Apple.l. GS/OS. Reference

Includes System Loader

Volume 1:
Applications and GS/OS

APDA Draft

August 31, 1988

© Copyright Apple Computer, Inc. 1988

GS/CS Reference Draft 3 (APDA)

apple Computer, Inc.

This manval s copyrighied by Apple or by Apple’s
suppliers, with all dghts reserved. Under the copyright
laws, this manual may not be copied, in whole or
pan, without the written consent of Apple Computer,
Inc. This exception does not allow copies to be made
for others, whether or not sold, but all of the material
purchased may be soid, given, or lent to another
persor. Under the law, copying includes translating
into another language.

D Apple Computer, Inc,, 1988
20525 Mariani Avenue
Cupertino, CA 95014

{408) 996-1010

Apple, the Apple logo, AppleTalk, Apple 11CS,
DuoDisk, ProDOS, Maciniosh, and 0GS are registered
uademarks of Apple Computer, Inc.

APDA, Finder, ProFie, and UniDisk are wademarks of
Apple Computer, Inc.

Simultaneously published in the United Sates and
Canada.

2/21/88

GY'0S Reference (Volume 1) Draft 3 (APDA)

Contents

Figures and Tables xiv

Preface / 1

About this book / 2

How to use this book / 2
What it contains / 3
Other materials you'll need / 5
Visual cues / 5
Terminology / §
Language notation / 6

Roadmap to the Apple TGS technical manuals / 6
Introductory Apple 11GS manuals / 7
Apple 11Gs machine-reference manuals / 9
Apple I16s Toolbox manuals / 10
Apple TGS operating-system manuals / 10
All-Apple manuals / 11
The APW manuals / 11
The MPW IIGS manuals / 12
The debugger manual / 12

Introduction What is GS/08? / 13

The components of GS/OS / 14

GS/OS Feates / 16
File-system independence / 16
Enhanced device support / 16
Speed enhancements / 17
Eliminated ProDOS restrictions / 17
ProDOS 16 compatibility / 17

Contents

8/31/88

GYOS Keference (Volume 1) Oraft 3 (4804,

v

GS/O8 Reference

Where o find call descriptions / 17
GS/0S system requirements / 19
Background to the development of GS/QS / 20

Part 1 The Application level / 23

GS/0S Abstract File System / 25
A high-level interface / 26
Classes of GS/CS files / 28
Directory files / 28
Standard files / 29
Extended files / 30
Filenames / 30
Pathnames / 31
Full pathnames / 31
Prefixes and partial pathnames / 32
Prefix designators / 32
Predefined prefix designators / 33
File information / 3
File access / 35
File types and auxiliary types / 35
EOF and mark / 37
Creation and modification date and time / 39
Character devices as files / 39
Groups of GS/OS calls / 40
File access calls / 41
Volume and pathname calls / 42
System information calls / 43
Device calls / 43

g3y

] f= — mc— [—— —— n— S
i N . . B . .

E— T
: i .

(7508 Reference (Volume 1) Draft 3 (APDA)

2 GS/0S and Iis Enviropment / 45

Apple 1IGs memory / 46
Entry points and fixed locations / 47

Managing application memory / 48
Obraining application memory / 4%
Accessing data in a movable memory block / 49

Allocating stack and direct page / 51
Automatic allocation of stack and direct page / 52
Definition during program development / 52
Allocation at load time / 52
GS/0S default stack and direct page / 53

System startup considerations / 54

Quitting and launching applications / 54
Specifying whether an application can be restarted from memory / 54
Specifying the next application to launch / 55

Specifying a GS/OS application to launch / 55
Specifying a ProDOS 8 application to launch / 55

Specifying whether control should retum to your application / 56
Quitting without specifying the next application to launch / 56
Launching another appiication and not reuming / 56
Launching another application and returning / 57

Machine state at application launch / 57
Machine state at GS/OS application launch / 57
Machine state at ProDOS 8 application launch / 59
Pathname prefixes at GS/OS application launch / 59
Pathname prefixes at ProDOS 8 application launch / 61

Contents

8/31/88

G O3 Reference voiume 1) Drafl 3 (APDA)

vi

3

R~

GS/0S Reference

Making GS/08 Calls / 63
G5/0S call methods 7 64
Calling in 3 high-level language / 64
Calling in assembly language / 64
Making a G8/OS call using macros / 63
Making an inline GS/OS calt / 66
Making a stack call / 66
Including the appropriate files / 67
GS/OS parameter blocks / 67
Types of parameters / 67
Parameter block format / 68
GS/OS string format / 68
GS/OS input string structures / 69
GS/OS result buffer / 69
Setting up a parameter block in memory / 70
Conditions upon retumn froma GS/0S call / 71
Checking for errors / 72

Accessing GS/0S Files / 73

The simplest access method / 74

Creating a file / 74

Opening a file / 75

Working on open files / 76
Reading from and writing to files / 76
Setting and reading the EOF and Mack / 77
Enabling or disabling newline mode / 77
Examining directory entries / 77
Flushing open files / 77
Closing files / 77

Setting and getting file levels / 78

Working on closed files / 78
Clearing backup status / 79
Deleting files / 79

H3Las

GYOS Reference (Volume 1) Draft 3 (APDA) 3/31/88

‘ I | Setting or getting file characteristics / 79
» Changing the creation and modification date and time / 80
Copying files / 81
Copying single files / 81
: Copying multiple files / 81

. 5 Working with Volumes and Pathnames / 83
Working with volumes / 83
Getting volume information / 84
Building a list of mounted volumes / 84
Getting the name of the boot volume / 84
Formuatting a volume / 85
Working with pathnames / 85
Setting and getting prefixes / 86
Changing the path o afile / 86
Fxpanding a pathname / 86
Building your own pathrames / 86
Introducing devices / §7
Device names / 87
Block devices / 87
Character devices / 88
Direct access to devices / 88
. Device drivers / 88

6 Working with System Information / 91
o Setting and getting system preferences / 92
Checking FST information / 92
Finding out the version of the operating system / 92
Getting the name of the current application / 93

Contents vii

GYOY Ryference (Volume 1)

¥iii

Dragt 3 (APDA)

7 GS/0S Call Reference / 95
The parameter block diagram and description / 96

G5, O Reference

$201D
$2031

$2004
$2008
$2014
$2001

$202F
$2002

$202C
$202F
$202D
$2030
§201F
$2025

$200E
$2015

$2024

$2028
$2020
$201C
$2019
$2006
$2028
$2018
$2017
$2027

$200A
$200F

BeginSession / 97
Bindlnt / 98
ChangePath / 99
ClearBackup / 101
Close / 102
Create / 103
DControl /7 108
Destroy / 110
DInfo / 112
DRead / 116
DSuatus / 118
DWrite / 120
EndSession / 122
EraseDisk / 123
ExpandPath / 125
Flush / 127
Format / 129
GeBoatvol / 131
GetDevNumber / 132
GetDicEntry / 134
GetEQF / 139
GetFilelnfo / 140
GetFSTInfo / 144
Getlevel / 147
GetMark / 148
GetName / 145
GetPrefix / 150
GetSysPrefs / 151

RASFANE |

GS0S Reference (Volume 1)

$2024
$2011
$200D
$2010
$2003
$2029
$2012
$201F
$2018
$2005
$201A
$2016
$2009
$200C
$2032
$2008
$2013

Part Il The File System Level / 187

Draft 3 (APDA)

GetVession / 152
NewLine / 153

Null / 155

Open / 156
055hutdown 161
Quit / 163

Read / 165
SessionStatus / 168
SetEOF / 169
SetFilelnfo / 171
Setlevel / 175
SetMark / 176
SetPrefix / 178
SetSysPrefs / 180
UnbindInt / 182
Volume / 183
Write / 185

8 File System Translators / 189
The FST Concept / 150
Calls handled by FSTs / 192

Programming for multiple file systemns / 193
Don't assume file characteristics / 193

Use GetDirEntry / 194

Keep rebuilding your device list / 154

Handle errors propery / 194

FSTs and file-access optimization / 195

Present and future FSTs / 195
Disk initialization and FSTs / 19

Countents

x

8/31/88

GO Reference 1 Volume 1) Dyt 3 (B,

X

9

10

11

G318 Reference

The ProDOS FST / 199

The ProDQS file systemn / 200

G5/0S and the ProDOS FST / 200

Calls w the ProDOS FST / 201
GetDirFntry ($201C) / 201
GetFilelnfo ($2006) / 202
SetFitelnfo ($2005) / 202

The High Sierra FST / 203

CD-ROM and the High Sierra/150 9660 formats / 204
Limitations of the High Sierra FST / 205

Apple extensions to 15O 9660 / 207

High Sierra FST calls / 208
GetFileInfo (52006) / 209
Volume ($2008) / 210
Open ($2010) / 210
Read ($2012) / 211
GeDirEntry ($201C) / 212
52033 FSTSpecific / 214
What a map uble is / 215
MapEnable (FSTSpecific subcall) / 216
GeMapSize (FSTSpecific subcal) / 217
GetMapTable (FSTSpecific subcall) / 217
SetMapTable (FSTSpecific subcall) / 218

The Character FST / 221
Character devices as files / 222
Character FST calls / 222

Cpen ($2010) / 223

Read (§2012) / 223

Write ($2013) / 224

Close ($2014) / 224

Flush ($2015) / 225

Gy 08 Rejerence (Volume 1)

Draft 3 (APDA)

Appendixes / 227

Appendix A GS/0S ProDOS 16 Calls / 229
$0031 ALLOC_INTERRUPT / 230
$0004 CHANGE_PATH / 231
$000B CLEAR_BACKUP_BIT / 233
$0014 CLOSE / 234
$0001 CREATE / 235
$0032 DEALLOC_INTERRUPT / 239
$0002 DESTROY / 240
$002C D_INFO / 242
$0025 ERASE_DISK / 243
$O00E EXPAND_PATH / 245
$0015 FLUSH / 247
$0024 FORMAT / 248
$0028 GET_BOOT_VOL / 250

N $0020 GET_DEV_NUM / 251

$001C GET_DIR_ENTRY / 252

- $0019 GET_EOF / 256

‘ $0006 GET_FILE_INFO / 257

$0021 GET_LAST_DEV / 260

. $001B GET_LEVEL / 262

. 30017 GET_MARK / 263

: $0027 GET_NAME / 264

$000A GET_PREFIX / 265

$002A GET_VERSION / 266

$0011 NEWLINE / 267

$0010 OPEN / 269

$0029 QUIT / 271

$0012 READ / 273

Conteats «

8/31:88

GSOS Rejerence (Volume 1) Draft 3 (AFDA) 31 g;

§0022 READ_BLOCK / 275

$0018 SET_EOF / 276 Em
$0005 / SET_FILE_INFO / 277 / 308
$001A SET_LEVEL / 280 E;
$0016 SET_MARK / 281

$0009 SET_PREFIX / 282
$0008 VOLUME / 284
$0013 WRITE / 286 ,
$0023 WRITE_BLOCK / 288 f, 9660 / 317

Appendix B ProDOS 16 Calls and FSTs / 289 |
The ProDOS FST / 290 30
The High Sierea FST / 250]

GET_FILE_INFO (506) / 291
VOLUME ($08) / 292
GET_DIR_ENTRY ($1C) / 292

The Character FST / 293 i
OPEN ($10) / 293

READ ($12) / 294 3
WRITE ($13) / 24 ‘Ld Constants / 327

CLOSE ($14) / 294
FLUSH (§15) / 295

ProDOS 16 device aalls / 295

Appendix C The GS/08 Exerciser / 297
Starting the Exerciser / 298
Call options / 299 }
Making GS/OS cails / 299
Other commands / 301

Contents xiil

s GS/OS Reference

G0y Reference tolume 1) Lrafl 3 1APLA) AR

Figures and Tables

Preface / 1
Figure P-1. Roadmap to Apple 1IGS technical manuals / 8
Table P-1 Apple 11GS technical manuals / 9

Introduction What is GS/0S? / 13
Figure -1 Interface levels in GS/OS / 14
Figure -2 Where to find call descriptions in this book, / 19

Part I The Application Level / 23

Chapter 1 GS/0S Abstract File System / 25
Figure 1-1 Application level in G§/0S / 26
Figure 1-2 Example of a hierarchical file structure / 27
Figure 1-3 Directory file format / 29
Figure 14 Prefixes and partial pathnames / 32
Figure 1-5 Autornatic movernent of EOF and mark / 38
Table 1-1 Examples of prefix use / 34
Table 1-2 GS/QS file types and auxiliary types / 36
Table 1-3 G5/0S call groups / 41

Chapter 2 GS/0S and lts Environment / 45
Figure 21 Apple [1Gs memory map / 46
Figure 2-2 Pointers and handles / 51
Table 21 GS&/OS vector space / 48

xw G508 Reference

GS0S Reference (Volume 1)

Table 2-2
Table 2-3
Table 24
Table 2-5

Draft 3 (APDA)

Machine state at G§/OS application launch / 57

Machine state at GS/OS application launch / 59

Prefix values when GS/OS application launched at boot time / 60
Prefix values—G8/0S application launched after GS/0S

application quits / 60

Table 26

Prefix values—GS/0S application launched after ProDOS 8

application quits / 60

Table 2-7

Chapter 3
Figure 3-1
Figure 3-2
Figure 3-3
Table 3-1
Table 3-2

Chapter 4
Table 4-1

Part I
Chapter 8
Figure 8-1

Table 8-1

Chapter 10
Table 10-1

Prefix and pathname values at ProDOS 8 application launch / 61

Making GS/0S Calls / 63

GS/OS and Pascal strings / 69

GS/QS input string structure / 69

G$/0S result buffer / 70

Registers on exit from GS/OS / T

Status and control bits on exit from GS/OS / 72

Accessing GS/OS Files / 73
Date and time format / 80

The File System Level / 187
File System Translators / 189
The file system level in GS/0S / 191

GS/OS calls handled by FSTs / 192

The High Sierra FST / 203
High Sierra FST calls / 208

Figures and Tables xv

8/31:88

G508 Reference (Volume 1)

xvi

Draft 3 (APDA)

Appendixes / 227

Appendix B
Table B-1

Appendix C
Figure C-1
Figure C-2
Figure C-3
Figure G4
Table C-1

Appendix D
Table D-1

Appendix E
Table E-1
Table E-2
Table E-3

Appendix F
Table F-1

GS/08 Reference

ProDOS 16 Calls and FSTs / 289
High Sierra FST ProDOS 16 calls / 261

The GS/0S Exerciser / 297
Exerciser main screen / 298
Parameter-setup screen / 300
Device-list screen / 302
Modify-memory screen / 303
ASCI mble / 304

GS/0S System Disks and Startup / 305
Directories and files on a GS/OS system disk / 306

Apple Extensions to 1SO 9660 / 317

Defined values for SystemUselD / 322

Contents of SystemUse field for each value of Systemtlse1D / 322
ProDOS-10-150 9660 filename transformations / 325

GS/0S Error Codes and Constants / 327
GS/QS errars / 328

53 A

GS0S Reference (Voiume 1) Draft 3 (APDA) 8/31/88

Preface

. The G¥/0S Reference describss a powerful operating system developed
specifically for the Apple® 116s® computer. GS/OS™ is characterized by fast
execution, easy configurability, multiple file-system access, file access to
character devices, ditect device-access, device-independence, compatibility
with the large GS/OS memory space, and compatibility with standard-Apple T
(ProDOS® &hased) and early Apple IGs® (ProDOS 16-based) applications,

In two volumes, the GY/OS Reference describes how GS/OS gives applications

access to the the full range of Apple [IGS features, and shows how to create
device drivers to work with GS/OS.

Preface 1

GSOS Reference (Volume 1) Dt 3 (APDA)

About this book

The GYOS Reference is a manual for software developers, advanced programmers, and others who
wish to understand the technical aspects of this operating system. In particular, this manual will be
useful to you if you want to write

« any program that creates or accesses files

« 2 program that catalogs disks or manipulates files

« astand-alone program that automatically runs when the computer starts up
+ a program that loads and runs other programs

* any program using segmented, dynamic code

¢ an interrupt handler

¢ 3 device driver

The GS/0S Reference consists of two volumes plus one disk: the GS/OS Exerciser, a program included
on a disk accompanying Volume 1.

The functions and calls in this manual are in assembly-language format. If you are programming in
assembly language, you can use the same format to access operating system features. If you are
programming in a higher-level language (or if your assembler includes a G8/0S macro library), you will
use library interface routines specific to your language. Those library routines ase not described here;
consult your language manual.

The software described in this book is part of the dpple 1IGS System Disk, versions 4.0 and later. Apple
1IGs system disks are available from Apple dealers and from APDA (Apple Programmer's and
Developer's Association),

Note: System disks earlier than version 4.0 use ProDOS 16 as the operating system. ProDOS 16
is described in the Apple IIGS ProDOS 16 Reference.

How to use this book

This book is primarily a reference tool, although pars of each volume are explanitory.

2 (G508 Reference

830 8

(OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

Volume 1 describes the application interface, the high-level parts of GS/OS that your application calls
in order to access files or to modify the operating environment.

e The introduction to Volume 1 describes GS/OS in general.

¢ Part [of Volume 1 describes how applications interact with GS/0S, and documents all application-
level GS/OS calls.

» Part I of Volume 1 documents the file system translators (FSTs), the software modules that attow
your program 1o access files from many different file systems, For each FST, Part Il lists the
application calls it supports and documents any differences in call handling from the standard
descriptions in Part 1.

Volume 2 describes the device interface, the low-level parts of GS/OS that interact with device
drivers to control hardware such as disk drives, communication ports, and the console.

« Pantof Volume 2 documents how your program can use GS/OS calls to access a wide variety of
devices, both block and character devices, and describes the principal device drivers that are
supplied with GS/0S.

¢ Pant 11 of Volume 2 documents how device drivers interface with GS/0S, and shows you how o write
3 G§/06 device driver.

The principal descriptions of all application-level GS/OS calls (other than device calls) are in Past { of
Volume 1. Call descriptions elsewhere in the book consist mainly of differences from the standard
descriptions. The principal descriptions of application-level device calls are in Part I of Volume 2.
Driver calls (low-level device calls used by device drivers) are described in Part II of Volume 2.

If you are writing a typical application, the information in Volume 1 is probably all you will need. If
you need o access devices directly, or if you are writing a device driver, interrupt handler, message
handler, shell, or a large, segmented application, you will need Volume 2 also.

This manual does not explain 65C816 assembly language. Refer 1o the Apple IIGS Programmer's
Workshop Assembler Reference or the MPW IIGS Assembler Reference for information on Apple 11GS

assembly language programming.
This manual does not give a detailed description of ProDOS 8, the operating system for standard-

Apple 1T computers (Apple I Plus, Apple Ule, Apple Tic). For deuiled information on ProDOS 8, see
the ProDOS 8 Technical Reference Manual,

What it contains

G5/0S is described in two volumes. Here is a brief list of the contents of each chapter and appendix
in Volurme 1: '

Preface 3

GSOS Reference ~uviuwme 1) Drafl 3 (APDA}

Volume 1. The Operating System: What your applications can do with G5/08.

Introduction. What is GS/08? An overview of GS/0S.

Part L The Application Level: The uppermost level of GS/CS.
Chapter 1. Applications and GS/08: A brief overview,
Chapter 2. GS/0S and its Environment: How GS/03 affects your program,
Chapter 3. Making GS/08 Calls: The basics of making calls,
Chapter 4. Accessing GS/0S Flles: Accessing block files and character files.
Chapter 5. Working with Volumes and Pathnames: Bypassing files; formatting,
Chapter 6. Working with System Information: Comununicating with system software.
Chapter 7. GS/0S Call Reference: Documentation of all application-level standard G$/0$
calls.
Part . The File System Level: The middle level of GS/OS.
Chapter 8. File System Translators: How the FST concept works.
Chapter 9. The ProDOS FST: Details about accessing ProDOS files
Chapter 10. The High Sierra FST: Details about accessing files on CD-ROM.
Chapter 11. The Character FST: Details about accessing character devices as files.

Appendixes

Appendix A. GS5/0S ProDOS 16 Calls: Making ProDOS 16 calls under G§/OS,
Appendix B. ProDOS 16 Calls and FSTs: How each FST handles ProDOS 16 calls
Appendlx C. The G5/08 Exerciser: How to practice GS/OS calls.

Appendix D. GS/0S System Disks and Startup: The major components of a system disk.

Appendix E. Apple Extensions to ISO 9660: Additions to the CD-ROM file format.
Appendix F. GS/0S Error Codes and Constants: A complete listing and description.

Here is a brief list of the general contents of Volume 2:

Volume 2. The Device lnterface: How GS/OS provides access to devices.

4

The Device Level In G5/08 An overview of the lower level of GS/OS.
Part L Using Device Drivers: How to make calls to GS/OS drivers.
Part II. Writing a Device Drlver: How to write 2 device driver for G5/QS.
Appendixes: Device driver sample code, description of the System Loader.

GS/OS Reference

GYOS Reference (Vodume 1) Draft 3 (APDA) 8/31/88

Other materials you'll need

. . In order to write Apple 1IGS programs that run under GS/0S, you'll need an Apple 11GS computer and
development-environment software. Furthermore, you will need at least some of the reference
materials listed later in the Preface under, “Roadmap to the Apple IGS Technical Manuals.” In

N . particular, if you intend to write desktop-style applications or desk accessories, which make use of
the Apple [IGs Toolbox, you will need the Apple ITGs Toolbox Reference.

. , The G$/OS Exerciser, described in Appendix C of Volume 1, can be useful for practicing GS/0S calls.

. Visual cues

Certain conventions in this manual provide visual cues alerting you, for example, to the introduction
of a new tem or 1o especially important information.

When 2 new term is introduced, it is printed in boldface the first time it is used. This lets you know
. . that the term has not been defined earlier and that there is an entry for it in the glossary.

Special messages of note are marked as follows:

Note: Text set off in this manner—with the word Note— presents extra information of points
to remember,

Important Text set off in this manner—with the word /mportans—presents vital information or
instructions.

Terminology

’ This manual may define certain terms, such as Apple I and ProDOS, slighty differently than what you
- are used to. Please note:

- Apple I A general reference to the Apple 1T family of computers, especially those that may use
: ProDOS 8 or ProDOS 16 as an operating system. It includes the 64 KB Apple II Plus, the Apple Iic, the
Apple Ue, and the Apple 11GS.

standard Apple [i: Any Apple I computer that is not an Apple TGS, Since previous members of the
- Apple U family share many characteristics, it is useful to distinguish them as a group from the Apple
1GS. A standard Apple II may also be called an 8-bit Apple I, because of the 8-bit registers in its
6502 or 65C02 microprocessor.

Preface 5

G808 Reference (Volume 1) Dyaft 3 (AFDA) Hi18s

ProDOS: A general term describing the family of operating systems developed for Apple 1t
computers. It includes both ProDOS 8 and PraDOS 16; it does not include DOS 3.3 or SOS. ProDOS
is also a file systemn developed to operate with the ProDOS operating systems.

ProDOS 8: The 8-bit ProDOS operating system, through version 1.2, originally developed for
standard Apple I computess but compatible with the Apple 11GS. In previous Apple [I
documentation, ProDOS 8 is called simply ProDOS.

ProDOS$ 16: The first 16-bit operating system developed for the Apple IIGS computer. ProDOS 16 is
based on ProDOS 8.

GS/0S: A native-code, 16-bit operating system developed for the Apple lGs computer. G8/OS

replaces ProDOS 16 as the preferred Apple OGS operating system. GS/OS is the system described in
this manual

Language notation

This manual uses certain conventions in common with Apple IIGS language manuals. Words and
symbols that are computer code appear in a monospace font:

_CallName Cl parmblock ;Name of call

bcs error ;handle error if carxry set on retuxrn
error ;code to handle error return
parmblock ;parametexr block

This includes assembly language labels, entry points, and file names that appear in text passages.
GS/0S call names and the names of other system software functions, however, are printed in normal
font in uppercase and lowercase letters (for example, GetEntry and LoadSegmentNum). The subclass
of G8/O8§ calls that are compatible with ProDOS 16 are printed in all uppercase letters and often
inciude underscore characters (for example, GET_ENTRY).

Roadmap to the Apple Hs technical manuals

The Apple [IGS personal computer has many advanced features, making it more complex than earlier
models of the Apple T computer. To describe the Apple IGS fully, Apple has produced a suite of
technical manuals, Depending on the way you intend to use the Apple IGS, you may need o refer o a
select few of the manuals, of you may need to refer to most of them.

5 G808 Reference

GY0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

The Apple TGS technical manuals document Apple IIGS hardware, Apple [IGS system software, and
two development environments for writing Apple IIGS programs. Figure P-1 is a diagram showing the
relationships among the principal manuals; Table P-1 is a complete list of all manuals. Individual
descripions of the manuals follow.

Introductory Apple IS manuals

The introductory Apple TGS manuals are for developers, computer enthusiasts, and other Apple [IGS

owners who need basic technical information. Their purpose is to help the technical reader

understand the features and programming techniques that make the Apple IIGS differeat from other

computers.

