
LISA

A PROFESSIONAL ASSEMBLY LANGUAGE DEVELOPMENT

SYSTEM FOR APPLE COMPUTERS.

IF YOUR DISK SHOULD EVER FAIL FOR ANY REASON

Within 90 days of purchase send your Lisa disk for free replacement.
Thereafter, please accompany the diskette with five dollars to cover
shipping and handling.

IMPORT ANT COPYRIGHT INFORMATION

No portion of Lisa, its documentation or accompanying diskette may
be reproduced in any form without the express written permission of
the publishers. "On-Line Systems", and the author, "Randy Hyde".

© 1981 by On·Lil}e Systems.

CONTENTS

Introduction

Important Concepts

Addressing Modes

Using Lisa

Assembler Directives

Additional Features

Advanced Topics

Tricks Etc.

Software

Appendix A · Memory usage

Appendix B · Summary of commands.

Appendix C · Explanation of Errors.

Page

1
5
8

17

25
44
47

52
60

LISA 2.5 INTRODUCTION Jul y 1980

SECTION 1. 0 - INTRODUCTION

1) WHAT IS LISA?

2) WHAT DOES LISA REQUIRE?

3) WHAT DISK FACILITIES DOES LISA PROVIDE?

4) HOW DOES LISA INTERFACE WITH THE APPLE MONITOR AND DOS?

SECTION 1.1 - WHAT IS LISA?

LISA (pronounced LI ZA, not LE SA) is an interactive 6502
assembler for the Apple II. It was carefully designed to suit the
needs of beginners and advanced programmers alike. Due to its
structure, code compression, interaction, and built-i n features,
LISA is easily the most powerful assembler available for the
Apple II.

With LISA, machine language programming becomes almost as
easy as BASIC. LISA works with you instead of working against
you, as is the case with several other available assemblers. LISA
is a symbolic assembler, the programmer does not have to keep
track of addresses as with the built-in ROM mini-assembler. LISA
has more built-in features than any other assembler available for
the Apple III More pseudo opcodes (which make the assembler
easier to use), Sweet 16 mnemonics (which turn your Apple II into
a 16-bit machine, requiring less code to perform a desired task),
more extended 111!\emonics (a great memory aid), and more commands
which allow the flexible use of DOS 3.2.

LISA also works with the new Apple II PLUS as well as with
Apple's Autostart ROM or the language system. If your Apple II
has the Lazer Microsystems Lower Case +Plus installed, you may
enter and display the entire 96 upper/lower case ASCII character
set and all characters may be entered directly from an unmodified
Apple keyboard. Not only that, but should you desire to
incorporate lower case input into your assembly language programs
Lazer Systems has provided a source listing of the "LISA P2.L"
routines (used by LISA) for your convenience.

SECTION 1.2 - WHAT DOES LISA REQUIRE?

LISA is a disk based product. Minimum requirements include
at least one disk drive and 48K bytes of RAM. LISA 2.5 64K
requires . a language card for proper operation. Since the
majority of LISA 2.5 owners have a RAM card of some type this
documentation will be directed primarily at those individuals who
have a 64K Apple. There are no syntactical differences between

-1-

LISA 2.5 INTRODUCTION July 1980

LISA 48K and LISA 64K, only addresses and the amount of available
memory are changed between the two versions. The appendicies
contain a special section pointing out the differences. Apple
owners with only 48K should study this section carefully.

The Lazer Microsystems Lower Case +Plus is optional, but
comes highly recommended. Along with the Lazer Microsystems '
Lower Case +Plus You will probably want the Keyboard +Plus as
well. It's built-in type-ahead buffer is extremely useful when
editing large programs. A printer (80 columns optimal) is also
optional but comes highly recommended.

SECTION 1.3 -- WHAT DISK FACILITIES DOES LISA PROVIDE?

LISA provides the use of several disk options. The user may
save LISA text files to disk as either a text or "LISA" type
file. "LISA" files are much faster and require less space on the
disk, but are incompatable with the rest of the world. Text files
may be read in by Apple PIE or your BASIC programs but are much
slower than "LISA" type files for simple loading and saving. In
addition a LISA source file on diskette may be appended to the
existing file in memory by using the "AP(PEND)" command. During
assembly it is possible to "chain" source files in from the disk
using the "ICL" pseudo opcode. This allows the user to assemble
text files which are much larger than the available memory in the
Apple II. Likewise, by using the "DQl'' pseudo opcode, it is
possible to save generated code onto the disk, so codefiles of
alaost any length may be generated.

SECTION 1.4 -- HOW DOES LISA INTERFACE WITH THE APPLE MONITOR AND
DOS?

LISA operates under DOS 3.2 for file maintenance and
peripheral control. kny DOS command may be executed directly from
LISA's command level. Since PRI & IN# are DOS commands, PR# & IN#
are available for peripheral control. In addition, control-P is
reserved for use with user defined routines. These routinee may
be printer drivers for use with I/O devices not utilizing an
on-board ROM, or for use with device drivers using the game I/O
jack, or any user defined utility such as slow list, entry into
BASIC, etc. LISA uses only standard routines in the Apple
aonitor, 10 LISA will work with both the normal Apple monitor and
the Autostart llOM.

LISA modifies pointers in DOS 3.2, therefore, when your LISA
disk is booted the DOS which is loaded into memory should not be

-2-

LISA 2.5 INTRODUCTION July 1980

used for BASIC, or TINY PASCAL programs. LISA saves source files
in a special "LISA" format. When you catalog the ditJk these
files will have a file type of "L". When running under an
unmodified DOS these files will look like binary files, but they
cannot be BLOADED or BRUN'd. LISA is provided on DOS 3.2 but may
be converted to DOS 3.3 using the Dos ·3.3 MUFFIN program.

-3-

LISA 2.5 IMPORTANT CONCEPTS July 1980

SECTION 2.0 - IMPORTANT CONCEPTS

1) SOURCE FORMAT

2) LABEL FIELD

3) MNEMONIC FIELD

a) STANDARD MNEMONICS
b) EXTENDED MNEMONICS
c) SWEET-16 MNEMONICS
d) PSEUDO OPCODES

4) OPERAND FIELD

5) COMMENT FIELD

SECTION 2.1 -- ASSEMBLY LANGUAGE SOURCE FORMAT

Source statements in LISA are entered in a "free format"
fashion. Source statements in LISA use the following format:

LABEL MNEMONIC OPERAND ;COMMENT

Each member of the source statement is called a "field". There ·is
a LABEL field, a MNEMONIC field, an OPERAND field, and a COMMENT
field. These fields may or may not be optional depending upon the
context of the statement. These fields must be separated by at
least one blank, and interleaving blanks may not appear inside
any of the fields. If an upper case alphabetic character appears
in column one, then that character defines the beginn:lng of the
LABEL field. If column one is blank, then this is a signal to
LISA that there will not be a label on the current line. If
column one contains a semicolon (";") or an asterisk ("*"), then
the rest of the line will be considered a comment and will be
ignored. The appearance of any other character in column one
constitutes an error and this error will be flagged at edit time
(assuming that you're using LISA's built-in editor).

SECTION 2. 2 - THE LABEL FIELD

The label field contains a one to eight character label
whose first character begins in column one. If you attempt to
place a label in any column execpt column one LISA will mistake
the label for a 6502 mnemonic and will (more than likely) give
you a syntax error. Valid characters in labels are the uppercase
alphabetics, numerics, and the two special characters period
('.')and Wlderline {'_'), While LISA 2.5 will accept certain

-s-

LISA 2 • .5 IMPORTANT CXHlCEPl'S July 1980

other characters within a filename, they should be avoided to
insure upwards compatability with upcoming versions of LISA.
Lower case alphabetics will be converted to uppercase when

'processing labels, they may be used if convenient.

Labels are terminated with either a blank or a colon. If a
blank terminates the label then a 6502 mnemonic must appear after
the label. If a colon terminates the line then the remainder of
the line is ignored and the label will appear on the line by
itself.

A special type of label, local labels, will be discussed
later in this manual.

SECTION 2.3 ~ THE MNEMONIC FIELD

This field, delimited by a blank, must contain the three
character mnemonic. This may be any of the valid 6502 mnemonics,
Sweet-16 mnemonics, or pseudo-opcodes.

VALID MNEMONICS:

ADC AND ASL BCC BCS BEQ BIT BMI BNE BPL
BRK BVC BVS CLC CLD CLI CMP CPX CPY DEC
DEX DEY EOR INC INX INY JMP JSR LDA LDX
LDY LSR NOP ORA PHA PHP PLA PLP ROL ROR
RTI RTS SBC SEC SED SEI STA STX STY TAX
TAY TSX TJCA TXS TYA

EXTENDED MNEMONICS:

BTR BFL BGE BLT XOR

SWEET-16 MNEMONICS:

SET LDR STO LDD STD POP STP ADD SUB PPD
CPR INR DCR RTN BRA BNC BIC BIP BIM BNZ
BMl BNM BKS RSB BSB BNZ

PSEUDO oPCODES:

OBJ ORG EPZ EQU ASC STR HEX LST NLS DCM
ICL END ADR DC! INV ~LK DFS PAG PAU BYT
HBY DBY LET TTL NOG GEN PHS DPH .DA .IF
.EL .FI USR

-6-

LISA 2.5 IMPORTANT CONCEPTS .July 1980

LISA mnemonics may be entered in either uppercase or
lowercase, LISA will always convert the input mnemonic to upper
case. A complete description of these appear in the following
sections.

SECTION 2.4 - THE OPERAND FIELD

The operand field, again delimited by a blank, contains the
address expression and any required addressing mode information.

SECTION 2.5 - THE COMMENT FIELD

Following the operand field comes the optional comment
field. The comment field must begin with a semicolon (" ;") and
must be separated from the operand field by at least one blank.
The remainder of the line (up to return) will be ignored by LISA.
If there is no operand field (e.g. implied or accumulator
addressing mode)· then the comment field may follow the mnemonic
field. Comments may not appear on the same line as the "END",
"LST", PAG, PAU and "NLS" pseudo opcodes. As previously
mentioned, comments may appear on a line by themselves by placing
a semicolon or an asterisk in column one.

-7-

LISA 2.5 ADDRESSING K>DES July 1980

SECTION 3.0 ~ ADDRESSING K>DES

1) ADDRESS EXPRESSIONS

2) IMMEDIATE ADDRESSING K>DE

a) STANDARD SYNTAX
b) LOW ORDER BYTE SELECTION
c) HIGH ORDER BYTE SELECTION
d) EXTENDED K:>DES

3) ACCUMULATOR ADDRESSING MODE

4) ABSOLUTE/ZERO PAGE ADDRESSING

5) INDEXED BY X ADDRESSING

6) INDEXED BY Y ADDRESSING

7) RELATIVE ADDRESSING

8) IMPLIED ADDRESSING

9) INDIRECT, INDEXED BY Y ADDRESSING

10) INDEXED BY X, INDIRECT ADDRESSING

11) INDIRECT ADDRESSING

12) LOCAL LABELS

SECTION 3.1 ~ ADDRESS EXPRESSIONS

lbe operand field provides two pieces of information to
LISA. It provides the addressing mode, which tells the computer
how to get the data, and the address expression which tells the
computer where the data is coming from.

An address expression is simply an integer expression, much
like the expressions found in Integer BASIC, whose result is a
sixteen-bit imsigned integer in the range 0-65535. Version 2. 5
supports addition, subtraction, multiplication, di vis.ion,
logical-AND, logical-OR, logical-exclusive OR, equality, and
inequality.

An address expression can be defined i n the following terms:

1) An address expression is defined as a "term" optionally
followed by an operator and another address eKpression.

2) An operator is either"+","-","*"• "/" , "&", "J", ,
"•", or "I".

-8-

LISA 2.5 ADDRESSING M:>DES July 1980

3) A term is either a label (regular or local), a hex constant,
a decimal constant, a binary constant, e character constant,
or the special symbol "*".

4) Hex constants may be in the range $0000 - $FFFF and must
begin with the symbol "$".

5) Decimal constants may be in the range 0 - 65535 and may
begin with the symbol "!" (the "!" is optional). Note that
decimal constants in the range 65536 - 99999 (i.e. overflow)
will not be detected at edit time or assembly time, please
be careful! Signed decimal constants (i.e. negative decimal
values) must begin with the sequence "!-".

6) Binary constants may be in the range %0000000000000000 -
%1111111111111111 and must begin with the special symbol
"%".

7) Character constants come in two varieties. If you wish to
use the standard ASCII representation (i.e. high order bit
off) simply enter the character enclosed by two apostrophes
(e.g. 'A'). To use the extended ASCII form (i.e. high order
bit on) enclose the character in quotes (e.g. "A").

8) The special symbol "*" can be thought of as a function which
returns the address of the beginning of the current source
line.

Address expressions may not contain
blanks.

EXAMPLES OF ADDRESS EXPRESSIONS:

LBL+$3
HERE-THERE
•+110
"Z"+$1
$FF
110
!-936
LABEL/2*X.$FFFF&$10FF11
LBL-$FF+!l0-%1010011

any interleaving

Address expressions are evaluated from RIGHT TO LEFT! This
is very similar in operation to the expression analyzer used by
the APL programming language. Parenthesis are not allowed.

EXAMPLES:

$5+$3 evaluates to $8
$5+$3-$2 evaluates to $6
$5-$3+$2 evaluates to $0

($3+$2 • $5 which is subtracted from $5)

In 99% of the cases, the order of evaluation will not make
any difference since address expressions seldom have more than
two terms. The only time the right to left evalua t ion sequence

-9-

LISA 2. 5 ADDRESSING MODES July 1980 .

will make a difference t~ when the address expression contains
more than two terms and the ' subtraction operator is used.

From this point on, whenever "<expression)" appears you may
substitute any valid address expression.

A very special type of address expression is the "zero page
address expression", In a nutshell, a zero page address
expression is one which results in a value less than or equal to
$FF and does not contain any terms greater than $FF. For example,
although $FE+$1 is a valid zero page address expression, $100-$ 1
is not. This is because the expression contains a term greater
than $FF ($100). Also, if during evaluation the expression ever
evaluates to a value greater than $FF, the expression wil l not be
a zero page expression. Naturally, if an expression evaluates to
a value greater than $FF, even though its terms are all less than
$FF, it will not be a zero page expression.

Multiplication, division, logical-AND, logical-inclusive OR,
and logical-exclusive OR, equality, and inequality operations are
also supported in LISA 2.5 address expressions. The symbols used
for these operations are "*", "/" , "&", "I", "A", "•", and "fl"
respectively, Note that the "I" character is obtained by typing
esc-1 and is displayed properly only if the user has installed a
Lazer Microsystems Lower Case +Plus. The use of the asterisk
("*") becomes very context dependant. If it is found between two
expressions, then the multiplication operation is assumed. If it
is found in place of an expression, the current lo.cation counter
value will be substituted in its place.

SECTION 3.2 ~ IMMEDIATE ADDRESSING MODE

Immediate data (i.e. a constant) is preceded by
'I'. Since the 6502 is an eight bit proce'ssor,
expressions are 16-bits long, there must be some
choosing the high order byte or the low order byte.

a '#' or
and address
method of

#: When an address expression is preceded
instructs LISA to use the low order byte
address which follows.

by
of

a "II" this
the 16-bit

SYNTAX: #<expression>

EXAMPLES:

#LABEL
#$FF
#16253
#%1011001
#'A'
#"Z"+$1

-10-

LISA 2.5 ADDRESSING M:>DES July .1980

I: When the address expression is preceded by a "/" this
instructs LISA to use the high order byte of the 16-bit
address which follows.

SYNTAX: /<expression>

EXAMPLES:

/LABEL
/$FF
/16253
/%101001100
/LBL+$4
/$F88F

NOTE: "/" is one of the exceptions to MOS syntax. MOS uses
"#<" instead. 'We feel that "/" is easier to type into the system
(it saves you having to type two shifted characters). Another
reason for not using the ">" and "<" operators will become
evident when dicussing local labels.

·In addition to the -standard syntax, LISA provides the user
with three very convenient extensions to the immediate addressing
mode.

A single apostrophe followed by a single character will tell
LISA to use the ASCII code (high order bit off) for that
character as the immediate data. This is identical to
#'<character>' except you do not have to type the "#" and closing
apostrophe.

SYNTAX: '<single character>

The quote can be used in a similar manner to the apostrophe,
except the immediate data used will then be in the extended ASCII
format (high order bit on).

SYNTAX: "<single character>

EXAMPLES:

'A -SAME AS #'A'
'B -SAME AS #'B'
'% -SAME AS #'%'

"C -SAME AS #"C"
"D -SAME AS #"D"
"# -SAME AS fl"#"

-11-

LISA 2.5 ADDRESSING M'.>DES July 11)80

If you're wondering why you would want to use the f!" A"
version, remember that an address expression is allowed after the
"#". This allows you to construct constants of the form lf"Z"+$1
which is useful on occasion. Address expressions are not allowed
after the " or ' in the extended form.

The last extension to the immediate mode concerns
hexadecimal constants. Since hex constants are used much more
often than any other data type in the immediate mode, a special
provision has been made for entering them. If the first character
of the operand field is a DECIMAL digit ("0"-"9") then the
computer will interpret the following digits as immediate
HEXADECIMAL data. If you need to use a hexadecimal number i n the
range $AO-$FF you must precede the hexadecimal number with a
decimal zero. This is required so that LISA will not mistake your
hexadecimal number for a label.

EXAMPLES:

00 -SAME AS #$0
05 -SAME AS #$5
10 -SAME AS #$10
OFF -SAME AS #$FF

WARNING: These special forms of the immediate addressing
mode were included to provide compatability with an older
assembler. Since LISA's introduction, the assembler using thi s
special syntax has been removed from the marketplace. To help
streamline future versions of LISA these syntax additions will
not be present in future versions of LISA. They are included in
LISA 2.5 only for purposes of compatab111ty with older versions
of LISA. DON'T USE THESE FORMS IN NEW PROGRAMS YOU WRITE, or
someday • • •

SECTION 3.3 -- ACCUMULATOR ADDRESSING MODE

The accumulator addressing mode applies to the four
instructions: ASL, LSR, ROL, & ROR. Standard MOS syntax dictates
that for the accumulator addressing mode you must place an "A" in
the operand field. LISA is compatable with the mini-assemble r
built into the Apple and as such the "A" in the operand field is
not required.

EXAMPLES OF lliE ACCUMULATOR ADDRESSING MODE:

ASL
ROL
LSR
ROR

-12-

LISA 2.5 ADDRESSING MODES July 1980

SECTION 3.4 -- ABSOLUTE/ZERO PAGE ADDRESSING

To use the absolute / zero page addressing mode simply follow
the instruction with an address expression in the operand field.
LISA handles zero page addressing automatically for you (but see
EQU/EPZ descriptions).

EXAMPLES:

LDA LABEL
LDA LABEL+$1
LDA $1
LDA $800
ASL LBL
ROL %10110

-SYMBOLIC LABEL USED
-LABEL PLUS OFFSET
-NON-SYMBOLIC ZERO PAGE
-NON-SYMBOLIC ABSOLUTE
-SYMBOLIC LABEL
-NON-SYMBOLIC ZERO PAGE

SECTION 3.5 -- INDEXED BY X ADDRESSING

LISA supports the standard "indexed by X" syntax. To use
this addressing mode. your operand field should have the form:

<expresaion>.x

When LISA encounters an operand of this form. the indexed by X
addressing mode will be used. If it is possible to use the zero
page indexed by X addressing mode. LISA will do so.

NOTE: STY <expression>.x
<expression> must be a .zero page expression or an assembly time
error will result.

EXAMPLES:

LDA LBL 0 X
LDA LBL+$ l • X
LDA $100,X
LDA $1010,X

SECTION 3.6 -- INDEXED BY Y ADDRESSING

LISA supports the standard "indexed by Y'' syntax. To use
this addressing mode your operand should be of the form:

<expression>,Y

When LISA encounters an operand of this form. the indexed by Y
addressing mode will be used. If it is possible to use the zero
page addressing mode (only with LDX & STX) then the zero page
version will be used.

-13-

LISA 2•5 ADDRESSING M>DES July 1980

NOTE: STX <expression>,Y
(expression> must be a zero page expression or an assembly time
error will result.

EXAMPLES:

LDA LBL,Y
STA LBL+$80,Y
LDX $0,Y

SECTION J.7 - RELATIVE ADDRESSING

Relative addressing is used solely by the 'branch
instructions. Relative addressing is sytactically identical to
the absolute/zero page addressing mode.

EXAMPLES:

BNE LBL
BCS LBL+$3
11VC '*+$5
BMI $900
BEQ LBL-$3

SECTION 3.8 - IMPLIED ADDRESSING

Several mnemonics do not require any operands. When one of
these instructions is used, simply leave the operand field
blank.

EXAMPLES:

CLC
SED
PHA
PLP

SECTION 3.9 - INDIRECT, INDEXED BY Y ADDRESSING

Indirect, indexed by Y addressing has the following syntax:

(<expression>),Y

<expression> must be a zero page expression or an assembly time
error will result.

-14-

LISA 2.5 ADDRESSING MODES

EXf.HPLES :

LOA (LBL) , Y
LDA '(LBL+$2), Y
LDA ($2),Y
LDA (llo+%101),Y

SECTION 3.10 - INDEXED BY X, INDIRECT ADDRESSING

July 1980

The inde~ed by X, indirect addressing mode has the format:

(<expression>,X)

<expression> must be a zero page expression or an assembly time
error will result.

EXAMPLES:

LDA (LBL.X)
ADC (LBll+-$3,X)
STA (LABEL-12,X)
AND ($00,X)

SECTION 3.11 INDIRECT ADDRESSING

The indirect addressing mode can only be used with the JMP '
instruction. The indirect addressing mode uses the following
syntax:

(<expression>)

<expression> may be any valid 16-bit quantity.

EXAMPLES:

JMP (LBL)
JMP (LBL+$3)
JMP ($800)

SECTION 3.12 - LOCAL LABELS

LISA 2.5 supports a special type of label known as the local
label. A local label definition consists of the up-arrow (',_")

-15-

LISA 2.5 ADDRESSING MODES

in column one followed by a digit in the range 0-9.

