Applesoft BASIC Programmer’s
Reference Manual-volume?2
For Ile Only

Notice

Apple Computer, Inc. reserves the right to make improvements in the
product described in this manual at any time and without notice.

Disclaimer of All Warranties and Liabilities

Apple Computer, Inc. makes no warranties, either express or implied, with
respect to this manual or with respect to the software described in this
manual, its quality, performance, merchantability, or fitness for any
particular purpose. Apple Computer, Inc. software is sold or licensed “‘as
is.” The entire risk as to its quality and performance is with the buyer.
Should the programs prove defective following their purchase, the buyer
(and not Apple Computer, Inc., its distributor, or its retailer) assumes the
entire cost of all necessary servicing, repair, or correction and any
incidental or consequential damages. In no event will Apple Computer, Inc.
be liable for direct, indirect, incidental, or consequential damages resulting
from any defect in the software, even if Apple Computer, Inc. has been
advised of the possiblity of such damages. Some states do not allow the
exclusion or limitation of implied warranties or liability for incidental or
consequential damages, so the above limitation or exclusion may not apply
to you.

This manual is copyrighted. All rights are reserved. This document may
not, in whole or part, be copied, photocopied, reproduced, translated or
reduced to any electronic medium or machine readable form without prior
consent, in writing, from Apple Computer, Inc.

© 1982 by Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010

The word Apple and the Apple logo are registered trademarks of
Apple Computer, Inc.

Simultaneously published in the U.S.A and Canada.

This manual was written for Apple Computer, Inc., by
Scot Kamins
Technology Translated
San Francisco, California

Reorder Apple Product #A2L2005

n

plesoft BASIC Programmer's
Reference Manual-volume 2

Welcome To Volume Two

Welcome to volume two of the Applesoft Reference Manual. This
volume contains the appendices, the glossary, and the index to both
volumes. The paging continues where volume one left off.

Welcome to Volume Two

.

Appendices

Appendices

215
235
241
245
247
253
253
258
258
262
264
267
267
270
273
274
275
278
280
283
287
289
291
292
293
295
297
301
309
331

TmMoow»

R

Z2E

Summary of Applesoft Statements and Functions
Syntax Definitions

ASCII Character Codes

Reserved Words

Error Messages

Peeks, Pokes, and Calls

F.1 Screen Text

F.2 Keyboard

F.3 Graphics

F.4 Miscellaneous Input and Output
F.5 Error Handling

. Hints for Program Efficiency

G.1 Saving Space

G.2 Saving Time

Implementation Details

H.1 Apple lle Memory Map

H.2 Applesoft Memory Allocation

H.3 Zero Page Usage

H.4 Keyword Tokens

Display Formats for Numbers
On-Screen Editing and Cursor Control
40/80-Column Display Differences
Comparison with Integer BASIC

L.1 Differences between Statements
L2 Other Differences

L.3 Converting BASIC Programs to Applesoft

. If You Have a Cassette Recorder

Complete Listing of the Postage Rates Program
Glossary
Index

213

Appendices

L SO S RS SRS PSSR WS U oS » POCIRY

S e e e
a Appendix A

Summary of Applesoft
Statements and Functions

Listed below are abbreviated descriptions of all Applesoft statements
and functions. Each description is preceded by a syntactic definition
and at least one example; see Appendix B for definitions of syntactic
terms used here. References in square brackets at the end of each
description give the section or appendix of this manual where more
detailed information about the feature can be found.

ABS

Syntax: ABS (aexpr)
Example: ABS (-2.77)

Yields the absolute value (value without regard to sign) of the
argument. The example yields 2+ 77.[2.4.1]

ASC

= Syntax: ASC (sexpr)
Example: ASC ("QUEST")

Yields the ASCII code for the first character in the argument. The
= example yields 81 (ASCII code for @). [4.2.5, C]

Assignment Statement

— Syntax: [LET 1 avar = aexpr
LLET 1 svar = sexpr
~ Example: LET A = 23,567
A% = "HUMBUG"

Assigns the value of the expression following = to the variable
— precedingit. LET is optional. [2.2]

L Summary of Applesoft Statements and Functions 215

ATN

Syntax: ATN (aexpr)
Example: ATN (,8771)

Yields the arc tangent, in radians, of the argument. The example
yields + 720001187 (radians). [2.4.1]

CALL

Syntax: CALL aexpr
Example: CALL -8922Z

Executes a machine-language subroutine at the specified decimal
memory address. The example issues a line feed. [7.1.3, F]

CHR%

Syntax: CHR$% (aexpr)
Example: CHR% (G5)

Yields the character corresponding to the ASCII code given as an
argument. The example yields the letter A. [4.2.5]

CLEAR

Syntax: CLEAR
Example: CLEAR

Resets all variables and internal control information to their initial
state. Program code is unaffected. [1.2.2]

COLOR=

Syntax: COLOR = aexpr
Example: COLOR= 12

Sets the display color for plotting low-resolution graphics. The
example sets the display color to green. [6.1.2]

CONT

Syntax: CONT
Example: CONT

Resumes program execution after it has been halted by STOP,

END, [conTroL J-C, or (sometimes) [conTroL J-[RESET J.[1.3.3]

Summary of Applesoft Statements and Functions

cos

- Syntax: COS (aexpr)
Example: COS (2)

Yields the cosine of the argument, which must be expressed in
= radians. The example yields-. 4161 4G6836.[2.4.1]

i DATA

e Syntax: DATA [literal | string | real | integer]
[{ + [literal | string | real | integer] }]
- Example: DATA JOHN SMITH. "CODE 32", 23.45:
-B

- Creates a list of items for use by READ statements. In the example,
— the firstitemisthe string " JOHN SMITH",the secondisthe

string "CODE 32", thethirdistherealnumber 23 . 4%, andthe
- fourth is the integer - G. [5.1.4]

et DEF FN
L Syntax: DEF FNname (name) = aexpr
Example: DEF FN CUBE (X) = X % X % X

Defines a new function for use in the program. The example defines a
function that yields the cube of its argument. [2.4.3]

— DEL

Syntax: DEL linenum : linenum
Example: DEL 23+ 56

Deletes a range of consecutive lines from the program. The example
deletes all lines numbered between 23 and 5, inclusive. [1.1.5]

L DIM

Syntax: D IMname[%|%] subscript[{: name[%|%] subscript}]
- Example: DIM MARK (50:3) NAME® (350)

— Defines and allocates space for one or more arrays. The example de-
fines a two-dimensional real array MAR K, whose first subscript var-

= ies from © to 50 and whose second varies from O to 3, and a string
array NAME $ with one subscript that varies from 0 to 50.[4.1.1]

= Summary of Applesoft Statements and Functions 217

218

DRAKW

Syntax: DRAW aexpr[AT aexpr + aexpr]
Example: DRAW 4 AT 304100
DRAW 4

Draws a shape at a specified point on the high-resolution graphics
screen from the shape table currently in memory. The first example
draws shape number 4, beginning in column 30, row 1 0, using the
current color, scale, and rotation settings; the second example draws
shape 4 at the last point plotted by HPLOT, DRAW, or ADRAK.
(6.3.2]

END

Syntax: END
Example: END

Terminates the execution of the program and returns control to the
user. No message is displayed. [3.6.2]

P

Syntax: XP (aexpr)
Example: EXP (2)

Yields the mathematical exponential of its argument (the constant
e = 2.7182818 raised to the power specified by the argument). The
example yields e squared, or 7+ 38890561.[2.4.1]

FLASH

Syntax: FLASH
Example: FLASH

Causes all text displayed on the screen with subsequent PRINT
statements to flash between white-on-black and black-on-white. May
not work properly for lowercase letters (and other characters with
ASCII codes above 85) if the 80-Column Text Card is installed and
running in “active-80” mode. [5.2.4]

Summary of Applesoft Statements and Functions

FN

Syntax: FNname (aexpr)
Example: FN CUBE (B)

Applies a designated function to the value of the argument expres-
sion. Assuming the definition for the function CUBE given above
under DEF FN, the example yields the value 21E.[2.4.3]

FOR

Syntax: FOR name = aexpr TO aexpr[STEP aexpr]
Example: FOR J = 1 TO 10
FOR MARK = 0 TO 100 STEP 5
FOR NUMBER = 20 T0O -Z20 STEP -Z2

Marks the beginning of a loop, identifies the index variable, and gives
the variable’s starting and ending values and (optionally) the amount
by which itis to change (step) on each pass through the loop. The
first example begins a loop whose index variable J will take on all val-
ues from 1 to 10, stepping by 1; the second begins a loop whose in-
dex variable MARK will take on values from 0 to 1 00, stepping by 5;
the third begins a loop whose index variable NUMBE R will take on
values from 20 to - 20, stepping by - Z. [3.3.1]

FRE

Syntax: FRE (expr)
Example: FRE (0)

Yields the amount of remaining memory, in bytes, available to the
program. The argument is ignored, but must be a valid Applesoft
expression. [7.2.3]

GET

Syntax: GET var
Example: GET ANSWER%

Accepts a single character from the keyboard without displaying it on
the screen and without requiring that the key be pressed.
Program execution is suspended until the user presses a key. In

the example, the character typed will be assigned to the variable
ANSWER%.[5.1.3]

Summary of Applesoft Statements and Functions 219

GOSUB -

Syntax: GOSUB linenum L
Example: GOSUB 2350

Executes a subroutine beginning at the designated line number
(250 inthe example). [3.4.1] e

GOTO el

Syntax: GOTO linenum
Example: GOTO 400

Sends control unconditionally to the designated line number (400 in
the example). [3.1] n

GR =

Syntax: GR
Example: GR

Converts the display to 40 rows of low-resolution graphics with four
lines of text at the bottom. The screen is cleared to black, the cursor
is moved to the beginning of the last line, and the low-resolution
display color is set to black. [6.1.1]