* The Techaical Introduction: The Technical Introduction to the Apple IIGs is the first book in the
suite of technical manuals about the Apple IGs. It describes all aspects of the Apple I1GS, including
its features and general design, the program environments, the toolbox, and the development
environment.

You should read the Technical Introduction no matter what kind of programming you intend o do,
because it will help you understand the powers and limitations of the machine,

» The Programmer’s Introduction: When you stat writing programs that use the Apple IIGS user
interface (with windows, menus, and the mouse), the Programmer’s Introduction to the Apple IIGS
provides the concepts and guidelines you need. It is not a complete course in programming, only 2
starting point for programmers writing applications for the Apple IIGS.

The Programmer’s Introduction gives an overview of the routines in the Apple IIGs Toolbox and the
operating environment they run under. It includes a sample event-driven program that demonstrates
how 2 program uses the toolbox and the operating system.

Preface 7

G508 Reference (Volume 1) Draft 3 (APDA) 83 Ly

Figure P-1. Roadmap to Apple TGS technical manuals

To stant finding out
about the Apple [1GS

To leam how
ihe Apple liGs works

To lears Apple lics
progrmming

To use the obox

To operate on fles
and devices

To wnte Apple 168
programs with APW

To wnie Apple lIcs
programs with the
cross-development

system

8§ G& 08 Reference

GYOS Reference (Volume 1) Draft 3 (APDA) LASRARE

* The firmware reference: The Apple IIGS Firmware Reference describes the programs and subroutines
stored in the machine’s read-only memory (ROM). The Firmware Reference includes information
about interrupt routines and low-level /O subroutines for the serial ports, the disk port, and for the
Apple Desktop Bus™ interface, which controls the keyboard and the mouse. The Firmware Reference
also describes the Monitor program, a low-level programming and debugging aid for assembly-
language programs.

Apple IGS Toolbox manuals

Like the Macintosh, the Apple IIGS has a built-in toolbox. The Apple I1Gs Toolbox Reference, Volume 1,
introduces concepts and terminology and tells how to use some of the tools. The Apple 116s Toolbox
Reference, Volume 2, contains information about the rest of the tools. Volume 2 also tells how o
write and install your own tool set.

If you are developing an application that uses the desktop interface, or if you want to use the Super
Hi-Res graphics display, you'll find the toolbox manual indispensable.

Apple IGS operating-system manuals

The Apple 11GS two preferred operating systems : GS/OS and ProDOS 8. GS/OS uses the full power of
the Apple 11GS and can access files in multiple file systems. The GS/0S Reference describes GS/OS and
includes information about the System Loader, which works closely with GS/0S to load programs
o memory.

ProDOS 8, previously called simply ProDOS, is the standard operating system for most Apple 1l
computers with 8-bit CPUs. As a developer of Apple IIGS programs, you need to use ProDOS 8 only if
you are developing programs to run on 8-bit Apple I computers as well as on the Apple [1GS. ProDOS
8 is described in the ProDOS 8 Technical Reference Manual.

Note: (GS/0S is compatible with and replaces ProDOS 16, the first operating system developed
for the Apple TGS computer. ProDCS 16 is described in the Apple 1IGs ProDOS 16
Reference.

0 G508 Reference

‘.‘ =
e

v v ¥
K- o——
o H i

¥ 3 .

B ¥
-
: a

¥ T
T

¢ e d

< N

2 i ¥ L 5 i 4 ¢

H

YOS Reference (Volume 1) Draft 3 (APDA) 8/31/88

All-Apple manuals

Two manuals apply to all Apple computers: Hussman Jnterface Guidelines: The Apple Desktop Interface
and the Apple Numerics Manual. If you develop programs for any Apple computer, you should know
about these manuals.

The Human inierface Guidelines manual describes Apple’s standards for the desktop interface to any
program that runs on an Apple computer. If you are writing a commercial application for the
Apple 1Gs, you should be fully familiar with the contents of this manual.

The Apple Numerics Manual is the reference for the Standard Apple Numerics Environment (SANE), a
full implementation of the IEEE Standard for Binary Floating-Point Arithmetic (IEEE Std 754-1985).
If your application requires accurate or robust arithmetic, you'll probably want it to use the SANE
routinies in the Apple IIGS.

The APW manuals

Apple provides two development environments for writing Apple IIGS programs. See Figure P-1. One

is the Apple TGS Programmer’s Workshop (APW). APW is a native Apple [IGS development system—

it runs on the Apple IIGS and produces Apple [IGS programs. There are three principal APW manuals:

* The Programmer’s Workshop manual: The Apple /IGS Programmer's Workshop Reference
describes the APW Shell, Editor, Linker, and utility programs; these are the parts of the workshop
that all developers need, regardless of which programming language they use. The APW reference
manual includes a sample program and describes object module format (OMP), the file format used
by all APW compilers to produce files loadable by the Apple IGS System Loader.

o Assembler: The Apple [IGS Programmer's Workshop Assembier Reference includes the specifications
of the 65816 language and of the Apple [IGS libraries, and describes how to use the assembler.

* Ccompller: The Apple IIGs Programmer’s Workshop C Reference includes the specifications of the
APW C implementaion and of the Apple [GS interface libraries, and describes how to use the
compiler.

Other compiless can be used with the workshop, provided they follow the standards defined in the
Apple IIGS Programmer’s Workshop Reference. Several such compilers, for languages such as Pascal, are
now available.

Note: The APW manuals are available through the Apple Programmer’s and Developer's
Association (APDA).

Preface 11

G508 Keference (Volume 1) Lraft 3 (APDA) R SR

The MPW 1IGS manuals

Macintosh Programmers Workshop (MPW) is one of the two development environments Apple
provides for wiiting Apple 1IGS programs. See Figure P-1. MPW is principally a sophisticated,
powerful development environment for the Macinwsh computer. It includes assemblers and
compilers, linkers, and 2 variety of diagnostic and debugging tools. When used to write Apple 116S
programs, MPW is a cross-development system—it runs on the Maciniosh, but produces executable
programs for the Apple 0GS.

MPW is documented in several manuals, but the parts needed for cross-development—the editor and
the build tools—are described in the Macintosh Programmer’s Workshop Reference. That book is the
only Macintosh manual you need when writing programs using MPW [IGS.

Four manuals describe the cross-development system. Each programming language has its own

manual. Whichever language you program in, you also need the MPW [IGs Tools Reference.

s Tools: The MPW lIGs Tools Reference describes the wols needed to create Apple [IGs appplications
under MPW. It describes the linker, file-conversion wol, and several other conversion and diagnostic
programs.

s Assembler The MPWJlGS Assembler Reference describes how to write Apple 1IGS assembly-language
programs under MPW, It also documents a utility program that converts source files written for the
APW assembler to files compatible with the MPW IIGS Assembler.

» Ccompiler: The MPW IIGS C Reference describes how to write Apple [IGS programs in C under MPW.

Note: The MPW [IGs manuals are available through the Apple Programmer's and Developer's
Association (APDA).

The debugger manual

Neither MPW 1IGS nor APW includes a debugger as part of the development environment. Tlowever,
the Apple 11GS Debugger, an independent producy, is 2 machine-language debugger that runs on the
Apple 116S and can be used to debug programs produced by either MPW T1GS or ARW,

The Apple 1S Debugger is described in the Apple lIGs Debugger Reference.

12 GS0S Refererke

GY'OS Reference (Volume 1) Draft 3 (APDA) 8/31/38

Introduction What is GS/0S?

GS/OS is the first completely new operating system designed for the Apple lgs
computer. It is similar in interface and call style to the ProDOS operating
systems, but it has far greater capabilities because it has many new calls, and it
has much faster execution because it is written entirely in 65816 assembly

language.

Even more important, GS/0S is file-system independent: by making GS/0S
calls, your application can read and write files transparently among many
different and normally incompatible file systems. GS/0S accomplishes this by
defining a generic GS/OS file interface, the abstract file system. Your
application makes calls to that interface, and then GS/OS uses file system
translators 10 convert the calls and data into formats consistent with individual
file systems.

This chapter gives an overview of the structure and capabilities of GS/OS,

followed by a brief history of the evolution in Apple 1 operating systems from
DOS to GS/0S.

Introduction: What is GS/08? 13

GIOS Reference (Volume 1) Draft 3 (APDA} 83188

The components of GS/0S

GS/0S is more complex and integrated than previous Apple II operating systerns. As Figure 1 shows,
you can think of it in terms of three levels of intedface: the apptication level, the file sysiem level, and
the device level. A typical GS/OS call passes through the three levels in order, from the application at
the 1op © the device hardware at the bottom.

Figure I-1 Interface levels in GS/0S

Application program

GS/OS Cali Manager
Application
level

File system
level

Device
level

14 GYOS Reference

GS0S Reference {(Volume 1) Draft 3 (APDA) 8/31/85

* Application level: Applications interact with GS/OS mostly at the application level. The
application level processes GS/0S calls that allow an application (o access files or devices, or to get
or set specific system information.

In handling a typical GS/OS call, the application level mediates between an individual application
and the file system level. The application level is described in Part [of this volume.

+ File system level: The file system level consists of flle system translators (FSTs), which take
- application calls, convert them to a specific file system format, and send them on to device drivers.
FSTs allow applications to use the same calls to read and write files for any number of file systems,

FSTs also allow applications to access character devices (like display screens or printers) as if they

. were files.
; Note that the file system level is completely intemnal to GS/OS. Although your applications doa't
interact with the file system level directly, you may want to know how calls are translated by different
file system translators. For example, CD-ROM files are read-only, so write calls cannot be translated
4 meaningfully by an FST that accesses files on compact discs.
In handling a typical GS/OS call, the file system level mediates between the application level and the
device level The file system level is described in Part I of this volume.

+» Device level: The device level communicates with all device drivers connected to the system. In

1 handling a typical GS/OS call, the device level mediates between the file system level and an
s individual device driver.

The device level of GS/0S has two other types of communication . At the highest level, applications
} can bypass the file system level entirely by making device calls, which are calls that directly access

devices. Al the lowest level, device drivers communicate with the device level by accepting driver
) calls, which are mostly low-leve! transiations of device calls.

3 Device calls are described in Part I of Volume [L; if your application needs direct access to devices,
look there to find out how t do it. Driver calls are described in Part I of Volume II; if you are
writing a device driver, look there for details.

Another part of system software that is described in this manual is the Apple TGS System Loader.

1 The System Loader loads all other programs into memory and prepares them for execution. Although
4 not strictly part of GS/OS, the System Loader occupies the same disk file 25 GS/OS, and works very
closely with GS/OS when loading programs. The System Loader and its calls are documented in
Volume 2. For most applications, however, its functioning is totafly automatic; only specialized
pragrams such as shells need make loader calls.

[

R}

-

Introduction: What is G§/08? 15

GYOS Reference (Volume 1) Draft 3 (APDA)

GS/0S Features

This section describes some of the principal GS/0S features of interest w application writers,

File-system independence

Because it uses file system transtators, GS/OS accesses non-ProDOS file systems as easily as it
accesses the more familiar (to Apple IT applications) ProDOS files. It is possible to gain access to
any file system for which an FST has been writien. Several FSTs cumently exist; as Apple Computer
creates new FSTs, they can be very easily added to existing systems.

The GS/08 absract file system supports both flat and hierarchical file systems and systerns with
specific file types and access permissions. GS/OS recognizes standard files, directory files, and
extended files (two-fork files such as the Macintosh uses). Certain GS/O$ calls make i€ easy to retrieve
and use directory inforeation for any file system.

The abstract file system is described in Clapter 1 of this volume. FSTs are described in Part [T of this
volume.

Enhanced device support

All GS/QS device drivers provide a uniform iaterface to character and block devices. GS/OS
supports both ROM-based and RAM-based device drivers, nmaking it easier to integrate new
peripheral devices into GS/OS.

GS/OS provides a uniform input/output mode! for both block and character devices. Devices such as
printers and the console are accessed in the same way 35 sequential files on block devices. This can
greatly simplify /O for your application.

Unlike ProDOS 8 and ProDOS 16, GS/OS recognizes disk-switched and duplicate-volume situations,
to help your application avoid writing data to the wrong disk.

Devices are normally accessed through application-leve! file calls, described in Part 1 of this volume.
Device drivers are described in Part 1T of Volume 2.

16 G50SReference

231088

GS/0S Keference (Voluma 1) Draft 3 (APDA) 8/31/8
1 Speed enhancements
" GS/0S transfers data much faster than ProDOS 8 or ProDOS 16 because it uses disk caching, aliows

multiple-block reads and writes, eliminates the duplicate levels of buffering used by ProDOS 16, and
because itis written entirely in 65816 native-mode assembly language.

. Disk caching is described in Volume 2,
X Eliminated ProDOS restrictions
- GS/E)S allows any number of open files (rather than only 8) up to the amount of available RAM, any
- number of devices on line (rather than only 14), and any number of devices per slot (rather than only
) 2). GS/0$ allows volumes and files to be as large as 23 bytes (rather than only 16 MB for files and 32
MB for volumes).

The GS/CS file interface is described in Chapter 1 of this volume.

I

ProDOS 16 compatibility

GS/0S includes a complete set of ProDOS 16 calls and implements them just as ProDOS 16 does. All
well-behaved ProDOS 16 applications can run without modification under GS/0S. An added benefit
is that existing ProDOS 16 applications running under GS/OS can now autormatically access files on

§ non-ProDOS disks, and can also access character devices as files.

eed

L

-y Where to find call descriptions

. J As already noted, there are several categories of calls that programs can make to GS/OS. Broadly,
calls can be divided into application-level calls (made from application programs to GS/OS) and

1 low-level calls (made between GS/OS and low-level software such as device drivers). Most

4 application-level calls are described in Volume 1; most low-level calls are described in Volume 2.
Within these broad divisions, there are several subcategories of calls and call-related descriptions;
each subcategory is described in a different place in the two volumes. The categories are as follows:

- In Volume 1:

.

-

Introduction: What is GS/08? 17

N - ! . - R - | FaR o — 1 e ¥ § v
moUm @ 0GENE 0 OGN 0 BAOWE oS Pam GBA A BEN NG Dk Em D B B G D R Ol 0 BE
. - B . . ¥ .3 i .

G508 Refevence (Vidume 1) Liraft 3 (APDA) Sriliss

standard GS/OS calls: Also called class 1 calls or just GS/OS calls, these are the primary calls an
application makes to access files or system information. They are application-level calls. This
category covers all operating system calls that a typical GS/OS application makes.

FST-specific information on GS/0S calls: Because different file systems have different
characteristics, not all respond identically 0 GS/OS calls. In addition, each FST can support the
GS/08 call FSTSpecific, an application-level call whose function is defined individually for each FST.
Therefore, this book includes descriptions of how each FST handles certain GS/0S calls, including
FSTSpecific.

ProDOS 16 calls: Also called class 0 calls, these are application-level calls that are identical to the
calls described in the Apple lgs ProDOS 16 Reference. GS/OS supports these calls so that existing
ProDOS 16 applications can run without modification under GS/OS.

FST-specific information on ProDOS 16 calls: Because different file systems have different
characteristics, not alf respond identically to ProDOS 16 calls. Therefore this book includes
descriptions of how each FST handles ProDOS 16 calls. There is no FSTSpecific ProDOS 16 call as
there is for GS/OS calls.

In Volume 2:

GS/08 device calls: These are a subset of the application-level, standard GS/O8 calls described in
Volume 1, but they are special because they bypass the file level altogether and access devices
directly.

Driver-specific information on GS/0S device calls: Because different devices have different
characteristics, not all device drivers respond identically to GS/OS calls. Therefore, this book
includes descriptions of how each GS$/0$ driver handles certain G§/OS device calls.

Driver calls: These are calls that GS/OS makes to individua! device drivers. They are low-level calls,
of interest mainly to device-driver writers.

System service calls: System service calls give low-level components of GS/0S (such as FSTs and

device drivers) a uniform method for accessing system information and executing standard routines.
This book describes the system service calls that GS/0S device drivers can make.

Systenmt Loader calls: These are calls a program can make to load other programs or program
segments into memory Although the typical application makes no System Loader calls, they are
described in this book so that shells and system-leve! programs can make use of them.

Figure 1-2 shows you where to look in each volume for the principal descriptions of each call
category. For example, the descriptions of all standard GS/OS calls (except those that access
devices) are in Part [of Volume 1 (Chapter 7); the descriptions of driver calls are in Part Il of Volume
2 {Chapter 9).

18

GS/O8 Reference

GS'OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

Note: Figure 1-2 is reproduced in each Part opening in this book, highlighted in each case (o
show the calls described in that part.

Figure I-2 Where to find call descriptions in this book.

Most appiications make only the calls described in Part I of Volume 1 (shaded area).

Part | Pancll

Volume 1

Pat] Pl

GS/0S device calls

Volume 2 T ——

Driver-speaific
information on
GS/0S device calls

.

‘ GS/0S system requircments

’ GS/0S will not run on a standard Apple I computer. It requires an Apple [IG$ with a ROM revision of
1.0 or greater, at least 512 KB of RAM, and a disk drive with at least 800 KB capacity. A second 800

1 KB drive or a hard disk is strongly recommended.

Introduction: What is GS/08? 19

GY0S Reference (Volume 1) Lraft 3 (APDA) 83088

Background to the development of GS/0S

To summarize this overview of GS/QOS, this chapter ends with a brief discussion of how G§/Q§
evolved from previous Apple I operating systems.

Apple has created several operating systems for the Apple I family of computers. GS/0OS is the latest
in that line; it is related to several earlier systems, but has far greater capabilities than any of them.
Here are thumbnail skeiches of the other systems:

s DOS: DOS(for Disk Operating System) was Apple's first operating system. It provided the Apple
computer with its first capability to store and retrieve disk files. DOS has relatively slow data
transfer rates by modem standards, supports a flat (rather than hierarchical) file system, can read 140
KB disks oaly, has no uniform interrupt support, includes no memory management, and is aot
extensible.

s Pascal: Apple Il Pascal is an Apple implementation and enhancement of the University of California,
San Diego Pascal System. Iis lineage is completely separate from the other Apple operating systems.
Apple TI Pascal supports only a flat file system, is characterized by slow, interpretive execution,
provides no uniform support for interrupts, has no memory management, and is difficulc to extend.

o 508: SOS (for Sophisticated Operating System) was developed for the Apple III, but its most
important feature, the file system, is the heart of the ProDOS family of operating sysiems (described
next). SOS gives much faster data transfer than DOS, represents Apple's first hierarchical file system,
supports block devices up o 32 Mb, provides a uniform sequential /O model for both block devices
and character devices, and includes interrupt handling, memory management, device handling, and
extensibility via device drivers and interrupt handlers. The major deficiency of SOS (for standard
Apple 11 computers) is that it requires at least 256 Kb RAM for effective operation.

s ProDOS 8: ProDOS 8 (originally called ProDOS, for Professional Disk Operating System), brought
some of the advanced features of SOS o 8-bit Apple II computers (Apple 11 Plus, Apple le, Apple
Tc). It requires no more than 64 Kb of RAM, and in fact can directly access only 64K of memory
space. ProDOS supports exactly the same hierarchical file system as SOS, but does not have the
uniform /O mode for character devices and files, memory management, or uniform treatment of
device drivers and interrupt handlers,

* ProDOS 16: ProDOS 16 (ProDOS for the 16-bit Apple 1IGs) is the first step toward an operating
system designed specifically for the Apple TGS computer. It is an extension of ProDOS 8—although
there are a few important additions, it has essentially the same features as ProDOS 8 and supports
exactly the same hierarchical file system. ProDOS 16's main advantage is that it allows applications
t interact with the operating system from anywhere in the 16 Mb Apple 1IGS address space.

& G%03 Reference

i . .

o e mewe a2 2EUM M UOON Ea BN SOE A BN BN Ea B BE
3 & - . i

mr—
F i

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

GS/08: GS/0S fully exploits the capabilities of the Apple GS. It is a fast, modular, and extensible
operating system that provides a file-system-independent and device-independent environment for
applications. While upwardly compatible from ProDOS 16, it corrects deficiencies in ProDOS 16's
/O perfonnance and eliminates its restrictions on number and size of open files, volumes, and
devices. GS/OS supports character devices as files, it handles devices uniformly, and it suppons
RAM-based device drivers. GS/OS can create, read and write files among a potentially unlimited
number of different file systems (including ProDOS).

Although it is an extension of the ProDOS lineage, GS/OS is really a completely new operating system.
As its name suggests, it is designed specifically for the Apple 1IGS computer, and it is intended to be
the srincipal Apple [IGS operating system

Introduction: What is G§/08? 21

GY0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

H ~
S— Mec—

: Part1 The Application Level

. Part! Panll
. b Appendixes
1 i 1
i ProDOS 16 calls
FST-specific " ix A)
Volume 1 g ion on i
8 GS/Os calls e
11,
. (Chapter 9-11) PSTspecth
information on
- ProDOS 16 calls
{ (Appendix B)
- Panl Part I
T—e N — ’ Appendi
: | Pﬂ_
- GS/0S device calls Driver calls

! Volume 2 A e | —— TN System Loader calls

4 Driver-specific (Appendix B)
information on System sesvice calls
- GS/OS device calls

i3 T H v H ¥ ¥ 1 H D SR ¥ B o ey ~ -
. H i. i P : . -

G O3 Reference (olume 1) Draft 3 (APDA) 33y

4 Volume 1: Applications and G$/08 Part I: The Application Level

hed

| V—

[S—

ot

GSOS Reference (Volume 1) Draft 3 (APDA)

Chapter 1

The GS/0S Abstract File System

Two key features of GS/OS are its ability to insulate applications from the
details of (1) the hardware devices connected to the system, and (2) the file
systems used to store applications and their data. This chapter shows how
GS/OS implements these features. 1t also lists, by category, the GS/OS calls that
an application can make.

Chapter 1: The GS/OS Abstract File System 25

8/31/38

GY 0§ Reference (Volume 1) Draft 3 (APDA) & 3188

A high-level interface

GS/0OS has been designed to insulate you, as the application programmer, from the details of the
system. Normally, you simply make a GS/OS call, and GS/OS routes the call to the cotrect device.
Conceptually, you can think of GS/OS as looking like the illustration shown in Figure 1-1.

Figure 1-1 Application level in GS/O8

Application program

Applicanon
levet

Devior PmDOS High Character Other B5T
Manager BST Sierra FST FST

LS |)

Device Dispatcher

it
g U |]|

Block Block Charnacter Character
device device device device
driver driver driver driver
Block Block Character Characrer
device device device device

¥ Volume 1. Applications and G5/OS Part I: The Application Level

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Creation and modification date and time

! All GS/OS flles are marked with the date and time of their creation. When a file is first created,
GS/QS stamps the file's directory entry with the current date and time from the system clock. If the
file is later modified, GS/OS then stamps it with a modification date and time (its creation date and
time remain unchanged).

The creation and modification fields in a file entry refer to the contents of the file. The values in
' these fields should be changed only if the contents of the file change. Since data in the file’s directory
. entry itself are not part of the file’s contents, the modification field should not be updated when
another field in the file entry is changed, unless that change is due to an alteration in the file's
contents. For example, a change in the file’s name is not a modification; on the other hand, a change
- in the file's EOF always reflects a change in its contents and therefore is a modification.

’ Remember also that a file's entry is a part of the contents of the directory or subdirectory that
- contains that entry. Thus, whenever a file entry is changed in any way (whether or not its
modification field is changed), the modification fields in the entries for all its enclosing
subdirectories—including the volume directory—must be updated.

Finally, when a file is copied, a utility program must be sure to give the copy the same creation and
: modification date and time as the original file, and not the date and time at which the copy was
[created. .

Character devices as files

| ’ As part of its uniform interface, GS5/OS permits applications to access character devices, like block
1 devices, through file calls. An extension to the GS/OS abstract file system lets you make standard
i GS/0S calls 10 read to and write from character devices. This facility can be a convenience for /O
I redirection,
; When character devices are treated as files, only certain features are available. You can read froma

character device but you cannot, for example, format it. Only the following GS/OS calis have
meaning whan applied to character devices: Open, Newline, Read. Write, Close, and Flush (see brief
- descriptions of these calls later in this chapter)

o In general, character *files” under GS/OS are much more restricted in scope than block files:

i » There are no extended or directory files. Character devices are accessed as if they were standard
files—single sequences of bytes. And, unlike with block files, it is not possible to obtain or change

1 the current positon (mark) in the sequence.

’ » Character devices are not hierarchical. The only legal pathname for a character “file” is a device name.

:

Chapter 1: The GS/CS Abstract File System 39

GS/0S Reference (Vodume 1) Draft 3 (APDA) 8/31/88

¢ Character devices may recognize some file-access attributes (read-enable, write-enable), but not
others (rename-enable, invisibility, destroy-enable, backup-needed).

+ Character *files” have no file type, auxiliary type, EOF, creation time, or other information
associated with block-file directory entries.

