
1
'1 .
"

f"
"~

:J ~ .~ Apple. II GS/OS", Reference

:.," Includes System Loader

'J~

J_
Volume 1:

I_ Applications and GS/OS

1_

,1 ._
APDADraft

August 31, 1988

ii:I ('~pyright Apple Computer, Inc, 1988

GSiOS Reference f'rajl] (APDA) ,'i .:

ilS Appie Compute!, lne.

ThJ.s rnanual is copynghted by Apple or by Apple's

SUpplielS, ...;m aJl riglus reserved. Under the copynght

taw" this =nuaI may no< be copied, in ...hale or in

paIt, wilhout Ù1e written consett of Apple Computer,

!ru: This =eption does na aIJow copies to be made

for olhers, whctJJe!lX rot soJd, but.u ofÙ1e =i2l
pllIChase-d may be sold, grven, or lent to ano<!tet

person. Under the law, copying indudes tr:mslaùng

iruo mother iJ.nguage.

il Apple Computer, lne., J988
20525 Mariani Avenue

Cupertioo, CA 95014
(408) 996-1010

Apple, the Apple logo, AppleTalk, Apple I1GS,

DuoDisk, ProDOS, M:lCinlosh, md UGS are registered

tr.ldemarks of Apple Computer, lne.

APDA, Fmder, ProP"ùe, and UniDisk are tr.ldemarks of

Apple Computer, lne.

Simultaneously published in lÎle UniIed ~es and

Canada.

2/21J88

8/31/88

'1

CSiOS Rejerenœ (Volume l) Drajl] (APDA)

'1

"1

"1

"1

: 1

1

1

1

1

j ­

1

1

1

1

1

1 ..

1

1

1

Contents

Figures and Tables xiv

Preface 1 1

About tlùs book 1 2

How !O use this book 1 2

What it contains 1 3

Other matertals you'U need 1 5

Visual eues 1 5

Terrninology 1 5

Language notation 1 6

Roadmap to the Apple IlGS technical manuals 1 6

Introduc!Ory Apple IIGS manuals 1 7

Apple IlGS machine-reference manuals 1 9

Apple IIGS Toolbox manuals 1 10

Apple IlGS operating-system manuals / 10

AU-Apple manuals 1 11

The APW manuals 1 11

The MPW IlGS manuals 1 12

The debugger manual 1 12

Introduction Wbat ls GS/OS? / 13

The components of GS/OS 1 14

GS/OS FeaUlteS 1 16

File-system independence 1 16

Enhanced device suppon 1 16

Speed enhancements 1 17

Eliminated ProDOS restrictions 1 17

ProDOS 16 compatibility 1 17

Contents iü

GSlOS Reference (Volul1Ui 1) Draft 3 (WOA) ,'\,3I

Where to find cali descriptions ! 17

GS/OS system requircrœnt'i / 19

Background ta the developrœnt of GS/OS / 20

Part 1 The AppUcation Levcl / 23

GS/OS Abstract Flle System / 25

A high-Ievel inlenaee / 26

Classes of GS/OS files ! 28

Directory files / 28

Standard files / 29

Extended files / 30

Filenames ! 30

Pathnames / 31

Pull pathnames / 31

PrefIxes and partial pathnames ! 32

PrefIX designators / 32

Predefined prefIX designators / 33

File information ! 34

Pilc access / 35

File types and auxiliary types / 35

EOF and mark / 37

Creation and rmdification date and tirœ / 39

Character devices as fIles ! .39

Groups of GS/OS calls ! 40

File access ca!Js ! 41

Volurœ and pathname caJJs / 42

System information caUs / 43

Deviee caUs / 43

1V CS/OS Reference

1
(;.>05 Rtference (Volume 1) Draft 3 (APDA) 8131188

!
2 GS/OS and Us Environment / 45
1

1

Apple Iles rnelOOry 1 46

Entry points and fixed locations 1 47

1 Managing application rnemory 1 48

Obraining application rnelOOry 1 49

Accessing data in a IOOvable rnelOOry block 1 49

AIIocating staek and direct page 1 51

Automatic allocation of stick and direct page 1 52
1 Definition during program developrnent 1 52

Allocation at load lime 1 52

1 GSlOS default stack and direct page 1 53

1

System staltUp considerations 1 54

Quitting and launching applications 1 54

Specifying whether an application can be restatted from memory / 54

1 . Specifying the next application to launch 1 55

Specifying a GSlOS application to launch 1 55

Specifying a ProOOS 8 application to Iaunch 1 55
le1. Specifying whether control should retum to your application 1 56

Quitting without specifying the next application to launch 1 56

1
 Launching another application and not retuming 1 56
Il - Launching another application and retuming 1 57

Machine Stlte at application Iaunch 1 57

Machine Stlte at GSlOS application Iaunch 1 57

Machine stace at ProOOS 8 application Iaunch 1 59

Pathname prefixes at GSIOS application Iaunch 1 59

Pathname prefixes at ProOOS 8 application launch 1 61

Contents

cs os Rt!jerence (~-ûiume J) Oraj) 3 (:·L"UA) ,"', -) J, ,~',~

3 Maklng GS/OS Calls / 63

GS/OS caU rœÙJods / 64

Calling in a high-Ievellanguage / 64

Calling in assembly language / 64

Making a GS/OS caU using macros / 65

Making an inline GS/OS cali j 66

Making a stick cali / 66

Induding ÙJe appropriare mes / 67

GS/OS pararœter blocks / 67

Types of pararœters / 67

Pararœter block format / 68

GS/OS string fonnat / 68

GS/OS input string SU1Jetures j 69

GS/OS result buffer j 69

Serong up a p3rarœter block in memory j 70

Conditions upon relUm from a GS/OS cail / 71

Checking for errors / 72

4 Accessing GS/OS FUes / 73

The sùnplest access method / 74

Creating a flle / 74

Opening a me / 75

Working on open mes / 76

Reading from and writing !O files / 76

Setting and reading the EOF and Mark / 77

Enabllng or disabUng newline mode / 77

Exarnining direcrory enmes j 77

Flushing open files / 77

Closing mes / 77

Sening and getting me levels ! 78

Working on closed mes j 78

Clearing backup sratus / 79

Deleting files / 79

GS/OS Reference vi

• !

(;\/05 Reference (Volume 1) Dmft 3 (APDA) 8/J li88

1

1

1

1

Setting or getting me clmacteristic; / 79

Changing the creation and lOOdification date and time

Copying fIles / 81

Copying single fIles / 81

Copying multiple fIles / 81

/ 80

l'
1
1
1
1
1
1

5 Worklng wlth Volumes and Pathnames
Working with volumes / 83

Getting volume information / 84
Building a list of lOOUnted volumes 1 84
Getting the name of the boot volume / 84
Forrnatting a volume 1 85

Working with pat!ulam:s / 85
5etting and gelting preftxes / 86
Changlng the path ta a fIle / 86
Expanding a pathname / 86
Building your own pathnames / 86

Introdudng deviees / 87
Deviee narnes / 87
Block devices / 87
Character devices / 88
Direct access ta devices / 88
Deviee drivers / 88

/ 83

1
.0'

6 Working wlth System Information / 91
5elting and getting system preferences / 92

Checking PST information / 92

l'inding out the version of the operating system / 92

Getting the name of the current application / 93

,- ,

J

Contents vii

(;,);OS R9/err:na (Volume 1) Dm;l", (APD.l) 5J, "..; '!

7 GS/OS cau Reference 1 95

The pararreter block diagr<!m and description / 96

$2010 Begin5es.sion / 97

$2031 Binc!Int / 98

S2004 ChangePath / 99

$200B ClearBackup / 101

$2014 Close / 102

$200 1 Creau: 1 103

$202E DConcrol 1 108

$2002 Destroy / 110

SZ02C DInfo / 112

$Z02F DRead / 116

$2020 DStatus 1 118

$2030 DWriœ / 120

S201E EndSession / 122

52025 EraseDisk / 123

S200E ExpandPath / 125

$2015 Flush / 127

$2024 Format / 129

S2028 GetBootVol / 131

$20Z0 GetDevNumber / 132

$201C GetDirEntJy / 134

$2019 GelEOf / 139

$2006 GetFileInfo / 140

$2023 GetFSTInfo / 144

$201B GetLeve! / 147

$2017 GetMark / 148

$2027 GerNarre / 149

$200A GetPreflX / 150

$2001" GetSysPrefs / 151

nii GSf OS RefcrC1X~':

8/31/88 G5/05 Refermee (Volume l) Drajl3 (APDA)

$2û2A GetVersion 1 152

$2011 NewIlne 1 153

$2ooD Null 1 155

$2010 Open 1 1S6

$2003 OSShutdown 161

$2029 Quit 1 163

$2012 Read 1 165

$201F SessibnStl!us 1 168

$2018 SeŒOf / 169

$2005 SetFileInfo 1 171

$201A Setl.evel 1 175

$2016 SetMark 1 176

$2009 SetPreflX 1 178

$200c SetSysPrefs / 180

$2032 UnbindInt 1 182

$2008 Volume 1 183

$2013 Wrile / 185

Part n The Flle System Leve! / 187

8 Fne System Traoslators / 189

The !'ST Concept / 190

CaIls handled by FSTs 1 192

Programming for multiple file systems / 193

Don't assume file charaeteristics / 193

Use GetDirEntry 1 194

Keep rebuilding your device list 1 194

Handle errors properly / 194

FSTs and file-access oplimization / 195

Present and future FSTs / 195

Disk inidaIization and FSTs ! 196

Contents ix

9

G'.~,()S Rt!/erenCf; [~olume 1) DfLyi :1 (ljJfjltl
,'j, i >',,'\

The ProDOS FST 1 199

The ProDOS file system 1 200

GSlOS and the ProDOS FST 1 2CO

CaJLs ro the ?roDOS FST 1 201

CetDirEntry (S20IC) 1 201

GetFileInfo ($2ro5) 1 202

SetFilelnfo ($2005) 1 202

10 The Hlgh Sierra FST (203

CD-ROM and the High SierrJllS0 %60 fonnaLS 1 204

limitations of the High Sierra FST 1 205

Apple extensions ro ISO %60 / 207

High Sierra FST c:ilIs 1 208

GetFiJelnfo ($2006) 1 209

Volume ($2008) 1 210

Open ($2010) 1 210

Read ($2012) 1 211

GetDirEntry ($20IC) 1 212

$2033 FSTSpeeific 1 214

Wha[a map table is / 215

MapEnable (PSTSpecific subca1l) 1 216

GetMapSize (FSTSpecific subcall) 1 217

GetMapTable (FSTSpecific subcall) / 217

SetMapTable (FSTSpecific subcall) 1 218

11 The Charader FSf 1 221

Character devices as files 1 222

Chameter l'ST caJLs 1 222

Open ($2010) / 223

Read ($2012) / 223

Write ($2013) 1 224

Close ($2014) 1 224

Flush ($201 5) / 225

GSr OS IkfcretK."e

G'"DS J:,/erii'lCl! (Volume 1) Drojl3 (APDA) 8/31/8

Appendixes / 227

Appendix A GS/OS ProDOS 16 Calls / 229

$0031 AllOC_INfERRUPT / 230

$0004 CHANGUATIf / 231

$OOOB CLEAR_BACKUP_BIT / 233

$0014 CLOSE / 234

$0001 CREAn / 235

$0032 DEALLOCJNŒRRUPT / 239

$0002 DESTROY / 240

$002C D_lNFO / 242

$0025 ERASE_DISK / 243

1

$OOOE EXPAND_PATIf / 245

$0015 FLUSH 1 247
1

$0024 FORMAT / 248

$0028 GET_BOOT_VOL 1 250

1

$0020 GET_DEV_NUM / 25!

$001C GET_DIR_ENTRY 1 252

1 . $0019 GET_EOF / 256

. $0006 GET]ILEJNFO / 257

1 $0021 GETJAST_DEV / 260

$001B GETj.EVEL / 262

1 $0017 GET_MARK / 263

$0027 GET_NAME 1 264

1 $OOOA GET_PREFlX 1 265

$002A GET_VERSION / 266

1 $0011 NEWIlNE / 267

$0010 OPEN / 269

"1 $0029 QUIT 1 271

$0012 READ 1273

l '.
Contents xi

~I

GS os Re/erenœ (>'olume /) IJrafl j (APOA)

$0022 REAn_BLOCK / 275

$0018 SFCEOF / 276

$0005 / SET]lI.E_INFO / m

$001A SET_LEVEL 1 280

$0016 SET_MARK 1 281

$0009 SET_PREFIX / 282

$0008 VOLUME 1 284

S0013 WRITE / 286

S0023 WRnlJ ..BJ..CX:K / 288

AppendIx B ProDOS 16 C'.alls and FSTs 1 289

The ProOOS FST / 290

TIle High Sierra FST / 290

GIT]lI.E_INFO ($06) 1 291

VOLUME ($08) 1 292

GET_DrR_ENTRY ($1C) / 292

The Charaeter FST 1 293

OPE,'\! ($10) 1 293

REAn ($12) / 294

WRITE ($l3) 1 294

CLOSE ($14) 1 294

FLUSH ($15) / 295

ProOOS 16 device caBs 1 295

Appendlx C The GS/OS Exerclser 1 297

Starting the Exerciser / 298

Cali options / 299

Making GS/OS caUs / 299

Other Cûlrunands / 301

,'1J 3l S,'i i:

i

1Startup

D7

1 308

311

h
1'2

[~9660 /

1 320

i

8131;88

1 305

317

id Constants / 327

Contents xiü

Xl! GS/OS Reference

c;sos Rt:]àenu !,~'olume 1) Ura/l.3 tAPLd) ;i ,,'il

Figures and Tables

Preface ! 1

Figure p.l. Roadmap ta Apple IlGS lechnicaJ manuals / 8

Table p.] Apple IlGS technicll rmnuals ! 9

Introduction What ls GS/OS? / 13

Figure 1·] rnterface Ievels ln GS!OS ! 14

Figure 1-2 Where ro fmd caU descriptiom in mis book. ! 19

Part 1 The Application Leve! / 23

Chapter 1 GS/OS Abstract Flle System / 25

Figure 1·1 Application level in GS/OS / 26

Figure 1-2 Example of a hiernrchicaJ flle struClure ! 27

Figure 1·3 Direetory flle format / 29

Figure 1-4 PreflJ(es and partial pathnames ! 32

Figure]-5 Automatic movement of EOF and mark / 38

Table 1·1 Examples of prefIX use / 34

Table 1-2 GS/OS file types and auxiliary types / 36

Table 1-3 cs/os caU groups / 41

Chapter 2 GS/OS and Its Environment 1 45

Figure 2·1 Apple Iles rœmory map 1 46

Figure 2·2 Pointers and handles / 51

Table 2·1 GS/OS veetor space / 48

XlV GS/OS Retetenœ

CVO" Re!ercnCiJ (Volume 1) Drajl3 (APDA) 8/31'88

Table 2-2 Machine srale al GS/OS application launch / 57

Table 2-3 Machine srate at GSlOS application launch / 59

Table 2-4 PrefIX values when GSlOS application launched al bool tirne / 60

Table 2-5 PrefIX values-GSlOS application launched after GS/OS
application quits / 60

Table 2-6 PrefIX values-GSlOS application launched after ProDOS 8
application quits / 60

Table 2-7 PrefIX and pathname values at ProDOS 8 application launch / 61

Chapter 3 Making GS/OS Cal1s / 63
Figure 3-1 GSlOS and Pascal strings / 69

Figure 3-2 GSlOS input string structure / 69
Figure 3-3 GSlOS resull buffer / 70

Table 3-1 Registers on exit from GS/OS / 71

Table 3-2 St:ltus and control bits on exit from GS/OS / 72

Chapter 4 Accessing GS/OS Files / 73
Table 4-1 Date and time format / 80

ParUI The File System Leve! / 187

Chapter 8 File System Translators / 189
Figure 8-1 The me system level in GS/OS / 191

Table 8-1 GS/OS calls handJed by FSTs / 192

Chapter 10 The High Sierra FST / 203

Table 10-1 High Sierra FSf calls / 208

Figures and Tables xy

r;'~ (J) Rej;.'Ti'nUl 1. ~·(ilu.me]) DI"!) 3 (,\J'IM)
'j, " 1

Appendhes / 227

AppendJx B ProDOS 16 CaUs and fSTs / 289

Table 8-1 High Sierra FST ProOOS 16 call.s / 291

Appendix C The GSIOS Exerdser / 297

Figure C-l Exerdser main screen / 298

Figure C-2 Pararœter-serup screen / 300

Figure C-3 Devïce-list screen / 302

FigureC-4 Modify-memory screen / 303

Table C-l ASCII table / 304

Appendix D GS/OS System Dlsks and Startup / 305

Table D-l Directories and files on a GS/OS system disk / 306

Appendlx E Apple Extensions to ISO 9660 / 317

Table E-l Defmed values for SystemUseID / 322

Table E-2 Contents of SystemUse field for each value of Syslem\]selD / 322

Table E-3 ProDOS-!O-!SO 9660 filename transformations / 325

Appendix F GS/OS Enar Codes and Constants / 327

Table F-l GS/OS errolS / 328

ln1 cs/os Rekreoœ

" ,~

G"~OS Reference (Voiume I) Draft 3 (APDA) 8/31188

Preface

The GS/OS Reference describcs a powerful operating system developed
specificaily for the Apple® rrGs@ computer. GS/OS1>I is characterized by fast
execution, easy configurability, multiple file-system access, file access to
character devices, direct device-access, device-independence, compatibility
with the large GS/OS memory space, and compatibility with standard-Apple II
(ProDOS~ 8-based) and eariy Apple rrGs® (ProDOS 16-based) applications.

ln two volumes, the GSlOS Reference describes haw cs/os gives applications
acct:55 ra the the full range of Apple llGS features, and shows how ta creare
devlce drivers ta work with GS/OS.

1

1

1

1.

1

Preface

1

G,,()S Referma: (Volume }j Im,!l3 (APDA)	 H, 31. i,1)

About trus book

The GYOS Referrmœ is a manual for software developers, advanced programmers, and others who
wish ta understand the technical aspects of this operating sysrem, In particular, this manual will be
useful to you if you waIlt te Mire

any progr.1m mat mates or accesses files

J program mat catalogs disks or manipulates files

J stand-alone program mat automatically runs when the computer starts up

a program that loads and runs other programs

any Program using segmenred, dynamic code

an interrupt handler

a device driver

'The CS/OS Refenmœ consists of two volumes plus one disk: the GS/OS Exerciser, a program i!lcludcd
on a disk accompanying Volwne L

'The functions and cails in this manua! are in assembly·language format If you are programming in
J.Ssembly language, you can use the same format ta access operating system fearures. If you are
programming in a higher-Ievellanguage (or if your assembler indudes a GS/OS macro library), YOli will
use library interface routines specifie to your language. Those library routines are not describcd Ittre;
consuir your language manual,

1l1e software described in this book is part of the Apple Jl(;S System Disk, versions 4.0 and larer :\pple
Iles system disks are available from Apple dealers and from APDA (Apple ProgrdllUTler's and
Developer's Association),

NOie:	 System disks earlier than version 4.0 use ProOOS 16 as the operating system. ProDOS 16
is described in the Apple Iles ProDOS 16 Reference.

How to use thi~ book

11Ü.\ book is primarily a reference rool, although parts of each volume are explanatory.

GS;OS Reference

8/31/88 GY05 lIeferma (Volume 1)	 Draj/3 (APDA)

l Volume 1 describes the application interface, the high-Ievel parts of GSlOS mat your application cal1s
in order to access fûes or ta modify the operating enVÎronrnenlr"

i
i., • The introduction ta Volume 1 describes GS/OS in general.

Part [of Volurœ 1 describes how applications interaet with GS/OS, and docurœms ail application­

L
r Ievel GSlOS caUs.

• Part II of Volurœ 1 docurœnts the file system translataIS (FSTs), the software modules that allow
your plOgram ta access mes from many different flle systems. For each FST, Part li milS the

.. application ails it supports and docutrents 10y differences in cali handling from the standard
descriptions in Part l.

Volume 2 describes the device interface, dIe low-Ievel parts of GSlOS that interact with device
drivers to control hardware such as disk drives, communication ports, and the console.

•	 Part 1of Volurœ 2documents how your program cao use GS/OS calls to access a wide variety of
devices, bath black and character devices, and describes the principal device drivers mat are
supplied with cs/os.

•	 Part II of Volume 2 docurœnl'i how device drivers interface with GS/OS, and shows you how [0 write
a GS/OS device dnver.

The principal descriptions of ail appllation-Ievel GS/OS caUs (other than device caUs) are in Part 1of
Volurœ 1. CalI descriptions elsewhere in the book consist rnainly of differences from the standard
descriptions. The principal descriptions of application-Ievel device calls are in Part 1of Volume 2.
Driver calls (Iow-Ievel device calls used by device drivers) are described in Part II of Volume 2.

If you are writing a typical application, the information in Volume 1 is probably all you will need. If
you need to acces5 devices directly, or if you are IVriting a device driver, interrupt bandler, message
bandler, 5hel~ or a large, segrnented application, you will need Volurœ 2aIso.

TItis manual does not explain 65C816 assembly language. Refer ta the Apple DGS Programmer's
WorksJwp Assembler Referenœ or the MPW Iles Assembler Referenœ for information on Apple Iles
assembly language programming.

This manual does not give a detaiJed description of ProDOS 8, the operating system for standard·
Apple II computers (Apple li Plus, Apple Ile, Apple Ile). For detailed information on ProDOS 8, see
the ProDOS 8 Technical Reference Manual.

What it contains

GS/OS L~ described in two volumes. Here îs a brief list of the contents of each chapter and appendix
in Volmoc 1:

Preface

csv:> fle/mmê. ,.,;tu"", 1) om/l J (AI'OA) 8,jl S,.-.,'

Volume 1. The Operatlng System: What YOUf applications can do with GS/OS.

lnt:roduetJon. What 15 GS/OS? An overview of GS/OS.

Part L Tb.e Application Levcl: The uppenrost leve! of GS/OS.

Chapttr 1. ApplieatlollS and GS/OS: Abrief overview.

Cbaptet 2. GS/OS and Us Environment: Haw GS/OS affects your prograrn.

Chaplet 3. Maldng GSIOS Ca1ls: The basics of making calls.

Chaplet 4. Accesslng GSIOS Files: Accessing black files and character files.

Chaplet S. Worldng with Volumes and Pathnamcs: Bypassing files; formatting.

Chaplet 6. Worldng with System lnformatloll> Communicating with system software

Cbaptet 7. GSlOS Call Referet1ce: Documentation of all appJiC:llion·level standard CS/OS

caUs.

Part II. The FUe System Levd: The flÙddle level of GS/OS.

Chaplet 8. FUe System Translators: Haw the FST concept warks.

Cbaplet 9. The ProDOS FST: Details about accessing PraDOS files

Cbaplet 10. The Hlgb Sierra FST: Details about accessing files on CD-ROM.

Cbaplet 11. The Ow'acter FST: Details about accessing character devices as files.

Appcndixes

Appendlx A. GS/OS ProOOS 16 caIIs: Making ProDOS 16 caIls under GS/OS

Appendlx B. ProVOS 16 Calls and FSTs: Howeach FST handles ProDOS 16 ca Ils

Appendlx C. The GS/OS Exerdser: How to practice GS/OS call.s.

Appcndlx D. GS/OS System Dlsks and Startup: The major components of a system disk.

Appendlx E. Apple ExtenslOllS ta ISO 9660: Additions to the CD-ROM file format.

Appendlx F. GSIOS Error Codes and Constants: Acomplete listing and description

Hene is a brief list of the generaJ content;; of Volume 2:

Volume 2. The Deviee Interface: How GS/OS provides access ta devices.

The Devia: Levelln GS/OS An overview of the lower level of GS/OS.

Part L Using Deviee Driftt"5: How ta make caUs to GS/OS drivers.

Part IL Wrltlng a Deviee Driver: How to write a device driver for GS/OS.

Appendixes: Device driver sanlple code, description of the System Loader.

GS/OS Reference

8/31/88

..

6'YOS Reference (Volume 1)	 Drafl3 (APDA)

..
Other materials you'll need

In order to write Apple IlGS programs that mn under GS/OS, you'U nee<! an Apple IIGS compurer and
development-environment software. Furthenoore, you will nee<! at least sorne of the reference
materials listed larer in the Preface under, 'Roadmap to the Apple IIGS Technical Manuals: In
partieular, if you intend to write desktop-style applications or desk aceessories, which make use of•
the Apple !lGS Toolbox, yoo will need the Apple Des Toolbox Referrmœ.

'The GS/OS Exerciser, clescribed in Appendix Cof Volume 1, cao be useful for practidng GSlOS caUs.

Visual eues

Certain conventions in this manual provide visual eues a1erting you, for example, to the introduction
of a new lCrm or to especially important information.

When a new terro is introduced, it is printed in boldface the filSt time it is tl.5ed. This lets you know
that the term has not been deflned earlier and mat there 1'; an entry for it in the glossary.

Special messages of note are marked as follows:

Note: Te:c:t set off in this manner-with the word Nole- presents extra information or points
to remember.

Important Text set off in this manner-with the ward lmportanl-presents vital information or
instructions.

Terminology

This manual may define certain tenns, such as Apple Il and ?roDQS, slighdy differendy than what you
are used to. Please note:

Apple II: Ageneral reference to the Apple II family of computers, especially those that may use
ProDOS 8 or ProDOS 16 as an operating system. [t includes the 64 KB Apple Il Plus, the Apple Ile, the
Apple Ile, and the Apple IIGS.

standard Apple II: Any Apple II computer mat is not an Apple IlGS. Since previous rnembers of the
j	 Apple il family share many characteristics, it 1'; useful to di'itinguish them as a group From the Apple

IlGs. Astandard Apple II mayalso be called an 8-bit Apple II, because of the 8-bit registers in ilS
6502 or 65(02 microprocessor,

Preface

.J

'1

1

r;yos Referenœ iVoiume 1) DrrJ//3 (,U'DA) L'8:i

ProOOS: Ageneral term describing the family of operating systems developed for Apple II
compmers. It includes bath ProOOS 8 and ProOOS 16; it does not indude DOS 3.3 or SOS. ProDOS
is aJso a me system developed to operate with the ProOOS operating systems.

ProOOS 8: The 8-bit ProOOS operating system, through version 1.2, originaUy deveJoped for
standard Apple Il computers but compatible with the Apple IIGS. ln previous Apple II
documentation, ProOOS 8 L~ calIed simply ProOOS.

ProOOS 16: The first 16-bit operating system developed for the Apple I1GS computer. PraDOS 16 is
based on ProOOS 8.

GS/OS: Anative-code, 16-bit operating system developed for the Apple IlGS computer. GS/OS
replaces ProOOS 16 as the preferred Apple IIGS operating system GS/OS is the system described in
this manual

Language notation

111is manual uses certain conventions in corruoon with Apple nGS language llJanuals. Words and
symbols that are computer code appear in a monospace font:

_CallNaroe_Cl parmblock ;Name of call
bC3 error ;handle error if carry set on J:'ûturn

error icode to handle erro~ return

parmblock ;parameter black

This incrudes assembly language labels, entry points, and me names thal appear in text passages.
GS/OS cali names and the narres of other system software functions, however, are printed in normal
fom in uppercase and lowercase letters (for example, GetEntry and LoadSegmentNum). The subclass
of CS/OS caJls mat are compatible with ProDOS 16 are printed in aU uppercase ieuers and often
indude underscore characters (for exarnp1e, GIT_ENTRY).

Roadmap to the Apple llGS technical manuals

The Apple IleS JXTSOnal computer has many advanced fearures, nJaking il more complex man eadier
rrxxJels of the Apple II computer. Ta describe the Apple I1GS fully, Apple has produced a suite of
technicaJ rnanuals. Depending on the way you intend to use the Apple IIGS, you rnay need ra rt:fer tu a
select few of the manuaLs, or you may need to refer 10 masl of them.

GSlOSRef=

1
GSJOS Reference (Valu,"" 1) Drajl3 (APDA)	 8131/88

1
1" The Apple nes technical manuals dOOlmen! Apple Iles hardware, Apple IleS system software, and

two development environments for writing Apple Iles programs. Figure P-I is a diagram showing the
relationships arnong the principal manuals; Table P-I is a complete Ust of ail manuals. Individual

l' descripions of the manuals foUow.

I.~ Introductory Apple UGS manuaJs

The introduetory Apple IIGS manuals are for developelS, computer enthusiasts, and other Apple Iles

r­
r- owners who need basic teehnical information. Their purpose is to help the technical reader

undelStand the features and prograrnming techniques !hat make the Apple IleS different from other

computers.

•	 The Techn1cal Introduction: The TechnicaJ Introduction wthe Apple Iles is the filSt book in the
suite of technical manuals about the Apple Iles. It des<:ribes ail aspects of the Apple lIes, including
its features and general design, the program environments, the toolbox, and the developmentl'" environment

You should read the TedinicaJ InJroducticn no matter what kind of programming you inœnd to do,
I~ because it will help you undelStand the powelS and limitations of the machine.

•	 The Programmcr's Introduction: When you srart writing programs that use the Apple I1GS user
intertace (with windows, menus, and the rnouse), the Programmer's Introduction 10 the Apple Iles1 l	 provides the concepts and guidelines you need. It is not a complete COUISe in programming, ooly a
starting poin! for programrners writing applications for the Apple Iles.

I"
r- The ?rogrammer's InJroduaion gives an overview of the routines in the Apple Iles Toolbox and the

operating environment they run under. It includes a sample event-<iriven program that dernonstrates
how a program uses the toolbox and the operating system

I~

I~

1.
1~

L.
Preface

IQ

1.

1

!.
:~

,

~

-<

0
-
;

~
.

b
-;

0

C
l

ft
ô'

0
0

ii

~
>

[
[ô

'
f

'" ç

lit!

':<
'

C­""
a:

1}

!f

fi
1f

if

lf

~
l

(
r
,

}~

~j
'

l;;

f
œ

1}
g
-
~

g

~
~

~

~

~
Q
'

if

(f

i

""
~)

il

2
~

~

-::

u S :>
­

u C
l G

t:
l D

F.i
 '" 5 [

t:J

;:
,

.g,
~

~

'" ~
'
~
'

~

è (~

IJ'!yOS Rejerenu (VoLume 1) Drafl J ÎAPDAj	 8'31. SI!

•	 The llnnwan: reference: The Apple Iles Firmware Reference describes the programs and subroutines
stored in the machine's read-only memory (ROM). The Firmware Reference incJudes information
about inrerrupt routines and low-Ievel VO subroutines for the seriai ports, the disk port, and for the
Apple Desktop Bus'" interface, which controls the keyboard and the mouse. The Firmware Rrference
aJso describes the Monitor program, a low-Ievel programming and debugging aid for assembly­
language programs.

