digits, Leading zero#s are oat allowed. A blank apace mvo' 
roilov ttio lalit digit 111 th ~el'tera l format: 

' . 
nnnl' STATEMENT 

I 

f:lnc:e· a statement number haa been entered, .You can · press ·the space bar when 
tl1e n~xt l,li•e number ts to be· entered. and the system will automatically 
create a new lln~ number which will be ten greater than the previous one. 

On~y one statement per line is permitted. 

A statement canqot be longer than the right hand side of the screen. 

You tlUlY alsn delete tndivi-dual statements by entering the line number and 
(CR>. If YO!J delete a line in this manner, you will receive a ..... asage: 

l)nnn l>Hl::TED 

End Statement 

The END statement causes program execution to halt and return• control to 
th~ •1stem. After an END statement has been executed, program execution 

Page 2S 



can be re1n1tiated by use of the keyword RUN. A program must contain 
one, and only one, END statement, and it must be the last statement in 
the program. (See also STOP.) When an END statement ta executed,. display 
automatically returns to. the Command Screen. 

Control Statements 

COTO lnum 

The GOTO statement transfer• program execution to the program line number 
specl-fied by lnum. A"' line wit-h the number Jnuai must exi~t. A GOTO 
statem11nt may not transfer execu·tton into a FORLOOP body. ·coTO may alao 
b1 wr1 ttlm CiO TO, 
I 

GOTO 120 

CO TO 999 

lf th• relationahi~ expressed by exp ts true, program execution is 
~tansferr•d to the program line numbered lnum. If it ts false, execution 
P,.tsea to the next line in sequence. Legal relational operators are 
~quaJ tQ (•), great~r than or equal to (>•}, less than or equal to C<•), 
great.tr tha11 (>), less than (<), and not equal (0). The line numbered 
fi\d"! IDUl!l exist. Execution cannot be transferred into a FORLOOP. 

IF A•lO THEN 480 

lf 'A1+11(0 THlN 9lXJ 
fF 2*A(•J•B THEN 200 

IF A-il>.bos THEN 180 

ddsus lrlum . I 

Th• GOSU& statement transfers program execution to the subroutine 
~glnning at the program llne numbered lnum~ A line with the number lnum 
must exist. Execution cannot be transferred into a FORLOOP • . GOSUB may 
•1so ~e WTitten: CO_ SUB. 

p:n!RN 

The RE'!-'lJIUI statement passes control of program execution to the line 
immedi'!tely following the one fra... which - ·the subroutine call (i.e. the 
CdSUB) was made. For every GOSUB, there should be a RETURN statement. 
l;i~H!irly, & RETURN statement ' may not ' be legaUy encountered in ·progra .. 
~XeC11tion without there having been a corresponding GOSUB stat"'m:'nt. 

Page 21> 



2!11!11 STATEMENT 

(subroutine text) 

2511 REnIRN 

(program text) 

41111 OOSUB 2!1111 

91111 00 SUB 1!11111 

(program t e1tt) 

lf"'l STATEMENT. 

(•ubroutine text) 

OM 11p COTO lnua •••• ,l~um 

ON COTO tranafer• program 
poaition in the list of line 
~~a~ua~ion of exp. 

execution to the statement 
number• corresponds to 

numbered lnwa vhose 
the rounded integer 

FoT eJtample, in the statement ON X GOTO 1"'9,299,3119,4IJIJ, if the value of X ia 
~. then execution "111 be transferred to line number 31111. If exp 1• leas than 
1 0 or exp i• greater than the number of line number• in the list, prograa 
execution "111 ~ halted. The referenced lines C1U&t exist. Execution may not 
be transferred into the middle of a FORLOOP. 

stop 

ON A+l GOTO 199,235,375,41111 

~N 3*B+7 GOTO 269,299,249,289 

The ~TOf statement forces program execution to halt at the current line . 
nuiaber, b'llt tiermita execution to res=e with the next statement in sequence by 
pressing <CR>. When program execution baa been halted by a STOP statecent. 
you may examine the valuea tlf variable• and still resume execution vith the 
next atatem~nt number. If you change the program itself, however. you will 
.be abl~ to reinitiate program execution oa.ly with the keyword RUN. 

4611 STOP 

J'Pll Var-!xpl TO Exp2 STEP Exp3 

(body) 

Paga 27 



NEXT Var 

'Ille FORLOOP allows us to perfona (repeatedly) the block of statements between 
the FOR statement and the NEXT state111ent. 

Var ia any numeric variable which is not an array element. Var is to be used 
as a counter variable, helping to control the proper number of repetitions 
re~uired in the FORLOOP. Var will receive a starting value, and will be 
changed on each repetition of the FORLOO.P. 

µpl ia the initial value to be assigned to. the var.iable Var. 

l:Jtp2 18 the final value (limiting value) to be assigned to the variable Var. 

E~p~ h the amount by which var will be incremented on each repetition as Var 
changes from ~he value Expl to Exp2. 

~en th~ FOR stat~ment is encountered, Var 19 assigned the initial value 
Eitpi. . . ~ec4tion proceeds to the next statement in sequence. When the 
a tii~ "'!"'"'~ NUT is encountered, Var is {neu111enteA hy U1a AB!tiUl\t. Afl~~iHld l!y 
Exp?· ,1 ~l Var 1a less thah the limit: quantity Exp2, execution returns to the 
st~ temen t following the FOR statement. If Var is now greater than the limit, 
th~ · b6d;I of the . FORLOOP will not be executed, and execution will pass to the 
s t a t ement following th" NF;JCT-statement. 
I -, I ' . 

1'1ie tocrement vatlab1e Exp3 may be negative, in which caae the comparisons 
~es~rt~ed. f~r a positive ipcrement are just the revers.,. If no increment is 
obi.piicifly ~tated, it is as~umed to be the value 1 (one). Execution may not 
be' ~nn:11f11~red .into the body of a FORLOOP. 

F()~ 1•1 TO 10 

(body) 

NEXT I 
I 

FO~ . J•4 .TO 12 STEP A3 

, (body) 

ltEXTrl 

FOR K•67 TO 43 STEP -8 

(body) 

~EXT K 

t"Oll tn-A+J ro 3*B STEP H+2 

(BODY) 

. Page 28 



NEXT Nl 

PRINT Item P Jtem P ••• P .Item. 

The Print etatement causes the specified items to be printed to the User Print 
Screen. Item may be .an expression, a tab specification, or a null. P may be 
either a semicolon or a comma. 

If Item is a negative numeric expression, a minus sign will be placed in front 
of it. If Item is positive, a blank S;?SCe will be printed. 

lf the print statement ia not followed by a list of Items, the print cursor 
..,111 move to the beginning of the next lioe (and a blank line. vill be printed 
on the screen). 

lf P is a semicolon, the print cursor types the output item, and theo atop• 
immediately after the item. 

lf Pi• a comma, the.cursor is advanced to the beginning of the next print 
~bnf• (The comaia provides an automatic tab function. The screen is divided 
iitto three print zones: .tvo zones are 16 spaces wide and .one is 8 apacea. 
·'the·· tab specification allows the print cursor to be placed at the specified 
t;:olU!"'I• 
L . 
Calcu~ated tab specifications are rounded rather than truncated, and a 
t~~culated tab specification less than l vill be set to l. The maximum value 
for ~ t4b specification ts 255. Values larger than 40 will be reduced modulo 
40. 
I 

PRINT 

PUNT (A2+82);C 

PRiNT TAB(3);"ERROR" 

PllINT lt 

PRINT A,B,C 

PRINT TAB(Y+Z/3);Y 

P\UNT "ENO OF,,MONTH BALANCE FOR";B$;"ACCOUNT IS";B 

PRINT TAB(3);X;TAB(l3);TAB(23);Z 

Input Statement 

INPUT var, • • • ,var 

The input statement causes program execution to pause for data valuea to 

Page 29 



be entered fro. the l<.eyboard. The data entered from the keyboard 1DUst 
correspond to the type specified by the input statement. 