In spite of these restrictions, it is generally quite simple and straightforward to treat character
devices as files. For more information on file-access to character devices, see Chapter 11, “The
Character FST",

Groups of GS/0S calls

Chapters 4 through 6 list and describe the GS/OS operating system routines that are normally called by
an application. They are divided into the following categories:

s File access calls (described in Chapter 4)
¢+ Volume and pathname calls {described in Chapter 5)
= System information calls (described in Chapter 6)

In addition to these groups of calls, the Quit call is used when an application quits, and is described
in Chapter 2.

Finally, GS/OS provides calls that directly access devices and install interrupt and signal handlers. For
more detail on those calls, refer to Yolume 2. Table 1-3 lists the groups of G5/QS calls.

% Volume 1 Applications and GS/OS Part 1: The Application Level

GS/0S Reference (Voluma 1) Draft 3 (APDA) 8/31/88

Table 1-3 GS/0S call groups

coess } pathnam i mation i Device ¢2
Create ($2001) ChangePath ($2004) SetSysPrefs ($200C) DControl ($202E)
Destroy ($2002) Volume ($2008) GetSysPrefs ($200F) Dinfo ($202C)
SetFilelnfo ($2005) SetPrefix ($2009) GetName (52027) DRead ($202F)
GetFilelnfo ($2006) GetPrefix ($200A) GetVersion ($2024) DStatus ($202D)
GetFilelnfo ($2006) ExpandPath ($200E) GetFSTInfo ($202B) DWrite ($2030)
ClearBackup ($2008) Format ($2024)

Open ($2010) EraseDisk ($2025)

Newline ($2011) GetBootvol ($2028)

Read ($2012)

Write ($2013)

Close ($2014)

Flush (§2015)

SetMark ($2016)

GetMark (52017)

Set£of (52018)

GetEof ($2019)

Setlevel ($201A)

Getlevel ($201B)

GetDirEntry ($201C)

BeginSession (§201D)

EndSession ($201E)

SessionStatus ($201F)

ResetCache (52026)

The following sections give you an overview of the capabilities of the calls in these groups. Each call
is discussed in much greater detail in Chapter 7 of this volume.

File access calls

The most common use of GS/OS is to make calls that access files. Your application places a file on
disk by issuing a GS/OS Create call. This call specifies the file's pathname and storage type (standard
file, extended file, or directory) and possibly other information about the state of the file, such as
access attributes, file type, creation and modification dates and times, and so on.

Your program must make the GS/OS Open call in order to access a file's contents. For an extended
file, individual Open calls are required for the data fork and resource fork, which are then read and
written independently. When your application opens a file, the application must establish the access
privileges.

Chapter 1: The GS/0S Abstract File System 41

GS/QS Reference (Volume 1) Dt 3 (APDA) 8731788

A file can be simultaneously opened any number of times with read access. However, a single open
with write access precludes any other opens on the given file.

While 1 file is open, your application can perform any of the following tasks:

¢ Read data from the file by using the Read call, or write data to the file by using the Write call

+ Setor getthe the Mark by using the SetMark and GetMark calls, and set or get the end of the file by
using the SetFOF and GetEQF

¢ Enable or disable newline mode by using the Newline call
« If the open file is a directory file, get the entries held in the file by using the GetDirEntry call

» Write changes to the disk for one or more open files by using the Flush, GetFilelevel, and SetFileLevel
calls

When you are through working with an open file, you issue 2 GS/0S Close call to close the file and
release any memory that it was using back to the Memory Manager.

After the file has been closed, you can use other GS/0S calls 10 work with it. One of these calls,
ClearBackup, clears a bit so that the file appears to GS/OS as if it does not need backing up; another
GS/0S call, Destroy, can be used 1o delete a file. Other GS/OS calls that work on closed files are
described in Chapter 5..

Two other GS/OS calls, SetFileinfo and GetFilelnfo, allow you w0 access the information in the file's
directory entry. These calls are parniicularly useful when you are copying files because the czﬂs allow
you to change the creation and modification dates for 1 file.

A final group of GS/OS calls—BeginSession, EndSession, and SessionStatus—are useful when ycu
want your application to defer disk writes,

The background information on the file access calls is described in Chapters 1 and 4, and each
individual call is listed alphabetically by name and described in detail in Chapter 7.

Volume and pathname calls

(35/08 provides a whole set of calls to deal with those situations where you want to work directly
with volumes and pathnames. These calls allow you to do the following tasks:

s get information about a currently mounted volume by using the Volume call

* build a list of alt mounted volumes by using the Dlnfo, Volume, Open, and GetDitEnury calls

» get the name of the current boot volume by using the GetBootVol call

42 Volume L Applications and G&/0$ Part I: The Application Level

=y

GS/0S Reference (Volume 1) Draft 3 (APDA)

» physically format a volume by using the Format call

» quickly empty a volume by using the EraseDisk call

* set or get pathname prefixes by using the SetPrefix and GetPrefix calls

¢ change the pathname of a file by using the ChangePath call

¢ expand a partial pathname of a file to its full pathname by using the ExpandPath call

The background information on the volume and pathname calls is described in Chapter 5, and each
individual call is listed alphabetically by name and described in detail in Chapter 7.

System information calls

The system information cails allow you to do the following tasks:

= ser or get system preferences by using the SetSysPrefs and GetSysPrefs calls, which allow you to
customize some GS/OS features

* get information about a specified FST by using the GetFSTInfo call
 find out the version of the operating system by using the GetVersion call
» get the filename of the currently executing application by using the GetName call

The background information on the system information calls is described in Chapter 6, and each
individual call is listed alphabetically by name and described in detail in Chapter 7.

Device calls

GS/0S offers a set of calls that aliow you to access devices directly, rather than going through any file
system. Most applications will not need to use any of these calls, except perhaps Dinfo (that use is
described in Chapter 5). The GS/0S device calls allow you to perform the following tasks:

» get general information about a device by using the Dinfo call
« read information directly from a device by using the DRead call
« write inforration directly to a device by using the DWrite call
s get status information about a device by using the DStatus call
« send commands to a device by using the DControl call

A brief summary of the individual calls is listed alphabetically by name in Chapter 7, and information
device calls are completely described in Volume 2.

Chapter 1: The GS/OS Abstract File System 43

8/31/88

GSOS Reference (Volume 1)

& Volume |: Applications and GS/O8

Draft 3 (APDA)

Past . The application Level

GS0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Figure 1-3 Directory file format

Dirocory file Standard file
File i
m:x;v —_— File A Extended file
File entry — (d::c fv:k)
@B g
File entry
(e C) File B
(resource fork) Directory file ()
Fle entry N
(e)
. : File erary
More entries i) —_—
e More entrics
File entry e~
(flen) ———— Filen 0“:;7 —_—

Directory files can be read from, but not written to (except by GS/OS).

A directory can, but need not, have associated file information such as access controls, file type,
creation and modification times and dates, and so on.

You usually only need to examine directory files when you are creating catalog-type applications;
more information about directory files is given in the section *Examining Directory Entries” in
Chapter 4.

Standard files

Standard files are named collections of data consisting of a sequence of bytes and associated file
information such as access controls, file type, creation and modification times and dates, and so on.
They can be read from and written 10, and have no predefined internal format, because the
arrangement of the data depends on the specific file type.

Chapter 1: The GS/OS Abstract File System 29

GOS8 Reference (Volume 1) Draft 3 (APDA)

Extended files

Extended files are named collections of data consisting of two sequences of bytes and a single set
of file information such as access controls, file type, creation and modification times and dates, and
so on. The two different byte sequences of an extended file are called the data fork and the resource
fork. They can be read from and written t0, and GS/O$ makes no assumptions about their internal
formats; the formats depend on the specific file types.

Filenames

Every GS/OS file is identified by a filenare. A GS/OS filename can be any number of characters long,
and can include spaces as part of the filename. Your application must encode filenames as sequences
of 8-bit ASCII codes.

All 256 extended ASCH values are legal except the colon (ASCI $34), although most file system
tanshators (FSTs) support much smaller legal character sets.

Important Because the colon is the pathname separator character, it must never appear in a
filename. See the next section for more details about separators and pathnames.

If an FST does not support a character that the user attempts to use in a filename, GS/OS returns error
$40 (pathname syntax error). FSTs are also responsible for indicating whether filenames should be
case-sensitive or not, and whether the high-order bit of each character is wned off. See Part Il of
this volume for more information about FSTs.
A filename must be unique within its directory. Some examples of legal filenames are as follows:
file~1
January Sales

long file name with spaces and special characters !Q@#3%

N Volume |: Applications and GS/0S Part [: The Application Level

573188

o

Y

L.

[o—

JIU——

| —

[N

e

md

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Pathnames

In a hierarchica! file system, a file is identified by its pathname, a sequence of file names starting
with the name of the volume directory name and ending with the name of the file. These pathnames
specify the access paths to devices, volumes, directories, subdirectories, and files within flat or
hierarchical file systems.

A GS/0S pathname is either a full pathname or a partial pathname, a5 described in the following sections.

Full patheames

A full pathname is one of the following names:

« a volume name followed by a sesies of zero or more filenames, each preceded by the same separator,
and ending with the name of a directory file, standard file, or extended file

« adevice name followed by a series of zero or more filenames, each preceded by the same separator,
and ending with the name of a directory file, standard file, or extended file

A separator is a character that separates filenames in a pathname. Both of the following separators

are valid:

¢ A colon *” (ASCII code $3A).

* A slash character */* (ASCII code $2F)

The first colon or stash in the input string determines the separator. When the colon is the separator, the

constituent filenames must not contin colons, but can contain slashes. When the slash is the separator,
the constituent filenames must not contain skashes or colons. Thus, colons are never allowed in filenames.

Examples of legal full pathnames are as follows:
/aloysius/beelzebub/cat
tazbic
/x
B

.dl/a/b

Examples of illegal full pathnames are as follows:
IERRVARVE a “" must not appear in 2 filename
/alb/c assurning that the first filename is supposed to be “a/b”

Chapter 1: The GS/OS Abstract File System 31

GLOY Reference (Volume 1) Dt 3 (APDA) R

/afn/c/ cannot have a separator after the last filename

a/b/ef must start with a volume or device name

All calls that require you to name a file will accept either a full pathname or a partial pathname.

Prefixes and partial pathnames

A full pathname can be broken down into a prefix and a partial pathname. In essence, the prefix starts at
the beginaing of the pathname (that is, at the volume or device name) and can continue down through the
last directory name in the path. In contrast, the partial pathname stacts at the end of the pathname and
can continue up to, but not include, the volume name or device name. Thus, when the prefix and parual
pathname are combined, they yield the full pathname. Figure 1-4 illustrates the possible prefix and partial
pathname portions of a single full pathname.

Figure 14 Prefixes and partial pathnames

EI23 Prefix
3 Partial pathname

Prefixes are convenient when you want to access many files in the same subdirectory, because you
can use a prefix designator as a substitute for the prefix, thus shortening the pathrame references.

Prefix designators

A prefix designator takes the place of a prefix, and can be

= A digit or sequence of digits followed by a pathname separator. The digits specify the prefix number.
Thus, the prefix designators “002:" and “2/" both specify prefix number 2.

« The asterisk character () followed by a pathname separator. This special prefix designator specifies
the volume from which GS/OS was last booted.

» Nothing. This is identical to prefix 0 (that is, equal to *0:* or “00000/™).

R Volume I Applications and GS/08 Part I: The Application Level

GSOS Reference (Volume 1) Draft 3 (AFDA) B 308y

Table 1-1 shows some examples of prefix use. They assume that prefix 0/ is set to /VOLUIMEL/ and
prefix 5/ is set 0 /VOLUME1/TEXT.FILES/. The pathname provided by the application is compared
with the full pathname constructed by GS/0S.

Table 1-1 Examples of prefix use

» Tull pathname provided:

as supplied: /VOLUME1/TEXT FILES/CHAP 3

as expanded by GS/0S: /VOLUME1/TEXT.FILES/CHAP.3
Panial pathname—-implicit use of prefix /0:

as supplied: GS.08
as expanded by GS/OS8: /VOLUME1/GS.0S

» Explicit use of prefix /0:

as supplied: O/SYSTEM/FINDER

as expanded by GS/0S: /VOLUMEL/SYSTEM/FINDER
¢ Use of prefix 5/:

as suppled: S/CHAP.12
as expanded by GS/0S: /VOLUMEL/TEXT.FILES/CHAP .12

File information

GS/0S files are marked as having several characteristics, including those that follow:
« Access permissions to the file

¢ File type and auxiliary type of the file

« The size of the file and the current reading-writing position in the file

» Creation and modification date and time

Your application can access and modify this information, as introduced in the following sections and
described more completely in Chapter 4, *Accessing GS/OS Files.”

¥ Volume L Applications and GS/O8 Part [The Application Level

GS0S Reference (Volume 1) Draft 3 (APDA)

File access

The characteristic of file access determines what operations can be performed on the file. Several
GS/0S calls read or set the access attribute for the file, which can determine the following
capabilities:

o whether the file can be destroyed

» whether the file can be renamed

o+ whether the file is invisible; that is, whether its name is displayed by file-cataloging applications
s whether the file needs to be backed up

s whether an application can write to the file

« whether an application can read from the file

File types and auxiliary types

The file type and auxiliary type of 2 file do not affect the contents of a file in any way, but do
indicate to GS/OS and other applications the type of information stored in the file. Apple Computer
reserves the right to assign file type and auxiliary type combinations, except for the user-defined file
types $F1 through $F8.

Important; If you need a new file type or auxiliary type assignment, please contact Apple Developer
Technical Support.

Table 1-2 shows the valid table types. [n Table 1-2, the descriptions under the Auxiliary type column
have the following meanings:

e Application specific means that the auxiliary type specifies which application created the file
* Way the xxxx is stored means the auxiliary type differentiates between various storage methods

* Upperlower case in filename means that AppleWorks uses 15 bits of the auxiliary type word (it's a
word on disk, instead of a long word, for the ProDOS file system) to flag whether to display that
letter of the filename in lowercase

o Not loaded if bit 15 is set means that GS/OS won't load or execute files like DAs and Setp files if bit 15

of the auxiliary type is set
s APW language type is the language designation for APW source files

Load address in bank for BASIC.SYSTEM is the default load address for ProDOS 8 executable binary
files (file type $06)

Chapier 1: The GS/OS Abstract File System 35

GS0S Reference (Volume 1)

3

Draft 3 (APDA)

Random-access record length specifies the record length for an ASCI text file (file type $04)

Table 1-2 GS/0S file types and auxiliary types

e

type Descrigtion Auxilizgy (ype

500 Uncalegorized fle

501 Bad blocks file

$4 ASCIltext file Random-access record-length (O=Sequential file)
$06 Binary file Lnad address in bank for BASIC.SYSTEM
308 Double Hi-Res file

$0F Diredory file

§19 AppleWorks database file Upper/lower case in file name
$1A AppleWorks word processor file Upper/lower case in file name
31B AppleWorls spreadsheet file Upper/lower case in file name
$50 Word processor file Application specific

$51 Speeadsheet file Application specific

$52 Datatase file Application specific

$53 Object-oriented graphics file Application specific

$54 Deskiop publishing file Application specific

$55 Hypermedia fle Application specific

5% Eductional dau file Application specific

357 Seazionery file Application specific

$58 Helpfile Application specific

$59 Communications file Application specific

54 Application configuration file Application specific

$AB G$ BASIC program file

$AC GS$ BASIC Toolbox definition file

SAD GS BASIC data file

$BO APW source file APW Language type

$B1 APW object file

$B2 APW library file

$B3 GS/08 application

$B4 GS/0S Run-time library file

$83 GS/0S Shell application file

$B6 GS/0S permanent initialization file Not loaded if high bit set

187 Apple GS temporary initialization fle Not loaded I high bit set

$B8 New Desk Accessory Not loaded if high bit set

$B% Classic Desk Accessory Not loaded if high bit set

$BA Tool file

$BB Apple TGS device driver file Not loaded if bit 15 set

$8C Generic load file

% Volure L Applications and G$/0S part I: The Application Level

e B

GYOS Reference (Volume 1) Draft 3 (APDA) 8/31/88

$BD GS/OS file system transator Not loaded if bit 15 set
$BF Apple 1GS sound file

$Co Apple 11GS Super Hi-Res screen image Way the image is stored
$C1 Apple TIGS Super Hi-Res picture file Way the picture is stored

8 Apple 11GS font file
C3 Apple IIGS Finder data file
$CA Apple TGS Finder icon file

103 Music sequence file Application-specific
$D6 Instrument file Application-specific
$D7 MIDI file

$EO Telecommunications Library file Application-specific

$E2 AppleTalk File

$EP Pascal area on partitioned disk
§FO BASIC.SYSTEM Command File
$P1 User-defined file type #1

$F2 User-defined file type #2

$F3 User-defined file type #3

$F4 User-defined file type 4

§F5 User-defined file type #5

$F6 User-defined file type #6

$F7 User-defined file type #7

$78 User-defined file type #8

$F9 GS/0S System file

$FA Integer BASIC program file
$FB Integer BASIC vasiable file

$FC AppleSoft BASIC program file
$FD AppleSofi BASIC variable fle
$FE EDASM relocatable code file
$FF ProDOS 8 application

EOF and mark

To aid reading from and writing to files, each open standard file and each fork of an open extended
file has a byte count indicating the size of the file in bytes (EOF), and another defining the current
position in the file (the mark), G5/0S moves both EOF and mark automatically when data is added
to the end of the file, but an application program must move them whenever data is deleted or added
somewhere else in the file.

EQF is the number of readable bytes in the file. Since the first byte in a file has number 0, EOF
indicates one position past the last character in the file.

Chapter 1: The GS/OS Abstract File System 37

(1505 Reference (Volume 1)

When a file is opened, the mark is set to indicate the first byte in the file. It is automatically moved
forward one byte for each byte written to or read from the file. The mack, then, always indicates the

Lrafl 3 (APDA)

next byte to be read from the file, or the next byte position in which to write new data. It cannot
exceed EOF.

If the mark meets EOF during a write operation, both the mark and EQOF are moved forward one
position for every additional byte written to the file. Thus, adding bytes to the end of the file
automatically advances FOF to accommodate the new information. Figure 1-5 illustrates the
relationship between the mark and EOF.

Figure 1-§

Beginning position

Automatic movement of EOF and mark

EOF

An application can place EOF anywhere, from the current mark position to the maximum possible
byte position. The mark can be placed anywhere from the first byte in the file to EOF. These two
functions can be accomplished using the SetEOF and Setmark calls. The current values of EOF and
the mark can be determined using the GetEOF and Getmark calls.

B

Old MARK

Volurne 1: Applications and G$/0S

Part I: The Application Level

83188

GS/0S Reference (Volume 1) Dmft 3 (APDA) 8/31/88

Chapter 2 GS/0S and Its Environment

GS/0S is one of the many components that make up the Apple TGS operating
environment, the overall hardware and software setting within which Apple 1GS
application programs run. This chapter describes how GS/OS functions in that
J environment and how it relates to the other components.

Chapter 2: GS/0S and its Environment 45

GYOS Reference (Volume (J Draft 3 (APDA) 3/31/88

Apple s memory

The Apple 116S microprocessor can directly address 16 megabytes (16 MB) of memory. The minimum
memory configuration for G§/0S on the Apple 11Gs is 512 kilobytes (512 KB) of RAM and 128 KB of
ROM. As shown in Figure 2-1, the total memory space is divided into 256 banks of 64 KB each.

Figure 2-1 Apple [IGS memory map

Bank N|umbera

500 01 2 503 TP SE0 SE1 $F0 $F1 $FD

4
RaM

B GY/0S and Sysiern Loader
COther reserved memory
(T2 Memory available 1o the application

(GS/0S and the System Loader together occupy neardy all addresses from $D000 through $FFFF in
banks $00, $01, $EC, and $E1. In addition, G8/QS reserves (through the Memory Manager)
approximately 9.5 KB just below $C000 in bank $00 for GS/OS systern code and data. None of these
reserved memory areas is available for use by applications.

Banks $E0 and $E1 are used principally for high-resolution video display, additional system software,
and RAM-based tools. Specialized areas of RAM in these banks include /O space, bank-switched
memory, and display buffers in locations consistent with standard Apple I memory configurations.
Orher reserved memory includes the ROM space in banks $FE and $FF; they contain firmware and
ROM-based tools. In addition, banks $F0 through $FD are reserved for furure ROM expansion.

% Volume I: Applications and GS/0S) Part I: The Application Level

GS0S Reference (Volume 1) Draft 3 (APDA)

A handle is a pointer 0 a pointer; it is the address of a fixed (nonmovable) location, called the
master pointer, that contains the address of the block. If the Memory Manager changes the location
of the block, it updates the address in the master pointer; the value of the handle iself is not
changed. Thus the application can continue to access the block using the handle, no matter how
often the block is moved in memory. Figure 2-2 illustrates the difference between a pointer and a
handle.

if a block will always be fixed in memory (ocked or unmovable), it can be referenced by a pointer
instead of by its handle. To obtain a pointer o0 a particular block or location, an application can
dereference the block’s handle. The application reads the address stored in the location pointed to
by the handle—that address is the pointer to the block. Of course, if the block is ever moved, that
pointer s no longer valid.

GS/0S and the System Loader use both pointers and handles to reference memory locations,
Pointers and handles must be at least three bytes long to access the full range of Apple 1IGS memory.
However, all pointers and handles used as parameters by GS/OS are four bytes long, for ease of
manipulation in the 16-bit registers of the 65C816 microprocessor.

0 Volume 1. Applications and GS/08§ Part I: The Application Level

M3l

I

-

[——

[oo—

| SN [NN

[I—

GS/0S Reference (Volume 1) Draft 3 (APDA)

Figure 2-2 Pointers and handles

a Pointer:

Value of pointer =
starting address of memory block

b. Handle: $XXX F
Value of handle ~ .
address of master pointer * Maser Pointer
$272 I 3277
Value of master pointer =
current starting address of
memory block

Allocating stack and direct page

In the Apple IIGs, the 65C816 microprocessor's stack-pointer register is 16 bits wide; that means that,
in theory, the hardware stack can be located anywhere in bank $00 of memory, and the stack can be
as much as 64 KB deep.

The direct page is the Apple IGS equivalent to the standard Apple II zero page. The difference is
that it need not be absolute page zero in memory. Like the stack, the direct page can theoretically
be placed in any unused area of bank $00—the microprocessor’s direct register is 16 bits wide, and all
zero-page (direct-page) addresses are added as offsets to the contents of that register.

Chapter 2: G§/OS and its Environment 51

G508 Reference (Volume 1) Draft 3 (APDA)

In practice, however, there are several, restrictions on available space. First, only the addresses
between $800 and $C000 in bank $00 can be allocated—the rest is reserved for 1/0 space and system
software. Also, because more than one program can be active at a time, there may be more than one
stack and more than one direct page in bank $00. Furthermore, many applications may want to have
parts of their code as well as their stacks and direct pages in bank $00.

Your program should, therefore, be as efficient as possible in its use of stack and direct-page space,
The total size of both should probably not exceed about 4 XB in most cases.

Automatic allocation of stack and direct page

Only you can decide how much stack and direct-page space your program will need when it is running.
The best time 10 make that decision is during program development, when you create your source
files. If you specify at that time the total amount of space needed, GS/OS and the System Loader
will automatically allocate it and set the stack and direct registers each time your program runs.

Definition during program development

You define your program’s stack and direct-page needs by specifying a “direct-page/stack” object
segment (KIND = $12) when you assemble or compile your program. The size of the segment is the
total amount of stack and direct-page space your program needs. It is not necessary to create this
segment; if you need no such space or if the GS/OS default (see the section "GS/OS Default Stack
and Direct Page” later in this chapter) is sufficient, you may leave it out.

When the program is linked, it is important that the direct-page/stack segment not be combined
with any other object segments to make a load segment—the linker must create a single load segment
corresponding to the direct-page/stack object segment. If there is no direct-page/stack object
segment, the linker will not create a corresponding load segment.

Allocation at load time

Each time the program is started, the System Loader looks for a direct-page/stack load segment. If
it finds one, the loader calls the Memory Manager o allocate a page-aligned, locked memory block of
that size in bank $00. The loader loads the segment and passes its base address and size, along with
the program's user ID and starting address, to GS/0S. GS/OS sets the accurnulator (A), direct (D),
and stack pointer (5) registers as shown, then passes control to the program:

52 Volume 1: Applications and GS/OS Part |: The Application Level

| N— [NS | SV

[

A"

[PV

[N

I3 [

PPN—

GS/0S Reference (Volume 1) Draft 3 (APDA)

A = user ID assigned to the program
D = address of the first (lowest-address) byte in thé direct-page/stack space
S = address of the last (highest-address) byte in the direct-page/stack space

By this convention, direct-page addresses are offsets from the base of the allocated space, and the
stack grows downward from the top of the space.

Important: GS/OS provides no mechanism for detecting stack overflow or underflow, or collision of
the stack with the direct page. Your program must be carefully designed and tested to
make sure this cannot occur.