HCOLOR = g

Syntax: HCOLOR = aexpr
Example: HCOLOR= 1 i

Sets the display color for plotting high-resolution graphics. The
example sets the display color to green. [6.2.3]

HGR

Syntax: HGR
Example: HGR =

Converts the display to 160 rows of high-resolution graphics with four b=
lines for text at the bottom. The screen is cleared to black and page 1

of high-resolution graphics is displayed. The contents of the text dis- =
play, the location of the cursor, and the high-resolution display color

are unaffected. [6.2.1] =4

220 Summary of Applesoft Statements and Functions o

HGRZ

- Syntax: HGRZ
Example: HGRZ

Converts the display to full-screen (192 rows) high-resolution graph-
— ics with no text. The screen is cleared to black and page 2 of high-
. resolution graphics is displayed. The contents of the text display, the
— location of the cursor, and the high-resolution display color are unaf-
fected. [6.2.2]

HIMEM:

Syntax: HIMEM: aexpr
- Example: HIMEM: 32767

- Sets the address of the highest memory location available to the
Applesoft program, including its variables. The example sets the end
- of program and variable storage to 327G 7. Used to protect an area
of memory for data, high-resolution graphics, or machine-language
L code. [7.2.1]

~ HLIN

Syntax: HLINaexpr1:aexpr2 AT aexpr3
Example: HLIN 104 20 AT 30

Draws a horizontal line in low-resolution graphics, using the current
low-resolution display color. The example draws a line across row
30 from column 1 0 tocolumn 20.[6.1.4]

HOME

“ Syntax: HOME
Example: HOME

Clears all text from the text window and moves the cursor to the top-
left corner of the window. [5.2.4]

— Summary of Applesoft Statements and Functions 221

HPLOT

Syntax: HPLOT aexpr : aexpr [{TO aexpr + aexpr}]
HPLOT TO aexpr+ aexpr[{T0O aexpr + aexpr}]
Example: HPLOT 75 Z0
HPLOT 48, 115 70 79, 84 TO 110, 115
HPLOT TO 270, 10

Plots a point or line on the high-resolution graphics screen in the cur-
rent high-resolution display color. The first example plots a single
point at column 75, row 20; The second example draws lines from
column 48, row 115 to column 79, row 84 to column 110, row 115; the
third draws a line to column 270, row 10 from the last point plotted
with HPL O T, using the color of the last point plotted (not necessarily
the current display color). [6.2.4]

HTAB

Syntax: HTAB aexpr
Example: HTAB 23

Positions the cursor to a specified column of the text display. The ex-
ample moves the cursor to column 23. If you have the Apple lle 80-
Column Text Card, see the manual accompanying that product for
further information on using HTAB. [5.2.4]

IF..THEN

Syntax: IF expr THEN statement[{: statement}]
IF expr THEN[GOTO]linenum
IF expr[THEN]GOTO linenum

Example: 1IF AGE < 18 THEN A = 0 : B = 1
C =2
IF ANSWER$ = "YES" THEN GOTO 100

IF N > MAX THEN GOTO 23
IF N * MAX THEN Z5
IF N *» MAX GOTO Z5

Executes or skips one or more statements, depending on the truth of
a stated condition. The first example sets Ato 0, Bto 1,and C to Z if
the value of AGE is less than 1 8; the second branchesto line 1 0 Q if
the value of ANSWER % is the string " YES " ; the last three all branch
to line 25 if the value of N is greater than that of MAX. In all cases, if
the stated condition is false, execution continues with the next pro-
gram line. [3.2.2]

Summary of Applesoft Statements and Functions

IN#

Syntax: IN# aexpr
Example: IN# 2

Specifies the source for subsequent input. The example causes sub-
sequent input to be read from the device in expansion slot 2. [5.1.1]

INPUT

= Syntax: INPUT [sexpri]var[{+var}]
Example: ITNPUT A%
— INPUT "TYPE AGE: THEN A COMMA
THEN NAME" 3 AGE: NAMES$

Reads a line of input from the current input device. The first example
— reads a value into variable A% ; the second displays a prompting mes-
sage and then reads values into variables AGE and NAME . [5.1.2]

INT

Syntax: INT (aexpr)
e Example: INT (98.6)
INT (-273.16)

Yields the integer part of the argument value. The examples yield 98
s and - 274, respectively. [2.4.1]

- INVERSE

- Syntax: INVERSE
Example: INVERSE

Causes all text displayed on the screen with subsequent PRINT
statements to appear in black-on-white instead of the usual white-on-
black. May not work properly for lowercase letters (and other charac-
ters with ASCII codes above 95) if the 80-Column Text Card is in-
stalled and running in “active-80" mode. [5.2.4]

LEFTS

Syntax: LEFT$% (sexpr s aexpr)
Example: LEFT$ ("APPLESOFT" s 3)

Yields a specified number of characters from the beginning of a
string. The example yields the string "APPLE" . [4.2.4]

= Summary of Applesoft Statements and Functions 5

LEN

Syntax: LEN (sexpr)
Example: LEN ("NEVER A DULL MOMENT")

Yields the length of a string in characters. The example yields 1 9.
[4.2.2]

LET

See “Assignment Statement,” above.

Ld8T

Syntax: L IST [linenum1][-linenum2]
LIST [linenum1][# linenum2]
Example: LIST
LIST 150
LIST Z00-300
LIST 200, 300

Displays all or part of the program on the screen, or writes it to the
current output device. The first example lists the entire program; the
second lists line 1 50 only; the last two list all lines numbered from
20010 300, inclusive. [1.2.3]

LOAD

Syntax: LOAD [name]
Example: LOAD
LOAD DEMO

Reads a program into memory from a disk or tape. The first example
reads a program from a tape cassette; the second reads from a disk
file named DEMO. If you have one or more disk drives, see your DOS
manual for further information. [1.2.6, M]

LOG

Syntax: LOG (aexpr)
Example: LOG (2)

Yields the natural logarithm of the argument. The example yields
«693147181.[24.1]

Summary of Applesoft Statements and Functions

LOMEM:

- Syntax: LOMEM : aexpr
Example: LOMEM: Z4576

Sets the address of the lowest memory location available to the pro-
- gram for variable storage. The example sets the beginning of variable
storageto 24576.[7.2.2]

MID%

Syntax: MID% (sexprs aexpr[: aexpr])
- Example: MID$ ("AN APPLE A DAY", 44+ 3)
MID% ("AN APPLE A& DAY" s 4)

Yields a specified number of characters beginning at a specified po-
- sition in a given string. The first example yields the string "APPLE";
the secondyields the string "APFLE A DAY".[4.2.4]

NEW

Syntax: NEW
Example: NEW

Clears the current program from memory and resets all variables and
internal control information to their initial states. [1.2.1]

NEX
Syntax: NEXT [avar[{+ avar]}]
Example: NEXT
NEXT INDEX
NEXT J» I

Marks the end of a loop and causes the loop to be repeated for the
next value of the index variable, as specified in the corresponding

F OR statement. The first example ends the most recently entered
loop; the second ends the loop whose index variable is INDE X; the
third ends the pair of nested loops whose index variables are J and
1.[8.3.2]

= Summary of Applesoft Statements and Functions 225

NORMAL Bl

Syntax: NORMAL n
Example: NORMAL

Causes all text displayed on the screen with subsequent PRINT
statements to appear in the usual white-on-black; cancels the effects -
of INVERSE or FLASH. [5.2.4]

NOTRACE

Syntax: NOTRACE
Example: NOTRACE L

Stops the display of line numbers for each statement executed; -
cancels the effects of TRACE. [7.3.2]

ON...GOSUB

Syntax: ONaexpr GOSUB linenum [{ + linenum}]

Example: ON ID GOSUB 100, 200, 23 4005, 3500
Chooses a subroutine to execute depending on the value of an
expression. The example transfers control to the subroutine begin-
ningatline 100, 200,23,40035, or 500, depending on whether
thevalueof IDis 1, 2, 3, 4, or 3;if ID has none of these values,
execution continues with the next statement. [3.4.3]

ON..GOTO

Syntax: ONaexpr GOTO linenum [{ + linenum}]
Example: ON ID GOTO 100, 200, 23, 4005, 500

Chooses a line number to branch to depending on the value of an
expression. The example transfers controltoline 100, 200, 23,
4005,0r 300, depending on whetherthevalueof IDis 1, 2, 3, 4,
or 5;if I D has none of these values, execution continues with the
next statement. [3.2.1]

ONERR GOTO

Syntax: ONERR GOTO linenum
Example: ONERR GOTO 500 el

Replaces Applesoft’s normal error-handling mechanism with a sub- =
routine beginning at a specified line number. The example estab-
lishes an error-handling subroutine beginning at line 30 0. [3.5.1, E] =

226 Summary of Applesoft Statements and Functions od

a POL

= Syntax: PDL (aexpr)
Example: PDL (1)

Reads the current dial setting on a designated hand control. The
- example reads the dial on hand control 1.[5.1.6, F.4]

= PEEK

Syntax: PEEK (aexpr)
Example: PEEK (37)

Yields the contents of a specified location in memory. The example
yields the contents of location 37, which contains the current vertical
position of the text cursor on the display screen. [7.1.1, F.1]

PLOT

Syntax: PLOT aexpr : aexpr
Example: PLOT 10, 20

Plots a single block of the current display color at a specified position
on the low-resolution graphics screen. The example plots a block at
column 10, row 20. [6.1.3]

- POKE

Syntax: POKE aexpr » aexpr
e Example: POKE -16302: 0

Stores a value into a specified location in memory. The example
stores the value © atlocation 49234 (65536 - 16302), causing
the display to switch from mixed graphics and text to full-screen
graphics. [7.1.2, F]

POP
Syntax: POP
= Example: POP

= Removes the most recent return address from the control stack,
causing the next RE T URN statement to send control to the state-
b ment following the second most recently executed GOSUB. [3.4.4]

L Summary of Applesoft Statements and Functions 227

POS -

Syntax: POS (expr) it
Example: POS (0)

Yields the current horizontal position of the cursor on the text display.
The argument is ignored, but must be a valid Applesoft expression. -
[5.2.4]

PR#

Syntax: PR# aexpr
Example: PR# 1

Specifies the destination for subsequent output. The example causes
subsequent output to be sent to the device in expansion slot 1. [5.2.1]

PRINT

Syntax: PRINT [{expr[+ i]}]
Example: PRINT
PRINT A%, "X = "; ¥

Writes a line of output to the current output device. The first example
writes a blank line; the second writes the value of variable A %, fol-
lowed at the next available tab position by the string "X =", fol-
lowed immediately by the value of variable . [5.2.2]

READ -

Syntax: READvar[{svar}]
Example: READ A B%+ C% .