INPUT X 

3.14159 

INPUT x,N~,ap~ 

INPUT A,B,C 

Data, Read, and Restore Statements ,- . ' 

~r~ dat"' •••• datU8 
• ·:;~;L : 
tji& DATA statement •upplies the values sought by a R£AD statement. The 

, d;ta ' ih the DATA atate,ment must correspond to the types specified by the 
~~ •~•t•en~ 
.I I ·1· 

~~ vat. •\.var 
it': ! :;·. 
~~ .. R~AD ~ta~eaaent caua~s· data values specified in a data statement to be 
~·~igp"d to theit corre~ponding variable names. 

RWl X,N$,A 

'pATA 3 , "SHITH" ,-S 

DAT~ "J~•, •F~ll" , "HAR" 

;RUD A$ , B$ , C:$ 

PPR I•l TO .; 

·al\I) 'At I) 
. I : . 

'ibe te•tot• statement allows data to be reread by setting the data 
~tu~~r ~ck to the first datua in the list. 

· Page 30 



OPTION BAS!!. ,!!• 

The OPTION state01ent deterlllines whether array subs_cr1pts will have a 
lower limit of 0 or 1 as specified by o. The OPTION statement, if used, 
must be the first statement io a progr;;m. 

DIM var(n), ••• ,var(n,~) 

The dimension atatement eatablishea the upper limit of an array's 
subscript•· The maximum valu·e for a one-dimensional array is 4095. For 
a two-dimensional array the limits ere 255 x 255. No. array varisble may 
be redimensioned. If oo option or dimension is apecified, all arrays are 
assumed to have a lower limit of 0 and an upper limit of 10. You should 
note that array variables are distinct from other variablea beginning 

·with the s&llle letter. Thus, A, Al, A$, and A(l) are all differeot 
variables, end all may be used in the same program without producing 
•Y•tem or logical errors. 

OPTION BASE 0 

DIM A(50) 

DiH B(l5),C(l2,12),D(25,18) 

Each d111e the program memory is cleared by use of the keyword NEW or 
progr""' execution i• initiated by use of the keyword RUN, the 
pseudorandom number generator is reset so that it will start with the 
ll!lll!& number and then proceed with the same sequence. While this i• a 
Ul<>fvl ·debugging tool, it takes all the e _xdt-ement out- of sit_uatiooa 
where the unpredicts bili ty of random numbers is desired. The randomi:te 
statement c~uses the pseudorandom number generator to start at an 
unpredictable value, and is therefore useful in simulations. 

10 RANDOMIZE 

REH remark-string 

The REMARK statement allows you to provide internal documentation for a 
progr,,... Remark-string msy be composed of any comb1nstion of 
alphanumeric charactera. The REMARX statement does not affect progr&lll 
execution and ta not printed on the user. scre.,n. It appears only in the 
program listing. 

Page 31 



Special Functions: POL and BTN 

While the POL and BTN functions were described with Level 3, no mention 
was made there of how they might be used in a Hand- Holding BASIC program 
since programming wasn't available in Level 3, POL and BTN are not 
elements of the ANSI minimal BASIC, but because game paddles are 
available for the Apple, the ability to use them has been included in 
Hand-Holding BASIC. 

Keywords 

'{he ficst set of keywords in Level 4 'deals with bnakpoints. A breakpoint ls 
a debugging tool that allows you to halt program execution at a predetermined 
po ~ nt. I/hen execution halts at a breakpoint, it tells you that the program 
wa~ just about to execute the referenced step. This is important since it 
helps you trace the flow of execution. 

I i · ,. 
l{hen exec1.1tlon is halted at a breakpoint, you :nay examine variables. As with 
the STOP st,atement, you may not change the program and then continue. If you 
change the program, you will have to restart execution vith the keyword RUN. 

l ~ ' ' 

~henever pro~~am execution halts at a breakpoint, the message 

~ num ~REAl(.POlfiT 

will appear on the third line of the screen, where lnum ls the line number at 
whic~ execution ha& halted. To resume execution after a breakpoint, press 
(CR), 11'11're is no limit to the number of breakpoints that may be aet •. 

BREAK l~ne 

Sets Ir ~reakl>oint at the line number specified by ltne. 

BREAXFl ND l num 

Seta ja breakpoint at the lines which reference lnum lists those lines 
with lnum highlighted. For example, llR.EAKFIND 10 might result in a list 
such .a1p 

SO COTO 10 

90 IY 113 THEN 10 

l!REAXFIND Var 

Page 32 



Seta • breakpoint at the line• in which 
111'1 'heft ~inea with Var h1§hlighted. 
re•ult in a list such as: 

4111 LET Al•Bl+3 

1111111 LET Bl•B;l+2 

7111 IF Bl(C4/3 THEN 4111111 

J!REAKFIIID Var-

the variable Var appears and 
For ex.ample, BREAKFIIID Bl might 

Seta a breakpoint only at the linea in which the variable Var appears aa 
a dependent vari&ble ( .a variable on the left side of an equals algn, for 
instance) and lists those lines with var• highlighted. · For example, 
BREAKFllro X• might result in ~ list such as: 

9111 LET ·x-e2•cosc2•p1/1Slll) 

Note that the Var• liat will also contain statements such as: 

13S NEXT X 

What actually happens in the next statement is: 

J..!T X•X+inc:rement 

BREJJCLlST 

L11t1 111 lip11 in which br11kpolnt1 are eurreatly 1ei. 

'?Urn• off all breakpoint•. 

T~n• off the breakpoint set at the line number lnum. 

YP\l hit.Va already learned that you can delete a . single line of a progrBlll by 
eotettoa it• number and <CR>. These next tvo keywords give you 11:0re 
l~ezlbility in deleting unwanted program statement•. 

D!L liQ• 

Page 33 



Delete• the line number indicated by line. 

DEL 11nel,11 ne2 

Deletes all program "lines · from line "l -through line 2 inclusive. 

A keyword h provided for you to edit a specific line number. 

EDIT lnu11 

Cauaea the line numbered lnum to be displayed on the screen juat as it 
appears in the progr8Jll listing. You cao then use CTRL-t and CTRL-D to 
insert or delete characters as described in Level 1. 

lf · you dec.ide that you don1 t want to edl.t a line after all or· that you 1 d 
like to go back and start over, entering CTRL-X will restore the line to 
the i::ondition it was in before you started editing. When you have 
finlshed editing a line, don 1 t forget to return the cursor to th!! right 
end ·of the line. Remember: the system checks syntax only for those 
Charectl!rs th•t the cursor passes over. 

th~ nex~ t~fl!e keyw~rds locate and list the indicated references, but they do 
no~ ~et !I breakpoint. 

Fp1D lnu• 

F~~ds the statements in which the line numbered lnum ts referenced and 
ltsts ~he~ with the line highlighted. For example, FIND 10 might result 
tfi; .a H•t ~uch as: 

50 O~ X+l COTO 60,40,10,50 

iio IF Y2(100 THEN 10 

FI~ID Vat 

Finds the statements 
with Var . high~ighted. 
~ui: ' ' 

in which the variable Var appears and lists them 
For example, FIND 83 might result in a list such 

45 LET B3•SQA(A2+B2-C2) 

830 LET Y2•2+Yl+B3 

890 LET Zl•ATN(B3*Y/X)) 
·, 

Fi~ds pnly the statements in which the variable Var appears as the 
depende_n~ variable and lists them with Var• highlighted. For example: 

Page 34 



FIND Nl• 

might result in a list such as: 

41' U:T Nl•Nl+l 

175 NEXT Nl (See BREAKFIND Var-.) 

The LIST keywords allow you to examine the program you're working on. 

LIST 

The··LIST keyword causes the entire pr.og'C'aa to be· listed. If 
more program line• than can be displayed .on one screen, the 
scroll =til .the. -last statement haa been printed. You · can 
restart the scrolling by preesi113 the apace bar. 