When your program terminates with a Quit call, the System Loader's Application Shutdown function
makes the direct-page/stack segment purgeable, along with the program's other static segments. As
long as that segment is not subsequently purged, its contents are preserved until the program restarts,

Note: There is no provision for extending or moving the direct-page/stack space after its
initial allocation. Because bank $00 is so heavily used, any additional space you later
request may be unavailable—the memory adjoining your stack is likely to be occupied
by a locked memory block. Make sure that the amount of space you specify at link time
fills all your program’s needs.

GS/08 default stack and direct page

If the loader finds no direct-page/stack segment in a file at load time, it still reuens the program's
user ID and starting address to GS/0S. However, it does not call the Memory Manager to allocate a
direct-page/stack space, and it retums zeros as the base address and size of the space. GS/OS then
calls the Memory Manager itself, and allocates a 4 KB direct-page/stack segment.

See the Apple IIGs Toolbax Reference for a general description of memory block anributes assigned by
the Memory Manager,

GS/0S sets the A, D, and S registers before handing control to the program, as follows:
A = User ID assigned to the program

D ~ address of the first (lowest-address) byte in the direct-page/stack space

S = address of the last (highest-address) byte in the direct-page/stack space

When your application terminates with a Quit call, GS/OS disposes of the direct page/stack
segment.

Chapter 2: GS/OS and its Environment 53

8/31/88

GS/OS Reference (Volume 1) Draft 3 (AFDA)

System startup considerations

The starmup sequence for the Apple [IGS s is invisible to applications and relatively complex, so
further discussion of the sequence is presented in Appendix D, *GS/OS System Disks and Startup.”
That appendix describes the structure of a valid system disk,

The Apple 1I6S startup sequence ends when control is passed to the G§/OS program dispatcher. This
routine is entered both at boot time and whenever an application terminates with a GS/OS, ProDOS
16, or ProDOS 8 Quit call. The GS/OS program dispatcher determines which program is o be run next,
and runs it. After startup, the program dispatcher is permanently resident in memory.

Quitting and launching applications

When you want your application to quit, you issue a G&/OS Quit call. The GS/OS program dispatcher
performs all necessary functions 1o shut down the current application, determines which application
should be executed next, and then launches that application..

When you issue the Quit call, you can indicate to GS/OS whether your application can be restarted
from memory. You can also specify the next application to be launched, and whether your
application should be placed on the quit return stack so that it will be restarted when the other
program quits. The following sections further explain your options when quitting.

Specifying whether an application can be restarted from memory

When your application sets the resart-from-memory flag in the Quit call to TRUE (bit 14 of the flags
word = 1), the application can be restarted from a dormant state in the computer's memory. If your
application sets the restart-from-memory flag to FALSE (bit 14 = 0), the program must be reloaded
from disk the next time it is run.

If you set the restar-from-memory flag to TRUE, remember that the next time the application is run,

its code and data will be exactly as they were when the application quit Thus, you may aeed to
reinitialize certain data locations.

M Volume 12 Applications and GS/0S Part I: The Application Level

&31:88

GNOS Reference (Volume 1) Draft 3 (APLA)

Specifying whether control should return to your application

The quit return stack is a stack of user IDs used to restart applications that have previously quit. If
an application specifies a TRUE quit retum flag in its Quit call, GS/OS pushes the user ID of the
qQuitting program onto the quit retum stack and saves information needed to restart the program. As
subsequent programs run and quit, several user IDs may be pushed onto the stack. With this
mechanism, muitiple levels of shells can execute subprograms and subshells, while ensuring that they
eventually regain control when their subprograms quit.

For example, the START file might pass control to a software development system shell, using the
Quit call to specify the pathname of the shell and placing its own ID on the stack. The shell in tin
could hand control to a debugger, likewise placing its own ID on the stack. If the debugger quits
without specifying a pathname, control would pass automatically back to the shell; if the shell then
quits without specifying a pathname, control would pass automatically back to the START file.

This automatic return mechanism is specific to the GS/OS Quit call, and therefore is not available to
ProDOS 8 programs. When a ProDOS 8 application quits, it cannot put its ID on the internal stack.

Quitting without specifying the next application to launch

If you want o quit your application and do not want to specify the next application 0 be launched,
supply the following parameters in the Quit call:

» 1o pathname

« a FALSE quit retum flag

GS/0S then attempts to pull a user ID off the Quit return stack and relaunch that application. If the
Quit return stack is empty, GS/OS will attempt to relaunch the START program.

Launching another application and not returning

When you are quitting your application, and want to pass control to another application, but do not
want control to eventually return to your application, supply the following parameters in the Quit cail:

» pathname of the application to be launched
» a FALSE quit return flag

GS/0S will atempt to launch the specified application.

% Volume 1 Applications and GS/OS Part I: The Application Level

T S e o — n—— ha— rm—
s 5 L

[S——1 b e i [y i [T & [i i . 4 [——

[

JO—

SR

Y

GS/0S Reference (Volume 1) Draft 3 (APDA)

Launching another application and returning

If you want 1o pass control to another application, and want control to return to your application
when the next application is finished, set the quit return flag to TRUE in the Quit call. That way your
program can function as a shell—whenever it quits to another specified program, it knows that it will
cventually be reexecuted. Supply the following parameters in the Quit call:

» pathname of the application to be launched

* a TRUE quit return flag

GS/0S pushes the User ID of your quitting application onto the quit return stack, and then attempts
to launch the specified application.

Machine state at application launch

The GS/OS program dispatcher initializes cerain components of the Apple 1IGs and GS/OS before it
passes control to an application. The initia state of those components is described in the following
sections.

Machine state at GS/OS application launch

When a GS/QS program is launched, the machine state is as shown in Table 2-2.

Table 2-2 Machine state at GS/0S application launch

Item State

Reserved memory Addresses above $9A00 in bank zero are reserved for GS/OS, and are
therefore unavailable to the application. A direct-page/stack space,

of a size determined either by GS/OS or by the application itself, is

reserved for the application; it is located in bank $00 at an address

determined by the Memory Manager. The only other space that

GS/0S requires in RAM is the language-card areas in banks $00, $01,

$E0, and $E1.
Hardware registers

accumulator Contains the user ID assigned to the application.

Chapter 2: G&/OS and its Environment 57

GY0S Reference (Volume 1) Draft 3 (APDA) 8318

X- and Y-registets Contain zero ($0000).
¢-, m-, and x-flags in the
processor status register All set w zero; processof in full native mode.
stack register Contains the address of the top of the direct-page/stack space.
direct egister Conmains the address of the bottom of the direct-page/stack space.
Standard input/output For both $B3 and $B5 files, standard input, output, and eror
locations are set to Pascal 80-column character device vectors.
Stadowing The value of the Shadow register is $1E, which means:
language card and I/Q spaces: shadowing ON
text pages: shadowing ON
graphics pages: shadowing OFF
Vector space values Addresses between $00A8 and $UOBF in bank $E1 constitute GS/OS

vector space. The specific values an application finds in the vector
space are shown in Table 2-1 earlier in this chapter,

Pathname prefix values Set as described in the section *Pathname Prefixes at GS/OS
Application Launch” later in this chaprer.

8 Volume 1: Applications and G/OS$ Pait I: The Application Level

GYOS Reference (Volume 1) Draft 3 (APDA)

At all times during execution, GetName retums the filename of the current application (regardless of
whether prefix 1/ has been changed), and GetBootVol returns the boot volume name, equat to the
value of prefix */ (regardless of whether prefix 0/ has been changed).

Table 2-4 Prefix values when GS/0S application launched at boot time

¢ boot volume name

0 boot volume name

1 full pathname of directory containing current application

2 */SYSTEM/LIBS

3-8 null strings

9 equal to prefix 1

10-31 null strings

Table 2.5 Prefix values—GS/0S application launched after GS/OS application quits
° unchanged from previous application

0 unchanged from previous application

1 full pathname of directory containing current application

2 unchanged from previous application

38 unchanged from previous application

9 equal to prefix 1

10-31 unchanged from previous application

Table 2-6 Prefix values—GS§/0S application launched after ProDQOS 8 application quits
Prefix Description

’ boot volume name

Y unchanged from the ProDOS 8 system prefix under previous application
1 tull pathname of the directory containing the current application

2 */SYSTEM/LIBS

3-8 null strings

9 equal to prefix 1

10-31 null strings

&) Volume 1. Applications and GS/OS Part [: The Application Level

3/31.8%

| S—

fnd

[W——)

[S |

[S

GS/OS Reference (Volume 1) Draft 3 (APDA)

Pathname prefixes at ProDOS 8 application launch

Table 2-7 shows the initial values of the ProDOS 8 system prefix and the pathname at location $0280

in bank $00 when a ProDOS 8 application is launched from GS/0OS.

Table 2.7 Prefix and pathname values at ProDOS 8 application launch

Condition System prefix — Locatlon $0280 pathname
Application launched at boot boot volume name filename of current

time application

Application launched through unchanged from full or partial pathname
enhanced ProDOS 8 QUIT cail previous application given in QUIT call
Application launched after a previous application's full pathname given in
GS/0S application has quit (if prefix 0/ QUIT call

Quit call specified a full

pathname)

Application launched after 2 prefix specified in the partial pathname given in
GS/0S application has quit (if Quit call Quit call

Quit call specified a prefix and a

partial pathname)

Chapter 2: GY/OS$ and its Environment 61

i

[

| P

-4

[I— | S

Lod

GS0S Reference (Volume 1) Draft 3 (APDA)

Chapter 3

Making GS/OS Calls

This chapter describes the methods your application must use to make GS/OS
calls. The current application, a desk accessory, and an interrupt handler are
examples of applications that can make GS/OS calls.

Chapter 3: Making GS/OS Calls

6

8/31/88

GSOS Reference (Volume 1) Draft 3 (APDA) 83088

GS/08 call methods

When an application makes a GS/0S call, the processor can be in emulation mode or full native mode,
or any state in between (see the Technical Introduction to the Apple iIGS). There are no register
requirements on entry to G8/0S. G5/0S saves and restores all registers except the accurnulator (4)
and the processor status register (P); these two registers store information on the success of failure of
the call.

Calling in a high-level language

To make a GS/OS call from a high-levet language, such as C, you supply the name of the call and a
pointer to the parameter block,

Calling in assembly language

You can make GS/OS calls in assembly language using any of the following techniques:

¢ Macao technique—uses macros defined by Apple to generate inline calls. Macro calls are the simplest
and the essiest to read.

* Inline call technique—similar to ProDOS 8

o Stack call technique—consistent with the way compilers generate code

There is virually no difference in the run-time performance of these three techniques; essentially,
which one of the techrigues you use is a matter of personal preference. Each of these techniques is
deuiled separately in the following sections.

To make a GS/OS assembly language call, your application must provide

¢ 3 2-byte call number or the macro name of the call

« If you don't use the macro name, a Jump to Subroutine Long (JSL) instruction 1o the appropriate
GS/OS entry point

+ 1 4-byte pointer to the parameter block for the call; the parameter block passes information berween
the caller and the called function

The macro name or call number specifies the type of GS/0S call, as follows:

64 Volume 1: Applications and GS/0S Part I: The Application Level

[

[—

U .

| —

[WO [— bonnd [T

| I

ot b boed b

——1

[[e—} [¥ S—

GSOS Reference (Volume 1) Drafl 3 (APDA)

« Standard GS/OS calls: These calls allow you to access the full power of GS/OS; you should use them if

you are writing a new application. Most of the description in this manual is devoted solely to these
calls.

¢ ProDOS 16 calls: These calls, described in Appendix A of this document, are provided only for
compatibility with ProDOS 16. (ProDOS 16 is described in the Apple IGS ProDOS 1G Reference.)

Every GS/0S call that doesn’t use the macro technique must specify the system call number and class
in a parameter referred (o in the next sections as callnum The callnum parameter has the
following format:

DsTuls[a]nlwlels 7 TelsT«]3]2T1]0]

mctved-ZJ'J
class1 =1
class 0 =0

cllllmmt'nzfJ

The primary call number is given in each call description. For example, the call number for the Open
callis $10.

Thus, to make a standard GS/OS (class 1) Open call, your application would use the macro name ora
callnum value of $2010; to make a ProDOS 16~compatible (class 0) OPEN call, the caller would use 2
callnum value of $0010.

Making a GS/OS call using macros

To make 2 standard GS/OS call using the macro technique, perform the following steps:
1. Provide the name of the standard GS/OS call.
2. Follow the name with a pointer to the parameter block for the call.

GS/0S performs the function and retums control to the instruction that immediately follows the
macro.

The following code fragment illustrates a macro call:

_CallName Cl parmblock ;Name of call

bes errox ;handle error if carxy set on return
error ;code to handle error return
armblock ;parameter block
P P

Chapler 3: Making GS/OS Calls 65

GS/OS Reference (Volume 1) Draft 3 (APDA) 873158

Making an inline GS§/0S call

To make a sandard GS/OS call using the inline method, perform the following steps:
1. Performa JSL to $E100A8, the GS/OS inline entry point.

2. Follow the JSL with the call number.

3. Follow the call number with a pointer to the parameter block.

GS/0S performs the function and retums control to the instruction that immediately follows the
parameter block pointer.

The following code fragment ilhustrates an inline call:

inline_entzy gequ SE100A8 ;address of GS/0S inline entry point
isl inline_entry ;long jump to GS/0S lnline entry point
de i2'callaum® ;call number
de 14'parmblock’ ;parametar block polnter
hcs error ;handle error if carry set on return

|rror ;scode to handle error return

parmblock jparameter block

Making a stack call

To make a standard GS/OS call using the stack method, perform the following steps:

1. Push the parameter block pointer onto the stack (high-order word first, low-order word second).
2. Push the call number of the call onto the stack.

3. Performa JSL to SE100BO, the GS/OS stack entry point.

GS/0S performs the GS/OS command and returas control o the instruction that immediately follows
the JSL.

The following code fragment illustrates a stack call:

stack_entry gequ SE10080 ;address of GS/0S5 stack entry point
pea parmblock|-16 ;push high word of parameter block pointer
pea parmblock ;push low ward of parameter block pointer
pea callnum ;push call number
isl stack_entry ilong Jjump to GS/0S stack entry point
bcs arrox ;handle error if carry set on return

error icode to haadle error return

parmblock ;parameter block

66 Volume 1. Applications and GS/0S Part I: The Application Level

i
bd

. H i i 1 B l |

[H—

[S—

[N—

GS/OS Reference (Volume 1) Draft 3 (APDA)

Including the appropriate files
If you are writing your application in assembly language, include the following files, as appropriate:

E16.SYSCALLS and M16.SYSCALLS If you are making standard GS/OS calls
E16.PRODOS and M16.PRODOS If you are making ProDOS 16-compatible calls

If you are writing your application in C, include one or both of the following files:

SYSCALISH If you are making standard GS/OS calls
PRODOSH If you are making ProDOS 16-compatible calls

Important In cither language, if you include files to make both standard GS/OS and ProDOS 16-
compatible calls, you must append the suffix s to the standard GS/OS call names and
parameter block type identifiers.

GS/0S parameter blocks

A G3/08 parameter block is a formatted table that occupies a set of contiguous bytes in memory.
The block consists of a number of fields that hold information that the calling program supplies to
the function it calls, as well as information returned by the function to the caller.

Every G&/0S call requires a valid parameter block (pa rmblock in the preceding examples),
referenced by 2 4-byte pointer. The application is responsible for constructing the parameter block
for each call that it makes; the block can be anywhere in memory.

The formats of the fields for individual parameter blocks are presented in the detailed systern call
descriptions in Chapter 7.

Types of parameters

Each field in 2 GS/OS parameter block contains a single parameter, one or more words in length. Each
parameter is an input from the application to G5/OS or a result that G5/0S returns to the application,
or both an input and a result.

Chapter 3; Making GS/OS Calls 67

8/31/8¢

GSYOS Keference (Volume 1) Draft 3 (APD4) 3L 8N

« Aninput can be either a numerical value or a pointer 1o a string or other data structure.

* Aresultisa numerical value that GS/OS places into the parameter block for the caller to use.

* A pointer is the 4-byte address of a location containing data, code, or buffer space in which GS/QS
can receive or place data; that is, the pointer may point to a location that contains an input, or point

o space that will receive a result, or point to a location that both contains an input and receives a
resull.

Parameter block format

All standard G$/OS parameter blocks begin with 2 parameter couat, which is a word-length input
value that specifies the total number of parameters in the block. This allows you to vary the number
of parameters in a call as needed, and also makes possible future parameter block expansion.

All parameter fields that contain block numbers, block counts, file offsets, byte counts, and other
file or volume dimensions are 4 bytes long. Using 4-byte fields ensures that GS/OS will accommodate
large devices using file system translators.

All parameter fields contain an even number of bytes, for ease of manipulation by the16-bit 65C816
processor. Pointers, for example, are 4 bytes long even though 3 bytes are sufficient to address any
memory location. Wherever such extra bytes occur they must be set to zeso by the caller; if they are
not, compatibility with future versions of GS/OS$ will be jeopardized.

Pointers in the parameter block must be written with the Jow-order byte of the low-order word at the
lowest address.

Imporiant The range of theoretically possible values as defined by the length of a parameter is
often very different from the range of permissible values for that parameter. The fact
that all fields are an even number of bytes is one reason. Another reason is that the
permissible values for a field depends upon its file system.

GS/0S string format

GS/08 strings resemble Pascal-style strings. A Pascal-style string begins with a length byte that
defines the length of the string in bytes, followed by the string itself, with each character equal to one
byte. A G8/0S suing is very similar, except that it begins with 2 length word instead of a byte. See
Figure 3-1.

8 Volume 1: Applications and GS/O8 Part I: The Application Level

_d

[,

[——

PE——

GS/0S Reference (Volume 1) Draft 3 (APDA)

Figure 3-1 GS/0S and Pascal strings

GS/0S string

l length word l swing l

Pascal string
[engnbme | sing]

String parameters consist of a pointer parameter in the call's parameter block that points to a data
structure containing the string. For standard GS/OS calls, that data structure varies depending on
whether the string parameter is an input to or output from the call.

ProDOS 16-compatible calls use Pascal-style strings, with the exception of the GET_DIR_ENTRY call,
which uses GS/OS strings.

GS/0S input string structures

When a string is used as an input from an application to GS/OS, a pointer in the cail's parameter block
points to the low-order byte of the length word of the string, as shown in Figure 3-2,

Figure 3-2 GS/QS input string structure

GS/OS steing
o L Y
l length word | string - I

o]

GS/0S result buffer
When a string is returned as a resuit from a GS/0S call to an application, a pointer in the parameter

block points to a buffer reserved for the result. This buffer starts with a buffer length word that
specifies the total length of the buffer, including the buffer length word, as shown in Figure 3-3.

Chapter 3; Making GS/OS Calls &

8/31/88

G308 Reference (Yolume 1) Draft 3 (APDA)

Figure 3-3 GS/0S result buffer

GS/OS string
4 . Al

[[| wos |

||

How GS/0S renurns the result depends on whether or not there is enough space in the buffer
(excluding the buffer length word) to hold the output string. If there is enough space, the resuit is
placed in the buffer starting just after the buffer length word.

‘The first two bytes of the string are its length word. If there is not enough space, GS/OS returns only
the length word of the string, placing it immediately after the buffer length word. This gives the caller
the opportunity to resize the buffer and reissue the call. The proper size is the value in the string
length word plus four (to account for the buffer and string length words).

1f the area is too small to contain the string, GS/OS returns a “buffer too small” error and sets the
string length field to the actual string length. In this case, the string field is undefined. The caller must
add four to the returmed string length to determine the total area size aeeded to hold the string and
the two length fields.

The GetDirEntry call is an exception to the preceding rules. For this call only, if the result does not fit
in the buffer, GS/OS copies as much of the string into the buffer as possible. The length word of the
string will be set to the actual string length, not the size of the string placed in the buffer. Thus, the
application may choose to use a partial string—for example, in a directory listing with a limited
number of columns for the filerame—or reissue the call © get a complete string.

Setting up a parameter block in memory

Each GS$/0S call uses a 4-byte pointer to point to its parameter block, which can be anywhere in
memory. All applications must obtain needed memory from the Memory Manager, and therefore
cannot know in advance where the memory block holding such a parameter block will be.

You can set up a GS/OS parameter block in memory in one of two ways:

1. Code the block directly into the program, referencing it with a label. This is the simplest and most
typical way to do it The parameter block will atways be comectly referenced, no matter where in
memory the program code is loaded.

0 Volume I: Applications and GS/0S Part [: The Application Level

8/31,.88

B * i % . ; o - % a

[Se—

Bauend

Y

GS/OS Reference (Volume 1) Draft 3 (APDA)

2. Use Memory Manager and System Loader calls to place the block in memory, as follows:

a. Request 2 memory block of the proper size from the Memory Manager. Use the procedures
described in the Apple 11GS Toolbax Reference. The block should be either fixed or locked.

b. Obuin a pointer to the block, by dereferencing the memory handle returned by the Memory
Manager (that is, read the contents of the location pointed to by the handle, and use that
value as a pointer to the block).

¢. Setup your parameter block, starting at the address pointed to by the pointer obtained in
step (b).

Conditions upon return from a GS/OS call

When control retums to the caller, the registers have the values shown in Table 3-1.

Table 3-1 Registers on exit from GS/08

Register Description

A zero if call successful, error code if call unsuccessful
X unchanged

Y unchanged

§ unchanged

D unchanged

P shown in Table 3-2

DB unchanged

PB unchanged

PC address of next instruction

“Unchanged” means that GS/QS initially saves, and then restores when finished, the value that the
register had just before the call.

When control returns 1o the caller, the processor status and control bits have the values shown in Table
3-2.

Chapier 3 Making GS/0§ Calls 71

8/31/88

GS0) Reference (Volume 1) Draft 3 (APDA)

Table 3-2 Status and controt bits on exit from GS5/08

rl
undefined
undefined
unchanged
unchanged
unchanged
unchanged
0 if call unsuccessful, 1 if call successful
0 if call successful, 1 if call unsuccessful
unchanged

B ONTAND <D

Note: The n flag is undefined here; under ProDOS 8, it is set according to the value in the
accumulator.

Checking for errors

When control reums to your application, the carry bit will be set to 1 if an error occurred, and the
error code (if any) will be in register A. You can thus use a Branch if Carry Set (BCS) instruction to
branch to an error-handling routine, and then pick up the error code from register A.

Fatal GS/OS errors are handled by the G$/OS Error Manager. When a fatal error occurs, the GS/0S
Emor Manager displays a failure message on the screen and halts execution of GS/OS. If the error is
unrecoverable and requires that the system be rebooted, the GS/0S Error Manager calls the System
Failure Manager, 2 part of the Apple 1IGS Toolbox. The System Failure Manager is described in the
chapter "Miscellaneous Tool Set” in the Apple /1G5 Toolbox Reference .

The errors that specifically apply to a particular call are listed as part of the call description in Chapter

7. Other errors can occur for almost any of the calls. For example, almost any call can return error $54
{out of memory), and perhaps you would want to invoke a special error handler for that conditon,

72 Volume 1: Applications and GS/0S Part I: The Application Level

S

i [o—— Po— P

Fao—

f— " [S— F—— Pa—

[P

JR—

GYOS Reference (Volume 1) Dmft 3 (APDA)
Chapter 4 Accessing GS/OS Files

The most common use of GS/OS is to access files that contain data on a storage
medium. A file is an ordered collection of bytes that has several artributes,
including a name and a file type.

(S/0S tries to free you, as an application programmer, from knowing more
about files and file systems than you want to. GS/OS has been built on the
theory that, in most cases, you only want to assign the atributes thar are critical
to the function of the file, and that you're not really interested in where the user
chooses to store the file.

Thus, this chapter assumes that you want to access files using the simplest
possible method. Using this method, you call the Apple TIGS Toolbox routines
SFPutFile or SFGetFile (from the Standard File Operations Tool Set) to
construct the name of the file the user wishes to create or open. With this
method, you don't have to worry about the pathname to the file, since GS/OS is
able to automatically construct the full pathname to the file.

If you want to build the pathname yourself, G§/OS also gives you that
capability; see Chapter 5, “Working with Volumes and Pathnames.”

Chapter 4: Accessing GS/OS Files 73

8/31/88

GS/OS Reference (Volume 1} Draft 3 (APDA) 83138

The simplest access method

To use this method, perform the following steps:

1. If you are creating a new file, call the tool set routine SFPutFile to get a pointer to the pathname of
the file that the user wishes to create. Save the pointer, and use it in 2 GS/OS Create cail to place the
file on the disk.

If the user is opening an existing file, call the tool set routine SFGetFile to get a pointer to the
pathname of the file that the user wishes to open. Save the pointer, and use it in a GS/05 Open call
to open the file.

2. If the user is opening an existing file, call the tool set routine SFGetFile to get a pointer to the
pathname of the file the user wishes to open, Save the pointer, and use it in a GS/0S Open call o
open the file.

3. While the file is open, you can do the following tasks:
¢ Read and write data to the file by making Read and Write calls.