Reads values from DA T A statements in the body of the program. c
The example reads values into variables A, B%,and C#%. [5.1.4]

RECALL

Syntax: RECALL name[%]
Example: RECALL MX —

Reads values into an array from a tape cassette. The example reads —
values into array M. [M]

228 Summary of Applesoft Statements and Functions =

REM

2 Syntax: REM {character}
Example: REM THIS A REMARK

Includes remarks in the body of a program for the benefit of a human
— reader.[1.1.7]

- RESTORE

— Syntax: RESTORE
Example: RESTORE

Causes the next READ statement executed to begin reading at the
- firstitem of the first DA T A statement in the program. [5.1.5]

as RESUME

Syntax: RESUME
Example: RESUME

At the end of an error-handling routine (see ONERR GOTO),
causes resumption of the program at the beginning of the statement
in which the error occurred. [3.5.2]

RETURN

Syntax: RETURN
Example: RETURN

Returns control from a subroutine to the statement following the
GOSUB that called the subroutine. [3.4.2]

RIGHT®

Syntax: RIGHT$ (sexpr+aexpr)
Example: RIGHT$ ("APPLESOFT" s 4)

Yields a specified number of characters from the end of a string. The
i example yields the string " SOF T ".[4.2.4]

RND

— Syntax: RND (aexpr)
Example: RND (1)

Yields a random number between © and 1. Zero and negative argu-
— ment values yield repeatable sequences of random numbers. [2.4.2]

— Summary of Applesoft Statements and Functions 229

ROT =

Syntax: ROT = aexpr —
Example: ROT= 16

Sets the angular rotation for high-resolution shapes to be drawn with
DRAWor XxDRAW. The example causes the shape to be rotated 90 —
degrees clockwise. [6.3.2]

RUN

Syntax: RUN [linenum | name]

Example: RUN -
RUN 500
RUN DEMO -

Executes an Applesoft program. The first example executes the pro- =
gram currently in memory from the beginning; the second executes

the program in memory, starting at line 30 0; the third loads and exe- -
cutes a program from a disk file named DEMOD. [1.2.4]

SAVE

Syntax: SAVE [name]
Example: SAVE
SAVE DEMO

Writes the Applesoft program currently in memory to a disk or tape.
The first example writes the program to a tape cassette; the second
writes it to a disk file named DEMO. [1.2.5, M]

SCALE=

Syntax: SCALE = aexpr =
Example: SCALE= 10

Sets the scale factor for high-resolution shapes to be drawn with
DRAW or KDRAMW. The example causes the shape to be drawn ten
times bigger than the definition given in the shape table. [6.3.2]

230 | Summary of Applesoft Statements and Functions -

SCRN

Syntax: SCRN (aexpr s aexpr)
Example: SCRN (10, 20)

Yields the code for the color currently displayed at a designated posi-
tion on the low-resolution graphics screen. The example yields the
code for the color at column 10, row 20. [6.1.6]

SGN

Syntax: SGN (aexpr)
Example: SGN (-144)

Yieldsavalueof - 1, 0, or + 1, depending on the sign of the argu-
ment. The example yields - 1.[2.4.1]

SHLOAD

Syntax: SHLOAD
Example: SHLOAD

Loads a shape table into memory from a tape cassette. [6.3.2, M]

SIN

Syntax: SIN (aexpr)
Example: SIN (2)

Yields the sine of the argument, which must be expressed in radians.
The exampleyields « 908297427.[2.4.1]

SPC

Syntax: SPC (aexpr)
Example: SPC (8)

Introduces a specified number of spaces into the line being written by
a PR INT statement. The example writes 8 spaces. [5.2.4]

SPEED=

Syntax: SPEED = aexpr
Example: SPEED= 50

Sets sets the rate at which text characters are sent to the display
screen or other input/output device. The slowest rate is ©; the fastest
is255.[5.2.4]

Summary of Applesoft Statements and Functions 231

SOR =

Syntax: SQR (aexpr) -
Example: SQR (2)

Yields the positive square root of the argument; the example yields
1,41421356.[2.4.1] -

STOP -

Syntax: STOP L4
Example: STOP

Terminates the execution of the program and returns control to the
user. A message is displayed identifying the program line in which the =
STOP statement appears. [3.6.1]

STORE

Syntax: STORE name[%]
Example: STORE MX

Stores values from an array onto a tape cassette. The example
stores the contents of array M. [M]

STR%

Syntax: STR% (aexpr)
Example: STR$% (12.43)

Yields a string representing the numeric value of the argument. The
exampleyieldsthe string " 12 . 45" .[4.2.5]

TAB

Syntax: TAB (aexpr) -
Example: TAB (23)

Positions the text cursor to a specified position on the output line dur-
ing execution of a PR INT statement. The example moves the cursor =l
to column 23. [5.2.4]

232 Summary of Applesoft Statements and Functions -

TAN

Syntax: TAN (aexpr)
Example: TAN (2)

Yields the tangent of the argument, which must be expressed in radi-
ans. The exampleyields -2+ 18503887.[2.4.1]

TEXT
Syntax: TEXT
Example: TEXT

Converts the display to 24 lines of text, with the cursor positioned at
the beginning of the bottom line. [5.2.4]

TRACE

Syntax: TRACE
Example: TRACE

Causes the line number of each statement to be displayed on the
screen as it is executed. [7.3.1]

USR

Syntax: USR (aexpr)
Example: USR (3)

Executes a machine-language subroutine supplied by the user, pass-
ing it a specified argument. The subroutine is entered viaa JMP
(Jump) instruction stored at addresses % 0 A through % ¢ C hexadeci-
mal. The example passes the argument value 3. [7.1.4]

VAL

Syntax: VAL (sexpr}
Example: VAL ("-3.,7E4")

Yields the numeric value represented by the string supplied as an ar-
gument. The example yields -37000.[4.2.5]

Summary of Applesoft Statements and Functions 233

ULIN

Syntax: VL IN aexpr: aexpr AT aexpr —
Example: VLIN 10, 20 AT 30

Draws a vertical line in low-resolution graphics, using the current low-
resolution display color. The example draws a line down column 30 —
from row 10 to row 20. [6.1.5]

UTAB

Syntax: VU TAB aexpr
Example: VTAB 15 —

Positions the cursor to a specified row of the text display. The exam- -
ple moves the cursor to row 15. [5.2.4]

WAIT

Syntax: WAIT aexpr + aexpr[+ aexpr]
Example: WAIT 49347 15
WAIT 489347, 15, 12

Suspends program execution until a specified bit pattern appears at
a specified memory location. Used to wait for a status signal from a
peripheral device. The second and (optional) third arguments are
masks: the second specifies which bits of the designated location are
of interest, the third specifies the values to be tested for in those bits.
The first example suspends execution until a one bit appears in any
of the four low-order bit positions of location 4834 7; the second
waits for a one bit in position 0 or 1 or a zero bit in position 2 or 3.
[7.1.5]

HKDRAW

Syntax: ADRAW aexpr[AT aexpr + aexpr]
Example: XDRAW 4 AT 50, 100
KDRAW 4 -

Draws a shape from the shape table currently in memory at a speci-
fied point on the high-resolution graphics screen. Each point in the
shape is plotted using the complement of the color currently dis-
played at that point. Typically used to erase a shape already drawn.
The first example erases shape number 4, beginning in column 50,
row 100, using the current scale and rotation settings; the second ex-
ample erases shape 4 at the last point plotted by HPLOT, DRAW, or
ADRANW.[6.3.2]

234 Summary of Applesoft Statements and Functions -

Appendix B

Syntax Definitions

- Terms used in the syntax definitions in Appendix A are defined below.
The following symbols are used in the syntax definitions:

:= means “is defined as”
—_ | separates alternative definitions
(alternative definitions for the same term may also be given
- separately)
[1 enclose elements that may be omitted
- {} enclose elements that may be repeated one or more times

- aexpr (arithmetic expression)
real | integer | avar | fcall
ks := unop aexpr

aexpr alop aexpr

~ 1= sexprrelop sexpr
(aexpr)

Parentheses may not be nested more than 36 levels deep.

alop (arithmetic or logical operator)
- := aop|relop|lop

LS aop (arithmetic operator)
=+ | = | % | /|

avar (arithmetic variable)
E := realvar|intvar

- character
:= letter | digit | spchar | quote | space

digit
=o0o|1]z2|3|4a]5][6|7]8]89

= Syntax Definitions 235

expr (expression) £
= aexpr|sexpr

fcall (function call)
:= name (expr[{+expr}]) L]

integer —
= [+ | —]{digit}

Valid integers must be between — 32767 and + 32767.

intvar (integer variable)
:= name [subscript]

letter el
1= uppercase | lowercase

line

:= linenum [{statement : }] statement o

linenum (line number)
1= digit [{digit}]

Line numbers mustbe in the range 0 to 63999,

literal
:= [{character}]

lop (logical operator)
:= AND | OR

Notice that NOT is not included here.

lowercase

=a|blc|d|e|f|ag]|h]|i]d]k] _
L im|n|olep|alr]s|t]u]v]
w | x| v |z -

name
:= uppercase [{uppercase | digit}]

A name may be of any length. When distinguishing one
name from another, Applesoft ignores any characters after
the first two. However, even the ignored portion of a name
must not contain a special character or any of Applesoft’s
reserved words.