LIST lnu'a 

Cauaea the program line numbered lnwa to ba listed. 

Llst l!ne\,line2 

there are 
list will 
atop and 

CauaH ·all program . line a from linel through 11ne2, inclusive, to be 
listed. 

Th~ next t'hree keywords are used in conjunction vi th the monitor screen. You 
vUl &ef the effect of them when you go th-rough the demonstration program 
prea~nted later ta this section. 

I , 

MdNITOR Var 

Cause& t~e variable Var, ita current value, and the line number in which 
it attained that value to be displayed in the format: 

line var value 
21' al 399.6 
31' a:9 432.l 

A ~ximulll of eight variables may be specified for monitoring in this 
fa:11hi<:>n._ Array variables may not be monitored. (All variables, however, 
I.ill l:>e displayed with the Chronological Trace Screen and the Symbols 
hble".) -

I 

,NOl{ONl TOR 

Turns off the monitor fl.lllction for all variables. 

Page JS 



NOHONlTOR Var 

Turna off the monitor function for the specified variable Var. 

MONlTORLIST 

Lista all variables specified for ClOnitoring. 

In le~rning computer programming, you will often be working with short 

~~otia;.• or experlmenta, which, J,en c;omp!~teJ, .,fl! no longeil ~ liuA@A. Tk@ 
· next )<eyword aUows you to delete your work area. 

116' 
" \! 
C~e!lra the M•er program and Symbol Table and resets the paeudorandoia 
number s•nerator. In effe.:t, it gives you a "clean slate" just as you 
-~4.j when you first eQtered Level 4. While NE\.I saves you the trouble of 
having to reload the system every time you want to start a new program, 
~i! ... •11r~ ~hat· you reUly want to use it before you do. Once you el!ter 
NEi.i; )lhatever yas in the program memory is gone. The only way you 1 ll 
be" able to get it back is to key it in all .over again. 

I 
9fl ij[ i~f , i~ue featur"'s of Hand~Holdinf BASIC is that it allows you to 

a~Juh tl)e #peed at which a program executes. This may be done either from 
the keybciar4 or through th!' use of the game paddles. (See aho the discussion 

'( ~~ J;fffP~ for other •tf1cr1 on ~rgffii rKGGu,1gn u~rt~ ·l 

PAC&•N ,. 
f llciwa you to adjust program execution speed from the keyboard by 
ntetl.ng ff betwee~O a_ nd 255. PACE•O halts program execution and permits 
ou iQ aingl~-atep through it by pressing the ESC key. The program will 

~~ec:>'..te. o~e line ea~h time the ESC key ts pressed. 

·~AC&·-~~5 sets full speed for the system. \11th all screens being 
indrtt'ain.,d, PA<.;J,:.:.75 will result in an execution speed of approximately 
'o~e ' ltn~ per second. Additionally, you may (during program execution) 
set PACE•O by pressing the back arrow (<--) key. Then use ESC to single 
··tep. You may also-· set PACE•255 by pres'!ing the forward arrow key 
( .. -)). ( 

PACE.,.l'DL(P) 

Allow• you to adjust program execution speed by the u~e of game paddle P, 
where P may be either 0 or 1. As described in Level 3, the settir.g of 
t~e paddle will result in a pace from 0 to 255. If you have set the pace 
l>t the game paddle, you can change the pac" during program execution just 

Page 36 



by turning the paddle. If pace ta not o. pressing the paddle button will 
halt execution. Releasing it will cause execution to resume. If pace ia 
zero. you can use the button to single-atep through the program. Ooe 
line will be executed each time the button is pressed. During execution. 
preaaing the "O" key wlll put the system l nto the PACE-PDL(O) state. 
Similarly, the "l" key will put ·the machine in. the .PACE-PDL(l) state. 

"ore than likely you'll develop some programs you"ll want to keep or you might 
want to save a program in its current condition. The next keywords allow you 
to save and recall program files to and from disk. 

ROLLOUT Name 

PenDita 
exactly 

1t11tlk. 

you to save the program in memory to disk with the system in 
its current status. Name may be from one to six characters in 

Tlit f lr1t ~h1's~t1P mult hi A l1rr1r; lllbllQUlnt ChlrlCtffl CID 
b.e either letters or numbera. 

Examples of permissible program names are: A, DEHO. HYPRO. PROG99. If 
you have only one disk drive. entering ROLLOUT name will display the 
foll.,,.ing me•aaga: 

PLACE ROLLIN·ROLLOUT DISC IN DRIVE 1 
P!tESS SPACE TO CONTINUE 

~fter your program has been stored on the disk, a second screen message 
will appear that e~ya: 

PLACE HHB SYSTEM DISC IN DRIVE 1 
PRESS SPACE TO CONTINUE 

tf you have tw~ disk drives, be sure that your program storage disk is in 
4dve ~ a"j then type llOLLOIJ'I' name~2. !Jben your pt'o~l!'am Jtiu hu11 ntaud 
on the di ~k, you ~ill be returned to the command screen. 

Jlotei lf you do use the drive 2 option. then drive 2 will become the 
sy~tem d¢f'!uH for all other storage and retrieval operations. If you 
wr~f to µse drJva l you will have to do so by entering ROLLOUT name,l. 

name 

Permits you to read the program name from ~isk back into the system. If 
you have only one disk drive, entering ROLLIN name will get you a screen 
~esaage that says: 

PLACE ROLLlN-ROLLOUT DISC IN DRIVE l 
PRESS SPACE TO CONTINUE 

~fter your program has been read in from the disk. a second screen 
~~ssage will appear that says: 

Page 37 



PU.CE HHS SYSTEM DISC IN D.IHVE l 

PRESS SPACE TO CONTINUE 

If you have two disk drives, be sure that your program storage dtsk ts in 
drive 2 and then type ROLLIN name,2. \/hen .J<>ur program has been read in 
frOlll the disk, you will be returned to the C.0..cand Screen. 

Note: lf you do use the drive 2 option, then drive 2 wi 11 become the 
system default for all storage and retrieval operation&, and If you want 
to use drive 1 only, you will have to do so ~y entering ROLLIN name,l. 

~"hen the program comes back in, the systeo. vtll be in exactly the same 
condi tlon 1t was ·in when you rolled the program out. All the screen 
•elections will be the same, the brea~points will be the same, the point 
o~ execution will be the same, and so on. lf you were debugging, you'll 
be able to pick up right where you left off. 

f1n1llJ1 al 1011 p~ln,, yov'ru go,ng 'g Yiu' 'g liiil~C 1 prggr1a 1t1rc 
ji~cuti.~. 

~IJ~ 

Ca~ ·'!°'~ 'tvl> aets of ;octions to occ .. r. 

Fit.~1 

2. 

4. 

"· 
' 1. 

The ~rmbol table ts cleared. 

The P~""dorandom number generator is reset. 

The ?ata p0inter ta reset to the first itea. 

AH branching statemel)ta (COTO, os-c;oro, COSUB, and IF· 
t~EN) are checked to· be sure their destinations exist. 

All FOR·LOOfa are checked for proper atructure. 

All branching statements (except RETt.itN) are 
checked to make sure they do not tranaf er execution into the 
body' of ~ FORLOOP. 

The existence of only ·one EN~ stateo:ient is assured. 

Second. if ~he program passes all the tests, thO!n RUN also causes program 
~xec~tion t~ begin. 

It 1~ ~~por~nt for you to know about itet:1a 1-3 so that you understand 
vhy your program executes as it does. 

lt !Jny erri>t• of the types described lo 1teota 4-7 are encountered, • 
diagnostic message vtll be issued sod execution will not take place. 
The~,. 1trror message• are described in detail in the section •static 

Page 38 



Errora." There are other possible programllling errors that cannot be 
detected until execution time. Messages resulting from those errors are 
described in detail in the section "Dynamic Errors." 