+ Move or get the current reading and writing position in the file by making SetMark and GetMark
calls.

* Move or get the current end-of-file (EQF) by making SetEQF and GetEOF calls,

« Enable newline mode, which terminates a read if the read encounters one of the specified newline
characters, or disable that mode.

» Write all buffered information to storage to ensure data integrity by making a Flush call.
4. When you have finished working with the file, close it by making a Close call.

This chapter provides you with some information on how to use the file access calls. For more details
on each individual call, see Chapter 7, “GS/0OS Call Reference.”

Creating a file

When you want your application to create a file, issue a GS/0S Creae call. When you issue that call,
you assign some important characteristics to the file:

74 Volume 1: Applications and GS/0S Part I; The Application Level

| N—" | V— tod | — | W | | — | S— | —— | S | S S

et bemead lewesad R

b d

- 3

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

¢ A pathname, which must place the file within an existing directory. As already mentioned, if you use
the Toolbox routine SFPutFile, you only have to save the pathname pointer it returns and supply that
pointer to GS/0S. If you want to build the pathname yourself, see Chapter 5.

« The file access, which determines whether or not the file can be written to, read from, destroyed, or
renamed, and whether the file is invisible,

¢ A file type and auxiliary type, which indicate to other applications the type of information 0 be
stored in the file. It does not affect, in any way, the contents of the file.

* A storage type, which determines the physical format of the file on the disk. There are three different
formats: one is used for directory files, the other two for nondirectory files. Once a file has been
created, you can't change its storage type.

« The size of the file and the size of the resource of the file, which are used to preallocate disk storage
for the file 10 be created. Under most circumstances, you can leave these parameters set to their
default of 0,

When GS/OS creates the file, it places the properties listed above on disk, along with the current
system date and time (called creation date and creation time). A created file remains on disk until
it is deleted (using the Destroy call).

Opening a file

Before you can read information from or write information to a file that has been created, you must
use the Open call to open the file for access. When you open a file, you specify a pathname t0 2
previously created file; the file must be on a disk mounted in 2 disk drive or GS/OS returns an error. As
already mentioned, you can query the user for the filename by using the SFGetFile routine in the
Standard File Operations Tool Set of the Apple IGS Toolbox.

The Open call returns a reference number that your application must save; any other calls you make
affecting the open file must use the reference number. The file remains open until you use the Close

Multiple open calls can be made to files on block devices for read-only access; in that situation, the
file remains open until you make a Close call for each file you opened.

GS/0S allows any number of open files at a time limited only by the amount of total available
memory and number of available reference numbers. In practice, there is no limit to the number of
open files.a practical limit, . However, each open file requires some system overhead, so in cases
where memoty is in short supply, your application might want to keep as few files open as possible.

Chapter 4: Accessing GS/OS Files 75

GOS8 Reference (Volume 1) Lraft 3 (APDA) B3 44

Your application can also further limit the read-write access to a file when it makes a GS/08 Open
call; for example, if the file was created with read-write access, you could change that access to read-
only.

You should be aware of the differences between a file on disk and portions of an open file in
memory. Although some of the file’s characteristics and some of its data may be in memory at any
given time, the file itself still resides on the disk. This allows GS/0S to manipulate files that are much
larger than the computer's memory capacity. As an application writes to the file and changes its
characteristics, new data and characteristics are written to the disk.

Working on open files

When you open a file, some of the file’s characteristics are placed into a region of memory. Several of
these characteristics are accessible to calling applications by way of GS/0S calls, and can be changed
while the file is open.

This section describes the GS/OS calls that work with open files.

Reading from and writing to files

Read and Write calls to GS/OS transfer data between memory and a file. For both calls, the

application must specify the following information:

¢ reference number of the file (assigned when the file was opened)

« location in memory of a buffer that contains, or is to contain, the transferred data

¢ number of bytes to be transferred

¢ cache priority, which determines whether or not the blocks involved in the call are saved in RAM for
later reading or writing

When the request has been carried out, GS/OS passes back to the application the number of bytes
that it actually transferred.

A read or write request starts at the current Mark, and continues until the requested numbes of bytes

has been transfemred (or, on a read, until the FOF has been reached). Read requests can also terminate
when a specified character is read.

% Volume 1: Applications and GS/0S Part I: The Application Level

GS/0S Reference (Volume 1) Drajt 3 (APDA)

Setting and reading the EOF and Mark

Your application can place the EOF anywhere, from the current Mack position to the maximum
possible byte position. The Mark can be placed anywhere from the first byte in the file to the EOF.
These two functions can be accomplished using the SetEOF and SetMark calls. The current values of
the EOF and the Mark can be determined using the GetEOF and GetMark calls.

Enabling or disabling newline mode

Your application can use the Newline call to indicate that read requests terminate on a specified
character or one of a set of specified characters. For example, you can use this capability to read
lines of text that are terminated by carriage retumns.

Examining directory entries

Your application does not need to know the details of directory format to access files with known
names, You reed to examine a directory’s entries only when your application is pefforming
operations on unknown files (such as listing the files in a directory), The GS/OS call you use to
examine a directory’s entries is called GetDirEnury; for more detils, see GetDirEatry in Chapter 7.

Flushing open files

The GS/OS Flush call writes any unwritten daea from an open file’s 1/O buffer to the file, and updates
the file's size in the directory. However, it keeps the reference number (retumed from the Open call)
and file's buffer space active, and thus allows continued access to the file,

When used with a reference number of 0, Flush normally causes all open files to be flushed. Specific
groups of files can be flushed using the system file level (see "Setting and Getting File Levels” later in
this chapter).

Closing files

When you finish reading from or writing to a file, you must use the Close call to close the file. When
you use this call, you specify only the reference number of the file that was assigned when the file was
opened.

Chapter 4: Accessing GS/OS Files 77

8/31/88

GY 0S8 Reference (Volume 1) Draft 3 (APDA) 83188

The Close call writes any unwritten data from memory to the file and updates the file’s size in the
directory, if necessary. Then it frees the file’s buffer space for other uses and releases the file's
reference number and file control block. To access the file again, you must reopen it.

Information in the file's directory, such as the file’s size, is normally updated only when the file is
closed. If the user were to press Control-Reset (typically halting the current program) while 2 file is
open, data writen to the file since it was opened could be lost, and the integrity of the disk could be
darmaged. You can prevent this situation from occurring by using the Flush call.

Setting and getting file levels

When a file is opened, it is assigned a file level equal to the current value of the system file level.
Whenever a Close or Flush call is made with a reference aumber of 0, GS/OS closes or flushes only those
files whose levels are greater than the current system level,

The system file level feantre can be used, for example, by a controlling program such as a
development system shell to implement an EXEC command:

The shell opens an EXEC program file when the level is $00.

The shell then sets the level to, for example, $07.

The EXEC program opens whatever files it needs.

The EXEC program executes a GS/OS Close command with a reference number of $0000 t© close al
the files it has opened. All files at or above level $07 are closed, but the EXEC file itself remains open.

R

You assign a value to the system file level with a Setlevel call; you obtain the current value by making
a Getlevel call.

Working on closed files

This section describes some of the functions of the GS/OS calls that work with closed files. Some of
the calls that work with pathnames are performed on closed files; see Chapter 5, “Working with
Volumes and Pathnames,” for more information.

78 Yolume 1: Applications and G5/0S Part I: The Application Level

j —

.

.

-] [P

[—

GS/0S Reference (Volume 1) Draft 3 (APDA)

Clearing backup status

Whenever a file is altered, GS/OS automatically changes the information about the file’s state to
indicate that it has been changed but not backed up. Thus, an application that performs backups
can check the backup status 1o determine whether or not to backup the file.

If you want to change the state information about the backup, and in effect indicate to GS/OS that
the file does not need to be backed up, you can use the ClearBackup call. This resets the backup
status so that it looks to GS/OS as if the file had not been altered. For example, you could use this
technique ina word-processing application if the user deleted something from the file but then
decided to undo the change; issuing the ClearBackup call would prevent the file from being backed
up.

Deleting files

If you want your application to delete file on disk, you can use the GS/OS Destroy call to delete the
file. You can use this technique only on subdirectories, standard files, and extended files; you can't
use the technique to delete volume directories or character-device files.

Note Character-device files are treated somewhat differently. See Chapter 11, “Character
FST,” for a detailed discussion of that kind of file.

Setting or getting file characteristics

Certain characteristics about an open or closed file can be retrieved or modified by the standard
GS/0S calls SetFilelnfo and GetFileinfo.

Important Although SetFileInfo and GetFilelnfo calls can be pedformed on open files, you might not
get back the information you want. It's safer 1o perform these calls only on closed files.

Those characteristics include:

« access to the file

« file type and auxiliary type

e creation time and date

* modification time and date

Chapter 4: Accessing GS/OS Files 7

GSOS Reference (Volume 1) Draft 3 (APDA)

* 2 pointer to an option list for FST-specific information (see Part II of this manual for more
information about FSTs)

An example of how you can use SetFilelnfo and GetFilelnfo is given in the section “Copying Files” in
this chapter.

Changing the creation and modification date and time

The creation and modification fields in a file entry refer to the contents of the file. The values in
these fields should be changed only if the contents of the file change. Each field contains the time
and date information in the format shown in Table 4-1.

Table 41 Date and time format

Tiem Byte_position
seconds Byte 1
minutes Byte 2
hour Byte 3
year Byte 4
day Byte 5
month Byte 6
il Byte 7
weekday Byte 8

Since data in the file's directory entry itself are not part of the file's contents, the modification field
should not be updated when another field in the file entry is changed, unless that change is due to an
alteration in the file’s contents. For example, a change in the file’s name is niot a modification; on the
other hand, a change in the file's EOF always reflects a change in its contents and, therefore, is 2
modification,

Remember also that a file’s entry is a part of the contents of the directory or subdirectory that
contains that entry. Thus, whenever a file entry is changed in any way (whether or not its
modification field is changed), the modification fields in the entries for all its enclosing
subdirectones—including the volume directory—must be updated.

@ Volume 1: Applications and GS/0S Part {: The Application level

373188

| —

[— [— [T

bd

[TS

Lod

d

[RS T O

Loond

ke d e d

e d

GSOS Reference (Volume 1) Draf! 3 (APDA) 8/31/88

Finally, when a file is copied, a utility program must be sure to give the copy the same creation and
modification date and time as the original file, and not the date and time at which the copy was
created. See the section “Copying Files” in this chapter for more information.

Copying files

GS/0S provides several techniques that help your application copy files. This section details those
techniques.

Copying single files

To copy single files, perform the following steps:

1. Make a GetFileInfo call on the source file (the file to be copied), to get its creation and modification
dates and times.

2. Make a Create call to create the destination file (the file to be copied to).

3. Open both the source and destination files. Use Read and Write calls to copy the source to the
destination. Close both files.

4. Make a SetFilelnfo call on the destination file, using all the information retumed from GetFilelnfo in
step 1. This sets the modification date and time values to those of the source file.

Copying multiple files

GS/08 provides a write-deferral mechanism that allows you to cache disk writes in order to increase
performance.

To use this technique, perform the following steps:

1. Start the write-deferral session by making a GS/OS BeginSession call.
2. Copy the files .

3. End the write-deferral session by making a GS/OS EndSession call.

The SessionStatus cail also allows you to check whether a write-deferral session is currently in force.

Chapter 4: Accessing GS/OS Files 81

GSOS Reference (Volume 1) Draft 3 (APDA)

Important The price of the increased performance is increased caution. Do not allow your
application to exit while a write-deferral mechanism is in force; you could harm the data
integrity of any open disk files. Make sure that you place an EndSession call in the flow
of both a normal and an abnormal exit.

if your application gets error $54 (out of memory) when sessions are active, it should make an

EndSession call, make a BeginSession call, and try the operation again. If the operation still fails,
more EndSession and BeginSession calls will not help.

® Volume 1. Applications and GS/OS Part I: The Application Level

83188

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

]
- Chapter 5 Working with Volumes and Pathnames

If you don’t want 10, you can usually avoid working with volumes, pathnames, and devices in detail;

GS/0S can free you from keeping track of exactly where files exist As discussed in Chapter 4, if you
use the Apple [IGs Standard File Operations Tool Set routines SFPutFile and SFGetFile, you don't
j need to know where a file is, since these routines tell GS/OS where the file is located.

In some situations, however, you may not be able to or may not want to use SFPutFile and SFGetFile.
For example, you might need or want more control if your application has any of the following
characteristics:

¢ Itis text-based (and thus unable to access SFPutFile and SFGetFile).

¢ It needs to check whether particular files are in the appropriate directories; for example, if the daw
files for an application need o be in the same directory as the application.

B B

3 + It builds its own pathnames; for example, if you want to present a list of all mounted volumes to the
< user.
j In any of these cases, you have to understand more about pathnames and volumes, and just a little bit
- more aboul devices. This chapter discusses the concepts you need to understand about those
3 entities, and the GS/OS calls that allow you to work with them.
3
-
Note: This chapter doesn't discuss direct access to devices; for that information, see Volume
1 2, “The Device Interface.”
o
. Working with volumes
7
4 Some GS/0S calls are designed 10 allow you to work directly with volumes, as described in the
following sections.
7
4
7
B
1 Chapter $: Working with Volumes and Pathnames 8

i

GY/08 Reference (Volume 1) Draft 3 (APDA) & 315

Getting volume information

GY/OS provides the Volume call to retrieve information about the volume currently mounted in a
specified device. You can retrieve the following information:

» name of the volume

+ ofal number of blocks on the volume

e number of free blocks on the volume

¢ file system conmined on the volume

» size, in bytes, of a block on the volume

An example of the use of the Volume call is given in the next section.

Building a list of mounted volumes

If you want your application to build 2 list of all the mounted volumes, you need to use the following
GS/0S calls:

1. To determine the mames of the current devices, make Dinfo calls for device 1, device 2, and s0 on
until GS/0S returns error $53 (parameter out of range). Dlnfo retums the name of the device
associated with that device number (see Chapter 7 for details on the Dinfo call).

2. Once you have the device name, you can use the GS/OS Volume call to obtain the name of the volume
currently mounted on the device.

You can also continue from this point to examine directroy entries and build the pathname w© a file.
See the section "Building Your Own Pathnames” tater in this chapter for more information.

Getting the name of the boot volume

If you need to determine the name of the volume from which GS/O$ was booted, use the standard
GS/0OS call GetBootVol to retrieve a pointer to the volume name. That name is equivalent to the
prefix specified by */. For example, an application could start up QuickDraw il and the Event
Manager and then use the GetBootVol call to check if the boot volume is online. This would allow the
application © put up a custom dialog box if the boot volume was offline.

8 Volume 1: Applications and G5/OS Part |- The Application Level

- YOS Reference (Volume 1) Draft 3 (APDA) 8/31/88

Formatting a volume

GS/0S provides two format options to applications, as follows:

* The GS/OS Format cail attempts to physically format the disk; this method is necessary when your
application can't read the existing volume.

- o The GS/OS EraseDisk call assumes that a physically formatted medium already exists in the

- appropriate device, and writes new boot blocks, directory, and bitmaps to the disk. EraseDisk is

' usually faster than Format, but requires that the disk already be physically formatted. You can use this

call, for example, to quickly make all of the space reusable on a disk that can already be read by your

- application.
" ’ - In both of these cases, you have to provide a device name to the call, so you'll need to use the GS/OS
- Dinfo call at some point to find out the device name.
- l ‘ After you issue the EraseDisk or Format call, GS/OS takes control, and presents a graphics or text
- - interface that allows the user to choose the file system to be used to format the volume.
]
1
v | b Note: If you don’t want to give the user the option of selecting the file system to be placed on
- 1 the volume, you can specify the file system as a parameter to the EraseDisk or the
. J Format call.
I b For GS/OS to present the graphics user interface, your application has to meet the following
4 requirements:

¢ The 1GS Toofbox Desk Manager must be active; by implication, all of the tools sets upon which the
) Desk Manager depends must also be active (see the Apple /IGs Toolbox Reference).

L.

» In addition, the List Manager must be active.
j * For the graphics tools to run, 64 KB of free RAM must be available.
« The super hi-res screen must be currently displayed.
M‘ If all of these requirements are met, GS/OS presents the graphics interface to the user; if any one of
- the requirements are not met, GS/OS presents the text interface to the user.
-
J
B Working with pathnames
|
- If you need to, you can work directly with the pathname of a file. The following sections indicate the
J pathname capabilities of GS/OS.
7‘ Chapter 5: Working with Volumes and Pathnames 8
-

GS0S Reference (Volume 1) Draft 3 (APDA) 8/31.88

Setting and getting prefixes

You can use standard GS/0S calls to manually set and retrieve the prefix assignments. The SetPrefix
call explicitly sets one of the numbered prefixes to the prefix you want, and the GetPrefix call retums
the current value of any of the numbered prefixes,

Important SetPrefix and GetPrefix cannot be used to change or retrieve the boot volume prefix.
To retrieve the name of the boot volume prefix, use the GS/O8§ GetBootVol call, as
described earlier in this chapter and detailed in Chapter 7. Your application cannot
change the prefix of the boot volume at all. However, if the user renames the boot
volume, GS/OS will automatically adjust all pathnames to reflect the changed prefix,

Changing the path to a file

GS/0S allows you to change the path o a specified file. From the user's viewpoint of a file system,
this *moves” the file from the old directory to the new directory, even though the physical location of
- the file does not change. In addition, if you change the path to a directory, all files and d

To change the pathname, use the standard GS/OS call ChangePath. For detailed information about
how 1o change the path, see ChangePath in Chapter 7.

Expanding a pathname

GS/CS allows you to expand a partial pathname into its corresponding full pathname.

To expand the pathname, use the standard GS/OS call ExpandPath. For detailed information about
how to expand the path, see ExpandPath in Chapter 7.

Building your own pathnames
If you want your application to build a pathname by itself, you need to use several G§/0OS calls, as
follows:

1. To determine the names of the current devices, make Dlnfo calls for device 1, device 2, and so on
untif GS/OS returns error $11 (invalid device number). The Dinfo call returns the name of the device
associated with that device number (see Chapter 7 for details on Dinfo).

#® Volume 1: Applications and GS/0S Part I: The Application Level

Lo

i

[

PO VORI S

i

| -]

Lo R

| -

ened

i

i) - | B

d

L

GY0S Reference (Volume 1) Draft 3 (APDA)

2. Once you have the device name, you can use the GS/OS Volume call to obtain the name of the volume

currently mounted on the device.
3. Open that volume by using the G5/0S Open call.
4. Get the directory entries for the files by using successive GetDirEntry calls.

Introducing devices

A device is a physical piece of equipment that transfers information to or from the Apple [IGS. Disk
drives, printers, mice, and joysticks are external devices. The keyboard and screen are also
considered devices. An input device transfers information to the computer, an output device
transfers information from the computer, and an input/output device transfers information both
ways.

GS/0S communicates with several different types of devices, but the type of device and its physical
location (slot or port number) need not be known to a program that wants to access that device.
Instead, a program makes calls to GS/OS, identifying the device it wants to access by its volume
name or device name.

Device names

GS/0S identifies devices by device names. A GS/OS device name is a sequence of 2 to 32 characters
beginning with a period ().

Your application must encode device names as sequences of 7-bit ASCII codes, with the device name
in all uppercase letters and with the most significant bit off. The slash character (/; ASCII 2F) and the
colon (: ; ASCII 3A) are always illegal in device names.

Block devices

A block device reads and writes information in multiples of one block of characters at a time.
Furthermore, it is a random-access device—it can access any block on demand, without having to
scan through the preceding or succeeding blocks. Block devices are usually used for storage and
retrieval of information, and are usually input/output devices; for example, disk drives are block
devices.

GS/0S supports two different kinds of access to block devices, as follows:

Chapter 5; Working with Volumes and Pathnames &

GSQS Reference (Volume 1) Draft 3 (APDA) 831,39

* File access, where you make a GS/OS Read or Write call, and GS/OS does the work of finding and
accessing the device. This process is described in Chapter 4.

¢ Direct access, which you can use if your application needs to directly access blocks. The calls that
directly access devices are briefly summarized in Chapter 7, and discussed in detail in Chapter 2 of
Volume 2.

Note: RAM disks are software constructs that the operating system treats like devices. GS/OS
supports any RAM disk that behaves like a block device in alf respects just as if it were a
block device. ’

Character devices

A character device reads or writes a stream of characters in order, one at a time. It is a sequential-
access device—it cannot access any position in a stream without fiest accessing all previous
positions. It can neither skip ahead nor go back to a previous character. Character devices are usually
used to pass information to and from 2 user or another computer; some are input devices, some are
output devices, and some are input/output devices. The keyboard, screen, printer and
communications port are character devices.

GS/0S supports character devices through both direct and file access. For more information, see
Chapter 11 in this volume.

Direct access to devices

Generally, you don't need t do the work of accessing devices directly. For some special
applications and devices, however, you may want to take over that work; if you do, you'll have to
know 2 lot more about devices. See Volume 2, “The Device Interface,” for that information.

Device drivers

Block devices genenally require device drivers to translate a file system’s logical block device model
into the tracks and sectors by which information is actually stored on the physical device. Character
devices also require drivers.

There are two types of GS/OS drivers; loaded drivers, which are RAM-based, and generated drivers,
which are constructed by GS/OS. Device drivers are discussed in Volume 2 of this manual

8 Volume 1. Applications and GS/08§ Part I: The Application Level

bood b b bed L b b b b b

Ld |] | -

| S—1

GY0S Reference (Yolume 1)

Drapt 3 (APDA)

Chapter 5: Working with Volumes and Pathnames

&

8/31/8¢

s vk e weld e wiad wed heedd hed L el bd o d Ld

ek

GYO0S Reference (Volume 1) Draft 3 (APDA)

Chapter 6 Working with System Information

Several GS/OS calls provide access to information about GS/OS. This chapter
introduces you to them.

Chapter 6: Working with System Information 9t

8/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA)

Setting and getting system preferences

GS/0S provides a preference word that allows your application to customize some GS/0S functions,

One of the options provided is the ability of the application using pathname callsto determine
whether or not it wants to handle error $45 (volume not found) itself, or whether it wants to have
GS/0S handle those emors.

For information on how to set up the preferences word, and on any other options available in that
word, see the description of SetSysPrefs and GetSysPrefs in Chapter 7.

Checking FST information

If you want to check the information for a specific FST, you can use the standard GS/OS call
GetFSTInfo. That call returns the following information about the FST:

+ name and version number of the FST

¢ some general attributes of the FST, such as whether GS/OS will change the case of pathnames to
uppercase before passing them to the FST, and whether it is a block or character FST

« block size of blocks handled by the FST
¢« maximum size of volumes handled by the FST
» maximum size of files handled by the FST

For more detailed information about how to retrieve the information, see GetFSTinfo in Chapter 7.
For more information about FSTs, see Part II of this volume.

Finding out the version of the operating system

If your application depeads upon some feature of GS/0S that was implemented in a version later
than 2.0, you can use the standard GS/OS call GetVersion to retrieve the version number of GS/OS.
For more detailed information about how 1o retrieve the information, see the GetVersion call in
Chapter 7.

%R Volume 1. Applications and GY/O$ Part I: The Application Level

l 7 GS0S Reference (Volume 1) Drafl 3 (APDA) 8/31/88

l ..J
J .
! Getting the name of the current application
- To get the filename of the application that is cusrently executing, you can use the standard GS/OS call
| _ GetName. For example, if an application wanted to display its own name to the user, it could use
GetName (o get its current name (remember, the user can rename applications).
} _ For more detailed information about how to retrieve the information, see the GetName call in
; Chapter 7.
. ’ -
J

Chapter 6: Working with System Information 93

Led b bl ed L A L bd bewd e

ot

t

I 1

GS/0S Reference (Volume 1) Draft 3 (APDA)

Chapter 7

GS/0S Call Reference

This chapter provides the detiled description for all GS/0S calls, arranged in
alphabetical order by call name. Each description includes these elements:

+ the call's name and call number

» 2 short explanation of its use

« a diagram of its required parameter block

¢ adetailed description of all parameters in the parameter block
» 2 list of all possible operating system error messages.

Chapter 7: GS/0S Call Reference 95

8/31/88

GYOS Reference (Volume 1) Lraft 3 (APDA) 83188

The parameter block diagram and description

The diagram accompanying each cail description is a simplified representation of the call's parameter
block in memory. The width of the parameter block diagram represents one byte; successive tick
marks down the side of the block represent successive bytes in memory. Each diagram also includes
these features:

s Offset: Hexadecimal numbers down the left side of the patameter'block represent byte offsets from
the base address of the block.

» Name: The name of each parameter appears at the parameter’s location within the block.

e No.: Each parameter in the block has a number, identifying its position within the block. The wal
number of parameters in the block is called the parameter count (pCount); pCount is the initial
(zeroth) parameter in each call. The pCount parameter is needed because in some calls parameter
count is not fixed; see Minimum parameter count, below.