236 Syntax Definitions -

quote

real
s[4 ‘ —] {digit} { . {digit}][E[+ ’ —][digit[digit]]]
= [+ | —1[{digit}]+ [{digitt][E[+ | —][digit[digit]]]

The letter E in a real number stands for “times ten to the
power.” Valid reals must be between - 1 E38 and
+1E38.

Applesoft recognizes the following as reals and evaluates
them as zero:

L +0 ==le OE +0E _OE

+E+ +E- + sE+ ++E- -+E+ -+E~-

In addition, the following are recognized as reals and
evaluated as zero when used as numeric responses to
INPUT orasnumericelementsof DATA:

+ = E +E o
E+ E- +E+ +E- -E+ -E-

The GE T statement evaluates all of the single-character
reals listed above as zero.

realvar (real variable)
:= name [subscript]

relop (relational operator)

’ I -:" +—3 ’ = 5 ' ;= I = & l % & ‘

schar (string character)
:= letter | digit| spchar | space

Notice that the quote character (") is notincluded here.

sexpr (string expression)

= string| svar | sfcall
sexpr sop sexpr
{ sexpr)

I

Il

Parentheses may not be nested more than 36 levels deep.

Syntax Definitions 237

sfcall (string function call) t
:= name$ (expr[{:expr}])

sop (string operator)

= 4+ L
space -
=
spchar (special character) -
= +|~|®%|7]"|=]<]2]]| "
vl sl il a s [#]P8]
et ol » N]" B
Control characters (characters typed while holding down -
the key) and the null characer are also i
considered special characters. Notice that the quote
character (") and [sPace Jare notincluded here.]
statement N
See Appendix A for syntactic definitions of all Applesoft
statements. N
string
:= "[{schar}]" o
= "[{schar}] 13
The second form of string can appear only at the end of a
line. -
subscript -
:= (aexpr[{:aexpr}])
The maximum number of dimensions (aexpr’s) is 89,
although in practice this is limited by the extent of memory -
available.
svar (string variable)
:= name#% [subscript] .
unop (unary operator) -

= + | - | NOT

238 Syntax Definitions -

[«h I o 4

uppercas

| —
@
>
7)
)ﬁd
O
o®
©
=
© |l
S o
N
e
©
S

239

Syntax Definitions

Syntax Definitions =

L e s e T R
Appendix C

= ASCII Character Codes

Below is a chart of the ASCII (American Standard Code for Informa-
tion Interchange) character codes. The first 32 codes represent con-
trol characters; to type these characters from the Apple lle keyboard,
press the key and hold it down while pressing the desig-
nated character. (Some of these characters also have single-key
representations, as noted.) The abbreviations given for these codes
in the column labeled “Char” represent standard control functions
originally intended for use on teletypes; the meanings of these ab-
breviations are given in the “Meaning” column. Functions marked
with an asterisk (*) are implemented on the Apple lle; the others are
listed purely for historical interest.

Dec = decimal ASCII code

Hex = hexadecimal ASCII code

Char = ASClII character name

Type = Apple lle keyboard representation

Dec Hex Char Type Meaning
- 0 00 NUL [conTroL)-@ * null character
L 1 ©1 SO0H [conTrROL]-A start of heading
2 02 S5TH [conTrOL]-B start of text
3 03 ETX [conTroL]-C end of text
- 4 04 EOT [conTroL]-D end of transmission
5 05 ENQ [conTrOL]-E enquiry
- 6 0B ACK [conTroL]-F acknowledge
7 07 BEL [controLl-G * pell
- 8 08 BS [conTroL]-H or * backspace
9 09 HT [controL]-I horizontal tab
- 10 ©0A LF [conTrOL]-J or * line feed
11 0B WT [conTROL]-K or [UP-ARROMW vertical tab
- 12 0C FF [controL]-L form feed

s ASCII Character Codes 241

242

Dec

13
14
15
16
17
18
18
20
21

22
Py

23

24
25
26
27
28
29
30
31

Hex

oD
0OE
OF
10
1
12
13
14
15
16
17

18
19
1A
1B
1C
1D
1E
1F

or [RETURN |

Or | RIGHT-ARROW

or [E5C]

*

*

Meaning

carriage return
shift out

shiftin

data link escape
device control 1
device control 2
device control 3
device control 4

negative acknowledge __

synchronous idle

end of transmission
block

cancel

end of medium

substitute

escape

file separator

group separator

record separator

unit separator

The following characters can be typed directly from the keyboard:

Dec

32
33
34
35
36
37
38
39
40
a1
4z
43
a4
a3
46
47
48

49
50

Hex

20
21

~
o

23
24
25
26
27
28
28
2A
2B
20
2D
2E
2F
30
31
32

Char Type

CR [ConTROL)-M
S0 [CcontroL)-N
SI [control)-0
DLE [controd-P
DC1 [controL]-@
DCZ [conTROL]-R
DC3 [conTrOL]-5
DC4 [conTroL]-T
NAK [ControL)-U
SYN [conTroL -V
ETB (controL]-W
CAN [conTroL]-X
EM [conTROL]-Y
SUB (conTroL]-Z
ESC [conTroL]-L
FS [conTroL]-\
GS [conTrOL]-]
RS [CconTROL]-"
US [ControL)-
Char

SPACE

i

#

%

B:

(

)

*

+

$

/

0

1

ASCII Character Codes

[\ Dec Hex Char
[51 33 3
52 34 4
| 53 35 5
54 3B 6
[55 37 7
56 38 B
L 57 39 9
58 34
59 3B 3
. B0 3C
B1 30 =
- B2 3E
B3 3F 7
- G4 40 @
B 41 A
. B6 42 B
87 43 C
. B8 44 D
B9 45 E
- 70 46 F
71 47 G
- 72 48 H
73 49 1
- 74 a6 J
75 4B K
P 76 4C L
77 4D M
- 78 4E N
79 4F O
- 80 50 =]
81 51 Q
. B2 52 R
B3 53 5
- 84 54 T
85 55 U
- 86 56 UV
87 57 MW
. 88 58 X
B9 59 ¥
- g0 548 7
91 58 [
\
]

ASCII Character Codes

Dec

a3

96

87

98

89
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
118
120
121
122
123
124
125
126
127

Hex

SF
B0
B1
B2
63
64
B5
66
57
68
69
BA
6B
BC
BD
BE
BF
70
71
72
73
74
75
76
77
78
79
7A
7B
76
7D
7E
7F

Char

S =X Lo S, s a0 oo

L R e | I =]

L =Q =

T e N X

ASCII Character Codes

Reserved Words

Following is a list of Applesoft’s reserved words. In most cases, these
character sequences cannot be used as, or embedded in, variable
names (but see the comments at the end of the list).

ABS
CALL
DATA
END
FLASH
GET
HCOLOR=

IF
LEFT%
MID$%
NEMW
ON
PDL

READ

SAVE

TAB
USR
VAL
WAIT
KDRAMW

AND
CHR %
DEF
EXP
FN
GOsUB

HGR
HTAB

IN#
LEN

NEXT
DONERR

PEEK
PRINT

RECALL
RND

SCALE=
SPEED=

TAN

ULIN

KPLOT

ASC
CLEAR
DEL

FOR
GOTO
HGR2

INPUT
LET

NORMAL
OR
PLOT

REM
ROT=

SCRN
SOR

TEXT

UTAB

AT
COLOR=
DIM

FRE
GR
HIMEM:

INT
LIST

NOT

POKE

RESTORE
RUN

SGN
8TEP

THEN

ATN
CONT
DRAKW

HLIN

INVERSE
LOAD

NOTRACE

POP

RESUME

SHLOAD
STOP

T0

cCos

HOME

LOG

POS

RETURN

SIN
STORE

TRACE

HPLOT

LLOMEM:

PR#

RIGHT$

sPC
STR%

Reserved Words

Applesoft tokenizes these reserved words (converts them into one- -
byte internal codes); see Section H.4 for a list of tokens. All other
characters in a program occupy one byte each of program storage. ol

The ampersand character (&) is reserved for Applesoft's internal use
and for user-supplied machine-language routines. When executed as
an instruction, it causes a J5R to address $0 3F 5 hexadecimal.

XPLOT is areserved word that does not correspond to a current
Applesoft statement.

Some reserved words are recognized by Applesoft only in certain -
contexts:

e (COLOR,HCOLOR,ROT,SCALE,and SPEED areinterpreted
as reserved words only if the next nonspace character is an -
equal sign (=). This is of little benefit in the case of COL OR and
HCOLOR, as the embedded reserved word OR prevents their —
use as variable names anyway.

e HIMEMand LOMEM areinterpreted as reserved words only if
the next nonspace characteris a colon (z).

e INand PR areinterpreted as reserved words only if the next
nonspace character is a number sign (#). —

e S5CRN,SPC,and TAB areinterpreted as reserved words only if
the next nonspace character is a left parenthesis, (.

® ATNisinterpreted as areserved word only if there is no space —
between the T and the N. If a space occurs between the T and
the N, the reserved word AT is interpreted instead of ATN. —

e TOisinterpreted as a reserved word unless preceded by an A
and there is a space between the T and the 0. In that case, the
reservedword AT is interpreted instead of TO.