Apple nGS Toolbox manuals

Iike the Madntosh, the Apple IIGS !las a built-in toolbox. The Apple IleS Toolbox Reference, Volume 1,
introduces concepts and terrninology and tells how to use some of the tools. The Apple l1GS ToolboK
Reference, Volume 2, conClins infonnation about the cest of the tools. Volume 2 also tells how to
write and install your own tool set

rf you are developing an application that uses the desktop Interface, or if you want to use the Super
Hi-Res graphies display, you'll ftnd the toolbox manual indispensable.

Apple nGS operating-system manuals

The Apple IIGS two preferred operating systems: GS/OS and ProOOS 8. GS/OS uses the full power of
the Apple nGS and <:an access mes in multiple flle systems. The GSlOS Reference describes GS/OS and
includes information about the System Loader, which works dosely with GS/OS to load prograrns
inco memory.

ProOOS 8, previously called simply ProDOS, is the standard operating system for mast Apple Il
computers with 8-bil CPUs. As a developer of Apple IlGS programs, you need 10 use ProDOS 8 only if
you are developing program.~ to run on 8-bit Apple II computers as weil as on the Apple IIGS. ProDOS
8 is described in the ProDOS 8 Technical Referem:e Manuai.

Sole:	 GS/OS is comp'<ltible with and replaces ProDOS 16, the first operating system developed
for the Apple I1GS computer. ProDOS 16 is described in the Apple !les ProDOS 16
Reference.

GS/OS Reference 10

G.\lOS Refereme (Volume J) Drajl3 (APDII)	 8/3J188
" ,

'1

'1

. 1

. 1

1

1

1

1 ~

,1

1

1:

1

1.

I~

1

1

1.

AU·Apple manuals

Two rmnuals apply te al! Apple mmputers: Hwr.an InJerfaœ Gutdelitli!S: The Apple Desktop InJeifaœ
and me Apple Numerics ManuaJ. If you develop programs for any Apple computer, you should know
about mese rmnuals.

The Human Interfaœ Guidelitli!S rmnual describes Apple's standards for me desktop interface te any
program mat runs on an Apple mmputer. If you are wriling a commercial application for the
Apple IIGS, you should he fulIy fumiliar wim the contents ci. this manual.

The Apple Numerlcs ManuaJ is the reference for me Standard Apple Nwœrics Environment (SANE), a
full implernentatlon of me IEEE Standard for Blnary Floating-Point Arithmetic (IEEE Std 754-1985).
If your application requires accurate or robust arimmetic, you'U probably want it te use the SANE
routines in the Apple IIGS.

The APW manuals

Apple provides IWo development environments for wriling Apple IIGS programs. see Figure P-L One
is the Apple IIGS Programmer's Workshop (APW). APW is a native Apple Iles development system--­
it fUllS on the Apple IleS and produces Apple IIGS programs. There are mree prindpal APW rnanuals:

The Programmer's Worksbop manual: The Apple IICs Programmer's Worleshop Reference
describes me APW Shell, Editor, Unker, and utility prograrns; these are the parts of the workshop
mat ail developers need, regardless of which programming language mey use. The APW reference
rnanual includes a sample program and describes object module fonnat (OMF), the file fonnat used
by ail APW compilers te produce files loadable by me Apple IIGS System Loader.

•	 Assembler: The Apple ncs Programmer's Wo'*shq> Assembler Reference indudes the specifications
of the 65816 language and of the Apple IIGS libraries, and describes how te use the assembler.

•	 C compiler: The Apple IICS Programmer's Wo'*shq> CReferenœ includes me specifications of me
APW C implementaion and of the Apple IIes intertace libraries, and describes how te use me
compiler.

Omer compilers cau be used with me workshop, provided they foUow me standards defrned in the
Apple Ilcs Programmer's Workshop Referenœ. Several such compilers, for languages such as Pascal, are
now available.

Nole:	 The APW manuals are available through the Apple Programmer's and Developer's
Association (APDA).

Preface Il

GS OS li'e/ereY'.{:e 1Vd.ume 1) uny13 (APfJA)	 ,'I.)}, ,-18

The MPW UGS manuals

Macinoosh Prograrnrœr's workshop (MPW) is one of the two development environments Apple
provides for writing Apple Iles programs. See Figure P-l. MPW i.s poncipally a sophisticated,
powerful development environment for the Macincosh computer. It includes assemblers and
compilers, linkers, and a variety of diagnostic and debugging tools. When used to wote Apple Iles
program.~, MPW LÇ a cross-<1evelopmem systenr-it runs on the Macintosh, but prcxiuces execurable
programs for the Apple IIes.

MPW is documenlfd in severa! manuals, but the parts needed for cross-development-the editor and
the build too!s-are described in the Macintosh Programmer's Workshop Reference. Tha[book is [he
only Macilloosh manual you need when writing programs using MPW lies.

Four manuals describe the cross-deve!opmenr system. Each progI<lmming language bas its own
manual. Whichever language you program in, you aIso need the MPIV lleS Tools Reference.

•	 Tools: The MPW lIcs Tools Refenmœdescribes the 10015 needed to create Apple [les appplications
under MPW. ft describes the linker, file-<:onversion 1001, and severai other conversion and diagnostic
programs.

Assembler. The MPW Iles Assembler Reference describes how ID wOte Apple lIeS assembly-Ianguage
programs under MPW. It aIso documents a utility program that convens source files wrinen for the
APW assembler ID mes compatible with the MPW IIGS Assembler.

•	 C compiler: The MPW lles C Reference describes how ID write Apple lies programç in C under MPW.

Nole:	 The MPW Iles manuals are avaiJable through the Apple Programrner's and Dcveloper's
Association (APDA).

The debugger manual

Neither MPW lies noe APW indudes a debugger as part of the development environment However,
the Apple lIes Debugger, an independent produa, is a machine·language debugger that [Uns on the
Apple lies and cao he used ID debug programs produced by cimer MPW TICS or APW.

The Apple [lGS Debugger is described in the Apple IleS Debugger Reference.

GSiOS Reference 12

Il
GYOS Referma: (Valu,,", 1) Droft 3 (APDA) 8131/88

1

1

1 Introduction What is GS/OS?

1

1
GSlOS is the fllSt completely new operating system designed for the Apple IIgs
computer. Il is similar in intenace and cali style ID the ProOOS operating
systems, but il bas far greater capabilities because it bas lItlny new calls, and il
has much [aster execution because it is written entirely in 65816 assembly

1 language.

1
Even l1Kll'e importan~ CS/OS is file-system independent: by making CS/OS
calIs, your appücation can read and write mes tl'an5parendy among many
dilferent and normaUy incompatible flle systems. GS/OS accomplishes mis by
defming a generic GSlOS flle intenace, the abstraet fUe system. Your

1 appücation makes calls ID !hat interface, and then GSlOS uses file system
translalDrs ro conven the caIIs and data into formats consistent with individual
file systems.

1
This chapter gives an overview of the sllUetUre and capabilities of GS/OS.
folIowed by a brief hisIDry of the evolution in Apple Il operating systems from

1 ooS ID GS/OS.

I~ 1

1

-1

~ 1
- 1

AA 1
Introduction; Wlut is GS/OS? 13~ 1

J
J

l;1D~' kejer(f1Ja (Voiume 1) IJrajl 3 (APDA) 8,31 88

The components of GS/OS

GS/OS is roore complex and integrated than previous Apple II ope13tÎng systems. As Figure 1 shmvs,
you can think of il in terms of three levels of intetface: the application level, the file system level, and
the device leveJ. A typical GS/OS cali passes through the three levels in arder, from ùle application at
(he top {Q the device hardware al the bottom.

Figure 1-1 Interface leveLs in GS/OS

Appliotion
level

File system
level

Deviee
level

Block Block ~ Ch=er
dcviœ device device df..'Yice

GSiOS Reiern:x-e 14

8/31/86 GS/OS Referena (l'oI..me I)	 Draf/3 (APDA)

1
: l "

-1

]

-,
 1

"

=1 J
]

,]
'_1 J
- ,

-1 j

- i
'-1
 j

=1 .,'

]~

]~

]~

•	 AppUcatlon Ic:vel: Applications interact with GS/OS mostly at the application level. The
application level processes GS/OS calls that a1low an application ro aceess files or deviees, or to get
or set specifie system information. .

In handling a typical GS/OS call, the application level mediates between an individual application
and the me system level. The application level is described in Part 1of this volume.

•	 FUe system Ievel: The fLle system level consislS of me system traDslators (FSTs), which take
application caIJs, eonvert them ta a specifie me system format, and send them on ta device drivers,
FSfs alIow applications ta use the same calIs ta read and write fùes for any number of flle systems.
FSTs aIso a1low applications ta aceess character devices (like display sereens or primees) as if they
were files.

Nore that the file system level is completely internal ta GS/OS. Although your applications don't
interact with the file system level directly, you may want co know how ca1ls are translated by different
file system translacors. For exunple, CD-ROM files are read-only, so write ca1ls cannot be translated
meaningfuUy by an FST chat accesses mes on compact dises.

In handJing a typicaJ GS/OS cali, the me system level mediateS between the application level and the
device level. The file system level is described in Part II of this volwœ.

•	 Deviee J.evel: The device level conununicates with ail device drivers connected ta the system. ln
handling a typical GS/OS cali, the device level rrediates between the flle system level and an
individual deviee driver.

The deviœ level of GS/OS has lWO other types of conununication. At the highest level, applications
can bypass the file system level ent.irely by making dcvice calls, which are caUs that direetly aecess
deviœs. At the lowest leve~ device drivers eommunicate with the device level by accepting driver
calls, which are mostly low-level translations of device ca&.

Deviee caIls are described in Part 1of Volume U; if your appliCition needs direct access ta devices,
look there co fmd out how ID do il. Driver ca& are described in Part II of Volume II; if you are
wliting a device driver, look there for details.

Another pan of system software that is described in this manual is the Apple IIGS System Loader.
The System Loader Joads aU other programs inta memory and prepares them for execution. Although
not striet1y part of GS/OS, the System Loader occupies the satne disk flle as GSlOS, and works very
C!osely wim GS/OS when loading programs. The System Loader and its caUs are documented in
Volume 2. For mosl applications, however, ilS functioning is totaUy aucornatic; only specialized
programs such as shells need make loader ca1ls.

Introdudion: What is GS/OS? 15

i;YOS Hejer/mu (Volum. J) Drajl] (APOA) ,',3188

GS/OS Features

This section desçribes SOlre of me principal GS/OS features of intere51 to application writers,

File-system independence

&cause it uses flle system translators, GS/OS acœsses non-PmDOS file systems as casily as it
acct'.sse5 the tmle familiar (ta Apple il applications) ProOOS files. Il is possible ta gain aceess to
any file system for which an FST h:is been writteD. Severa! FSTs currenùy exis~ as Apple Computer
crelles new FSTs, they cao !Je very easily added ta existlng systems.

The GS/OS abstrad file system suppoltS both flat and hierarchical file systems and systems with
specifie me types and access petI11issions. GS/OS recognize5 standardfiles. direclory fiks, and
exli!rIded ftks (two-fork mes such as the Macintosh uses). certlin GS/OS caUs make it easy to retrieve
and use direetory information for any file system.

The abstraet flle system is described in ClJapter 1 of this volume. FSTs are descrt!Jed in Part fI of this
volume.

Enhanced device support

AU GS/OS device drivers provide a uniform interface ta charaeter and black devices. GS/OS
supportS bath ROM-based and RAM-based device drivers, making it casier to Integrale new
peripheraJ devices inta GS/OS.

GS/OS provides a unifonn input/output mode! for both black and eharaeter devices. Deviees such as
printers and the console are accessed in me same way as sequential fLles on black deviees. This can
greatly simplify va for your application.

Unlike ProDOS 8 and ProDOS 16, GS/OS recognizes disk-switehed and duplicate-volume situations,
to hdp youe application avoid writing dam to me wrong disk.

Deviees are norm:ùly aeeessed through appücation-Ievel me calls, described in Part 1of this volume.
Deviee drivers are described in Part II of Volume 2.

GS/OS Refer= 16

8/31/8

1
l'

."1 ~

1 "

1"

r

L1"

~ 1

!

~ 1 o,

f 1

L 1 j
r' .~

t 1:.1
 i

.. 1 ,

: 1

: 1 ~

1

1
1
1
1
1

GYOS Hefl!Yl!tlC8 (VoIu"", 1) Drajl3 (ARDA)

Speed enhancements

GSlOS transfers <lat! much faster !han ProDOS 8 or ProDOS 16 because it uses disk caching, allows
multiple-block reads and writes, eliminates the duplicaœ levels of buffering used by ProDOS 16, and
because it is written entirely in 65816 native-1OOde assembly language.

Disk caching is described in Volume 2.

EHrnioated ProDOS restrictions
o

GS/OS aIIows any nwnber of open mes (rather !han oo1y 8) up to the amount of available RAM, any
nwnber of devlces on line (rather than only 14), and any number of devices per slot (rather than ooly
2). GS/OS aIIows volumes and mes 10 be as large as 2~] bytes (rather than ooly 16 MB for files and 32
MB for volumes).

The GS/OS file inte!f:lœ is described in Chapter 1of this volume.

ProDOS 16 compatibillty

GS/OS indudes a complete set of ProDOS 16 calls and implements them just as ProDOS 16 does. Ail
well-behaved ProDOS 16 applications can run without roodification under GS/OS. An added benefit
is that existing ProDOS 16 applications running under GS/OS can now automaticaJJy access mes on
non-ProOOS disks, and can also access charaeter devices as mes.

Where to flnd call descriptions

As already note<!, there are several categories of caUs that programs can make to GS/os. Broadly,
calls can he divided into application-Ievel calliI (made from application program> 10 GSlOS) and
low-levd calls (made between GS/OS and low-Ievel software such as device drivers). Most
application-Ievel calls are described in Volume 1; most low-Ievel calls are described in Volume 2.
Within these broad divisions, there are several subcategories of calls and caII-related descriptions;
each subcategory is described in a different place in the two volumes. The categories are as follows:

ln Volume 1:

IntroductiOll: Wha! is GS/OS' 17

GY()S Refermee (Volume 1) Llrnjl3 (APDA)	 ,,> j '/88

•	 standard C.s/OS caUs: Also cal1ed class 1 caJis or just CS/OS calis, these are ùle primary caUs an
application makes to access nies or system information. They are appliotion-Ievel calls. This
otegory covers ail operating system oUs that a typical GS/OS application makes.

!'ST-specifie information on GSlOS caUs: Because different flle systems have different
charaeteristics, nDt ail respond identically to GS/OS caUs. ln addition, each FST on support the
GS/OS cali FSfSpcclf.le, an appliCltion-level cali whose function is defined individually for each FST.
Therefore, this book includes descriptions of how each !'ST handles certain GS/OS olls, including
FSTSpecifîc.

ProDOS 16 caUs: Also called class acal/s, these are application-level caUs that are identiol to the
caUs described in the Apple IIgs ProDOS 16Referenœ. GS/OS supports these calls 50 that existing
PIODOS 16 applications can run without modification under GS/OS.

FSf-specifk Information on ProDOS 16 caUs: Because different fLle systems have dUferent
charaeterisùcs, nDt ail respond identically to ProDOS 16 caUs. Therefore this book inc1udes
descriptions of how each FST hanelles ProDOS 16 caUs. There is no F~TSpecific ProDOS 16 calI as
there is for GSIOS caUs.

ln Volume 2:

•	 GS/OS devlce c:ùls: These are a subsel of the application-level, standard GS/OS calls described in
Volume 1, but they are special because they bypass the fLle level altogether and acces.1 devices
directly.

Driver-specifie Information on GS/OS devlce calls: Because differenl devices have differenl
charaeteristics, not ail device drivers respond identically to GS/OS caUs. Therefore, this book
includes descriptions of how each GS/OS driver hanelles certain GS/OS device caUs.

Driver ca.IJs: These are caUs that GS/OS makes to individual device drivers. They are low-Ieve/ nlls,
of interesl mainly to device-driver writers.

•	 System service caUs: System service caUs give low-level components of GS/OS (such as FSTs and
device drivers) a unllorm method for accessing system information and executing standard routines
This book describes the system service caUs that GS/OS device drivers can make.

•	 System Loader c:ùls: These are calls a program can make to load omer programs or program
segments into melOOry Although me typical application makes no System Loader calls, mey are
described in this book 50 that sheUs and system-Ievel progra.rm can make use of them.

figure 1-2 shows you where to look in each volume for the principal descriptions of each cali
e<ltegory. for example, the descriptions of ail standard GS/OS caUs (except those that access
devices) are in Part 1of Volume 1 (Chapler 7); the descriptions of driver calfs are in Part II of Volume
2 (Chapler 9)

GS/OS Reterence 18

8/31188

1

1

1

1

1

1

1

l ,

i

.1 j-. ,

-1 ~
:

i

1

1 4

I ­

I.,
1

1

GYOS Refermee (Volume 1)	 Dw.ft 3 (APDI\)

Note:	 Figure 1-2 is reproduced in each Part opening in this book, highlighted in each case lO

show the calls described in chat part.

figure 1·2 Wllere [0 find caU descriptions ln this book.

Most appliailiorlS make only the caJJs desaibed ln Pan 1ofVolume î (shaded area).

PartI PartU

Volume 1

P;ort 1

Appendixes

PST-<peciIic
iJlfunmIion on

l'JoDCIS J6caJIa
(AppmdixBl

l'JoDCIS 16 caJIa
(AppmdixtJPST...,.cRc

ilICœnollaD oa
GSI'Oo alla

(O>apeor 9-11)

PartU

Volume 2

~ppendixes

GS/OS d.vice all.s Driw:rallo

~ Syoœm Looder c:oIb
Driver-sproHc c:Appendix Bl

S,*", oerviœ allainformation on
GS/OS device alla

Il

GS/OS	 system requirements

GS/OS will no! run on a standard Apple II computer. It requires an Apple IIGS with a ROM revision of
1.0 or greater, al lcast 512 KB of RAM, and a disk drive with at least 800 KB capaàty. Asecond 800
KB drive or a hard disk is strongly reeommended.

Introduction: Whal is GS/OS? 19

GSIOS Re/erena (Volume J) Limfi 3 (APDA)	 8,3LSéi

Background to the development of GS/OS

To surrunarize lhis overview of GS/OS, this chapter ends with a brief discussion of how CS/OS
evolved from previous Apple II operating systems.

Apple h.as created severa! operating systems for the Apple Il family of computers. GS/OS is the Iatest
in that lire; it is related to severa! cartier systems, but has far greater ('apabilities than any of them.
Here are thumbnail sketches of the other systems:

DOS: OOS (for Disk Operating Syskm) ms Apple's f1l'5t operating system. It provided the Apple
computer with its first capability to store and relrieve disk mes. OOS has relatively slow data
trall5fer rates by mxJem standards, suppons a flat (rather than hierarchlcal) file system, can read lIto
KB disks ooly, has no uniform interrupt support, includes no mernory management, and is not
extell5ible.

•	 Pascal: Apple II Pascal is an Apple implementation and enhancement of the University of CaJifornia,
San Diego Pascal System. Its lineage is completely separate from the other Apple operating systems.
Apple Il Pascal suppons only a flat flle system, is charaeterized by slow, interpretive execution,
provides 110 uniform support for interrupts, h.as no memory management, and is difficult ta extend.

•	 sos; SOS (for SqJhisttcated Operating System) ms developed for the Apple m, but its rnost
important feature, the file system, is the heart of the ProOOS family of operating systems (described
next). SOS gives rnuch faster data transfer than OOS, represents Apple's first hierarchical file system,
suppons block devices up to 32 Mb, provides a uniform sequentiaJ VO mode! for bath black devices
and character devices, and includes interrupt handling, memory managernen~ device handling, and
extell5ibility via device drivers and interrupt handlers. The major defldency of SOS (for standard
Apple II computers) is that it requires at least 256 Kb HAM for effective operation.

•	 ProOOS 8: ProOOS 8 (originally called ProOOS, for ProfessionaJ Disk Operaling System), brought
some of the advanced features of SOS to 8-bit Apple Il computers (Apple II Plus, Apple [le, Apple
IIc). It requi.res no roore than 64 Kb of RAM, and in faet can direetJy access only 64K of memory
space. ProDOS supports exaetly the same hierarchical flle system as SOS, but does not have the
uniform VO mxJel for character devices and files, memory management, or uniform treatment of
device drivers and interrupt handlers.

ProDOS 16: ProOOS 16 (ProOOS for the 16-bit Apple Iles) is the flcst step toward an oper:lting
system designed specifically for the Apple lIeS computer. !t is an extension of ProDOS 8-although
thcre are a few important additions, it has essentia1ly the same fcatures as ProOOS 8 and supports
exactly the same hierarchical me system. ProOOS 16's main advantage is that it al10ws applications
te interaet with the operating system from anywhere in the 16 Mb Apple Iles address space.

JJ GSiOS Refercrn::e

1
GYOS Reference (Volume 1) Draft 3 (APDA)	 8131188

1
1 . •	 GS/OS: GS/OS fully exploits the capabilities of the Apple IlGS. It is a fast, modular, and extensible

operating system that provides a file-system-independent and device-independent environment for
applications. While upw:udly compatible from ProOOS 16, it corrects deficiencies in ProOOS 16'51 .	 [/0 performance and eJiminates its restrictions on number and size of open files, volumes, and
dev\ces. GS/OS supports chal:leter devices as files, it handles devices uniformly, and It supports
RAM-base<! device drivers. GS/OS cao create, read and write fUes alOOng a potentially unlimirerl1 . number of different flle systems (incJuding ProDOS).

Although it is an extension of the ProOOS lineage, GS/OS is really a completely new opel:lting system.1 .	 As ilS CLame suggesrs, it is designed specificaUy for the Apple IIGS computer, and it is intended to be

the prindpal Apple IlGS operating system

1 .
.,

1 .

1 J

JJ
1

1 ­
1

I~

1
J

"1]
.,

1-J

l	 '~

1
1	 Introduction: What is GS/OS? 21

1 ..

1..

----- ---------

•,1
Gym Reference (Volume J) Drajl3 (APDA) 8/31/88

~, 1

;'1
L 1

Part 1 The Application Level1

LI'

: 1
Parti PartU

Appendi=.. 1
ProOOS 16 can.

PST-<p<cific.. 1 . (Appendix Al
infomwion onVolume 1

1

GS/Oscan.

(012pter 9-11)

PST-specifieIl information on

ProOOS 16 can.
(Appendix B)

1 J

1: Part 1
~pendiJœs

Drivercan.GS/OS deYice can.1 -:
Volume 2 SY"= Looder oIJ.,

Dri_-specific (Appendix B)
SY"= <erVice can.
1 ~ GS/OS deYice can.

infonnaûon on

1_

1
1 ,.
1 B

1

1.

PartU

!d

~

c R

,... -6

'" ;;;­ ~
 g !'5 c.
.

C
l '<:

0 V
>

~

,
~

.....
,

~
 '" ",
.

~
 R

~

~ .::::

1
1

GS/OS Referenu (Vo/ume 1) Draft 3 (APDA) 8/31/88

"1

''1 .

"l . Chapter 1 The GS/OS Abstraet File System

î
Two key features of GS/OS are its ability to insuJate applications from the

det3ils of (1) the hardware deviœs connected te the system, and (2) the file
Î systems used co store applications and their data. This chapter shows how
l
GS/OS implements these fealUres. It also lists, by category, the GS/OS caBs that
î .J an application can make.

l
Î J

JJ
l

"1]
l

'1"
1

.~ 1 J

J ­
•••.~ 1 ~

,J,
--1

-,~ 1 _

Chapter 1: The GS/OS Abstraet File System 25,.1

]"

J

G,S; os Refenmœ (Volume 1) Dm/13 (APDA) 8ij],8,')'
!8

A high-level interface

GS/OS has been designed to insulate you, as the application programmer, from the details of the
system Normally, you simply make a GS/OS calI, and GS/OS routes the caU to the correct device,
ConceptuaUy, you can think of GS/OS as looking like the illustration shown in Figure 1·1.

FIgure 1·1 Application level in GS/OS

Application progrnn

Û
Applie::.ulon
levei

J5 Volume 1: Applications and GS/OS Part 1: The Applic:llJon Level

8/31/88 CS/OS ReJilrenœ (Volume 1)	 Drajl3 (APDA)

"l

l ,

1

1

1

1

1

1

1

, 1 4

l ,

Creation and modification date and time

AlI GS/OS ftles are marked with the date and lime of their creation. When a me is fust created,
GS/OS stamps the fùe's directory entry with the CUITent date and lime from the system dock. If the
me is later IOO<lified, GS/OS then stamps it with a modification date and lime (ilS creation date and
lime remain uncbanged).

The creation and IOOdification ftelds in a ftle entry refer to the contenlS of the ftle. The values in
these ftelds should he changed ooly if the contenlS of the file change. Since data in the fùe's directory
entry itself are not part of the ftle's contents, the modification fteld should !lOt he updated when
another fIeld in the fùe entry is changed, uoless chat change is due to an alteration in the fùe's
contenlS. For example, a change in the fUe's nazœ is !lOt a IOOdification; on the other band, a change
in the ftIe's EOF always reflects a cbange in ilS contents and therefore is a rrodification.

Remember aIso chat a me's entry is a part of the contenlS of the directory or subdireetory chat
contains chat enUy. Thus, whenever a me entry is changed in any way (whether or not ilS
rrodification field is changed), the modification fields in the enUies for ail ilS endosing
subdirectories--induding the volume direetory-must he updated.

FinaUy, when a fIle is copied, a utility program must he sure to give the copy the same creation and
rrodification date and lime as the original flle, and !lOt the date and lime at which the copy was
created.

Charader devices as files

As part of ilS uniform interface, GS/OS permilS applications to access character devices, Iike block
devices, through me calli. An extension to the GS/OS abstraet fLle system Jets you make standard
GSJOS calls to read 10 and write from charaeter devices. This facility cau he a convenience for [/0

redirection.

When charaeter devices are treated as fIles, ooly certain feacures are available. You can read from a
cbaracter device but you cannot, for example, format il Ooly the following GS/OS cal1s have
meaning whan applied to charaeter devices: Open, Newline, Read Wrire, Close, and Flush (see brief
descriptions of these calls larer in this chapler)

ln genera~ charaeter "mes' under GS/OS are mueh roore restrieted in scope !han btock files:

•	 There are no extended or direetory files. Charaeter devices are accessed as if they were standard
flles--single sequences of bytes. And, unlike with block mes, lt is not possible to obtain or change
the current position (mark) in the sequence.

Character devices are not hierarchical. The ooly legal pathname for a charaeter "file" is a device name.

Chapter 1: The GS/OS Abstraet File System J)

G,';;OS Refermœ (Volume 1) Drajt 3 (.{J'DA)	 8/3 J/RS

•	 Character devices may recognize sorne file-access attributes (read-enabJe, wriœ-enable), but not
omers (rename-enabJe, invisibility, destroy-enabJe, backup-needed).

•	 Charaeter 'mes' have no me type, auxiliary type, EOF, creation lime, or omer information
associated with block-fiIe direetory entries.

In spite of these restrictions, it is generally quite simple and straightforward to treat character
devices as files. For more information on file-access to charaeter devices, see Chapter 11, "The
Characrer FS1".

Groups of GSJOS calls

Chapters 4 through 6 list and describe the GS/OS operating system routines that are nonnally called by
an application. They are divided inll:> the following categories:

•	 File access calIs (described in Chapter 4)

Volume and pathname calIs (described in Chapter 5)

•	 System information calIs (described in Chapter 6)

ln addition li:> these groups of calls, the Quit caU is used when an application quits, and is described
in Chapter 2.

Finally, GS/OS provides caUs mat direcùy access devices and insraU interrupt and signal handlers. For
more detaiJ on those caJls, refer to Volume 2. Table 1-3 Lists the groups of GS/OS calls.

-11.) Volume 1: Applications and GS/OS	 Part 1: The Applic:llion Leve!

8131188 G,Y'OS Rejerenœ (Volume 1) Dmjl] (APDA)

Table 1-3 GS/OS calI groups

Flic". calJa volume and O!IIblIImr alll _ lofiumltlmL caIIs _ DcYIa: C21..

Qeale ($2001)
Destroy ($2002)
Se!Filelnfo ($2005)
GelFüeInfo ($2006)
GelFüeInfo ($2006)
QearBadrup ($2OOB)
Open ($2010)
Newtine ($2Oll)
Reac! ($2012)
Wrile ($2013)
0œe($2014)
Rush ($2015)
SelMark ($2016)
GetMark ($2017)
SetF'.of($2018)
GeŒof ($2019)
SetLevel ($201A)
GetLevel ($2OlB)
GetDirEmy ($201C)
BeginSessioo ($2010)
EndSession ($201E)
SessionStatus ($20 IF)
ResetCache ($2026)

OlangePath ($2004)
Volume ($2008)

setPrefu: ($2009)
GetPreflX ($2OOA)
ExpandPath ($2OOE)
FQIlIlal ($2024)
EraseDisk ($2025)
GelBooVoI ($2028)

SelSysPrefs ($200c)
GetSysPrefs ($200F)
GelName ($2027)
GetVersoo ($202A)
GetFS11nfo ($202B)

DControi ($202E)
DInfo ($202C)
DRead ($2Om
DStatus ($2020)
DWrile ($2030)

The foUowing sections give you an overview of the capabilities of the caIIs in these groups. Each cali
is discussed in much greater detai! in Chapter 7 of this volume.

File access caUs

The most cornrmn use of Gs/OS is to make caIIs that access files. Your application places a file on
disk by issuing a GS/OS Create caU. This caU specifies the file's pathname and storage type (standard
file, extended file, or direetory) and possibly other information about the state of the file, such as
access attributes, file type, creation and modification dates and limes, and 50 on.

Your prograrn must make the GS/OS Open cali in order 10 access a file's contents. For an extended
file, individual Open caUs are required for the data fork and re50urce fork, which are then read and
written independendy. When your application opens a file, the application must establish the access
privileges.

Chapler 1: The GS/OS AbstraC1 File System 41

GY05 Reference (Volume j) DmjÎ 3 (APLJA)	 8/J//88

Aflle cao he simuJtaneousJy opened any number of limes with read access. However, a single open
with write access precludes any other opens on the given me.

WhiJe a file is open, your application can perform any of the following tasks:

Read data from the me by using the Read caU, or write data to the file by using the Write cali

•	 Set or gel the the Mark by using the SetMark and GetMark calls, aIXi sel or gel the end of the flle by
using the SetEOF and GetEOF

Enable or disable newline lIlXIe by using the Newline caIJ

If the open file is a directory file, gel the entries held in the me by using the GetDirEntry cali

•	 Wrile changes la dIe disk for one or IOOre open files by using the Flush, Getfilel.eve1, and SetFiJeLevel
calls

When vou are through working with an open flle, VOU issue a GS/OS Close calllO dose the flle and
release any rœroory rhal il was using back to the Meroory Manager.