Sc.reena 

UITI~-HiH'nl PliHw 'llftnf .. ~llf information on six Ir.Inds of activity during 

progrµ execution. It can put this information on display in s!x Jifferent 
screen formats at any time. These screen formats and the information they 
(:onJain will be described in conjunction with the demonstration program. A 
referehce summary of the screen descriptions and control keys ls presented 
here for your convenience. 

f,doilt!onally , you will be offered the ability to "halt" and restore the 
maintenance of four of the six screens at any time during program execution. 
These· screens contain a great deal of information. They can show you exactly 
h~w .' your program is executing and serve as s powerful debugging tool. 
Hiliili::'!i!lt ng all . the special screen information is quite costly in terms of 
~l(e~Qtlon speed. At some point in the development of a program, you will no 
~opg~f neec! to l<eap thll sptlcfal acreena up-to-date. Stopping all screen 
mafritenance can speed up· your program execution by a factor of about four and 
a· ,lt1ij f • l~ you do dec~·cie that you va·nt a special screen baclt, you can always 
r<!~t~r" lte maintenance. 

W.col'i you halt a screen, the halt numbe.r will appear highlighted under the name 
~f·' ,ti)~ scre!'n or disj>by. When you restore a screen, the highlighted halt 
hum~er will be removed. 
,. ': · !\ . . ' I . 

Thh h the scree!) from which you'll do all your progra:nllling, editing, 
and other activities normally associated with the programming process. 
'tfl~ Command Screen is maintained at all times and cannot be halted. If 
you are viewi·ng another screen and wish to switch baclr. to the Command 
Scr.,en, pr~ss CTRj.-C: (if execution has paused for a system command, or 
just C if jnput is not being requested). 

Ue~r Print Screen 

Tlli,s sc:;ree.n ls ;1nalogous to s printer. lt shows information that the 
progra• has determined to print, including usual outputs as well as other 
items such as prompts for input made during program execution. Whenever 
you tun a program, the screen display automatically switches from colllmand 
tb ul;;er print, and to leave it you will h'ave to use one of the screen 
control characters. 

'fhe User Print Screen is maintained at all times and cannot be halted. 
lf >'f:>u are viewing another screen and wish to switch baclr. ·to the User 
Prin~ Screen, press CTRL-E if execution has paused for s system command, 
l>F juat E 1f input is not being requested. If you are not viewing the 
Us~r Prlnt Scr.,en when an output ls printed, a flashing ·o~ will appear 

Page 39 



in the upper right hand portion ~f the screen you"re watching to let you 
'Ir.now about it. 

If you watch a program run to completion on the User Print Screen. 
when an END statement fa executed. the display will automatically switch 
bac'lr. to the Command Screen and you will have to switch agairi to the User 
Vrint Screen to see the final lines of output. 

·List-Trace Screen 

Thia acreen maintains a listing of the portion of the program that ta 
·curren~ly being executed. w1 th the next line to be executed highlighted. 
~~ng1e·atepp1ng through a program in the list·trace mods will show you 
the eequence in which the program lines are executing. 