EXAMPLES:

Ao LDA 10
A9 STA LBL
A7 BIT $C010

July 1980

Local labels' main attribute is that they may be repeated
throughout the text file. That ia, the local label 'Al' may
appear in several places within the text file. To reference a
local label, simply use the greater than sign ('>') or the less
than sign ('<') followed by the digit of the local label you wish
to access. If the less than sign is used, then LISA will use the
appropriate local label found while searching backwards in the
textfile. If the greater than sign is used then LISA will use
the first appropriate local label found searching forward in the
text file.

EXAMPLES:

Incrementing a 16-bit value:

INC16 INC ZPGVAR
BNE)1
INC ZPGVAR+l

Al RTS

A Loop:

LDX #0
As LDA 10

STA LBL,X
INX
BNE <B

Local labels may not be equated using .the "EQU • "•" • or EPZ
pseudo opcodes. They are only allowed to appear as a statement
label.

-16-

LISA 2.5 USING LISA

SECTION 4.0 - USING LISA

1) GETTING LISA UP AND RUNNING

2) THE OOMMANDS

3) EXPLANATION OF OOMMANDS

a) INSERT
b) DELETE
c) LIST
d) LOAD
e) SAVE
f) .APPEND
:g) CONTROL-P
h) ASH
i) WRITE
j) LENGTH
k) CONTROL-D
1) MODIFY
m) NEW
n) BRK
o) FIND

4) LISA SCREEN EDITING FEATURES

5) LISA LOWER CASE FACILITIES

SECTION 4.1 - GETTING LISA UP AND RUNNING

July 1980

To run LISA simply boot the disk provided. When LISA is
ready to execute a command you will be greeted with a "!" prompt
(the same one us·ed by the mini-assembler, in case you're
wonde r1 ng) •

You can also run LISA by issuing the DOS command "BRUN
MXFI.S". If LISA is already in memory, you can enter LISA by
issuing the Apple monitor command "EOOOG" or control-B. This
enters LISA and clears the text file in memory. If you wish to
enter LISA without clearing the existing text file memory space
(a "warmstart" operation) use the "E003G" monitor command or
control-C. See the section on "warnings and extraneous notes"
for the warmstart procedure.

SECTION 4.2 - THE COMMANDS

After you successfully enter LISA, the computer will be
under the control of the command interpreter. This is usually
referred to as the command level.

-17-

LISA 2.5 USING LISA July 1980

When you are at the command level a "I" prompt
displayed and the computer will be waiting (with blinking
for a command. When at the command level you have
commands available to you. They are:

will be
cursor)
several

N(E'W)

L(IST)

A(SM)

LO(AD)

I(NSERT)

AP(PEND)

SA(VE)

D(ELETE)

LE(NGTR)

'W(RITE)

M(ODIFY)

BRK

AD (control-D)

AP (control-P)

F(IND)

The optional information is enclosed in parenthesis. As an
example you only need type "LO" to perform the "LOAD" command,
"I" to execute the "INSERT'' command, etc.

SECTION 4.3 -- EXPLANATION OF COMMANDS

NOTE: Optional information is enclosed in parenthesis.
Optional parameters are enclosed in braces.

I(NSERT) {line#}

Insert command. Will allow user to insert assembly
language source code into the source file. This
command accepts text from the 'keyboard and inserts it
before line number "line#". If "line#" is not
specified, text is inserted after the last line in the
text file. If the current text file is empty, then
insert will begin entering text into a new text file.
If a line number is specified which is larger than the
number of lines in the file, text will be inserted
after the last line in the text file. To terminate the
insert mode type control-E as the first character of a
new line.

LISA uses a logical line numbering scheme. The
first line in the text file is line number one, the
second line is line number two, the third line is line
number three, etc. Whenever you perform an insertion
between two lines the line numbers are more or less
"renumbered". As an example of what happens when you
insert text into LISA, boot your disk and get into the
command interpreter. Once you're in the command mode
type "I" followed by a return. LISA will respond with a
line number of one and will wait for text to be entered
into the system. At this point type "LBL LDA 00"
followed by return. LISA will print a "2" on the video
screen and await the entry of line number two. Now type
" END" (note the space before the END) followed by
return. LISA will respond by printing "3" on the video

-18-

LISA 2.5 USING LISA July 1980

screen. Now press control-E followed by return to
terminate text entry. LISA will return to the command
level which you will ve rfy by noticing the "!" prompt.

Now
"LIST") .
screen:

type "L" fol l o~d by a return ("L" is for
The following should be displayed on the CRT

LBL
2

LDA 00
END

Now type "I 2" at the command level. LISA will
respond with the line number two and will once again
await your text entry. DO NOT WORRY ABOUT DELETING TllE
PREVIOUSLY ENTERED LINE #2. Each time you enter a line
LISA "pushes" the existing lines down into memory. To
prove this to yourself enter " STA $00" (note the
spaces) followed by return. When "3" appears prompting
you to enter a new line press control-E.

Now type "L" and the Apple will display:

1 LBL
2
3

LDA 00
STA $00
END

Notice that "END" which was previously at line #2
has become line #3 after the insertion. Since the line
numbers change every time an insertion is performed
it's a good idea to list a section of your source every
time you perform an operation on it because the line
number you decide to use may have been modified by
previous editing.

D(ELETE) line#l{,line#2}

Deletes the lines in the range specified. If only
one line number is specified then only that line is
deleted. If ·two line number·s, separated by a comma, are
specified then all the lines in that part icular range
are deleted.

EXAMPLES:

DELETE 2
DELETE 2,6

-DELETES LINE #2
-DELETES LINES 2-6

Note that again, as with insert, the lines are
renumbered after the command to reflect their position
relative to the first line.

-19-

LISA 2.5 USING LISA July 1980

L(IST) {line#l{,line#2}}

Lists the lines in the specified range. If you
need to scan a section of the text file there are two
options which greatly facilitate searching for a
specified line. If, during listing, you press the space
bar then the listing will stop until the space bar is
pressed again. If the space bar is repressed the
listing will continue from where it left off. If
instead of pressing the space bar you press control-C
then you will be returned to the c0111111and level.

LO(AD) filename

EXAMPLES:

LIST
LIST 2
LIST 2,6

-LISTS ENTIRE FILE
-LISTS LINE # 2
-LISTS LINES 2-6

the specified LISA type file will be loaded in
from diskette. All valid DOS binary file options
except ",A" may be suffixed to the name. LISA files are
usually loaded in at location $1800.

EXAMPLES:

LOAD LZR IOS -LOADS LZR IOS FROM DISKET'.l'E

NOTE: Although the command "LOAD"
this does not mean that LISA uses the DOS
Internally (and before DOS gets a chance
"LOAD" is converted to "BLOAD".

SA(VE) filename

is .begin used
LOAD command.
to see it)

The file i n memory is saved to diskette under the
specified filename. Once again, SAVE is internally
converted to "BSAVE" so all conventions , res trictions ,
etc. which appl y to "BSAVE" may be used (You cannot ,
however, specify a s tarting address and lengt h as LISA
does this automatically and will override your specs).
Files saved using the LISA SA(VE) command are saved as
special "L" type files.

EXAMPLES:

SAVE TEMP -SAVES TEXT FILE TO DISKETTE
SAVE TEMP,S6,D2

-20-

LISA 2.5 USING LISA July 1980

AP(PEND) filename

Reads in a text file from diskette and appends it
to the existing text file in memory.

EXAMPLES:

APPEND TEMP
APPEND TEMP,D2

AP (control-P)

A(SM)

When control-P is pressed LISA will jump to
location $E009 and begin · execution there. Currently at
location $E009 is a JMP to the command processor used
by LISA. You may replace this JMP with a jump to a
location where your particular r.outine begins. Then, by
pressing control-P (followed by return, of course),
LISA will jump to your particular routine. To return to
the LISA command level yuu may either execute an RTS
instruction, or JMP $E003. Space has been provided for
your user routine in the area $9480-$95FF.

WARNING: use only a JMP instruction at location
$E009 as LISA system jumps appear both before and after
the JMP $E009.

Assembles the current text file in memory. LISA
currently allows up to 512 labels in the symbol table,
to change this see the appropriate appendix.

During assembly if any errors are encountered LISA
will respond with:

A(BORT) OR C(ONTINUE)?

as well as the error message. Should you wish to
continue the assembly (possibly to see if any further
errors exist) write down the line number of the current
infraction and press "C" followed by return. If you
wish to immediately exit the assembly mode to correct
the error, press "A" then ret11rn.

-21-

LISA 2.5 USING LISA July 1980

W(RITE) filename

LE(NGTH)

Writes the current text file onto diskette as a
TEXT type file. This allows you to manipulate your LISA
text file with a BASIC or APPLESOFT program. In
addition, TEXT type files may be read into Apple PIE
(version 2.0 or greater) and you can modify your LISA
text files using this very powerful text editor.

The first line output when using the W(RITE)
command is "INS". With "INS" as the first line in the
text file you may use the DOS "EXEC" command to reload
these TEXT type files back into LISA (See the control-D
command for more info on this feature).

Displays the current length of the LISA text file
in memory.

"D (control-D)

Allows you to execute one DOS command from LISA.

"D PR#n turns on an output device.
"D IN#n turns on an input device.
"D INT does not put you into BASIC, but rather

returns you to LISA.
.. D EXEC filename - where filename is a TEXT type

file previously created by the W(RITE)
command, loads into LISA the desired text
file.

"D (any other DOS
command.

M(ODIFY) line#l{,line#2}

Performs the sequence:

L(IST) line#l{,line#2}
D(ELETE) line#l{,line#2}
I(NSERT) line#l

command): executes that

which allows you to effectively replace a single line,
or many lines. If you do not specify a line number then
the entire file will be listed, you will get an ILLEGAL
NUMBER error, and you will be placed in the insertion
mode with the inserted text being inserted after the
last line of the text file.

-22-

LISA 2.5

N(EW)

BRK

USING LISA July 1980

Clears the existing text file. You are prompted
before the clear takes place.

Exits from LISA and enters the Apple monitor.

F(IND) label

Searches for the label specified after the find
c0111111and. FIND will print the line number of all lines
containing the specified label in the label field.

SECTION 4.4 ~ LISA SCREEN EDITING FEATURES

LISA incorporatew several nice screen editing commands.
Users . of the Apple II without the Autostart ROM will be able to
appreciate the convenience associated with the LISA screen
editing commands.

To move the cursor up press control-0. To move the cursor to
the right press control-K. To move the cursor down press
control-L. To move the cursor to the left press · control-J. To
copy the character under the cursor press the right arrow
(control-U). To delete the previously entered character press the
back arrow (baskspace/control-H).

SECTION 4.5 ~ LISA LOWER CASE FACILITIES

It is possible to enter lower case (as well as several
special characters) into LISA directly from the keyboard. The
display of lower case requires the Lazer Microsystems' Lower Case
+Plus" which is available directly from Lazer Microsystems. If
you do not have the lower case adapter on your Apple, lower case
letters will appear as garbage on the Apple video screen,
however, they are still lower case in memory so if you dump a
listing to a printer with lower case capabilities it will be
printed in lower case.

Normally, when moving the cursor over a lower case letter
junk will be displayed on the screen since there are no inverted
or blinking lower case letters in the Apple's character set. In
order to improve legibility, whenever you move the cursor over a
lower case letter it will be displayed as blinking (or possibly
inverted) upper case letter. You can use this facility to double
check lower case entry if your Apple does not have the lower case

-23-

LISA 2.5 USING LISA July 1980

adapter.

Since the Apple's shift key does not function as a shift key
for input. a software shift key has ~o ho>, used. LISA uses the ESC
key as shift key for input. LISA also has a "caps lock" mode•
since you use upper case most of the time anyway. The caps lock
mode is toggled by pressing control-$. While in the upper case
mode the cursor will be the normal blinking cursor. while in the
lower case mode the cursor will not be blinking but rather a
static inverted character. Naturally, while in the caps lock mode
the ESC key will do absolutely nothing for an alphabetic
character.

When you purchase and install the lower case adapter you
also get several special characters added to the basic Apple
display capabilities. These characters include: "J"," ", "{",
"}", and 0 - 11 • With LISA these characters, as well as "[" • "]",
and " " can be entered directly from the keyboard. To enter one
of these special characters you must first press ESC and then one
of following keys:

"I" by pressing "I" or "l"
11-11 by pressing or "N"
" " by pressing "'" or "7"
"{" by pressing "(" or "8"
"}" by pressing ")" or "9"
ft [" by pressing "<" or "" •
")" by pressing ">" or II II . ,, " by pressing "-"
"\'' by presaing "/"
DEL which prints a funny looking box on the screen

(but not on the printer) by pressing "#" or "3".

NOTE: If you have installed a Lazer Microsystems'
Keyboard +Plus, check the manual for special details on
entering these characters.

-24-

LISA 2 • . 5 ASSEMBLER DIRECTIVES July 1980

<S":C'.l',ION 5.0 - ASSEMBLER DIRECTIVES/PSEUDO OPCODES

1) THE AVAILABLE PSEUDO OPCODES
2) OBJ - OBJECT CODE ADDRESS
3) ORG - PROGRAM ORIGIN
A) EPZ - EQUATE TO PAGE ZERO
5) EQU - EQUATE
6) ASC - ASCII STRING DEFINITION
7) STR - CHARACTER STRING DEFINITION
8) HEX - HEXADECIMAL STRING DEFINITION
9) LST - LISTING OPTION ON

10) NLS - NO LISTING
11) ADR - ADDRESS STORAGE
12) END - END OF ASSEMBLY
13) ICL - INCLUDE TEXT FILE
14) DCM - DISK COMMAND
15) PAU - PAUSE/FORCE ERROR
16) PAG - PAGE EJECT
17) DCI - DEFINE CHARACTERS IMMEDIATE
18) INV - INVERTED CHARACTERS
19) BLK - BLINKING CHARACTERS
20) HBY - HIGH BYTE DATA
21) BYT - LOW BYTE DATA
22) DFS - DEFINE STORAGE
23) OBY - DOUBLE BYTE DATA
24) LET - LABEL REASSIGNMENT
25) TTL - TITLE
26) .IF - CONDITIONAL ASSEMBLY
27) .EL - ELSE
28) .FI - END IF
29) PHS - PHASE
30) DPH - DEPHASE
31) .DA - DATA

. 32) GEN - GENERATE OBJECT CODE LISTING
33) NOG - (NO GENERATE) SUSPEND OBJ a:>DE LISTING
34) USR - USER DEFINED PSEUDO OPCODE

SECTION 5.1 -- THE AVAILABLE PSEUDO OPCODES

As much as the opcodes tell the 6502 what to do, pseudo
opcodes tell LISA what to do. With pseudo opcodes you may
reserve data, define symbolic addresses, instruct LISA as to
where the code is to be stored, access the disk, etc. LISA
probably has the most powerful and flexible pseudo opcode set
available on any 6502 assembler.

The pseudo opcodes available are:

OBJ ORG EPZ EQU ASC STR HEX LST NLS ADR
END !CL DCM PAU PAG DC! INV BLK HBY BYT
DFS DBY LET TTL PHS DPH NOG GEN .IF .EL

-25-

LISA 2.5 ASSEMBLER DIRECTIVES July 1980

.FI

SECTION 5.2 - OBJ: OBJECT CODE ADDRESS

SYNTAX: OBJ <expression>

An assembler takes a source file which you create and
generates an "object code" file. This file has to be stored
somewhere! It is possible to store the object file to disk,
however this causes assembly to proceed very slowly, because the
disk is very slow compared to the computer. The object file may
also be stored directly in memory thus allowing the source file
to be assembled at full speed. LISA1 except in certain cases,
always stores the assembled program into RAM memory. The
question is where? Well, under normal circumstances (meaning you
have not told LISA otherwise) programs are stored in RAM
beginning at location $800 and grow towards high memory. Often,
however, the user needs to be able to specify where the code will
be stored in memory. The OBJ pseudo opcode would be used in this
instance.

When an OBJ pseudo opcode in encountered in the source file,
LISA will begin storing the object code generated at the
specified address. This allows you to assemble code at one
address (see ORG below) and store it in another. Another use of
the OBJ pseudo opcode is to reuse memory in a limited memory
environment. For instance. suppose you wish to assemble a text
file lOK bytes long. Unfortunately LISA does not leave you lOK
free for this use (LISA allows only 4K). What you can do is
assemble the first 4K of code and then save this first portion of
code to disk {see "DCM'' below). Now, by using the OBJ pseudo
opcode, you can instruct LISA to assemble the next 4K of code on
top of the old code which was saved to disk! This allows a very
flexible management of memory resources.

Another instance where one would use the pseudo opcode is
when you wish to assemble your code for an address outside the
$800-$1800 range. Since LISA uses almost every byte outside of
this range for one thing or another you must assemble your code
within this area. Unfortunately, not all users want to be
restricted to this area. Many users might wish to assemble an
I/O driver into page 3 or possibly up in high memory. Regardless
of where you wish the program to run, the object code generated
by LISA must be stored within the range $800 - $1800.

No problem! Simply use the OBJ pseudo opcode to store your
code beginning at . location $800 and remember to move it to it ' s
final location (using the monitor "move" command or the DOS ",A$"
option) before running it.

-26-

LISA 2.5 ASSEMBLER DIRECTIVES July 1980

LISA contains a special variable called the code counter.
This variable points to the memory location where the next byte
of object code will be stored. The OBJ pseutlo opcode will load
the value contained in its operand field into the code counter
(in fact that's the only operation OBJ performs). Other pseudo
opcodes affect the code counter as well, they will be pointed out
as they are discussed.

SECTION 5.3 ~ ORG: PROGRAM ORIGIN

SYNTAX: ORG <expression>

When an ORG pseudo opcode is encountered LISA begins
generating code for the address specified in the address
expression. When you use an ORG pseudo opcode, you are 'making a
promise to LISA that you will run your program at the address
specified. If you set the program origin to $300, then you must
move the program to location $~00 before running it.

Whenever an ORG pseudo opcode is executed it automatically
performs an OBJ operation as well. Thus, if you do not want the
code to be stored where you have ORG'd it, you must immediately
follow the ORG statement with an OBJ statement.

If you do not specify a program origin in your program, the
default of $800 will be used.

Multiple ORG statements may appear in your program. Their
use, however, should be avoided as they tend to cause problems
during the modification of a program (e.g. if you re-ORG the
program at some later date those embedded ORG statements can kill
you). LISA supports several pseudo opcodes that reserve memory,
etc. Tilere is no real need for more than one ORG statement within
a normal program. .

The ORG pseudo opcode evaluates the expression in the
operand field and loads the calculated variable into the code
counter (see OBJ above) and the LISA location counter variable.
It is important to remember that ORG affects both the location
counter and code counter.

WARNING: Locations $800 $1800 are reserved for code
storage. If you try to assemble your code outside of this range
possible conflicts with LISA, the source file, the symbol table,
or I/O buffer areas may arise. If you need to assemble your code
at an address other than in the range $800 - $1800 be sure to use
the OBJ pseudo oPcode to prevent conflicts.

-27-

LISA 2.5 ASSEMBLER DIRECTIVES July 1980

SECTION 5.4 ~ EPZ: EQUATE TO PAGE ZERO

SYNTAX: LABEL EPZ <exprear~on>

The label is assigned the value of the expression and
entered into the symbol table. If <expression> evaluates to a
value greater than $FF then an assembly time error occurs. If
any symbolic references appear in the expression then they must
have been previously defined with an EPZ pseudo opcode, or an
error will result. Although LISA does not require you to do so,
it is good practice to define all of your zero page locations
used in your program before any code is generated. Zero page is
used mainly to hold variables and pointers. However, before
wildly using up locations in zero page it's wise to consult your
Apple manuals to make sure that there are no zero page conflicts
between your program and the monitor or whatever language you are
using,

When a variable is defined using the EPZ pseudo opcode then
zero page addressing will be used if at all possible. The label
is not optional for the EPZ pseudo opcode.

The EPZ pseudo opcode only supports the addition and
subtraction operators in address expressions.

WARNING: Future versions of LISA will require that zero page
variables be declared before they are used, for compatabilities
sake •• ~

SECTION 5.5 ~ EQU: EQUATE

SYNTAX: LABEL EQU <expression>

-OR-

LABEL • <expression>

The 16-bit value of <expre·ssion> will be used as the address
for LABEL, and it will be entered into the symbol table. Absolute
addressing will always be used when using the EQU pseudo opcode,
even if the expression is less than $100.

(expression> may contain symbolic references (i.e. labels)
but they must have been previously defined in either an EQU
statement, an EPZ _statement, or as a statement label.

EQU may also be used to create symbolic constants. For
instance:

-28-

LISA 2.5 ASSEMBLER DIRECTIVES July 1980

CTLD EQU $84
LOA #CTLD

-or-

HIMEM EQU $9600
LOA #HIMEM
PHA
LOA /HIMEM

LETRA - "A"
LOA #LETRA

The use of symbolic constants in your program helps improve
the readability considerably.

SECTION 5.6 -- ASC: ASCII STRING DEFINITION

SYNTAX: ASC 'any string'

-or-

ASC "any string"

The ASC pseudo opcode instructs LISA to store the following
text directly in memory beginning at the current location. If the
apostrophe is used, then the text is stored in normal ASCII
format (i.e. high order bit off) . If the quotes are used, then
the character string is stored in memory in an extended ASCII
format (i.e. high order bit on). Since the Apple II computer uses
the extended ASCII format, you will probably use the latter
version most of the time.

If the apostrophe begins the string, then the apostrophe
must be used to terminate the string. Quotes may appear anywhere
inside such a string with no consequence.

If the quotes are
apostrophe may be placed
problems whatsoever. In
terminate the string.

EXAMPLES:

used to delimit the string, then an
anywhere inside the string with no
this case the quote must be used to

ASC ' THIS "STRING" IS OKI '
ASC " SO IS THIS ' STRING"'
ASC ' THIS IS 'NOT' ALLOWED'

-29-

LISA 2.5 ASSEMBLER DIRECTIVES July 1980

The last example is illegal because the first occurance of
the apostrophe terminates the string, leaving an illegal operand
delimiter (NOT) in the operand field.