After the file bas been closed, you can use other GS/OS calls to work with il One of these calls,
ClearBackup, clears a bil sa mal the flle appears to GSlOS as if il does nol nel:d backing up; another
GS/OS cali, Destroy, cao be used ta delete a file. Other GSlOS calls thal work on closed mes are
described in Cbapter 5..

Two other GS/OS calls, SetFiJe!nfo and GetFilelnfo, allow vou to access the information in the file' 5

directory eotry. These calLs are particuJarly useful when vou are copying files because the calls allow
you ta change the creation and roodillcation dates for a file.

Afinal group of GS/OS caIls-BeginSession, EndSession, and SessionStatus-are useful when yeu
wanl YOUf application to defer disk writes.

The background information on the file access calls is described ;n Chaplers l and 4, and each
individual cali is listed a1phabetically by name and described in delail in Chapter 7.

Volume and pathname calls

GS/OS provides a whole sel of calls ta deal with thase situations where Vou wanl to work directly
with volumes and pathnames. These caIls aIlow Vou to do the following tasks:

•	 gel information aboul a currently lOOunted volume by using the Volume cali

•	 build a lisl of alllOOunted volumes by using the OInfo, Volume, Open, and GetDirEnuy calls

get the name of the current boat volume by using the GetBootVol caU

4Z Volume l: Applications and GS/OS	 Part [: 'The Application Level

8/31/88 GSlOS Reference (Volume 1)	 Dmjl3 (APDA)

physically format a volume by using the Format cali

quickly empty a volume by using the EraseDisk cali

•	 set or get pathname prefIXes by using the SetPrefIX and GetPrefIX calls

•	 change the pathname of a me by using the ChangePath cali

•	 expand a partial pathname of a Hle ta its full pathname by using the ExpandPath cali

The background information on the volume and pathname calls is described in Chapter 5, and each
individual cali is listed alphabetically by name and described in detail in Chapter 7.

System Information cal1s

The system information calls allow you ta do the following rasks:

•	 sel or gel system preferences by using the SetSysPrefs and GetSysPrefs caUs, which allow you to
OlStamize some GS/OS features

•	 get information about a specified FST by using the GetFSTInfo cali

•	 /lnd out the version of the operating system by using the GetVersion cali

•	 gel the filename of the currently executing application by using the GetName caU

The background information on the system information calls is described in Chapter 6, and each
individual caU is listed alphabetically by name and described in detail in Chapter 7.

Deviee caUs

GS/OS offers a set of caUs that allow you ta access devices direcdy, rather than going through any file
system. Most applications will not need to use any of these calls, except perhaps DInfo (that use is
described in Chapter 5). The GS/OS device calls aIIow you to perfOffil the foUowing rasks:

get general information about a device by using the DInfo cali

read information direcdy from a device by using the DRead cali

•	 write information directly ta a device by using the DWrite cali

•	 get status information about a device by using the DStatus caU

•	 send commands to a device by using the DControl caU

Abrief summary of the individual calls is listed alphabetically by name in Chapter 7, and information
device calls are completely described in Volume 2.

Chapter 1: The GS/OS Abstract File System 43

;j;
: < "­ c ~
 lu .. >­ !'l 0
.

C
l
~

0 V

>

C
', '<
' ~
 "" "'" ~.

l;:

~

;s
: l§.

~ .::::

-
-

-
-
-
-
-
-
-
-
-
-
-
-
-

-
-

_
.-

-
-

-"
'''ii

8131/88 cS/os Refermœ (Volume 1) Drajl3 (APDA)