« Size and type: Each parameter is also identfied by size (word, longword, or double longword) and
type (input or result, and vatue or pointer). A word is 2 bytes; a longword is 4 bytes; a double
longwond is 8 bytes. An input is a parameter passed from the caller to GS/0S; a result is a parameter
retumed o the caller from GS/OS. A value is numeric or character data t be used directly; a pointer
is the address of a buffer containing data (whether input or result) to be used.

* Minimum parameter count: To the right of each diagram, across from the pcount parameter,
the minimum permitted value for pCount appears in parentheses. The maximum permitted value for
pCount is the total number of parameters shown in the parameter block diagram.

Each parameter is described in detail after the diagram.

% Volume 1: Applications and G/ 05 Part I: The Application Level

b b

[-

[

[

[SO S

| —

[- [S— | .

[I

[S—

GS/0S Reference (Volume 1) Draft 3 (APDA)
$201D BeginSession
Description This call tells GS/OS to begin deferring block writes to disk. Normally GS/0S$

Paramcters

pCount.

Errocs

writes blocks to disk immediately whenever part of the system issues a block
write request. However, when a write deferral session is in progress, GS/0S
caches blocks that are to be written untl it receives an EndSession call.

This technique speeds up multiple file copying operations because it avoids
physically writing directory blocks to disk for every file. To do a fast multiple
file copy, the application should execute a BeginSession call, copy the files,
then execute an EndSession call.

Offset No. Size and type
sl pCount } — Word INPUT value (minimum =0)

Word input value: The number of parameters in this parameter block. Minimum
is 0; maximum is 0.

(none)

Chapter 7: GS/0S Call Reference. 97

8/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31°38

$2031

Description

Parameters

pCount

intNum

intCode

Errors

BindInt

This fanction places the address of an interrupt handler into GS/OS's interrupt
vector table.

For a complete description of GS/OS's interrupt handling subsystem, see
Volume 2. See also the Unbindlnt call in this chapter,

Offset No, Size and type
$00| pCount ~ —~ Word INPUT value (minimum =3)
szt intNum - 1 Word RESULT value
$od} ven 4 2 Word INPUT value
%06 .
- intCade - 3 Longward INPUT pointer

Word input value: The number of parameters in this parameter block. Minimum
is 3; maximum is 3,

Word resuit value: An identifying number assigned by GS/OS 1o the the binding
between the interrupt source and the interrupt handler. Its only use is as an input
to the GS/OS call UnbindInt.

Word input value: Vector Reference Number of the firmware vector for the
interrupt source to be bound to the interrupt handler specified by intcode.

Longword input pointer: Points to the first instruction of the interrupt handler
routine.

$25 interrupt vector table full
$53 parameter out of range

B Volume I: Applications and GS/0S Part I: The Application Level

 —— o

| W— | - [—— | S—

b

e

bnd

LJ

L

GY0S Reference (Yolume 1) Draft 3 (APDA)

$2004

Description

Parameters

pCount
pathname
newPathname

Commenis

ChangePath

This call changes a file’s pathname to another pathname on the same volume, or
changes the name of a volume. ChangePath cannot be used to change a device
fname.

Offset No. Size and type
oL ptount < — Word INPUT value (minimum =2)
so2(_ N
- pathname - 1 Longword INPUT poinier
3067 -
l. newPathname 4 - Longword INPUT pointer

Word input value: The number of parameters in this parameter block. Minimum
is 2, maximum is 2.

Longword input pointer: Points 10 a GS/OS string representing the name of the
file whose pathname is to be changed.

Longword input pointer: Poiats to a GS/OS string representing the new
pathname of the file whose name is to be changed.

A file may not be renamed while it is open,

A file may not be renamed if rename access is disabled for the file.

A subdirectory s may not be moved into another subdirectory ¢ if s=torif tis
contined in the directory hierarchy starting at 5. For example, “rename /v 1o
fviw” is itlegal, as is *rename /v/w 10 /v/W/x".

Chapter 7: GS/0S Call Reference 9

8/31/88

GS/0S Reference (Volume 1)

Errory
$10
$27
$28
340
$44

$46
$47

$4B
$4E
$50
$52
$53
$57
558
$54

Draft 3 (APDA)

device not found

/O emor

write-protected disk
invalid pathname syntax
path not found

volume not found

file not found

duplicate pathname
version error

unsupported storage type
access: file pot destroy enabled
file open

unsupported volume type
invalid parameter
duplicate volume

not a block device

block number out of range

100 Volume 11 Applications and GS/0S

Part I: The Application Level

& 3158

GS/0S Reference (Volume 1) Draft 3 (AFDA) 8/31/8
$200B ClearBackup
Description This call sets a file's state information to indicate that the file has been backed

up and not altered since the backup. Whenever a file is aitered, GS/OS sets the
file’s state information to indicate that the file has been altered.

Parametery
Offset No. Size and type
WL peount o . Word INPUT value (minimum =1)
m Al s
~ pathname o | Longword INPUT pointer
3 pCount Word input value: The number of parameters in this parameter block. Minimmm
4 is 1; maximom is 1.
! pathname Longword input pointer: Points to a GS/OS string that gives the pathname of
H the file or directory whose backup status is 10 be cleared.
i Errors
- $27 /O emor
) $28 no device connected
) $2B write-protected disk

$2E disk switched
$40 invalid pathname syntax
4 $44 path not found

$45 volume not found
i $46 file not found
4 $4A version error
$52 unsuppored volume type
$58 not 2 block device

Chapter 7: G§/0S Call Reference 101

G308 Reference (Volume 1) Draft 3 (APDA) 8/31.858

$2014 Close

Description This call closes the access path to the specified file, releasing all resources used
by the file and terminating further access w it. Aqy file-related information that
has not been written to the disk is written, and memory resident data structures
associated with the file are released.

If the specified value of the refNum parameter is 50000, all files at or above the
current system file level are closed.

Parameters
Offset No. Size and type
) pCount ~ — Word INPUT value (minimum =1)
W zefNum - 1t Word INPUT value
pCount Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.
refNum Word input value: The identifying number assigned to the file by the Open call.
A value of $0000 indicates thac all files at or above the current system file fevel
are to be closed.
Errors

$27 /O emor

$2B write-protected disk

$2E disk switched

$43 invalid reference number
$48 volume full

§5A block number out of range

102 Volume 1: Applications and G/OS Part [The Application Levet

Lo

| SO

s

| U S

|

L — [-~ | S~ b | .

e

Lo

e

fd

vt

GSOS Reference (Volume 1) Draft 3 (APDA)
$2001 Create
Description This call creates either a standard file, an extended file, or a subdirectory on a

volume mounted in a block device. A standard file is a ProDQS-like file
containing a single sequence of bytes; an extended file is 2 Macintosh-like file
containing a data fork and a resource fork, each of which is an independent
sequence of bytes; a subdirectory is 2 daw strocture that contains information
about other files and subdirectories.

This call cannot be used 1o create a volume directory; the Format call performs
that function. Similarly, it cannot be used to create a character-device file; the
character FST creates that special kind of file (see Chapter 11),

This call sets up file system state information for the new file and initializes the
file to the empty state.

Chapier 7: GS/OS Calf Reference 103

8/31/88

GYOS Reference (Volume 1) Draft 3 (APDA) 8/31/38

Parametess
Offset No. Siue and type
%oy pCount - —~ Word INPUT value (minimum =0)
soz | -
- pathname - 1 Longword INPUT poinier
L -y
$061 access -1 2 Word INPUT value
$08
| fileType. - 3 Word INPUT value
$0A N _
L auxType -~ 4 Longword INPUT value
SO | storageType - s Word INPUT value
st 4
- aof -1 6 Longword INPUT value
$14 N
k resouxceEOF .| 7 Longword INPUT value
pCount Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 7.
pathname Longword input pointer: Points to a GS/0S string representing the pathname of

the file to be created. This is the only required parameter.

14 Volume 1. Applications and GS/0S Part {: The Application Level

f S

| -

| T Lo

| ——

S R W |

| S— [

b

GS/0S Reference (Volume 1) Draft 3 (APDA)

accesy

filaType

auxType

storageType

Word input value: Specifies how the file may be accessed after it is created and
whether or not the file has changed since the last backup, as shown in the
following bit flag:

The most common setting for the access word is $00C3.

Software that supports file hiding (invisibility) should use bit 2 of the flag 10
determine whether or not to display a file or subdirectory.

Word input value: Categorizes the file's contents. The value of this parameter
has no effect on GS/OS's handling of the file, except that only certain file types
may be executed directly by G8/OS. The file type values are assigned by Apple
Computer and listed in Table 1-2 in Chapter 1 of this volume.

Longword input value: Categorizes additional information about the file. The
value of this parameter has no effect on G8/O§'s handling of the file. By
convention, the interpretation of values in this parameter depends on the value
in the £ileType parameter. The auxiliary type values by Apple Computer and
listed in Table 1-2 in Chapter 1 of this volume.

Word input value: The value of this parameter determines whether the file being -

created is a standard file, an extended file, or subdirectory file. The following
values are valid:
$0000-$0003" create a standard file

$0005 create an extended file
$000D create a subdirectory file

*If this parameter contains $0000, $0002 or $0003, GS/OS interprets it as $0001
and actually changes it to $0001 on output.

Chapter 7: GS/OS Call Reference 105

8/31/88

GS/OS Reference (Volume 1) Draft 3 (APDA)

eof

resourceEQF

Comments

Longword input value: The eof parameter specifies an amount of storage to be
preatlocated during the create call for the file that is being created. The type of
entity is specified by the storageType parameter.

For a standard file, the e o £ parameter specifies the file size, in bytes, for which
space is to be preallocated. GS/OS preallocates enough space to hold a
standard file of the given size.

For an extended file, the eo £ parameter specifies the size, in bytes, of the data
fork. GS/OS preallocates enough space 1o hold a daw fork of the specified
size.

For a subdirectory, the aof parameter specifies the number of entries the caller
intends to place in the subdirectory. GS/08 preallocates enough space for the
subdirectory to hold the specified aumber of entries.

Longword input value: For an extended file, this parameter specifies the amount
of space w preallocate for the resource fork. GS/OS preallocates enough space
to hold a resource fork of the specified size. This parameter is meaningful only

if the storageType parameter value is $0005, indicating that an extended file

is to be created.

The Create call applies only to files on block devices.

The storage type of a file cannot be changed after it is created. For example,
there is no direct way to add a resource fork to a standard file or to remove one
of the forks from an extended file.

All FSTs implement standard files, but they are not required to implement
extended files.

106 Volume 1. Applications and GS/OS Part 1: The Application Level

/31,88

| —

PNV TOR SR WUNICR USRI WRUR W

ed

N

[

hod b leed bed L

-4

[

| I—1

[

GYOS Rejerence (Volume 1)

Errors

$10
$27
$2B
$40
$44
$45
$46
$47
$48
$49
$4B
$52
$53
$58
$5A

Draft 3 (APDA)

device not found

/O error
write-protected disk
invalid pathname syntax
path not found

volume not found

file not found

duplicate pathname
volume full

volume directory full
unsupported storage type
unsupported volume type
invalid parameter

not a block device

block number out of range

Chapter 7: GS/0S Call Reference

107

8/31/88

GSIS Reference (Volume 1) Draft 3 (APDA)

$202E

Description

Parameters

pCount
devNum

code

DControl

‘This call sends control information to a specified device. This description only
provides general information about the parameter block; for more information,
see Volume 2, “The Device Interface.”

Offset No. Size and type
WL peount 4 . Word INPUT value (minimum =5)
szl davNum ~ 1 Word INPUT value
L= code -4 2 Word INPUT value
m po= g
- list -1 3 Longword INPUT poigter
$0A

l. requestCount i 4 Longword INPUT value

E

T
1

. transferCount .| 5 Longword RESULT value

Word input value: The aumber of parameters in this parameter block. Minimum
is 5; maximum is 5.

Word input value: Device number of the device to which the control
information is being sent.

Word input value: A number indicating the type of control request being made.
The control requests are described completely in Chapter | of Volume 2. Control
codes of $0000-$7FFF are standard status calls that must be supported by the
device driver. Device-specific control calls may be supported by a paricular
device; they use status codes $8000-$FFFF. A list of standard control codes is as
follows:

108 Volume 1: Applications and GS/0S Part [: The Application Level

&/ 31:58

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

| S

$0000 ResetDevice

$0001 FormatDevice

] $0002 Eject

- $0003 SetConfigParameters
$0004 SetWaitStatus

] $0005 SetFormatOptions

$0006 AssignPartitionOwner

$0007 ArmSignal

; $0008 DisarmSignal

$0009 SetPartitionMap

$000A-$TFFF (reserved)

$8000-$FFFF (device-specific subcalls)

[

list Longword input pointer: Points to a buffer containing the device control
5 information. The format of the data returned in the control buffer depeads on
: the control code as described in Volume 2, “The Device Interface.”

\ requestCount Longword input value: For control codes that have a control list, this parameter
: gives the size of the control list.

, vransferCount Longword result value: For control codes that have a control list, this parameter
indicates the number of bytes of information actually transferred to the device.
Errors

J $11 invalid device number
$53 parameter out of range

DRI Chapter 7: G&/OS Call Reference 109

GS0S Reference (Volume 1) Draft 3 (APDA}

$2002

Description

Parameters

pCount

pathname

Destroy

This call deletes a specified standard file, extended file (both the data fork and
resource fork), or subdirectory, and updates the state of the file system to
reflect the deletion. After a file is destroyed, no other operations on the file are
possible.

This call cannot be used to delete a volume directory; the Format call
reinitializes volume directories.

It is not possible to delete only the data fork or only the resource fork of an
extended file.

Before deleting a subdirectory file, you must empiy it by deleting all the files it
coniains, -

Offser No. Size and type
m ount i
- pC: -1 — Word INPUT value (minjmum =1)
szt -
pathname 4 | [ongword INPUT pointer
[, -}

Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.

Longword input pointer: Points to a GS/08 string representing the pathname of
the file o be deleted.

10 Volume 1 Applications and GS/0S Part . The Application Level

8/31/88

[

— — L e e S
[| [T . | N—

[T | .

| S—

GOS8 Reference (Volume 1)

Comments

A file cannot be destroyed if it is currently open or if the access atributes do

Draft 3 (APDA)

not permit destroy access,

$10
$27
$28
$40
$44
$45
$46
$4B
$4E
$50
$52
$53
$58
$54

device not found

/O error

write-protected disk
invalid pathname syntax
path not found

volume not found

file not found
unsupported storage type
access: file not destroy-enabled
file open

unsupported volume type
invalid parameter

not a block device

block number out of range

Chapter 7: GS/0S Call Refererce

301

&8/31/88

GYOS Reference (Voiumne 1)

Druft 3 (APDA)

$202C Dinfo

Description This call returns general information about a device atrached to the system.
Parameters
Clfset No. Size and type
01 pCount - — Word INPUT value (minimum =2)
LV devNum ~ Word INPUT value
S04]
L davName - 2 Longword INPUT poiater
| =y
8 e characteristics.d 3 Word RESULT value
$0A
b =i
t~ totalBlocks 4 4 Longword RESULT value
E
SOE| slotNum - 5 Word RESULT value
1 .
$10 unitNum - Word RESULT value
12
f12f - version - 7 Word RESULT value
$14 | devicelD -4 g Word RESULT value
$16] headlink - 9 Word RESULT value
18
MBL forwardLink — |9 ord RESULT value
SIAL N
l. extendedDIBptr . it mngwo,d INPUT pQ‘m[er
bew R
pCount Word input value: The number of parameters in this parameter block. Minimum

is 2; maximum is 11.

112 Volume 1: Applications and G¥OS

Pan I: The Application Level

&/318%

e | S | S—

| S

&80 Refevence (Volume 1) Draft 3 (APDA) 8/31/88

devNum

devName

characteristics

totalBlocks

slotNum

Word input value: A device number. GS/OS assigns device numbers in sequence
1, 2, 3,... as it loads o creates the device drivers. There is no fixed
correspondence between devices and device numbers. To get information
about every device in the system, one makes repeated calls to Dinfo with
devNum values of 1, 2, 3,... until GS/OS retums error $11 (invalid device
number).

Longword input pointer: Points 1o a result buffer in which GS/OS returns the
device name of the device specified by device number. The maximum size of
the string is 31 bytes so the maximum size of the returned value is 33 bytes. Thus
the buffer size should be 35 bytes.

Word result value: Individual bits in this word give the general characteristics of
the device, as shown in the following bit flag:

[s[uulufflels s [7 {6 [s [T]2

device is 2 RAM disk or ROM disk
device is a linked device

bits indicate device speed
device is a blodk device —
wriling to device allowed —

reading from devioe allowed —
ruaved‘]

formatting device allowed —

device contains removable media —!

muved—J

Longword result value: If the device is a block device, this parameter gives the
maximum number of blocks on volumes handled by the device. For character
devices, this parameter teturns zero.

Word result value: Slot number corresponding to the resident firmware

associated with the device or slot number of the slot containing the device.
valid values are $0000-000F.

Chapter 7. GY/OS Call Reference 113

GSOS Reference (Volume 1) Draft 3 (APDA)

Al tNum

varsion

devicelID

Word result value: Unit number of the device within the given slot. This
parameter has no correlation with device number.

Word result value: Version number of the device driver. This parameter has the
same format as the SmartPort version, as shown in the following bit flag:

Flslujuhizl:‘x[m[s»la[ﬂ GISEISJ 2]1]?]

Maerdannm-Jl l

Minof release numrber .

Release phase .
A= Alpha
B« Beta
I = Expenmenal
0 » Finat

For example, a version of 2.00 in this format would be entered as $2000; 1
vession of 0.18 Beta would be entered as $018B:

Word result value: An identifying number associated with a particular type of
device.

‘This parammeter may be useful for Finder-type applications when determining
what type of icon to display for a particular device. Current definitions of
device ID numbers inchude:

114 Volume 1. Applications and GS/0$ Part I: The Application Level

831,88

. J
j GY/0S Reference (Voluma 1) Drat 3 (APDA) 8/31/8,
$0000 Apple 5.25 Drive $0010 File Server
(includes UniDisk™, $0011 Reserved
,] DuoDisk™, Disk Ic, $0012 AppleDesktop Bus
and Disk 0) $0013 Hard disk (generic)
: $0001 Profile 5 MB $0014 Floppy disk (generic)
J $0002 Profile 10 MB $0015 Tape drive (generic)
. $0003 Apple 3.5 Drive $0016 Character device driver (generic)
- (includes UniDisk 3.5 $0017 MFM-encoded disk drive
} Drive) $0018 AppleTalk network (generic)
' $0004 SCSI (generic) $0019 Sequential access device
A $0005 SCSI hard disk $001A SCSI scanner
j $0006 SCSI tape drive $001B Other scanner
$0007 SCSI CD ROM $001C laserWriter SC
. $0008 SCSI printer $001D AppleTalk main driver
é $0009 Serial modem - $001E AppleTalk file service driver
$000A Console driver S001F AppleTalk RPM driver

$000B Serial printer

$000C Serial Laser Writer
$000D AppleTalk LaserWriter
SO00E RAM Disk

$000F ROM Disk

| W——

headLink Word result value: A device number that describes a link to another device. It is
the device number of the first device in a linked list of devices that are
associated with each other because they represent distinet partitions on 2 single
disk medium. A value of 0 indicates that no link exists.

| S

} forwardLink Word result value: A device number that describes a link to another device. It is
the device number of the next device in a linked list of devices that are
associated with each other because they represent distinct partitions on a single
disk. A value of 0 indicates that no fink exists.

FS—

extendedbIBptr Longword input pointer: Points to a buffer in which GS/OS returns information
about the exiended device information block.

fnd

§
1

Errors

$11 invalid device number
» $53 parameter out of range

Chapter 7: G5/0S Call Reference 115

GS/0S Reference (Volume 1) Draft 3 (APDA)
$202F DRead
Description This call performs a device-level read on a specified device.

This description only provides general information about the parameter block;
for more information, see Volume 2, *The Device Interface.”

Parameters
Offset No. Size and rype
jad pCount. -1 — Word INPUT value (minimum =6
WL devMum o 1 Word INPUT value
504 e e
- buffer -1 2 Longword INPUT poirter
308
ol ~
-~ requestCount -4 3 [ongword INPUT value
m e -y
- startingBlock -4 4 Longword INPUT value
$10
— blockSize -1 5 Word INPUT value
s 7]
- transferCount ¢ yongword RESULT value
pCount Word input value: The number of parameters in this parameter block. Minimum
is 6; maximum is 6,
devNum Word input value: Device number of the device from which data is to be read.
buffer Longword input pointer: Points to a buffer into which the data is to be read.

‘The buffer must be big enough o hold the data,

16 Volume 1. Applications and GS/OS

Part 1: The Application Level

83188

GS/OS Reference (Volume 1) Draft 3 (APDA)

requestCount

startingBlock

blockSize

transferCount

Errors

Longword input value: Specifies the number of bytes to be read.

Longword input value: For a block device, this parameter specifies the logical
block number of the block where the read starts. For a character device, this
parameter is unused.

Word input value: The size, in bytes, of a block on the specified block device.
For character devices, the parameter must be set to zero.

Longword result value: The number of bytes actually transferred by the call.

$11 invalid device number
$53 parameter out of range

Chapter 7: GS/OS Call Reference 117

8/31/88

GY0S Reference (Volume 1) Draft 3 (APDA)

$202D

Description

Parameters

pCount

devNum

code

DStatus

Retumns status information about a specified device.

This description provides only general information about the call; for more
information, see Voiume 2, “The Device Interface.”

Offset No. Size and type
01 pCount + —~ Word INPUT value (minimum =5)
2| devium - 1 Word INPUT value
04| code - 2 Word INPUT value
$06(N
- list -1 3 Longword INPUT pointer
S04

- requestCount 4 4 Longword INPUT value

0B
l. transferCount _| 5 Longword RESULT value

Word input value: The number of parameters in this parameter block. Minimum
is 5; maximum is S.

Word input value: Device number of the device whose status is to be returned.

Word input value: A number indicating the type of status request being made.
The status requests are described completely in Volume 2, “The Device
Interface.” Staws codes of $0000-$7FFF are standard status calls that must be
supported by the device driver. Device-specific status calls may be supported
by a particular device; they use status codes $8000-$FFFF. These are the
standard status codes:

118 Volume 1: Applications and GS/OS Part I: The Application Level

873188

e

| S—

E - S—

[T—

[S—

GS/OS Reference (Volume 1)

list

requestCount

transferCount

Errors

$0000
$0001
$0002
$0003
$0004

Draft 3 (APDA)

GetDeviceStatus
GetConfigParameters
GetWaitStatus
GetFormatOptions
GetPartitionMap

$0005-$7FFF (reserved)
$8000-$FFFF (device specific subcalls)

Longword input pointer: Points to a buffer in which the device returns its status
information. Detils about the status list are provided in Chapter 1 of Volume 2.

Longword input value: Specifies the number of bytes to be returned in the status
list. The call will never retam more than this number of bytes.

Longword result value: Specifies the number of bytes actually returned in the

status list. This value will always be less than or equal to the request count.

$11

invalid device number

$53 parameter out of range

Chapter 7: GS/OS Call Reference

119

8/31/88

GYOS Reference (Volume 1) Draft 3 (APD4)

$2030

Description

Parameters

pCount
devNum

pbuffer

DWrite

This call pefforms a device-level write to a specified device.

This description only provides general information about the parameter block;
for more information, see Volume 2, "The Device Interface.”

Offset No. Size and type

Wl pCount - - Word INPUT value (minimum =6)

LI devlum ~ 1 Word INPUT value

L buffer - 2 Longword INPUT pointer

- raquastCount - 3 Longword INPUT value

- startingBlock — 4 [ongword [NPUT value

$10] blockSize -5 Word INPUT value
312

~ transferCount i ¢ Isngword RESULT value

Word input value: The number of parameters in this parameter block. Minimum
is 6, maximum is 6,

Word input value: Device number of the device from which data is o be
written.

Longword input pointer: Points to a buffer from which the data is 10 be writien.

12 Yolume 1: Applications and G&/OS Part I The Application Level

8/31:88

| [P— | — LM

| S

| S

GS/0S Reference (Voiume 1) Draft 3 (APDA)

requestCount

startingBlock

blockSize

transferCount

Errors

Longword input value: Specifies the number of bytes to be written.

Longword input value: For a block device, this parameter specifies the logical
block number of the block where the write starts. For a character device, this
parameter is unused.

Word input value: The size, in bytes, of a block on the specified block device.

For character devices, the parameter is unused and must be set to zero.

Longword result value: The number of bytes actually transferred by the call.

$11 invalid device number
$53 parameter out of range

Chapter 7: GS/OS Call Reference 121

8/31/88

GS'OS Reference (Volume 1) Draft 3 (4PDA)

$201E

Description

Parameters

pCount

Errors

EndSession

This call tells GS/0S w flush any deferred block writes that cccurred during a
write-deferral session (started by a BeginSession call) and 1o resume rormal
writethrough processing for all block writes.