Should you ever need to place an apostrophe or
within s string delimited by the respective character
accomplished by typing two of these characterc together
string.

EXAMPLES:

ASC "THIS IS "''HOW"" YOU DO IT!"
ASC 'THIS "WAY" WORKS FINE ALSO'
ASC "'THIS LOOKS WEIRD, BUT IT WORKS'"

In the last example the string created is:

'THIS WOKS WEIRD, BUT IT WORKS'

a quote
it can be

in the

Note: ASC is more or leas obsolete. It is included to make
LISA 2.5 compatable with eariler versions of LISA and other
assemblers. When writing new programs you should use the BYT and
.DA pseudo opcodes.

SE~ION 5.7 ~ STR: CHARACTER STRING DEFINITION

SYNTAX: STR 'any string'

-or-

STR "any string"

Most high level languages define a character string as a
length byte followed by 0 to 255 characters. The actual number of
characters following the length byte is specified in the length
byte. Strings stored this way are very easy to manipulate in
memory. Functions such as concatenation, substring (RIGHT$, MID$,
& LEFT$), comparisons, output, etc. are accomplished much easier
when the actual length of the string is known.

Except by manually counting the characters up and explicitly
prefacing a length byte to your string, the ASC pseudo opcode
does not allow you use use this very flexible data type.

The STR pseudo opcode functions identically to the ASC
pseudo opcode with one minor difference, before the characters
are output to memory, a length byte is output. This allows you
to create strings which can be manipulated in a manner identical
to that utilized in high level languages.

-30-

LISA 2.5 ASSEMBLER DIRECTIVES July 1980

EXAMPLES:

STR 'HI' -OUTPUTS 02 48 49
STR "HELLO" -OUTPUTS 05 CS CS CC CC CF

SECTION 5.8 - HEX: HEXADECIMAL STRING DEFINITION

'nle HEX pseudo opcode allows you to define hexadecimal data
and/or constants for use in your program. HEX may be used for
setting up data tables, initializing arrays, etc.

'nle string cif characters following the HEX pseudo opcode are
assumed to be a string of hex digits. Each pair of digits is
converted to one byte and stored in the next available memory
location pointed at by the location count~r. Since exactly two
digits are required to make one byte, you must enter an even
number of hexadecimal digits after the HEX pseudo opcode, or an
error will result. As such, leading zeros are required in hex
strings.

'nle hex string does not have to begin with a "$" (in fact it
cannot begin with. a "$"!), nor does it have to begin with a
decimal digit if the first hex digit is in the range k-F.

EXAMPLES:

HEX FF003425
HEX AAAA8845
HEX 00

SECTION 5.9 - LST: LISTING OPTION ON

LST activates the listing option. During pass three all
source lines after the LST will be listed onto the output device
(usually the video screen). Listing will continue until the end
of the program or until an NLS pseudo opcode (described below) is
encountered. Note that there is an implicit "LST" at the
beginning of your program, so unless otherwise specified your
program will be listed from the beginning.

SECTION 5.10 - NLS: NO LISTING/LISTING OPTION OFF

NLS deactivates the listing option. When encountered in the
source file, all further text until the end of the program or
until an "LST" pseudo opcode is encountered, will not be listed.

-31-

LISA 2.5 ASSEMBLER DIRECTIVES

LST and NLS can be used together to list small
program during assembly. By placing an "NLS" at the
your program, then a "LST" before the section of
printed, and then an "NLS" after the text you want
can selectively print a portion of the text
assembly. Neither "LST'' nor "NLS" allow an operand

SECTION 5.11 - ADR: ADDRESS STORAGE

sYNTAX: ADR <expression> {,<expression)}

July 1980

portions of a
beginning of
code you want
printed you
file during

The ADR pseudo opcode lets you store, in two successive
bytes, the address specified in the operand field. The address is
stored in the standard low order/high order format.

ADR can be used to set up "jump tables"• or for storing
16-bit data. ADR is particularly useful for storing decimal and
binary constants since conversion to hex is performed
automatically by LISA.

Multiple address expressions may appear in the operand
field. If additional address expressions are present, they must
~?. ~e~;:i rated from each other with co111111as.

EXAMPLES:

ADR LABEL
ADR LABEL-$1
ADR LABEL+$3
ADR LBL1,LBL2,LBL3
ADR !10050
ADR %10011011000111

Note in particular the last two examples which
how you can store decimal and binary constants in
the ADR pseudo opcode. This technique is very
translating BASIC programs to assembly language.

demonstrate
memory using

useful for

SECTION 5.12 - END : END OF ASSEMBLY

END tells LISA that the end of the source file
encountered. During passes one and two LISA will start
beginning of the text file and continue with the next
the end of pass three control will be returned to LISA' s
level.

has been
at the

pass. At
command

If the END is not present in the source file then a ''MISSING
END" error will occur at the end of pass one.

-32-

LISA 2.5 ASSEMBLER DIRECTIVES July 1980

SECTION 5.13 - ICL: INCLUDE TEXT FILE

SYNTAX: ICL "filename"

ICL is a very powerful and advanced pseudo opcode. It allows
you to "chain" in another text file. This pseudo opcode shoulc be
used when there is not enough memory available for the current
text file.

LISA provides you with enough memory for- approxamately 1500
to 2000 lines of text. Should you try to exceed this limitation a
"memory full" error will result. When this happens you should
delete the last 10 lines or so (to give you some working space)
and, as the last line of your text file, use the "ICL" pseudo
opcode to link in the next file.

Once the "ICL" pseudo opcode has been entered, save the text
file to disk. Now use the "N(EW)" command to clear the text file
workspace and then enter the rest of your assembly language text
file, continuing from where you left off.

Once you have finished entering the text, save the text file
to disk under the name specified in the "ICL" pseudo opcode. Now
load in the original file and assemble it. During assembly LISA
will automatically bring in the second file from disk and
continue assembly at that point.

NOTE: You shouldn't use "ICL" unless you really have to.
The use of ICL slows down assembly from 20,000 lines per minute
to about 500-1000 lines per minute due to considerable disk
access.

Since LISA is a three pass assembler the original text file
in memory must be saved to disk. It is saved under the name
"TEMP." so you should be careful not to use that filename. After
assembly the resident text file in memory will be the last text
file chained in. Yes, it would be nice if LISA brought the
original text file back into memory, but unfortunately this takes
time. Afld since most people want to run their program immediately
after assembly the amount of time required to reload the original
text file off of the disk is not justifiable for those few
instances where you want the original text file back.

During assembly, if an error occurs in a section of code
which was ICL'd off of the disk, the error message will give you
the name of the file, as well as the line number within the file
where the infraction occured. As before, you have the option of
continuing or aborting. If you abort you will find the text file
with the error currently in memory. You may fix the error,
resave the text file to the disk under its original name, then
reload "TEMP." and reassemble the text file.

-33-

LISA 2.5 ASSEMBLER DIRECTIVES July 1980

ICL is similar to END in that it must be the last statement
in the , text file. Any additi onal lines after the ICL will be
ignored. There is no limit on the number of files that you can
ch~in , together using the ICL pseudo opcode.

SECTION 5.14 - DCM: DISK COMMAND

SYNTAX: DCM "dos command"

During
During pass
quotes gets
required at

passes one and two the DCM pseudo opcode is ignored.
three, however, whatever string is placed between the
executed as an Apple DOS command. A control-D is not
the beginning of the DOS co11DDand.

The DCM pseudo opcode has several uses. You may use it to
selectively turn on and off input and output devices during
assembly (using PR# & INI), it can be used to save generated code
to disk thereby freeing memory space• it can be used to create a
disk text f i le l i sti ng of the assembled program. DCM may also be
used to prevent the symbol table listing from being pri nted, and
for loading load modules off of the disk after an assembly.

Since LISA only allows you 4K bytes for your object code
(from $800 to $1800) you have to BSAVE your object fil es to disk
when this 4K is used up. Once the file is BSAVED to disk you can
use the OBJ pseudo opcode to begin storing your object code
beginning at location $800 once again. 'When the second 4K is
used up you must once again use the DCM/OBJ sequence to make room
f or the new object code. ,

Once these "load modules" have been saved to disk, you can
reload them in sequence and then run the f i ni shed product .
However, you cannot simply BLOAD each of the object modules and
expect your program to run. Remember, the BLOAD command loads the
program in from where it was saved. Since all l oad module s were
saved beginning at locati on $800, the BLOAD command will load
them in to top of each other!

To get around this you should use the "A$" option when
BLOADing a program t o load the module into its correct memory
l ocation. In fact, when BSAVEing a program with the DCM pseudo
opcode it is a good i dea to make the loading address part of the
file name (for example: OBJ.1/$1800) .

EXAMPLES:

<FIRST 4K BYTES OF PROGRAM>

-34-

LISA 2.5 ASSEMBLER DIRECTIVES

DCM "BSAVE OBJECT/$800,A$800,L$1000
OBJ $800

<NEXT 4K BYTES OF PROGRAM>

.
DCM "BSAVE OBJECT/A$1800,A$800,L$1000"
OBJ $800

ETC.

July 1980

The symbol table listing may be suppressed by using the disk
command "INT''. This should be entered in your program immediately
before the "END" pseudo opcode. Aasembly automatically terminates
when the DCM "INT'' pseudo opcode is encountered and you are
returned to LISA's command level.

To create a disk text file listing of the assembly text file
use the DCM command sequence:

DCM "OPEN (filename)"

DCM "WRITE (filename)"

Once this has been accomplished all further text normally written
onto the screen will be sent to the disk under the name
"<filename>". The last statement before the END (or DCM "INT'' if
present) should be: DCM "CLOSE". This will close the file,
restore buffers, etc. Since the CLOSE will be executed before
the symbol table is printed, the symbol table will not be
included in your text file listing. If you need to include the
symbol table listing as part of the text file, then omit the
DCM "CLOSE" and explicitly CLOSE the file with an immediate CLOSE
command when you are returned to LISA's command level.

WARNING! Due to memory management techniques used by LISA
48K MAXFILES is always set to one. This implies that several
problems can develop if your program contains other disk commands
sandwiched between the OPEN & CLOSE commands. Should you need to
execute a disk command while writing the assembled source to disk
you must first CLOSE the file. Once the file is closed you can
execute the DOS command. After the DOS command is executed you
may continue writing the assembly listing by APPENDing (instead
of OPENing) and then WRITEing to the file.

-35-

LISA 2.5 ASSEMBLER DIRECTIVES July 1980

Note: Remember, any DOS co1111Dand terminates the WRITE command
so if you issue any DOS commands when writing a text file out to
disk you must reissue the WRITE command immediately after the DOS
command. Since ICL uses the DOS care must be taken when writing
such files out to disk.

SECTION 5.15 - PAU : PAUSE/FORCE ERROR

PAU is ignored during passes one and two. Duri ng pass three
however, this pseudo opcode will automatically cause an error
("**ERROR: PAUSE ENCOUNTERED") to occur. At this point the
programmer may A(BORT) the assembly or C(ONTINUE) the assembly.
PAU is very useful for debugging purposes as you don't have to
watch the screen with your finger on the space bar should you
desire to stop the assembly listing a some particular section of
code. PAU is also useful in determining where the 4K cutoff is
when you are saving object files to disk.

Although an error message is generated, this has no effect
on the assembly. If the pause error is the only error encountered
then the assembly can be considered successful.

SECTION 5.16 - PAG: PAGE EJECT

PAG will print a control-L to the listing device when
encountered during pass, three. If you are sending t he listing to
a printer with forms control your printer should skip to
top-of-form. PAG allows you to format your listings nicely,
breaking up subroutines so that they begin on different pages.

SECTION 5.17 - DCI: DEFINE CHARACTERS IMMEDIATE

SYNTAX: DCI "any string"

-or-

DCI 'any string'

DCI is a special hybrid pseudo opcode. In function i t is
!~~"t lcal to ASC with one exception: The last character in the
string will have a high order bit which is opposite the value for
the res t of the string. That is, if you are stori ng the stri ng i n
memory with the high order bit on, then the las t character in the
string will be stored with its high order bit equal to zero. If
the string is begin stored in memory with the high order bit of f ,
then the last character in the string will be stored in memory
with the high order bit on.

-36-

LISA 2.5 ASSEMBLER DIRECTIVES

EXAMPLES:

DC,::I "ABCDE" -GENERATES Cl C2 C3 C4 45
DC! 'ABCDE' -GENERATES 41 42 43 44 CS

SECTION 5.18 - INV: INVERTED CllARACTERS

SYNTAX: INV "any string"

-or-

INV 'any string'

July 1980

INV takes the string which follows and outputs the
characters as Apple inverted characters. The high order bit is
always off: so whether you use the apostrophe or quote to delimit
the string is of no consequence. You should realize that only the
characters directly available from the Apple keyboard plus "["•
"\", and " " have inverted counterparts. The lower case letters
and several special characters do not have coresponding inverted
counterparts. and should they appear within the INV string.
garbage will be created.

EXAMPLES:

INV 'ABCDE'
INV "ABCDE"

SECTION 5.19 - BLK:

-GENERATES 01 02 03 04 05
-GENERATES 01 02 03 04 05

BLINKING CllARACTERS

SYNTAX: BLK "any string"

-or-

BLK 'any string'

BLK is the counterpart to INV. Instead of generating the
code for inverted characters, BLK generates code for blinking
characters. All restrictions mentioned for INV apply as well to
BLK (for the same reasons) •

SECTION 5.20 - HBY: HIGH BYTE DATA

SYNTAX: HBY <expression> {,<expression>}

-37-

LISA 2.S ASSEMBLER DIRECTIVES July 1980

HBY is similar to ADR except only the high order byte of the
following address expression is stored in memory. Combined with
BYT (described below) it is possible to break up address tables
into two groups of one byte data apiece instead of the two-byte
data generated by ADR. Th1.s allows a very convenient method of
loading addresses when using ' t'...e index registers.

EXAMPLES:

HBY $1234
HI>Y $F3
HBY LBL
HBY "A"

-GENERATES $12
-GENERATES $00
-GENERATES H.O. BYTE OF THE ADDRESS OF LBL
-ANY ASCH DATA ALWAYS GENERATES $00

HBY LBL1,LBL2,LBL3

SECTION 5.21 - BYT: LOW BYTE DATA

SYNTAX: BYT <expression> {,<expression>}

BYT works in a manner similar to BBY except it stores the
low order address byte into memory at the current location. BYT
is also useful for introducing symbolic values into your
programs. For instance, $00 is often used as the "end-of-string"
token. You can define a constant "EOS" (for "end-of-string") and
t~~n use BYT to store the value for EOS in memory for you. This

~~10 beneficial effects on your program. First, it makes your
program easier to read since "BYT EOS" states exactly what the
value is for, whereas "HEX 00" is somewhat ambiguous. The second
benifical feature is the fact that should you decide to change
che EOS value from zero to say ETX (ASCII end-of-text) you only
need change one line (the EQU statement which defines EOS)
instead of having to go through your program and change each
occurance of "HEX OD" to "HEX 03".

EXAMPLES:

BYT $1234
BYT $F3
BYT "A"
BYT LBL

-GENERATES $34
-GENERATES $F3
-GENERATES $Cl (EXTENDED ASCII FOR "A")
-GENERATES CX>DE CX>RRESPONDING TO LBL'S

LOW ORDER ADDRESS

SECTION S.22 - DFS: DEFINE STORAGE

SYNTAX: DFS <expression> {,<expression>}

-38-

LISA 2.5 ASSEMBLER DIRECTIVES July 1980

DFS reserves memory storage for variables. DFS takes the
first address expression found in the operand field and adds this
value to both the location counter and the code counter. This
leaves a wide gap of memory open for use by arrays, variables,
etc. If the second operand is not specified, then the memory
space reserved is not initialized and contains garbage.

The second operand in the address expression, if specified,
determines the value to which memory will be initialized. The
low-order byte of the second address expression will be stuffed
into each byte of the storage reserved by the DFS pseudo opcode.
NOTE: This initialization is optional. If it is not explicitly
required it should not be used as it slows assembly speed down
considerably.

If more than two expressions are specified, the remainder
are ignored.

EXAMPLES:

LBL DFS $1 -RESERVES ONE BYTE AT LOCATION "LBL"
LBLl DFS $100 -RESERVES 256 BYTES AT LOCATION "LBLl"
LBL2 DPS 300.0 -RESERVES 300 BYTES AND !NITS THEM TO ZERO

SECTION 5.23 - DBY: DOUBLE BYTE DATA

SYNTAX: DBY <expression> {.<~xpression>}

DBY is used in a manner identical to ADR except that the
address data generated is stored in high order (H.O.) byte/low
order (L.O.) byte order instead of the normal L.O./ H.O. order.

Examples:

DBY $1020 -GENERATES
DBY $1234 -GENERATES
DBY LABEL -GENERATES
DBY LBL1,LBL2,LBL3

10 20
12 34
(H.o. BYTE) (L.o. BYTE)

SECTION 5.24 - LET: LABEL REASSIGNMENT

SYNTAX: LABEL LET (expression>

LET allows the programmer to redefine a previously defined
(non-zero page) label. This is useful for defining local labels.
counters, etc. One note of caution: LET is active on passes two
and three. EQU and statement label declarations are noted only
during pass two. If you declare a label during pass two as a

-39-

LISA 2.5 ASSEMBLER DIRECTIVES July 1980

statement label or with the EQU pseudo opcode and then
subsequently redefine it with a LET pseudo opcode, the address
used during pass three is the value defined in the LET statement
regardless of the EQU or statement label definition. This is due
to the fact that a label defined using the LET pseudo opcode
retains that value until another LET redefinition (with the same
label) comes along. Since EQU is not active during pass three
and statement label values are only noted during pass two, the
label will never be set to its original value. These problems
are easily overcome, simply use the LET pseudo opcode in place of
the EQU in the original definition. If the original definition
was a statement label then substitute "LABEL LET *" instead.

SECTION 5.25 - m.: TITLE

SYNTAX: TTL "STRING"

The TTL pseudo opcode causes an immediate page eject (via
control-L/form-feed character) and then prints the title
specified at the top of the page. Every 65 lines a page eject is
issued and the title is printed at the top of the new page.

SECTION 5.26 - .IF: CX>NDITIONAL ASSEMBLY

SYNTAX: .IF <expresion>

Conditional assembly under LISA lets you selectively
assemble code for different operating environments. For example,
you could have a ·couple of equates at the beginning of a program
which specify the target Apple system. Labels such as HASPRNTR,
HAS64K, }JASMODEM, LCPLUS, KBPLUS, etc. can be set true or false
depending upon the hardware involved. For example, LISA 48K and
64K are the same file with just one equate changed. Conditional
assembly handles all the minor details.

Conditional assembly uses three pseudo opcodes: '.IF',
'.EL', and '.FI'. '.IF' begins a conditional assembly sequence .
' .IF' is followed by an address expression. If it evaluates to
true (non-zero), then the code between the '.IF' pseudo opcode
and its corresponding '.EL' or '.FI' pseudo opcode is assembled.
If the address expression evaluates to false, then the code
immediately after the '.IF' pseudo-op will not get assembled (see
the '.EL' description).

SECTION 5.27 - .EL: ELSE

-40-

LISA 2.5 ASSEMBLER DIRECTIVES July 1980

SYNTAX: .EL

'.EL' terminates the '.IF' code sequence and begins the
alternate code sequence. The alternate code sequence is
assembled only if the address expression in the operand field of
the '.IF' pseudo-op evaluates to false {zero). '.EL' (and its
corresponding code section) is optional and need not be present
in the conditional assembly language sequence.

SECTION 5.28 - .FI: END IF

'.FI'
sequence.
pseudo-op
assembled

SYNTAX: .FI

terminates the conditional assembly language
It must be present whether or not there is a '.EL'

present. All code after a '.FI' pseudo opcode will be
regardless of the value in the '.IF' operand field.

NOTE: LISA does not support nested IF's. If a nested IF is
present, LISA will give you a nasty error at assembly time. All
IF' s must be terminated before an END or ICL pseudo op is
encountered or LISA will terminate assembly.

To see an example of conditional assembly, look at the 'LISA
Pl.L' file on the LISA master disk.

SECTON 5.29 - PHS: PHASE

SYNTAX: PHS <expression>

The PHS pseudo opcode lets you assemble a section of code
for a different address, yet include the code within the body of
a program running at a different address. This feature lets you
include a shprt driver that runs at location $300, for example,
within a program that normally runs up at $1000. It is the
responsibility of the program at $1000 to move the program down

' to location $300.

Technically, PHS loads the location counter with the address
specified i n the address expression, but it does not affect the
code counter at all. In essence it performs an ORG without the
OBJ. The DPH (described below) must be used to terminate the PHS
code sequence.

SECTION 5.30 - DPH: DEPHASE

-41-

LISA 2.5 ASSEMBLER DIRECTIVES July 1980

SYNTAX: DPH

DPH is used to terminate the section of code f~ilowing the
PHS pseudo opcode. It loads the code counter into the location
counter, restoring the damage done by the PHS pseudo op.

SECTION 5.31 -- .DA: DATA

SYNTAX: .DA <special expression) {,<special expression)}

- where <special expression> is -

#<expression>
I <expression>
<expression>
"string"
'string'

' .DA' is another hybrid pseudo opcode. It is a combination
of the ADR, BYT, and HBY pseudo ops. It is particularly useful
with the SPEED/ASM package's CASE statement and similar
routines.

EXAMPLES:

LBLl .DA #CR,RETURN
LBL2 .DA 'C' ,#LBL1,/LBL2,LBL2
LBL3 .DA "HELLO THERE" ,#0,STRADR

If an address expression is prefaced with the pound sign
("#") then the lower order byte will be used. If an address
expression is prefaced with the slash ("/") then the high order
byte will be used. If neither a pound sign or a slash is
specified, then the two bytes of the address (in low/high format)
will be stored in memory.

SECTION 5.32 -- GEN: GENERATE CODE LISTING

SYNTAX: GEN

-42-

LISA 2.5 ASSEMBLER DIRECTIVES July 1980

GEN (and NOG below) control the output during assembly. If
GEN is in effect {the default) all object code output is sent to
the display device.