FIgure 1-3 Directory file format

Dllurmy 611: SI3ndard Ille

P~;: ---....1 PileA 1 l!x1endcd m.':..": :::--===: l ,:.:. 1

~~~ 1~O ~B 
DIr<ctoty file (0,---- ------ (œsourœfo~1 

---+-

Moteenutes ---+­

11Ie""Y
(Iilel) 

fileowry 
mle'()....._

S4aodard Ille 

(fil. n) -...... PileR ~---+­1 PiI.en~ 1 1 1 L...E-J 

Direetory mes can he read from, but not written to (except by GSlOS). 

Adirectory can, but need not, have associated file information such as access conllOls, file type, 
creation and modification limes and dates, and so on. 

-' 
You usuaIly on/y need to examine direClory files when you are creating catalog-type applications; 
more information about directory files is given in the section 'Examining Directory Entries" in 
Chapter 4. 

Standard mes 
Standard fllcs are named collections of data consisting of a sequence of bytes and associated file 
information such as aeeess conllOls, me type, creation and modification times and dates, and so on. 
They can he read from and written to, and have no predeftned interna! format, because the 
arrangement of the data depends on the specifie flle type. 

Chapter 1: The CS/OS Abstraet File System 29 



GS os Refermœ (Volume 1) Drajl 3 (APD..!)	 8/3 ;,88 

F..xtended	 mes 
Extended mes are named collections of data consisting of two sequences of bytes and a single set 
of file information such as access conttoLs, file type, creation and modification rimes and dates, and 
so on. The IWO different byte sequences of an extended file are called the data fork and the resource 
fork. They can be read from and wriuen 10, and GS/OS makes no assumptions about !heir internaI 
formats; the formats depend on the specific file types. 

Filenames 

Every GS/OS me is identified by a ftlename. AGS/OS filename can he any number of character.; long, 
and CUl include spaces as part of the ftlename. Youe application must encode filenames as sequences 
of 8-bil ASCII codes. 

AIl 256 extended ASCII values are Iegal except the colon (ASCII S3A), although most file system 
translators (FSTs) support much smallee legal character sets. 

Important	 Because the colon is the patbname separator character, il musl never appear in a 
filename. See the neX! section for more details about separalors and pathnames. 

If an FST cIoes nol support a character chat the usee auempts ta use in a filename, GS/OS returns ereor 
S40 (pathllalOC symax error). FSTs are also responsible for indicating whether fllenames should be 
case-sensitive or not, and whether the high-order bit of each croracter is tumed off. See Part II of 
rhis volume for more information about fSTs. 

A filename must be unique within ilS directory. Some examples of legal filenames are as follows: 

fi.le-l 

January Sales 

long file name with spaces and special characters '@#$'t 

:0 Volume 1: Applications and GS/OS	 Part 1: The Application Level 



1 r 
•	 1 

1 

1 r 

L 1 
r­
I 

:	 1 _ 

~	 1 ~ 

..	 1 
i 

-~i 

L 1 .J 
l 

~-	 1 ~ 
.J 

~ 1 -1 

1~
 
1 

.J 

~.	 Il 

•	 
l,

J

1 

l,
j

. 1j 

1 

l , 

CS/OS Refermee (Volume 1) Drafl3 (APDA)	 8131188 

Pathnames 

ln a hierarchical me system, a me is identified by ilS pathnamc, a sequence of file names starting 
with the narre of the volume directory name and ending with the name of the flle. These pathnames 
specify the access paths to devices, volumes, direetories, subdireetories, and files within flat or 
hierardùcaJ fLle systems. 

AGS/OS pathname is either a full pathname or a paniaJ pathname, as described in the following sections. 

Full pathnames
 

Afull pathnamc is one of the following names:
 

•	 a volume name followed by a series of zero or 100ft: filenames, each preceded by the sarne separator, 
and ending with the name of a directory file, standard flle, or extended file 

•	 a device nam:: followed by a series of zero or IOOre Hlenames, each preceded by the same separalor, 
and ending with the name of a directory me, standard Hie, or extended file 

Aseparator is a characrer mat separaces fllenames in a pathname. 80th of the foHowing separators 
are valid: 

•	 Acolon ":" (ASCII code S3A). 

•	 Aslash character "/" (ASCII code $ZP) 

The first colon or slash in the input string determines the separator. When the colon is the separator, the 
constituent filenames must not contain colons, but can contain slashes. When the slash is the separalOr, 
the constituent filenames must not contain slashes or colons. Thus, colons are never allowed in filenarnes. 

Examples of legaJ full pathnames are as foHows: 

/aloY3ius/beelzebub/cat 

:a:b:c 

/x 

:x 

.dl/a/b 

Examples of iIIegaJ full pathnames are as follows: 

/ : : : /: : / : a ":" must not appear in a filename 

/ a/bic assuming!hat the first filename is supposed 10 be "alb" 

Chapter 1: The GS/OS Abstraet File Sy5l.em 31 



(;s;m ReJ""enœ (Volume 1) D mfi 3 (APD,'I) ,~ . .lI.' .'1,1' 

lalblcl =not have a separatar after the lasl filename 

alblef mU5t start with a volume or device name 

AlI call.s dut require you ta name a me will accept either a full pathname or a partial pathname, 

Preflxes and partlal patbnames 

Afull pathname can !Je broken down into a prefix and a partial pathname, ln essence, the prefIx start5 at 
the beginning of the pathname (dul is, al the volwre or device name) and can continue down through me 
last directory name in the path. ln cantra5l, the partial pathname stacts al the end of the pathname and 
can continue up ta, but not indude, the volume name or device name. Thus, when the prefIX and partial 
pathname aIe combined, they yield the full pathname. Figure 1-4 illustrate5 the possible prefix and partia 1 

lXlthname portions of a single full patho.ame. 

Figure 1-4 Prefues and partial pathnames 

~I 

.~l 

~ 
Œ21lI Profil 
c::::J Partial padmame 

PrefIXes are canvenient when Vou want to access many mes in the same subdirecrory, because you 
can use a prefu designator as a substirute for the prefIx, thus shortening the paùlllame references. 

Prefix designatof"$ 

Apreflx deslgnator takes the place of a prefIx, and can be 

A digit or sequence of digits followed by a pathname separ:Hor. The digits speciIy the prefix nurnber 
Thus, the prefIX designators '002:" and "2/" both spedfy prefix number 2. 

"DIe asterisk charn:ter (') followed by a pathname separator. This special prefix designatar spedies 
the volume from which GS/OS was last booted. 

N"athing. This is identical ta prefix 0 (that is, equal to "0:" or '0ססoo1"). 

Volume 1: Applications and GS/OS Part 1: The Application Level 32 



1 
:1 

G5j05 Refermee (VoIum" 1) DraJi 3 rAFlJiI)	 (j,J l;,)',')'~ 
5 
!ii;
'\ 

~ 
~ , Table].] shows some =ples of prefIX use. They assume that prefix 0/ is sel to IVOLUME1/ and
ir' prefIX 5/ is set tD NOLUMElffEXT.flLES/. The pathname provided by the application LI compared 
~ ,1 with the full pathname constructed by GS/OS. 

1; TabkH Examples of prefIX use 

•	 Full patJtname provided: 

as supplied: NOLUME1!ŒXT.FII.ES/CHAP.3
 
as expanded by GS/OS: /VOLUMEllfEXT.F1LES/CHAP.3
 

Partial pathnarœ-implicit use of prefIX 10:
 

i as suppHed: GS.OS 
~ 

as expanded by GS/OS: /VOLUMEl/GS.OS 

Expüdt \!Se of prefIX JO: 

as supplied: OISYSTEMIF1NDER 

1 
as expanded by GS/OS: /vOLUMEI/SYSTEMIF1NDER
 

Use of prefIX 51:
 

! as suppUed: 5JCHAP.12 
as expanded by GSJOS: NOLUMEllfEXT.FlLES/CHAP.121 

1 

r File information 

GS/OS files are marked as having severaJ charaeteristics, including those that follow: 
1 Access permissions to the file! 

File type and auxiliary type of ilie flle 

•	 The sile of the me and the current reading-writing position in the file 

Creation and modification date and time 

Your application can access and modify this information, as introduced in the following sections and 
described more completely in Chapter 4, •Accessing GS/OS files.' 

.'4 Volume l Applications and GS/OS	 Part 1: The Applic1tion tc,çi 



8/31/88 (,VOS Refermœ (Volume 1)	 Dmjl] (APDA) 

i	 • 

1 

File access 

The characteristic of flle acCCS5 determines what operations can be performed on the me. several 
GS/OS caUs read or set the access attribute for the me, which can determine the following 
capabilities: 

•	 whether the ftle can be destroyed 

•	 whether the me can be renamed 

•	 whether the me is invisible; rhat is, whether its name is displayed by file-cataJoging applications 

•	 whether the file needs to be backed up 

•	 whether an application can Mite to the file 

•	 whether an application can read from the flle 

File types and auxillary types 

The file type and auxiliary type of a me do not affect the contents of a me in any way, but do 
indicate to GS/OS and other applications the type of information stored in the flle. Apple Computer 
reserves the right to assign flle type and auxiliary type combinations, except ior the user-defined file 
types $Fl through $F8. 

Important:	 If you need a new me type or auxiliary type assignment, please contact Apple Developer 
Technical Support. 

Table 1-2 shows the va/id table types. ln Table 1-2, the descriptions under the Auxiliary type column 
have the following meanings: 

•	 Appluation specifie means rhat the auxiliary type specifies which application created the file 

Way the = Is stored means the auxiliary type diITerentiates between various storage methods 

Upperllower case in filename means rhat AppleWorks uses 15 bits of the auxiliary type word Gl'S a 
ward on disk, instead of a long word, for the ProOOS file system) to flag whether to display !ha t 
leuer of the filename in lowercase 

•	 Not Ioaded ifbit 15 Is set means that GS/OS won't Joad or execute mes like OAs and selUp files if bit 15 
of the auxiliary type is set 

APW language type is the language designation for APW source mes 

Load address in bank for BASIC.SYS1EM is the default load address for ProOOS 8 executable binary 
files (file type $(6) 

Coopter 1: The GS/OS Abstract File System 35 
. 1 

1 



G5/0S RefeTT!TICi3 (Vo/ume 1) Drafl 3 (APD.1) b'!31,'S8 

Random-<lccess record length specifies the record lengdl for an ASCIl text file (file type $(4) 

Table 1-2 GS/OS file typeS and auxiüary types 

FlIo 
lY J:loI:xr!Dlkul ~ lYlll: 

100 unoJegorized me 
101 Bad b10cks file 
104 A5CD lext me 
1l1i BimIy flle 
lœ Double Hi·Res me 
lOF Dire<laryme 
119 AppleWocks ~ flle 
lIA AppleWorb WOId pl'OœSSQf me 
lIB AppleWorb 5pre2dsheer. me 
ISO Ward plOCes5CI: file 
151 ~file 

152 ~flle 

153 Objett-orienled gr.aphic5 me 
154 Desktop publ~hing file 
155 Hypermedia me 
156 EduQliooa! data me 
l'57 Stationery file 
158 Help file 
159 Communic:l.tions me 
15A AppticaOOn configur3tioo. me 
lAD cs BASIC program me 

lAC CS BASIC Toolbox defIrtition me 
lAD GS BASIC data me 
IBO APW source fùe 
181 APW objea fùe 
$82 APW libnry me 
lB3 GS/OS application 
lM GS/OS Run-ûme libmy fûe 
lBS GS/OS Shel1 application me 
186 GS/OS permanetl1 initializat.ioo flle 
187 Apple IIGS tempOmy initialization me 
1B8 New De5I< Accessory 
lB9 CIassic Desk Acœs..'lOCy 
IBA Tool file 
lBB Apple IIGS device driver fUe 
IBC Ceneri< load fUe 

.'6 Volume l: Applications and GS/OS 

R2.ndom·access record-Iength (Û"SequenIial file) 
lDad addres5 in bank for BASIC.SY~ 

Upperllower CISe in file rtame 

Upperllower case in me name 
Upperllower case in me rtame 

Application specillc 
Application specillc 
Application SpeciflC 

Application SpeciflC 

Application spedfic 
Application specifie 
Application SpecifIC 

Application specifie 
Application SpecifIC 

Application specifie 
Application SpeciflC 

APW Language type 

Nollœded if rugit bit SCI 

Nolloaded if rugit b~ set 

Nolloaded if high b~ set 

Nolloaded if rugit b~ sel 

No! loaded if b~ 15 sel 

Pan 1: The Applicati<>n Leve! 



GYOS Reference (Volume 1) Drajl3 (APDA) 8131/88 

$BD 
$BP 
$Ol 
$C1 
$Cl! 

$C9 

$CA 
$05 
$06 
$07 
$I!O 
$1!2 
$I!P 
$PO 
$P1 
$P2 
$P3 
$p~ 

$P5 
$P6 
$P7 
$P8 
$P9 
SPA 
$PB 
$PC 
$PD 
$PI! 
$PF 

GSlOS me system lIansWor 
Apple lIGS sound fUe 
Apple lIGS Super Hi-Res screen image 
Apple IIGS Super Hi-Res picture flle 
Apple lIGS font file 
Apple lIGS rtnder daJa me 
Apple IIGS Pillder !con file 
Music sequence file 
Insuumenl flle 
MIDI file 
Te1ecommunbtions I.ibraIy fUe 
AppleTaIk Ylie 
P:lscal ma an partitiont:d disk 
BASIC.SYSTI!M Command Pile 
User-<lefUJed fUe type #1 
User-<1efined file type #2 
User-<le/incd file type #3 
User-<le/incd file type -. 

User-<lefined file type #5 
User-de/ined fUe type #6 
User-defUlt:d fIle type #7 
User-defUJed fIle type #8 
GSlOS System fUe 
lnteger BASIC progr:un fUe 
lnteger BASIC VlIriable fUe 
AppleSoft BASIC progr:un fUe 
AppleSoft BASIC variable me 
I!DASM reIocir2.bIe code me 
ProOOS 8 application 

Nollœded if bit 15 set 

Way the image is store<!
 
Way the picture is store<!
 

AppUcl1ion-specific 
AppUcatioo-speclfic 

AppUcl1ion-specific 

EOF and mark 

Ta aid reading from and writing to mes, each open standard me and each fork of an open extended 
file has a byte count indicating the size of the me in bytes (EOF), and another defuting the current 
position in the fLle (the mark). GS/OS moves bath EOF and mark aUlomatically when data is added 
ta the end of the me, but an application program must move them whenever data is deleted or added 
sorœwhere else in the file. 

EOF is the number of readable bytes in the me. Since the fllSt byte in a fùe has number 0, EOF 
indicates one position past the last charaeter in the me. 

Chapter 1: The GS/OS Abslract File System " 



I;.'i/OS R.jerenœ (Volume I) Uraf/J IAPlJA) 8/31, SS 

When a me is opened, the mark is set to indicate the fir.;t byte in the file. It is automatically moved 
forward one byte for each byte written to or read from the file. The mark, then, always indicates me 
next byte to te read from the file, or the nen byte position in which to Wlite new data. It cannot 
exceed EOF. 

If the mark mee15 EOF during a write operation, both the mark and EOF are moved forward one 
position for every additional byte written to the flle. Thus, addîng bytes to me end of the file 
auromatically advances EOF to accommodate the new information. Figure 1-5 illustrates the 
relationship between the mark and EOF. 

Figure 1-5 Automatic IOOvernent of EOF and mark 

Beglnnlng posItlon lOf 

~ 
MAn 

All>et WIitlng or readlnllWO byœs lOf 

OIJMARX MAn 

All>et wrhinR IWO lIIOt'e byœs 
OidEOF 1!0f 

Mt· <" 

/7 tEtffi"'·.··1 1 ~ _j __1 

MAKI[OIdMARX 

An application cao place EOF anywhere, from the cumnt mark position to the maximum possible 
byte position. The mark cao be placed anywhere from the flrst byte in the flle to EOF. These two 
funerions cao be accompüshed using the SetEOF and Setmark calls. The current values of EOF and 
the mark can be deœrmined using me GetEOF and Getmark caUs. 

]l \icJlurœ 1 ApplicltiOO5 and GSlOS Pan 1: The Applicalion Leve! 



D'S/OS ReJerenU! (Volume 1) Drajl3 (APDA) 8/31/88 

Chapter 2 GS!OS and Its Environment 

CS/OS is one of the many components !bat make up the Apple IIGS operatïng 
environmen~ the overall hardware and software setling within wlùch Apple Iles 
applîcllion programs run. This chapter describes how GS/OS functions in IDat 
envimnment and how il relates ID the other componems. 

~ 

Chapter 2: GS/OS and its Environment 45 



GyOS Referenu (Vol"me 1) Droft j (APDA) 8/3 ]/88 

Apple lIGS memory 

The Apple Iles microprocessor can direetly address 16 megabyœs (16 MB) of memory. The minimum 
meroory configUlation for GS/OS on the Apple IleS is 512 kiJobyœs (512 KB) of RAM and 128 KB of 
ROM. As shown in Figure 2-1, the total melOOry space is divided into 256 banks of 64 KB e"Jch. 

Figure 2-l Apple Iles memory map 

&nit Numœn 
1 --, 

$00 101 $02 IO~ S7P lB> lEI 11'0 lPI lPl> IFE lFP
 
1l'PPl'
 

lDOOO 
lQXXI 

19AOO -=~n 
12000 

lOlIOO b:±::rl 1 1 ... U 
r 

JW,I 

__ GSlOS and SY"<l1lloader 

c::::J Other ~ memory 

CJ Me!oory .vaibble 10 me applic1tioo 

GS/OS and t!le System Loader together occupy nearly aU addresses from $DOOO ùJrough $FFFF in 
banks $00, $(JI, SEO, and SEL ln addition, GS/OS reseIVes (through the Meroory Manager) 
appronmarely 9.5 KB JUS! below SCOOO in bank $00 for GSlaS system code and data. None of these 
reseIVed merrory areas is available for use by appliCltions. 

Banks SEO and SEI are used principaJJy for high-resolution video dis play, additional system software, 
and RAM··based tools. Specialized areas of RAM in these bank.s include va space, bank-switched 
meroory, and dispiay buffers in locations consistent with standard Apple Il memory configurations. 

Omer reseIVed memory includes the ROM space in banks SFE and SFf; they conrain flrmware and 
ROM-based mols. In addition, bank.s $1'0 through sm are reserved for fu[Ure ROM expansion. 

·16 Vdume 1: ApplicJtions and GS/OS Part 1: The Application Leve! 



CS'OS Refe1ma (Volume 1) Dmft 3 (APD,I) ,'1/) l, '\8 

A handJe is a pointer ro a pointer; it is the aooress of a fixed (nonmovable) location, caUed the 
master pointer, !hat contains the address of the black. If the MelOOry Manager changes the location 
of the black, it updates the address in the master pointer; the value of the handle itself is not 
changee!. Thus the application eau continue ro access the black using the handle, no matter how 
often the black is moved in rœmory. Figure 2-2 iIIustrates the difference between a pointer and a 
handle. 

If a block wiU always he flXed in memory (locked or unroovable). it eau he referenced bya pointer 
instead of by its handle. To obtain a pointer ro a particulat black or I.ocation. an application can 
dereference the black's handle. The application reads the address srored in the location pointed to 
by the handle-!hat address is the pointer ro the black. Of course, if the block is ever moved, that 
pointer is no longer valid. 

GS/OS and the System Loader use bath pointers and handles to reference memory locations, 
Poinr.ers and handles must be al least three bytes long ro access the full range of Apple IIGS memory. 
However, aU pointers and handles used as parameters by GSiOS are four bytes long, for ease of 
manipulation in the 16-bit registers of the 65C816 microproccssor. 

::0 Volurœ 1 Applica1ioos and GSlOS Part 1: The Application Level 



GSlOS Reference (Volume I) Drajl3 (APDA)	 8131188 

-1 
; 

..j 
Figure 2·2 Pointers and handles 

..li 
.. Poin<er.-·1 

J Value <t poirIIet • 
5l1lting addr..e of memor,' biod< 

j 
1 

1 sxxx 1------.... $XXX 

J 
.,	 .J 

1 

; J 
1 

, J 
b. Handle:	 r sxxx 

'1
 
Value <t handIe •
 

addreaa01_ poinr.er 
1	 

L ',.1 -J	 M3SerPoinr.er :, 

-------.... szzz[ SZZZ 1 
Value of muter pointer·


1 J curren! !tUting addreaa 01
 
memor,' bIock
 

1 j 

Allocatlng stack and direct page 
1 

i	 In the Apple IIGS, the 65C816 mïcroproeessor's stack-pointer register is 16 bits wide; that means that, 
in theory, the hardware staek cao be located anywhere in bank $00 of memory, and the stack can be 
as much as 64 KB deep.: 1: 

1 ! 

The dJn:et page is the Apple IIGS equivalent ro the standard Apple II zero page. The difference is 
that it need not be absolute page zero in memory. Like the stick, the direct page eau theoretically~	 1 
be placed in any unused area of bank $OO-the microprocessor's direct register is 16 bits wide, and ail 
zero-page (direct-page) addresses are added as offsets ro the contents of that register. 

~.	 1 
1 

ctlapter 2: GSlOS and ils Environment 51 

1
 
1
 
1 



cs/os Referma (Volume I) Drajl 3 (llPDII) 8/3 L 88 

In practice, howcver, there are severa!, restrictions on available space. Firs~ oruy the addresses 
between $800 and $<::000 in banJc $00 Clll be allocated-the teSt is reserved for lIO space and system 
software. AIso, because more !han one program can be active at a time, thece may be more Ùlan one 
stack and more than one direct page in bank $00. Furthermore, many applications may want to have 
parts of their code as weil as their stacks and direct pages in bank $00. 

YOUf program should, therefore, be as effICient as possible in ilS use of stack and direct-page space. 
The total sile of bath should probably not exceed about 4 KB in most cases. 

Automatic allocation of stack and direct page 

Orlly you Clll dedde how ITIIch stack and direct-page space your program will neecl when ir is runni ng. 
The best lime ta make that decision is during program developmen~ when you create your source 
files. If you specify at that time the total allXlUnt of space needed, GS/OS and the System Loader 
will automatically allocare ir and set the stack and direct regisrers each time your program Nns. 

Definition during program development 

You defme your program's stack and direct-page needs by specifying a "diret1-page/srack" object 
segment (KIND • $12) when you assemble or compile your program. The size of the segment is the 
total amount of stack and direct-page space your program needs. It is not necessary to cre::lte this 
segment; if you need no such space or if the GS/OS default (see the section "GS/OS Default Stack 
and Direct Page" larer in this chapter) is suffidenr, you may leave it out 

When the prognm is linked, it is important that the direct-page/stack segment not be combined 
with any other abject segments ta make a lood segment-the linker must create a single load segment 
corresponding to the direct-page/stack abject segment If there is no direct-page/stack abject 
segment, the linker will not creare a corresponding load segment 

Allocation at load time 

Each lime the program is started, the System Loader looks for a direct-page/stack load segment. If 
it fmds one, the loader caIJs the Memory Manager to a1Jocare a page-aligned, locked memory block of 
that size in banJc $00. The loader loods the segment and passes ilS base address and size, along with 
the program's user ID and starting address, ta GS/OS. GS/OS sets the accumulatar (A), direct (0), 
and stack pointer (S) registers as shawn, then passes control to the prograrn: 

Volulœ 1 Applications and GSlOS Part 1: The Application Leve! 52 



J 

1 J 
1 

1 .1 

1 i 

1 ~ 

- 1 ~ 
J 

Il 
J 

1] 
, 1 

, Il 
1 

I~
 
1 

, I~
 
I~
 

GSlOS Reference (Volume 1) Drajl] (APDA)	 8/]1188 

A- user ID a.>signed to the program 
D • address of the flCSt (lowest-address) byte in the direct-pageJscack space 
S • address of the Iast (highest-address) byte in the direet-pageJscack space 

By chis convention, direct-page addresses are offsets from the base of the allocated space, and the 
scack grows downward from the top of the space. 

Important:	 GS/OS provides no mechanism for deteeting stick overflow or underflow, or collision of 
the scaek with the direct page. Your program must be carefully designed and tested to 

make sure this cannet oœur. 

When your program terminates with a Quit cali, the System Loaders Application Shutdown function 
makes the direct-page/stack segment purgeable, along with the program's other static segments. As 
long as chat segmem is not subsequently purged, its contents are preserved until the program restarts. 

Nole:	 There is no provision for extending or rooving the direct-page/stack space after its 
initial allocation. Because ban][ $00 is 50 heavily used, any additional space you Iater 
request may be unavallable--dJe melOOry adjoining your stlCk is likely to be occupied 
by a locked melOOry block. Make sure chat the amount of space you spedfy at [ink lime 
fUis aU your program's needs. 

GS/OS default stack and direct page 

If the loader finds no direet-page/scack segment in a me at load time, it still ret\Jms the program's 
user ID and stalting address to GS/OS. However, it does nol cali the MelOOry Manager to allocale a 
direct-page/stack space, and it ret\Jms zeros as the base address and sile of the space. GS/OS then 
calls the Memory Manager itself, and allocates a 4 KB direet-page/stack segment 

See the Apple IIGS Too/box Referrmœ for a general description of rnelOOry block attributes assigned by 
the Memory Manager. 

GS/OS sets the A, D, and S registers before handing control to the program, as follows: 

A- User ID assigned ID the prograrn
o • address of the fust (lowest-address) byte in the direct-pagelstack space 
S - address of the Iast (highest-address) byte in the direet-pageJstack space 

When your application terminates with a Quit caU, GSlOS disposes of the direct page/stack 
segment. 

Chapter 2: GS/OS and its Environment 53 



813//88 GYOS Reference (Vo/ume 1) Drajl3 (ArDA) 

System startup considerations 

The swtup sequeoce for the Apple lIes is is invisible to applications and relatively complex, 50 

further discussion of the sequence is presented in Appendix D, 'GS/OS System Disks and St!rtup: 
That appendix: descrihes the structure of a valid system disk. 

The Apple IIGS startup sequence ends when control is passe<! to the GS/OS program di~rateher. This 
routine is entered both at boot time and whenever an application terminates with a GS/OS, ProOOS 
16, or ProDOS 8 Quit caIl. The GS/OS program dispatcher detennines which program is to he run next, 
and ruos it. AErer startup, the program dispatcher is permanently resident in Ireroory. 

Quittlng and launching applications 

When you want your application to quit, you issue a GS/OS Quit caIl. The GS/OS program dispatcher 
performs aJI necessary funcdons to shut down the current application, detemlines which application 
should he executed nat, and then Iaunches that application.. 

When you issue the Quit caIl, you cao indicaœ to GS/OS whether your application can he restarted 
from Ireroory. You cao also specify the nen application to he Iaunched, and whether your 
application should he placed on the quit retllm stack 50 that il will he restarted when the other 
program quits. The foilowing sections further explain your options when quitting. 

Specifying whether an application can he restarted from memory 

When your application sets the rest!rt-from-Ireroory f1ag in the Quit caIl to TRUE (bit 14 of the f1ags 
word • 1), the application cao be restarted from a dormant state in the computer's meroory. If your 
application sers the restart-from-Ireroory f1ag to FillE (bit 14 • 0), the program must he reloaded 
from disk the next dire il is run. 

If you set the restart-from-Iremory f1ag to TRUE, l'eIrember that the next lime the application is run, 
irs code and dat! will he exacdy as they were wnen the application quit lnus, you may need to 
reinitialize cel1:lÎn clat! location.s. 

YI Voiurne 1: ApplicltilXlS and GS/OS Patt 1: The Application Le.vel 



GSOS Reference (Volume 1) Dra!1 j (tII'UA) ,'{ J l '.18 

Specifying whether control should return ta your application 

The quit retum stick is a stack ci user IDs used ta restart applications !hat have previously quit. If 
an application specifies a TRUE quit retum f1ag in its Quit call, GSlOS pushes the user ID of the 
quitting program onta the quit retum stack and saves information needed to restart the program. AB 
subsequent programs run and quit, severa! user IDs may he pushed onto the stack. With this 
mechanism, multiple levels of shells cao execute subprogram; and subshells, white ensuring that tlley 
evenn.tally regain control when their subprograms quit. 

For example, the srART fale might pass control to a software development system shell, using the 
Quit call to spedfy the pathname of the sheU and placing its own ID on the stack. The sheU in turn 

couId band control to a debugger, likewise placing ilS own ID on the stack. If the debugger quits 
without specifying a p'dthname, control would pass automatically back ta the shell; if the shell then 
quits without specifying a pathname, control would pass automatically back to the START file. 

This autamatic relUm mechanism i.s specific to the GS/OS Quit caU, and therefore is not available to 

ProDOS 8 programs. When a ProOOS 8 application quits, it cannot put its ID on the internai stack. 

Quitting without specifying the nen application ta Iaunch 

If you want ta quit your application and do nat want to specify the next application ta be launchecl, 
supply the following parameters in the Quit caU: 

no pathname 

• a FAI.5E quit retum f1ag 

GS/OS then attempts ta puU a user ID off the Quit relUm stack and relaunch !hat application. If the 
Quit retum suck is empty, GSlOS will attempt ta relaunch the START program. 

Launching another application and not retuming 

When you are quitting your application, and want to pass control to another application, but do not 
wanr control ta evenn.tally relUm to your application, supply the following p'.lrameters in the Quit cali: 

• pathname of the application ta he launched 

• a FAI.5E quit retum f1ag 

GS/OS will attempt ta launch the specified application. 

% VoIulTe 1 AppliclÛOlls and CS/OS Part 1: The AppliCltion Level 



1 

1 J GSlOS Reference (Volume 1) Draft 3 (APDA) 8/31/88 

1 

J 
Launching another application and returning 

1 ] 
If you waot 10 pass control 10 another application, and want conuol 10 retum 10 your application


"1 when the next application is finistled, set the quit retum f1ag 10 TRUE in the Quit cali. That way your
 
program can function as a sheJl--whenever it quits 10 aoother specified program, it Imows that it willJ l:ventually he reexecuted. Supply the following para.meters in the Quit cali: 

• pathnaIœ of the application 10 he launched 
1 J • a TRUE quit retum fIag 

GS/OS pushes the User ID of your quittlng application onto the quit retum stack, and then atternpts
1 ] 

ta launch the specified application. 

1 J 
Machine state at application launch 

1 ] 
The GS/OS program dispatcher initializes certain components of the Apple Iles and GS/OS before it 
passes control to an application. The initial state of those components is described in the following

1 J sections. 

1 ] 
Machine state at GS/OS application launch 

1 1 When a GS/OS program is launched, the machine state is as shown in Table 2-2. 
j 

1 , Table 2·2 Machine state at GS/OS application Iaunch
l 

lte~ Selte1 ~ 
1 

j 

1 , 
J 

1 

J '1 

J 

J 

1 ~ 

1.
 

Reserved memory 

Hardware registers 

accumuJator 

Addresses above $9AOO in bank zero are reserved for GS/OS, and are 
therefore unavailable 10 the application. Adirect-page/stack space, 
of a size determined either by GS/OS or by the application itself, is 
reserved for the application; it is located in bank $00 at an address 
determined by the MelOOry Manager. The only other space that 
GS/OS requires in RAM is the Ianguage-cani areas in banks $00, SOI, 
SEO, and SEL 

Contains the user ID assigned 10 the application. 

Cllapter 2: GSlOS and its Environment )J 



GVOS Referetlœ (Ill/ume 1) Draflj (APDA) 8/ J! ;-:,' 

x- and Y-regisœrs 

e-, ffi-, and x-flags in the 
processor SraM register 

stack register 

direct register 

Standard input/oulPUI 

Shadowing 

VeClOr space values 

Pathmrne prefIX V3lues 

Contain zero ($0000). 

Ail sel ID zero; processor in full native mode.
 

Contains the address of the IOp of the direct-page/sClck spaœ.
 

Contains the address of the boltOm of the direct-page/stack space,
 

For both $B3 and $B5 mes, st:u1dard input, output, and errar
 
locations are set to Pascal 8O-column chal:lCter device vecters.
 

The value of the Shadow register is $1 E, which means:
 

language card and VO spaces: shadowing ON 
teX! pages: shadowing ON 
graphies pages: shadowing OFF 

Addresses between $QOM and $oOBF in bank $EI constitule GS/OS 
vector space. The speciflC values an application fmds in the vector 
spaœ are shawn in Table 2-1 earlier in this chapter. 

Set as described in the section 'Pathname PrefIXes at GS/OS 
Application Launch" later in this chapter. 

'13 Volume 1: Applic:ltions and GS/OS Pa,t 1: The Application Leve! 



8/3188 cs/os Referma (Vo/ume I)	 Dmjl 3 (APDA) 

At all times d\lling execution, GetName returns the filename of the current application (regardless of 
whether prefIx 1/ !Jas been changed), and GetBootVol retllms the boot volume name, equaJ to the 
value of prefix"/ (regardless of whether prefIx 0/ !Jas been changed). 

Table 2-4 PrefIx values when GS/OS application launched at boot time 

Î>rdlx .DescrlntloQ 
boat volume name 

o boat volume name 
1 full pathname of direcfDry containing current application 
2 "/SYSTEM/UBS 
3-8 null strings 
9 equaI to prefIX 1 
10-31 null strings 

Table 2·5 PrefIX values--GS/OS application launched after GS/OS application quits 

Prellit	 Descrlotlon 
unchanged From previous application 

o unchanged From previous application 
1 full pathname of dlrecfDry containing current application 
2 unchanged From previous application 
3-8 unchanged From previous application 
9 equal to prefIX 1 
10-31 unchanged From previous application 

Table 2-6	 PrefIX values--GS/OS application launched after ProDOS 8 application quits 

Prellit	 Descrlotion 
boot volume name 

o unchanged From the ProDOS 8 system prefIX under previous application 
1 lull pathname of the dlreetory containing the current application 
2 "/SYSTEM/UBS 
3-8 nuU strings 
9 equal fD prefIX 1 
10-31 nul! strings 

li) Volume 1: Applic:ltionl and GS/OS	 Part 1: The Application Level 



1 
1 

" 
GSlOS Reference (Volume 1) Draft 3 (APDA) 8/31/88 

i.. 
-) 

J 

Pathname preftxes al PraDOS 8 application launch 

Table 2·1 shows the initial values of the ProDOS 8 system prefIx and the pathname at location $0280 
in ban]( $00 when a ProDOS 8 application is launched from GS/OS. 

, 
-. 
-) 

1 

J 

Table 2·7 

CQiilffiIOu 

PrefIx and pathname values at ProDOS 8 application Iaunch 

--­ - System prefix LocatIon S0280 pathname 

i
,J 

Application Iaunched at boat 
time 

boat volume name filename of current 
application 

, Application Iaunched through 
enhanced ProDOS 8 QUIT call 

unchanged from 
previous application 

full or partial pathname 
given in QUIT call 

Application launched after a previous application's full pathname given in 
GS/OS application bas quit (if prefIx 0/ QUIT cali 
Quit caJI speciflCd a full 
pathname) 

Application Iaunched after a prefix specified in the pàrtial pathname given in 
GS/OS application bas quit (if Quit cali Quit cali 
Quit cali specified a prefIx and a 
partial pathname) 

Chapter 2: GS!OS and its Environment 61 





,1
 
GSlOS Refenmœ (Volume 1) Draj/3 (AP/M) 8131188 