Even if you don’'t embed reserved words in your variable names, they
can sometimes pop up unexpectedly and cause problems. For exam-
ple, the statement

100 FOR A LOFT OR LEFT TO 15

isinterpreted as
100 FOR A = LOF TO RLEFT TO 15

and causes a syntax error. To force the correct interpretation, use
parentheses:

100 FOR A = (LOFT) OR (LEFT) TO 15

246 Reserved Words -

LSRR N S e R D T R I R T
Appendix E

Error Messages

- Below is a list of Applesoft’s error messages and their causes. When
an error occurs in immediate execution, Applesoft sounds a “beep”
= and displays a message of the form

- PHX ERROR

AYAYS

- where XX is the name of the particular error, as listed below.

. In deferred execution (during the course of a running program), the
message takes the form

TRX ERROR IN YY

where Y ¥ is the line number of the statement in which the error oc-
» curred; the Applesoft prompt character (1) and the cursor are dis-
played, and control of the system is returned to the user. Variable
s values and the text of the program remain intact, but internal control
information is erased and the program cannot be continued with the
L CONT command (see Section 1.3.3). An error in a deferred-execu-
tion statement is not detected until the statement is executed.

The error handling described above can be overridden by an error-
- handling routine in the program itself, established with the ONER R

GOTO statement (see Section 3.5.1). Error codes for use in such an
i error-handling routine are given below in square brackets following
the error names. When an error occurs, the code listed is stored at
location 222 decimal; it can be retrieved from that location with the
PEEK function (see Section 7.1.1). Errors for which no code is given
cannot occur in deferred execution.

Errors associated with the Disk Operating System (DOS) will also
register at location 222 ; see the DOS manual for further information.

— Error Messages 247

Debugging suggestions given below under the individual error mes-
sages are not intended to be exhaustive or comprehensive; the
causes of program bugs are numberless as the sands of the sea and
the stars of the sky.

BAD SUBSCRIPT [107]

A reference was made to an array element that is outside the dimen-
sions of the array. This error can occur if the wrong number of dimen-
sions is used in an array reference: for instance,

LET A(1,y 1, 1) = Z
when A has been defined by

DIM A(Z42)

CAN'T CONTINUE

An attempt was made to continue a program with the CONT com-
mand when no program exists in memory, or after an error, or after a
line has been changed, deleted from, or added to the program. -

DIVISION BY ZERO [133]

An attempt was made to divide by zero; division by zero is mathemat- —
ically undefined. Often occurs when a variable is used in an arithme-

tic expression before begin given a value (all numeric variables -
initially have the value zero). To debug, examine the divisor of the

expression where the error occurred to see why it unexpectedly has —
a zero value. Look particularly for variables that have inadvertently

been used without having been given a nonzero value. —

FORMULA TOO COMPLEX [191] -

More than two statements of the form -
IF "ZZ2Z" THEN)

were executed (where " 22" is any quoted string). The Applesoft =
IF...THEN statement wasn'tintended to be used with strings, and

the results of such statements are not meaningful. The wisest policy -
is to avoid this type of construction altogether.

248 Error Messages __

ILLEGAL DIRECT

An attempt was made to use one of the following statements in imme-
diate execution:

DEF FN

GET

INPUT

ONERR GOTO

READ

RESUME

ILLEGAL QUANTITY [53]

The argument supplied to a statement or function was out of the al-
lowed range. This error can be caused by

® anegative array subscript (forexample, LET A (-1) = 0)
e | 0OG with anegative or zero argument

SQR with a negative argument

A © B with A negative and B not an integer

useof LEFT#% MID$, RIGHT® WAIT, PEEK, POKE,
CALL, TAB,S5PC,ON...GOTO, ON...GOSUB, orany of the
graphics statements or functions with an improper argument

NEAT WITHOUT FOR [0O]

The variable named in a NEX T statement did not agree with the vari-
able in the corresponding F OR statement, or a nameless NEX T was
executed when no F OR was in effect. The most common causes of
this error are forgettinga F OR or NEX T statement, typing the wrong
variable inthe NEX T statement, crossing loops, or accidentally
branching into the body of a F OR loop.

Error Messages 249

OUT OF DATA [42]

A READ statement was executed after all DA T A statements in the -~
program had already been read. A READ statement may have been
executed more times than intended (for example, in an infinite loop), -
orone or more DA T A statements may have been inadvertently omit-

ted. Sometimes caused by accidentally leavingouta RESTORE —
statement.

OUT OF MEMORY [77]

Any of the following can cause this error:

® Programtoo large

® Toomany variables

® FOR loops nested more than 10 levels deep -
® Subroutine calls nested more than 24 levels deep

® Parentheses nested more than 36 levels deep -
® Too complicated an expression -
® Attempttoset LOMEM : too high o
e Attempttoset LOMEM : lowerthan present value

e AttempttosetHIMEM : too low

OVERFLOW [B9]

The result of an arithmetic calculation was too large to be repre-
sented in Applesoft’s internal number format.

REDIM’D ARRAY [120] -
An attempt was made to define the same array twice in the same or

different D I M statements. This error often occurs if an array has

been referred to in a statement such as

LET A (I) = 3

before being defined in a D I M statement. At first reference, the array
is automatically defined with an assumed dimension of 1 0; if such a

250 Error Messages -

statement is followed later in the program by

DIM A (100)

the REDIM’D ARRAY error will result. Another common cause of
the error is a program that loops back to a line before the D I M state-
ment, consequently executing it a second time.

This error message can prove useful if you wish to discover on what
program line an array was defined: just insert a D I M statement for the
array in the first line, run the program, and the program will halt with a
REDIM’D ARRAY errorwhenthe original D I M statementis
executed.

RETURN WITHOUT GOSUB [2Z2

A RETURN statement was encountered without a corresponding
GOSUB having been executed. This error often occurs when control
accidentally branches into a subroutine viaa GO T O statement, or
“falls into” a subroutine because there isno END or GO T O state-
ment at the end of the program segment preceding the subroutine.

STRING TOO LONG [176]

An attempt was made by use of the concatenation operator (+) to
create a string more than 255 characters long. This error tends to oc-
cur when a string variable is used more than once without being
cleared (that is, without being reset to the null string).

SYNTAX ERROR [1B]

A statement or expression doesn'’t conform to Applesoft’s syntax
rules. There are a myriad of possible causes for this error, such as a
missing parenthesis, illegal character, or incorrect punctuation. Often
results from a simple typing error.

TYPE MISMATCH [163]

The left side of an assignment statement was a numeric variable and
the right side was a string, or vice versa; or a function that expected a
string argument was given a numeric one or vice versa. Often caused
by inadvertently leaving out the dollar sign (%) in a string variable or
function name.

Error Messages 251

-
—_

UNDEF'D FUNCTION [224]

A reference was made to a function that had never been defined. May et
occur when you type something like FN L () when you meant to
type FN I (X);thatis, asimple case of mistaken identifier. 5

UNDEF ‘D STATEMENT [90] -

An attempt was made to transfer contrél, viaGOTO, GOSUB, or -
IF...THEN, to a nonexistent line number. Common causes include
accidentally deleting a line, changing a line number without changing -
references from other lines accordingly, and simple typing errors.

252 Error Messages et

SRR R S R S e R D S
Appendix F

g Peeks, Pokes, and Calls

PEEK function: see Section 7.1.1 This appendix discusses some of the many special features of the
Apple lle that you can use in your Applesoft programs by means of
PEEK, POKE, or CALL statements. Notice that some of them dupli-
CALL statement: see Section 7.1.3 cate the effects of other Applesoft features.

P OKE statement: see Section 7.1.2

soft switch: a location in memory that Many of these special addresses are soft switches with the property
produces some special effect whenever that any reference to them, whether aread (thatis, a PEEK) ora
- R A R write (a POKE), invokes the feature associated with the address. For
instance, the example given here for switching from text to graphics
without clearing the graphics screen is

POKE -16304, 0O
but you can get the same effect by executing
X = PEEK (-16304)

orby using POKE to address - 1 5304 with a value other than .
This does not apply in cases where you must use POKE to store a
specific value into the special address, such as a margin setting or a
cursor location.

For more information on special features accessible with PEEK,
POKE,and CALL, seethe Apple lle Reference Manual.

BRI Screen Text

= F.1))
The special locations described in this section are used for control-

I3 ling the display of text on the screen: setting the boundaries of the
text window within which characters are displayed and scrolled,

1 clearing all text from all or part of the screen, scrolling text within the
text window, and controlling the position of the cursor.

L Screen Text 253

Setting the text window does not clear the remainder of the screen (for -
HOME, HTAB, YTAB statements: see which you can use HOME) and does not move the cursor into the new

Section 5.2.4 text window (use HOME again,or HTAB and YTAB). o
POKE 32+ L -
Setting the text window Sets the left edge of the text window to the value specified by expres- —

sion L. This value should be between 0 and 39 (or @ and 79 if
you're using the 80-Column Text Card), where © represents the =
leftmost column of the screen.

The change doesn’t become visible until the cursor attempts to return to
the left edge of the window. —

A Warning

The width of the window is not changed by this statement: this means
that the right edge will be moved by the same amount you move the left
edge. To protect your program and Applesoft, first reduce the window —
width appropriately (see below); then change the left edge.

POKE 33: W i

Sets the width of the text window (number of characters per line) to
the value specified by expression . This value should be between 1
and 40 (or 1 and B0 if you're using the 80-Column Text Card).

A Warning

Make sure the right edge of the text window doesn't extend past the right
edge of the display screen. The window width shouldn’t be set greater
than 40 (or 80) minus the current left edge of the wihdow. For example,
if you've set the left edge of the window (see above) to 1 0, don’t set the
window width greater than 30 (or 70 with the 80-Column Text Card). -
Setting the window too wide will cause display text to be written outside

the usual memory area reserved for it, destroying parts of your program

or vital system information.