SECTION 5.33 NOG: NO GENERATE

SYNTAX: NOG

NOG will cause only the first three bytes to be listed to
the output device during an assembly. This dramatically shortens
program listing containing strings and multiple addresses.

SECTION 5.34 ~ USR: USER DEFINED PSEUDO OPCODE

SYNTAX: USR <anything>

For 1110re info on the USR pseudo opcode check the
appendicies.

-43-

LISA 2.5 ADDITIONAL FEATURES July 1980

SECTION 6.0 -- ADDITIONAL FEATURES/RANDOM NOTES

1) EXTENDED MNEMONICS

2) SWEET-16 MNEMONICS

3) EXTRANEOUS NOTES

SECTION 6.1 -- EXTENDED MNEMONICS

The word "mnemonic" means memory aid. "LDA #$FF" is
certainly easier read as "load the accumulator with the constant
$FF" than is A9FF. Nevertheless, there are times when even the
mnemonic doesn't make much sense. For instance BCC, Branch if
Carry Clear, does not register in most people's minds as meaning
the same as branch if less than. Several 6502 instructions can be
used, or recognized by the user, as a different function. The BCC
instruction is but one example.

In order to make 6502 aaaembly lAnguage programming easier
to use by the programmer, LISA incorporates several "extended"
mnemonics. 'nlese extended mnemonics are simply redefinitions of
existing mnemonics. These new extended mnemonics make life just a
1.ittle easier for the programmer.

The extended mnemonics included in LISA are:

BLT -BRANCH IF LESS THAN, SAME AS BCC
BGE -BRANCH IF GREATER OR EQUAL, SAME AS BCS
BTR -BRANCH IF TRUE, SAME AS BNE
BFL -BRANCH IF FALSE, SAME AS BEQ
XOR -EXCLUSIVE OR, SAME AS EOR

Note that these mnemonics are included IN ADDITION to
the existing mnemonics.
FALSE is defined as $00 and TRUE is defined as anything
else.

SECTION 6.2 -- SWEET-16 MNEMONICS

LISA incorporates a Sweet-16 assembler for use with the
Sweet-16 pseudo machine interpreter in the Apple ROMs (see BYTE,
Nov 1977 or Applesauce, Nov 1979 for details). For the l'llOSt part
LISA uses standard WOZ mnemonics except where Steve Wozniak used
two and four character mnemonics. Since this tends to disrupt the
nice assembly listing, all two and four character TDnemonics where
converted to three character mnemonics to improve the listing
format.

-44-

LISA 2.5 ADDITIONAL FEATURES July 1980

SWEET-16 MNEMONIC CX>NVERSIONS:

WOZ'S LISA'S

SET SET
LD LDR
ST STO
LDD LDD
STD STD
ADD ADD
SUB SUB
POPD PPD
CPR CPR
INR INR
DCR DCR
RTN RTN
BR BRA
BNC BNC
BC BIC

· BP BIP
BM BIM
BZ BIZ
BMl BMl
BNMl BNM
BK BKS
RS RSB
BS BSB
BNZ BNZ

SECTION 6.3 -- WARNINGS AND OTHER EXTRANEOUS NOTES

The RESET key on the Apple II always has been and always
will be a major pain. When pressed at the wrong time it can cause
all kinds of trouble.

There are two times when the RESET key absoulutely cannot be
pressed. Whenever anything is being written out to disk, should
the RESET key be pressed you will, at least, destroy the file
being written. At worst you could destroy the whole disk.

Users of the Autostart ROM cannot hit RESET while in the
LISA I(NSERT) mode. In this case, you will be returned to the
command level and part of your text file may be lost.

Other than the above cases there are fixes should you
accidentally hit RESET. If you were in the co111mand processor when
RESET was pressed, simply type use E003G or CRTL-C. This will
return you to LISA without erasing the existing text file, or
changing pointers, etc.

-45-

LISA 2.5 ADDITIONAL FEATURES July 1980

If you were in the I(NSERT) mode when the RESET key was
pressed, you CANNOT use E003G to restart LISA. If you do so, your
text file will be partially destroyed. If you do hit RESET while
in the I(NSERT) mode, simply type E006G from the monitor and you
will be returned to the insert mode. The only data lost
(hopefully) is the last line you typed in.

To help prevent an accidental depression of the RESET key
you might remove it from the Apple keyboard. Using a small
screwdriver it should be fairly easy to pop off (but if you meet
great resistance, as though it were glued on, use common sense
and STOP).

Coldstart is EOOOG (control-B) - this clears the text file,
reinitializes pointers, etc. Never set MAXFILES to anything other
than 1 while using LISA 48K. If you do, part of LISA will be
destroyed.

-46-

LISA 2.0 ADVANCED TOPICS July 1980

SECTION 7.0 - ADVANCED TOPICS

1) MEMORY ALLOCATION

2) LISA'S MNEMONIC TABLE

3) LISA'S INTERNAL FORMAT

4) WHY LISA IS SO FAST

5) USING ANOTHER TEXT EDITOR WITH LISA

6) CONVERTING FILES FROM LISA 1.5 TO 2.0

7) LOADING LISA 2.3 AND EARLIER FILES INTO LISA 2.5

8) WHERE TO ADDRESS ADDITIONAL QUESTIONS

SECTION 7.1 - MEMORY ALLOCATION

LISA, upon coldstart, initializes several parameters. In
particular it sets the start of text pointer (STXT) to $1800 and
the upper text file limit to $8000 (HMEM). This .gives you 4K for
object code, 26K for text file use, and SK for the symbol table.
These numbers were not picked out of the airl After considerable
research and experience with LISA version 1.3 Lazer Systems has
determined these values to be optimal for CORESIDENT operation.
Since 80% of all assembly language programs are less than 2000
lines long, contain less than 512 symbols, and the object code
produced is less than 4K bytes our coldstart settings should
prove sufficient for most applications.

We have not forgotten the other 20% of the time, however.
By changing two bytes at the beginning of LISA, it is possible to
change these memory "fences" anywhere in memory. For disk based
operati on you may want to adjust HMEM so that more than 512
labels are allowed. Likewise, since you have t

-47-

LISA 2.0 ADVANCED TOPICS July 1980

anyway, you may want to decrease the size of the allowable text
file and make more room for object code by setting STXT to $2000
or even $2800.

To make a sound judgement as to how you should adjust these
values you should realize that each entry in the symbol table
requires 8 bytes. Also, the average line of text in LISA for a
well documented program requires about 10 bytes. Object code is
generated at the approximate ratio of two bytes per line of
source code.

As an example, LISA represents almost 6000 lines of source
code. It was reassembled (using LISA) in 5 sections with STXT set
to $2000 (although $1800 would have sufficed) and HMEM set to
$5800 (allowing 768 symbols).

To change these parameters in LISA load LISA and then get
into the Apple monitor (i.e. the "BRK" command). Enter EOOOL
into the Apple 1110nitor. A series of jumps will be displayed and
then, at location $E01B, the hex value $18 will appear. This
particular byte is used to set the high order byte of STXT. By
changing location $E01B to $20 and then executing a coldstart
(7000G/EOOOG) you will set STXT to $2000. The low order byte of
STXT is always set to $00.

Immeditately following the STXT parameter is the HMEM
p~ ra~eter. Currently (at location $E01C) the value $80 is stored
nere. This is the high order byte for HMEM. As with STXT this
value can be modified and will take place on the next coldstart.

WARNING: If you create a large text file with LISA set up
for the coresident mode, and then attempt to load this text file
into LISA after 1110difications to STXT and/or HMEM have been made,
problems may develop. If the large text file takes up more memory
than is allowed by HMEM, no load error will result. Upon
assembly, however, part of your text file may be destroyed by the
symbol table. The aforementioned parameters should ·not be
modified without careful consideration.

- 48-

LISA 2.0 ADVANCED TOPICS July 1980

SECTION 7.2 - LISA'S MNEMONIC TABLE

LISA MNEMONIC table format can be seen by looking at the
Pl.L file provided on the LISA diskette.

SECTION 7. 3 - LISA'S INTERNAL FORMAT

The detokenization routine for LISA is provided in the Pl.L
file. You can check this routine to see how LISA arranges things
internally.

SECTION 7.4 - WHY LISA IS SO FAST

Most of LISA's speed is due to the fact that the mnemonics
are tokenized and the input line is prescanned for syntax
errors. LISA's speed could probably be doubled by improving the
symbol table search routines, but the need (for greater speed) is
yet to justify the additional work.

SECTION 7.5 - USING A DIFFEREND EDITOR WITH LISA

If you have access to a text editor that outputs text type
files to diskette you may be able to use it will LISA files. To
do so, 'W)rite the LISA file to disk as a text type file and load
it into your text editor. To convert the file back into LISA
format type control-D EXEC followed by the filename from LISA' s
command level. When doing so, always make sure the first line in
the file contains "INS" so that the file is loaded in properly.

You should not use an external text file while creating a
file, LISA's editor (since it is interactive) is better suited
for that purpose. An external editor should be used when
modifying large files, such as those created by the DISASM/65
module.

SECTION 7.6 - CONVERTING FILES FROM LISA 1.5 TO LISA 2.5

To convert a text file created using LISA 1.5 for use with
LISA 2.s, follow this simple procedure: LO(AD) the file int o
version 1.5 and W(RITE) the file back to disk as a TEXT type
file, then EXEC the file into LISA 2.5. That's all there is to
it.

SECTION 7.7 - LOADING LISA 2.x FILES INTO LISA 2.5

-49-

LISA 2.0 ADVANCED TOPICS July 1980

LISA 2.0. 2.1. 2.2. and 2.3 saved source files on the disk
as binary files. LISA 2.5 saves source files on the disk as LISA
"L" files. LISA' s LO) ad command only loads "L" files and will
generate a FILE TYPE MISMATCH ERROR if you attempt to load a LISA
2.x binary type file.

To alleviate this problem, the LOB command (for LOad Binary)
has been included in LISA 2.5's command set. LOB can be used to
load older LISA textfiles into LISA 2.5, which may then be saved
to disk as an "L" file from LISA 2. 5

SECTION 7.8 ~ WHERE TO ADDRESS ADDITIONAL QUESTIONS

Naturally, no matter how much documentation comes with a
product, there will always be questions. Before doing anything
else read this manual from cover to cover, 1110st questions are
already answered in this manual, you simply missed what you were
looking for the first time through. Answering questions takes
time, which costs money, and will eventually be reflected in the
coat of this product and/or its updates. So please, read the
manual first.

As mentioned, no matter how much documentation is provided
questions will still go unanswered. If this should occur please
write Lazer Systems at:

Lazer Systems
Bx 55518
Riverside, CA. 92517

For speedy response please send SASE as well as your phone number
so that Lazer Systems may provide you with a reply.

-50-

LISA 2.5 TRICKS ETC. WHEN USING LISA July 1980

SECTION 8.0 - "TRICKS" ETC. WHEN USING LISA

1) EFFECTIVELY USING LISA'S BUILT-IN EDITOR

2) USING 'lliE AP(PEND) COMMAND

3) USING 'lliE DOS "EXEC" COMMAND

4) A DESCRIPTION OF WHAT HAPPENS WHEN YOU ASSEMBLE A FILE

5) RUNNING A LISA PROGRAM: FROM START TO FINISH

SECTION 8.1 - EFFECTIVELY USING LISA'S BUILT-IN EDITOR

LISA's built-in editor is very easy to use once the user
becomes accustomed to the few differences which exist between
LISA's editor and the editor used in BASIC.

The first. and most important.. thing to remember is that all
modifications to a LISA text file affect the line numbering
scheme. LISA's line numbers are dynamic (always changing) as
opposed to the static line numbering system in BASIC (static
means fixed). Although the line editor in LISA is very simple.
the screen editing features make it very powerful. The screen
editing commands allow the user to move the cursor up
(control-o). down (control-L). right (control-K). and left
(control-J). Note that the mentioned control characters are NOT
entered into the line buffer. nor is the character under the
cursor before or after the movement takes place. The cursor
control characters simply move the cursor around on the video
screen.

Control-H (backspace or left arrow) erases the previously
entered character from the line buffer. If you try to erase past
the beginning of the currently entered line the backspace will be
ignored.

Control-U (right arrow) copies the character currently under
the cursor into the line buffer. The cursor is also moved one
location to the right.

These cursor commands. when combined with the normal LISA
editing commands, form the basis of a very powerful screen
oriented editor. For example, if line 33 in your text file
contains: "LABL LDA 00" and you wish to change it to:
"LABEL LDA 00" this is easily accomplished by M(ODIFY)ing line 33
(M 33). pressing control-0 to move the cursor up one line (and on
top of the "L" in "LABL"). Now press control-U (right arrow)
three times to copy "LAB". When this is accomplished press
control-J to move the cursor back one character, next press "E".
Now use the right arrow (control-U) to copy the rest of the line

-52-

LISA 2.5 TRICKS ETC. WHEN USING LISA July 1980

and then hit return. After you hit return press control-E to g>'t
you out of the insert mode. Now L(IST) 33. You will see "LABEL
LDA 00". As you can see, insertions into the current line are
performed by copying up to ~he desired location, moving the
cursor back one character entering the insertion, and finally the
right arrow is used to copy the rest of the line.

To delete characters from a line (perhaps change "LABEL" to
"LABL"?) simply use the control-K cursor control to skip over the
undesired characters.

To replace characters within a line simply type the new
characters over the top of the undesirable characters.

It is also possible to use LISA's text editor to copy or
move several lines of text. To copy a block of text elsewhere in
memory first L(IST) the lines you wish to copy (up to 20 lines).
Next, use the IN(SERT) command to insert text where you want to
copy the block of text. Now use the control-0 to move the cursor
over the first character of the lines you previously listed out.
By using the right arrow (and of course return at the end of each
line) you can copy these lines into the new memory location. If
you need to copy more than 20 lines do it in several stages,
copying 20 lines each time (but remember to aiways check the line
numbers in case they may have been changed by the I(NSERT)
command.

To move a block of text, follow the procedure for
as discussed above. Once the copy is complete,
original lines using the LISA D(ELETE) command.

SECTION 8.2 - USING THE AP(PEND) COMMAND

the copy
delete the

The LISA AP(PEND) command will take a source file from
diskette or tape and append it to the end of the existing text
file in memory. This feature is very useful if you need to copy
a set of declarations, a copyright notice, a set of I/O routines,
etc. to each of your text files. It is also very useful when·
you need to copy a section of code several times in your program
and the copy procedure mentioned above turns out to be too much
work.

You
a text
check to
LE(NGTH)

should be very careful when AP(PEND)ing text files onto
file in memory which is very large. AP(PEND) does not
see if the memory is full or not, so always use the

command to make sure that there is enough room
available.

SECTION 8. 3 - USING THE DOS "EXEC" COMMAND

-53-

LISA 2.5 TRICKS ETC. WHEN USING LISA July 1980

The Apple DOS EXEC command can be used in LISA to create
sev;:;rr .. 1 "shells" or procedures. For instance, if you create a
text file on disk (using Apple PIE or equivalant) which contains:

INS 1
NLS

(CONTROL E>
ASM
DEL 1

When you EXEC this file, it will assemble the current text file
without listing the program.

The EXEC command is also useful for performing intrafile
merging. By W(RITE)ing a text file out to disk and then
modifying the first line so that it reads "INS (linenum>" instead
of just "INS" you can create a text file which when EXEC' d will
insert the following text in front of line (linenum). Besides
allowing you to insert text within a file, instead of just at the
end of the file as with AP(PEND), this version will catch a
memory full condition should it arise. In fact if you think you
might run out of memory when using the AP(PEND) command, it might
be a good idea to use the EXEC method of appending text files,
just in case I

SECTION 8.4 ~ A SHORT DESCRIPTION OF WHAT HAPPENS 'WHEN YOU
ASSEMBLE A LISA SOURCE FILE

The 6502 microprocessor does . not understand "assembly
language" despite what you may have heard. What the 6502 does
understand is "6502 machine language". Although you may have
been led to believe that assembly language and machine language
are one and the same, in fact, they are not. Assembly language
consists of the labels, mnemonics, expressions. and comments
which have been previously described in this manual. Machine
language, on the other hand, is an unreadable · collection of
binary data. An assembler's job is to convert assembly language
to machine language so that the 6502 will understand what's going
on. Fortunately, it is fairly easy to convert assembly language
to machine language (at least easy compared to converting say
BASIC, FORTRAN, or Pascal to 6502 machine language!).

At some point during an assembly, stop the assembly by
pressing the space bar. In addition to the source code, which is
displayed on the right hand side of the screen (possibly with
wrap-around) you will see several HEX digits on the left side of
the screen. The first four HEX digits correspond to the address
where the program will reside when run. Following these four HEX
digits, separated by one space, come zero to six HEX digits.
These digits correspond to the machine code generated by LISA. If
you look up these codes on the provided 6502 programming card you
will see that these operation codes correspond to the actual

-54-

LISA 2.5 TRICKS ETC. WHEN USING LISA July 1980

assembly language instructions (plus any required data). The next
one to four digits correspond to the LISA text file line number
followed by the actual source code.

Normally the object code (machine code) produced is stored
in memory at the address specified by the addreSB listed at the
far left (but see the OBJ pseudo opcode) . When you run the
program the code must be stored at these locations in memory. If
the program is not stored at this location in memory, it will not
work properly when executed. Some programs are an exception to
this rule and are called "relocatable" programs.

Once it is assembled, running an assembly language program
is very easy. First get into the monitor by issuing the LISA
"BRK'' command. Once you are in the monitor you may run your
program by using the monitor "GO" command. This is very similar
in practice to the BASIC "RUN'' command. The only difference is
that you must specify a run address . If your program begins at
address $800 you must issue the monitor command "800G'' to run
your program. This command tells the monitor to begin running the
machine language program located at location $800.

You may terminate your machine language program in one of
several ways. You can use the BRK mnemonic which will s:op the
program, print the current contents of the 6502 registers and
return to the monitor. If you terminate your program with a RTS
instruction you will be returned to the calling routine (in this
case the monitor). You can also use a JMP instruction to enter
BASIC, LISA, Pascal, or some other program directly.

NOTE: If you are planning to CALL your routine from BASIC or
Pascal, you should always end your assembly language program with
a RTS instruction so that control will be returned to the calling
program.

SECTION 8.5 ~ RUNNING A LISA PROGRAM: FROM START TO FINISH

First, decide exactly what program you wish to write. In our
example we will simply print the two hex digits "FF" onto the
Apple video screen and then return to the monitor.

Once the program has been decided upon, the next step is to
decide how the program is to be written. In ·this case We will
simply load the accumulator with $FF and then JSR to a monitor
routine which prints the contents of the accumulator as two hez
digits.

Now the program has to be entered into LISA's
To do this type "INS" when you get the "!" prompt.
return your screen should look something like this:

!INS

-ss-

text editor.
After hitting

LISA 2.5 TRICKS ETC, WHEN USING LISA July 1980

1

and a blinking cursor will prompt you for text entry. As with
all 6502 programs not utilizing decimal arithemetic, the first
instruction should be a clear decimal flag instruction or "CLD".
To enter th.is instruction type a space (remember, column one is
rese.rved for labels) and the the sequence "CLD" followed by
return. The screen should now look like this:

!INS
1 CLD
2

Once again the blinking cursor tells you that LISA is
waiting for text entry. Now we can begin the main portion of our
program. The first thing which we want to do is load the
accumulator with the constant $FF. To do this we must use ,the
assembly language instruction "LDA #$FF" (or LDA OFF if you
prefer). To enter this instruction type a space (remember column
one •••) followed by "LDA". Now type another space and then
"#$FF" followed by return. The screen should now look like this:

!INS
1 CLD
2 T.DA 1$FF
3

Again, the blinking cursor will prompt you to enter more
text. Now we must enter the instruction which prints the contents
of the accumulator as two hex digits. This happens to be "JSR
$FDDA". To enter this program type a space, followed by "JSR",
followed by a space, followed by "$FDDA" followed by return. The
screen should now look like this:

I INS
1 CLD
2 LDA #$FF
3 JSR $FDDA
4

Now we must enter the command to return control to the Apple
monitor. One way to do this is by using the "RTS" instruction. So
let's enter it on the next line. Type a space followed by "RTS",
followed by return. The screen should now look like this:

!INS
l CLD
2 LDA #$FF
3 JSR $FDDA
4 RTS

-56-

LISA 2.5 TRICKS ETC. 'WHEN USING LISA July 1980

5

f

As far as the 6502 is concerned. our progr~m is complete.
However. we still haven ' t told LISA that the end oi the prograa
has been reached. To do this type the pseudo opcode "END" onto
line 5 (don' t forget the apace first!). Upon hitting return the
screen should look like this:

!INS
1 CLD
2 LDA #$FF
3 JSR $FDDA
4 RTS
5 END
6

Note that LISA still wants more text! To get out of the text
entry mode type control-E as the f irst character of line 6. Upon
hitting return you will be returned to the command level.

Since there are no labels in our program. printing the
symbol table will prove to be a big waste. ~y don' t we issue the
pseudo opcode DCM "INT'' just before the "END" so that the symbol
table info will not be printed. To do this type "INS 5" at the
command level. 'lhis tells LISA to place you in the insert mode
with all text being inserted before line number 5. The screen
should now look like this:

I INS
1 CLD
2 LDA #$FF
3 JSR $FDDA
4 RTS
5 END
6

!INS 5
5

and the blinking cursor reminds you that text entry is required.

Now type in a space, followed by DCM. followed by "INT'',
followed by return The screen should now look like this :

!INS
1 CLO
2 LDA #$FF
3 JSR $FDDA
4 RTS
5 END
6

-57-

LISA 2.5

!INS 5
5 DCM "INT''
6

TRICKS ETC. WHEN USING LISA July 1980

Since this is all the text we wish to enter, type control-E as
the first character of line 6.