Thia scre•Hi is a dynamic instructional aid aa well as a debugging cool. 
If you are viewing another screen and wish to switch to the List-Trace 
ficrean. enter CTRL-Z (if execution baa paused for a system command), or 
'jua~ Z if input 1a not being requested. To halt maintenance of the 
~~~ t-Trace Screen, enter 2. To restore it. enter 3. 
/j''i

C~fO"!Ological Trace Screen

1·
tj\ia +creen maintains a list of the program lines as they are executed.
al9ng vith the name and value of any variable changed in a program line.
:H · l,i1$11t be thought 13f a• a printed record of the activity shown on the
tl1,~Trl'I Str@IR, ln~ 11rv11 II Aft iftltPU~eteftal •n4 deliug~lng ald in
't!le same way, If you are viewing another screen and wish ·to switch to
the chronological trace screen, enter CTRL·T if execution has paused for
,a ; ay~tem C:Oail!ISild or' just - T if input 1B not being. requ~sted • . To h~lt .
maintenance of the Chronological Trace Screen. enter 4. To restor.e it.
e11ter S.

Monitor $¢reen

'fbia 8Hee11 llJ'lows a list of the program line numbers from which currently
aftlv.• ,. •'tbro11tineit were called. a r .ecord of all variables specified for
monitofing by the keyword MONITOR ~. their current values, and the
prograu line numbers in which they attained their current values. If you •t• · vtewing another 'acreen and wish to ev~tch to the Monitor Screen,
enter CTRL·Q if e~ecution hea pauaed for a system command or just Q if
thput 1• not being requested. To- halt maintenance of the Monitor Screen,
ehte~ 6. To reatore it, enter 7 •
. ·~ . I.

Ca11H?rl1 When you halt the MonHor Screen, it stops right where it la
and keep• the information that waa on display when it was halted. If you
h~it .the Monitor Screen during subroutine processing and then restore it
whep ~he aubrouttnea are no longer being used, it will display historical
tnron!µttion which is no longer valid subroutine information.

Page 40

FORLOOP Screen

Tl)is screen displays, for each currently active FORLOOP, a listing of the
program line containing the FOR state:oent, the initial value of the
index, the limit of the index, the increoent, and the current value of
the index. Th.e FORLOOP screen is a partl<:ularly valuable debugging tool
vhen using calculated loop indexes. If you are vieving a different
•creen and vish to switch to the FORLOOP Screen, press CTRL-F (if
execution has paused for a system coa.mand) or just F if input Is not
being requested. To halt maintenance of the FORLOOP Screen, enter 8. To
rea(ore it, enter 9.

Caution: Wheo you halt the FORLOOP Screen, it stops right where it is and
saves the information that was on display when it was ha lted. If you halt
~he FORLOOP, Screen during FORLOOP e xecu tion and then restore it when no
~OjiLOOPs are being used, it will display historical, no longer valid
i'ORLOO.P infot"lllatlon.

'•

Page 41

Summaiy Of HAND-HOLDING BASIC Screen Controls

Screen Input No Input Halt Restore

Command CTRL-C c

Uao Pdftt ~11.·I I
L-Trace CTRL-Z z 2 3

Chron Trace CTRL-T T 4 5

Mqoicor CTRL-Q Q 6 7

For-Loop CTRL-F F 8 9

I

~ ErrofS

~'I ~he defini~.ion of the keyword RUN, we learned how the system make• a aerie.•
p!1 ~\\~~.~It ql' ~he progru before execution begins. These are the messages that
ma:;'~·· printed as • result of those checks.
I I .. ,
' Aeov£ COTq TARGETS ARE NOT DEFINED

i·· , ., • , '

'fbte .IJi!e•sage meana that you have tried to transfer program execution to a
nonexistent line number. It will also list the lines in which the errors
oc~u~ .reil ~th the faulty target line number highlighted, such as:

49 roto 291

9!J ON N2 roto l4!J,l8!J,4!J,3!J!I

15 oosu• 3'1lff '

14~ IF J/l<>tNt(J/2) THEN 1(1

OPtIO~ BASE l«JST BE lST STATEMENT

"
Ii; 1,ou bave chosen to define the option base, you must do so as the first
1>t.ograiii line.

LISTED !NJ> STATEMENT SHOULD BE STOP

Thff! o>eusge will also list the line where the erroneous END statement
Wf!e found, such a•:

Page 42

99 END

A program can contain only one EliD stateoent which must be the last
physical line of the program. Any logical halts wust be forced by a STOP
statement.

END STAlEHENT MISSING

A program must contain an END stateoent · as its la11t physical line.

HORE THAN 5 DEEP FOR•LOOPS

For-loops can be nested only five deep.

INPEX REPEATED

'fhe same tndex is repeated ia two FOR statements without an intervening
N.EXT statement.

Jl'.IPEX DOES NOT MATCH

Thi• !Ml•aage means
h not the· same as
should correspond.
occur~d, such as:

62(> NEXT z9

that the index variable in the listed next statement
the index variable ia the FOR statement to which it
This message will list the line ia which the error

Reme~bet that next statements have to be worked back from the inside out
~~d i.ake sure you don't have two of them backwards.

NEXT HlSSIN~

This message means that there is no next statement to correspond with a
)'oR ' statement.

ABOVE TARGETS JUMP INTO FOl\•LOOPS

Thia message means that you have tried to transfer program execution into
the middle of a FORLOOP body, which is not permissible. It will also
itst the lines ln which the errors occurred with the faulty line number
h!~hlighted BB Vi th the undefined ~CQTO· targets.

Page 43

Dynamic errors are those errors that occur during program execution. When a
dynamic error is encountered, execution will be terminated and the error type
will be reported. The messages listeJ below describe the dynamic error
conditions. Besides these full messages, the errors will also be reported in
the upper left portion of the screen (in an abbreviated wsy) in the general
format:

l nu111 MES SAGE

here lnum is the number of the line in
abbk~viated messages are shown in the
MESSACE).

which the error occurred. The
descriptions that follow as (lnum

lf yo~ look at the List-Trace Screen after an error has been repol"ted, the
highlighted line wil 1 be the one 1·n ·which the error occurred.

it yoit look at the Chronological Trace Screen after an
· ~epon~4· the lot (lowest) line shown will be the one in

~c.¢urfed• .

l)N ·1.N[)E~ nn IS PUT. OF RANGE (l_num O~ ERROR)

error has been
which the e_rror

Thh mes'i!iage means tnat the 1irdn fo an· ON~COTO · statement Is reu than ·
one bf gireater than the numbeir of ·target ltnes in the 11.st; nn la the bad·

~ndn value,

-~i~·DATA MlSf!ATCH dnum· READ·DATA MISMATCH)

'.I'ldll message means that a ·ciatu111 in a DATA statement was not · tlie · type
specified in the READ statement. That i.s, an attempt was made .to read· a
s~flng value into a numerical '\{ariable, o.r vice versa .• The misma tched
variable name and datum will also be listed under the error message in a
fol:JI)' like!

Al•.;f.B!:D,; or

R.E.i\i> lS O~t OF DATA (lnum OUT OF DATA)

This ~ssage means that a READ statement
read.

'

YA.11.lJ,BtE TABLE FULL (lnum VAR TAB OFLOll)

carf find no more data items to
i

IJ'hla mewsage means that you;ve defined roore variables than the Symbol
Ta~le can hold (255 maximum).

Page 44

FOR-LOOPS SIX DEEP (lnum FO&-LOOP 6 DEEP)

Thla message means that you've nested FORLOOPs more than the allowable
f tve deep

TAB (nnn) lS OUT OF RANCE (lnum TAB RA.'iGE ERROR)

This message meAns that you have issued a tab call that is greater than
255; nnn ta the bad tab value.

COSUB STACK FULL (lnum GOSUB OFLOW)

This message means that you have issued more than twenty GOSUB calls
without encoun.tering a RETURN state,.ent. Whtle t here ls no limit to the
number of subroutines you can have, the GOSUS sta.ck can maintain only

twenty kfflJR..~ targets.
RETURN where you really
~e-calling itself.

'h! s e eeor af gk~ occ~t U~~~ YAU ~AUi ~A~ ~1·~·~ A
intended it to be, or a subrouti ne ls erroneously

RETU~lf ~ GOSUB STACK EMPTY (lnum GOSUB UFLOW)

flits 113ess~gl! mea11a that execution has. enc_ountered a RETURN statement
without a corresponding GOSUB stat.e:3ent.

var ~OT DEFINED (lnum UNDEFINED VAR)

Thit ~f~Jlt tnd~cates ~hat the variable var was not found in the S1"'bol

Table. · Unlike Level 2, Level 4 does not per;lli t you to assign a v11.lue for
vat . and then continue. You have to go back an.d def111e var vith a· LET
8t~tement in your program and then rJn it again.

· /ar(). OUT OF RANGE (Inum .J.RRAY R.A..'iGZ ERR)

Tb:!.• s .t4teaierit means that you have atte01pted to use an array subscript
beyond the limits established by the OPTION state::ent or var's dimension
statement. The expression var() will appear in a form such as:

A(l2)

8~~8,

or

N(5 •. 99)

'!'here the laa.t subscript shown is the bad one.

var HAS \.IRON~ NUMBER OF SUBSCRlPTS (lnum WRONG I SUBSCRIPTS),

This meti&age means that you've
one-dimensional array variable
two-dimensional array variable.

supplied either two subscripts
or only one subscript

STRING TABLE OVERFLOW (lnum STRING TABLE OFLOW)

for
for

a
a

This message means that you've tried to define too many string variable•
(6 maximum).

var HAS NOT BEEN DIM.ED (lnum ARRAY NOT DIH'ED)

This message means that you've used a subscript greater than 10 without
fJrst dimensioning the array.

ARRAY var IS OlM'EO 1'/lCg (lnum TWICE OlH)

lhls message means that you have attempted to dimension var after lt.'s
alrea_dy been dimensioned.

i'

~· deiDonstr~tion prograi\i has been included on your Hand-Holding BASIC disk to
~t\i~ you' !!om~ experlenct! with .using the screen contro.ls and Level 4 keywords.
,~ njli t~ show you euctly 'what infcorma·tion each of the screens contain.
ji ' '

ff, ro11 Jlave just started _reading here from Chapter 2 to run the demonstration
progrll\lli P'lt the Hand-lloldlng BASI.C disk In dr.tve l and then turn the power
on. The program should load automatically without any further action on your