'1 4 

ï J 

l, 
"1 , Chapter 3 Making GS/OS CaUs 

,"1 J 
This chapter descrlbes the metbods your application must use to make GS/os 

. 1 J ~. The QlImlt application, a desk accessoty, and an interrupt handler are 
examples of applications tbat cm make GS/OS calls.]

"1 
] 

1 l 

I~ 
j 

1 

" l 

J 

J 

.,
 
J
 

] 
" , 
.J 

~1 

\
 
J
 

Ol3pler 3: Making GSIOS Calls 63 

'1 



G.vOS Rejerenœ (Volume 1) Dro,fl3 (APDA) 8i3 [ ~8 

GS/OS calI methods 

When an appUcation makes a GS/OS cali, the processor can be in emulation mcxie or full native mode, 
or any sure in between (see the TechnicallnJroduetion ta the Apple IICS). There are no regL~ter 

requirements on entry to GSlOS. GSlOS saves and restores aJI registers except the acrumulator CA) 
and the processor sUtus register (P); these two registelS store information on the success or failure of 
the call. 

Calling in a bigh-level language 

To make a GS/OS cali l'rom a high-levellanguage, such as C, Vou supply the narne of the cali and a 
pointer to the parameter block. 

Call1ng in assembly language 

You can make GS/OS caIls in assembly language using any of the following techniques: 

Macro rechnique-uses macros dermed by Apple ta generate inline calls. Macro caUs are che simplest 
and the easiest to read. 

[nline cali teehnique-simiJar to ProOOS 8 

• Stick cali teehnique-<:onsistent with the way compilers generate code 

There is virtually no rlliference in the run-time perfolIllance of these three techniques; essentially, 
which one of che techniques Vou use is a matter of personal preference. Each of these techniques is 
derailed separately in the following sections. 

To make a GS/OS assembly language cali, your application must provide 

• a 2-byre call number or the macro n:une of the cali 

If Vou don't use the macro narne, a lump to Subroutine Long OSL ) insu1Jctioll to the appropriate 
GS/OS entry point 

a 4-byte pointer to the pararneter block for the cali; the pararneter block passes information beeween 
the caller and the called funetion 

111e macro narne or calI number specifies the type of GS/OS cali, as follows: 

Volurre 1: Applical.ioos and GS/OS Part 1. The Application Leve! 64 



,

.	 1" 
Gym Relerenu (Volume 1) Drajl3 (APDA)	 8131/88 

.	 1 J 

l 
1 

•	 Standard GS/os calls: These caIJs allow you to access the full power of GS/OS; you should use them if 
1	 : 

you are writing a new application. Most of the description in this manual is devoted solely ta these 
1 
1 calls. 

,	 1: • ProDOS 16 calls: These caIls, described in Appendix Aof this docuJœnt, are provided only for 
i compatibility with ProDOS 16. (ProDOS 16 is described in the Apple Des ProDOS 16 Reference.) 

J1 Every GS/OS caIJ that doesn't use the macro technique must spedfy the system cali number and class
 
in a parameter referred ta in the next sections as callnum. The callnum parameter has the
] following fonnat:
 

] IlsIH@lii]1I11019IsI716IITDIFTTTIJ 
~.~~ 1 ] 1 

c.... I·' allllUJllber] cw.o·o 

J 
The primary cali number is given in each caIJ description. For example, the caIJ number for the Open 
caIJ is $10. 

Thus, ta make a standard GS/OS (class 1) Open caIJ, your application would use the macro name or a 
l callnum value of $2010; ta make a ProDOS 16-compatible (class 0) OPEN cali, the caller would use a
J callnum value of $0010. 

J	 Maklng a GS/OS call uslng macros 

To make a standard GS/OS caIJ using the macro technique, perrorm the following steps:
1 
J	 1. Provide the name of the standard GS/OS cali. 

2.	 Follow the name with a pointer ta the parameter black for the cali. 

J	 GS/OS performs the function and returns control ta the instruction that immediately follows the
 
macro.
 

] 
The following code fragment iIIustrates a macro caIJ: 

J	 _CaIIName_Cl pannblock ;Name of calI 
bcs error ;handle error if carry set on return 

]
 
error	 ;code to handle error return
 

pannblocK	 ;parameter blocK
 

J 

1
 OJapler 3: Making GSlOS CaUs &5
 

1
 

" 
l 



GYOI' Reference (Volume 1) Drajl3 (APDA) di! ],;)8 

Maldng an lnllne GS/OS call
 

To make a standard GS/OS cali using the inline rœthod, perform the following steps:
 

1. Perfonn a ]SL 10 $El DOAB, the GS/OS inline entry point 

2. Follow the ]SL with the cali number. 

3. Follow the cali number with a pointer to the pararœter block. 

GS/OS performs the function and retums control 10 the instrm:tÎon that irnrnediately follows the
 
parameter block pointer.
 

The following code fragment illustrates an inline cali:
 

inUne_entry gequ SE100A8 ;address of GS/OS inline entry point 

j.l inline ent:ry ;10"g jump to GS!QS inllne entry point 
de i2' calï.num· ;call number 
de i4' parmblock' ;parameter block pointer 
bc. error ;handle error if carry set on ret.urn 

error ;code to handle errar return 

parmblock :parameter block 

Mak1ng a stad call
 

To make a standard GS/OS cali using the slack rnethod, perfonn the foUowing steps:
 

1. Push the parameter block pointer onto the stack (high-<lrder ward fics!, low-<lrder word second),
 

2, Push the cali number of the calI onlo the Staek.
 

3, Petfonn a ]SL to $ElDOBO, the GSlOS Slack entry point.
 

GSIOS performs the GS/OS command and relUrns control to the instruction that immediately follows 
the )SL. 

The following code fragment illustrates a Slack cali: 

gtack_entry qequ SE100BO ;address of GS/OS stacl< entry point 

pea parmblock (-16 ;push hign word ot parameter black pointer 
pea parmblock :push low ward ot parameter black pointer 
pea callnum :push calI number 
j.l 3tack_entry ; long jump to GS/OS stack entry point 
bc. error ;handle error if carry set on return 

error :code to handle error return 

par!1'1block ;pararneter bloçk 

fi, Volurre 1: Applications and GSlOS Parti: The Applic':ltlon [",,'el 



J 

l GSIOS ReJerenœ (Volume 1) Draft 3 (APDA) 8!3118~ 

..J 

.., 
J
 

]
 
lncluding the appropriate mes 

-1 If you are writing youe application in assembly language, inciude the following mes, as appropriate:
J 

E16.SYSCAllS and M16.SYSCALlS If you are making standard GS/OS c:ùIs 

] E16.PROOOS and M16.PRODOS If you are making ProDOS 16-compatible calls 

- ] 

II you are writing youe application in C, include one or both of the following files: 
- .J 

SYSCALIS.H If you are maldng standard GS/OS calls 
PRODOS.H If you are making ProOOS 16-compatible calls 

/mportanJ In either language, if you indude mes to rnake both standard GS/OS and ProOOS 16­
compatible calIs, you must append the sulflX GS to the standard GS/OS caU names and

] parameter block type identifiers. 

J 
GS/OS parameter blocks 

J 
AGS/OS parameter bJock is a formatled table that occupies a set of contiguous bytes in memory. 
The block consisls of a number of fields that hold information that the calling program supplies to

] the funetion it caIls, as weil as information retumed by the function ta the caller. 

Every GS/OS cali Je1IUÎreS a vaUd parameter block (parmblock in the preceding examples),

J refereoced by a +byte pointer. The application is responsible for constructing the parameter block 
for each caU that it makes; the block cao be anywhere in memory. 

The formats of the fields for individual parameter blocks are presented in the detailed system cali 
descriptions in Chapter 7. 

J 
Types of parameters 

Î 
J Each field ln a GS/OS par.uneter block contains a single parameter, one or more words in length. Each 

parameter is an input from the application to GS/OS or a result that GS/OS returru; to the application, 
or bo!h an input and a result 

Chap!er 3: Making GSlOS Calls 67 



GS/OS Rejt>ren<Ai (Volume J) Drajl3 (.4PDA)	 8dISii 

• An inpul can be either a numerical value or a pointer to a string or other data structure. 

• Aresull is a numerical value !.hal GS/OS places into the parameter black for the caller to use. 

A pointer is the 4-byte address of a location contlining data, code, or buffer space in whieh GS/OS 
can receive or place data; that is, the pointer may point to a location !.hal contains an input, or poi!1l 
to space !hal will receive a resu\l, or point to a location mat both contains an inpul and receives a 
result 

Parameter block format 

Ali standard GS/os parameter blocks begin with a parameter count, which is a word-length inpUl 
value that specifies the total number of paramt:ters in the block. This aUows Vou 10 vary the number 
of parameters in a caU as needed, and also makes possible fulUre parameter black expansion. 

AIl par.uœter fields that contain black numbers, black counts, me offsets, byte counes, and other 
fIle or volume dimensions are 4 bytes long. Using +byte fIelds epsures thal GS/OS will accommodale 
large devices using flle system translators. 

AIl parameter fields contain an even number of bytes, for ease of manipulation by thel6-bit 65C816 
processor. Pointers, for example, are 4 bytes long even though 3 bytes are sufficient 10 address any 
melOOry location. Wherever such extra bytes occur they must he set ID zero by the caller; if they are 
nol, compatibility with fulUre versions of GS/OS will be jeopardized. 

Pointers in the parameter bloc.k must be WfÎlten with the Jow-order byte of the low-order ward at me 
lowest address. 

Important	 The range of theoretically possible values as defmed by the length of a parameter is 
often very different from the range of permissible values for thal parJmeter. The faet 
tfull ail fIelds are an even number of bytes is one reason. Another re'JSOn is thal the 
permissible values for a field depends upon ics me system. 

GS!OS string format 

GS/OS strlnll:' resemble Pascal-style strings. APascal-style string begins with a length byle that 
deflnes the length of the string in bytes, followed by the string itself, with each character equal ta one 
byte. A GS/OS string is very sirniJar, excepllhal il begins with a length word instead of a byte. See 
Figure }-1. 

te V(~ume 1: Applications and GS/OS	 Parl !: The Application Level 



GYOS Keference (Volume 1) Dmjl3 (APDA) 8/3UB8 
~ 

..
 
Figure 3-l GS/OS and Pascal strings 

-·1 

GSlOS !trine 

1 lengm -u 1 soing: :: 1 .. 
PualIlI'ÜII 

1 ~~byte 1 soing ::: 1 

-] String parameters consis! of a pointer parameter in the calI's parameter black !hat points to a data 
J structure containing the string. For standard GS/OS calls, !hat data structure varies depending on 

whether the string parameter is an input to or output from the cali. 

ProDOS l&;:ompatible caIJs use Pascal-style strings, with the exception of the GE'CDIR_ENTRY cali, 
which uses GS/OS strings. 

GS/OS input string structures 

When a string is used as an input from an application to GS/OS, a pointer in the calI's pararneter black 
points to the !ow-<:>rder byte of the length ward of the string, as shawn in Figure 3-2. 

Figure H GS/OS input string structure 

GS/OSsoing 
1 

~ ---, 

1 f4lhnome ~= 1 • Ilen~ wool 1 soing: :: 1 

GS/OS result buffet 

When a string is retumed as a resuJt from a GS/OS cali to an application, a pointer in the paJameter 
black points to a buffer reserved for the result This buffer Stafts with a buffer length word !hat 
specifies the totallength of the buffer, including the buffer length ward, as shawn in Figure 3-3. 

OlaJXer 3: Making GSlOS Calls (f) 

~ 

Il''' j 

"" 



GY'QS ReJèrena (Volume 1) Drajl3 (APDA)	 Si) J, 88 

Figure 3-3 GS/OS result buffer 

GS/OS 5lring 
1 ----,( 

1	 ~ pOOlœr 1 "1 buJl::~ 1~gdI- 1 5lring: :: 1 

How GS/OS relUrns the result depends on whether or IlOt there is enough space in the buffer 
Cexduding the buffer length word) to hold the output string. If there is enough space, the result is 
placed in the buffer starting just after the buffer length word. 

The fIrst two bytes of the string are its length ward. If there is IlOt enough space, GS/OS retums only 
the length word of the string, pladng it imrnedJately airer the buffer length word. This gives the caller 
the opportunity to resize the buffer and reissue the caU. The proper size is the value in the string 
length word plus four Cto account for the buffer and string length words). 

If the area is too small to contain the string, GS/OS returns a "buffer too small" eoor and sets the 
string length field to the aetual string length. In this case, the string fIeld is undefined. The caller mu.st 
acId four to the retumed string length to determine the tor.al area size needed to hold the string and 
the (wo length fIelds. 

The GetDirEntry call is an exception to the preceding fUies. For this cali only, if the result does not fit 
in the buffer, GS/OS copies as much of the string into the buffer as possible. The length ward of the 
string will be set to the aetual string length, not the size of the string placed in the buffer. Thus, the 
application may choose to use a partial string-for example, in a directory listing with a limited 
number of columns for the fIlenaIœ-Or reissue the call to get a complete string. 

Setting up a parameter block in memory 

Each GS/os cali uses a 4-byte pointer ta point to its pararneter black, which can be anywhere in 
memory. AlI applications must obtain needed memory from the Memory Manager, and therefore 
cannat know in advance where the memory black holding such a parameter black will be. 

You cao set up a GSlOS parameter black in memory in one of two ways: 

1.	 Code the black directly into the program, referencing it with a label. This is the simplest and most 
rypicaJ way to do iL The parameter black will always be correctly referenced, no malter where ln 

meIWry the program code is loaded. 

Volume 1: Applications and GSlOS	 Part [: The Application Leve! II 



1 
CS/OS Referenœ (Vo/ume 1) Drafl 3 (APDA) 8/3//88

1 J 

1] 2. Use Memory Manager and System Loader calJs to place the block in memory, as foUows: 

1J 
a. Request a memory block of the proper size from the Memory Manager. Use the procedures 

described in the Apple DGS Tao/box Referenœ. The block should be either flXed or locked. 

b, Obcain a pointer ta the block, by dereferencing the memory handle retumed by the Memory 
Manager (that is, read the contents of the location pointed ta by the handle, and use that

1J V:llue as a pointer ta the block). 

c. Set up your parameter block, starting at the address pointed to by the pointer obUined in] step (b).

1 
1 J 

Conditions upon retum from a GS/OS caIl
]

1 When control returns ta the caller, the registelS have the values shown in Table 3-1. 

1 ] Table 3-1 RegistelS on exit from GS/OS 
l 

ltemœr DcscrlDtlon1 j 
A 

] X 
y 
S

1 ] o 
P 
DB1 PB 
PC 

1 ] 

zero if caU successful, error code if caU unsuccessful 
unchanged 
unchanged 
unchanged 
unchanged 
shown in Table 3-2 
unchanged 
unchanged 
address of next instruction 

'Unchanged' rneans that GS/OS initiaUy saves, and then restares when fmished, the V:llue that the 
register had just before the caU. 

1 ] 

When control returns ta the caUer, the processor status and control bits have the values shawn in Table 
3-2 

1 ] 

l 
1 

1 j 

l
,J 

Olapter 3: Making GS/OS CaUs 71 

]
 

l 



(;5,0.\ lIelerenve ('iülume 1) Dra/( 3 (ImA)	 n 

Table 3-2 Sraws and control bits on exit from GS/OS 

Relllster Desctlotlon 
n undcfined 
v undefmed 
m unchanged 
x unchanged 
d unchanged 
i unchanged 
z 0 if cali ullSUccessful, 1 if cali successful 
c 0 if cali successfu~ 1 if caU unsucœssfuJ 
e uncOOnged 

Note:	 1be n flag is undefmed here; under ProOOS 8, it is set according to me value in the 
accumulator. 

Checking for errors 

When control retums [Q your application, me carry bit will be set [Q 1 if an error occurred, and the 
error code (if any) will be in register A. You <:an mus use a Branch if Carry set (BCS) instruction to 
branch to an error-handling routine, and men pide up me error code from register A. 

Fatal GS/OS errors are handled by the GS/OS Ermr Manager. When a fatal error ocrues, the GS/OS 
Error Manager displays a failure message on the screen and hallS exceution of GS/OS. If the errer is 
unrecoverable and requires that the system be rebooted, the GS/OS Error Manager calls the System 
Failure Manager, a part of the Apple IIGS Toolbox. The System Failure Manager is described in me 
coopter 'Miscelbneous Tooi ser in the Apple Des Too/box Reference. 

The errors that specifically apply to a particular cali are liste<! as part of the cali description in Chapter 
7. Other errors <:an occur for almost any of the calls. For example, aImost any cali can relUm error $54 
(out of mermry), and perhaJl'i you would want ta invoke a special error handler for that condition. 

n Volurre 1: Applications and GSlOS	 Part 1: The Applicâtion Level 



8/31/88 
1 

1 l 
1• 1

1 

1 1 

1 J 

I
l 

1 J 

1 l 
1 J 

J
 
1 ] 

1 ] 

1 ] 

1 l 
i 

1 

1 ~ 
" 

1:
 
1 ~ 

1 " 

1 . 

G.\IOS Referenœ (Volume 1) DrrJ/l3 (APDA) 

Chapter 4 Accessing GS/OS Files 

The mœt cOlIlJOOn use of GS/OS is ta access files that contain data on a storage 
medium. Ame is an ordered collection of bytes that has severa! attributes, 
including a name and a me type, 

GS/OS tries ta free you, as an appücatlon programmer, from knowing roore 
about mes and me systems than you want 10. GS/OS has been bullt on the 
theory that, in roost cases, you only want 10 assign the atUibutes lhat are critical 
ta the functjon of the flle, and that you're not reaIly interested in where the user 
choose:l 10 store the file. 

TItus, this chapter assumes thal you waat ta access mes using the simplest 
possible method. Using this method, yeu caIl the Apple IlGS Toolbox routines 
SFPutFtle or SFGetFiIe (from the Stlndard File Operations Tool set) ta 
construet the naIre of the flle the user wisbes ta ereate or open. With this 
method' you don't have ta worry about the pathnaIœ 10 the me, since GS/OS is 
able 10 autamatically construet the full pathname ta the me. 

If you waat ta build the patbname yourself, GS/OS aJso gives you thal 
capability; see Chapter 5, 'Working with Volumes and Pathnames.' 

Clapier 4: Accessing GS/OS fdes 73 



cs/os Reference (Volume 1) Dmft 3 (Al'DA)	 8d 1, 88 

The simplest access method 

Ta ll!ie this method, perform the following steps: 

1.	 If you are creating a new me, cali the tool set routine SFPutFile 10 get a pointer to the pathname of 
the flle that the user wishes to create. save the pointer, and use it in a GSlOS Create caU ta place the 
me on the disk. 

If the user Î5 opening an existing me, cali the tool set routine SFGetFile to get a pointer to the 
pathname of the flle that the user wishes to open. Save the pointer, and use it in a GS/OS Open cali 
to open the file. 

2.	 If the user is opening an existing me, cali the tool set routine SFGetFile to get a pointer ta the 
pathname of the me the user wishes to open. save the pointer, and use it in a GS/OS Open cal! to 
open the Hie. 

3.	 WhiJe the file is open, you can do the following tasks: 

•	 Read and write data ta the file by making Read and Write caUs. 

Move or get the cunent reading and writing position in the file by making SetMark and Gettvlark 
caUs. 

•	 Moye or get the alITent end-of-file (EOF) by making SetEOF and GetEOf calls. 

Ellable newline lOOde, which terminates a read if the read encounters one of the specified newline 
characters, or disable that lOOde. 

•	 Write aH bllffered information ta storage ta ensure data integrity by making a Flush cal!. 

4.	 When you have fmished working with the HIe, dose it by making a Close caU. 

This chapter proYides you with sorne information on how ta ll!ie the file access caUs. For more detaiLs 
on each indiyidual caJJ, see Chapter 7, 'GS/OS CaU Reference." 

Creating a file 

When you mm your application ta create a HIe, isslle a GS/OS Creare calI. When YOll L5Sue that ca II, 
YOll assign sorne important characteristics ta the me: 

Volume 1: Applicltions and GSIOS	 Part 1: The Application Lèvel 74 



1..
 
1 

1
..î 

1..1 

_1 J 
J

1

1.j

l 

1J 

l 

l 

1 .1 

1J 
1] 

1 ] 

1] 
] 

1 
1 ] 

1 J 

1 ] 
1 

1 J 
Î 

1	 J 

" 

I~
 

1	 ~ 

CS/OS Rejerena (Volume 1) Draj/3 (APDA)	 8/31/88 

•	 Apathname, which must place the me within an existing directOlY. As already mentioned, if you use 
the Toolbox routine SFPutFile, you ooly have to save the pathname pointer it retums and supply that 
pointer te GS/OS. If you want to buiId the pathname yourself, see Chapter 5. 

•	 The file access, which detennines whether or not the me can be written to, read from, destroyed, or 
renamed, and whether the me is invisible. 

•	 A file type and auxiliary type, which indicate to other applications the type of infonnation te be 
stored in the me. It does not affect, in any way, the contents of the me. 

•	 A storage type, which detennines the physical fonnal of the me on the disk. There are three different 
fonnats: one is used for directory mes, the other two for nondirectory mes. Once a file bas been 
created, you can't change its storage type. 

•	 The sile of the ftle and the sile of the resource of the me, which are used to preaUocate disk storage 
for the file to be created. Under {OOSt circulI\5tances, you can leave these parameters set to their 
default of O. 

When GSlOS creates the me, it places the properties listed above on disk, aJong with the current 
system date and time (caUed acatfon date and creation time). A created me remains on disk until 
it is deleted (using the Destroy cali). 

Opening a me 

Before you cao read infonnation from or write infonnation to a me that bas been created, you must 
use the Open call to open the me for access. When you open a ftle, you specify a pathname to a 
previously created me; the file must be on a disk IOOlIllted in a disk drive or GSlOS retums an eoor. As 
aJready mentioned, you can query the user for the filename by using the SFGetFLle routine in the 
Standard File Operations Tooi Set of the Apple IIGS Taolbox. 

The Open call retums a reference number chat your application must save; any other calIs you make 
affecting the open file must use the reference number. The me remains open until you use the Close 
cali. 

Multiple open calls can he made to files on black devices for read-ooly acce5S; in chat situation, the 
me remains open until you make a Close call for each me you opened. 

GSlOS allows any number of open mes at a time limited ooly by the armunt of total available 
rnemory and number of available reference numbers. In practice, there is no limit to the number of 
open files.a practical timit,. However, each open file requires sorne system overhead, so in cases 
where rnemolY is in short supply, your application might want to keep as few files open as possible. 

0Iapter 4: Acœssing GS/OS Fdes 75 



G'S,OS Reference (Voillme 1) IJraft 3 (APUA)	 T ,'-:8 

YOUf application cm aL';Q further liroic the read-write access co a file when it makes a GS/OS Open 
caH; for example, if the file w:lS created with read-wrice access, you could change that access to read­
only. 

You should be aware of the differences between a file on disk and portions of an open file in 
rneroory. Although sorne of the Hle's charaeteristics and sorne of its data may be in rnemory at any 
given lime, the me iœelf stiJl resides on the disk. This ailows GS/OS to manipulace files that are much 
larger than the computer's rneroory caÇ4dty. As an application writes 10 the file and changes its 
charaeteristics, new data and charaeteristics are writcen to the disk. 

Working on open mes 

When you open a file, sorne of the fiJe's charaeteristics are placed into a region of memory. Several of 
these charaeteristics are accessible to calling applications by way of CS/OS calls, and can he changed 
while the flle is open. 

This section describes the GSlOS caUs that work with open files. 

Reading from and writing to files 

Read and Write ca11s 10 GSlOS transfer clat! betIVeen rœmory and a file. For bath caUs, the 
application must specify the foUowing information: 

referenœ number of the me (assigned when the file was opened) 

•	 location in memory of a buffer that conlains, or is to contain, the transferred data 

number of byces to be transferred 

•	 cache priority, which deterrnines whether or not the blacks involved in the caU are saved in RAM for 
Iater reading or writing 

When the requcst bas been camed out, GS/OS passes back to the application the number of bytes 
char it acruaUy transferred. 

A read or write request stans al the current Mark, and continues until t/1e requested number of bytes 
has been =ferred (or, on a read, until the Eor has been reaçhed). Read requesLS can aLso terrrtinate 
when a specified charaeter is read. 

Volurœ 1: Applicllions and GS/OS	 Part 1: The Application Level 76 



CS/OS Reference WO"""le 1) Drafl3 (APDA) 8131/88 

] 
l 
.J 

..1 

-1 ..
 

] 

l 
J 

J
 
ï 

j 

] 

] 

] 

] 

l 
j 

1 ~ 

1 . 

1 . 

1 . 

Setting and reading the EOF and Mark 

Your application can place the EOF anywhere, (rom the current MatIt position to the maximum 
possible byte position. The Mark can be placed anywhere from the fust byte in the file co the EOF. 
These two functions can he accompUsbed using the SetEOF and SetMark caIls. The current values of 
the EOF and the Mark cao he determïned using the GetEOF and GetMarlc C2IIs. 

Enabling or disabling newline mode 

Your application can use the Newline cali CO indicate that re:ld requests temûnate on a spedfied 
character or one of a set of spedfied charaeters. For example, )'OU can use ~ C2pability ta read 
lines of text that are terrninated by carriage returns. 

Examining directory entries 

Youe application does no! need to know the details of directory format to access files with known 
names. You need co examine a directory';; entries oo1y when your appllcatlon is performing 
operations on unknown flIes (such as listing the flIes in adirectory). The GSlOS cali you use to 
examine a direetory's enmes is called GetDilEntry; for IOOre de1,ill" sec GetDirEntry in Chapter 7. 

Flushing open files 

The GSlOS Flush cali writes any unwritten dam from an open fde's 110 buller ta the file, and updaœs 
the fIle's size in the directo/Y. However, it keeps the reference number (retumed from the Open cali) 
and file's bulfer space active, and thus allows continued access ta the file. 

When used with a reference number of 0, Flush normaUy causes ail open flIes to be flushed. Specifie 
groups of flIes can be flushed using the system flle level (see 'Setting and Getting Flle I.evels' Iater in 
this chapter). 

Closing mes 

When you futish re:lding from or writing CO a me, you must use the Close cali to close the me. When 
you use this calI, you specify only the reference number ci the file that ms assigned when the file ms 
opened. 

0Japccr 4: Aa:essing GSlOS fi/Ci n 



G5IOS Rejerenu (l'olurne 1) DroJl 3 (:,PDA)	 8/3188 

The Close caH Mites any unwritten data From memory to the flle and updates the file's size in the 
directory, if neœssary. Then it frees the file's bulTer space for other uses and releases the file's 
reference number and me control block. To access the file agaïn, you must reopen it 

Information in the ftle's directory, such as the ftle's sile, is normally updared only when the file is 
closed. If the user were ta press Control-Reset (typically halting the current program) while a me is 
open, data written to the me since it was opened could he lest, and the integrity of the disk could be 
da.maged. You can prevent this situation from ocouring by using the Flush cali. 

Setting and getting me levels 

When a file is opened, it is assigned a fLle level equaI ta the autent value of the system file level. 
Whenever a dose or Rush cali is made with a reference number of 0, GS/OS closes or flushes only those 
files whose levels are greater !han the current system level. 

The system me level feature can be used, for example, by a controlling program such as a 
development system shell ta implernent an mc command: 

1.	 The shell opens an EJŒC progr:un me when the level is $00. 

2. The shell then sets the level ta, for example, $07. 

3, The me program opens wbatever mes it needs. 

4.	 The E.'ŒC program executes a GS/OS Close command with a reference number of $0000 to close al! 
the mes it bas opened AlI mes at or above level $07 are closed, but the mc me irself remains open, 

You assign a value ta the system flle level with a SetLevei cali; you obtain the CUITent value by making 
a GetLevel calI. 

Working on closed mes 

This section describes sorne of the functions of the GS/OS calIs that work with closed files. Sorne of 
the calls that work with pathnames are performed on closed files; see Chapter S, "Working with 
Volumes and Pathnames,· for more information. 

Volume 1: Applicltioos and GS/OS	 Part [: The Application Leve! 78 



8131188 CS/OS lIefemu;e (Volume I)	 Drajl3 (APDA) 

Clearing backup status 

..	 Whenever a me is a1tered, GS/os automatically changes the information about the flIe's state te 
indicate mat it !las been changed but not backed up. Thus, an application mat perfOClll'i backups, 
can check the backup status te determine whether or not te backup the flle. .. 
If you want te change the state information about the backup, and in etTeet indicate te GS/OS that 
the ftIe does not need te be backed up, you can use the ClearBackup caIL This resets the backup 
status 50 that it looks te GS/OS as if the ftIe bad not been a1tered. For example, you could use this 
technique in a word-processing application if the user deleted 50mething from the flle but then 

-, 
decided te undo the change; issuing the ClearBackup cali would prevent the me from being backed 

.; up. 

-; 

Deleting files 
"l	 

If you want your application to deJeœ a me on disk, you can use the GS/OS Destroy cali ta deJete thej 
flle. You tan use this technique only on subdireetories, standard files, and extended files; you can't 
use the technique ta deJete volume direetories or character-device files.

l 
..J 

Note Charaeter-device mes are treated somewhat differently. See Chapter Il, 'Charaeter 
., FST: for a detailed discussion of mat kind of flle . 

, J 

- 1 1 

1 , J Setting or getting file characteristics 
• 1 , 

j	 Certain characteristics about an open or closed flle can be retrieved or modified by the standard 
GS/OS calls SetFilelnfo and GetFiIelnfo. 

1 ~ 
Important	 A1though SetFileInfo and GetFiJeInfo caUs can be performed on open files, you might not _ 1 J 

gel back the information you want. I~s sarer te perform these calls only on closed files. 
l 

Those charaeteristics indude: 

• access te the me· 1 ~ 
j • flle type and auxiliary type 

1 ~ • creation lime and date
 
, • modiftcation time and date
 

· 1 ~ 
QIapter 4: Accessing GS/OS Fùes 79 

• j ~ 

• 1 ~
 

· 1 ~
 



G",OS Reference (Volume 1) Draj13 (IlPD.4)	 8."3/,88 

•	 a pointer to an option list for FST-specific information (see Part Il of this manual for more 
information about FSTs) 

An example of how you can use SetFilelnfo and GetFile!nfo is given in the section "Copying Files" in 
this chapter. 

Changing the creation and modification date and time 

The creation and rmdification fields in a fiJe enuy refer to the contents of the file. The values in 
these fields should be changed only if the contents of the file change. Each field contains the lime 
and date information in the format shawn in Table 4-1. 

Table +1 Date and lime format 

Item Bvte oosltlon 

seconds Byte 1 

minutes Byte 2 

haur Byte 3 

year Byte 4 

day Byte 5 
monrh Byte 6 

nuJl Byte 7 

weekday Byte 8 

Since data in the fiJe's directory enuy itself are not part of the file's contents, the modification field 
should not be updaœd when another field in the file enuy is change<!, unless that change is due to an 
a1teration in the fiIe's contents. For example, a change in the fiIe's name is not a modification; on the 
other hand, a change in the file's EOF always reflects a change in its contents and, therefore, L, a 
modification. 

Remember also that a fiIe's entry is a part of the contents of the direetory or subdireetory that 
contains that enuy. Thus, whenever a file entry is changed in any way (whether or not its 
modification field is changed), the modification fields in the enmes for a1l its enclosing 
subd.ireetories-including the volume directory-must be updated. 

If) Volume 1: Applications and Gs/OS	 Pm 1: The AppliCltion Level 



i GS/OS Reference (Volume 1) Dmjl3 (APDA)	 8131188 .. 
1 
.1 FinaUy, when a me is copied, a utility program must be sure 10 give the copy the same creation and 

modification date and time as the original file, and not the date and time at which the copy wa.s
1 created. See the section 'Copying Files" in chis chapeer for more information. 

..1 

-j 
Î 

...1 

Copying meS 
-1 
j 

CS/OS provides severa! techniques !hat help your application copy files. This section deraiLs those 
techniques.

J 
Copying single files l 

J 
To copy single mes, perform the following steps: 

'-1 1. Make a GetFiieInfo calI on the SOUlCe me (the file to be copied), to get its creation and modification
J dates and times. 

2. Make a Create cali to create the destination file (the fIle to be copied to).
l 
-1 3. Open both the source and destination fIles. Use Read and Write calls to copy the source to the 

destination. Close both files. 

] 4. Make a SetFiieInfo calI on the destination file, using ail the information retumed from GetFilelnfo in 
step 1. This sets the axxl.ification date and time values 10 those of the source fLle. 

] 
Copying multiple files 

l 
.J	 GS/OS provides a write-<ieferral mechanism !hat allows you to cache disk writes in omer to increase 

performance. 

l 
j	 To use chis technique, perform the following steps: 

1. Start the write-deferral session by making a CS/OS BeginSession cali. 

] 2. Copy the files. 

3. End the write-deferral session by making a CS/OS EndSession cali. ., 
j	 The SessionSt:ltus calI also allows you to check whether a write-<leferral session is currently in force. 

l 
J 

, 
Chapter 4: Accessing GS/OS Fues 81 

.J 

"1 
j 

., 
j 



C,WS ReJèmu;e (Volume 1) Drap 3 (APDA) '8/31/88 

Important 'The poce of the increased performance is increased caution, Do not allow your 
application to exil while a wrile-deferral mechanism is in force; you could harm the data 