A Warning

Do not set the window width to zero! The statement

POKE 33+ 0O —

will cause the system to crash.

TAB function: see Section 5.2.4 If W is less than 33, the TAB functionina PR INT statement may
cause characters to be displayed outside the text window.

254 Peeks, Pokes, and Calls]

POKE 34, T

— Sets the top edge of the text window to the value specified by expres-
sion T. This value should be between © and 23, where © represents
— the top line of the screen.

- A Warning

Do not set the top edge of the window (T) lower than the bottom edge
(see below).

POKE 35: B

Sets the bottom edge of the text window to the value specified by
L expression B. This value should be between O and 23, where 23
represents the bottom line of the screen.

A Warning

- Make sure the bottom of the text window doesn't extend past the bottom
of the display screen. Setting the window bottom beyond line 23 will
cause display text to be written outside the usual memory area reserved
for it, destroying parts of your program or vital system information.

A Warning

Do not set the bottom edge of the window (B) higher than the top edge
(see above).

b CALL -836

- Clearing text from the screen Clears all text within the text window and moves the cursor to the top-
left corner of the window. The effect is the same as that of the HOME
L statement or of typing @ from the keyboard.

— CALL -958

Clears all characters inside the text window from the current cursor
position to the bottom-right corner. Characters above and to the left
of the cursor are not affected. The effect is the same as that of typing
F from the keyboard.

CALL -BGB

Clears all characters inside the text window from the current cursor
position to the end of the line. The effect is the same as that of typing
- E from the keyboard.

— Screen Text e

Scrolling text on the screen

Positioning the cursor

256

CALL -822

Issues a line feed character, causing the cursor to move down
one line without changing its horizontal position. If the cursor is on
the bottom line of the text window, the contents of the window

are scrolled up one line. The effect is the same as that of typing

-J from the keyboard.

CALL -912

Scrolls all text within the text window up one line. The old top line
is lost; the old second line becomes the top line; the bottom line
becomes blank. Text outside the text window is not affected.

PEEK (3B6)

Yields the current horizontal position of the cursor, which will be a
number between 0 and 39 (0 and 79, if you're using the 80-Column
Text Card). The cursor position is given relative to the left edge of the
text window, not the left edge of the screen. The effect is the same as
that of the POS function (see Section 5.2.4).

POKE 36 CH

Moves the cursor to the horizontal position specified by expression
CH, which is interpreted relative to the left edge of the text window,
not the left edge of the screen. The value of this expression should be
between © and the current width of the window, with O representing
the leftmost column of the window. The effect is the same as that of
the HT AB statement (see Section 5.2.4), but is not limited to 40
columns.

Like HT AB, this statement can move the cursor beyond the right edge
of the text window, but only long enough to display one character.

80-Column Text Card Users: You can use this POK E statement to
position the cursor in columns 40 to 79 of the screen, which are
inaccessible with HTAB.

Peeks, Pokes, and Calls

Warning

Don’t move the cursor past the right edge of the display screen! The cur-
sor position shouldn’t be set greater than 4 (or 8) minus the current
left edge of the window. For example, if you've set the left edge of the
window (see above) to 1 0, don’t set the cursor position greater than 30
(or 70 with the 80-Column Text Card). Moving the cursor too far to the
right may cause display text to be written outside the usual memory area
reserved for it, destroying parts of your program or vital system
information.

PEEK (379

Yields the current vertical position of the cursor, which will be a num-
ber between © and 2 3. The cursor position is given relative to the top
edge of the screen, not the top edge of the text window. A value of O
represents the top line of the screen, 2 3 the bottom line.

POKE 37+ CV

Moves the cursor to the vertical position specified by expression CV,
which is interpreted relative to the top of the screen, not the top of the
text window. The value of this expression should be between © and
23, with O representing the topmost line of the screen. The effect is
similar to that of the Y T AB statement (see Section 5.2.4), except that

® screenlines are numbered from © to 23, notfrom 1 to 24 as
with Y TAB

® the specified cursor position is not limited to 2 4 lines
Like Y TAB, this statement can move the cursor beyond the bottom

edge of the text window, but all subsequent text sent to the display
screen will then appear on that same line.

Warning

Don’t move the cursor past the bottom edge of the display screen! Set-
ting the cursor position beyond line Z 3 will cause display text to be writ-
ten outside the usual memory area reserved for it, destroying parts of
your program or vital system information.

Screen Text 257

EEESETENTaEeaeeRets Keyboard J

F.2
The special locations described below are used for reading input

directly from the keyboard.

PEEK (-16384)

Reading the keyboard Reads the last character typed from the keyboard. If the high-order -
bit of this locationis 1 (PEEK yields aresult > 127), then anew
character has been typed since the last POKE to address - 1G3G8 =
(see below); subtracting 1 28 from the value received gives the
ASCII code for the character typed. If the high-order bitis @ (FEEK -
yields aresult >= 127), then no new character has been typed
since the last POKE to - 16G3G8. -

POKE -16368+ O

Clears the high-order bit of location - 1 5384 (see above) to prepare —
for reading another keyboard character. This should be done imme-
diately after reading the keyboard via PEEK (-1G6384). —

TR aesssseemeewy Graphics -
F.3
Four areas are reserved in the Apple lle’s memory for displaying text —

and graphics on the screen:

® |ow-resolution page 1islocated ataddresses $400t0 $7FF
hexadecimal (1 024 to 2047 decimal). Information stored in -
this area can be interpreted and displayed on the screen in the
form of either text or low-resolution graphics. This is the usual —
area of memory used for both these purposes, and is the area
used by Applesoft's TEX T and GRR statements. -

® |ow-resolution page 2, at addresses $800 to $BF F hexadeci-
mal (2048 to 3071 decimal), can be used as an alternate area
for either text or low-resolution graphics. Since this is the same
area as the beginning of Applesoft’s normal program storage
space (see Section H.1, “Apple lle Memory Map”), using it for
text or graphics is tricky and is not recommended.

® High-resolution page 1, ataddresses $ 2000 to $3F FF hexa- -
decimal (B192Z to 16383 decimal), is the usual area for high-
resolution graphics, and is accessible via Applesoft's HGR -
statement.

e High-resolution page 2, at addresses $4000 to $53FFF hexa-
decimal (165384 to 24575 decimal), serves as an alternate
area for high-resolution graphics, and is accessible via Apple-
soft's HGR 2 statement.

258 Peeks, Pokes, and Calls

soft switch: a location in memory that
produces some special effect whenever
its contents are read or written

For more information...

Displaying graphics

To use the different text and graphics areas, you can use Applesoft's
built-in text and graphics facilities or you can use PEEK and POKE
to manipulate the soft switches that control the display of text and
graphics. There are four such soft switches, each consisting of a pair
of special locations in the Apple lle’s memory. Any PEEK or POKE to
one of the locations in the pair sets the switch one way; a PEEK or
POKE to the other location in the pair sets the switch the other way.

The addresses shown in parentheses in the list below are those of
the special locations that control the various settings of the switches.
Each address is given first in hexadecimal (preceded by a dollar sign,
%) and then in the equivalent decimal form.

The four soft switches controlling the display choose between

o text($C0O51,-16303)andgraphics ($C050,-16304)

® high($C057,-16287)andlow resolution ($C0OSEG,
-162898)

® pagel($COS54,-16300)andpage2($C0OS55,
-16299)

e full-screen graphics ($C0O52Z, - 1 6302) and mixed text and
graphics ($C053, -16301)

For further information on these and other soft switches in the Apple lle’s
memory, see the Apple lle Reference Manual.

POKE -16304, 0

Switches the display from full-screen text to graphics without clearing
the graphics screen. Depending on the settings of the other soft
switches, the resulting display may be high- or low-resolution graph-
ics, taken from page 1 or 2, and full-screen graphics or mixed text and
graphics.

Similar Applesoft Statements: The GR statement switches to mixed
text and low-resolution graphics from page 1 and clears the graphics
screen to black. The HGR statement switches to mixed text and high-
resolution graphics from page 1 and clears the graphics screen to black.
The HGR 2 statement switches to full-screen high-resolution graphics
from page 2 and clears the entire screen to black.

Graphics 259

Displaying text

Full-screen graphics

Mixed text and graphics

Displaying page 1

POKE -16303s 0

Switches the display from any form of graphics to full-screen text
without resetting the text window. Depending on the setting of the
applicable soft switch, the text displayed may be taken from low-
resolution page 1 or page 2.

The TEXT statement also switches to text display, but in addition se-
lects page 1, resets the text window to the full screen, and positions the
cursor in the bottom-left corner of the screen (column 1, row 24).

POKE -16302, O

Switches the display from mixed text and graphics to full-screen
graphics. Depending on the settings of the other soft switches, the
resulting display may be either low- or high-resolution graphics and
may be taken from either page 1 or page 2. If full-screen text is cur-
rently being displayed, there is no visible effect.

POKE -16301, O

Switches the display from full-screen graphics to mixed text and
graphics, with four lines of text at the bottom of the screen. Depend-
ing on the settings of the other soft switches, the upper portion of the
screen may show low- or high-resolution graphics, taken from either
page 1 or page 2. The text displayed in the bottom four lines will be
taken from the same page number as the graphics in the upper part
of the screen. If full-screen text is currently being displayed, there is
no visible effect.

POKE -163004 0O

Switches the display from page 2 to page 1, without clearing the
screen or moving the cursor. Depending on the settings of the other
soft switches, the resulting display may be text or low-resolution
graphics taken from low-resolution page 1, or high-resolution graph-
ics taken from high-resolution page 1; if graphics, it may be either full-
screen graphics or mixed with four lines of text from low-resolution
page 1.