part• (If you have trouble, refer to Appendix A.)

W\>~n the ptogtatil \las loaded, your screen· . should be ·displaying the :progr.a.111
n111ae, the copyright notice, and so on. Press the space ba.r, and the screen
~hquld be blank except for the words "LEVEL l" In the upper left hand corner,
~ith a fiashing cur~or below them.

The jy~b()~ "<ck)" vii 1 be used to mean "press the key marked RF.TURN on your
Ap~le k~yboard'.

Tyj,e LEVEL4 (CR>, and the LEVEL 1 in the upper left corner should switch to
LE'VEL 4~ Now you're all set to go on. Enter ROLLIN DEMO <CR>. You will get
a ~~t~en mes11age that says: I

PLACE ROLLIN-ROLLOUT DISC IN DRIVE 1

fRESS SPACE TO CONTINUE

Page 46

Since the demonstration program is on the system disk in drive 1, you can juet
press the space bar. After the program has been read from the disk, you will
get the same message. Again, just · presa the space bar. Now you should be
looking at a comtnand screen with the program listing shown 1n Figure 2. The
progra111 itself is a do-nothing infinite counter whose sole purpose 1n life h

ts urv1 u i d@1MiliHAt lnn ~r Mand•lleHlft~ unc.
So that you'll unders tand what's. happen!ng\Jhen you single-step
here'• how it worka. Statement 19 defines the initial value of
N. The program then goes through statements 29 and 39, where the
the Xl and X2 fORLOOPs are set up. At statement 49 it ca lls
st a r t ing at statement 89, which sends it to a subroutine st a rting
~~. ~t statement 199, N ls i nc remented by one and printed on the
Sc reen.

through 1t,
the variable
indexes for
a subroutine
at statement

User Print

The tlrst time the program encounters the RETURN .statement at line 129 it \Jill
retutn to the target set by the most recent subroutine call, GOSU8 1\19 in l.ine
~i . clear that return target from the COSU8 stack, and land at line 1iil9
again. The second time It encounters the RETURN statement it will go to the
ni;xt return target in the ·GoSUB stack, the one set by GOSUB in line 8~, which

. ~&'· u~e 9~). The .third .time It encounters the RETURN ostat..,ment the l'.eturn
.~~rs~t ,will be t .he one set by line 99, or lin., 109, and N ge.t s f.ncremented and
pr,l ~ ted again (~nd the return targ.,t set by line 9\l fs cle a red). The· fou r th

tf 11 m mu11 · 1~t~~~uu t~1 ~m~~ nm~rn I m ~~l~ rmrn um~ un
~~ ~h" eMUn Hae~ ls t~" one set b1 ~Mun A5 ln ilne U, or Hne !5. Now, ti

··an, .of 'thh l• corre l:c; the sequence of events from line 49 ·should be (and
yqti' i 11 hav• a cha nce to check it out):
r··) · •

4~ 8~ 9~ 10~ 111' 129

11'9 ·119 121f

9~ l~~ 119 i2~

109 11~ 121'

59
' '
~I' 89 99 10~ 119 129

~nd so on.

/Lft !!r th'.e Xl FORLOOP body of sta teme nts has been / executed four times, the
program goea back to l i ne 29, and the count goes ~D·

The information at the top of the screen is present on all screens except the
bs~r Print Screen. The message in the upper left corner tells you \Jhfch
Jland-Ho}dlng BASIC level you're In, and, in the middle of the top line,
¥h~t~~r· ~he eystem ls treating angular values as being expressed in degreea or
in radiana.

At the -iaf t end of the setond line, the number 12~ indicates that program
et~tement i29 \Jill be the next one executed . When you see the term SPACE BAR
thl·• me•ns that executfon was halted by pre9slng the space bar.

Page 47

FIGURE 2. Command Screen.

Page 47a

At th• right 1md of th@ ncond 11n11, thl! 11u!l!U 2 !11d!~Hu ti!!! ti!@ prepu
1• . currently two de.ep in FORLOOP'a, and t he nu::iber 3 indicates that 1t h
three deep in aubroutines. The word COHXA.~D tells you that you're on the
Coamand Screen. The other screen names will appear as LTRACE (list-trace),
CTRACE (chronological trace),.MONITOR, and fOiU.OOP.

At the far left on the third line, the highl i$hted letters ESC indicate that
pace haa been set to zero from the Keyb¢.&rd and that you can single-step
through the program by pressing the ESC key. lf the program were running at a
pace lea• than. .:1.55, the numerieal value of tl:e .pace would be s.hown in this
area.

~ow pre•• CTRl.-E :o awltth to the User Print S>;+een. There 1oy'll see a ~9l~lllil

of outputs as shown in Figure 3. All outp~ta froa progr~ print statements
•pp~&r on the user print screen, and there is ~o other info~tion there so
~114~ you can have full use of the 4~·character by 24-line acreen, just as you
wi:itild with any other BASIC system.

FIGURE 3. Output Screen.

Prea• CTltL··Z to awitch to the List Trace Sere~. It should show, as in Figure
4, the same top-~f-acreen infonaation descri'!>ed with the Command Screen,

Page 48

together vith a liating of the pro~ram. But now line 12~ ia highlighted.
Thll ~l1pl1y 9f lln~ ln rev,rse video (black on white~ indicate• the next

line to \,e executed. ll you view the Llat·,race ~creen while a program la
executing, you will see the highlight hopping around fr~ statement to
atatement following execution. The screen d1splay 0 (the portion of the prograJa
aho\rn) niay change if the whole program is too long to appear on a single
acreen according to the following rules.

If the next statement to be executed is already on the screen, the highlight
~ill ~imply move to it.

If the next statement ia at the bottom of the screen, the program listing vill
~croll up, and the highlight will be on the second last line of the screen.

Otha"'iae, the next
v111 appear at the top
foHowfog.

statement
of the

to be executed, together with the highlight,
screen vith succeeding program atatementa

~f you •ncounter a dynamic error, the highlighted statement will be the one in

vhlth rh1 •rror oacurr1d,

FIGURE 4. LTRACE Screen.

Nov pre&• CTRL·T to switch to the Chronological Trace Screen. There you will
ae,, ·a mixture of proaram statements and variable na:nee and values with line
l~~ at the bot t .om of the screen. The Chronological Trace Screen shows the
"Uext progr.- statement to be executed. After execution. the name and value of

Page 49

any variable that was changed in that statement is also shown. Blank lines
between statements mean that execution isn't sequential. If you encounter a
dynamic error, the last statement shown on the Chronological Trace Screen will
be the one in which the error occurred, as explained in the List Trace
Sere.en.

FIGURE 5. CTRACE Screen.

No~ pre~s CT~-Q to IJWitch to the monitor screen. In the upper right portion
Qf the screen fOti should see the numbers:

91>+

The number j next to the screen name means tJat you are three deep in
etibtoutines, The numbers 40, 80, and 90 are the line numbers from which the
~uhroutina calla were issued (a representation of the GOSUB stack). The •+•
followina each line number means that a RETIJRN statement will transfer
ex~cutiQn baclt to the .first statement following the one from which the
aubrou~ine call was issued.

Page 50

F.IGURI!: 6. Mon! tor Screen.

Nqw r~t•• CTRL"F to switch to the FORLOOP screen. There will appear, aa shown
iq figure 7, the two FOR statements plus two lines of information under each
FOR atateusent. The number 2 to the left of the screen name means that you are
two de~P in FORLOOP's. These are the two FORLOOP's currently on the screen.
Fqr each FO~LOOP, the information appearing below it is:

llTARf - the Jn1t1al value o~ the FOR index

Fl~ - the limit of the FOR index

STEP • the index increment

~NDEX • the current value of the index

The FoRLOOP iicreea can be particularly valuable when you are ueing calculated
iridexea.

Page Sl

FIGURE 7. FORLOOP Screen.

Experiments with the Demonstration Program
' '

1. frees ctRL-C to return to the Comcnan~ Screen. Then press (CR) to resume
execution (whic~ will automatically ~Jitch you to the User Print Screen)
and set the pace at 255 by pressing the forvard arrow key. One by one t' ow, ~witch through the screens (using the appropriate letter--the CTRL
ey is· not 11ecessary when the progra:o is executing). . Watch what'•
~ppe'ni11g on each of them. Make sure you stay on the MOSITOR and FORLOOP

scrl.ena long enough to see the GOSU:a stack and FORLOO? information come
and ~o a couple of times.

2. Return to ~he mi:>nitor screen and note that there isn't cuch on it except
the GOSUB stack. Press the space bar to stop execution. From the
Command Screen, enter:

}J)NITOR N<Cit>
MoNITOR Xl (CR)
tjoinroll x2<cR>

Now pre•• <cR> one more time and watch what happens.

3. Stoj> j,xecution again (by pressing the spacebar) and en.ter:

Page 52

RUN(CR)

Nov lnlitch to the List-Trace Screen. The highlight should be on line
UI. Preu ESC three times to get ·to line 411. - Single-step through the
program to check the action of the highlight against the progr'1lll
description. You should be aure you understand ~Tiat'• happening.

4. \Jt>en you've single-stepped through the progrlllll aa far ae you like, return
to pace 255 by pressing the forvard arr<>11 key (--)). Watch the highlight
~ve until you have e good feelina for hov fast the program 1• running.
Nov atop the maintenance of the Chronological Trace, Monitor, and the
FPRLOOP screen• by pressing (not too rapidly) 4, 6, and then 8.

Watc~ how the speed of the highlight increases when the maintenance of
theaa screens is not being perforu:ed. Also note that sa you stop
~intenance .of the acreens, the control numbers appear highlighted
1~n4HRC1fh ~llfl IH<l"IR nallll ,

T9~ may, if you viah, restore maintenance. of those screens. by preasing
~~~! ~~ 9, and watch execution apeed alov down again. If you vent the 
d.18$no• t1c• 1 leave the screens on. If you want speed, you can turn them 
oH· 
tr 
lf, you J.u~i>ad to the demonstration progrma fro<a Chapter 2, you should nov 
~~ back ~nd read the instructions. If not, then proceed lrl.th: 