integrity of any open disk fùes. Make sure chal you place an EndSession caJi in the flow 
of bath anormal and an abnormal exil 

If your appli:ation gelS error $54 (out of meroory) when sessions are active, il should make an 
EndSession call, maki: a BeginSession cali, and try the operation again. If the operation still fails, 
roore EndSession and BeginSession calls will nol help. 

iQ Volume ]: Applic:llions and GSlOS Part 1: The Application Leve! 



-î	 GYOS Referma (Vo/ume 1) Drojl3 (APDA) 8/31/88,-, 
, 
1 

-' 

1 
• J 

, J
 
1
J 

1 
• ..il 

1 
j 

J
 
1 
j 

, 
1 

'" 

_ Jl 

- l 
-	 j 

l 
- j 

J 
,. l 

- j 

l 
j 

l 
-i 

_..1 

Chapter 5 Working with Volumes and Pathnames 

If you don't want to, you can usually avoid working with volum:s, pathnames, and deviœs in deuil; 
GS/OS can free you from keeping track of exaetly where mes exist As discussed in Chapter 4, if you 
use the Apple rres Standard File Operations rool set routines SFPutF"l1e and SFGetFile, you don 't 
need to know where a file is, sinœ these routines tell GSlOS where the file iS located. 

In sorre situations, however, you may net be able to or may net want to use SFPutFUe and SFGetFile, 
For example, you might need or Wafit trore control if your application bas any of the following 
characteristics: 

•	 It is text-based (and thus unable ta access SFPutFüe and SFGetFiIe). 

•	 It needs to check whether particular files are in the appropriate directoriesj for example, if me data 
mes for an application need to be in the sarre directory as the applic3tion. 

•	 It builds ilS own pathnames; for example, if)'OU want to present a list of ail trounted volumes to the 
user. 

[n any of these cases, you have to under.itand more about pathnames and volumes, and just a little bit 
lIlOre about devices, This chapter discusses the concepts you need to under.itand about chose 
entities, and che GS/OS caIls chat allow you to work wich chem. 

Note:	 This chapter doesn't discuss direct access ta devices; for chat information, see Volume 
2, "The Deviee Interface.' 

Working with volumes 

Sorne GS/OS caIJs are designed to aIlow you to work directly with volumes, as described in the 
folJowing sections. 

Chap!er 5: Working with Volumes and Pathnames 83 



GYOS Rejerenu (Volume 1) Drall 3 (Af'DA)	 ''';,'1 31, !)',~ 

Getting volume information 

cS/os provides the Volwre c:ù11O retrieve information about the volume currendy mounted in a 
spedfled device. You cao re!1leve the following information: 

•	 mune of the volume 

•	 lDlal number of blocks on the volume 

•	 number of fcee bIocks 00 the volwne 

•	 flle system cool:lined on the volume 

•	 size, in bytes, of a block on the volume 

AIl =pie of the use of the Volume caU is given in the neXI section. 

Building a Ust of mounted volumes 

If yeu wan! your applicWon to build a list of ail the mounted volumes, you need to use the following 
CS/OS cills: 

1.	 To determine the mIlleS of the current devices, make Olnfo c:ills for device 1, device 2, and 50 on 
untiI GS/OS retums errer $53 (parameœr out of tange). Olnfo relUms the narne of the device 
associated with that device number (see Chapter 7 for details on the OInfo call). 

2.	 Once yeu have the device mune, you can use the GS/OS Volume cali to obtain the !lame of the volume 
currently lOOunted on the device. 

Yeu cao aJso continue from this point to examine directroy entries and build the pathname to a file. 
Ste the section 'Building Your Ov.'n Pathnames" !ater in this chapter for more information. 

Getting the name of the boot volume 

If you need fi) derennine the name of the volume from which CS/OS was booted, use Ùle ,randard 
GS/OS c:ù1 GetBootVol to retrieve a pointer to the volume name. Thal name is equiva!erlt ta the 
prefix specified by·J. For example, an application could start up QuickDraw II and the Event 
Manager and then use the GetBootVol cali fi) check if the boat volume is onlwe. This wouId al10w the 
application to put up a CUSlOm dialag box if the boot volume was affline. 

VoIurœ 1: Applicllioos and GSlOS	 Part 1: The Application Level 81 



8/31/88 CYOS Reference (Volume J)	 Drafl3 (APDA) 

.. 

1 . 

1 : 

1 

1 ~ 
. 1 ~ 
..	 1 ­

l 
.J ..	 1 " 

,-	 1J 
l 

~ 

l 

..	 1~ 
J 

1~ 
J 

·	 Il 
LI :
 
• J 

:cl , ·
, 1 ...
l , 

Formatting a volume 

GS/OS provides two format options to applications, as foUows: 

•	 The GSlOS Fonnat ca1l atternpts to physicaUy fonnat the disk; this rœthod is necessary when your 
application can't read the existing volurœ. 

•	 The GSlOS Er.iseDisk call assumes that a physically fonnatted tœdium already exists in the 
appropriate device, and writes new boot blacks, di.rectory, and bitmaps ta the disk. EraseDisk is 
usuaJJy faster than Fonnat, but requires that the disk already be physicilly fonnatted. You can use th is 
caJl, for example, to quickly make aU of the space reusable on a disk that can already be read by your 
application. 

In bath of these cases, you have to provide a device name to the call, 50 you'U need to use the GS/OS 
DInfo call at 50rœ point to flOd out the device name. 

After you issue the Er.iseDisk or Fonnat caU, GS/OS takes contro~ and presents a graphies or text 
interface tbat allows the user to choose the me system to be used ta fOnnal the volurœ. 

Note:	 If you don't want ta give the user the option of selecting the file system to be placed on 
the volurœ, you can specify the flle system as a parameter to the EraseDisk or the 
Format call. 

For GS/OS to present the graphies user interface, your application bas to meet the following 
requirerœots: 

•	 The IlGS Toolbox Desk Manager must be active; by implication, aU of the tools sets upon which the 
Desk Manager depends must also he active (see the Apple IIGS Toolbœ Referrmœ). 

•	 ln addition, the List Manager must be active. 

•	 For the graphies tools ID run, 64 K.B of free RAM must be available. 

•	 The super hi-res sereen must he currently displayed. 

If aU of these requirerœnts are rœt, GS/OS presents the graphies interface ta the user; if any one of 
the requirerœnts are not rœt, GS/OS presents the ten interface to the user. 

Working with pathnames 

If you need to, you can work directly with the patlmarœ of a me. The following sections indicate the 
pathnarœ capabilities of GS/OS. 

Chapler 5: Working with Volumes and Pathnarnes 85 



C!YOS Rejerenœ (Vulume 1) Dra}l3 (MDtI)	 SI]1\'8 

Setting and getting prefixes 

You can use standard GS/OS calIs 10 manually set and retrieve the preUx assignments. The SetPreflX 
cali explicitly selS one of the numbered prefIXes 10 the prefIX you wallt, and the GetPreflX caU retums 
the CUITent value of any of the numbered prefIXes. 

Important	 SetPreflX and GetPreflX cannot he used 10 change or retrieve the boet volume prefix. 
To retrieve the name of the boet volume prefix, use the GS/OS GerBootVol cali, as 
described earlier in titis chapee! and detailed in Chapter 7. Your application cannat 
change the prefIX of the boot volume at ail. However, if the user renames the boot 
volume, GS/OS will aUlOmatically adjust ail pathnames to reftect the changed prefLx. 

Changing the path to a me 
GS/OS allows you to change the path to a specifted me. From theuser:'s viewpoint of a file system, 
titis 'moves" the file from the old direetory to the new direetory, even though the physicallocation of 
the flle does not change. In addition, if you change the path 10 a direetory, ail mes and d 

To change the pathname, use the standard GS/OS cali ChangePath. For detailed information about 
how [Q change the palh, see ChangePath in Chapter 7. 

Expanding a pathname
 

GS/OS allows you to expand a partial pathname imo ies corresponding full pathname.
 

Ta expand the pathname, use the standard GS/OS cali ExpandPath. For detailed information about 
how ro expand the path, see ExpandPath in Chapter 7. 

Building your own pathnames 

If you wam your application [Q build a palhname by itself, you need ta use several GS/OS caUs, as 
fol1ows: 

1.	 Ta determine the names of the current devices, make DInfo caBs for device 1, device 2, and 50 on 
unti! GS/OS returns errer $11 (invalid device number). The DInfo cali retums the name of the device 
associated with that device number (see Chapter 7 for details on Dlnfo). 

,'1S VoIurœ 1: AppliC'.alions and GS/OS	 Pan 1: The Applic-:!üon Leve! 



1.­
-', GYOS Reference (Volume 1) Draft 3 (APDA) 8/31/88

J 
Il 

2. Once you have the device name, you can use die GS/OS volume cali to obtain the narne of the volume1..J currently mounted on the devke. 

3. Open that volume by using the GSlOS Open cali.
1] 4. Get the directDrY entries for the files by using successive GetDirEntry calls.
 

î
 
] 

1 .. 
Introducing devices 

1J 

l, 
Adevfce is a physical piece of equipment that transfers information to or from the Apple IIGS. Disk


J drives, printers, mice, and joysticks are external devices. The keyboard and screen are also
 
considered devices. An input device transfers information to the computer, an output device
 
transfers information from the computer, and an input/output device transfers information bath
 

J ways.
 

1
j GS/OS communkates with severa! different types of devices, but the type of device and its physical 

location (slot or port number) need IlOt be known ta a program mat wants to access that device.1j Instead, a program makes calls ta GS/OS, identifying the device it wants to access by its volume 
name or device name.l 

1 ,J 

..1j • "1 Deviee names 

GSlOS identifies devices by device names. A GSlOS device narre is a sequence of 2 to 32 charaeters 
l beginning with a period (.). 

1 J YoU! application must encode device names as sequences of 7-bit ASCII codes, with the device name 
in all uppercase letters and with the most significant bit off. The slash charaeter CI; ASCII 2F) and thel 
colon (: ; ASOl 3A) are always illegal in device names. 

1 .. 

Block devices1 J , 
A block devfce reads and writes information in multiples of one black of charaeters at a time. 

1 j Furthennore, it is a random-access device-it can access any black on demand, without having to 
"'\ scan through the preceding or succeeding blacks. Block devices are usuaUy used for storage and 

retrieval of information, and are usually input/output devices; for example, disk drives are black 
devices. 

1 : 

GS/OS supports two different kinds of access ta black devices, as follows: 

1 _ 
Chapter 5: WOlking with Volumes and Pathnames ffl 

1 _ 

11 _ 

1 _ 



(;.'105 RejerenCi (Vo/ume I) Droit 3 (APUA)	 8/3 ]/88 

File access, where you make a GS/OS Reac! or Write cali, and GS/OS does the work of finding and
 
accessing the device. This process is described in Cbapter 4.
 

Direct access, which you can use if your application needs to directIy access blocks. The calls that 
directly access devices are briefly summarized in Cbapter 7, and discussed in detail in Chapter 2 of 
Volume 2. 

NOle:	 RAM disks are software construets that the operating system treats like devices. GS/OS 
supports any RAM disk that bebaves like a block device in ail respects just as if it were a 
block device. 

Character deviees 

Achatacter device reads or writes a stream of cbaracters in order, one at a Ume. It is a sequentiaj· 
access device--it cannol access any position in a stream wiehout fuse accessing alI previous 
positions. lt can neither skip ah~ nor go back ID a previous character. Cbaraeter devices are usually 
used to pass information to and From a user or another computer; sorne are input devices, sorne are 
output devices, and sorne are input/output devices. The keyboard, screen, printer and 
communications port are charaeter devices. 

GS/OS supports charaeter devices through bath direct and rue access. For ITKlre information, see 
Chapter Il in this volurne. 

Direct access to deviees 

Generally, vou don't need to do the work of accessing devices directIy. For sorne special 
applications and devices, however, you may want ta take over mal work; if Vou do, you'll have to 

know a lot more about devices. See Volurne 2, 'The De'/ice Interface: for that information. 

Deviee drivers 

Block devices generally require device drivers to translate a file sysrem's logical black device model 
into the traeks and SectDrs by which information is actually stored on the physical dev/ce. Character 
devices aJso require drivers. 

nlere are IWO types of GS/OS drivers; loaded drivers, which are RAM·based, and generated drivers, 
which are constructed by GS/OS. Deviee drivers are discussed in Volume 2of this manua!. 

Efl Volurœ 1 Applic:ltions and GSlOS	 Part 1: The Applic:ltion Leve! 



l 
L

_ 

~
 

~
 

'0
 

~
 
~

 
5

· 
C

lQ
 

;E s: ~
 

ë g ::> '" 0
­ ["C
l ~ <8
 

tJ
 

~
 

.....
 
~

 
§2 '­ ~

 
.....

 
~

 
~

 





1 4 G,'VOS Referenœ (Volume 1) Drajl3 (APDII) 8/31/88 

1 _ 

1.., 
i 

l, : 

i 
J 

1.,
 
1

_J 

1] 

1]
 
I 
J
 

I 
J 

1., 
J 

'J 
\] 

!, 
1] 

Il 
Il 
1,

J 

l , 
[,
 

J 

'1
 

Chapter 6 Working with System Information 

Sevela! GSlOS calls provide access to information about GSlOS. This cha pter 
introduces you to them. 

Chapter 6: Working with System Information 91 



G,I!OS Referena (~Jlume 1) DrnJl3 (APDA)	 8,')),,'><'} 

Setting and getting system preferences 

GS/OS provides a preference word thal allows YOUI application ta custOIlÙl.e sorne GS/os funetions. 
One of the options provided is the ability of the applialtlon using parlmame <:allsto determine 
whether or not il wanlS ta handle error $45 (volume nol fouad) itself, or whether il wants to have 
GS/OS handle those errors. 

For information on how ta sel up the preferences word, and on any other options available in that 
word, ste the description of SetSysPrefs and GetSysPrefs in Chapter 7. 

Checking FST information 

If you wanl ta check the information for a specifie FST, you can use the standard GS/OS cali 
GetFSTInfo. That cali returns the following information about the F~'T: 

•	 name and version number of the FST 

•	 some general attributes of the FST, such as whether GS/OS will change the case of pathnames to 
uppercase before passing them to the FSf, and whether it is a black or character FST 

•	 bkxk size of blacks handled by the FST 

maximum sire of volumes handled by the FSf 

•	 maximum sire of mes handled by the FST 

For IOOre detailed information about how to retrieve the information, :;ce GetfSTInfo in Chaprer 7. 
For roore infomlation about FSTs, sec Part Il of this volume. 

Finding out the version of the operating system 

If your application depends upon some feature of GS/os thal was implemented in a versio n later 
than 2.0, YOli can use the standard GS/OS cali GetVersion to retrieve the version number of GS/OS. 
For roore detailed information about how to retrieve the information, see the GetVersion cali in 
Chapter 7. 

9'2 V(~urœ 1: ApplicUJons and GSlOS	 Part 1: The Application Level 



1 _ C;Y05 Reference (Volume 1J Draft 3 (APDA) 8/31/88 

l ,~ 

1 : 

1"" 

1 ­

1 .. 

. 1 : 

1 ~ 

. ) :1 

j 

Getting the name of the current application 

To get the fdename of the application mat is currendy executing, you can use the standard GSIOS caU 
GetName. For example, if an application wanted lO display its own name lO the user, it could use 
GetName lO get ilS eurrent name (remember, the user can rename applications), 

For more detailed information about how lO retrieve the Wormation, sec the GetName call in 
Chapter 7. 

Chapler 6: Working with System Information 93 





8/31/88 1 
.J 

",
J 

" 

1 
j 

.J 
'l 

-_.._j 

...J 

l 
.,j 

'-', 
1 

..J 

1 
1... 

--'; 

i 
..J 

"1 
1 

..J 

1 
~ 

.... 
-' 

-'., 
.­
..., 
..J 

.., 

.J 

1 _., 

-~ 

1 ,"' 
.i 

""; 

..1 

GYOS Reference (Volume 1) Drajl3 (APDA) 

Chapter 7 GS/OS can Reference 

This chaprer provides the detailed description for ail GSlOS caIls, arranged in 
alphabetical order by calI naIne. Each description includes these elements: 

• the caJ1's name and caJ1 number 

• a short explanation of its use 

• a diagram of its required parameter block 

• a detailed description of all parameters in the parameter black 

• a list of aU possible operating system error messages. 

Cllapœr 7: GSlOS Cali Reference 95 

, ., 

l 



CYOS Reji>rma ("'olume 1) Draft 3 (APDtl)	 8/3/,,'88 

The parameter block diagram and description 

The diagram accompanying cach cali description is a simplified representation of the call's parameter 
block in rnemory, The width of the par:1meter block diagram represents one byte; successive tick 
marks down the side of the block represent successive bytes in rœmory, Each diagram also includes 
these fcatures: 

•	 Offset: Hexadecimal numbers down the left side of the par:1meter block represent byte offset) from 
the base address of the block. 

•	 Name: The narœ of cach parameter appears at the pararœter's location within the block. 

No.: Each parameter in the block has a number, identifying Ils position wlthin the block. The total 
number of parameters in the block is caIJed the parameter count (pcount); pCount is the initial 
(zeroth) p:lIameter in each cali. The pCount pa!3rœter is needed because in sorne calls paramerer 
count is not flXed; sec Minimum panmeter count, below. 

•	 Sfze and type: Each parameter is aIso ldenlified by size (word, longword, or double longword) and 
type (input or result, and value or pointer). Aword is 2 bytes; a longword is 4 bytes; a double 
longworo is 8 bytes. An input is a parameter passed from the caller 10 GS/OS; a result is a parameter 
rell.l!lled [0 the caller from GSlOS. A value is numeric or charaeter data [0 he used directly; a pointer 
is the address of a buffer containing data (whether input or result) to be used, 

•	 Minimum panmeter count: To the right of each diagram, across from the pCount paramerer, 
the minimum pennitted value for pCount appears in parentheses, The maximum pennitted value for 
pCount is the [Ota! number of parameters shown in the parameter block diagrant 

Each parameter is described in detail after the diagram. 

::6 Volume 1: Applkations and GSlOS	 Part 1: The Applic:nioo Level 



..i 

cs/os lIejerenœ (Volume I) Drafl3 (APDA) 8/31/88l 
j 

J
 
J
 

$201D 
1 

J Description 

1 
J 

1
'1 

,,.j 

J 
Pat2meten 

j 

J 
"" pCount 

1 
"" Errors 

J 

j 

i 

J 

..; 

BeginSession 

This cali tells GSlOS lD begin deferring block writes lD disk. Normally GSlOS 
writes blocks lD disk irnmediately whenever part of the system issues a block 
write requcst However, when a write deferral session is in progress, GSlOS 
caches blocks that are lD he written until it receives an EndSession calI. 

This technique speeds up multiple flle copying operations because it avoids 
physically writing direetory blocks to disk for every file. To do a fast multiple 
file copy, the application should exeOlte a BeginSessîon cali, copy the files, 
then execute an EndSessîon caU. 

Offset No. SIa and type 

$00 F pCount 3- Word INPUT value (minimum-o) 

Word input value: The number of pararœters in this pararneter black. Minimum 
is 0; maximum is O. 

(none) 

Olapler7: GS/OSCalI Reference 'JI 



CS/OS Referena (Voiume 1) Drajl] (APDA) 8/31,88 

$2031 

D~criptfOD 

Panmeten 

pCount 

intNum 

vrn 

intCode 

Error-l 

SIS Volume J: 

BindInt 

This function places the address of an interrupt bandler into GS/OS's interrupt 
veetor table. 

For a complete description of GSiOS's intemJpt handling subsystem, see 
Volwœ 2. see aiso dIe UnbindInt caIl in this chapter. 

Offset No. Sl2Ie a.od type 

$00 pCount - Ward INPUT value (minimum -3) 

$02 intNUlII 1 Word RESULT value 

lO4 vrn 2 Word INPUT 'nIue 

Wit­
intCode -1 . l.oogword INPUT p<limer 

Word input value: The number of parameters in this parameter black. Minimum 
is 3; maximum is 3. 

Word result value: An identifying number assigned by GS/OS ta the the binding 
between the interrupt source and the interrupt handler. Its only use is 35 an input 
ta the GSiOS caU Unbindlnt 

Ward input value: Vector Reference Number of the firmware vector for the 
interrupt SOUlCe to be bound to dIe interrupt handJer specified by intCode, 

l.ongword input pointer: Points to the fIrst imtruction of the internJpt handler 
routine. 

S25 interrupt vector table full
 
$53 parameter out of range
 

Applications and GSlOS l'art 1: The AppliC3lion Leve! 



J 

J
 GYOS Referenœ (Volume I)	 D1ll/l3 (APDA)
 

! 
J 

J 
$2004 ChangePath 

J Description This cali changes a fùe's pathname to another pathname on me same volume, or 
changes the name of a volume. ChangePath cannat be used to change a device 

J name. 

Par:unettn
 
1 Offset No. Size and type


..l
 

]	 
$00 pÇount	 

8/31/80 

p.tMAme 

n.w~athnAme 

Ward INPUT value (minimum -2) 

-
$OZ 

Lonporo INPUT pointer 

J
 

4 J $(l6
 

Longworo INPIrr pointer

"1
 

_ -i 

-, 
pCount Word input value: The number of parameters in this parameter block. Minimum~ j 

is 2; maximum is 2. 

] pathname	 Longword input pointer: Points ID a GS/OS string representing Ù1e name of the 
file whose pathname is ta be dlanged. , 

newPathname Longword input pointer: Point<; ta a GS/OS string representing the newj 
pathname of the me whose name is to be change<.!. 

_J
l Comments	 Ame may not be renamed whiJe it is open. 

Ame may not be renamed if rename access is disabled for me file. 

Asubdireetory s may Ilot be moved iuto another subdirectory tifs· t or if 1is .... 
contiined in the directory hicrarchy Stirling at s. For example, 'rename /v to 
/v/w" is illegai, as is 'rename /V/W to Mw/x".l 

....1 

QlapIer7: GSlOS Cali Reference Cf} 
-~ 

-, 

. 1 ~ 

: .J
 



GYOS Refmmœ (Volumi! 1) Drojl3 (APDA) Si} !'8i) 

Erroo 

$10 device not found
 
$27 lIO error
 
$2B write-protected disk
 
$40 invalid pathname syntax
 
$44 path not found
 
$45 volurœ not found
 
$46 me not found
 
$47 duplicate pathnarœ
 
$4A velSion error
 
$4B unsupported storage type
 
S4E access: me not destroy enabled
 
$50 file open
 
$52 unsupported volume type
 
$53 invalid pararœrer
 
S57 duplicare volume
 
$58 not a block device
 
$5A block number out of range
 

100 Volume 1: Applicllions and GSlOS Pan 1: The Application Level 



J 

j CS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/81 

j 

J 
j 

j 

$200B 

Description This cali sets a file's state information to indicate that the rue bas been backed 
up and not altered since the backup. Whenever a me is altered, GS/OS sets the 
file's state information to indicaœ chat the file bas been altered. 

ClearBackup 

J 
J 

Parameten 
Offset 

:~ 
pCount 

pathname 

No. Sîze ml type 

Ward OOlIr value (minimum-1) 

Longword INPlIr poinler 

J 
1 
j 

pCount Word input value: The number of parameters in this parameter block. 
is 1; maximum is 1. 

Minimum 

pathname Longword input pointer. Points to a GS/OS string chat gives the pathname of 
the file or direclOry whose backup status is 10 be c1eared. 

J 
! 

•• 
? 
''1..• 
, 
~ 

Etron 

$27 
$28 
$28 
$2E 
$40 
$44 
$45 
$46 
$4A 
$52 
$58 

lIO error 
no device conneeted 
write-protected disk 
disk switched 
invaüd pathname syntax 
path not found 
volume not found 
flle not found 
version error 
unsupported volume type 

not a block device 

Olapter 7: GS/OS Cill Reference 101 

r 



cs/os ReÎmmœ (Volu~ J) Drajl3 (APDA) 8131,88 

$2014 

Description 

Parameters 

peOtlnt 

refNum 

Errors 

Close 

This cali doses the access path ID the spedfied file, releasing aU resources used 
by the file and œr:minating further access ID il Any file-related information that 
bas fiot been written to the disk is wrilten, and memory resident data structures 
associated with the me are released. 

If the speciEied value of the refNtlm par:uneter is $0000, ail files at or above the 
CUITent system file level are dosed. 

Offset 

$00 

$02 

No. 

pCount ~ 

refNum 

5/Jll: and type 

Word INPlIT vaI~e (tninimum-1) 

Word lNPUT mue 

Word input value: The number of parameters in this parameter black. Minimum 
is 1; maximum is 1. 

Word input value: The identifying number assigned to dIe file by the Open calL 
Avalue of $0000 indicates that aU mes at or above me aurent system file level 
are to be closed. 

$27 va error 
$2B wrlte-protected di.sk 
S2E disk switehed 
$43 invalid reference number 
$48 volume full 
$SA block number our of range 

102 Volume 1: Applicltions and GS/OS Part 1: The Application l.evel 



• j 

Go/OS Referenœ (Volume 1) Draft 3 (APDA) 8I3l!881 
'. ,j 

'" J 
'j 

.. J $2001 Create 

· J Description TItis cal! creates either a standani file, an extended file, or a subdireetory on a
 
volume roounted in a block device. Astandard file is a ProOO5-like file
 

! containing a single sequence of bytes; an exœnded file is a MacinlOSh-like file
 
containing a data fork and a resource fork, each of which is an independent
• ..1 
sequence of bytes; a subdirectory is a data structure that contains infonnation 

1 about other files and subdireetories. 
• .J TItis cali cannot be used to create a volume direclOry; the Format cali performs 

that function. Similarly, il cannol be used 10 create a charaeter-device file; thel 
.,j charaeter FST creates that special kind of flle (see Chapter 11). 

J 
TItis caIl selS up flle system state infonnation for the new me and initia/izes the 
fLle to the empty state. 

1 
~ 

1 
,.1 

-1 

J 
l 
J 
--, 
t 

.J 

1 
J 

.J 

l 
•.1 

.~"" 

~ 

-, 
! Qlapœr 7: CS/OS Cali Reference 103 

..; 

,~_ 1 ~,J 
, 

]~ 
-, 



i;SiOS Reference (Volume 1) Drafl 3 (APDA) H/H;88 

Parameten 
OUset No. SIze and type 

$00 pCount. 

$OZ 

pathname 

106 acc• .ss 

sœ: fUeTypel ­

$/lA 

.auxTypeI ­
l ­

$Of storag.'rypeI ­

$101 

l ­
i ­ eof 

Hi ... 
resourceEOF1­

1­

Ward lNPlIT v-oilue (minimum >!)
 

Longword lNPlIT pointe!
 

Ward INPlIT value
 

Word INPlIT value
 

ltlngwotd INPlIT value
 

Ward INPlIT value
 

Longwotd INPlIT value
 

Longwotd INPlIT value 

pCount Word input value: The number of parameters in this parameter black. 
is 1; maximum is 7. 

Minimum 

pathname Longword input pointer: Points 10 a GS/OS string representing the paÙlname of 
the me to be created. This is the ooly required parameter. 

104 Volunx: 1 Applications and GS/OS Pan 1: The Application Level 



-1 CS/OS Re!mnœ (Volume J) Dmft 3 (APDA) 8I3J/88
J 

] 
access 

j 

... 

.i 

..i 
-1 

..l 

J 
1 fileType..1 

~l 

1... 
auxType

] 

l 
.; 

--, storageType 
1.. 

l 

~ 

1 
j 

l , 
_J 

d_") 

Word input value: Specifies how the file may be accessed after it is created and 
whether or not the me bas changed since the last backup, as shown in the 
foUowing bit flag: 

The mest conunon setting for the access word is $OOC3.
 
Software th3t supports file hiding (invisibility) should use bit 2 of the flag to
 
detennine whether or not to display a me or subdirectory.
 

Word input value: Categorizes the fiIe's contents. The value of this pararneter
 
bas no etfect on GS/OS's handling of the file, except mat only certain file types
 
may be executed directly by GSlOS. The me type values are assigned by Apple
 
Computer and Iisted in Table 1-2 in Chapter 1of this volume.
 

Longword input value: Categorizes additional information about the me. The
 
value of tltis parameter bas no effect on GS/OS's handling of the file. By
 
convention, the incerpretltion of values in this parameter depends on the value
 
in the file1'ype parameter. The auxiliary type values by Apple Computer and
 
listed in Table 1-2 in Chapter 1of this volume.
 

Word input value: The value of this parameter detennines whether the flle being ­

created is a standard file, an extended me, or subdirectory me. The following
 
values are valid:
 

~$OOO3' create a standard file 
$0005 create an extended flle 
$OOOD create a subdireetory me 
'If this pararnelèr contlins $0000, $0002 or $0003, GS/OS interprets il as $0001 
and actually changes it to $0001 on output 

Qlapter 7: GS/OS CalI Reference lOS 



cs/os Reference (Volume 1) Drafl3 (MDA) à/Jl/d8 

eof 

resourceEOF 

Comments 

Longword input value: The e0 f parameter specifies an amount of srorage ta be 
preallocated during the creale cail for the file that is being creared. The type of 
entity is specified by the storaqeType parameler. 

For a standard me, the eot parameler specifies the file size, in bytes, for which 
space is ID be preaJJocated. GSlOS preallocales enough space ta hold a 
standard me of the given size. 

For an extended me, the eo f parameter specifies the size, in bytes, of the data 
forle GS/OS preal.locates enough space ID hold a data fork of the specified 
size. 

For a subdirectory, the eo f parameler specifIeS the number of entries the caller 
illtends ID place in the subdirectory. GSlOS preallocates enough space for the 
subdirectory ta nold the specified number of entries. 

Longword input value: For an exrended me, chis pararneter specifies the amounr 
of space ta preal10cate for the resource fork. GSlOS preallocates enough space 
ID hold a resource fork of the specified size. This parameter is meaningful only 
if the storaqeType parameter value is $0005, indicating that an extended file 
is ID be created. 

The Creale cali appties only ID files on black devices. 

The storage type of a file canoot be changed after it is created. For exampJe, 
there is no direct way to add a resource fork to a stlndard file or to remove one 
of the focks from an extended fLle. 

All FSfs irnplement standard Hies, but they are not required ta implement 
extended mes. 

lŒi VoIurœ 1 Applicltions and GSlOS Part 1: The AppliCltion Level 



1­
cs, os Rejerence (l'v/ume }) Dmjl3 (APDA) 8/3 }/88 

1~ 
i 

1] Errors 

$10 device not found 
$27 va eoorJ 

1J 

$2B write-protected disk
1 $40 invalld pathnarœ syntax
 
$44 path not found
 
$45 volume not found 
$46 me not found 
$47 duplicate pathnarœ1j

, 

$48 volume full
 
1 $49 volume directory full
 

$4B unsupported storage type
1 .J $52 unsupported volurœ type
 

l
 $53 invalld pararœter 
$58 not a black device1.j 
$5A block number out of range 

l
 
1 J
 

l 

1 J
 
-1
 

1 ..
 

] 
,Il 
,J 

1] 

1 ] 

l ,
.-' 

""' 
J 

ChlpIer 7: GSlOS Cali Reference 1071 
j 

"1 
~.J 



C;V()S Relereme (VoluI'M J) D'fljl3 (APDA) H/1I,\8 

$202E DControl 

Description This caU sends control information to a specifled device. This description only 
provides general information about the parameter block; for more information, 
see Volume 2, 'The Deviee Interface: 

Parameters 
Offset 

II­

: 

, 

i 

$02 

$06 

$(X) 

sa. 

pCount 

d8vNum 

cod. 

list 

$OA 

requaatCount 

1­

1­

$OE 

tran.f.rCount 

No. SI2e md type 

WCldINPUT value 

V/CId INPUT value 

WCId INPUT value (minimum -5) 

l.ongworo lNl'UT pointer 

4 Longword INP\IT volue 

Longword lŒSULT value 

pCount Word input value: The number of parameters in this parameter block 
is 5; maximum is S. 

Minimum 

devNwn Word input value: Deviee number of the device to which the control 
information is being sent 

code Word input value: A nurnber indicating the type of control request being made, 
The control requests are described compleœly in Chapter 1of Volume 2, Control 
codes of $OQOO.$7FFF are standard status caUs that must be supported by the 
deviee driver. Deviee-specifie control caUs may be supported by a particular 
device; they use status codes $8COO-$FFFF. A list of standard control codes is as 
follows: 

1œ Volurre 1: Applicll.ions and GSlOS Part 1: The AppliCllion Level 



..
 
CS/OS Rejirl"l!7la (Vo/ume I) Dmjl] (APDA)	 8/31/88 

J 

 oo ResetDeviceסס$ 	..
$0001 FormatDevice 
$0002 Eject 

.,j	 $0003 SetConfigParameters 
$0004 SetWaitStatus 
$0005 SetFormatOptions 

j	 $0006 AssignPaltitionOwner 
$0007 AmlSignal 
$0008 DisarmSignal 
$0009 SetPaltitionMap.. 
$OOOA-$7FFF (reserved)
 
$8®$FFFF (deviee-specifie subcalls)


i 
J 

list I.ongword input pointer: Points to a buffer containing the device control 
information. The format of the data retumed in the control buffer depends on 

~ 
1 the control code as described in Volume 2, "[he Deviee Interface: 

reque"tCount	 Longword input value: For control codes chat have a controllist, this parameter 
gives the sue of the control lise. 

~ 

tran"ferCount	 I.ongword result value: For control codes chat have a controllist, chis parameter 
indicates the number of bytes of information actually transferred to the device. 

Errol'5 

J	 $11 invalid deviee number 
$53 pararœter out of range 

~ 

i 
J 

., 

.J 

" Chapler7: GSlOSCalI Reference 100 



8/31/88 GSlOS ReJl!nmœ (Volume 1) Draft 3 (APDA) 

$2002 

Description 

Panuneters 

pCount 

pathname 

Destroy 

This cali deletes a specified stlndard flle, extended me (both the data fock and 
resource fork), or subdirectory, and updates the stlte of the file system to 
œflect the deletion. After a me is destroyed, no other operations on the file are 
possible. 

This cali cannot be used to delete a volurœ directory; the Format cali 
reinitializes volume direcrories. 

It is not possible to delete orny the dala fork or only the resource Fork of an 
exœnded me. 
&fore deJeting a subdirectory Hle, you must emply it by deleting ail the files it 
contains. 

Of&<! No. Sîze an1 trpe 

$001­ Word INPUT V1I!ue (minimum-\) 

S02 

Longword INPUT pointer 

pCount -
-

pathname _ 

1­

Word input value: The number of parameters in this parameter block. Minimum 
is 1; maximum is 1. 

Longword input pointer: Points to a GS/OS string representing the pathname of 
the me to be deleted. 

110 Volume 1: Applicatioos alld GS/OS Part [: The Application U:vel 



, ... 

J GS/OS Referenœ (Volume I) Drafl3 (APDA) 8131/88 

J Comments A file cannot be destroyed if it is currently open or if the access attributes do 
not pemùt destroy access. 

1J Etrors 

J S10 
S27 

1 $2B 

j $40 
$44 

1 $45 
1 $46 

S4B1 .i 
$4E 

j $50 

1 $52J 
1 $53 
1 $58 

.i 
$SA 

deyice not found 
I10 error 
write-protected disk 
invalid pathname synrax 
path not found 
volume not found 
me not found 
unsupported stol:lge type 
access: me not destroy-enabled 
me open 
unsupported volume type 
invalid pal:lmeter 
not a black device 
block number out of range 

Olaprer 7: GSlOS CalI Reference 111 



c;sns Rejereme (Volume 1) Druj) 3 (N'DI1)	 Sil L88 