Our program is now complete (and this can be
using the L(IST) command). We must now assemble
before it can be run. To do this simply type ASM at
level, followed by return. Your screen should now
following:

IASM

*** END OF PASS ONE

*** END OF PASS TWO

0800 DB
0801 A9FF
0803 20DAFD
0806 60
0807
INTI

1
2
3
4
5

CLD
LDA #$FF
JSR $FDDA
RTS
DCM "INT''

verified by
the text file
the command

look like the

The first column is the hexadecimal address where the
current instruction/code resides. The secopd field contains the
opcodes produced by LISA. The third field is the line number
followed by the source statement. Since we did not explicitly
specify a program origin, LISA used · the default of $800.
Likewise, since we did not specify where the code was to be
stored in memory, it was stored beginning at location $800 .

Since our program was assembled at location $800, to run the
program we must issue either a "CALL 2048" from BASIC or 800G
from the monitor ($800 • 2048 decimal). Just as an example let's
run our program from the Apple monitor. To do so we must first
get into the Apple monitor. This is accomplished by using the
LISA command "BRK''. Simply type "ERK" while in the command mode
and you will be placed into the Apple monitor. When you get the
"*" prompt type 800G followed by return. The screen should now
contain:

IBRK
*800G
FF

*
The FF was the printed result of our program and we were returned
to the Apple monitor. If you wish to return to LISA you may do so
by typing "EOOOG" (coldstart) or "E003G" (warmstart).

-58-

LISA 2.5 TRICKS ETC. WHEN USING LISA July 1980

Although you don't have to, most programmers make sure that
the first line in their program is either the first line to be
executed, or a JMP to the first line to be executed. This makes
it very easy to determine the starting address of the program.

If you plan to go back and forth between your program and
LISA, make sure that you do not utilize the zero page locations
used by LISA. Unpredictable things may happen should you do so. A
list of the zero page variables used by LISA is provided in the
appendices.

Before running your program, ALWAYS make sure that you have
saved your latest version to disk or tape. It'a too easy for a
bug in your program to wipe out everything in memory.

-59-

LISA 2.5 SOFTWARE July 1980

SECTION 9.0 - SOFTWARE PROVIDED WI'nl LISA

1) LZR IOS ROUTINES (LISA P2.L)

2) RANDY'S HIRES ROUTINES

3) RWTS

4) SINGLE DRIVE OOPY

5) . SOFTWARE TOOLS

6) SORT

7) MPTOLISA

SECTION 9.1 - 'nlE LZR IOS ROUTINES (LISA P2.L)

The Lazer System's Input/Output System (source provided) is
a collection of various input/output routines and several utility
routines. These routines, in fact, are used for I/O handling
inside LISA. To get an idea bow these routines are used• check
out the LISA Pl.L file.

5cCTION 9.2 - RANDY'S HIRES ROUTINES

These routines are some handy hires graphic routines
intended especially for the assembly language programmer. They
allow flexible' display production directly from machine language
programs.

These routines were intended to set in the range $1000 -
$2000. But you may change this by re-ORGing the code elsewhere.
Since these routines contain a considerable amount of internal
documentation there was not enough room to hold the entire text
file in memory all at once (comments require a considerable
amount of memory). As a result "HIRES.2" gets chained in during
assembly. All you have to do is LO(AD) RANDY'S HIRES ROUTINES and
then A(SM) the text file. An "ICL" pseudo opcode at the end of
RANDY'S HIRES ROUTINES automatically does the rest for you.

Rather than describe each of the routines provided in the
hi res package, a reprint of the October 1979 Applesauce
describing these routines is provided in the appendices.

SECTION 9.3 - RWTS

-60-

LISA 2.5 SOFTWARE July 1980

Due to the space limitations on the disk, RwTS is no longer
provided on the LI SA diskette.

SECTION 9.4 - SINGLE DRIVE CX>PY.

SDC is no longer provided either.

SECTION 9.5 - USING "SOFTWARE TOOLS"

Software tools is a collection of routines loosely modeled
after the routines found in the book "SOFTWARE TOOLS" by
Kernighan and Plauger. Check out the listing for details on how
the routines are used.

- 61-

LISA 2.5 APPENDIX A

APPENDIX A - MEhOilY .USAGE

PAGE 0 MEMORY LOCATIONS $5()-$AF; $E()-$FF

PAGE 2 IS A RESERVED I/O BUFFER

PAGE 3 IS OPEN FOR USER SUBROUTINES FROM $36()-$3FF

$080()-$1800 IS RESERVED FOR USER GENERATED CX>DE

$180()-$7FFF IS RESERVED FOR THE TEXT FILE

$800()-$94FF IS RESERVED FOR THE SYMBOL TABLE

$9500-$95FF IS A RESERVED I/O BUFFER

$DOO()-$F7FF IS RESERVED FOR LISA

July 198r

LISA modifies the Apple DOS · so if you want to return to
BASIC or APPLESOFT to do some other programming you should reboot
a different disk containing the desired language.

LISA requires that DOS 3.2 be used. LISA HAY BE CONVERTED
TO DOS 3,3 BY USING APPLE CX>MPUTER'S "MUFFIN" PROGRAM.

-A.I-

LISA 2.5 APPENDIX A

ADDRESSES PERTAINENT TO LISA 2.5:

ADDR

$EOOO
$E003
$E006
$E009
$E01B

$E01C

$E01D
$E01F
$E020

$E024
$E025
$E026
$E027
$E029

DESCRIPTION

COLDSTART (CONTROL-B)
WAIUiSTART (CONTROL-C)
INSERT ENTRY
USER COMMAND
HIGH ORDER BYTE OF TEXT

FILE STARTING ADDRESS
HIGH ORDER BYTE OF SYMBOL

TABLE STARTING ADDRESS
MNEMONIC TABLE ADDRESS
LINES/PAGE
TITLE BOOLEAN

O•NO TTL PSEUDO OP
l•TTL PSEUDO OP

CLOCK SLOT ff
CLOCK Cn05 VALUE
CLOCK Cn07 VALUE
END OF SYMBOL TABLE ADDRESS
USR PSEUDO-OP JSR'S HERE

July 1981

NOTE: for LISA 48K systems subtract $8000 from the above
addresses. Also remember that control-C and control-B do not
work for LISA 48K systems. You must type "$6000G'' or "$6003G" to
cold or warm start LISA 48K.

-A.2-

LISA 2.5 APPENDIX B July 1981

APPENDIX B ~ SUMMARY OF CX>MMANDS

NOTE: Optional information is enclosed in parentheses.
Optional parameters are enclosed in brackets.

I(NSERT): Inserts text after the last line in the text
file.

I(NSERT) {line#}: Inserts text before line number "line#".

D(ELETE) line#:
D(ELETE) line#{,line#}:

Deletes line number "line#".
Deletes lines in range specified.

L(IST):
L(!ST) {line#}:

Lists the entire file.
Lists a single line.

L(IST) {line#,line#}: Lists lines in range specified.

LO(AD):
LO(AD) {filename}:

SA(VE):
SA(VE) {filename}:

Loads text file from cassette.
Loads file from diskette.

Save~ file to cassette tape.
Saves file to diskette.

W(RITE) filename: Writes file to diskette as a TEXT type file.

AP(PEND):

AP(PEND) {filename}:

Loads a file from cassette and appends it
to text file in memory.
Loads a file from diskette and appends it
to file in memory.

Control-D: Allows user to execute a DOS command directly from
LISA' s command level.

Control-P: Jump to user defined routine.

LE(NGTH): Prints the length (in hex) of the current text file.

A(SM): Assembles current text file.

BRK: Breaks to Apple monitor.

F(IND): Searches for the specified label.

-B.1-

LISA 2.5 APPENDIX C July 1981

APPENDIX C ~ EXPLANATION OF ERRORS

COMMAND LEVEL ERRORS

ILLEGAL COMMAND:
User typed in an unrecognizable COIDlll&nd at the command level.
usually a typo.

ILLEGAL LINE #:
A digit was expected but not found.

EDIT TIME ERRORS

ILLEGAL SYMBOL IN LABEL:
An illegal symbol was detected in the label field. Possibly a
control character. For more info see the section on labels.

LABEL TOO LONG:
A label appeared in the label field which contained more than 6
characters. If you accidentally enter a 7th character (or longer)
label in the operand field you will get an "ILLEGAL OPERAND"
message.

ILLEGAL MNEMONIC:
The symbol in the mnemonic field is not a valid LISA mnemonic.
Probable causes: beginning the mnemonic in column one. beginning
a label in other than column one. the mnemonic is missing
(perhaps you forgot to delimit a label with a ":"?) • or a simple
typo.

ILLEGAL ADDRESSING MODE:
Programmer attempted to use an addressing mode which is not
possible for the intended instruction.

ILLEGAL OPERAND:
General catch-all for syntax errors in the operand field.

-c.1-

LISA 2.5 APPENDIX C July 1981

NOT ENOUGH DIGITS:
Occurs when a hex string is entered with an odd number of digits.
Remember, it takes two hex digits to equal one byte and leadi ng
zero's must be typed into the HEX s t ring.

ILLEGAL HEX DIGIT:
A hex digit was expected, but not found (remember, in hex strings
you don ' t use "$") .

ILLEGAL BLANK IN OPERAND FIELD:
·The first non-blank character in the operand field after the
first blank detected was not ";" or return.

ILLEGAL CHARACTER IN STRING:
Occurs when user did not enclose the entire string in quotes, or
attempted to use the " or ' characters without doubling them up.

STRING ERROR:
Usually occurs when the string does not have closing quotes.

ASSEMBLY TIME ERRORS

PASS ONE:

VALUE EXCEEDS $FF:
User attempted to define a zero page location using EPZ, but the
value of the expression exceeded $FF.

ILLEGAL EXPRESSION:
The address expression in the operand field of the EPZ pseudo
opcode is invalid.

MISSING 'END':
The end of the text file was encountered but no END pseudo opcode
was present. This error is an automatic abort.

DUPLICATE LABEL :
Zero page variable was previously defined.

ILLEGAL OPERAND IN ADDRESS FIELD:
An illegal quant ity was present in the address field ("*" is not
allowed in EPZ statements) .

SYMBOL WAS NOT PREVIOUSLY DEFINED IN AN EPZ STATEMENT:
Occurs when a symbolic reference is made i n the
express ion, but t he label was not previously de fined.

PASS TWO:

DUPLICATE LABEL:

-c.2-

address

LISA 2.5 APPENDIX C July 1981

User attempted to redefine a previously defined label.

UNDEFINED SYMBOL/ILLEGAL ADDRESS :
Occurs vben a SY=bol is encountered which is not defined in the
program. '

ILLEGAL FORWARD REFERENCE:
Occurs when the user attempts to use a symbolic reference in the
address expression of an EQU pseudo opcode which has not been
previously defined.

EQU W/ 0 LABEL:
An equate was encountered. but no label was present.

STY ABs.x NOT ALLOWED:
User attempted to use an illegal addressing mode.

ABS.Y l«JT ALLOWED:
User attempted to use an illegal addressing mode. variable must
be zero page •

** DAMAGE ** ILLEGAL CHARACTER IN OPERAND:
This usually occurs when part of the text file has been destroyed
(watch those OBJ's and ORG's).

PASS nlREE:

UNDEFINED SYMBOL:
Label in expression field was not defined anywhere else in the
program.

BRANCH OUT OF RANGE:
Relative addressing only allows a range of -126 to +129:. this
range was exceeded.

UNDEFINED SYMBOL - MUST BE ZPAGE:
An undefined SY=bol was encountered. nte particular SY=bol. due
to its useage. must be a zero page variable.

ADDRESSING MODE REQUIRES ZPAGE VARIABLE:
User attempted to use an absoulute location where a zero page
location is required.

-C.3-

LISA 2.5 APPENDIX C

APPENDIX D ~ ASCII OiARACTER SET
APPENDIX E ~ APPLE OiARACTER SET
APPENDIX F -- 6502 PROGRAMMING HODEL
APPENDIX G ~ ALPHABETICAL LIST OF MNEMONICS
APPENDIX H ~ OPCODE LIST
APPENDIX I ~ SWEET-lo DESCRIPTION
APPENDIX J ~ RANDY'S HIRES ROUTINES

-c.4-

July 1981

LISA 2.5 !he USR Pseudo Opcode July 1981

LISA 2.5 supports a special, user-definable, pseudo opcode.
This pseudo-op is a no holds barred, always syntactically
correct, user assignable pseudo opcode.

Whenever the USR pseudo opcode is encountered, a JSR to
location $E029 is performed. Normally there is an RTS
instruction and two NOP instructions at location $E029. You can,
however, replace these three bytes with a jump to your pseudo
opcode handler.

In order to perform some operations you may need to call
some of the routines within the LISA package. lhree files on the
disk, LISA Pl.L, LISA P2.L1 and LISA P6.TXT contain sources for
portions of LISA; you may take a look at these filea and call any
routines within them.

Several additional routines useful to
utilizing the USR pseudo opcode, as well
locations you can mess around with, are:

to programmers
as certain memory

ERRR- prints an error message and gives the user the chance to
abort assembly. ERRR's location is $EBE6, the calling sequence
is:

JSR ERRR
ASC 'ERROR MESSAGE'
HEX 00

If the user wishes to continue, control will be returned to your
program after the HEX 00 statement.

GETADR- PNTR points at the beginning of the current line, the Y
register contains an index into current line, GETADR converta the
address expression found at the spot in the line pointed at by
the Y register into a 16-bit value which is returned in location
SADR and SADR+l. Carry is returned clear if there was an error,
set if there was no error. Two locations are of interest after a
call to GETADR; EYET, if true, specifies an absolute addres1
expression, if false, a zero page address expression. BIT #6 of
AFND is set if all symbolic labels were pre-declared. If there
are any forward references (during pass 2, at pass 3 they are
undeclared symbols) then AFND has a zero in bit six. Calling
address: $EBE9

SYMLUP- looks up the symbol pointed at by PNTR and the Y
register. EYET should be set to zero before calling SYMLUP. On
return, EYET will be set to one if the symbol is not zero page
and the carry flag will be set if the symbol was found in the
symbol table. Calling address: $EBEC.

-0.1-

LISA 2.5 The USR Pseudo Opcode July 1981

Useful variables:

PNTR: ($EA) points at the beginning of the current line

LNUM: ($F2) bolds line number of current line.

SADR: ($91) value of symbol or address expression returned here.

EYET: ($97) returned with 0 if zero page value, one otherwise.

LOCC: ($99) location counter. Contains the current program
counter address.

CODE: ($9B) code counter. Contains the address of where the next
byte of object code is to be stored.

AFND: ($9F) returned with $FF if all symbols in address
expression were defined.

PRTR: ($Al) Set to true (1) if LST option in effect, false (0) if
NLS option in effect.

CDSP: ($A2) Contains the number of bytes of objJct code output by
this operation. Should be set to zero if no code is output.
(see CODSAV below)

PASS: ($BC) Contains 0 if this is pass two, contains 1 if this is
pass three (USR address at $E029 is not called during pass one).

FNAME: ($2CO) $2C0-$2DF contain the filename of the current
assembling file.

CODSAV: ($2E0-$35F) output code buffer,
object code is output to this buffer by
OUTC.

ENTRY CONDITIONS.

each byte of output
successive calls to

Upon calling the routine at $E029 several conditions exist.
First, if there was a symbol at the beginning of the line it was
entered into the symbol table (during pass two, at pass three the
symbol is ignored), PNTR points at the beginning of the line, and
the Y register points at the USR mnemonic token. To point the Y
register at the operand field simply increment it by two. Now
you can parse the operand field and do whatever you please with
!t. The operand field is terminated with a carriage return
($D). You must terminate your user routine with a BIT $COBO and
an RTS instruction.

-0.2-

XREF/65

XREF/65 is a general purpose cross reference generator for
LISA l.5F and LISA 2.x. It lists each symbol defined in a
program as well as the lino; n•~mber of the line where it was
defined and the line number of each occurence of that label
within the file. A cross referencer program is useful when
debugging a program since a variable's usage can be followed. A
cross referencer is also invaluable when documenting a program
since all variables and labels used within a program are
conveniently listed for you. To use XREF/65 you must have an
Applesoft ROM card or a 16K RAM card with DOS 3.3 or a BASICS
disk. Also, you will need a ptinter with a printer interface
card installed in slot one (this can be changed within the
Applesoft program). It is assumed that you have a 48K (or
larger) Apple •

Before generating a cross reference listing there are two
things you must do. First, make sure that LISA will assemble
your program without any errors. If the program is not quite
complete you will have to insert du11D11y labels so that all labels
are defined within your program. THIS IS VERY IMPORTANT. If
your program assembles correctly there should be no problems.
The second thing you must do before creating a cross reference is
to generate a TEXT type file of your LISA program. This is
accomplished by using LISA's 'W)rite command. For example, if you
wish to create a cross reference listing of a file named "BLETCH"
you would load it into memory using the LISA L)oad command.
Next, create a TEXT type file using the LISA command "WRITE
BLETCH.TXT''. With all this preparation out of the way you can
now boot the XREF/65 disk and type "RUN XREF/ 65" to begin program
execution. XREF/65 will prompt for a filename at which point you
should enter the desired filename (in this case "BLETCH.TXT''). A
lfttle while later a cross reference listing will be printed on
your printer.

SCTOLISA

SCTOLISA is a program which will help SC ASSEMBLER II
version 3.2 owners convert their existing software to a LISA
format. To use SCTOLISA type "BRUN SCTOLISA" while in BASIC.
The program will ask you to enter an SC ASSEMBLER II filename.
Upon hitting return the program will read the file from disk and
proceed to convert it to a LISA format. The file is written to
the disk as a TEXT type file. The filename is "SC-CONVERTED"
which may be EXEC'd into LISA.

~REF- I

SCTOLISA is a semi-automatic conversion program. That is to
say some manual conversion will be required. In particular, not
all Sweet-I& mnemo.nics are properly converted. These, however,
are easy to fix as LISA will catch such problems while the file
is being EXEC'd in (in fact, if you have LISA 2.2 you will ge t a
chance to correct the problem when it is detected).

One other major problem with the SCTOLISA program concerns
address expressions. In a nutshell SCTOLISA does not handle
certain types very well. There are two types in particular that
SCTOLISA has problems with. First, the SC assembler allows any
expression which evaluates to a value between 0 and 15 to be used
as a Sweet-16 reglster operand. LISA only allows operands of the
type RO, Rl, R2, ••• , RF. So any Sweet-16 registers operands not
conforming to LISA's syntax must be manually converted. The
second problem concerns zero . page equates. If SCTOLISA
encounters any symbolic values in the operand field of an ".EQ"
pseudo opcode it automatically assumes that the "EQU'' should be
used. This usually leads to several "non-zero page value" errors
when attempting to assemble the file. The fix is quite simple
just change the "EQU'' to an "EPZ" for the infracting label.

Sort
2.2 users.
order to
listing.

SORT 2.0

2.0 is a symbol table sort routine provided for LISA
It should be "BRUN'' immediately after an assembly in

print a sorted (numeric and alphabetic) symbol table

Support (Or the lack thereof)

Due to the incredible low cost . of this package, Lazer
Systems cannot provide support for the routines supplied herein.
Since support is not provided, the source listings (LISA 2. 2
compatable) are provided in the event a user may wish to add
improvements to a program provided here. The source listings are
provided for personal use only, commercial rights are reserved.

XREF-2

THE LAZER SYSTEMS' DISASSEMBLER

FORWARD

This program was written against my free will. I swore up and
down that a good disassembler program could not be written. But
pressure from nu'llerous LISA owners finally convinced me that this
program had to be written. A disassembler program can never be
"perfect". While an assembler will always generate the same code
for a given source file, a disassembler can produce radically
different code during each disassembly of a given section of machine
code. Although I am still convinced that a good disassember cannot
be written, I hereby give you DISASM/65. This program is dedicated
to all those people who said: "So what if it isn' t perfect, it's
better than nothing!"

AN INTRODUCTION TO DISASSEMBLERS

An assembler, such as LISA, takes an assembly language source

textfile and converts it to the proper machine language. A
disassembler should do just the opposite. That· is, it should take
machine language and produce assembly language source code.

So why should you buy this product when the Apple monitor
provides you with a disassembler which nicely performs this
function? Fer the same reason you bought LISA instead of using the
Apple's built-in mini-assembler: The Apple mini-disassembler is
non-symbolic whereas DISASM/65 produces a symbolic disassembly
listing. The disassembly produced by DISASM/65 can be reassembled
using the LISA interactive assembler. This allows you to relocate
programs, see how other programs are written, patch up programs,
etc~ DISASM/65 produces LISA-compatable textfiles complete with
labels instead of non-symbolic addresses. This feature alone makes
this disassembler invaluable since programs with labels are much
easier to follow than disassembled programs without symbolic
labels. DISASM/65 also allows the user to specify hexadecimal,
ASCII, address, and pushed address data types. With the addition of
the DISASM/65 "ignor" · mode DISASM/65 becomes easily the most
powerful disassembler for the Apple II.

PROBLEMS WITH DISASSEMBLERS

Most disassemble rs disassemble code between two boundry
locations input by the user. This concept would work fine, except
that machine code does not consist of pure instruction code!
Consider the following assembly language program:

DISASM-1

LDA HERE
STA THERE
BRK

HERE HEX AD
HEX OA08

THERE HEX 00
END

If you were to assemble this program you would get the machine code:

AD,07,08,8D,OA,08,00,AD,OA,08,00

at location $800. If you were to disassemble this (using the Apple
mini-disassemb~er or something similar) you would get the
instruction sequence:

800- LDA $807
803- STA $80A
806- BRK
807- LDA $80A
BOA- ?''

The variable 'HERE' at location $806 was interpreted as an
instruction. And that is the major problem with disassemblers.
They cannot distinguish between code and data. Because of this
problem, a disassembler program cannot be an automatic one. The
user will have to tell the disassembler which portions of memory to
t~eat as ~struction code and which portions to treat as data.

If -hexadecimal data was the only type of data used in machine
language programs there wouldn't be that much of a problem.
Unfortunately data comes in many · types. Hex data, ASCII data,
addresses, and return addresses are data types which are often
specified in a machine language program. While DISASM/65 allows for
all these data types (and then some) the user must tell DISASM/65
which addresses are to be code, which are to be data, and what type
of data.