Offset No. Size aod type
’“’E pCount q —~ Word INPUT value {minimum =0)
N |

Word input value: The number of parameters in this parameter block. Minimum
is 0; maximum i 0.

(none)

122 Volume I: Applications and G$/0S Part I: The Application level

3731 8%

T

i

F W

id k.

1.

GS/OS Reference (Volume 1) Draft 3 (APDA)
$2025 EraseDisk
Description This call puts up 2 dialog box that allows the user to erase a specified volume

Parameters

pCount

devName

volName

and choose which file system is to be placed on the newly erased volume. The
volume must have been previously physically formatted. The only difference
between EraseDisk and Format is that EraseDisk does not physically format the
volume. See the Format call later in this chapter.

Offset No. Size and type
WL peomnt o Word INPUT value (minimum <3)
o -
L: devName -1 Longword INPUT pointer
$06
- 4
- volName -1 2 tongword INPUT pointer
o -1
WAL £4leSysID o 3 wod RESULT value
#c . reqFileSysID J 4 Word INPUT value

Word input value: The number of parameters in this parameter block. Minimum
is 3; maximum is 4.

Longword input pointer: Points to 2 GS/OS string representing the device name
of the device containing the volume 1o be erased.

Longword input pointer: Points to a GS/OS string representing the volume name
to be assigned to the newly erased volume.

Chapter 7: GS/OS Call Reference 123

8/31/88

GY0OS Reference (Volume 1) Draft 3 (APDA4)

fileSysID

reqgfileSysID

Errors

12

Word result value: If the call is successful, this parameter identifies the file
system with which the disk was formatted. If the call is unsuccessful, this
parameter is undefined. The file system IDs are as follows:

$0000 reserved $0007 LISA

$0001 ProDOS/SQS $0008 Apple CP/M
$0002 DOS§ 3.3 $0009 reserved
$0003 DOS3.20r31 $000A MS/DOS
$0004 Apple I Pascal $000B High Sierra
30005 Macintosh (MFS) $000C 180 9660
$0006 Macintosh (HFS) $000D-$FFFF reserved

Word input value: Provides the file system ID of the file system that should be
initialized on the disk. The values for this parameter are the same as those for
the £ilesysID parameter.

If you supply this parameter, it suppresses the initialization dialog that asks the
user which file system to place on the newly erased disk. Normally, your
application should not use this parameter, use it only if your application needs
to format the disk for a specific FST.

If the carry flag is set but A is equal t0 0, the user selected cancel in the dialog
box.

$10 device not found

$11 invalid device request
$27 VO error

$28 no device connected
$2B write-protected disk
$40 invalid pathname syniax
$53 parameter out of range
$358 not a block device

$5D file system not available
$64 invalid FST ID

%4 Volume 1: Applications and G§&/OS Pant |: The Application Level

83188

O

| -

GS0S Reference (Volume 1) Draft 3 (APDA)

$200E

Description

Parameters

pCount

inputPath

outputPath

flags

ExpandPath

This call converts the input pathname into the corresponding full pathname with
colons (ASCII $3A) as separators. If the input is a full pathname, ExpandPath
simply converts all of the separators to colons, If the input is a partial
pathname, ExpandPath concatenates the specified prefix with the rest of the
partial pathname and converts the separators to colons,

If bit 15 (msb) of the £1ags parameter is set, the call convents all lowercase
characters to uppercase (all other bits in this word must be cleared). This call
also performs limited syntax checking. It returns an error if it encounters an
illegal character, two adjacent separators, or any other syntax efror.

Offset No. Size and type
soo pCount 4 — Word INPUT value (minimum =2)
$02

- inputPath - 1 Longword INPUT pointer

. outputPath o 3 Longword INPUT pointer

o4 flags - 3 Word INPUT value

Word input value: The number of parameters in this parameter block. Minimum

is 2; maximum is 3.
Longword input pointer: Points to a GS/OS string that is to be expanded.

Longword input pointer: Points to a result buffer where the expanded pathname
is returned.

Word input value: If bit 15 is set to 1 this call retums the expanded pathname ail
in uppercase characters. All other bits in this word must be zero.

Chapier 7: GS/0S Call Reference 125

8/31/88

G505 Reference (Volume 1) Draft 3 (APDA) 3488

Errors

$40 invalid pathname syntax
$4F buffer too small

12 Volume 1: Applications and G&/O8 Part 1: The Application Level

boow Boosws Lo

| N—— [W—— [[N

ond

.

GS/0S Reference (Voiume 1) Draft 3 (APDA)
$2015 Flush
Description This call writes to the volume all file state information that is buffered in

Parameters

pCount

refNum

memory but has not yet been written to the volurmme. The purpose of this call is
t assure that the representation of the file on the volume is consistent and up
to date with the latest GS/OS calls affecting the file.

Thus, if 2 power failure occurs immediately after the Flush call completes, it
should be possible to read all data written to the file as well as all file attributes,
If such a power failure occurs, files that have not been flushed may be in
inconsistent states, a5 may the volume as a whole, The price for this security is
performance; the Flush call takes time to complete its work. Therefore, be
careful how often you use the Flush call.

A value of $0000 for the re£Num parameter indicates that all files at or above
the current file level are o be flushed.

Offser No. Sizeand type
$00¢ pCount - Word INPUT value (minimum = 1)
o2, refNum -1 Word INPUT value

Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1,

Word input value: The identifying number assigned 1o the file by the Open call.

A value of $0000 indicates that all files at or above the current system file level
are to be flushed.

Chapter 7: GS/OS Call Reference 127

8/31/88

G805 Reference (Volume 1) Draft 3 (APDA) B31°88

Errors

$27 VYO error

$2B disk write protected

$2E disk switched

343 invalid reference number
$48 volume full

$3A block number out of range

Y8 Volurne 11 Applications and GY/OS Pant & The Application Level

| -

GS/0S Reference (Volume 1) Draft 3 (APDA)

$2024

Description

Parameters

pCount
devName

volName

Format

This call puts up a dialog box that allows the user to physically format a
specified volume and choose which file system is to be placed on the newly
formatted volume.

Some devices do not support physical formatting, in which case the Format call
acts like the EraseDisk call and writes only the empty file system. See the
EraseDisk call earlier in this chapter.

Offset No. Size and type
$00f pCount. - Word INPUT value (minimum = 3)
02

= devName - 1 Longword INPUT pointer

- volName -~ 2 Longword INPUT pointer

$0A| £ileSysID - 3 Word RESULT value

WCL. reqrilasysId | 4 word INPUT value

Word input value: The number of parameters in this parameter block. Minimum .

is 3; maximum is 4.

Longword input pointer: Points to a GS/OS string representing the device name
of the device containing the volume to be formatted.

Longword input pointer: Points to a G5/OS string representing the volume name
to be assigned to the newly formatted blank volume.

Chapter 7: GS/OS Call Reference 129

8/31/88

GSOS Reference (Volume 1) Draft 3 (APDA)

fileSysID

reqFileSysID

Errors

Word result value: If the call is successful, this parameter identifies the file
system with which the disk was formatted. If the call is unsuccessful, this
parameter is undefined. The file system IDs are as follows:

$0000 reserved $0007 LISA

$0001 ProDOS/SOS $0008 Apple CP/M
$0002 DOS 33 $0009 reserved
$0003 DOS3.20r31 $000A MS/DOS
$0004 Apple I Pascal $000B High Sierra
$0005 Macintosh (MFS) $000C 18O 9660
$0006 Macintosh (HFS) $000D-$FFFF reserved

Word input value: Provides the file system ID of the file system that should be
initialized on the disk. The values for this parameter are the same as those for
the £1leSysID parameter.

If you supply this parameter, it suppresses the dialog from the Disk
Initialization package that asks the user how the disk should be formatted.
Normally, your application should not use this parameter; use it only if your
application needs to format the disk for a specific FST.

If the carry flag is set but A is equal t 0, the user selected cancel in the dialog
box.

$10 device not found

$11 invalid device request
$27 VO error

$28 no device connected
$2B disk is write protected
$40 invalid pathname syntax
$53 parameter out of range
$58 not a block device

$5D file system not available
$64 invalid FST ID

13 Volume 1: Applications and GS/0S Part I: The Application Level

8/31/88

GYOS Reference (Volume 1) Draft 3 (APDA) /31/88

§2020 GetDevNumber

Description This call returns the device number of a device identified by device name or
volume name. Only block devices may be identified by volume name, and then
only if the named volume is mounted. Most other device calls refer 1o devices
by device number.

GS/08 assigns device numbers at boot time. The numbers are a series of
consecutive integers beginning with 1. There is no algorithm for determining the
device number for a particular device,

Because a device may hold different volumes and because volumes may be

moved from one device to another, the device number returned for a particular
volume name may be different at different times.

Parameters
Offset No. Size and type
o) pCount Word INPUT value (minimum = 2)
02 b wd
- deviame ~ 1 Longword INPUT poinier
il & devium ~ 2 Word RESULT value
pCount Word input value: The number of parameters in this parameter block. Minimum
is 2; maximum is 2,
devName Longword input pointer: Points to a result buffer representing the device name
or volume name (for a block device).
devNum Word result value: The device number of the specified device.

132 Volume 1: Applications and GS/OS Part I The Application Level

GYOS Reference (Volume 1)

Errors

$10
s
$40
$45

Draft 3 (APDA)

device not found

invalid device request

invalid device or volume name syntax
volume not found

Chapier 7: G&/OS Call Reference

133

8/31/88

GYOS Reference (Volume 1)

Draft 3 (APDA)

8/31/88

This call returns information about a directory entry in the volume directory or a

subdirectory. Before executing this call, the application must open the
directory or subdirectory. The call allows the application to step forward or
backward through file entries or to specify absolute entries by entry number.

$201C GetDirEntry
Description
Parameters
Offset
00 = plount -
o refNum -
oL £lags -
$06} base -
08l displacement .
e .
- name g
SOE entryNumn -
$10 b filsType -
$12 B
- eof -
~ ~4
$161_ i
L. blockCount —
$1A

14 Volume 1: Applications and G§/OS

Size and type
Woed INPUT value (minimum = 5)
Word INPUT value

‘Word RESULT value

Word INPUT value

Word INPUT value

Longword INPUT pointer

Word RESULT value

Word RESULT value

Longword RESULT value

Longword RESULT value

Part I: The Application Level

GS0S Reference (Volume 1) Draft 3 (APDA)

base

displacement

name

entryNum

fileType

eof

siebsieinle]sTalzlels fefalali]o]
reserved ~]

Word input value: A value that tefls how to interpret the displacement
parameter, as follows:

$0000 displacement gives an absolute entry number

$0001 displacement is added to current displacement to get next entry
mmber

$0002 displacement is subtracted from current displacement to get next
entry number

file is an expended file= 1
file is not an extended file = 0

Word input value: In combination with the base parameter, the
displacement parameter specifies the directory entry whose information is
io be returned. When the directory is fiest opened, GS/OS sets the current
displacement value to $0000. The current displacement value is updated on
every GetDirEntry call.

If the base and displacement parameters are both zero, GS/OS returns a 2-
byte value in the ent ryNum parameter that specifies the total number of active
entries in the subdirectory. In this case, G$/OS also resets the current
displacement to the first entry in the subdirectory.

To step through the directory entry by entry, you should set both the base and
displacement parametess to $0001.

Longword input pointer: Points to a result buffer giving the name of the file or
subdirectory represented in this directory entry.

Word result value: The absolute entry aumber of the entry whose information is
being retsrned. This parameter is provided so that a program can cbtain the
absolute entry number even if the base and displacement parameters
specify a relative entry.

Word result value: The value of the file type of the directory enuy.

Longword result value: For a standard file, this parameter gives the number of
bytes that can be read from the file. For an extended file, this parameter gives
the number of bytes that can be read from the file’s data fork.

136 Volume 1: Applications and GS/OS Part I: The Application Level

8/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

blockCount Longword result value: For a standard file, this parameter gives the number of
blocks used by the file. For an extended file, this parameter gives the number of
blocks used by the file’s data fork.

createDateTime Double longword result value: The value of the creation date and time of the
directory entry. The format of the date and time is shown in Table 4-1 in
Chapter 4.

modDateTime Double longword result value: The value of the modification date and time of
the directory entry, The format of the date and time is shown in Table 4-1 in

Chapter 4.
access Word result value: Value of the access attribute of the directory entry.
auxType Longword result value: Value of the auxiliary type of the directory entry.
i fileSysiD Word result value: File system identifier of the file system on the volume
o containing the file. Values of this parameter ate described under the Volume call
later in this chapter.
j optionList Longword input pointer: Points to a data area where GS/OS returns FST-specific

information related to the file. This is the same information retumed in the
option list of the Open and GetFileInfo calls.

This parameter points to a buffer that starts with a length word giving the total
buffer size including the length word. The next word is an output length value
which is undefined on input. On output, this word is set to the size of the
output data excluding the length word and the output length word. GS/OS will
not overflow the available space specified in the input length word. If the data
area is too small, the application can reissue the call after allocating a new
output buffer with size adjusted to output length plus four.

e

| W

M
oo resourceECF Longword result value: If the specified file is an extended file, this parameter
l gives the number of bytes that can be read from the file’s resource fork.
. Otherwise, the parameter is undefined.
-
I resourceBlocks Longword result value: If the specified file is an extended file, this parameter

gives the number of blocks used by the file’s resource fork. Otherwise, the
parameter is undefined.

| S

Lot

Lot

] Chapter 7: GS/OS Call Reference 137

| SR

bnd

1.

| ——

Lo | S | —

| F—

Lo

Ld

[Lowod

.}

GS/OS Reference (Voiume 1) Draft 3 (APDA)

$2019

Description

Parameters

pCount

refNum
eof

Errors

GetEQOF

This function returns the current logical size of a specified file. See also the
SetEOF call.

Offset No. Sixe and type
WL pcount Word INPUT value (minizoun = 2)
2y rafNum -1 Word INPUT value
o}, -
~ eof - 2 longword RESULT value

Word input value: The number of parameters in this parameter block. Minimum
is 2; maximum is 2.

Word input value: The identifying number assigned to the file by the Open call.

Longword result value: The current logical size of the file, in bytes.

$43 invalid reference number

Chapier 7: G§/0S Call Reference 139

8/31/88

GSOS Reference (Volume L)

Errors

$10
§27
$44
$4B

$52
$53
$58
561

Drafl 3 (APDA)

device not found

/O error

version error

unsupported storage type
buffer too small
unsupported volume type
invalid parameter

not a block device

end of directory

133 Volume 1: Applications and GS/05

Part I: The Application Level

3/31,88

GYOS Reference (Volume 1) Draft 3 (APDA)
$2006 GetFilelnfo
Description This call retums certain file attributes of an existing open or closed block file.

Impartant A GetFilelnfo call following a SetFilelnfo call on an open file may
not return the values set by the SetFileInfo call. To guarantee
recording of the attributes specified in a SetFilelnfo call, you must
first close the file.

See also the SetFileInfo call.

No.

Parameters
Offset

%ot pCount -

sz = -~
L. pathnane =

$06) access —

8 - fileType .

0a - B
- auxType =
- -

S8 t- storagelype -1

$10
- -
| crestelataTlime _|
- -~

140 Volume 1: Applications and G&/O8

Size and type

Word INPUT vaive (minimum = 2)

Longwort INPUT pointer

Word RESULT value

Word RESULT value
Longword RESULT value

Word RESULT value

Double longword RESULT vaiue

Part I: The Application Level

8:31,88

b Lo Lo

| D

| B

|

L

| W

.d L3

3

[

beend

[A—"

e

GYOS Reference (Volume 1)

pCount

pathname

accessy

fileType

auxType

Draft 3 (APDA)
18 ~
i. modDateTime +4 7 Double longward RESULT value
0] .
- optionlist o g |ongword INPUT pointer
I -4
$24 " _4
— eof 919 Longword RESULT value
r‘ ~
8
- 7
|- blocksUsad 4 o Longword RESULT value
L —<
s
l. resourceEOF j 11 Longword RESULT value
330 -
|- resourceBlocks . 5 Longword RESULT value
L -

Word input value: The number of parameters in this parameter block. Minimum

is 2, maximum is 12.

Longword input pointer: Points to 2 GS/OS string representing the pathname of
the file whose file information is to be retrieved.

Word result value: Value of the file’s access atribute, which is described under

the Create call.

Word result value: Value of the file's file type attribute.

Longword result value: Value of the file's auxiliary type attribute.

Chapter 7: GS/OS Call Reference

141

8/31/88

?
;
:
x
s
]

GYOS Reference (Volume 1) Draft 3 (APDA)

storageType

createDateTime

modDateTime

optionkist

eof

blocksUsed

resourcebOF

resourceBlocks

Word result value: Value indicating the storage type of the file.

$01 standard file
$05 extended file
$0D volume directory or subdirectory file

Double longword result value: Value of the file's creation date and time
auributes. The format of the date and time is shown in Table 4-1 in Chapter 4.

Double longword result value: Value of the file's modification date and time
auributes. The format of the date and time is shown in Table 4-1 in Chapter 4.

Longword input pointer: Points to a result buffer . On output, GS/OS sets the
output length field to a value giving the number of bytes of space required by
the output data, excluding the length words. GS/0S will not overflow the
available output data area.

Longword result value: For a standard file, this parameter gives the number of
bytes that can be read from the file. For an extended file, this parameter gives
the number of bytes that can be read from the file’s data fork.

For a subditectory or a volume directory file, this parameter is undefined.

Longword result value: For a standand file, this parameter gives the total number
of blocks used by the file. For an extended file, this parameter gives the number
of blocks used by the file's data fork.

For a subdirectory or a volume directory file, this parameter is undefined.

Longword result value: If the specified file is an extended file, this parameter
gives the number of bytes that can be read from the file’s resource fork.
Otherwise, the parameter is undefined.

Longword result value: If the specified file is an extended file, this parameter
gives the number of blocks used by the file's resource fork. Otherwise, the
parameter is undefined.

142 Volume 1: Applications and G&/0S Part |: The Application Level

S3L88

G505 Reference (Volume 1)

Draft 3 (APDA)

$202B GetFSTInfo
Description This function returns general information about a specified File System
Translator (FST). See also the SetFSTInfo call, and Part II of this guide.
Parameters
Offset Size and type
$o0) pCount - Word INPUT value (minimum = 2)
o2t £3tNum — Word INPUT value
o - filesysiD Word RESULT value
$06]_ 4
L £stName o Longword INPUT pointer
$04] version - Word RESULT value
®CL attrivutes Word RESULT value
$0B
L, blockSize - Word RESULT value
s10[_]
L. maxVolSiza Longword RESULT value
$14{ B
Il maxFilaSize] Longword RESULT value
pCount Word input value: The number of parameters in this parameter block. Minimum
is 2; maximum is 8.
£3thum Word input value: An FST number. GS/OS assigns FST numbers in sequence (1, 2,

3, and 5o on) as it loads the FSTs. There is no fixed correspondence between
FSTs and FST numbers. To get information about every FST in the systlem, one
makes repeated calls to GetFSTInfo with £s¢Num values of 1, 2, 3, and 50 on

until GS/OS returns error $53: parameter out of range.

144 Volume 1: Applications and G3/O$

Part I: The Application Levet

8/31/88

GS0S Reference (Volume 1) Draft 3 (APDA) 873188

maxFileSize Longword result value: The maximum size (in bytes) of files handled by the FST.

Errors

$53 parameter out of range

146 Volume I Applications and G¥/0S Past I: The Application Level

[

[—

[

GS/OS Reference (Volume 1)

Draft 3 (APDA) 8/31/88

$201B

Description

Parameters

" pCount

lavel

Errors

GetLevel
This function returns the current value of the system file level. See also the
Setlevel call.
Offset No. Size and type
$00 pCount. — Word INPUT vaive (minimum = 1)
$02(level — 1 Word RESULT value

Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.

Word result value: The value of the system file level.

$01
504
507
§59

bad system call number
parameter count out of range
ProDOS is busy

invalid file level

Chapter 7: G5/0S Cafl Reference 147

GS/0S Reference (Volume 1) Oraft 3 (APDA)

$2017

Description

Parameters

pCount

refNum

position

Errors

GetMark

This function returns the current file mark for the specified file. See also the
SetMark call.

Offset No. Slze and type
ol pcount Word INPUT value (minimum = 2)
s - rafNum -
aLlu 1 Word INPUT value
304 L B
~ position 4 2 tongword RESULT value

Word input value: The number of parameters in this parameter block. Minimura
is 2; maximum is 2,

Word input value: The identifying number assigned to the file by the Open call.

Longword result vafue: The current value of the file mark in bytes relative 1 the
beginning of the file.

$43 invalid reference number

148 Volume L: Applications and GS/0S Part I: The Application level

S/34 88

[- | SO f | S— | . | o | - | S

Load Ad

S

-)

GS/OS Reference (Volume 1) Draft 3 (APDA)
$2027 GetName
Description Returns the filename (not the complete pathname) of the currently running

Parameters

pCount

dataBuffer

Errors

application program.

To get the complete pathname of the current application, concatenate prefix 1/
with the filename returned by this call. Do this before making any change in
prefix 1/,

Offset No. Size and type
0L peount Word INPUT value (minimum = 1)
$02

|- dataBuffer .4 Longword INPUT pointer

Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.
Longword input pointer; Points to a result buffer where the filename is to be

returned.

$4F buffer too small

Chapter 7: GS/OS Call Reference 149

8/31/88

GS0S Reference (Volume 1) Draft 3 (APDA) §/31/83

$200A

Description

Parameters

pCount
prefixNum
prefix

Errors

GetPrefix

This function returns the current value of any one of the numbered prefixes. The
returned prefix string will always start and end with a separator. If the requested
prefix is null, it is returned as a string with the length field set 10 0. This call
should not be used to get the boot volume prefix (*/); use the GetBootVol call
to do that. See also the SetPrefix call.

Offset No. Size and type
Lo pCount - Word INPUT value (minimum = 2)
sz} prefixNum - 1 Word INPUT value
o4 R
r— prefix - 2 Longword INPUT pointer

Word input value: The number of parameters in this parameter block. Minimum
is 2; maximum i5 2.

Word input value: Binary value of the prefix number for the prefix to be
returned.

Longword input pointer: Pointer to a GS/OS output string structure where the
prefix value is returned.

$4F buffer too small
$53 invalid parameter

150 Volume 1: Applications and GS/0$ Part I: The Application Level

b

| - | W— [Ld

| F—

[[PV R W

bk carnd

[i

GS/0S Reference (Volume 1)

Draft 3 (APDA)

$200F

Description

Parameters

pCount.

preferences

display volime mount dialog = 1
do not display volume mount diaiog = 0

Errors

GetSysPrefs

This call retumns the value of the current global system preferences. The value of
system preferences affects the behavior of some system calls. See also the
SetSysPrefs call.

Offset

No. Size and type

$00

-

pCount -

$02

-

praterences | | Word RESULT

Word INPUT value (minimum = 1)

value

Word input value: The number of parameters in this parameter block. Minimum
is 1; maximumis 1.

Word result value: Value of system preferences, as follows:

(none)

reserved (returmed as 0} J

Chapter 7: GS/OS Call Reference

151

8/31/88

GYQS Reference (Volume 1) Draft 3 (4PD4A)

§202A

Description

Parameters

pCount

varsion

Errors

GetVersion

This call returns the version number of the GS/OS operating system. This value
can be used by application programs to condition version-dependent
operations.

Offset No. Size and type

0] pCount - Word INPUT value (minimum = 1)

2l version - 1 Word RESULT value

Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.

Word result value: Version number of the operating system, in the following
format:

(sTffe]ulw]s a7 es[«[3]2]1]o]

prototype release = 1
final relezse = 0

trajor release number

minor release number

(none except general system errors)

152 Volume 1. Applications and G$/0S Past [: The Application Level

... L. L.

| I

i i ' booe b Bene

| —

}
-

[— | — L.

End

GYOS Reference (Volume 1)

Draft 3 (APDA)

$2011

Description

Parameters

pCount

NewlLine

This function enables or disables the newline read mode for an open file and,
when enabling newline read mode, specifies the newline enable mask and
newline character or characters.

When newline mode is disabled, a Read call terminates only after it reads the
requested number of characters or encounters the end of file. When newline
mode is enabled, the read also terminates if it encounters one of the specified
newline characters.

When a Read call is made while newline mode is enabled and there is another
character in the file, GS/OS performs the following operations:

Transfers the next character to the user's buffer.

Performs a logical AND operation between the character and the low-order
byte of the newline mask specified in the last Newline call for the open file.

1.
2,

3. Compares the resulting byte with the newline character or characters.

4. 1f there is a match, terminates the read; otherwise continues at step 1.

Offs
$00

8 § % B

€t

pCount

refNum

enableMask

numChars

newlineTable

1

No.

Size and type

Word INPUT value (minimum = 4)
Word INPUT value

Word INPUT value

Word INPUT value

Longword INPUT pointer

Word input value: The number of parameters in this parameter block. Minimum
is 4; maximum is 4.