pCount -
devNum 

devName 

cha.racteri:ttic:!I 

f ­ totalBlocks 

f ­

slotNum 

unitNum 

version 

devic.ID 

headLink 

II ­ forwardLink 

f-
f- extendedDIBptr 

f ­

$16 

$18 

$00 

$(li 

$10 

$14 

$12 

$OR 

$O.j 

$OZ 

$OA 

SIA 

$202C	 DInfo 

Description This cail retums general infonnation about a device attached to the system. 

Parameters 
CCfset No.	 Size and type 

Ward INPUT value (minimum "2) 

Ward INPIJr value 

l.ongword INPIJr pointe! 

Ward RESULT value 

I.ongword RESULT value 

Ward RESutT value 

Ward RESULT value 

7 Ward RESutT value 

8 Ward RESULT v:alue 

Ward RESULT value 

10 Ward RESULT value 

11 l..ongward INPlrr pointe! 

pCount	 Word input value: The number of par:uneters in this parameter black. Minimum 
is 2; maximum is 11. 

112 Volume 1: Applications and GS/OS	 Pan 1: The Application Levc! 



8/31/88 cs/os Referma (Volume 1)	 Draf/3 (APDA) 

... 

1 
.J devNum Word input value: Adevice number. GS/OS assigns device numbers in sequence 

1, 2, 3, ... as it loads or creates the device drivers. There is no flXed 

J coaespondence between devices and device numbers. To get information 
about every device in the system, one makes repeated calls to DInfo with
 

~ 
devNum values of 1,2,3,... until GS/OS retums eoor Sl1 (invalid device
 
number).
j 

, devName longword input pointer: Points to a result bulfer in which GS/OS retums the 
1 device name of the device specified by device number. The maximum sile of 

the string is 31 bytes 50 the maximum sile of the returned value is 33 bytes. Thus'" the buffer size should be 35 bytes.1 
J 

characteristlcs	 Word result value: Indivldual bits in this word give the general charaeteristics of 
the deviœ, as shown in the following bit flag: 

,J 

j.. derice is. RAM di5k or ROM di>k 

1 
~ 

"Î 

bits indiate cIeviœ .pee<! 

cIeviœ i6 • bIock cIeviœ 

WlÜl8IO deYiœ.uo~ 

reading from deYiœ aIlowe:l ­

reserv<d 

formaning dev;ce al10wed 

cIeviœ 00lI12ino removal>le media ­

.-rved J 

.,. 

totalBlocks Longword result value: If the device is a block device, this parameter gives the 
maximum nurnber of blocks on volumes handled by the device. For character 
devices, this parameter retums zero. 

310tNum Word result value: Slet number corresponding tD the resident firmware 
associated with the device or sim number of the slot containing the device. 
Valid values are S<XlOO-OOOF. 

Oupœr 7: GS/OS CaU Reference 113 



GyOS Referrmu (Valu,"" 1) Drop 3 (APDA) 8/31188 

u.oit.Num 

version 

deviceID 

Word re.sult value: Unit number of the device within the given SiOL This 
paramerer bas no correlation with device number. 

Word result value: Version number of the device driver, This parameter has the 
same format as the SmartPort version, as shown in the foUowing bit flag: 

Q[i4Ii3IiiT1iJiillTIT7 16 15 14 13DJ:lTIJ 

---~TT 
MillQr rel.- nunber 1 

ReJe= ph;lse 1 

A- Alpha 
B-B<a 

E- ExpertmencaJ 
O' Final 

For example, a version r:i. 2.00 in this format wouJd be enrered as $2000; a 
version of 0.18 Beta wouJd be entered as $018B: 

Word result value: An identifying number associated with a particular type of 
device. 

'Ibis parameter may be useful for Finder-type applications when determining 
what type of lcon to display for a particular device. CUITent definitions of 
deviœ ID numbers include: 

114 Volume 1: Applicatioos and GS/OS Part [: The Application Level 



· J 

J
 CS/OS Reference (Volume 1) Draf/3 (APDA)	 8/31/8,
 

, ] 
  Apple 5.25 Drive $0010 Flle SCrver	ooסס$

(includes UniDisktil, $0011 Reserved 
DuoDiskTII

• Disk Ile, $0012 AppleDesktop Bus
 
and Disk Il) $0013 Hard disk (generie)
 

$0001 Profile 5 MB $0014 FJoppy disk (generie)


J $0002 ProHle 10 MB $0015 Tape drive (generie)
 
$0003 Apple 3.5 Drive $0016 Charaeter device driver (generie) 

Oncludes UniDisk3.5 $0017 MFM~neoded disk drive

J Drive) $0018 AppleTalk network (generie) 

, J 

$0004 SCSI (generie) $0019 SCquentiai aecess device 
$0005 SCSI hard disk $OO1A SCSI scanner 

J $0006 SCSI tape drive $OOlB Other scanner 
$0007 SCSI CD ROM $OOlC I.aserWriter SC 
$0008 SCSI primer $0010 AppleTalk main driver 
$0009 seriai roodem $OOlE AppleTa1k me service driverJ $OOOA Console driver SOOlF AppleTalk RPM driver 
$0008 seriai primer


l $OOOC SCriallaser Writer

J $OOOD AppleTaIk laserWriter
 

$OOOE HAM Disk 

J
) $OOOF	 ROM Disk 

headl,ink	 Word resull value: Adevice number thal describes a link ID another device. Il is 
the deviee number of the filsl device in a linked list of devices thal are1 

.l	 associated with eaeh other because they represenl distinct partitions on a single 
disk rœdium. Avalue of 0 indicates that no link exists. 

] forwal:dLink	 Word result value: Adevice number that describes a Iink ID another device. Il is 
the device number of the next device in a linked lise of devices that are 
associated with eaeh other because they represent distinct partitions on a singlel 
disk. A value of 0 indicates that no link exists." 

-1 
extendedDIBptr	 Longword input pointer: Points ID a buffer in whieh GS/OS retums informationl,,,., about the extended device information block. 

Etrors 

$11 invalid device number 
$53 pararneter out of range 

Olapler 7: GS/OS CllI Reference 115 



GS'OS Reference (Vo/ume 1) Dmjl3 (APDA)	 8; 31/88 

$202F DRead 

Description This calI performs a deviee·level read on a specified device, 

This description only provides general infollll3tion about the parameter block; 
for rrore infollll3lÏon, see Volume 2, '1"he Deviee Interface." 

Paramders 
OfflCt No. Sbe and type 

lOO pCount 

$02 devNumi ­

~ 
~
 

~
 buffer 

$08 

~ raquestCount 

i-

soc 
i ­
~ .tart1ngBlock 

i ­

,lia blockSizei ­

$12 
i-
l- trana.ferCount 

1­

Ward INPlIT value (minimum -6) 

Ward INPlIT value 

Longword INPlIT pointer 

Longword INl'UT value 

Longward lNl'lIT v~lue
 

Ward INPUT value
 

6 Longword RESULT value 

pCount	 Word input value: The number of parameters in this parameter block. Minimum 
is 6; maximum is 6, 

devNurn	 Word input value: Deviee number of the device from which data is ta he read. 

buffer	 Longword input pointer: Points to a buffer inlO which the data is ta be read 
'The buffer must be big enough 10 hold the data. 

! 16 volurre 1: Applications and GS/OS	 Part l: The Application Leve! 



,J 

J CS/OS Referenc,IJ (Vo/ume I) Drajl3 (APDA) 8/31/88 

'J
 
1 requestCount Longword input value: Specifies the number of bytes to be read. 

J startingBlock Longword input value: For a block deviœ, this parameter specifies the logical 
block number of the block where the read st:l1tS. For a character device, this 
parameter is unused. 

] 
blockSize Word input value: The size, in bytes, of a block on the specified block device. 

For charaeter devices, the parameter must be set to zero.C 

J transferCount Longword result value: The number of bytes actually transferred by the call. 

J Etrors 

] 
$11 invalid device number 
$53 parameter out of range 

]
 

J 

j
 

]
 

l
 
J 

] 
-1 
! 
J 

, 
j 

'1 

" 

Olapter 7: GS/OS Cali Reference 117l 
J 



GYüS Referenœ (Volume 1) Draft 3 (ilPDA) 813 L 8R 

$202D DStatus 

Description Retums status information about a specified device. 

This description pcovides ooly generaJ information about the caH; for mo re 
information, sec Volume 2, "The Device Interface: 

Paramettrs 
Offl~t No. Slze moi type 

$001 pCount. 

devNum 

cod. 

Hot 

reque"tCount 

tran~f.rCount 

Word INPUT value (minimum -5) 

lO2: 
Word INPUT value 

$()41 
Word fNPUT value 

~1 

Longword INPUT pointel' 

SOA 

Longword INPUT value 

SOR 

Longword RESULT value 

pCount Word input value: The number of pacameters in this pacarneter block. 
L~ 5; maximum is 5. 

Minimum 

devNum Word input value: Deviee number of the device whose status is to be returned. 

code Word input value: A number indicating the type of status cequest being made. 
The status requests are described completely in Volume 2, "The Deviee 
Interface." Status codes of $OOOO-$7FFF ace standard status caUs that must be 
suppotted by the device driver. Deviee-specifie status caBs may be supponed 
by a particular device; they use status codes $8000-$FFFF. These are the 
standard status codes:
 

118 volume 1: Applications and GS/OS Part 1: The Applicllion Leve 1
 



J 

J CS/OS Referena (Volume 1) Drafl3 (APDA) 8/31/88 

1 
.il 

 oo GetDeviceStatusסס$
$0001 GetConfigParameters

1 $0002 GetWaitStatus.1 $0003 GetFormatOptions
 
$0004 GetPartitionMap
 

~ $0005-$7FFF (reserved)
..1 
$8OOO-$FFFF (device specifie subcalls) 

1 
j list Longword input pointer: Points to a buffer in whieb the device retums irs Stltus. information. Details about the status Iist are provided in Chapter 1 of Volume 2. 

requestCount Longword input value: Specifies the number of bytes to he retumed in the statusJ list The call will never retum more than this number of bytes. 

.. transferCount Longword result value: Specifies the number of bytes aetually retumed in the 
Stltus list This value will always he less than or equal to the request coune. 

Errors
 
.1
 

$11 invalid device number 
$53 parameter out of range 

O1apter7: GSlOS Cali Reference 119 



CS/OS I1ejàf!TlQ! (Volume 1) Droj/3 (APDA)	 8/)1,88 

$2030 DWrite 

Description This call pelfOlTllS a device-Ievel write to a specified device. 

This description only provides general infonnation about the parameter blcx:k; 
for lJX)re infonnation,see Volwœ 2, 1he Deviee Interface." 

Parameters 
Offset No. Sble aad type 

$00 pCount - Word INPUT ~ue (minimum -6) 

$02 devNwn - Word lNPl'T ~ue 

lO4 

buffer Longword INPUT poiruer 
-

1$CS -
reque3tCOunt _ Longword INPUT V31ue 

-
\OC -

~ .tartingBlock Longword I~PUT volue 

1S10 bl.ockSize Word INPUT ~ue 

Ftran3fQrCount 

$12 

Longword RESULT volue 

r 

pCount	 Word input value: The number of parameters in this p-JfJmeter black. Mimmum 
is 6; maximum is 6. 

devNurn	 Word input value: Deviee number of the device From which data is ta be 
written. 

buffer	 Longword input pointer: Points ta a buffer From which the data is ta be wrinen. 

Jal Volume 1: Applical.ioos and GS/OS	 Part 1: The Application Level 



CS/OS Referenœ (Volum<? 1) Drajl3 (APDA) 8/31/88
.,j 

l 
.,j 

requestCollnt Longword input value: Specifies the nurnber of bytes to he written.
 

1
 
:'ltartingBlock Longword input value: For a black deviœ, this parameter specifies me logical..1 

bJock number of the black where the write starts. For a charaeter device, this 
parameœr is unused.1 

J 
blockSi ze	 Word input value: The size, in bytes, of a black on the specified black device. 

For charaeter devices, the parameter is unused and must be set to zero.

J 
transferCount Longword result value: The number of bytes actually transferred by the calI. 

i
 
J.~ Etron
 

J 
$11 invalid device number 
$53 parameter out of range 

j 

-j 
.l 

l
 
j
 

-! 

., 
j 

-, 
.J 

l 

., 

l , 
j 

j 

1 . 

OJaplel' 7: GSlOS Call Reference 121 



cs/os Reference (Valu",,, 1) Drajt 3 (/11'0/1) 8/)! 88 

$201E 

Description 

Panmeters 

pCount 

Etron 

EndSession 

This call relis GS/OS 10 flU5h any deferred black writes lhal occurred during a 
wrire-deferral session (started by a Begin5ession cali) and 10 [esume nonnal 
write-through processing for ail black writes. 

Offs~t No. Sl2e md Iype 

$00E pCoun~ - Ward lNPtIT V1I1ue (minimum -0) 

Word input vaIue: The number of parameters in this parameter block. Minimu rn 
is 0; rrnximum is O. 

(none) 

11l Volume 1 Applications and GS/OS Part 1: The Application Level 



J 

,J GYOS Reference (Volume 1) Drajl3 (APDA)	 8131/88 

1 

1J 
J 

$2025 EraseDisk1 
J Description This cal! pUIS up a dia/og box that alIows the user te erase a specified volume 

1 and choose wtùch me system 15 te be pl:lœd on the newly erased volume. The 

J volwne must have been previously physically formatted. The ooly difference 
between EraseDisk and Format is that EraseDisk does not physically format the 

1 volume. See the Format call1ater in this chapœr.

J 
ParJJlleten 

1 Offset No. Sbe :uuI type

j $00 
Won! lNPUT v2lue (minimum -3) 

1 $OZ -
J	 c!evN.....· - Longword tNPUT pointer 

1 

~ pCount -

l­
'j 

S06 
r ­... volNam. - l.ongword INPUT pointer 

-
$CA..; fileSy.ID Ward RESutT v2lue 

$OC reqFUeSy.ID-1 Won! INPlIT value 
j 

l pCount Word input value: The number of parameters in this parameter block. Minimum
 
-J
 is 3; maximum is 4. 

'1 
devName Longworo input pointer: Points to a GS/OS string representing the device name
J of the device containing the volwne to be erased.
 

~ 

, volName	 Longword inPUI pointer: Points 10 a GS/OS string representing the volume name 
to be assigned te the newly erased volume. 

Olapler7: GSlOS CaIJ Reference 123 



CS/OS lIejerena (Volume 1) IJrafl3 (iil'VA)	 /'<,'/31 \'8 

fileSysm	 Word result value: If the cail is successful, this parameter identifies the file 

system witll which the disk was forrnatted. If the call is ull5uccessful, this 
parameter is undefmed. The me system IDs are as fo!lows: 

 oo reserved $0007 LISAסס$
$0001 ProDOS/SOS $0008 Apple CP/M 
$0002 DOS 3.3 $0009 reserved 
$0003 DOS 3.2 or 3.1 $oooA MS/DOS 
$0004 Apple II Pascal $000B High Sierra 
$0005 Macintosh (MFS) $OOOC ISO 9660 
$0006 Macintosh (HFS) $OOOD-$FFFF reserved 

reqFileSysm	 Word input value: Provides the fUe system ID of the file system that should be 
initialized on the disk. The values for thJs parame ter are the same as those for 
the fHeSy.HD parametet. 

If you supply thJs parameter, it suppresses the initialization dialog that asks the 
user which me system to place on the newly erased disk. Nonnally, your 
application should not use this parameter; use it ooly if your application needs 
to format the disk for a specific FST. 

Errors	 If the cany flag l~ set but Ais equaI to 0, the user seleeted cancel in the diaJog 
box. 

$10 device not found
 
$11 invalid device request
 
$27 VO error
 
$28 no device connected
 
$2B write-protected disk
 
$40 invalid pathname syntax
 
$53 parameter OUl of range
 
$58 not a black device
 
$SD file system not available
 
$64 invalid FST ID
 

124 Volume 1: Applications and GSlOS	 Part 1: The Application Leve! 



,,.; 

1 CS/OS Referenœ (Volume l) Drafl3 (APDA) 8/31/88
..l 

J 

..,j 

$200E 

... 
Description 

.. 
J 

"i 

..,j 

Parameters 
..l 

·-i 

... 

.. 

.., 

pCount 
-' 

~ 

inputPath 

outputPath 

flags 

.J 

1 

.., 

ExpandPath 

This cali conver1S the input pathnarœ into the corresponding full pathname with 
colons (ASCII $3A) as separators. If the input is a full pathnarne, ExpandPath 
simply converts ail of the sepafators to colons. If the input is a partial 
pathname, ExpandPath concatenates the spedfied preftx with the rest of the 
partial pathname and converts the separators to colons, 

If bit 15 (rnsb) of the flags pararneter is set, the caU converts aU lowercase 
charaeters to uppercase (aU other bits in this ward must be c1eared). This caU 
aIso performs limited syntax checking. Il returns an elror if it encountelS an 
iIIegal charaeter, (wo adjacent separators, or any other syntax elror. 

Offset No. Sluandtype 

SOO 

$02 

$06 

lOA 

pCount 

inputl1at.h 

~ 
outputPath 

nags 

- Word INPUT value (minimum -2) 

1 l.ongwQrd INPUT pointer 

2 l.ongwQrd INPUT pointer 

, Word INPUT value 

Word input value: The number of parametelS in this parameter block. Minimum 
is 2i maximum is 3. 

Longword input pointer: Points to a GSlOS string that is to be expanded. 

Longword input pointer: Points ID a result buffer where the expanded pathname 
is retumed. 

Word input value: If bit 15 is set to 1 this caU returns the expanded pathname ail 
in uppercase charactelS. AIl other bits in this word must be zero. 

Olapœr 7: GSlOS Cali Reference 125 



~
	 

[ 
C

: 

;;l
 

S"" 
?f	

 
'" 

c:
 ~	
 

1 
.,	 

~
 

1 >­ "
0

	 
~ 

.... 
""

 
~

 
A

"
"
 

~
"
"
0

 
~

 
P

-	
C

'"
 
5

' 

ao	
 

~
~

 
'"	

 
§

1
l 

~
 

S­

~~
 

~
 

\:J

ê 
.g,

 
w

 ~
 

<:
; è 



8/31/88 

J 

j CS/OS ReferimCiJ (Va/ulM l)	 Draft 3 (APDA) 

J 
j 

$2015 Flush 
J 

Description This cali writes to the volwne ail file state information !hat is buffered in 
"j melOOry but bas not yet been wrilten to the voluJre. The purpose of titis cali is 

to assure t1ut the representation of the me on the volume is consistent and up..j 
to date with the latest GS/OS ca& affecting the me. 

Thus, if a power fallure OCCUIS immediately after the Flush call completes, it ..1	 
should be possible to read ail data wrilten to the me as wel! as ail file attribuœs. 
If~uch a power failure OCCUIS, mes that have not been flushed may be in 
inconsistent states, as may the volume as a whole. The priee for titis security is

.J performance; the Flush caH takes lime to complete irs work. Therefore, be 
careful how often you use the Flush cali. 

Avalue of $0000 for the refNum parameter indicates t1ut ail files at or above 
the current fue level are to be flushed. 

..i 

...J Parameten 
otb:t No. Sile and type 

..	 100 

$02 

pCount 

refNum 

Word INPIIT V'l1ue (minimum a 1) 

Ward INPIIT V'l1ue 

,-1 

pCount Wold input value: The number of par.unetelS in this par.uneter block. 
is 1; maximum is 1. 

Minimum 

refNum Wald input value: The identifying number assigned to the file by the Open cal!. " 
Avalue of $COOO indicaœs !hat al! mes al or above the currenl system me level 
are to be flushed. 

0Japtt:r7: GSlOS cali Reference 1Z7 



CYOS Referme/! (Volume 1) 
DrtlJ13 (APDtl) 

8/3 J;'88 

Errors 

$27 IIa elTOr 
$2B disk write protected 
$2E disk SWitehed 
$43 invalid reference number 
$48 volume full 
$SA bJock number out of range 

128 Volume 1: ApplicltiOllS and GS/OS 
Part 1: The ApplicJ[ion Leve! 



• .J 

" 

GYOS Referenœ (Volume 1) Drajl3 (APDA)	 81]1/88

'. .J 

J 
J 

$2024	 Format 
i ... Descrlption	 This cali purs up a dialog box dlat ailows the user to physically fOflll3t a 

specified volume and choose wlùch Hle system is to be placed on the newly 
formatted volulre.,,-
Solre devices do not support physica1 fOflll3tting, in wlùch case the Format cail 

1 aets Iike the Er.lSeDisk caJJ and writes only the empty me system. see the 
,J Er.lSeDisk cail earlier in this chapeer. 

,, Parameters
 ... üffile! No. Size ml type
 

1" soo 
1­ pCount 

I ­
1­

'l ­
d.vNanMt 

'f ­

f­ volName 

f­

'1­ fHeSy.ID 

'1­ reqFUeSyoID 

Word INPur V1lue (minimum • 3) 

$02 

Longword INPur pointer 

$06 

longword INPur pointer 

$(lA 
Word RESutT value 

$OC 
Word INPur V1lue 

pCount	 Word input value: The number of parameters in this parameter block. Minimum 
is 3; maximum is 4. 

devName	 l.ongword input pointer: Points to a GSlOS string representing the device name 
of the device containing the volulre to be formatted. 

volName	 l.ongword input pointer: Points to a GS/OS string representing the volume name 
to be assigned to the newly formatted blank volulre. 

j	 
Chapter 7: GSlOS Cali Reference 129 



8/31/88 G,VOS Refenma (ilillume 1)	 DraJ13 (APDA) 

fileSysID	 Word result value: If the cali is successfu!, !bis paramerer identifies the file 
system with which the disk was formatted. If the calI is ullsuccessful, this 
param:ter is undefmed. The file system IDs are as follows: 

SOOOO reserved S0007 USA 
$0001 ProDOS/SOS $0008 Apple CP/M 
$0002 DOS 3.3 $0009 reselVed 
$0003 DOS 3.2 or 3.1 $OOOA MSIDOS 
$0004 Apple II Pascal SOOOB High Sierra 
$0005 Macintosh (MFS) $OOOC ISO 9660 
$0006 Macintosh (HFS) $OOOD-$FFFF reselVed 

reqFileSysID	 Word input value: Provides the file system ID of the me system that should be 
initialized on the disk. The values for this parameœr are the same as thase for 
the fileSY3ID parameter. 

If you supply !bis parameter, it suppresses the diaJog from the Disk 
lnitialization package chat asks the user how the disk shauld be formaued. 
Normally, your application should nol use !bis pararneter; use it anly if YOUf 

application needs to formaI the disk for a specifie FST. 

Errors	 If the carry flag is set but A is equallO 0, the user seleeted cancel in [he dialog 
box. 

S10 device nol found
 
SIl invalid device requesl
 
$27 VO error
 
S28 no device connected
 
$2B disk is Mite proteeted
 
S40 invalid pathname syntax
 
$53 parameter out of range
 
$58 not a block device
 
$5D fUe system not available
 
$64 invalid FST ID
 

1.:iJ Volume 1: Applic:ltioos and GSlOS	 Part 1: The Application Levet 



cs/os Reference (Volume 1) Draf/3 IAPDA) 8/31/88 

$2020 GetDevNumber 

Description This caI1 returns the device number of a device identified by device name or 
volurœ name. Only block devices may he identified by volume name, and chen 
only if !he named volurœ is mounted. Most other device calJs refer lO devices 
by device number. 

GS/OS assigns device numbers at boot time. The numbern are a series of 
consecutive integers heginning wi!h 1. There is no a1gori!hm for determining ùle 
device number for a particular device. 

&cause a device may hold different volumes and heclUse volumes rnay he 
moved from one device ta ano!her, che device nunlber retumed for a particu lar 
volume name rnay he different at different tîmes. 

Parametcrs 
Offset No. Sb.e and type 

Word lNPIIT value (minimum' 2) 

LonflWord INPIIT pointer 

Word RESULT value 

pCount Word input value: The number of paramerers in this paramerer black. 
is 2; maximum is 2. 

Minimum 

devName Longword input pointer: Points ID a result buffer representing che device name 
or volume name (for a black device). 

devNum Word result value: The device nurnher of che specified device. 

'1­ pCount. -
'f­

f­ devName 

f­

'f­ devNum 

$00 

SlXi 

$02 

132 Vc~ume 1: ApplicU.ions and GS/OS Part l: The Application Level 



"1 ,­

cs/os Referenœ (Volume 1) DrujlJ (APDA) 8131188 

..: 

... 

Errors 

$10 
$11 
$40 
$45 

device not found 
invalid deviœ request 
invalid deviœ or volume ruune syntax 
volume not found 

.. 

.. 
"j 

.. 

Chapler7: GS/OSCall Referenœ 133 



cS/os Re/erenu (Volume 7) Drajl 3 (APDA)	 S/3 li88 

$201C	 GetDirEntry 

Description	 This call retums information about a directory entry in the volume directory or a 
subdireetory. Before executing titis caU, the appücation must open the 
direetory or sulxlireetory. The call allows the application ta step foeward or 
backward through file entries or ta specify absolute enuies by entry number. 

Parameters 
OflUI No. Size and type 

SIlO'i ­ pCount 

f-

f­

'i ­

1f­

r.fNwn 

flaça 

base 

diaplacement 

l­
i ­

1­

, 
f-

f-
f­
1­

'f­

f-
f­

name 

entryNulll 

fileType 

..of 

..-
block:Count 

Ward lNPUf value (minimum • 5) 

S02 
Ward INPUf value 

$01 
Ward Rl!SULT value 

SQ6 
Ward INPUT value 

$QI 
Ward INPUT value 

$OA 

Longward INPUT pointer 

$Of 
Ward Rl!SULT 'falue 

S10 
Ward Rl!SULT value 

112 

8 Longward RJ::SULT value 

116 

Longword RJ::SULT vaiue 

lIA 

]34 Volume 1: Applic:l1ions and GSlOS	 Part 1: The Application Leve! 



~~OSRef~e~(V&u~ 1) Draf/3 (APDA)	 8/31/88 

JI\?~l{ÎI$IJilllkFS lil~Jl 

file ,un euendod file· 1 ] 
me il notan euendod file • 0 reserved 

base	 Word input value: Avalue that tell<i how to interprel the displacemenl 
paramerer, a.~ follows: 

$0000 displacement gives an absolute entry nurober 
$0001 displacement is added to current dispJacement ta gel next entry 

nUnDer 
$0002 displacement is subtraeted from cunrent displacement to get nexl 

entry number 

displacement	 Ward input value: In combination with the base parameter, the 
displacement parameter specifies the direetory eotry whose information is 
to be retumed. When the directory is fust opened, GS/OS sets the current 
dispJacement value to $0000. The current displacemenl value is updated on 
every GetDirEntry cali. 

If the base and displacement par.uneters are both zero, GS/OS relUms a 2­
byte value in the entryNum par.uneter that specifies the total number of active 
entries in the subdireetory. In tbis CISe, GSlOS aIso reset~ the current 
dispJacemeot ta the fllSt eotry in the subdirectory. 

Ta 5tep through the dJreetory entry by entry, you should set bath ùle ba s e and 
displacement parameters ta $0001. 

name	 Longword input pointer: Points to a result buffer giving the name of the file or 
sulxlirectory represented in tbis directory entry. 

entryNum	 Ward result value: The absolute entry number of the entry whose information is 

being retumed This parameter is provided 50 that a program cao obtain the 
absolute eotry number even if the base and displacement parameters 
specify a relative entry. 

fileType	 Ward result value: The value of the file type of the directory enllY. 

eof	 Longword result value: For a standard flle, this parameter gives the number of 
byteS that <:an he read from the file. For an extended me, tbis parameter gives 
the number of bytes that can he read from the ftIe's data fork. 

1;6 Volume 1: Applications and GS/OS	 Part l: The Application Leve! 



8/31/88 

1 j 
1 j CS/OS Elejlmmce (Volume 1) Drafl 3 (APDA) 

1] 
blockCount 

1] 
createDateTime

1] 
1j modDateTime 

1J acceS3 

1j auxType 

fileSysID 

1J

1 

1J optionList 

-1 

1
J

. ] 
l, 

1 
1-­-, 

resourceE:OFJ
I

l
,..1 

resourceBlocks 

'1 

I~ 
jJ 

j
 
j
 

1 
'1 

.J 

..., 
! 

..J 

...., 

Longword result value: for a standard flle, this parameter gives the number of 
blocks used by the flle. For an extended me, this parameter gives the number of 
blocks used by the fUe's data fork 

Double loogwold result value: The value of the creation date and time of the 
directory entry. The format of the date and time is shown in Table 4-1 in 
Chapter 4. 

Double longwold result value: The value of the roodification date and lime of 
the directory entry. The format of the date and time is shown in Table 4-1 in 
Chapter 4. 

Word result value: Value of the access attribute of the directory enuy. 

Longwold result value: Value of the auxiliary type of the directory entry. 

Word result value: File system idenrifier of the me system 00 the volume 
containing the fùe. Values of this parameter are described under the Volume caJl 
later in this chapter. 

Longwold input pointer: Points co a data area where GSlOS returns FST-specific 
information reJated co the flle. This is the same information retumed in the 
option Iist of the Open and GelFileInfo caIIs. 

This parameter points to a buffer that starl5 with a length ward giving the total 
buffer size including the length ward. The nen ward is an output length value 
which is undefined on input On output, this woni is set to the size of the 
output data exc1uding the length word and the output length ward. GS/OS will 
not overflow the available space specified in the input length wore!. li the data 
area is too small, the application cao reissue the caJl after allocating a new 
output buffer with size adjusted co output length plus four. 

Longwold result value: If the specified me is an enended me, this parameter 
gives the number of bytes that cao he read from the fUe's resource fork. 
Otherwise, the parameter is undefmed. 

Longwold result value: If the specilled me is an extended HIe, this parameter 
gives the number of blocks used by the fùe's resouICe fork. Otherwise, the 
parameter is undefmed. 

Olaplel' 7: GS/OS Cali Reference 137 



G.Y'OS Referenœ (Volume 1) Dro/l3 (APDA) 8/31/88 

j 

J
 
! 

J 

1 
..l 

i 
J 

-, 
1 

.J 

J
 
--1 
...J 

-1 

.J 

l 
j 

'l 
j 

,
 
'1 

'1 

J 

~ 

$2019 

Description 

Parametcn 

pCount 

refNum 

aof 

Etron 

GetEOF 

This funct.ion retums the current logical size of a specifted file, See aIso the 
SetEOP C2lI. 

Sbe_~

Off.et No. 

Word INPUT value (minimum • 2) 

~~
 $02 ram_ I Word INPUT value 

$04 

ftOt -l 7 l.ongword RFSutT value 

Word input value: The number of par:uœters in this parnmeter block. Minimum
 
is 2; maximum is 2.
 

Word input value: The identifying number assigned ra the flle by the Open caU,
 

Longword result value: The current logicaJ size of the file, in bytes.
 

$43 invalid reference number 

OJapIeT 7: GS/OS calI Reference 1~ 

J
 



(;5/05 Reference (Vo/um<? 1) 

Etrors 

$10 
$27 
$4A 
$4B 
$4F 
$52 
$53 
$58 
$61 

Drafl3 (APDA) 8/31;88 

device not found 
lia errar 
version errar 
unsupported storage type 

buffer too small 
unsupported volume type 

invalid parameter 
not a block device 
end of direetory 

);8 Volume 1: Applbtiorts and GSlOS Part r: The Application Level 



GS/OS Reference (Volume 1) Drajl 3 (APDA) 8/31,83 

$2006 GetFlleInfo 

Description This cal! retums certain me attributes of an existing open or closed block file. 

lmporranl AGetFileInfo cali following a SetFileInfo cali on an open file fl];lY 
nOC return the values se! by the SetFilelnfo cali. To guarantee 
recording of the attribules specified in a 5etFilelnfo cali, you must 
fIlS! close the me. 

see also the 5etFUeInfo cali. 

ParamclefS 
Orrset No. SIlle and type 

Word INPUT v:alue (minùnum • 2) 

LongwotdINPUTpoinler 

2 

Word RESULT value 

Word RESULT value 

Longword RESULT value 

Ward RE5ULT value 

Double longword RESUlT value 

pCount 

pathna.me 

access 

tihType 

l-
I­ auxType 

l­

i­ st.oraqeType 

1 

1­ -
1­ -
i­

createDateTime _ 

-

\10 

lœ 

$02 

$O/i 

$00 

$Of 

10... 

HO Volume 1: Applications and GSlOS Part 1: The AppliCJtion Leve! 



.... 

1 cs/os Referena (Volume 1) Drrifl3 (APDA)	 8/31/88j 

j 

$18 
,.j 

7 Double Ioogwoord IœSULT valuej 

J $W1 

mcdOat.Ti...

optionLiat 

.of 

--
-

-
_

-
-

-
--
--
-
-

bloeksUsed -
-

relourceEOF 
-
-
-

resourceBlocks 
-
_ 

-

8 Loogword lNPur poinler
 ..J
 

$2~1
 

l
 
1 longword RFSULT value ... 

$281 

10 longword RFSULT value
 

l Ize:
 

.J 

..J 
11 longword IœSULT value 

-, 
$301... 

12 longword IœSULT value
 
1
 

1 
...1
 

l pCount Word input value: The number of parameten; in this parameter block. Minimum
 
j is 2; maximum is 12. 

j 
~ 

pathname	 Longword input pointer. Points to a GS/OS string representing the pathname of 
the me whose me information is to he retIieved. 

J access Word result value: Value of the fiJe's access attIibute, which is described under 
the Create caU. 

... 
i fïleType Word resmt value: Value of the ftle's file type attribute. 

..J 

auxType Longword result value: Value of the mes auxiliary type attribute. 

] 

l 
j	 OJapler7: GSlOS CalI Reference 141 

l 
1 ..J 

,j ­

,I~ 



GS/OS RefeTImCi! (Volume 1) Draft 3 (N'DA)	 813 L 88 

gtorageType	 Word result value: Value indicating the SIOf'Jge type of the file. 

$01 standard file
 
$05 extended file
 
$00 volume directory or sulxiirectory me
 

CI:eateDateTime	 Double longword resuJt value: Value of the flIe's creation date and tirne 
attributes. 1be format of the date and lime is shown in Table 4-1 in Chapter 4. 

modDateTime	 Double longword result value: Value of the flle's modification date and time 
attributes. The format of the date and lime is shown in Table 4-1 in Chapter 4. 

optionLi5t	 longword input pointer: Points to a result buffer. On output, GS/OS sets the 
output length field to a value giving the number of bytes of space required by 
the output dau, excluding the length words. GS/OS will not overflow the 
avaiJable output dau area. 

eof	 wngword result value: For a sundard me, mis parnmeter gives the number of 
bytes that can be read from the me. For an extended me, this parnmeter gives 
the number of bytes that can be read from the flle's dau fork. 

For a subdirectory or a volume directory file, mis parnmeter is undefined. 

block3Used	 longword result value: For a sundard nie, mis parnmeter gives the toul number 
of blocks used by the me. For an extended file, this parnmeter gives the nu mber 
of blocks used by the file's dau fork. 

For a subdirectory or a volume directory flle, mis parnrneter is undefined. 

re50urceEOF	 longword result value: If the specified me is an extended flle, this parnmeter 
gives the number of bytes that can be read from the file's resource fork. 
Otherwise, the parnmeter is undefmed. 

re"ourceBlocks	 longword result value: If the specified file is an extended file, this parnmeter 
gives the number of blocks used by the file's resoufCe fork. Otherwise, the 
parnmeter is undefllled. 

142 Volume 1: Applic:lt.ions and GS/OS	 Part 1: The Application Level 



8/31/88 CS/OS Referena (Voiul7W J) Draf/3 (N'DA) 

$202B GetFSTInfo 

Description This function returns generaJ information about a spedfied File System 
Translata! (psn. see also the 5etFSTInfo cali, and Part II of this guide. 

Paramcttn 
Offsel No. ~andlypt 

1 ­$00 pCount - Ward INPUT value (minimum • 2) 

~$02 tstNwn - Ward INPUT value 

i$0<\ fileSysID - Won! mULT value 

i$06 

fstN..... 
-
-
-

l.ongword INPUT pointer 

$OA version - Won! mULT value 

1SOE 

$OC attributes 

blockSize 

-

-
Ward RESUlT value 

Ward mULT value 

1S10 

maxVolSiz& 
-
-
-

7 l.ongword mULT value 

1S14 

maxF ileSize 8 l.ongward RESUI.'f value 

-­

pCount Ward input value: The oumber of parameters in this parameter black. Minimum 
is 2; maximum is 8. 

EstNum Ward input value: An FSf oumber. GS/OS assigns FST oumbers in sequence 0, 2, 
3, and 50 00) as it loads the FSTs. There is no Hxed correspondence between 
FSfs and FSf oumbers. To get information about every FST in the system, one 
rnakes repeated caUs ta GetfSTInfo with fstNum values of 1, 2, 3, and 50 on 
until GS/OS retums errar $53: pararneter out of range. 

144 VoIulre 1: Applications and GS/OS Part 1: The Application Leve\ 



CS/OS Fleferena (l'Diurne 1) Drafl 3 (APDA) 8/j 188 

maxFileSlze lûngword re~;ult value: The maximum size (in bytes) of files handled by the fST. 

Errors 

$53 parameter out of range 

146 Volurre 1: Applic:ltions and GS/OS Part 1: The Application Level 



8131188 J GS/OS Reference (Volume l) Dnif13 (ARDA) 

î 
.J 

J 

J 

J 

$201B 

Description 

Parameters 

This function retums the CUITent value of the system flle level. See aIso the 
Setlevel caIl. 

GetLevel 

Offset No. Sblt :wt type

J $00 pCount ­
level -4 

Word lNPlIT mue (minimum· 1) 

l $02 1 Ward RESUtT value ... 

J pCount 

level 

Errors 

Word input value: The number of parameters in this parameter black. 
is 1; maximum is 1. 

Word result value: The value of the system me 1eve1. 

$01 bad system cali number 
$04 parameter count out of range 