5; Stop exec~tion again, then enter: 
! ; 1 

LIST(Cll) 

and ~ou will see a new program listing come up on the screen (you can 

tlU~Y• gar 1'J1Btlng 1n th11 U!J). Mou IR!I!! 
NEW(CR> 

ai1d trr listing the program again. It's gone! That's what the keyword 
~*w, dpfs• Also try running the progr'1lll again. It won't work because you 
can t ~n a ~rogram that's not there. 

With t~e user program cleared, you're now ready to go on to the problem. 

Page 53 



love Thy Neighbor 

Uere•a the pro~lem: • number of points are distributed at random on a straight 
line. What is the probability that a point is it'a nearest neighbor's nearest 
neighbor (in magnitude)? For example, if point 1 is the •nearest neighbor• to 
point 7, what ia the probability that point 7 ·ia point l's nearest neighbor? 

The situation is shown in the list of point• below: 

Point 
l 
2 
3 
4 
5 
6 
7 
A 
g 

11 

Number Value 
.1898498 
.6146544 
.~212\1971 
.1151428 
.4426269 
• 7 55371 
.149414 
.81,921 

.nmn 

.nmJ~ 
A•gumina ~hat no computer were available, an empirical (experimental) solution 
.t~ 'the· problem could be developed using a pencil and paper and a book of 
random nu!nbera. As you might imagine, the ""'re numbers you choose (and hence 
the . cloa.ef" you got to a real solution) the ""'re tedious this problem would be 
to oolve. ~nually. _ 

I' 
Fqrtunately, a 
i/oluticm, and 
11tepa. 

computer is available. Ten numbers vill be used to outline a 
th• problem will be a>odeled and the program developed in five 

1. Pla¢e ten numbers at random on a straight line. 
I 

2. ll.!!tc!rmiri11< which point each point e<>nsiders as its nearest 
neighbor. 

3, Te~t the program so far. 

4. petermine which pairs of points regard each other as mutual nearest 
nelghbor11. 

5-. Count and report the number of pair• of mutual nearest neighbors. 

The following aequence will model placing ten random points between 9 and l on 
a at~aight line. · Key it in. 

Page .54 



lit DIH X(llJ) 

Zit FOR N•l TO lit 

31t LET X(N)•RND 

4~ NEXT N 

Th~& sequence juet fills each ol the ten arr•y slota wflh a Paftdem ftU!~@P. 
Run lt~ and while it-a running, look at the List· Trace and FORLOOP screen• 
and , vat ch what happen• as it executes (you can run it ciore than once if you 
want to). When it's finished, use the keyword SYMBOLS to look at the symbol 
11ble and see what numbers have been generated and stored. 

T~t next step la to detennine which point any given pofot considers as ita 
neiilre4at nelgltbor. ' What detennlnea a nearest nel.ghbor h the am.a llest 
d~ff~fenc• J>i!tw,en the teat number and all the other numbers. The method that 
vip l.e ull•d to. fi~d the amalleat difference le aometimee called ·swapping our· ·~d· in gerieral. it vorke like this: 

l • Initialize ail impossible value as the smallest difference. 

rind the difference between tvo points (new difference) and 
I , 

comr are ~t to the smallest difference. 

I 

ti the new difference la smaller than the current smallest 
di~ference, then replace the aaialleet difference with the new 
difference. record which point produced the nev smallest difference. 
and go to the next point. 

4: tt, t\le new difference is not am.alter than the current smalles.t-
41~~4nc•, juat go on to . the next point. 

The · following sequence will swap out, searching for the smallest difference. 
and record the _poiqt number that caused the smallest differenc~. The 
variables are; 

S • seal leat difference 

~ • ~ny point number 

Tl • the poi)lt whoae--nearHt-- neighbor is - being -sought 

P ~ t~~ difference betveen the test point and any other point 

T2 • the point that caused the smallest difference 
(th e nearest neighbor) 

Page 55 



81JllJ FOR N•l TO l!J 

8IJ2!J IF N•Tl THEN 81J7!J 

81J31J LET 0-ABS(X(Tl)-(X(N)) 

81J41J IF D)S THEN 81J71J 

81J51J LET S•D 

8IJ61J LET T2•M 

81J7il NEXT N 

Q9~ Shi• 11,vcw.• run~~iont ~9if1rc~ to the 1~nera1 situation of avarp1n1 out 

atgb5 lie c1pr111c~ i'~' 5h,1i 
'· 

8\JIJ!J. Initialize an impoaaible a:n.allest difference. Since you know that 
all the difference• here are going to be leas than one, a value 
of S•llJIJ will fail the firet teat in atate10ent 8\1411, and the 
first real difference will beco~e the first smallest difference. 

8~1~. Set up the for-loop counter• to check all ten points. 

8!J2!J. If the current point h the aaJH as the teat point, go on to the 
next polnt (81J7IJ); that is, don't check the teat point against 
itaelf~ 

81J~J. Define D as the difference bet..,een the test point and the current 
point. · The absolute difference ia used because only magnitude, 
oot dire~tion, ia important. 

81J41J. See if the ne"' difference is larger than the current smallest 
difference. If it. ia, go to the next point (811711); 1f not, 

Replac• the old s:nalleat difference vith the new smallest 
difference. 

8~61J. De;ine !2 aa the point that caused the smallest difference (the 
~eareat neighbor). 

Establish the next point (and go to 8\!12\J) or quit (and go on to 
the oext statement). 

~T those eight lines in, theo make a sub/routine out of them by adding: 

Now i t'~ time to teat vhat you've eotered. To do that, add these statements: 

51J I.ET Tl•5 (and notice that you're overwriting the previous 511 ENO) 

6~ OOSUB BIJIJIJ 

Page 56 



7{il PRINT T2 

8{il STOP 

99119 END 

List the program out to be sure it's okay, then run it. As before, look et 
the list-trace and for-loop screens and watch the prograa execute (and, as 
before, you can run it more than once if you want to). According to 
a tatl!fllenta 511-89, you·re going to use subroutine 811~'1 to find point s•a 
nearest neighbor, then print out what it is and stop. 'When the prograa hae 
·~inhhitd execution, use Ctrl•E to go to the user print scree!\ and see what 
·l>Glnt s~ •. nearest neighbor. b. 1t should .be 2. 
lf Yt>U got the right answer, you can modify the program slightly to allov you 
to check a fev more points. (If you didn't get the right anftwer, you•d better 
llat out your program and find out vhat•s wrong.) Co back to the colllllland 

'•'''" tlli ' e~· 
$f ~Un' •tl:Pll'f Tl I 

$5 INl'uT Tl 

S{il CoTO 5{il 

~\.1? ~~- pew ptogta111 and try .5 again. Then try 2--1ts nearest neighbor ts lfl. 
Try ~'1-~~ts near~~t neighbor is 6. Try 6-•its nearest neighbor is l{il. 