To run
DISASM/65".
message:

USING DISASM/65

DISASM/65 simply boot the disk provided and type "BRUN
Within a few seconds DISASM/65 will greet you with the

"ENTER RANGE OF DISASSEMBLY:"

At this point you must give the beginning and ending addresses of
the section of code you wish disassembled. These addresses should
be given in the standard monitor "start.end" format. The address
range should be terminated with a return. The ending address
provided must be greater than the starting address or you will be
prompted to reenter the disassembly range.

DISASM·2

This disassembly range is used to determine whether statement
labels or equates are to be used when an address is encountered in
an operand field. For example, if you specify an address range of
"8000.BFFF" then all address references within the range $8000 to
$BFFF will be disassembled as statement labels (i .e, labels ~ithin
the source program). References to memory outside this range will
be listed in the disassembled source in an EQU or EPZ format. So if
the range 8000.9000 was specified then references to location $88C3
will reference a label within the program. If the machine code being
disassembled references location $FDED then an EQU instruction at
the beginning of the program will be generate to link the
disassembled program to outside routines (in this case the CX>UT
routine in the Apple 1110nitor).

It should be pointed out that the range specified by the user
does not necessarily mean that the entire specified range is to be
disassembled. The range input by the user is used only as a bounds
for the disassembly (i.e, you can't specify code outside this range
be disassembled) and as a means of determining which labels will be
statement labels and which labels will need equates.

WARNING! If you specify an abnormally large range and labels fall
within this range, but outside of the section of code you specify
for disassembly, neither a statement label nor an equate will be
generated for that label. For example, if you specify a range of
$8000 to $FFFF and only .disassemble code in the range $8000 to
$9000, none of the references to locations within the Apple monitor
will be listed within your program.

Once the range has been entered DISASM/65 will prompt the user
to enter a starting address. This address will be used as the
starting address of the disassembly. It must fall within the range
specified in the previous entry. If the starting address is not the
same as the initial address specified in the range then all
references to data and/or instructions between the two addresses
will be ignored. Usually the starting addresses will be the same.

Once the starting address is entered DISASM/65 will prompt the
user to enter the disassembly command. The disassembly command
consists of a string of disassembly directives which specify how the
code is to be disassembled. What these directives are, and how they
are specified will be considered momentarily.

LABELS

Whenever DISASM/65 encounters a reference to an address, an
entry is made in the DISASM/65 symbol table. During pass two of the
disassembly, DISASM/65 ejects a label whenever the program counter
is equal to a label contained in the symbol table. DISASM/65 always
emits labels of the form:

Lnnnn

where "nnnn" is the absolute address (during disassembly) of the
specified label. For example, the label corresponding to location
$FDED in the Apple monitor will be emited as "LFDED". The single

DISASM-3

exception to this rule is a zero page equate. Whenever the zero
page addressing mode is encountered a label of the form:

Lnn

is emitted. If an instruction references a zero page location using
the absolute addressing mode then a label 1 of the form:

LOOnn

is generated but no equate for this label will be emitted. During
reassembly (with LISA) an undefined symbol error message will be
generated. This is not a "bug" in the program. This "feature" was
left in so that you can easily determin~ if zero page locations are
being referenced using the absolute addressing mode. This usually
occurs when timing loops are being used, or when the JMP indirect or
LDA A.BS,Y addressing mode is being used. In any case, the error
message generated by LISA will draw special attention to the
instruction so that you can take special action if required. To
remidy the error, simply insert the statement

LOOnn EQU $nn

som2where within your program. NOTE: to insure compatability
between your disassembled program and the original source program,
do NOT use the EPZ pseudo opcode.

FILE FORMAT

l.Jucing pass two of the disassembly DISASM/65 writes the
disassembled program to the disk. The disassembled listing is
written as a standard Apple TEXT type file. The file is stored on
the disk under the name "DISASSEMBLY". The first line within this
file is the LISA command "INS". This allows you to EXEC the file
into LISA once the disassembly is complete.

Since a text type file is created, DISASSEMBLY can also be
loaded into a text editor which handles text type files such as
APPLE PIE 2.0 from Programma International. With this type of
editor the user can go in and change the "Lnnnn" type labels to more
meaningful, mnemonic labels.

DATA TYPES AND OTHER PROBLEMS

The major problem with any disassembler program is the fact
that machine code consists of several data types besides just
instruction code. DISASM/65 allows the user to specify
instructions, hexadecimal data, ASCII data, address data, and return
address data. While addtional, and more exotic, data types can be
found the~e data types should prove to be sufficient for almost all
applications.

Instructions:

This data type, of course, is the actual disassembled 6502
instruction code. This data type can be one, two, or three bytes

DISASM-4

long depending upon the length of the 6502 instruction being
disassembled. A full instruction is always disassembled, even if it
means that the range specified for the instruction disassembly will
be exceeded. If an invalid instruction is encountered, then a hex
byte is emitted in place of the opcode. Additional hex bytes are
emitted until a valid 6502 instruction is encountered at which point
lh~ 1 disassembly process continues.

HEX DATA:

Tabular data is usually represented as strings of hex digits.
DISASM/65 allows the user to specify that a section of memory be
disassembled as hex data. The LISA "HEX" pseudo opcode is output
followed by the hexadecimal data. If more than 20 hexadecimal
values are output a carriage return followed by another "HEX" pseudo
opcode is output and then the hexadecimal output continues.

ASCII DATA:

Messages and other text are often stored in ASCII format.
DISASM/65 uses the LISA "ASC" pseudo opcode to output ASCII data.
If the high order bit of the data is set then the quotes (") are
used to delimit the data. If the high order bit of the data is
clear then the apostrophe (') is used to delimit the data. If the
sense of the high order bit changes then the current string is
terminated and a new string is begun on the next line. If control
characters are encountered then the data is output using the "HEX''
pseudo opcode •

ADDRESS DATA:

DISASM/65 contains a feature which allows the user to specify
that certain portions of the program contain address information.
Address tables are often used by programmers to set up jump tables,
arrays indices, etc. The address data is output with LISA's "ADR"
pseudo opcode. The operand field contains a label of the form:

Lnnnn

and the address "nnnn" is entered into the DISASM/ 65 symbol table.

RETURN ADDRESS DATA:

A programming trick used by several programmers is to push an
address onto the 6502 stack and then execute a RTS instruction to
simulate an indirect jump. Since the 6502 return address is not
actually the return address, but rather the return address minus
one, tables containing return address for such an instruction
sequence do not contain true address data. Instead, these tables
are usually of the form:

LBL ADR ADDRS0-1
ADR ADDRSl-1
ADR ADDRS2-l
ETC.

If this data was treated as normal address data tbe corresponding

DISASM-5

equate (or statement label) would be displaced by one byte
indicating a false position for the label. Since DISASM/65 can
handle return address data this problem is taken care of.

SPECIFYING DISASSEMBLY COMMANDS

Once the disassembly range and starting
into DISASM/65 the program prompts the
Disassembler commands are of the form :

(address)(command>

address
user for

are
a

entered
command.

All commands for the disassembly are entered on the same line and
are separated by commas. An example of a simple disassembly might
be:

8040L,8060H,8080L,8120S,9000L

lhis particular sequence tells DISASM/65 to disassemble (list) the
instructions from the starting location through 8040. After that,
hex data is to be output up to location 8060. From location 8061 to
8080 memory is to be treated as instruction code. Then until
location 8120 string (ASCII) data is assumed. Finally, from
location 8121 to 9000 instruction code is expected.

After hitting return, DISASM/65 first checks all the values
input to insure that they are within the disassembly range. If not
the line will be printed up to the offending address and you will be
prompted to reenter the disassembly instruction. All successive
addresses in a disassembly instruction must be greater than the
previous addresses specified and less than the final address
specified in the range.

If all the addresses present in the disassembly command are
valid then the disassembly process begins. DISASM/65 lists out
portions of the program during pass one. This is your indication
that the computer is actually doing something. During pass two, the
disassembled listing is written to disk. This will appear on the
screen if the DOS NOMON O,I,C option is set. After the disassembly
is complete DISASM/65 stops and leaves you in the monitor .

THE DISASSEMBLY INSTRUCTIONS

All disassembly instructions consist of a one or two letter
sequence prefaced with an ending address. The instruction begins
its operation at either the starting address or wherever the
previous instruction left off. The starting address is used by the
first instruction executed in the command stream.

The valid instructions are:

L (list):

The list instruction informs DISASM/65 that the incoming
data is to be treated as instruction code. The list command
uses the syntax:

DISASM·6

<address>L

The address specified gives the last address where valid
instruction code is found. The list coinmand terminates
whenever the disassembly program counter is greater than the
address specified. Note that the disassembler will finish
disassembling an instruction even if it means that additional
data beyond the specifed address is required. On some
occassions as much as two bytes beyond the specified
terminating address will be used to complete the last
instruction.

H (hexadecimal data):

The HEX command informs DISASM/65 that all code up to the
specified terminating address is to be translated to a hex
string. The HEX command has the format:

<ending address)H

As with the list instruction DISASM/65 will treat all data from
the current location through to the ending address as hex
data. All hex strings are entered into the disassembled file
using LISA' s HEX pseudo opcode.

W (word, or address)

The word instruction causes DISASM/65 to treat furthur
data as address data, The word instruction uses the format :

<ending address>W

This causes DISASM/65 to get two consecutive bytes at a time
and display them using LISA' s ADR pseudo opcode. The first byte
retrieved is considered to be the low order byte and the second
byte is treated as the high order byte. This address is
printed ~nd placed in DISASM/65 ' s symbol table. During pass
two, DISASM/65 prints a label at the address corresponding to
the address determined by the 'W' command. For this reason,
ADR should not be used to define non-relocatable data such as
two byte decimal constants etc (The H command should be used
instead).

P (pushed data)

The 'P' command used used i n a manner identical to the 'W'
command. As with the word command the 'P' command grabs two
bytes, constructs an address f rom them, and then outputs this
address using LISA' s ADR pseudo opcode. The difference between
the 'W' and 'P' commands is that the 'W' command simply outputs
the address found in the next two bytes. The 'P' command
increments the address by one and then outputs the address
using the format:

ADR (address>-1
DISASM-7

The incremented address (not <address>-1) is stored in the
symbol table so that a label is output whenever the program
counter equals the incremented address during pass two.

The Pushed data co1D1Dand allows DISASM/65 users to easily
create return address tables. These tables are ll&ec! .· in code
sequences such as:

S (string data}

SUBR: ASL
TAX
LDA
PHA

RTNTBL,X

LDA RTNTBL+l,X
PHA
RTS

RTNTBL ADR
ADR
ADR

JUMPl-1
JUMP2-l
JUMP3-l

The 'S' command instructs DISASM/65 to treat following
data as ASCII string data. The string command uses the format :

<ending address)S

The 'S' command generates string data using LISA's ASC pseudo
opcode, it does NOT use LISA's STR pseudo opcode. DISASM/65
automatically outputs the quotes or apostrohpe depending upon
the high order bit setting of the ASCII data. This allows the
'S' co111111and to be used to disassemble code assembled with
LISA's DCI pseudo opcode.

0 (program Origin}

The 'O' co111111and allows the DISASM/65 user to move the
disassembly program counter to an absolute location. The 'O'
co111111and uses the format:

<orgin address)O

The origin address has the same restrictions as the ending
addresses specified in the previous commands (1.e, it must be
greater than all previous addresses and it must fall within the
specified disassembly range). The 0 command will cause
DISASM/65 to issue a LISA ORG pseudo opcode. As such, it
should be used with care as this can lead to problems should
you desire to relocate the disassembled program.

I (ignor}

DISASM-8

The ignor command (not to be confused with the ignor mode
to be described later) instructs DISASM/65 to ignor all 'data
upto the specified ending address. The ignor command has the
syntax:

<ending address)!

DISASM/65 issues a LISA DFS pseudo opcode vith a length to
cause all data up to the ending address to be skipped. Any
symbols in the DISASM/65 symbol table which should be output
within the address range covered by the ignor command will not
be output.

The ignor COl!l'DJnand can be used to break up a disassembly
into two or more sections. For more information see the
section on the ignor mode.

V (variables)

The 'V' command performs the same function as the 'I'
command except that DISASM/65 will print any labels occuring
within the range of ' the 'V' command. Each label will be output

•followed by a 'DFS' statement giving the number of bytes
1reserved for that particular label. This value is assumed to
.be the number of bytes until the next label is encountered or
the ending address is encountered. The 'V' command uses the
syntax:

<ending address>V

THE IGNOR MODE

One of the more powerful features of the DISASM/65
disassembler is the 'ignor' mode. The ignor mode allows you to
treat a section of memory as though it were instruction code,
hex data, string data, address data, etc BUT NOT INCLUDE SUCH
CODE IN YOUR DISASSEMBLY LISTING.

The ignor mode allows you to disassemble code in
portions. It also gives you the ability to capture portions of
a program (such as DOS or the Apple monitor) for inclusion in
your program leaving out unwanted sections in the middle of the
code. The syntax for the ignor mode is:

<ending address><DISASM/65 CMD>I

Where <DISASM/65 cmd) is any of 'L', 'H', 'S', 'O', 'V', 'W',
'P', or 'I' (obviously using the ignor mode in conjunction with
the 'I' command is meaningless). An example of the ignor mode
is: include:

CMD:8080L,80C5LI,8100L,9000H,9100WI

DISASM-9

This co11DDand will cause DISASM/65 to disassemble and write to
disk the instructions in the range 8000 to 8080 (assuming a
starting location of $8000). From location $8081 (or wherever
the instruction at location $8080 ends) through location $80C5
DISASM/65 will disassemble the code but not write it to the
disk file. Even though this section of code is not being
written to disk symbol table entries are still made for all
variable references found within this section of code. From
location $80C5 to $8100 DISASM/65 will disassembly and write to
the disk file instruction code. The data from location $8100
to $9000 is treated as HEX data and is written to disk. From
location $9000 to $9100 the instruction code is treated as
address information. but since the ignor mode is in effect this
address information will not be written to disk. The addresses
found in the range $9000 to $9100 will be stored in the symbol
table so that equates or statement labels will be generated for
these addresses during pass two.

USING D!SASM/65: THE PROBLEMS

Since a disassembler program cannot be an automatic one
the use of such a program requires a certain amount of operator
expertise. DISASM/65 was intended to be used by two types of
people: The beginner who wishes to analyze programs written by
others. and the advanced programmer who wishes to use portions
of existing programs. The beginning programmer should simply
experiment with DISASM/65 and observe the various disassembly
sequences possible. The remainder of this discussion is aimed
towards the advance 6502 assembly language progralJDDer as a
preparation of the problems which will be faced while
disassembling programs•

Whenever a program is to be disassembled the DISASM/65
user must first analyze the program and determine where the
code and data sections lie within the program. The data
segments must be furthur divided into hex. string. address. and
return address sections. Once this is accomplished DISASM/65
may be used to create a LISA compatable textfile of the
program. Determining which sections are code and which
sections are data is a long and tedious process. The technique
of determining what is what is gained only through experience.
Nevertheless a few guidelines and hints will be presented
here.

Determining whether you are in a code segment or not is
fairly simple. Disassemble a section of code (using the Apple
minidisassembler) and look at it. If it seems like reasonable
code it probably is. If it contains lots of ridiculous
instruction sequences and several "???" opcodes chances are you
are looking at data. Very seldom does an honest to God data
section look like good code. Data sections typically follow an
"RTS" • "JMP" • or branch instruction. Occassionally a data
section may follow a "JSR" instruction. These simple rules are
useful for determining where a data section begins. especially

DISASM·IO

when parts of the data section look like valid code.

Once you have determined which sections are code and which
sections are data the hardest task still remains: determining
what type of data is present in the data section. This problem
is especially compounded when a data section contains more than
one type of data. Hex and string data can be completely
interchanged without any problems. Address and return address
data cannot be treated as hex data or vice versa however. A
two byte address stored within a program can change it's value
if the program is reassembled in a different location other
than where it was disassembled at. This holds true for return
address data as 'Well. Hex (or string) data remains constant no
matter where the program is assembled at. consider the program
sequence:

TEST LDA RTNADR+l
PHA
LDA RTNADR
PHA
RTS . • RTNADR ADR TEST-1

This program sequence pushes the return address pointing
at "TEST" onto the 6502 stack. The following RTS instruction
will cause the program to continue execution at location "TEST"
forming an infinite loop. If assembled at location $800 this
program would generate the code:

$800: AD OA 08 48 AD 09 08 48 60 FF 07

If this program "Were assembled at location $900 then the code
generated would be:

$900: AD OA 09 48 AD 09 09 48 60 FF 08

There are three differences between the first assembly and the
second. At locations $902, $906, and $90A the values in the
second assembly are one greater since the code was assembled
$100 bytes apart. The first two locations present no problem
to DISASM/65 since they are portions of a 6502 instruction.
The remaining discrepancy, since it is not an instruction code,
does cause some problems for DISASM/66. If the last two bytes
are treated as hex data instead of return address data problems
arise. For example, if the code assembled at location $900
were disassembled (treating locations $909 and $90A as hex
data) you would get the following text file:

L0900:
LDA L090A
PHA
LDA L0909
PHA
RTS

L0909:
DISASM-11

HEX FF
L090A:

HEX 08

If this program were reassembled at location $800 the code
generated would be:

$800: AD OA 08 48 AD 09 08 48 60 FF 08

Note that the value contained in location $80A differs from the
original value contained in location $80A. This is due to the
fact that BEX data types remain constant whereas address and
return address data types can change depending upon the
location of the program in memory. This short example is but
one of the problems encountered when using DISASM/65.

Luckily, DISASM/65 contains the "W" and "P" directives for
disassembling address data and return (pushed) address data.
There are instances, however, where even DISASM/65 fails to
properly disassemble a code sequence. Consider the following
abort program:

TEST LDA /TESTl-1
PHA
LDA #TESTl-1
PBA
RTS

;
TESTl LDX #0

LDA TBLLOW,X
STA ADDR
LDA TBLHI,X
STA ADDR+l
JMP (ADDR)

;
TB LL OW BYT TEST

BYT TESTl
;
ADDR DFS 2
;
TBLHI HBY TEST

HBY TESTl
END

This program demonstrates two different occurances of the
same problem: having a two-byte address stored in two
non-contiguous locations. In the first case a two byte address
is referenced in two separate LOA immediate instructions.
Since DISASM/65 always treats immediate data as hex data
reassembly of this program at a location other than were it was
originally assembled will cause bad code to be generated. In
the second case in the previous example, the addresses in the
jump table are split and stored in two separate tables.
DISASM/65 does not allow the capability of accessing split
tables such as this. In either of these two cases, the final
disassembly must be accomplished by hand.

DISASM-12

USING DISASM/65: AN EXAMPLE

nie use of DISASM/ 65 will be explained via an example. Since
the Apple monitor is a complex program, and the &ource listing
is available for it, it shall be used in the disassembly
example (note: the non-auto start version of the monitor ROM
will be used in the following example).

nie Apple Monitor begins at location $F800 and ends at
location $FFFF. So when DISASM/65 asks for a disassembly range
specify FSOO.FFFF followed by return. DISASM/65 will ask for a
starting address, enter F800 (the beginning address of the
Apple monitor). At this point DISASM/65 will ask for a
disassembly command. Before this command can be entered the
monitor must be dissected to determine where instructions and
where the data lie. Luckily we have a source listing (in the
Apple reference manual). By scanning the listing you can see
that there is code from $F800 to $F961. From $F962 to $F9B3
hex data is present in the Apple monitor. From $F9B4 to $F9BF
string data is present. From $F9CO to $FA42 hex data appears
again. Starting at location $FA43 there is instruction code
again. nits instruction code goes through to location $FB19
where there is some more hex data. nie hex data goes from
$FB19 to $FB1D. nits "is followed by instruction code which
goes from $FB1E to $FFCB. From location $FFCC to $FFFF we have
a mixture of address and hex data. Unfortunately the address
data is present only as low order byte data. nie high order
byte is implied by the use of the monitor program. nits is one
of those cases which must be handled manually after the
disassembly takes place.

With this knowledge in hand we can give DISASM/65 the
requested command, it is:

F961L,F9B3H,F9C2S,FA42H,FB16L,FB1DH,FFCBL,FFFEH

Upon hitting return DISASM/65 will make two passes of the
program and write the disassembled version to disk under the
name "DISASSEMBLY". Once DISASM/ 65 is done you can run LISA
and load the disassembled file into LISA by typing control-D
EXEC DISASSEMBLY followed by return. nie file can now be
assembled using LISA and compared to the original object file.

DISASM-13

LISA 2.S ASCII CHARACTERS

APPENDIX D - ASCII CHARACTER SET

The letters in parenthesis under the head i ng KEY below have
the following meanings: c • Control, s • Shift. These must be
held down while striking the other key. In addition, most
terminals provide separate keys for commonly used control
characters, e.g. Carriage Return, Line Feed, etc.

DEC HEX SYMBOL KEY MEANING

····---
000 000 NUL p (c s) NULL

001 001 SOH A (c) Start of Heading

002 002 STX B (c) Start of Text

003 003 ETX c (c) End of Text

004 004 EOT D (c) End of Trans1ission

005 005 ENO E (c) Enquiry

006 006 ACK F (c) Acknowledge

007 007 BEL G (c) BELL

OOB 008 BS H (c) Backspace

009 009 HT I (c) Horizontal Tab

010 OOA LF J (c) Line Feed (New Line)

0.

011 008 VT K (c) Vertical Tab ·.;. ,..