$07 ProDOS is busy 
$59 invalid flle level 

Minimum 

... 

1 

, 

C1Japler 7: GSlOS cali Reference 147 



--

GYOS Reference (Volume 1) Drajl3 (AJ'DA) 8/3,1,8,'5 

$2017 

Description 

Parameters 

pCount 

~efNum 

posicion 

Errors 

1'\8 Volume t: 

GetMark 

This function returns the curreul me mark for the specified file. See also the 
SetMark cali. 

Offset No. Sile :and type 

$00 pCount - Ward JNl'lIT value (minimum • 2) 

$02t- re,fNum 1 Ward INPlIT value 

lOi 1­
position -4 2 Longword IŒSULT value 

Word input value: The number of parameters in this parameter block. Minimum 
is 2; maximum is 2. 

Ward input value: The identifying nurnber assigned ta the file by the Open call. 

Longword result value: The eurrent value of the me mark in bytes relative 10 the 
beginning of the file. 

$43 invalid reference nurnber 

Applications and GS/OS Part 1: The AppliCltion Level 



8/31/88 

J 

J Gy'QS Reference (VoIu"", 1) Droft 3 (APDA) 

]
 

J
 
$2027 

J 
Descrlpdoo 

J
 
J
 

Parameten 

j 

J 
.J 
-~ 

pCount 
j 

1 dataBuffer 

J 
Erron] 

..l1 

1 
j 

l 
.l 

l 
.; 

l 
J 

l 
~ 

., 

GetName 

Retums the filename (not the complete pathname) of the currently running 
application program. 

To get the complete pathname of the current application, concatenate prefix 1/ 
with the filename returned by tM cali. Do this before making any change in 
prefIX 1/. 

Offset No. Sb.e lIId type 

1001- pCount - Ward lNPlIT value (minimum • 1)
 

1021­
~ 

dataButter
 

1­
1- -1 1 Longword lNPlIT pointer-

Word input value: The number of parameters in this parameter block. Minimum 
is 1; maximum is 1. 

lDngword input pointer: Points to a result buffer where the filename is to be 
returned. 

$4F buffer tao smalt 

01apler7: GSlOSCalI Reference 149 



8/31/88 GStOS N~fer!mce (Volume l)	 Dmft 3 (APDA) 

$200A GetPrefrx 

Description This funetion returns the current value of any one of the numbered prefIXes. The 
rerumed prefIX string will a1ways stalt and end with a separntor. If the requested 
prefIX is null, il is returned as astring with the length fteld set 10 O. This caU 
should not he used to get the boot volume prefIX ('/); use the GetBootVol caU 
to do that. See also the SetPreflX caU. 

Parameters 
Offset No. Sl:1Je and type 

seo Word INPUT value (minimum' 2) 

sm Won! INPUT value 

lOi 

Longwon! INPUT pointer 

I­I pCount 

1­: prefixNurn 

f-
f­ prefix 

l­

pCount	 Word input value: The number of parameters in thi.I parameter block. Minimum 
is 2; maximum is 2. 

prefil<Num	 Ward input value: Binary value of the prefix number for the prefIX 10 be 
rerumed. 

prefix	 Longword input pointer: Pointer to a GS/OS output string structure where the 

Errors 

prefIX value is retumed. 

$4F buffer too small 
$53 invalid parameter 

1;<) Volume 1: Applications and GS/OS Part 1: The Application Level 



l CS/OS Reference (Volume J) Draf/3 (APDA)	 8/31/88 
.~ 

l
J 

] 
$200F	 GetSysPrefs

l 
J 

Description This cali renJms the value of the cuITent global system preferences. The value of 
system preferences affects the behavior of sorne system calls. See also the

J SetSysPrefs call. 

Parameters1 
j	 Offset No. Sbe and type 

$OO~ pCount - ward INl'tIT value (minimum· 1)

] 
$021- preference. _ Word Rl!SULr value 

J 
pCount	 Word input value: The number of parametelS in this parameter block. Minimum 

is 1; maximum is 1.] 
preference,	 Ward result value: Value of system preferences, as follows: 

] J5 [~~j1Wffil't.·!i·f ••~"I,r~·'··lw·r%ttl~î 

display volume mount dialofI" 1 ]

] do l10l display volume tn:JIInt dialofI" 0 reserved (retUmed as 0) 

Etrors	 (none)
l 
j 

l 
,..1 

] 

] 

J 
]	 Olapler 7: GS/OS Cali Reference 151 

] 

] 

1 



GYOS Reference (VO/UTIUJ 1) Drafi 3 (APDA) 8/31;88 

$202A 

Description 

Parameten 

pCount 

ver~ion 

Enon 

GetVersion 

This call returns the version number of the GS/OS operating system. This value 
cao be used by application prograrm to condition version-dependent 
operations. 

Offset 

$OO~ 

102 

No. SIze and type 

1 

Won:! INPUT wlue 

Won:! RESULT wlue 

(minimum' 1)pCount 

verdon -l 

Word input value: The number of parameters in this parameter block. Minimum 
is 1; maximum is 1. 

Word result value: Version number of the operating system, in the following 
format: 

....".....J"~F';'q"·"ITEIjlfinal reIe:aoe-O ' 1 

ma;:' ,,"eoae nUnDer 

rninor relea,se num1:>er 

(none except general system errors) 

152 Volurœ]: Applicat.ioos and GS/OS Parti: The i\pplie:ttion Level 



GS/QS Reference (Volume 1) Drajl3 (APDA)	 8/3li88
.J 

l 
.J 

1 
.J 

$2011	 NewLine 

J Description This function enables or disables the newtine read mode for an open file and, 
when enabling newline read mode, specifIeS the newline enable mask and

j newline character or clwaeters. 

When new\ine mode is disabled, a Read call terminates only after il reads the 
requested number of charaeters or encounters the end of file. When newlineJ roode is enabled, the read aJso terrninates if il encounters one of the specified 
newline charaeters. 

J When a Read cali is made wlùle newline mode is enabled and there is another 
character in the flle, GS/OS performs the following operations: 

J
 1. Transfers the next clwaeter ra the user's buffer.
 

2.	 Perfonns a logical AND operation between the charaeter and the low-order 
byte of the newline mask specified in the Iast Newline cali for the open flle.

J	 3. Compares the resulting byte with the newline charaeter or characters. 

4.	 If there is a match, terrninates the read; otherwise continues at step 1.

J 
Parameters
 

Offset No. Sbe and type
 
J 

.,j $00'f- pCount - Word 1NPtn' value (minimum • 4) 

~l	 sen'1- retNum Word 1NPtn' value 
J 

$01 enahleMa:sk:1- - Word INl'tn' value 

J	 ~'i- numChars - Word INPtn' value 

$al 

1 
'I­
I- newlineTable
 Longword INPUT pointerJ 
1­

] 
pCount	 Word input value: The number of parameters in this parameter black. Minimum 

is 4; maximum is 4.1 
.J 

..., 
: Olapler 7: GSlOS CalI Reference 153 
~ 

, 
j 



(,.\703 Rejerenœ (Volume 1) Drafl3 (APDA) 8,'31/88 

refNum Word input value: The identifying number assigned to the file access path by the 
Open cail. 

enableMask Word input value: If the value of this pararneter is $ססOO, disablc ncwline mode. 
If the value i.s greater than $0000, the low-order byte becomes the newline mask. 
GS!OS performs a logical AND operation of each input character with the 
newline mask before comparing il ta the newline charaeter or characters. 

numChars Ward input value: The number of newline characrers conrained in me newline 
charaeter !able. If the enableMa!ll<isnonzero.this paramcter must he in the 
range 1-256. When disabling newline roode (enableMas k -  oo), rbisסס$
pararneter is ignored. 

newline'!'able Longward input pointer: PoinlS ta a table of from 1 ta 256 bytes that specifies 
me set of newline characrers. Each byte halds adistinct newline charaeter. 
When clisabling newline roode (enableMa"l< - $00(0), this parameter is 
ignored. 

Errors 

$43 invalid reference number 

154 Volulre 1: Applications and GSlOS Part [; The Application Level 



" 

1 GYOS Reference (Volume 1) DTTJfI3 (APDA)	 8/3]/88
-' 

J 

J 
l 

$200D Null 
J 
l 

Description This call executes any pending events in the GSlOS event queue and in the 
Scheduler queue before returning te the caIling application. Note that every 

... GSlOS caU perfonns these functiOllS. This caU provides a way to flush the 
queues without doing anything else. ' 

1 
j Parameten 

Offset No. Sbe and type 

1 ...	 100 E pCount î - Ward INPlIT v:a1ue (minimum' 0) 

J pCount	 Word input value: The number of parameters in this parameter block. Minimum 
is 0; maximum is O. 

1 

J F.tTOl'S	 (none) 

1 ..i 
j 

l 
.J 

" 

i.. 
-, 
.J 

l 
...J 

] 

]	 Olaplel'7: GSlOSCalI Reference \55 

l
,.J 

j 



G,VOS Relerenœ (Volume 1) Draft 3 (ARDA) 8i] 1/88 

$2010 Open 

Description This cal! causes GS/OS to establish an access path to a file. Once an access path 
is established, the user may perform file Read and Write operations and other 
related operations on the me. 

This cali can aJso relUm all the file information relUmed by the GetFilelnfo calL 

1% Volume]: ApplicalioosandGSlOS Part 1: The Applicllion Leve! 



1j 

,]
 

1] 

1J
 
1)
 
1J
 

J
I
 

] 
1 
1 j 

1 ] 

1 ] 

] 
1]
 
1

l 
1­
] 
l 
.J 

-, 
"" 

i 
i 

cs/os Referenu (Volume 1) 

Parameters 
Offset 

$00 

$OZ 

S04 

lœ 

SOA 

$OC 

SOR 

$10 

$14 

$1 

$1 

' .... pCount 

'f ­

.... 
f ­
.... 

1 

'~ 

refNum 

pathname 

requeatAcc••• 

r••ourceNumb_r 

'l ­

'1­

, 

f ­
i ­
i ­

i ­

'l ­

i ­
i ­
~ 

l ­
i ­
i ­

ace."" 

fUeType 

auxType 

.."ouqeTYPe 

createOateTime 

Dmft 3 (APDA) 8/31/88 

No. Sl2eandtype 

Worrl INPUT V2Jue (minimum • 2)
 

Worrl RESULT V2Jue
 

Longword INPUT poinler 

Won! INPUT value 

Worrl INPUT value 

Worrl RESULT V2Jue 

Ward RESULT V1lue 

Longword RESULT value 

8 Ward RESULT V1lue 

Double longword RESULT V2Jue 

Ol3pter 7: GSlOS Gill Reference 157 



8131/88 CS/OS Reference (Volu1lI2 1) Draft 3 (AJ'DA) 

lIE 

$26i 

su 

$2l!i 

$32i 

,S36 

-

modDateTime 

optionLi.t 

eo! 

blocksOsed 

reaourceEOF 
-

r.~ourc.Block3 _ 

10 Double longword RESULT value 

Il Longword INPUf poÎme! 

12 Longword RESULT value 

13 l.ongword RESULT value 

14 l.ongword RESULT value 

15 l.ongword RESULT value 

pCount WOId input value: The number of parameters in this parameter block. 
is 2; maximum is 15. 

Minimum 

refNum Word result value: Areferenee number assigned by GS/OS [0 the access path. Ali 
other me operntions (Read, Write, Close, and 50 on) refer ro the access parh by 
this number. 

pathname Longword input pointer: Points to a GS/OS string represenüng the pathname of 
the fUe to he opened. 

158 Volume 1: Applications and GS/OS Part 1: The Application l.evel 



.,;
 

] GYOS Reference (Volume 1) Druf/3 (APDA) 8/31/88
 

-1 
.J 

requestAcc€ls., 

] 

J 
J 
J resourceNumber 

] 
acce33 

J 
fileType 

J
1

auxType 

J 
storageType 

] 

Ward input value: Specifies the desired access permissions, as follows: 

'Ët~tMfn;Iil~H~t"~8If\llifl«[1Si)rlfr'$1'11 10 1 
1	 1 J 1 1 

.....-J:-l, ""lIIt'l wriœ pemioIionJ J 
R- l, ""lIIt'l1ad pemioIion 

If this paraIreter is IlOt included or ilS value is $0000, the me is opened with 
access permissions determined by the ftle's store<! access attributes. 

word input value: This paraIreter is meaningful only when the pathname 

parameter specifIes an extended file. In this case, a value of $0000 tells GS/OS 
to open the dara fork, and a value of $0001 tells it to open the resource fork. 

Word result value: Value of the ftle's access attribute, which is described under 
the Create cali. 

Word result value: Value of the me's ftle type attribute. Values are shown in Table 
1-2 in Chapter 1. 

lDngword result value: Value of the ftle's auxiliary type attribute. Values are 
shown in Table 1-2 in Chapter 1. 

Word result value: Value of the ftle's storage type attribute, as follows: 

$01 St:lndard ftle 
$05 extended file 
$00 volume directory or subd.ireetory ftle 

1 
J createDateTime	 Double longword result value: Value of the fiIe's creation date and time 

attributes. The format of the date and time is shown in Table 4-1 in Chapter 4; . 

] modDateTime	 Double longword result value: Value of the file's modil1cation date and time 
attributes. The format of the date and time is shawn in Table 4-1 in Chapter 4. 

] optionList	 lDngword input pointer: Points to a GS/OS result buffer to which FST-specific 
information can be retumed. On output, GS/OS sets the output length field 10 a 
value giving the number of bytes of space required by the output dara,] excluding the length words. GS/OS will not overflow the available output data 
area. 

] 

J	 Cllapter 7: G~OS Cali Reference 159 

] 

J 



CS/05 Referl!Tla! (Volume 1) Drajl3 (APDA)	 8/) 1/88 

eof	 wngword result value: For a standard file, this parameter gives the number of 
bytes that <:an be read from the fùe. For an extended file, this parameter gives 
the number of bytes that can be read from the fùe's data fork. 

For a subdireetory or volume directory fLle, this parameter is undefined. 

blocl<3Used	 wngword resu1t value: Por a standard file, this pararneter gives the number of 
bytes used by the me. For an extended file, this paramcter gives die number of 
bytes used by the ftIe's data fork. 

For a subdireetory or volume directory file, this parameter is undefined. 

resourceEOF	 wngword result value: If the specified me is an extended me, this parameter 
gives the number of bytes that can he read from the ftIe's re50urce fock, even 
when one is opening the data fork. Otherwise, the pararneter is undefined. 

ŒsourceBlocl<s	 longword result value: If the specified file is an extended me, this parameter 
gives the number of blocks used by the file's resouoce fock, even if one is 
opening the data fork. Otherwise, the parameter is undefined. 

Errors 

$27 If0 errar
 
$28 no device connected
 
$2E disk swilched
 
$40 invalid pathname syntax
 
$44 path not found
 
$45 volume not found
 
$46 file not round
 
$4A version errar
 
HB unsupported storage type
 

$4E access not allowed
 
S4F buffer too small
 
$50 file is open
 
$52 unsupported volume type
 

$58 not a black device
 

1&1 Volume 1 Applic:ltioos and GS/OS	 Part 1: The AppliCllion Level 



J 

J cs/os Reference (Volume J) Drafl3 (APDA)	 8/31/88 

] 

] 
$2003 OSShutdown 

J 
Description This cali aIIows an application (such as the Finder) to shut down the operating 

system in preparation for either powering down the mac/tine or perfonning a

J cold reboot GS/OS terminates any write-deferral session in plOgresS and shurs 
down ail drivers and FSTs. 

The action of the cali is determined by the values of the shutdownFhgJ	 parameter. If Bit 0 is set to l, GS/OS perforrns the shutdown operation and 
reboots the machine. If Bit 0 is cleared to 0, GS/OS perforrns the same 
shutdown procedure and !hen displays a dialog box that allows !he user to either] 
power down the computer or reboot If !he user chooses to reboot, GS/OS !hen 
looks at Bit l of the shutdownFlaq parameter.

j	 If Bit 1 is cleared to 0, GS/OS leaves the Memory Manager power-up byte alone; 
titis leaves any RAM disks intact while the machine is rebooted. If Bit 1 is set ro 
l, however, GS/OS invaJidates the power-up byte, which effeetively destroys]	 any RAM disk, before rebooting the computer. 

Parameters] Offset No. Shle and type 

$00 
Word INPUT value (minimum· 1)

J $021­ Word INPUT value 

pCount 

.hutdownFlaq 

l , ..; 
pCount Word input value: The number of paramete~ in this parameter block. Minimum 

l is 1; maximum is 1. 
J 

shutdownFlag Word input value: Two Boolean flags that give information about how to handle 
the shutdown, as follows: 

,J 

Olapler 7: GSlOS Call Reference 161 



GYOS Reference (Volume 1) Drafl3 (APDA) &/>/,88 

lnvalidale lite Mcfro<y ManaB'" ~-up byœ when poworing doom-j- J. 
I.ea.. M<mory M2naget power....pbyte.-when powering down-O 

P",blll shUldown and rdloot the COOlputer-1 
Perfunn &hULdown and dispIay-O ~-OOwnIn:boot diaIotl 

Errors (none) 

162 Volurœ 1: Applicatioos and GS/OS Part 111Je Application Level 



j 

] CYOS Refermee (Volume J) Drafl3 (APDA) 8/31/88 

] 

J $2029 

J Description 

j 

J 
Paramctcrs 

] 

J 
J 
J pCount 

] pathname 

] 

] 

] 

] 

] 

] 

] 

] 

Quit 

This cali terminaleS the running application. It aJso closes al! open files, sets the 
system flle levellO 0, initializes certain components of the Apple IIGS and the 
operating system, and then launches the next application. 

For more information about quitting applications, see Chapter 2, cGSlOS and 
Its Environment:
 

Offset No.
 

,$00 

S02 

$06 

pCounti ­

i-
f- pathname 

r­
tlaqsi-

Sbt aad type 

Ward INPUT value (minimum' 0) 

I.ongwQrd INPUT poinler 

Ward INPUT value 

Ward input value: The number of parameters in this parameter black. Minimum 
is 0; maximum is 2. 

Longword input pointer: Points 10 a GS/OS string representing the pathname of 
the program 10 run next If this parameter is null or the pathname itself has 
length 0, GS/OS chooses the next application, as described in Chapter 2. 

0Japlel' 7: GSlOS CalI Reference 163 

1 



(;."105 Reference (VoJUIM 1) Dmjl J (APDA)	 8'/] 1;'88 

flog"	 Word input value: Two Boolean flags that give information about how to handlc 
the program executing the Quit cali, as foUows: 

PIaœ "". inform:llion aboullh. quittin&
 
propm on me Qui renunllaà: '" dw
 
il will be .UlOImliCIIIy resIII1lld 121er " 1
 

Do lKt 0lICk!he quiaing Progrml" 0
 

The quilllng program il opIble ofbeing
 
resIII1lld from ito doonan1l1lefOOl'( """ll" • 1
 
The quilting progr.un ""'" be rdoolded from
 

dlsi: if il is ,""""ed • 0 l\OSefVed 

Comments	 Goly one error condition Cluses the Quit cali to retum to the calling application: 
error $07 (GS/OS busy). AlI other errors are managed within the GS/OS program 
dispatcher. 

Errors 

$07 GS/OS busy 

164 volurœ 1: Applications and GS/OS	 Part I: The Application Level 



8131/88 

J 

] CS/OS Reference (Volume 1)	 Dro/l3 (APDA) 

] 

J 
$2012	 Read 

J 
Description	 This function attemplS te transIer the number of bytes given by the 

requestCount pararœter, starting at the Ciment mark, From the me specified
j	 by the refNum pararœter inte the buJfer pointed te by the dataBuffer 

pararœter. The function updates the file mark to refleet the new file pOsition 
after the read.j 
&cause of three situations !hat cao Cluse the Head function te cransfer fewer 
!han the requested number of bytes, the function relUmS the actual number of 

J
 bytes cransferred in the transferCount parameter, as follows:
 

J 
• If GS/OS reaches the end of flle before cransferring the number of bytes 

specified in requestCount, itstops reading and sets transferCount 

10 the number of bytes aetually read. 

• If newline mode is enabled and a newline charaeter is encountered before 

J the requested number of bytes have been read, GS/OS stops the cransfer 
and sets transferCount to the numberof bytes actua1ly read, incJuding 
the newline character. 

...1 • If the device is a character device and no-wait mode is enabled, the calt 
returns immediale1y with transferCount indicaùng the number of 

j charaeters retumed. 
J 
-1 
.J 

J 
-) 

--, 
1 

..i 

l 
...1 

l 
,j 

.., 
i	 Clapler7: GS/OSCalI Reference 165

..J 

1 .., 

1 _ 

l _ 



C;YOS Referena (Vo/ume 1) D1ùjJ 3 (APDA)	 8i,I/88 

Parameters 
Offset No. Sbe and type 

1soo pCount Ward INPtn' voùue (mmimum' 4) 

~lm refNum Ward INPUT voùue 

i$01 -
c!ataBuffer - I.ongword INPlIT poinler 

-,lœ -
reque3tCount _ Longword INPlIT voùue 

Co­ -

soc -
transferCount _ Longword RF.5ULT value 

r­

lIoli- cachePriority _ Ward lNPlIT value 

pCount	 Word input value: The number of parameters in this parameter block. Minimum 
is 4; maximum is 5. 

refNum	 Word input value: The identifying number assigned to the fUe by the Open caU. 

dataBuffer	 Longword input pointer: Points to a memory area large enough [0 hold the 
requested data. 

reque~tCount	 Longword input value: The number of bytes to be read. 

t ran~ferCount	 Longword result value: nIe number of bytes actually read. 

cachePriori ty	 Word input value: Specifies whether or not disk blocks handled by the read cali 
are candidates for caching, as follows: 

 oo do not cache blocks involved in this readסס$
$0001 cache blocks involved in titis read if possible 

100 Volume 1: Applications and GS/OS	 Part 1: The Application Level 



G(iOS Reference (Iolume 1) Drafl3 (APDA) 8/3 1/88 

$201F 

Description
 

Parameten
 

pCount 

3tatu3 

Errors 

SessionStatus 

This cali returns a value that tells whether or not a write-<leferral session is in 
progress. sec aJso Begin5ession and EndSession in this chapter. 

Offset No. SbJe and. type 

100 pCount 

statua 

Word INPlIT value (minimum' 1)
 

$02
 Word RE5mT value 

Won:! input value: The mimber of parameters in dûs parameter block. Minimum 
is 1; maximum is 1. 

Word resu1t value: Avalue that tells whether or no! a write-deferral session is in 
progress. 

 oo no session in progressסס$
$0001 session in progress 

(none) 

liS Volume 1: AppliclJ.ions and GS/OS Pan 1: lbe Application Level 



8/31/88 

J 
] CS/OS Reference (VoIullU! 1)	 Draj/3 (APDA) 

] 

] 
$2018 SeŒOF 

] 
Description This caIl sets the logical size of an open me to a specified value which may he 

either Iarger or smaJler than the current flle size. The EOF value cannot he
]	 changed unless the file is write~nabled. If the specified EOF is less chan the 

current EOF, the system may-but need not-free blocks that are no longer 
needed to represent the me. Sec aIso the GetEOF caIl.] 

Parameters 
Offset No. b:m4type]	 

$00 pCount - WooI INPUT value (minimum • 3) 

]	 $02 retNum l WooI INPUT value 

104 base 2 Ward INPUT value 

S06]	 r 
displac....nt -l ~ I.ongword INPUT value 

'ï 
J 

ï pCount Word input value: The number of parameters in this parameter block. Minimum 
J is 3; maximum is 3. 

J re fNtlll\ Woro input value: The identifying number assigned to the me by the Open cail. 

J 
base Word input value: Avalue that tells how to interpret the displacement 

parameter. 

oo set EOFסס$ equal to displacement
 
$0001 set EOF equal to old EOF minus displacement


] $0002 set EOF equal to me mark plus displacement
 
$0003 set EOF equal ta file mark minus displacement
 

] displacement	 Longworo input value: Used to compute the new value of the eof as descrihed 
for the base parameter. 

] 

]	 Olapter7: GSlOS cali Reference 169 

l 
j 

1 
., 



GSiOS Reference ( Volume J) Draj/3 (APDA) 8,3],88 

Errors 

$27 va error 
$2B write-prorected disk 
$43 invalid reference number 
$4D position out of range 
$4E me not write-enabled 
$5A block number out of range 

170 Volume 1: Applications and GSlOS Part 1: The Application u:vel 



8/31/88 CS/OS RefereTlCJ! (VoIunw 1) Draft 3 (APDA) 

Parameters 
Offsel 

!SOl 

soo pCount 

pathnlllM 

6f­S06 ace.as 

8f­sœ fil.eTyp4l 

$OA~ 

auxTyp. 

$OEE <nu!.l> 

1SIO 
l-

f-
f­

createOateTime 

-
f­

-
SI B 

No. Sl7.e and type 

Word INPUT value (minimum' 2) 

Ward lNPlIT value 

Longword INPUT poinler 

Ward INPur value 

Longword RESUI.T value 

Ward INPlIT value 

6 Double longward INPlIT value 

172 Volume 1: Applicllions and GS/OS pan 1: The Application Leve! 



_J
 

] CS/OS lleferenœ (Volume 1) Dmjl3 (APDA) 8/31/88 

-] 

] $18 

modDateTime 

optionList 

<null> 

<null> 

<null> 

<null> 

J 7 Double longwoollNPUT value 

.J $20 

.J 8 Lonpord INPUT pointer 

$2~ 

] Loogword INPUT value 

J 
$28 

10 Longword INPUT value 

] $lC 
11 Longword INPUT value 

] $30 
12 Loogword INPUT value 

. ] 
1 

] pCount Word input value: The number of parameters in this parameter block. 
is 2; maximum is 12. 

Minimum 

] pathname Longword input pointer: Points ta a GS/OS string representing the pathname of 
the nie whose me information is ta be sel 

] access Word input value: Value for the ftIe's access attribute, which is described under 
the Create cali. 

] fileType Word input value: Value for the ftIe's me type attribute. 

auxType Longword result value: Value of the ftIe's auxiliary type attribute. 

] <null> Word input value: This parameter is unused and must be set to zero. 

] OJapter 7: GSlOS Cali Reference 173 

] 

] 
""1 



GS/oS Referena (Volume 1) Drajl3 (APDA)	 8;31/88 

createOateTime	 Double longword input value: Value of the fùe's creation date and time 
attributes. If the value of this parameter is zero, GS!OS does not cha nge the 
creation date and time. The format of the date and lime is shawn in Table 4·1 ln 
Chapter 4. 

modDaceTime	 Double longword input value: Value of the file's modification date and cime 
attributes. If the value of titis entire parameter is zero, GS/OS sets the 
roodificatioo date and cime with the CUITent system dock value. The format of 
the date and tirne is shawn in Table 4-1 in Chapter 4. 

optionLi:3t	 Longword input pointer: Points to a GSlOS result buffer ta which FST-specific 
information can be relUmed. 

<null>	 longword input value: This parameter is unused and must be set ta zero. 

<null>	 Longword input value: This parameter is unused and must be set ta zero. 

<null>	 Longword input value: This parameter is unused and must be set to zero. 

<null>	 Longword input value: This parameter is unused and must be set to zero. 

Errors 

$10 device not found
 
$27 [/0 error
 
$2B write-protected disk
 
$40 invalid pathname synr.ax
 
$44 path not found
 
.s45 volume not found
 
$46 me not found
 
$4A version error
 
$4B unsupported storage type
 

$4E access: me not destroy-enabled
 
$52 unsupported volume type
 

$53 Învalid parameter
 
$58 not a black device
 

174 VoIurœ 1: Applications and GSlOS	 Part 1: The Application Leve! 



GY/OS Ne[erl!1lOJ (Volume 1) Drafl3 (APDA) 9/ j 1, ,-1'8 

$2016 SetMark 

Description This cali sets the file mark (the position from which the next byte will be read or 
ID which the next byte will be written) to a specifled value. Tile value cm never 
exceed EOF, the turrent sîze of the flle. See also the GetMark caU 

Parameters 
Offset No. Sl7A: and type 

1001 Word INPUT .:alue (minimum· 3) 

102~ Word INPUT value 

$041 Word INPIIT value 

SOli 

Longwor<l INPUT value 

pCount. 

ro!N\Ut1. 

ba". 

di~place.m.ot 

1­
-1 

pCount Word input value: The number of parameters in Ibis panmeter black. 
is 3; maximum is 3. 

Mu,irr.um 

refNum Word input value: The identïiying number assigned to the rue by tile Open ca 11. 

oa3e Ward input value: Avalue!hat tells how to inrerprct the displacement. 

paramerer, as foIJows: 

 ooסס$

$0001 
$0002 
$0003 

set mark equal to displacement 
set mark equal ID EOF minus displacement 
set mark equaI to old mark plus displacement 
sel mark equal ID otd malk minus displacement 

cUsplaceroeut LDngword input value: Avalue used to compute the new value for ilie :lIe mark, 
as described for ilie base parameter. 

\76 Volume 1: Appltealioos and GSlOS Part !: The Application Lel'el 



'. j 

G~ns lIeference (Vo/l'me J) .. ] 

,] 
ErroI"S 

$27] 
$43 
$4D 

,] $5A 

" ] 

,] 

] 

] 

J 
J 
] 

] 

] 

] 

] 

] 

] 

] 

"1 

Drofl3 (APDA) 8/31/881 

va error 
invalid reference number 
position out of range 
block number out of range 

OJapler 7: CS/OS CalI Reference 177 



GVOS Rejimmœ (Volume 1) Drajl 3 (IIPDA) 8/3li1J8 

$2009 

Descriptlon 

Parametcrs 

pCount 

prefixNum 

prefix 

li8 Volume 1: 

SetPrefix 

This cali sets one of the numbered pathname prefIXes to a specified value. The 
input to this cali can he lOy of the following pathnames: 

• aful1pathname 

• a paltial pathname beginning with a numeric prefIX designator 

• a partial pathname beginning with the special prefIX designalOr "/" 

• a partlal pathname without an initial prefIX designator 

The SetPreflx cali is unusualln the way it treats partial patlmames will10ul initial 
prefIX designalOlS. Nonmlly, GS/OS uses the prefIX 0/ in the absence of an 
expüdt designator. However, only in the SetPreflX cali, il uses the prefIX ni 
where n is the value of the prefixNwn par.uneter described below. See also the 
GetPreflX cali. 

Offset Na. sm and ty~ 

100 
1­ pCount 

1­ p".!ixNum 

l-
I­ prefix 

1­

Ward INPUT value (rninunum ' 2) 

102 
Word INPUT value 

1O4 

Longword lNPLT poinler 

Word input value: The number of parameters in this parameler black. Mimmurn 
L5 2; maximum is 2. 

Word input value: Aprefu number mat specifies the prefu to be ,et. 

Longword input pointer: Points 10 a GS/OS string representing the pathname ta 

whic.h the prefu is 10 be set 

Applicltioo.s and GSlOS Part f: The Application Level 



J
I

(sm Reference (Volume 1) DrrJ}l3 (APDA) 8/31/88

IJ
 
J
 

CommentsI 
J

I
J 
J
 Erron
 

J 
J
 
J
 
J
 
'e.• 

\;". 

\t, • 

.... 

Specifying a pathname with length 0or whose symax is illegal sets the
 
designated prefIX ta nul!.
 

GS/OS does not check ta make sure that the designated prefIX corresponds to
 
an existing subdirectory or file.
 

The boot volum: prefIX CO!) cannet be changed using this cali.
 

$40 invalid pathname syntax 
$53 invalid parameter 

Olapter7: GSlOScan Reference 179 



GYQS Rejerenœ (Volume 1) Drafl3 (APDA) 6!31/RR 

$200C 

Description 

Parameters 

pCount 

preferences 

Commellts 

SetSysPrefs 

This cali sets the value of the global system preferences. The value of system 
preferences affects the behavior of sorne system caIls. see also the GetSysPrefs 
cali. 

Offset No. Sbe md type 

100 pCount Won! INPtIT mue (minimum' 1) 

102 pref.rences Won! INPlIT mue 

Word input value: The number of parameters in this pararneter block. Minimum 
is 1; maximum is 1. 

Word input value: Value of system preferences, as foUows: 

,15IHlldiiflfri'il.I9iI~ljIIi15t+ r3ft p ~J 
] 1 

display volume rmunt dialog· 1 ~ 
do no! display voh.une IOOUnl dialog • 0 """",ed (raurned .. 0) 

Under certain circumstances, pans of the system call the systcm's Mount faciliry 
ta display a malog asking me user to mount a specilled volume. This can 
happen when the call comains a reference nwnber parameter or a pamname 
pararneler. 

For mose caIls that specify a reference number parameœr (for examp le 
Read, Write, Close), Mount always displays the dialog. 

100 Volume 1: ApplicU.ions and GS/OS Part 1: The Applicalion Levd 



8/31/8 CS/OS Reference (Vol"me J) Drajl 3 (APDA) 

$2032 

Description 

Patametcrs 

pCount 

intNum 

Etrors 

Unbindlnt 

This function relOOves a specifie<! interrupt handJer from the inrerrupt vector 
table. 

For a complete description of the GS/OS interrupt handJjng subsystem, see 
Volume 2. Set: also the BindInt cali. 

Ollser No. Sbe w1lype 

$00 
Ward IN1'lJf value (minimum' 1) 

lO2 Word IN1'lJf ..lue 

pCount 

intNum 

Word input value: The nwnber of parameters in this par:lIlleter block. Minimum 
Is 1; maximum Is 1. 

Word input value: Imerrupt identification number of the binding between 
imerrupt source and interrupt handler that Ls ta be undone. 

$53 pararreter out of range 

182 Volume 1 Applications and GSlOS Part 1: The Applic:lliol1 Level 



I
J
 

CS/OS Referena (Volume I) Draj/3 (APDA) 8131188

,] 

lJ 
l] $2008 

1] Description 

i] 
Pararoeters 

] 

'] 

] 

] 

] 

] 

] 

] 
pCount 

] 
devName 

] 
volName 

] 
totalBlocks 

]
 

]
 

]
 
" 

Volume 

Given the rwne of a block device, this caJI relUrns the name of the volume 
lOOunted in the device, along with other information about the volume. 

Offset No. Sbeandtype 

$00 pCountr WOId lNPur Y2lue (minimum • 2) 

lO2 

1­
1­

$()6, 

$(lA
'r 

SOE'l ­
f ­

1­

$12:1­

$l~'1­

devNam. Longword lNPur poimer 

volName Longword INPur poimer 

totalBlocks Longword RESUl.T value 

fr••alock5 

!ll.SydD 

blackS!". 6 

Longword RESULT value 

WOId RESUl.T Y2lue 

Word RR5Ul.T value 

Wold input value: The nwnber of parameters in this parameter black. Minimum 
is 2; maximum is 6. 

Longworrl input pointer: Points 10 a GS/OS input string structure containing the 
name of a block device. 

Longwold input pointer: Points ta a GS/OS output string structure where GSlOS 
relUrns the volume name of the volume mounted in the device. 

Longword result value: Total number of blacks contained on the volume. 

cmprer 7: Gs/OS Cali Reference 183 



,;:;'OS Reference (l'alI/me 1) DraJ1 3 (APDA) 8131.88 

freeBlocks 

fileSY3ID 

blockSize 

Errors 

Longwvrd result value: The number of free (unallocated) blocks on the volume. 

Word result value: Identifies the me system contained on the volume, as 
follows: 

 oo reserved $0007 LISAסס$
$0001 ProDOS/SOS $0008 Apple CP/M 
$0002 0053.3 $0009 reserved 
$0003 DOS 3.2 or 3.1 $oooA MS/DOS 
$0004 Apple il Pascal $oooB High Sierra 
$0005 Macintosh (MFS) $OOOC ISO 9660 
$0006 Macintosh (HFS) $OOOD-$FFFF reserved 

Word resuIt value: The size, in bytes, of a block. 

$10 device not found 
$11 invalid device request 
$27 va elTOr 
$28 no device connected 
$2E disk switehed 
$45 volume not found 
$4A version elTOr 
$52 unsupported volume type 
$53 invalid parameter 
$57 duplicate volume 
$58 not a block device 

184 Volume 1: Applicatioos and GSJOS Par! 1: The Applicalion l.eve] 



J 

J GY'œ Re[ere1lW (Vo/ume 1) Draft 3 (APDA)	 8/31/8" 

· J 
· ] 

$2013	 Write
] 

Description	 This cali attempts ta transfer the number of bytes specified by requestCount 
from the caliers buffer te the file specified by the re fNum parameter starting at 
the current file mark.· J 
The function retums the number of bytes actually transferred. The function

J updates the file mark ta indicate the new file position and extends the EOF, if 
necessary, to accammodate the new data. 

] Parameters
 
Offsel No. Sf1le and Iype
 

]	 $00II- pCount

refNum -

. 
1- dataBuffer -... -

c-
f- requestCount 

l-
r- transferCount 

r-

Ir- cachePriority 

Ward INPlJT value (minimum' 4) 

S02 
Ward INPlJT value 

- ]	 SOi 

longword INPlJT pointer 
- 1 
_ J 

S08 

longword INPlJT value.' '1 
.J 

- .,	 soc 
longword RESULT value _ J 

- ] $10 
Word INPlJT value 

- '1 pCount Word input value: The number of parameters in this parameter black. Minimum
 
- j is 4; maximum is S.
 

- ] refNum Word input value: The identifying number assigned to the file by the Open calI. 

dataBuffer Longword input pointer: Points to the area of memory cantaining the dara to
 

- ] be written to the file,
 

. ., 
J	 OJapter 7: GS/OS Cali Reference 185 

- 1 
J 

-,
J 

,.;a '. 



CS/OS Rejerence (Volume l) Dralt 3 (4PDAj	 9,'] 7 3,f": 

requestCount	 Longword input value: The number of bytes to write. 

t rans f e rCaunt	 Longword result value: 1be number of bytes actually written. 

cacheP riari ty	 Word input value: Specifies whether or not disk blacks handled by the cali are 
candidates for caching, as follows: 

 oo do not cache blacks involved in this callסס$
$0001 cache blacks involved in this cali if possible 

Errors 

$27 va error
 
$2B write-protected disk
 
$2E disk switched
 
$43 invalid reference number
 
$48 volume full
 
$4 E access not allowed
 
$SA black number out of range
 

lai Volume l: ,\pplicJ[ions and GS/OS	 Part l The Applto[jon Le 1'<: 1 