~ut .: 'ot t~• . four o~aervationa you·ve .,.de, tvo points out of four regard each . 
other aa nearest neighbors, which might te<>pt you to infer that chances are 
~~~5~ that a po~nt will be ito nearest ceigbbor•a nearest neighbor. Nov you 
can alter' the program a little more to teat your hypothesis •

. " I .

$r~~~ out of the input loop by entering a Clll1aber and pressing the space bar
~efore th- progr8"' has finished executing. Delete line SS with DEL 55, then
enter' these new lines.

11 pxti cn!J>

SIJ FOil Tl•l 'fO l!J

79 UT C(Tl)•T2

~PRINT Tl,T2

9~ NE:;<T Tl

lil9 s·rop

What thia portion of th• progra:a will do is set up the test paints (Tl) with a
f~r~loop rather than having you enter them froca the keyboard, and then store
ail the nearest nelgobora (T2) in the C array. Run it and watch the user
Print aeteen: the left column of number• is the teat points; the right colU11D
i• the nearest neighbors. (Use SYMBOLS to have a look at all the variable•

Page 57

You're maintaining . now.) By observation, you could count up the mutual
nearest neighbors--but why not go on to atep five of the original plan and let
the computer do the counting? Add:

UI' LET Z-0

Ut i.u t2-c{t1)
1311 IF C(T2)<>Tl THEN 1511

1411 LET Z•Z+l

15\l NEXT Tl

161l PRINT Z

l71l STOP

~n fhl·• . . a.eq. uence, Z ia used as a counter for the number of 111Utual neighbora.
~tate111ent• 11~·15~ loop through all ten points; statements 1211 and 1311 check
.tr~e·a \'lliether Tl '11 nearest neighbor regarda Tl as its nearest neighbor. If
!Ii) , · z i. incr emented by one; 1f not, the next p01nt 18 tried.
I '
N~v .futt the progtSlll and watch the results on the user print screen. At the
~o~tq.;, ~f t'he lisf.qf neighbors you should see the number of mutual nearest
nelgh~or' reported · as 6, or, at least for this trial, it looks like chances
,It!!· 1~ lf' 11' <?f any number's being one _of a p~ir ·of "'utual nearest neighbors.

,Fit)ally, so that you aren't using the sc:e ouobera every time , add:

l~ RANDOMIZE

~uo the program as many times as you like and see what kind of answers you
set.
on your own, you might want
of 'thi• , ,progru as are
times, arid find the average
Or, tefer to the June 198\J
problena ~a• adapted.

to try building a larger loop around such portions
necessary to get it to execute 1\l, 5\t, 1~\J or more
number of mutual nearest neighbors for all runs.
issue of OMNI c.agazine (page 1118), from which thie

Page 58

•

CHAPTER4

APPENDICES

Page 59

APPENDIX A

SETIINC UP THE APPLE 11 SYSTEM

Thia appendix includes a Hat of the equipment you'll need to run Hand

Go1ding Basic on your Apple It. You do not need to read all the manuals, but
they should be on hand to answer questions that ""'' arise in operating the

14uh11nr (t•l• 1 Mw to. Mot a dlibtt1) .
Hand-Holding BASIC is wrluen in 6502 Machine Code.
you~iJ ~eed the following equipment:

b an Apple ~I with 48K bytes RAM; or

I

To use the program,

o ii.rt Apple 11 Plus with 48K bytes RAM and an Integer BASIC Firmware
Card; or.

o an ,\pple 11 Plus ..,ith the Apple Language System.

o- an - Apple Disk -II w1 th Cont roller (16,.Sector PROMs) - (-two disk.· ·
pref~rtel!)l

Q i Vld1g Honltor or T1l1v111on;

,o game paddles (preterred, but not necessary).

For refer.ertce, you should have on hand a copy of the following manuals:

~ This Ma11u~l (A llser~ s Cui de to the Programs);
I

o an Appl~ 11 BASIC Programming Manual (Setting up the Apple II);
I

o DOS lianu•l (How to Boot the Diskettes).

Page 60

Putting The Pieces Tdgether

Here are the steps to follow to put your ayste11 together:

(1) To set up your Apple II, follow the Instructions In the Apple II BASIC
l'rogramadng Manual. You may not need to attach· the Came Controllers,
although there ls no harm in doing so. Your Apple II crust have at least
the minimum amount of memory listed under the equlpcent description for
yoJ to use the programa.

(2) If you already have a Disk Operatlnf S7stem1 and are u•1f11 a version of
DO$ that run• in 13 sectors (DOS 3. 2. l or earlier). you 11111 need to

~:i~111t ~"9 primi Vil 1Vlif ~II~ i9TIHiUn ~II~ \Ii llpQltl Jliur IJltlll tli 10
aactora. Any version of DOS earlier than release 3.3 ... 111 need to be
ur?ated. These proms are also the same prom• that cooe v1th the Pascal
Language System. Consult a DOS 3.3 manual for these procedures.

Page 61

Appendix.!!.

NOT£S RECARDlNC COPY PROTECTION

Special Delivery Software la copy protected, except in the case of
program utilities or template-applications for major products (e.g. Apple
PILOT).

In order to provide you with a backup capability, we enclose a second
diskette. You should definitely store your backup in a safe location,
and NOT use it. In the event your main diskette becomes daJOaged within
the time period of Special Delivery Software's media warranty, you may
return the main diskette to ua for replacement, and continue to use your
backup until we can send you a replacement.

Unlike most other copy protection schemes, our method is selective;
protected and unprotected files may reside on the same disk. On this
diskette, HANDHOLDlNG BASIC is protected, but the DEMO files are not.
Also, program £flea you create from HANDHOLDING BASIC will not be
ptotected. lf you boot from DOS 3.3, you will be able to catalog this
dhkette, FID wiP enable you to transfer unprotected files between this
diskette and other disks 1n either direction, provided of course, that
there ia sufficient space on the destination disk and it is not
wr~~e-protected. In short, the unprotected files are normal DOS files
with all tl)e properties thereof. On ·the other hand, the protected files
'r'"D only be run by booting from the disk on which they reside. Any
•~t!!J!!pt to copy; }oad, run, or verify them from normal DOS will result in
an I/O ERROR. No damage is done; the fact is merely that normal DOS
cannot access these files.

~~mory protection is also in effect. If an unauthor ized form of access

h d1tmed. th1 lll!mory proc1n1on proctdun 11111 Hrn Mr 111' 1n1mt1P1!
~~h ~l'8Mdu fl! h t rb~i! l'i!d ~y pPe!ld!ig the R~Sl!'l' ltey. Once tr!ggered,
Yf"llt scre.e:n '!ill be fllled with R's (or Q's) on a white background. You
will have to re-~ower your system to re-start any new application.

DATA
DIM
END
FOR-NEXT
GO SUB
COTO
IF-THEN
l!fl'UT
ON-COTO
OPTION .
PRINT
RANDQilZ!
READ
REM
RESTORE
RElURN
STOP

APPENDIX C

BASIC STATEHENTS USED Ill

HAND-HOLDING BASIC

r,: l!h~t iot18 i
' . '

ABS ATN BTN CX>S EXP
INT LOG POL RND SCN
SQR TAN '

A•Z; A0-z9
One-dimensional arrays
Two-dimen~ional arrays
A$-Z$

Page 63

BREAK~
BREAXFillD line
B~EAKFIND ;;r
HW1IftU var
l~ttJ(~lST

~0 BREAK

NO BREAK var
b,EL ltne -
QEL linel,line2
mtT l:lne
fINEtRACi
' I NOFlllETRACE
f illD li ne
FIND var
F IND var•
LEVELn
Holl ITOR var

NOHO,N"i'roll
NOHONltoR var

~ONIIDR LIST -
NW
ri\~,,.~ .
rACG .. rgLt n)
IO~Lm nHI
ROLLOUTname
RUW -
SEL~cr

, ~OSELl!CT
SYli~LS

APPENDIX D

HAND·HOLDillC BASIC KEYWORDS

Page 64

SYSTEM AUTllOR~S
ACKNOWLEDGEMENTS

It is a pleasure to recognize the contribution• of those who have helped to
bring Hand-Holding BASIC to ita current state of development. I wish to
expresa my indebtedness to Rudi Hoe88, of Sydney, Auetr11l1a for provi.ding ll)uch
guidance and encouragement; Roger !<eating of Sydney, Australia for originating
the structural concept of levels and giving much advise on the educational
aspect s of the system; Juris Reinfelda an.d Richard Miller, of the Univere!ty

ef ~ee1eagena , Au1tr1l!1, ler 'entrl~utlns mAn; V1lu1bl1 1ugg~atlon1; and

le,lla !111@18&. 81 ~,1111 . 'A~t• . lft~ ~.~ eft~nu ii•m•ftf a I
t would also like to thank the SPECIAL DELIVERY SOFTWARE team at APPLE
-CoMPUTER., INC. for helping to make the ayate11 into a product.

t a~ grateful ·to my· wife Judy for her patience and understanding.

N. 'W. Bennett
September, 198~

NOTES

Page 66

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073