Chapter 7: G3/OS Call Reference 153

&8/31/88

1
GS05 Reference (Volume 1) Draft 3 (APDA) 331/83

refNum

enableMask

numChars

newlineTable

Errors

Word input value: The identifying number assigned to the file access path by the
Open all.

Word input value: If the value of this parameter is $0000, disable newline mode.
If the value is greater than $0000, the low-order byte becomes the newline mask.
GS/0S performs a logical AND operation of each input character with the
newline mask before comparing it to the newline character or characters.

Word input value: The number of newline charactess contained in the newline
character table. If the enanleMask is nonzero, this parameter must be in the
range 1256, When disabling newline mode (enableMask ~ $0000), this
parameter is ignored.

Longword input pointer: Points t 4 table of from 1 to 256 bytes that specifies
the set of newline characters. Each byte holds a distinct newline character.
When disabling newline mode {enableMask = $0000), this parameter is
ignored.

$43 iovalid reference aumber

154 Volume 1. Applications and G$/0% Part [The Application Level

| H— | | - | i

| -

Ld beod Rl F I

o

fomoned [N—

Ved

[

oo

e

GS/08 Reference (Volume 1) Draft 3 (APDA)
$200D Null
Description ‘This call executes any pending events in the GS/OS event queue and in the

Parameters

pCount.

Errors

Scheduler queue before returning to the calling application. Note that every
GS/OS call performs these functions. This call provides a way to flush the
queues without doing anything else. '

Offset No. Size and type

Word input value: The number of parameters in this parameter block. Minimum

is 0; maximum is 0.

(none)

Chapter 7: GS/OS Call Reference

155

8/31/88

GS0S Referemce (Volure 1) Draft 3 (APDA) 8/31/83

$2010 Open

Description This call causes GS/OS to establish an access path to a file. Once an access path
is established, the user may perform file Read and Write operations and other
related operations on the file.

This call can also return all the file information retumed by the GetFilelnfo call.

1% Volume I: Applications and GS/OS Part I: The Application Leve!

H ! A
e s G Beesd Booeed S s S R Docew ey M Do b

o :

GS/OS Reference (Volume 1)

Parameters

Draft 3 (APDA)
Offset No. Size and type

soof pCount. — — Word INPUT value (minimum = 2)
Wzl refNum < | Word RESULT value
S04 -

Lo pathname - 2 Longword INPUT pointer
$08 ¢ requestAccess -| 3 Word INPUT value
$0a - resourcelumbear -4 4§ Word INPUT value
$C access -| 5 Word RESULT value
SBl rileType o § Word RESULT value
310 R

L. auxType -t 7 Longword RESULT value
si4 - storageType g Word RESULT value
$16 L B

- createbataTime = 9 Double longword RESULT value

$12

Chapter 7: GS/0S Call Reference

157

8/31/88

GS0S Refevence (Volume 1) Draft 3 (APDA)

$I1E

modDateTime

T 1T 1T 1 vUvT

I
1

l. optionList -4 11

S
- sof - 12
s
L blocksUsed | 13
- i
332
L -

l- resourceEOF . 14

Double jongword RESULT value

Longword INPUT poinier

Longword RESULT value

Langword RESULT value

Longword RESULT value

3%
i~ rescurceBlocks o 15 (ongword RESULT value

pCount Word input value: The number of parameters in this parameter block. Minimum
is 2; maximum is 15.

refNum Word result value: A reference number assigned by GS/0S 10 the access path. All
other file operations (Read, Write, Close, and so on) refer to the access path by
this number.

pathname Longword input pointer: Points 10 a GS/0S string representing the pathname of

the file to be opened.

158 Volume 1: Applications and GS/0S

Part t: The Application level

B/31/88

L

| I

[- [— | T— | - Lo L.

| N——"

| - [

[

f —1 [— | | I—

- bond

b d

Aot

GS/OS Reference (Volume 1) Draft 3 (APDA)

requestAccess

resourceNumber

access

fileType

auxType

storageType

createDateTime

modDateTime

optionList

Word input value: Specifies the desired access permissions, as follows:

If this parameter is not included or its value is $0000, the file is opened with
access permissions determined by the file's stored access attributes.

Word input value: This parameter is meaningful only when the pathname
parameter specifies an extended file. In this case, a value of $0000 tells GS/OS
to open the data fork, and a value of $0001 tells it to open the resource fork.

Word result value: Value of the file’s access attribute, which is described under
the Create call.

Word result vaiue: Value of the file’s file type attribute. Values are shown in Table
1-2 in Chapter 1.

Longword result value: Value of the file's auxiliary type attribute, Values are
shown in Table 1-2 in Chapter 1.

Word result value: Value of the file’s storage type attribute, as follows:

$01 standadd file
$05 extended file
$OD volume directory or subdirectory file

Double fongword result value: Value of the file’s creation date and time
atributes. The format of the date and time is shown in Table 4-1 in Chapter 4:-

Double longword result value: Value of the file’s modification date and time
attributes. The format of the date and time is shown in Table 4-1 in Chapter 4.

Longword input pointer; Points to a GS/OS result buffer to which FST-specific
information can be returned. On output, GS/OS sets the output length field to a
value giving the number of bytes of space required by the output data,
excluding the length words. GS/0S will not overflow the available output data
area.

Chapier 7: G/0S Call Reference 159

8/31/88

GYOS Reference (Volume 1) Draft 3 (APDA)

blacksUsed

resourcelEQF

resourceBlocks

Errors

Longword result value: For a standard file, this parameter gives the number of
bytes that can be read from the file. For an extended file, this parameter gives
the number of bytes that can be read from the file's data fork.

For a subdirectory or volume directory file, this parameter is undefined.

Longword result value: For a standand file, this parameter gives the number of
bytes used by the file. For an extended file, this parameter gives the number of
bytes used by the file’s data fork.

For a subdirectory or volume directory file, this parameter is undefined.

Longword result value: If the specified file is an extended file, this parameter
gives the number of bytes that can be read from the file’s resource fork, even
when one is opening the data fork. Otherwise, the parameter is undefined.

Longword result value: If the specified file is an extended file, this parameter
gives the number of blocks used by the file’s resource fork, even if one is
opening the data fork., Otherwise, the parameter is undefined.

$27 /O emor

$28 o device connected
$2E disk switched

$40 invalid pathname syntax
$44 path not found

$45 volume not found

$46 file not found

$4A version error

$4B unsupported storage type
$4E access not allowed

$4F buffer too small

$50 file is open

$52 unsupported volume type
$58 not 2 block device

160 Volume I: Applications and GS/QS Part I The Application Level

3/31/88

| A—

| S—

GS/0S Reference (Volume 1) Draft 3 (APDA)
$2003 0SShutdown
Description This call allows an application (such as the Finder) to shut down the operating

Parameters

pCount

shutdownFlag

system in preparation for either powering down the machine or performing a
cold reboot. GS/OS terminates any write-deferral session in progress and shuts
down all drivers and FSTs.

The action of the call is determined by the values of the shutdownFlag
parameter. If Bit 0 is set to 1, G5/OS performs the shutdown operation and
reboots the machine. If Bit 0 is cleared to 0, GS/OS performs the same
shutdown procedure and then displays a dialog box that allows the user 1o either
power down the computer or reboot. If the user chooses to reboot, GS/OS then
looks at Bit 1 of the shutdownFlag parameter.

If Bit 1 is cleared to 0, GS/OS leaves the Memory Manager power-up byte alone;
this leaves any RAM disks intact while the machine is rebooted. If Bit 1 is set to
1, however, GS/OS invalidates the power-up byte, which effectively destroys
any RAM disk, before rebooting the computer.

Offset No. Size and type
$001 pCount. < — Word INPUT value (minimum = 1)
%] shatdownFlag -| 1 Word INPUT value

Word input value: The number of parameters in this parameter block. Minimum

is 1; maximum is 1.

Word input value: Two Boolean flags that give information about how to handle
the shutdown, as follows:

Chapter 7: GS/OS Call Reference 161

8/31/88

GS/QS Keference (Volume 1) Draft 3 (APDA) 8/31 oq

Leave Memory Manager power-up byte alone when powering downsQ

Perform shutdown and reboot the computer-1
Perform shutdown and display=0 power-down/reboot dialog

Invalidate the Memory Manager power-up byte when powering down=1 J

Errors (none)

162 Volume . Applications and GS/0S Part I: The Application Level
ot i s —————

L

b hed hd bewd b bed

GS/0S Reference (Volume 1) Draft 3 (APDA)
$2029 Quit
Description This call terminates the running application. It also closes all open files, sets the

Parameters

pCount

pathname

system file level to 0, initializes certain components of the Apple 1IGS and the
operating system, and then launches the next application.

For more information about quitting applications, see Chapter 2, *GS/OS and
Its Environment.”

Offset No. S$ize and type
$0 b pCount < — Word INPUT value (minimum = ()
m —
| pathname ~ 1 Longword INPUT pointer
MF flags - 2 Word INPUT value

Word input value: The number of parameters in this parameter block. Minimum
is O; maximum is 2.

Longword input pointer: Points o a GS/OS string representing the pathname of

the program to run next. If this parameter is null or the pathname itself has
length 0, GS/OS chooses the next application, as described in Chapter 2.

Chapier 7: G8/0S Call Reference 163

8/31/88

G$0S Reference (Volume 1) Draft 3 (APDA) 83188

flags Word input value: Two Boolean flags that give information about how to handle
the program executing the Quit call, as follows:

Phace state information abowu the quitting
program on the Quit return stack so that
it will be automaticaily restaned laser = |

Do ot sack the quiting program =9

The quitting program is capable of being

restarted from its doamant memory image = 1

The quitting program mus be refcaded from
disk if # is restarted = 0 reserved —

Comments Only one error condition causes the Quit call to return to the calling application:
error $07 (GS/OS busy). All other errors are managed within the GS/0S program
dispatcher.

Errors
$07 GS/0S busy

164 Volume 1. Applications and GS/OS Part [: The Application Level

[VOUNPI WIS W

- S—

L Ea

| SO S

[

|

L.

s

GS/OS Reference (Volume 1) Draft 3 (APDA)
$2012 Read
Description This function attempts to transfer the number of bytes given by the

requestCount parameter, starting at the current mark, from the file specified
by the re £Num parameter into the buffer pointed to by the dataBuffer
parameter. The function updates the file mark to reflect the new file position
after the read.

Because of three situations that can cause the Read function to transfer fewer
than the requested number of bytes, the function returns the actual number of
bytes transferred in the t ransferCount parameter, as follows:

e If GS/OS reaches the end of file before transferring the number of bytes
specified in requestCount, it stops reading and sets transferCount
1o the number of bytes actually read.

» If newline mode is enabled and a newline character is encountered before
the requested number of bytes have been read, GS/OS stops the transfer
and seis transferCount 10 the number of bytes actually read, including
the newline character.

s [f the device is a character device and no-wait mode is enabled, the call
returns immediately with t ransfexCount indicating the number of
characters returned.

Chapter 7: GS/OS Call Reference 165

8/31/88

G5 0S Reference (Volume 1) Draft 3 (AFDA) 831,88

Parameters

pCount

refNum

dataBuffer

requestCount
transferCount

cachePriority

Offset No. Size and type
%001 pCount - — Word INPUT value {minimum = 4)
02| refNum - 1 Word INPUT value
304

l. dataBuffer 4 2 Longword INPUT poinier

|~ requestCount — 3 [ongword INPUT value

|- transferCount -{ 4 Longword RESULT value

s cachePriority — 4 Word INPUT value

Word input value: The number of parameters in this parameter block. Minimum
is 4; maximum is 5.

Word input value: The identifying number assigned to the file by the Open call.

Longword input pointer: Points 10 a memory area large enough to hold the
requested data.

Longword input value: The number of bytes to be read.
Longword result value: The number of bytes actually read.

Word input value: Specifies whether or not disk blocks handled by the read call
are candidates for caching, as follows:

$0000 do not cache blocks involved in this read
$0001 cache blocks involved in this read if possible

166 Volume 1: Applications and GS/0S Part I: The Application Level

GSOS Reference (Volume 1) Drafi 3 (APDA)

S201F

Description

Parameters

pCount

status

Errors

SessionStatus

This call retumns a value that telis whether or not a write-deferral session is in
progress. See also BeginSession and EndSession in this chapter.

Offset No. Size and type
001 pCount -~ - Word INPUT value (minimum = 1)
2y status - 1 Word RESULT value

Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.

Word result value: A value that tells whether or not a write-deferral session is in
progress.

$0000 no session in progress

$0001 session in progress

(none)

188 Volume 1. Applications and GS/O$ Part I: The Application Level

8:/31/8%

2

bead Led Ld Ll ledd bdd bdd bid basd bed e e

bnd b bd

bd lid ocead b

[

-+

GS/OS Reference (Volume 1) Draft 3 (APDA)
$2018 SetEOF
Description This call sets the logical size of an open file to a specified value which may be

Parameters

pCount

refNum

base

displacement

either larger or smaller than the current file size. The EOF value cannot be
changed unless the file is write-enabled. If the specified EOF is less than the
current EQOF, the system may—but need not—free blocks that are no longer
needed to represent the file. See also the GetEOF call.

Offset No. Size and type
S0l pCount < — Word INPUT value (minimum = 3)
02| refNum - 1 Word INPUT value
S04 base - 2 Word INPUT value
$061 -
le displacement .| 3 Longword INPUT value

Word input value: The number of parameters in this parameter block. Minimum
is 3; maximum is 3.

Word input value: The identifying number assigned to the file by the Open call.

Word input value: A value that tells how to interpret the displacement
parameter.

$0000 set EOF equal to displacement

$0001 set EOF equal to old EOF minus displacement

$0002 set EOF equal to file mark plus displacement

$0003 set EOF equal to file mark minus displacement

Longword input value: Used to compute the new value of the eof as described
for the base parameter.

Chapter 7: GS/OS Call Reference 169

8/31/88

GS'0S Reference (Volume 1) Drafl 3 (APDA) 5188

Errors

$27 U/Oerror

$2B write-protected disk

$43 invalid reference number
$4D position out of range

$4E file not write-enabled

$5A block number out of range

170 Volume I: Applications and GS/0S Part I: The Application Level

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Parameters
Offset No. Size and type
$00 pCount - ~ Word INPUT value (minimum = 2)
s 4
L pathname - 1 Longword INPUT pointer
$061_ access - 2 Word INPUT value
$B| rileType | 3 Word INPUT value
$0AY _
- auxType - 4 Longword RESULT value
- .
$OE| <null> -4 5 Word INPUT value
$i0 _
| createDateTime .j § Double longword INPUT value
- -1

$18

172 Volume 1: Applications and GS/08 Part I: The Application Level

¥

GS/0S Reference (Volume 1)

pCount

pathname

access

fileType
auxType

<null>

Draft 3 (APDA)
318 ~
|. modDateTime . 7 Double longword INPUT value
- -
s
- optionlist 4 g Longword INPUT pointer
s R
L. <null> -9 Longword INPUT value
8
- - 10 Longword INPUT value
- <null> -
$2C
- -1 11 Longword INPUT value
b <null> ~
$30
= 1 12 Longword INPUT value
- <null> -

Word input value: The number of parameters in this parameter block. Minimum

is 2; maximum is 12,

Longword input pointer: Points to a GS/OS string representing the palhnamc of
the file whose file information is to be set

Word input value: Value for the file’s access attribute, which is described under

the Create call.

Word input value: Value for the file’s file type attribute.

Longword result value: Value of the file’s auxiliary type attribute.

Word input value: This parameter is unused and must be set to zero.

Chapter 7: G&/0S Call Reference

13

8/31/88

GS0S Reference (Volume 1) Draft 3 (APDA) & 3188

createDateTime Double longword input value: Value of the file's creation date and time
auributes. If the value of this parameter is zero, GS/OS does not change the
creation date and time. The format of the date and time is shown in Table 4-1 in
Chapter 4.

modDateTime Double longword input value: Value of the file’s modification date and time
attributes. If the value of this entire parameter is zero, GS/OS sets the
modification date and time with the current system clock value. The format of
the date and time is shown in Table 4-1 in Chapter 4.

optionList Longword input pointer: Points to a GS/OS result buffer to which FST-specific
information can be returned.

<null> Longword input value: This parameter is unused and must be set to zero.

<null> Longword input value: This parameter is unused and must be set to zero.

<null> Longword input value: This parameter is unused and must be set to zero.

<null> Longword input value: This parameter is unused and must be set to zero.

Errors

$10 device not found

$27 /O error

$2B write-protected disk
$40 invalid pathname syntax
$44 path not found

$45 volume not found

$46 file not found

$4A version error

$4B unsupported storage type
$4E access: file not destroy-enabled
$52 unsupported volume type
$53 invalid parameter

$58 not a block device

174 Volume 1. Applications and GS/0S Part |: The Application Level

GSOS Reference (Volume 1) Draft 3 (APDA)

$2016

Descripton

Parameters

pCount

refNum

Dase

displacement

SetMark

This call sets the file mark (the position from which the next byte will be read or
to which the next byte will be written) to a specified value. The value con never
exceed EOF, the current size of the file. See also the GetMark call

Ofiset No. Stze and type
Soof, pCount. 4 — Word INPUT value (mininum ~ 3)
2| refNum - 1 Word INPUT value
S04} base ~ 2 Word INPUT value
06 4
|- displacement . 3 Longword INPUT valye

Word input value: The number of parameters in this parameter block. Mirimum
is 3; maximum is 3,

Word input value: The identifying number assigned o the file by the Open call

Word input value: A value that wells how to inerpret the displacement
parameter, as follows:

$0000 set mark equal to displacement

$0001 set mark equal to FOF minus displacement
$0002 set mark equal to old mark plus displacement
$0003 set mark equal to old mark minus displacement

Loagword input value: A value used to compute the new value for the file mark,
as described for the base parameter.

1% Volume 1. Applications and GS/OS Part I: The Application Level

GS0OS Reference (Volume 1)

Errors

$27
$43
$4D
$54

Draft 3 (APDA)

/O error

invalid reference number
position out of range
block number out of range

Chapter 7: GY/OS Call Reference. {77

8/31/88)

GYOS Reference (Volume 1) Draft 3 (APDA}

$2009

Description

Parameters

pCount

prefixNum

prefix

SetPrefix

This call sets one of the numbered pathname prefixes to a specified value. The
input to this call can be any of the following pathnames:

w a full pathname

@ 2 partial pathname beginning with a numeric prefix designator

w a partial pathname beginning with the special prefix designator “*/
w 2 partial pathname without an initial prefix designator

The SetPrefix call is unusual in the way it treats partial pathnames without initial
prefix designators. Normally, GS/OS uses the prefix 0/ in the absence of an
explicit designator. However, only in the SetPrefix call, it uses the prefix n/
where n is the value of the pref£ixnum parameter described below. See also the
GetPrefix call.

Offset No. Siae and type
$00)
= pCount -4 — Word INPUT value {minimum = 2)
302

- prefixNum ~ 1 Word INPUT value

304
- prafix - 2 Longword INPUT pointer

Word input value: The number of parameters in this parameter block. Minimum
is 2; maximum is 2,

Word input value: A prefix number that specifies the prefix to be set.

Longword input pointer: Points 0 a GS/OS string representing the pathname to
which the prefix is to be set,

V8 Volume 1: Applications and GS/O8 Pan i The Application Level

873188

G30S Reference (Voiume 1) Draft 3 (APDA) 8/31/88

Comments Specifying a pathname with length 0 or whose syntax is ilegal sets the
designated prefix to nuil.

GS/0S does not check to make sure that the designated prefix corresponds (0
an existing subdirectory or file.

The boot volume prefix (/) cannot be changed using this cail.

Errors

$40 invalid pathname syntax
$53 invalid parameter

Chapier 7: GY/OS Call Reference 179

G¥0IS Reference (Volume 1) Dvaft 3 (APDA) 5/31/88

$200C SetSysPrefs
Description This call sets the value of the global system preferences. The value of system
preferences affects the behavior of some system calls. See also the GetSysPrefs
call.
Parameters
Offset No. Size and type
WL peount . Word INPUT value (minimum = 1)
$oz - prefersnces .4 Word INPUT value

pCount Word input value: The number of parameters in this parameter block. Minimum
is 1, maxicum is 1.

prefarences Word input value: Value of system preferences, as follows:

spelsfziafo]

display volume mount dialog = | J
do not display volume mounr dialog = 0 d (returned 23 0)
Comments Under certain circumstances, pans of the system call the system’s Mount facility

to display a dialog asking the user to mount a specified volume. This can
happen when the call contains a reference number parameter or a pathname
parameter.

» For those calls that specify a reference number parameter (for example
Read, Write, Close), Mount always displays the dialog.

180 Volume 1: Applications and G§/0S Part [: The Application Level

GSOS Reference (Volume 1) Drajt 3 (APDA)

$2032

Description

Parameters

pCount
intNum

Errors

UnbindInt

This function removes a specified interrupt handler from the interrupt vector
table.

For a complete description of the GS/CS interrupt handling subsystem, see
Volume 2. See also the Bindint call.

Offset No. Size and type
WL pount 4 _ Word INPUT vaive (minimum = 1)
| intNum -4 1 Word INPUT value

Word input value: The number of parameters in this parameter block. Minimum
Is 1; maximum is 1.

Word input value: Interrupt identification number of the binding between
interrupt source and interrupt handler that is to be undone.

$53 parameter out of range

182 Volume 1. Applications and G&/QS Part I: The Application Level

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

$2008 Volume

Description Given the name of a block device, this call returns the name of the volume
mounted in the device, along with other information about the volume.

Parameters
Offset No. Size and type

$OL. - poowat o word INPUT value (rainimum = 2)
sa2

b devName

1 Longword INPUT pointer

o volName ~ 2 Longword INPUT pointer

[totalBlocks | 3 Longword RESULT value

SOE .
L. freaBlocks | 4 Longword RESULT value

ML tilesysid 4 5 word RESULT value

s14
b PlockSize o ¢ word RESULT value

pCount Word input value: The number of parameters in this parameter block. Minimum
is 2; maximum is 6.

devName Longword input pointer: Points to a GS/OS input string structure containing the
name of a block device.

volName Longword input pointer: Points to a GS/OS output string structure where GS/0S
returns the volume name of the volume mounted in the device.

totalBlocks Longword result value: Total number of blocks contained on the volume.

Chapter 7: GS/0S Call Reference 183

1
1

3805 Reference (Volume 1)

Draft 3 (APDA)

8731 8K

freeBlocks Longword result value: The number of free (unallocated) blocks on the volume.
fileSysID Word result value: Identifies the file system contained on the volume, as
follows:
$0000 reserved $0007 LISA
$0001 ProDOS/SOS $0008 Apple CP/M
$0002 DOS 3.3 $0009 reserved
$0003 DOS3.20r31 $000A MS/DOS
$0004 Apple II Pascal $000B High Sierra
$000S Macintosh (MFS) $000C 15O 9660
$0006 Macintosh (HFS) $000D-$FFFF reserved
blockSize Word result value: The size, in bytes, of a block.
Efrors
$10 device not found
$11 invalid device request
$27 LOeror
$28 no device connected
$2E disk swiiched
$45 volume not found
$4A version error
$52 unsupported volume type
$53 invalid parameter
$57 duplicate volume
$58 not a block device

184 Volume 1: Applications and GS/08

Part I: The Application level

bed bd L3 bl bed e Ged bd bed e bd e L Ld

RS- W

»

GS/0S Reference (Volume 1) Draft 3 (APDA)
$2013 Write
Description This call attempts to transfer the number of bytes specified by requestCount

Parameters

pCount

refNum

dataBuffer

from the caller's buffer to the file specified by the re £Num parameter starting at
the current file mark.

The function returns the number of bytes actually transferred. The function
updates the file mark to indicate the new file position and extends the EOF, if
necessary, to accommodate the new data.

Offset No. S5ize and type
00} pCount - — Word INPUT value (minimum = 4)
soz} refNum -~ 1 Word INPUT value
o4 -
|~ dataBuffer - 3 Longword INPUT pointer
$08
- -
|- requestCount - 3 Longword INPUT value
SoC

|- transferCount | 4 Longword RESULT value

$10p, cachePriority - 5 Word INPUT value

Word input value: The number of parameters in this parameter block. Minimum
is 4; maximum is 5.

Word input value: The identifying number assigned to the file by the Open call.

Longword input pointer: Points to the area of memory containing the daw to
be written 1o the file.

Chapter 7: G$/OS Call Reference 185

8/31:/85

GS/OS Reference (Volume 1) Draft 3 (APDA)

requestCount Longword input vajue: The number of bytes to write.
transferCount Longword result value: The number of bytes actually written.

cachePriority Word input value: Specifies whether or not disk blocks handled by the caltare
candidates for caching, as follows:

$0000 do not cache blocks involved in this cal
$0001 cache blocks involved in this call if possible

Errors

$27 /O error

$2B write-protected disk

$2E disk switched

$43 invalid reference number
$48 volume full

$4E access not allowed

$5A block number out of range

& Volume 12 Applications and GS/0S Part I: The Apphcation Level