012 ooc FF L (c) Form Feed (Top of For•)

013 000 CR M (c) Carriage Return (Return)

D.1

LISA 2.5 ASCII CHARACTERS

DEC HEX SYMBOL KEY MEANING

-·--·-- i'

014 OOE so N (c) Shift Out "'
015 OOF SI 0 (c) Shift In

016 010 OLE p (c) Data Link Escape

017 011 DCl Q (c) Device Control 1

018 012 DC2 R (c) Device Control 2

019 013 DC3 s (c) Device Control 3

020 014 DC4 T (c) Device Control 4

021 015 NAK u (c) Negative Acknowledge

022 016 SYN v (c) Synchronous Idle

023 017 ETB w (c) End of Transaission Blod

024 018 CAN x (c) Cancel

025 019 EM y (c) End of Mediu11

026 OlA SUB z (c) Substitute

027 OlB ESC K (c s) Escape

028 OlC FS L (c s) file Separator

029 010 GS M (c s) Group Separator

030 OlE RS N (c s) Record Separator
·-

031 OlF U5 0 (c s) Unit Separator

032 020 SP Space Space (Blank)

D.2

LISA 2.5 ASCII CHARACTERS

DEC HEX SYMBOL KEY HEAN ING
Caaa••S

033 021 Exclamation Point

034 022 " " Quotation Mark (Double)

035 023 # # Number Sign

036 024 $ $ Dollar Sign

037 025 % % Percent Sign

038 026 & & Ampersand

039 027 Apostrophe (Single)

040 028 Opening Parenthesis

041 C29 Closing Parenthesis

042 02A * * Asterisk

043 026 + + Plus

044 02C Come a

. 045 02D Hyphen (Minus)

046 02E Period (Deci u l Po int)

047 02F I I Slant

048 030 0 0 0 (Zero)

049 031 (One)

050 032 2 2 2

051 033 3 3 3

D.3

LISA 2.S ASCII CHARACTERS

DEC HEX SYMBOL KEY MEANING

----·••1
052 034 4 4 4

053 035 5 5 5

054 036 6 6 6

055 037 7 7 7

056 038 8 8 8

057 039 9 9 9

058 03A Colon

059 038 Semicolon

060 03C < < Less Than

061 030 Equals

062 03E > > Greater Than

063 03F ? ? Question Mark

064 040 © ~ CoHercial At

065 041 A A A

066 042 B B B

067 043 c c c

068 044 D D D

069 045 E E E

070 046 F F F

D.4

LISA 2.5 ASCII CHARACTERS

DEC HEX SYMBOL KEY MEAfHNG

071 047 G G G

072 048 H H H

073 049 I I

074 04A J J J

075 048 K K K

076 04C L L L

077 040 M M M

078 04E N N N

079 04F 0 0 0

080 050 p p p

081 051 0 0 0

082 052 R R R

083 053 s s s

084 054 T T T

085 055 u u u

086 056 v v v

087 057 w w w

088 058 x x x

089 059 y y y

D.S

LISA 2.S ASCII CHARACTERS

DE': HEX SYMBOL KEY MEANING

090 05A z z z

091 05B Opening Bracket

092 05C \ \ Reverse Slant

093 050 1 1 Closing Bracket

094 05E t t Circu•flex (Up Arrow)

095 05F Underline (Backarrow)

096 060 , Grave Accent

097 061 a a a

098 062 b b b

099 063 c c c

100 064 d d d

101 065 e e e

102 066 f f f

103 067 g g g

104 068 h h h

105 069 i i i

106 06A j j j

107 06B k k k

108 06C 1 1 1

D.6

LISA 2.5 ASCII CHARACTERS

DEC HEX SYMBOL KEY MEANING
•••a:&•Z:::

109 06D • Ill m

110 06E n n n

111 06F 0 0 0

113 070 p p p

113 071 q q q

114 072 r r r

115 073 s s s

116 074 t t t

117 075 u u u

118 076 v v v

119 077 w w w

120 078 x x x

121 079 y y y

122 07A z z z

123 078 Opening Brace

124 07C Vertical Line

125 07D Closing Brace

126 07E - Overline (Tilde)

127 07F DELETE Delete (Rubout)

0 .7

ln~erse Flashin1

Decimal I 16 J2 48 64 81 96 112

lie• SN Ste S21 SJt S48 S51 S61 S79

• S9 @ p 0 @ p 0
I SI A Q ! I A Q ! I
2$2 B R . 2 B R . 2
JSJ c s # 3 c s # 3
4 S4 D T s 4 D T s 4

SSS E u % 5 E u % 5
6 S6 F v & 6 F v & 6
7 S7 G w 7 G w 7

8 SI H x (8 H x (8

9 S9 I y) 9 I y) 9
llSA J z . : J z .
II SB K I + ; K I + ;

12 SC L \ < L \ . <
IJ SD M I - - M I - -
14SE N

.
> N

.
>

ISSF 0 I ? 0 I ? - -

Normal

IC on troll

128 144 161 176 192

SH S9f SA8 SDI set

@ p 0 @

A Q ! I A

B R . 2 B

c s # 3 c
D T s 4 D
E u % 5 E

F v & 6 F
G w 7 G

H x (8 H
I y) 9 I
J z . : J
K I + ; K
L \ . < L
M I - = M
N

.
> N

0 I ? 0 -

288

SDI

p

Q

R
s
T
u
v
w
x
y

z
I
\
I .

-

I lowercase)

224 241

SU SFt

0
! I
" 2

3
s 4
% 5
& 6

7
(8
) 9

• :

+
. <
- ~

>
I ?

> .,, .,,
tT1 z
0 x
tT1

I
> .,, .,,
I'"'
tT1
()
::r::
>
)II:!

>
~
)II:!

~

LISA 2.S PROGRAMMING MODEL

APPENDIX F - PROGRAMMING MODEL MCS6SOX '

15 7 0
+ - - - - - - - + - - - - - +

I/O REGISTERS
+ - - - + - - - - - - - +
15 7 0

+ - - - - - +---------------+
A ACCUMULATOR

+ - - - - - +---------------+
15 7 0
+ - - - - - +---------------+

x INDEX REGISTER X
+ - - - - - - - +---------------+
15 7 0
+ - - - +---------------+

y INDEX REGISTER Y
+ - - - - - - - +---------------+
15 7 0

+---------------+---------------+
PHC PCL PROGRAM COUllTER

+---------------+---------------+
15 7 0
+ - - -+--+---------------+

! 01 ! s STACK PO.INTER
+ - - - -+--+---------------+

. Solid line indicates currently available features.
Dashed line indicates forthcoging •embers of fam i ly.

F.l

LISA 2.5 PROGRAMMING MODEL

+-+-+-+-+-+-+-+-+

!N V B D I Z C! STATUS REGISTER, "P"
+-+-+-+-+-+-+-+-+

! !

! ----- Carry

F.2

Zero
Interrupt Disable
Deciinal Mode
Break Command
Forthcoming Feature
Overflow
Negative

LISA 2.5 MNEMONI CS

APPENDIX G - ALPHABETICAL LIST OF MNEMONICS

MNEMONIC

ADC

AND

ASL

BCC

BCS

BEO

BIT

BMI

BNE

BPL

BRK

BVC

BVS

CLC

CLO

CLI

CLV

CMP

DESCRIPTION

Add Memory to Accumulator with Carry

AND Memory with Accumulator

Shift Left One Bit (Memory or Accumulator)

Branch on Carry Cl ear (less than)

Branch on Carry Set (greater than or zero)

Branch on Resu lt Zero

Test Bits in Memory with Accumulator

Branch on Resul t Mi nus

Branch on Result Not Zero

Branch on Result Plus

Force Break

Branch on Overflow Clear

Branch on Overflow Set

Clear Carry Flag

Clear Decimal Mode

Clear Interrupt Di sab l e Bi t

Clear Overflow Flag

Compare Memory and Accumulator

G.1

USA 2.5

MNEMONIC

CPX

CPY

DEC

DEX

DEY

EOR

INC

INX

!NY

JMP

JSR

LOA

LOX

LOY

LSR

NOP

ORA

PHA

PHP

MNEMONICS

DESCRIPTION

Compare Memory and Index x

Compare Memory and Index y

Decruent Memory by One

Decrement Index x by One

Decrnent Index y by One

Exclusive-OR Me1ory with Accumulator

Incruent Memory by One

Increment Index x by One

Increment Index y by One

Ju1p to New Location

Ju1p to New Location Saving Return Address

Load Accu11ulator with Me1ory

Load Index x with Memory

Load Index Y with Me1ory

Shift Right One Bit (Me11ory or Accumulator)

No Operat i on

OR Memory with Accumulator

Push Accu1ulator on Stack

Push Processor Status on Stack

G.2

LISA 2.5

MNEMONIC

PLA

PLP

ROL

ROR

RTI

RTS

SBC

SEC

SEO

SEI

STA

STX

STY

TAX

TAY

TSX

TXA

TXS

TYA

MNEMONICS

DESCRIPTION

Pull Accumulator from Stack

Pull Processor Status from Stack

Rotate One Bit Left (Memory or Accumulator)

Rotate One Bit Right (Memory or Accumulator)

Return fro111 Interrupt

Return from Subroutine

Subtract Memory from Accumulator with Borrow

Set Carry Flag

Set Decimal Mode

Set Interrupt Disable Status

Store Accumulator in Meaory

Store Index X in Meaory

Store Index Y in Memory

Transfer Accumulator to Index X

Transfer Accumulator to Index Y

Transfer Stack Pointer to Index X

Transfer Index X to Accumulator

Transfer Index X to Stack Pointer

Transfer Index Y to Accumulator

G.3

LISA 2.S 6502 OPCODES

APPENIDX H - LIST OF 6502 OPCODES

00 BRK 12 RESERVED

01 ORA - (Indirect,X) 13 RESERVED

02 RESERVED 14 RESERVED

03 RESERVED 15 ORA - Zero Page,X

04 RESERVED 16 ASL - Zero Page,X

05 ORA - Zero Page 17 RESERVED

06 ASL - Zero Page 18 CLC

07 RESERVED 19 ORA - Absolute,Y

OB PHP lA RESERVED

09 ORA - linaediate 18 RESERVED

OA ASL - Accumulator IC RESERVED

OB RESERVED 10 ORA - Absolute,X

oc RESERVED lE ASL - Absolute,X

OD ORA - Absolute 1F RESERVED

OE ASL - Absolute 20 JSR

OF RESERVED 21 AND - (lnd i rect,X)

10 BPL 22 RESERVED

11 ORA - (Indirect, Y) 23 RESERVED

H.I

LISA 2.5 6502 OPCODES

24 BIT - Zero Page 38 SEC

25 AND - Zero Page 3g AND - Absolute,Y

26 ROL - Zero Page 3A RESERVED

27 RESERVED 3B RESERVED

2B PLP 3C l!ESERVtD

29 AND - Iuediate 3D AND - Absolute,X

2A ROL - Accumulator 3E ROL - Absclute,X

2B RESERVED 3F RESERVED

2C BIT - Absolute 40 RTI

2D AND - Absolute 41 EOR - (Indirect,X)

2E ROL - Absolute 42 RESERVED

2F RESERVED 43 RESERVED

30 BMI 44 RESERVED

31 AND - (Indirect), Y 45 EOR - Zero Page

32 RESERVED 46 LSR - Zero Page

33 RESERVED 47 RESERVED

34 RESERVED 4B PHA

35 AND - Zero Page,X 49 EOR - Im111ediate

36 ROL - Zero Page,X 4A LSR - Accu111ulator

37 RESERVED 48 RESERVED

H.2

LISA 2.5 6502 OPCODES

4C JMP - Absolute 60 RTS

4D EOR - Absolute 61 ADt - (Indirect,X}

4E LSR - Absolute 62 RESERVED

4F RESERVED 63 RESERVED

50 8VC 64 RESERVED

51 EOR - (Indirect},Y 65 ADC - Zero Page

52 RESERVED 66 ROR - Zero Page

53 RESERVED 67 RESERVED

54 RESERVED 68 PLA

55 EOR - Zero Page,X 69 ADC - Immediate

56 LSR - Zero Page,X 6A ROR - Accu•ulator

57 RESERVED 68 RESERVED

58 CLI 6C JMP - Indirect

59 EOR - Absolute,Y 6D ADC - Absolute

5A RESERVED 6E ROR - Absolute

58 RESERVED 6F RESERVED

5C RESERVED 70 8VS

5D EOR - Absolute,X 71 AOC - (Indirect),Y

5E LSR - Absolute,X 72 RESERVED

5F RESERVED 73 RESERVED

H.3

LISA 2.5 6502 OPCODES

74 RESERVED 88 DEY

75 ADC - Zero Page,X 89 RESERVED

76 ROR - Zero Page,X BA TXA

77 RESERVED B8 RESERVED

7B SEI BC STY - Absolute

79 ADC - Absolute,Y BO STA - Absolute

7A RESERVED BE STX - Absolute

78 RESERVED BF RESERVED

7C RESERVED 90 BCC

7D ADC - Absolute,X 91 STA - (Indirect),Y

7E ROR - Absolute,X 92 RESERVED

7F RESERVED 93 RESERVED

BO RESERVED 94 STY - Zero Page,X

Bl STA - (lndirect,X) 95 STA - Zero Pa9e,X

B2 RESERVED 96 STX - Zero Page,Y

B3 RESERVED 97 RESERVED

84 STY - Zero Page 98 TYA

B5 STA - Zero Page 99 STA - Absolute,Y

B6 STX - Zero Page 9A TXS

87 RESERVED 98 RESERVED

H.4

LISA 2.5 6502 OPCODES

9C RESERVED BO BCS

90 STA - Absolute,X Bl LOA - (lndirect),Y

9E RESERVED B2 RESERVED

9F RESERVED B3 RESERVED

AO LOY - Inediate B4 LOY - Zero Page,X

Al LOA - (Indirect,X) B5 LOA - Zero Page,X

A2 LOX - IHediate B6 LOX - Zero Page,Y

A3 RESERVED B7 RESERVED

A4 LOY - Zero Page BB CLV

A5 LOA - Zero Page B9 LOA - Absolute, Y .

A6 LOX - Zero Page BA TSX

A7 RESERVED BB RESERVED

AB TAY BC LOY - Absolute,X

A9 LOA - IH ediate 80 LOA - Absolute,X

AA TAX BE LOX - Absolute,Y

AB RESERVED BF RESERVED

AC LOY - Absolute co CPY - h11ediate

AD LOA - Absolute Cl CMP - (Indirect,X)

. AE LOX - Absolute C2 RESERVED

AF RESERVED C3 RESERVED

H.5

LISA 2.5 6502 OPCODES

C4 CPY - Zero Page 08 CLO

cs CHP - Zero Page 09 CMP - Absolute,Y

C6 DEC - Zero Page DA RESERVED

C7 RESERVED DB RESERVED

CB INY DC RESERVED

C9 CPY - Immediate DD CMP - Absolute,X

CA DEX DE DEC - Absolute,X

CB RESERVED OF RESERVED

cc CPY - Absolute EO CPX - Iuediate

CD CMP - Absolute El SBC - (Indirect,X)

CE DEC - Absolute £2 RESERVED

CF RESERVED E3 RESERVED

DO BNE E4 CPX - Zero Page

01 CMP - (Indirect,Y) ES SBC - Zero Page

02 RESERVED £6 INC - Zero Page

03 RESERVED E7 RESERVED

04 RESERVED EB INX

05 CMP - Zero Page,X E9 SBC - hmediate

06 DEC - Zero Page,X EA NOP

07 RESERVED EB RESERVED

H.6

LISA 2.5 6502 OPCODES

EC CPX - Absolute

ED SBC - Absolute

EE INC - Absolute

EF RESERVED

FO BEO

Fl SBC - (Indirect) ,Y

F2 RESERVED

F3 RESERVED

F4 RESERVED

FS SBC - Zero Page,X

F6 INC - Zero Page,X

F7 RESERVED

FB SEO

F9 SBC - Absolute,Y

FA RESERVED

FB RESERVED

FC RESERVED

FD SBC - Absolute,X

FE INC - Absolute,X

FF RESERVED

H.7

LISA 2.5

APPENDIX I -AN INTRODUCTION TO SWEET-16

Deep inside the Integer BASIC ROMs lives a mysterious program known as "Sweet-16."
Sweet-IS is a meta processor which is implemented interpreter style. Its virtues include a
bunch of 16-bit instructions, most of which are implemented with one-byte opcodes. Since
performing 16-bit operations with normal 6502 code requires several two- and three-byte
inslructions, Sweet-16 code is very compact. In this section we will explore the possibilities of
the Sweet-16 interpreter, its advantages and disadvantages.

First, just exactly what is a "meta processor" and what does an interpreted
implementation imply? A meta processor is simply a fantasy machine, one which does not
exist as a physical machine, but simply as a design tool. A meta processor has the capability
of taking on almost any instruction set. Since there are only a few pieces of hardware actually
capable of performing this task (and the 6502 is not such a piece of hardware), a meta
processor implementation must be handled in a somewhat different way on the 6502. An
interpreter must be ~ritten, with a single subroutine for each instruction code to be
implemented. A small control program picks up the Sweet-16 opcodes from memory,
decodes the instruction, and then passes control to the appropriate subroutine. Once the
desired subroutine is finished execution, the code control is returned to the control program
which accesses then byte of Sweet-16 code and continues the process.

So far everything sounds wonderful. But what are the disadvantages of Sweet-16 code?
First, and probably most important, Sweet-16 programs run much slower than the same
algorithm coded entirely in 6502 assembly language, five to seven times slower in fact.
Another mark against Sweet-16 code is that the Sweet-16 interpreter exists only in the Integer
BASIC ROMs (which is no big deal if you have an APPLE II computer, a language card, or
an Integer BASIC card), but, if you only have an APPLE II Plus computer without Integer
BASIC, or you wish to sell your programs to others who may not have the Integer BASIC
language, you will either have to forget about Sweet-16 altogether or inject the code for the
Sweet-16 interpreter into your program. Since the Sweet-16 interpreter is about 400 byte:;
long, you would have to write more than one kilobyte of code in Sweet-16 before it would
pay to include the interpreter within your programs. Because of this problem, Sweet-16
should only be used where the Integer BASIC language is available. The interpreter is already
provided ther for you (free-of-charge even!).

What does Sweet-16 look like? Sweet-16 is a 16-bit cc;>mputer complete with sixteen 16-bit
registers. These registers are used to hold addresses and intermediate values for use in address
calculations. These registers are numbered RO to RF (hex) for reference purposes. Several of
these registers are special purpose. They include RO, RC, RE, and RF. RO is the Sweet-16
accumulator. Sweet-16 can only perform the addition, subtraction, and comparison
operations, and these must all be routed through the Sweet-16 accumulator. RC is the
Sweet-16 stack pointer used when Sweet-16 processor status data and RF is the Sweet-16
program counter. Except for these four registers which are for special use only, all the
Sweet-16 registers are general purpose address registers.

Before discussing how the Sweet-16 instruction set is used, entering and exiting the
Sweet-16 mode must be covered. A program toggles back and forth between Sweet-16 code
and 6502 code in much the same manner as you would toggle between the decimal mode and
binary mode. A program enters the Sweet-16 mode with a JSR SW16 instruction. SWJ6 is

I.I

LISA 2.5

located at address SF689. Once this is accomplished, all further code is assumed to be
Sweet-16 code. To terminate the Sweet-16 mode of operation, the Swcet-16 instruction
"RTN" (for ReTurN to 6502 mode) must be executed immediately after the RTN
instruction, valid 6502 instructions are expected. A quick excursion into Sweet-16 with an
immediate return to 6502 mode would consist of the code sequence:

SW16 EQU SF689

JSR SWlfi
RTN

RTS
END

If this short program were executed, the JSR SWl6 instruction would cause a transfer to
the Sweet-16 mode to take place. All further instructions are assumed to be Sweet-16
instructions. The next instruction is the Sweet-16 RTN instruction which causes a transfer
back to the 6502 mode. All instructions following the RTN instruction are assumed to be
valid 6502 instructions. The next instruction is the familiar 6502 RTS instruction which
causes a return to the Apple monitor. This simple sequence of instructions, although trivial
and producing no noticeable results, demonstrates how to enter and terminate the Sweet-16
mode. Nonnally, several Sweet-16 instructions would be sandwiched between the JSR SWl6
and the RTN instructions.

The Sweet-16 processor status word holds several conditions. A carry flag, zero flag, and
negative flag are implemented. A test for minus one (SFFFF) is also implemented.

The Sweet-16 SET instruction allows the programmer to set the contents of any Sweet-16
register to a desired value. Its 6502 equivalent is the load immediate instruction. The SET
instruction has the syntax:

SET Rn, • 16-BIT VALUE•
The 16-bit value can be any valid LISA address expression. 'n' is simply a hex value in the

range SO-SF and denotes which register is to be loaded with the declared value. Examples of
the SET instruction:

LABEL SET RO.LABEL

SET Rl,S25
SET R5,$800

;LOADS THE CURRENT ADDRESS
;INTO RO
;LOADS $0025 INTO RI
;LOADS $0800 INTO RS

The SET instruction is three bytes long: one byte for the SET opcode and two bytes for the
16-bit value that is to be loaded into the specified register. SET RF, • VALUE• is a very
special case. Since RF is the Sweet-16 program counter, loading immediate data into register
SF is the same as perfonning an absolute jump instruction. RC and RE must be treated
carefully as well since they are used to hold the Sweet-16 stack pointer and status register. If
zero is loaded into the specified register, the Sweet-16 zero flag is set; otherwise it is cleared. If
minus one flag is set; otherwise the minus one flag is cleared. The Sweet-16 carry flag is
always cleared after a SET instruction is executed.

The next instruction in the Sweet-16 instruction set is the. load register or LOR instruction.
This instrucion loads the Sweet-16 accumulator (RO) from the register specified in the

1.2

LISA 2.5

operand field. The term 'load' is somewhat misleading as this instruction really a register
transfer instruction not unlike the 6502 TY A and TXA instructions. The LDR instruction
has the syntax:

LDR Rn
Where n is the Sweet-16 register number in the range $0-SF Note that LDR is perfectly

allowable and performs the operation of making a copy of RO into RO, J somewhat useless
instruction (except, possibly, for comparison purposes) but nevertheless valid. The LDR
instruction is a one-byte instruction and will cause 16 bits to be transfered to the Sweet-16
accumulator. If zero is transferred between the registers, then the Sweet-16 zero flag is set;
otherwise the zero flag is cleared. If minus or.e is transfered to the accumulator, the minus
one flag is cleared. The negative flag is set according to the data transferred to the Sweet-16
accumulator. The negative flag always reflects the contents of the sixteenth bit, not the eighth
bit as in the 6502 status register. The Sweet-16 carry flag is always cleared.