Always execute this P OK E statement before switching to Integer BASIC
if you've been using page 2 in Applesoft; otherwise you'll be left still look-
ing at text (low-resolution) page 2 while Integer BASIC is writing its
screen output to page 1.

Peeks, Pokes, and Calls

Displaying page 2

Low-resolution graphics

High-resolution graphics

Clearing the graphics display

POKE -16288, 0

Switches the display from page 1 to page 2, without clearing the
screen or moving the cursor. Depending on the settings of the other
soft switches, the resulting display may be text or low-resolution
graphics taken from low-resolution page 2, or high-resolution graph-
ics taken from high-resolution page 2; if graphics, it may be either full-
screen graphics or mixed with four lines of text from low-resolution
page 2.

POKE -16298:+ O

Switches from high- to low-resolution graphics, without clearing the
screen. Depending on the settings of the other soft switches, the re-
sulting display may be taken from low-resolution page 1 or page 2,
and may be either full-screen low-resolution graphics or mixed with
four lines of text from the same low-resolution page. If full-screen text
is currently being displayed, there is no visible effect.

Always execute this P OK E statement before switching to Integer BASIC
if you've been using high-resolution graphics in Applesoft; otherwise In-
teger BASIC’s G statement will incorrectly display the high- instead of
the low-resolution page.

POKE -16287, 0

Switches from low- to high-resolution graphics, without clearing the
screen. Depending on the settings of the other soft switches, the re-
sulting display may be taken from high-resolution page 1 or page 2,
and may be either full-screen high-resolution graphics or mixed with
four lines of text from the corresponding low-resolution page. If full-
screen text is currently being displayed, there is no visible effect.

CALL -1998

Clears low-resolution page 1 to black if displaying low-resolution
graphics, or to black-on-white at-signs (&) if displaying text. If display-
ing high-resolution graphics, or text or low-resolution graphics from
page 2, there is no visible effect.

CALL -1984

Clears the upper 40 rows of low-resolution page 1 to black if display-
ing low-resolution graphics, or the upper 20 lines to black-on-white
at-signs (&) if displaying text. If displaying high-resolution graphics,
or text or low-resolution graphics from page 2, there is no visible
effect.

Graphics 26‘

CALL -3086 -

Clears the current high-resolution page to black. (Applesoft remem- el
bers which page you used last, regardless of the switch settings.)

CALL -3082

Clears the current high-resolution page to the color most recently
usedinan HPLOT statement. (Applesoft remembers which page
you used last, regardless of the switch settings.)

s Miscellaneous Input and Output

This section describes the special locations in the Apple lle’s mem-

ory for controlling a variety of miscellaneous input and output de- i)
vices: reading the buttons on the hand controls, controlling the
annunciator outputs and the utility strobe, and producing sounds
through the built-in speaker.

The annunciators are four pins of the hand control connector that can
each be set to either of two states (on or off). The utility strobe is another
pin of the connector that is normally at + 5 volts but can be triggered to
drop to zero volts for one-half microsecond. These features are typically
used to control devices such as lamps and relays connected to the com- —
puter through the hand control connector. See the Apple lle Reference
Manual for further information.

PEEK (-16287) .

Reading the hand control buttons Reads the button on hand control 0; yields a result > 1 27 if the but- -

tonis being pressed, <= 127 ifitis not. The key on

the Apple lle keyboard is equivalent to this button and can be read in —
the same way.

PEEK (-16Z86)
Reads the button on hand control 1; yields a result > 1 27 if the but-

tonis being pressed, <= 127 ifitis not. The key on -

the Apple lle keyboard is equivalent to this button and can be read in
the same way. d

262 Peeks, Pokes, and Calls -

e PEEK (-16283)

b Reads the button on hand control 2; yields a result > 1 2 7 if the but-
tonis being pressed, <= 127 ifitis not.

Notice that, although there are provisions for connecting four hand con-
trols (numbered 0 to 3) to the computer, there is no way to read the but-
ton on hand control 3.

POKE -16283, 0

Controlling the annunciators Turns on annunciator output 0 (hand control connector, pin 15).

POKE -16286: O

Turns off annunciator output 0 (hand control connector, pin 15).

POKE -16283, 0

Turns on annunciator output 1 (hand control connector, pin 14).

POKE -16284, 0

= Turns off annunciator output 1 (hand control connector, pin 14).

POKE -16281, O

- Turns on annunciator output 2 (hand control connector, pin 13).

- POKE -1B6282, 0

— Turns off annunciator output 2 (hand control connector, pin 13).

= POKE -16288: 0

Turns on annunciator output 3 (hand control connector, pin 12).

— POKE -16290, 0

Turns off annunciator output 3 (hand control connector, pin 12).

> Miscellaneous Input and Output 263

PEEK (-16320) -
Controlling the utility strobe Triggers the utility strobe (hand control connector, pin 5). el
The utility strobe should always be controlled with PEEK, not with -

POKE. Using POKE triggers the strobe twice instead of once. See the
Apple lle Reference Manual for further information.

PEEK (-16336)

Controlling the speaker Produces a single click from the built-in speaker; can be used in var-
ious combinations and frequencies to produce musical tones and =
other sounds.

The speaker should always be controlled with PEEK, not with POKE.
Using POK E produces two clicks instead of one. See the Apple Ile Ref- —
erence Manual for further information.

PEEK (-16352 -

Produces a single click on a cassette recording or on an audio ampli-
fier connected to the cassette output jack via the amplifier's auxiliary
input jack; can be used in various combinations and frequencies to
produce musical tones and other sounds. See Appendix M for further
information on using a cassette recorder.

Cassette output should always be controlled with PEEK, not with
POKE. Using POKE produces two clicks instead of one. See the Apple -
lle Reference Manual for further information.

-~ ErrorHandling —

F.5
This section describes the special locations associated with Apple-

soft’s error handling mechanism. They can be used by user-supplied
ONERR GOTO statement: see Sec- error-handling routines established withthe ONERR GOTO
tion3.5.1 statement. See Section 3.5 and Appendix E for further information.

PEEK (216)

Yields aresult > 127 if an error-handling routine has been estab- ~
lishedwiththe ONERR GOTO statement, <= 127 if normal error
handling is in effect. =

264 Peeks, Pokes, and Calls -

L POKE 216+ O

Restores Applesoft's normal error-handling mechanism; cancels the
effect of a previous ONERR GOTO statement.

PEEK (222

After an error-handling routine has been called, yields the error code
identifying the type of error detected. See Appendix E and Table 3-1
(Section 3.5.1) for further information on error codes.

Errors associated with the Disk Operating System (DOS) will also regis-
ter at location 2 2 2; see the DOS manual for further information.

- PEEK (218) # Z9B8 + PEEK (218)

After an error-handling routine has been called, this expression
yields the line number of the statement in which the error was

L detected.
L CALL -3:288
Clearing the control stack Clears from Applesoft's internal control stack information placed

there when an error-handling routine was called. Should be used be-
fore exiting from any error-handling routine with a GO T O instead of a
Jn RESUME statement.

CALL 54915

= Empties the internal control stack of all control information, without
affecting the contents of any variables.

Error Handling 265

Peeks, Pokes, and Calls

CESRR R R R D S e R L R R e
- Appendix G

Hints for Program
Efficiency

The information in this appendix can help you write programs that run
faster or use less memory space. Section G.1, “Saving Space,” gives
tips you can follow if you need to conserve memory space. Section
G.2, “Saving Time,” suggests ways to speed up program execution.

L EesTRERRRGRRRResRETE Saving Space

G.1 , . .
Serious programmers often keep two versions of their programs: one

- expanded and heavily documented with R EM statements, the other

“crunched” to use the minimum memory space. There are a number
o of utility programs on the market that will make Applesoft programs
more compact. They work by automatically removing RE M state-
ments, combining several statements onto a single program line, and
eliminating optional semicolonsin PR INT lists. Here are some tips
= for programmers who prefer to do the work themselves:

b= ® Use multiple statements per line. There is a small amount of
overhead (5 bytes) associated with each line in the program. Two

= of these bytes contain the line number. This means that no matter
how many digits you have in your line number (minimum line

= numberis O, maximum is 639849), it takes the same number of
bytes (two). Putting as many statements as possible on each line

= will cut down on the number of bytes used by your program. (A
single line can include up to 239 characters.)

When combining statements into fewer lines, remember that when the
— conditioninan IF...THEN statement is false, execution continues with
the next /ine and not necessarily with the next statement.

If you're counting bytes, remember to add in one byte for each colon
- used to separate statements.

Saving Space 267

Combining many statements on one line makes editing and other -
changes much more difficult. It also makes a program more difficult to
read and understand, not only for others but also for you yourself when
you return to the program later on. Use this technique only in programs
with serious space limitations.

e Delete all REM statements. Each RE M statement uses at least
one byte (for the keyword REM itself), plus one byte for each -
character in the text of the remark. For instance, the statement

REM THIS IS5 A REMARK
occupies 18 bytes of memory. In the program line
140 X = X + ¥ : REM UPDATE SUM

the REM uses 12 bytes of memory, plus one for the colon sepa-
rating it from the preceding statement. —

Take care not to delete REM lines that are referred to by other lines. For —
example, if your program includes the lines

200 GOTO 300

300 REM THIS IS THE NEXT ROUTINE —

and you delete line 300, the program will halt withan UNDEF ‘D
STATEMENT error. -

Like programs with many statements on each line, those without de-

tailed REM statements are difficult to read and understand, not only for
others but also for you yourself when you return to the program later on.
You should consider eliminating R EM statements only when faced with
a serious shortage of memory space. —

® Useintegerinstead of real arrays wherever possible (see Sec- -
tion H.2, “Applesoft Memory Allocation”).