STO (store register) is the inverse operation 10 LDR. STO stores the contents of the
Sweet-16 accumulator into the specified Sweet-16 register. This is similar to the 6502
instructions TAY & TAX. The Sweet-16 status bits are affected in the same manner as with
the LDR instruction, and the STO instruction is one byte long, just like the LDR instruction.

You will note that there is no direct way to transfer the data from one register to another
without going through the Sweet-16 accumulator. For example, tq transfer the data from RS
to R6 you must exteute the code sequence:

LDR RS
STOR6

As you can see, the Sweet-16 accumulator is destroyed during such transfers. For this very
reason, the Sweet-16 accumulator should not be used to hold important data. It should be
used totally as a transient register used only for calculations.

The Sweet-16 interpreter allows two types of arithmetic. 16-bit addition and subtraction.
Addition is performed with the Sweet-16 ADD instruction. It takes a single register as its
operand. This register is added to the Sweet-16 accumulator and the result is left in the
accumulator. The syntax for the ADD instruction is:

ADDRn
Where n is a hex value in the range $()..$F. Note that the instruction 'ADD RO' is very

useful; it doubles the value in the Sweet-16 accumulator. If there is a carry out of the 17th bit
during the addition, the carry is noted in the Sweet-16 carry flag. An add with carry
instruction is not possible, so the carry flag is useful only for detecting overflow. All the other
condition modes are set accroding to the outcome of the additional operation. The $weet-16
ADD instruction is a one-byte instruction.

Subtraction is performed using the Sweet-16 SUB instruction. The register specified in the
operand field is subtracted from the accumulator with the results being left in the
accumulator. The SUB instruction can be used as a compare instruction in a manner similar
to the SBC instruction on the 6502. If the value in the accumulator (prior to the SUB
instruction) is greater than or equal to the value in the specified register, the carry flag will be
set after the SUB instruction occurs. If the value in the accumulator is less than the value in
the specified register, the carry flag will be clear after the SUB instruction is executed. If the
two registers are equal, then the zero flag is set; if they are not equal, the zero flag is reset.
Note that the SUB RO instruction can be used as a one-byte clear accumulator instruction. It
performs the same function as SET RO, yet requires only one third the memory.

1.3

LISA 2.5

Comparisons can also be performed using the CPR (compare register) instructioi:i. CPR
performs the same function as the SUB instruction, except that the results are placeci in RD
instead of the ACC. Any tests following the CPR instruction will test the value in RD instead
of the accumulator. Register RD can be thought of as an auxiliary processor status register.
As such, its use should also be avoided.

Conditions in u le Sweet-16 processor status register are tested in a manner very similar to
the 6502 microprocessor. That is, branch instructions are used to test conditions. Branches
on the Sweet-16 processor use relative addressing, just like their 6502 counterparts. The
branch instructions include: BRA (branch always, an uncontitional branch), BNC (branch if
no carry), BIC (branch if carry), BIP (branch if positive), BIM (branch if minus), BIZ
(branch if zero or branch if equal), BNZ (branch if not zero or not equal), and BSB (branch
to Sweet-16 subroutine). All Sweet-16 branches are two bytes long.

The branch to subroutine (BSB) instruction really needs some additional explanation.
When a Sweet-16 subroutine is called, the return address is pushed onto the Sweet-16 return
address stack. The pointer is RC. Wherever RC happens to be pointing when the BSB
instruction is executed, the return address will be stored. If you have not initialized the
Sweet-16 stack pointer (RC), it could be pointing anywhere in memory, which means that a
BSB instruction could potentially wipe out valuable program and data storage.

The cure for these ailments is always to initialize the Sweet-16 stack pointer prior to using
Sweet-16 subroutines. This is accomplished quite easily by using the SET instruction and
loading RC with an intial stack pointer value (this is similar to using the 6502 sequence: LOX
#VALUE, TXS). Unlike the 6502 stack pointer which is an 8-bit register that wraps around,
the Sweet-16 stack pointer is a 16-bit register which can take on any 16-bit value. This means
that if you're not very careful, it is possible to have the stack go wild and wipe out everything
in memo!)'. Typically, you will not have to even use Sweet-16 subroutines, but should the
need arise, be very careful.

To return from a Sweet-16 subroutine you must use the RSB (return from subroutine)
instruction. The RSB instruction is a single byte instruction.

Register increments and decrements are performed by the INR and OCR instructions.
INR increments the register specified in the operand field by one; OCR decrements the
specified register by one. All branch conditions are set to reflect the final results in the
specified register. The INR and OCR instructions are both one byte long.

So far, only a discussion of the arithmetic and conditional testing capabilities of the
Sweet-16 processor have been presented. Although these instructions are useful, they do not
really present anything new that was not already available in the 6502 microprocessor
instruction set. Sweet-16's real power comes from its pointer and data movement
capabilities. Several powerful load and store instructions are available which allow the
programmer to perform certain actions in one byte that would take eight to sixteen bytes on
the 6502. These instructions revolve around the idea of loading the Sweet-16 accumulator
indirectly through a specified register.

The first instruction in this family of instructions is the load indirect instruction. It uses the
syntax:

LDR@Rn

1.4

·,

.... ~·:·

LISA 2.5

Note that the mnemonic is the same as the normal load register instruction, but that the
'@' character appears in the operand field immediately before the register specifier. This
instruction is an 8-bit load instruction. It loads the low-order eight bits of the Sweet-16
accumulator from the memory location pointed to by the specified register. The high-order
byte of the Sweet-16 accumulator is cleared. After the accumulator is loaded with the data
from the address pointed to by Rn, Rn is incremented by one. This has the effect of causing
the pointer register to point to the next available byte immediately after the LOR instruction
is executed. This type of instruction (where the register is automatically incremented for you)
is called an "auto-increment" instruction. The LOR indirect instruction is very useful for
memory movements and searches. Consider the following code:

START JSR SWl6
SET R 1,$8000
SET R3, IFF

LOOP LOR @Rn

CPR R3
BNZ LOOP
RTN

;CHECK FOR SFF
;LOOP IF NOT FOUND
;QUIT SWEET-16, DATA FOUND
;ADDRESS LEFT IN RI

This routine starts at location $8000 and searches diligently inti! a SFF is encountered. To
load two bytes into the accumulator one would use the LOO (load double indirect)
instnuction. It uses the syntax:

LOO @Rn
It loads the low order accumulator byte from the- location pointed at by Rn; then Rn is

incremented by one. After the increment is performed, the high order accumulator byte is
loaded indirectly through the new value in Rn. Once this is accomplished, Rn is again
incremented. The net result is that the Sweet-16 accumulator is loaded indirectly from the
locations pointed at by Rn and Rn+ I. Afterwards Rn is incremented twice. The branch
conditions will reflect the final accumulator contents and the carry will be cleared.

Data can also be stored indirectly through one of the registers. The store indirect
instruction is the inverse of the load indirect instruction. It has the syntax:

STO@Rn
This instruction stores the contents of the low-order byte of the Sweet-16 accumulator at

the location in memory pointed to by the Rn register. After the store operation is performed,
Rn is incremented by one. The branch conditions reflect the Sweet-16 accumulator contents.
The store indirect instruction can be used rather well with the load indirect instruction for
memory movement routines. The following routine moves data from $8000 through $9000 to
the area $3000 through $4000:

START JSR SWJ6
MOVE SET R 1,$8000 ;SET UP POINTER REG #I

SET R2,$9000 ;SET UP FINAL VALUE REG
SET R3,$3000 ;SET UP POINTER REG #2

LOOP LDR@RI ;GET DATA @RI

STO@R3 ;STORE@R3

1.5

LISA 2.5

LOR RI
CPR R2
BNC LOOP
BIZ LOOP
RTN
BRK
END

;DONE YET'?
;IF NO CARRY (I.E. LESS THAN)
;IFEQUAM

Compare this to the amount of code required to perform the same operation in 6502
machine code!

To store both halves of the Sweet-16 accumulator into memory, you must use the STD
(store double indirect) instruction. This instruction stores the low-order byte of the Sweet-16
accumulator at the location pointed to by Rn. Rn is then incremented by one, and the high
order byte of the accumulator is then stored at the new location pointed to by Rn, after
which Rn is again incremented by one.

The last three Sweet-16 instructions are POP (pop indirect), STP (store pop indirect), and
PPD (pop double indirect). POP loads the low-order accumulator byte from the location
pointed to by Rn AFTER Rn is decremented by one. POP has the syntax:

POP @Rn
User-defined stacks may be implemented using the POP Rn and STO Rn instructions

(where Rn is the stack pointer). POP is also useful in implementing the "move right" routine
presented elsewhere in this book.

STP is the inverse of POP. This operation causes the low-order byte of the Sweet-16
accumulator to be stored at the address pointed to by Rn after Rn is decremented by one.
Sing!~ byte user-defined stacks may also be implemented using the STP Rn and LDR Rn
instructions (where Rn is the user-defined stack pointer).

PPD (pop double indirect) is the 2-byte equivalent of POP. PPD performs the foliowing
action: Rn is decremented by one and the high-order accumulator byte is loaded from the
location pointed to by Rn. Rn is then again decremented by one and the low-order
accumulator byte is loaded from the address pointed to by Rn. PPD has the syntax:

PPD@Rn
Double byte stacks may be implemented using the PPD and STD instructions. The POP,

STP, and PPD instructions are all one byte long. The carry is always cleared after one of
these operations is performed. POP always results in a positive value which is never minus
one. PPD and STP affect the status bits depending upon the final accumulator contents.

SWEET-16 HARDWARE REQUIREMENTS
All of the Sweet-16 registers are implemented as zero page memory locations (in fact, the

first 32 bytes of zero page are used for the Sweet-16 registers). For this reason, care must be
exercised when using zero page memory in a program in which Sweet-16 is also used. RO
corresponds to memory locations $0 and $I ; R l corresponds to memory locations $2 and $3;
and so on for the other registers. Since they are implemented in zero page memory, it is a
simple matter for 6502 programs to pass data to a Sweet-16 routine simply by shoving data
into the respective registers. Likewise, Sweet-16 can return data to the 6502 program in the
Sweet-16 registers. A Sweet-16 call is transparent to the 6502 program. All registers,
including the processor status register, are preserved and then restored before returning to the

1.6

~-.. :.

LISA 2.S

6S02 mode. Another important fact to remember is that the 6502 must be in the binary (as
opposed to decimal) mode before entering the Swcet-16 mode. Strange things happen if this
is not the case.

1.7

LISA 2.5 HIRES ROUTINES

APPENDIX J - USING THE HIRES ROUTINES SUPPLil:D WITH LISA

Included with LISA Version 2.0 is a very flexible set of
hires subroutines. These routines contain considerablP. internal
documentation. It must be realized that these routines are are
intended for assembly language programmers only. For the most
part these routines cannot be called from INTEGER BASIC,
APPLESOFT, or TINY PASCAL.

In addition to being easy to use, the routines are very
fast. The package itself is 3 1/2 to 4K bytes long. Much of the
code has been replicated in several parts of the program to save
ti1e (re1e1ber, it takes 12 1icroseconds to service a subroutine
call). The subroutine package includes routines which plot a
point, erase a point, perfor1 base calculations, draw a line,
create a shape oatrix, detect if any dots are ON in a specified
range, clear the hires screen, turn on the graphics, draw a
picture, "OR" a picture to the screen, erase a picture from the
screen, "XOR" a picture to the screen, erase a line, and set
parameters. In addition a SYMBOL routine allows you to draw any
of the 96 printable ASCII characters onto the screen with
descenders on the lower case and a screen for1at of 46 x 30.

When you load the HIRES routines into the text file buffer,
the first thing you will notice is a series of JMP statements.
These ju1ps for• a vector table. Each jump corresponds to one of
the aforementioned routines.

Normally your assembly language routines will JSR to one of
these JMP 1s instead of JSRing to the actual routine. The purpose
behind this is two fold. First, it allows you to modify any of
the internal procedures without having to reassemble any existing
software (perhaps to speed up a particular routine). Second, you
only need to know one address (the address of the beginning of
these routines) in your assembly language programs. This way,
should you desire to re-ORG your entire program you need only
change one line instead of 16.

J .l

LISA 2.5 HIRES ROUTINES

Immediately following the JMP's come several tables. Ignore
these for now.

Most of the routines in this HIRES package work on the
principle of an NXM picture. A picture is nothing more than a
dot ~atrix. For example, the ASCII characters are composed of 5
x 7 pictures. PROGRAMMA's Hires Character generator, and others,
all use a 5 x 7 picture. The HIRES routines provided with LISA
allow you to define a picture of any size up to 256 x 192.
Furthermore, unlike the hires character generators, a picture may
be drawn at any valid location on the screen. This allows you to
write letters diagonally on the screen dropping down only one bit
instead of a whole row with each character.

Pictures are positioned on the screen at the X,Y location
contained in the bytes XAXIS,XAXIS+$1, and YAXIS. Pictures are
positioned with the upper leftmost bit at (XAXIS,YAXIS). An
explanation of pictures, and how to draw them, will follow
shortly.

The first usable routine after the data tables is the RADAR
function. RADAR is used to determine whether or not any bits
(i.e., dots) are ON within a specified range.

The calling sequence for RADAR is:

JSR RADAR
HEX WIDTH
HEX HEIGHT

where width is the number of dots in the X-direction (from XAXIS)
and height is the number of dots in the Y-direction (fro•
YAXIS). Height and width, together with (XAXIS,YAXIS) form a
matrix or rectangle on the CRT:

J.2

LISA 2.5 HIRES ROUTINES

(XAXIS,YAXIS) WIDTH

------> +-------------------+
! 0 !

+---+---+---+---+---+
! 0 !

HEIGHT +---+---+---+---+---+

+---+---+---+---+---+

+-------------------+
MATRIX FORMED BY
HEIGHT, WIDTH, XAXIS, YAXIS

When called, RADAR checks this rectangle for any ON dots. If any
dots were found to be ON, RADAR will return with the overflow
flag set. If no dots where found in the range specified, then
RADAR returns with the ove~flow flag cleared. RADAR is very
useful in testing for "collisions."

DRAWLN and ERSLN draw and erase lines on the hires screen.
The line is drawn fro• (XAXIS,YAXIS) to (DESTX,DESTY). You
si•ply store the desired values in the proper locations and then
JSR DRAWLN or JSR ERSLN.

Two very useful subroutines which you will want to use are
XY· and DXY·. XY· gives you an easy •ethod of initializing XAXIS
and YAXIS to a particular value. XY· is called in the following
fashion:

JSR XYs
ADR XVALUE
HEX YVALUE

where XVALUE is a 16-bit quantity in the range 0-279 and YVALUE
is an eight bit quantity in the range 0-191. This data is stored
in (XAXIS,YAXIS).

J .3

LISA 2.5 HIRES ROUTINES

EXAMPLE:

JSR xv ..
AOR $FF ;PUT $OOH IN XAXIS
HEX 26 ;PUT $26 IN YAXIS

oxv .. allows the program•er to initialize (DESTX,DESTY) and
(XAXIS,YAXIS) in a manner similar to xv •. OXY· is called in the
following manner:

JSR OXY·
ADR OESTX VALUE
HEX OESTY VALUE
ADR XAXIS VALUE
HEX YAXIS ~ALUE

This routine is particularly useful with ORAWLN and ERSLN.

The subroutine SYMBOL allows the user to display ASCII
characters on the hires screen. The characters are user
definable by modifying the character table at the beginning of
the HIRES routines (more on •odifying these characters later).
To use SYMBOL you aust first load (XAXIS,YAXIS) with the (X,Y)
coordinate of where you wish the text to appear on the screen.
This (X . Y) coordinate points to the upper left hand dot of the
first character in the string. Once the correct value is placed
in (XAXIS,YAXIS), you may call SYMBOL as follows:

JSR SYMBOL
ASC "ANY STRING"
HEX 00

Note that the string must be terminated with a HEX 00. Control
characters are not allowed in the string.

I:nmediatel y following the JMP vectors in the HIRES routines
comes the character definition table. Each character in the
table is made up of 7 bytes. In each byte, 5 bits are utilized
which gives a 5 x 7 dot matrix.

J.4

LISA 2.5 HIRES ROUTINES

Organization of 1 character:

0 2 3 4 5 6 7 Bit

+--+
! 0 ! ! 1st Byte !

+---+---+---+---+---+•••+•••+•••+----------+
! 0 ! ! 2nd Byte !

+---+---+---+---+---+•••+•••+•••+-----------+
! 0 ! ! 3rd Byte !
+---+---+---+---+---+•••+•••+•••+----------+
! 0 ! ! 4th Byte !

+---+---·---+---+---·--··---·---·----------+
! 0 ! ! 5th Byte !
+---+---+---+---+---+•••+•••+•••+----------+

! 0 ! ! 6th Byte !
+---+---+---+---+---+•••+•••+•••+----------+

! 0 ! ! 7th Byte !

+--------------------------~--------------+

5 bi ts across These three
bits are not
used.

The character "(" is shown. It has the character table value
$04, $02, $01, $01, $01, $02, $04.

You
desire.
sets· (to

may go in and modify any of the ASCII characters you so
This feature allows you to "custoaize" your character
allow Greek letters for instance).

If you want to aniaate figures on the screen, the HIRES
package provides four very useful subroutines for doing just
that. These routines display a picture on the hires screen.

A picture is siaply a dot matrix which you wish to have
appear on the video screen. A picture has two attributes, a
wi dth and a height. Width is the number of bits wh ich are
required in the XAXIS, height is the number of bits required in
the YAXIS. When defining a picture you must first specify the
width and height.

J.S

LISA 2.5 HIRES ROUTINES

As an example, suppose we want to define a 4 x 4 box. We
would start off with the asseDbly langJage state•ent:

BOX HEX 04 04

This tells the HIRES routines that our box will be 4 dots wide
and 4 dots high. The first byte in the HEX string ("04") is the
width, the second byte is the height. Now, to draw a box we •ust
get out a piece of graph paper and draw out the outline of our
box:

+---------------+
! 0 ! 0 ! 0 ! 0 !
!---+---+---+---+
! 0 ! ! 0 !
!---+---+---+---+
! 0 ! ! 0 !
!---+---+---+---+
! 0 I 0 ! 0 ! 0 !

+---------------+

The HIRES picture routines require that all new rows in a
picture begin on a byte boundary. Since only four bits are used
in each row this •eans that 4 bits will be wasted. The box is
coded into the picture table in the following manner:

Bit 7 6 5 4 3 2 0

+-------------------------------+
Byte #1 ! 0 ! 0 ! 0 ! 0 !

+---+---+---+---+•••+•••+•••+•••+
Byte #2 ! 0 ! ! 0 !

+---+---+---+---+•••+•••+•••+•••+
Byte #3 ! 0 ! ! 0 !

+---+---+---+---+•••+•••+•••+•••+
Byte #4 ! 0 ! 0 ! 0 ! 0 !

+-- -+---+---+---+---+---+---+---+

J.6

LISA 2.5 HIRES ROUTINES

!!OX HEX 04 04 ;WIDTH & HEIGHT
HEX FO ;BYTE #1
HEX 90 ;BYTE #2
HEX 90 ;BYTE #3
HEX FO ;BYTE #4

Other than for legibility there is no reason why all these
HEX digits didn't appear on the saae line:

BOX HEX 04 04 FO 90 90 FO

Please note that unlike the character table pictures, the 8th bit
(bit 1 No. 7) corresponds to the first dot which will be plotted on
the screen. Of course a picture aay be aore than 8 dots wide,
just ' reaeaber that new rows aust begin on byte boundaries.

The HIRES routines provided with LISA also include a SHAPE
subroutine. Basically, the SHAPE subroutine allows ~ou to draw
the desired picture onto the screen and then SHAPE converts it to
a picture table. SHAPE is called in the following aanner:

JSR SHAPE
ADR PICTURE
ADR PICADR

PICTURE points to the ASCII representation of the picture
(described later), and PICADR points to a block of aeaory where
the resulting picture table aay be stored.

At least ((WIDTH/8)+l)*LENGTH+2 bytes should be reserved at
PICADR for the picture table.

PICTURE is the ASCII representation of the dot satrix you
wish to create. As usual, the first two bytes at PICTURE contain
the width and the height of the picture. The next (width *
height) bytes contain blanks or non-blank character specifying
whether or not a bit is to be set.

J.7

LISA 2.5 HIRES ROUTINES

EXAMPLE:

BOXPIC HEX 04 04
ASC "****''
ASC "* *"
ASC "****"
JSR SHAPE
AOR BOXPIC
AOR BOX

When used as shown, BOX ~ill contain the correct picture table to
draw the desired shape.

The last (and aost useful) routines in the HIRES package
allow you to draw and erase pictures to and fro• the screen. PIX
simply draws a picture onto the screen. As usual (XAXIS,YAXIS)
contains the coordinate of the upper left aost dot of the
picture.

A call is aade to PIX with the address of the picture table
immediately following the JSR:

JSR PIX
ADR BOX

PIX oraws the picture verbatim onto the hires screen, with each
"l" becoaing a white dot and each "0" becoaing a black dot.

ORPIX is very similar to PIX except the picture is OR'd onto
the screen instead of drawn verbatia.

ANDDIX is used to erase a picture on the screen. Each
occurrance of a 11 111 in a picture will correspond to a black dot
on the hires screen.

XORPIX exclusive-OR 1s the picture to the screen allowing
some interesting effects.

J .8

,.

	LISA: A Professional Assembly Language Development System for Apple Computers
	Contents
	Introduction
	Important Concepts
	Addressing Modes
	Using LISA
	Assembler Directives/Pseudo Opcodes
	Advanced Topics
	Tricks Etc. When Using LISA
	Software Provided with LISA
	Appendix A: Memory Usage
	Appendix B: Summary of Commands
	Appendix C: Explanation of Errors
	The USR Pseudo Opcode
	XREF/65
	The Lazer Systems' Disassembler
	Appendix D: ASCII Character Set
	Appendix E: Apple Character Set
	Appendix F: Programming Model MCS650X
	Appendix G: Alphabetical List of Mnemonics
	Appendix H: List of 6502 Opcodes
	Appendix I: An Introduction to Sweet-16
	Appendix J: Using the Hires Routines Supplied with LISA