® Use variables instead of constants. Suppose you use the con-
stant 3+ 14159 ten times in your program. If you insert a
statement

PI = 3.,141589

and then use the variable P I instead of the constant 3., 141589
each time it is needed, you will save 40 bytes. This will also result
in a speed improvement.

268 Hints for Program Efficiency

® Applesoft programs need not end with an END statement, so you
can save a little space by omitting it.

i ® Reuse the same variables. If you use a variable T to hold a tem-
porary resultin one part of the program and you need a tempo-
= rary variable later in your program, use T again. Orif you're
accepting a one-character input from the user in two different
- places in the program, use the same variable both times.

e Use subroutines and functions when the same action must be
performed at different places in the program, to avoid having to
write the identical code more than once.

® Use the zero elements of arrays—suchas A (0O) orB (0 X) —
s since space is allocated for them anyway.

® Semicolons are optional before and after TAB calls; leaving
them out saves one byte per occurrence.

e ® Semicolons betweenitemsina PR INT list are optional so long
as the separate items are unambiguous. For instance, inline 30

o of the following example all items will be displayed separately (al-
though concatenated), since the dollar signs at the ends of the

s string variable names make it clear they are three separate

variables:
10 LET A% = "WELL s "
~ 20 LET B$ = "MARSHA, "
30 LET C% = "IT LOOKRS LIKE "

- 40 LET C = 10
50 PRINT A$ B$ C$ "FRED IS "C" HOURS
* LATE!"

i This program will display

e~ WELL + MARSHA: IT LODKS LIKE FRED IS 10
HOURS LATE!

But in this example several of the variables will be run together
— and interpreted as a single name:

b 10 LET A)
20 LET B 10

— 30 LET C4%4 = 13
40 LET D = 10

~ 50 PRINT A B C%Z D

- Saving Space 269

Applesoft interprets line 30 as saying “display the value of inte-
ger variable ABC, followed by the value of real variable D,” and
will display

010
Since variable ABC 7 hasn’t been assigned a value, its value is ©.

e |faquoted stringis the lastitem in the last statement of a line, the
closing quotation mark may be omitted, saving one byte: =

10 PRINT "THIS IS THE WAY THE WORLD =
ENDS »

20 PRINT "NOT WITH A BANG BUT A =
WHIMPER

This last technique should be used with caution: bad things can happen
if the omitted quotation mark comes somewhere other than at the end of -
aline:

10 PRINT "THIS WON'T 'WORK : PRINT "UVERY
WELL '

This line will display
THIS WON‘'T WORK : PRINT O
The final © is the value of the undefined variable VERYWELL. -

- SavingTime
G.2

Utility programs called compilers are now available that convert Ap-
plesoft programs to a form in which they run far faster than normally. o
However, a compiled program can take as much as 50% more space
than a non-compiled one. The hints listed below should improve the
execution speed of your Applesoft programs. Notice that some of
these same hints were given in Section G.1 to save memory space.
This means that in many cases you can both shorten and speed up
your programs at the same time.

e This hintis probably ten times more important than any other in
the list: use real variables wherever possible instead of integer
variables or constants. It takes more time to convert an integer to
its real-number representation than to fetch the value of a real
variable. This technique is especially important within subrou-
tines, loops, and other program segments that are executed
repeatedly.

270 Hints for Program Efficiency -

— e Space for variables is allocated in the variable table in the order
in which they are encountered during the execution of the pro-
- gram. Aline such as

— 5S5A=0:B=A:C=2858

— will place A first in the variable table, B second, and C third (as-
suming this line is the first executed in the program). When these

— variables are referred to later in the program, Applesoft will have
to search only one entry in the variable table to find A, two entries

— to find B, and three entries to find C. Try to arrange for those vari-
ables that your program refers to most often to be located as

— early as possible in the variable table.

— ® Omitthe index variable in NE X T statements. The statement
NEXT

is somewhat faster than
NEXT I

because no check needs to be made to see whether the variable
named inthe NEX T statement agrees with the index variable
named in the corresponding F OR statement.

® When Applesoft encounters a backward reference from a later
line of the program to an earlier one, such as

- 900 GOTO 100

it scans the entire program from the beginning until it finds the
desired line number (1 © 0, in this example). So you can speed
things up by placing frequently-referenced lines as early in the
program as possible.

= Saving Time 2n

Hints for Program Efficiency

B e s s L e
AppendixH

Implementation Details

— This appendix contains information on various details of Applesoft’'s
internal operation:

e SectionH.1, “Apple lle Memory Map,” summarizes the use of
e _ memory in the Apple lle and identifies areas of memory reserved
for system use. :

® Section H.2, “Applesoft Memory Allocation,” describes the way
Applesoft allocates memory for program and variable storage.

. ® Section H.3, “Zero Page Usage,” details Applesoft’s use of
L special locations in page zero of the Apple lle’'s memory.

e Section H.4, “Keyword Tokens,” lists the internal codes
Applesoft uses to represent keywords occurring in a program.

- » ~ Implementation Details -

L e
~ Applelie Memory Map
H.1

Table H-1 summarizes memory usage in the Apple lle. Addresses
preceded by a dollar sign (%) are in hexadecimal; they are followed =
on the next line by their decimal equivalents.

Table H-1 Apple lle Memory Usage
Memory Range

From To Used for

0000 $01FF System workspace; not advisable to use

0 511 -
$0200 $02FF Keyboard character buffer
512 767 =
0300 $03CF Available for short machine-language programs o
768 975
$03D0 $03FF Usedby DOS (available if you don't use a disk drive) "
976 1023

0400 $07FF Low-resolution graphics and text display, page 1
1024 2047

0800 $0OBFF Low-resolution graphics and text display, page 2 -
2048 3071

0800 $0OXHH Applesoft program and variable space, where XX X is the s
2048 AHXKX settingof HIMEM:. This may be setashighas 49151;
must be less if using DOS or reserving part of memory for

machine language routines or high-resolution display pages. e

$2000 $3FFF High-resolution graphics display page 1
8192 16383 -

4000 $5FFF High-resolution graphics display page 2
16384 24575 i

9600 $BFFF DOS (Disk Operating System)
38400 49151

$CO00 $CFFF Hardware I/O Addresses
49152 53247

$DO0OO &F7FF Applesoft
53248 63487

$FB00 sFFFF Apple lle System Monitor el
53488 65535

274 Implementation Details b

e Applesoft Memory Allocation
H.2

Figure H-1 shows how Applesoft allocates the memory space be-
= tween the start of program storage (normally 800 hexadecimal,
2048 decimal) and the end of variable storage (determined by the
settingof HIMEM :). The boundaries between areas may vary; the
left column gives “pointer” addresses at which the current settings of
- the boundaries can be found.

Figure H-1 Applesoft Memory Map

start of program - “« normally $0800
$0067-$0068 (zo4s)
103-104
PROGRAM
end of program
$00AF—-%$00BO
175-176

L

start of variables
$0069-%006A (LOMEM =
L 105-106 () SIMPLE
) VARIABLES

start of arrays —
$006B-$006BC

107-108
ARRAYS
end of variables
$006D-%$00BE

1089-110 =3
(- FREE SPACE
start of strings —>
$00BF—-%0070
- 111-112
STRINGS

end of strings (HIMEM 1)
$0073-%0074
115—-116 -

ke Pointer addresses are given in hexadecimal first, followed by their
decimal equivalents. All pointers are stored with the low-order byte

- first. Thus, for example, the address of the beginning of string space
can be calculated with the Applesoft expression

PEEK (112) * 256 + PEEK (111)

Applesoft Memory Location 275

Figure H-2 shows how space is allocated for individual variables and
arrays. Simple real, integer, or string variables use seven bytes each.
Real variables use two bytes for the variable name and five for the
value (one exponent, four mantissa, most significant first). Integer
variables use two bytes for the variable name, two for the value, and
have zeros in the remaining three bytes. String variables use two
bytes for the variable name, one for the length of the string, two for a
pointer to the contents of the string in memory, and have zeros in the
remaining two bytes.

Real arrays use a minimum of twelve bytes: two bytes for the array
name, two for the size of the array in bytes, one for the number of di-
mensions, two for each dimension, and five for each element of the
array. Integer array variables use only two bytes for each element.
String array variables use three bytes for each element: one for the
length of the string and two for a pointer to its contents. Multidimen-
sional arrays are stored with the first subscript varying fastest.

String variables and arrays contain pointers (addresses) to the con-

tents of the strings themselves, which are stored in order of creation .
from HIMEM : down, using one byte of memory for each character

in the string. The pointer stored with the variable gives the address of =
the first character in the string.

When a new function is definedbya DEF F N statement, 6 bytes
are used to store the pointer to the definition. =

Reserved words occurring in a program are converted into one-byte =
tokens (see Section H.4, “Keyword Tokens”). All other characters in
a program occupy one byte of program storage each. =

As a program is executed, space is allocated on the internal control =
stack as follows:
® Eachactive FOR/NEXT loop uses 16 bytes.

e Each active subroutine (one that has been called and has not yet
returned) uses 6 bytes.

e Each pair of parentheses encountered in an expression uses 4
bytes. =

e Eachtemporary result calculated in an expression uses 12
bytes.

276 Implementation Details

_—

Figure H-2 Variable and Array Maps

-

Simple Variables

Real) Integer String Pointers
NAME (pos) 1stbyte NAME (neg) 1stbyte NAME (pos) 1st byte
(pos) 2nd byte (neg) 2nd byte (neg) 2nd byte
exponent 1 byte highbyte length 1 byte
mantissa m.s. byte lowbyte address low byte
mantissa 0 address high byte
mantissa 0 0
mantissa l.s. byte 0 0
Array Variables
Real Integer String Pointers
NAME (pos) 1stbyte NAME (neg) 1stbyte NAME (pos) 1st byte
(pos) 2nd byte (neg) 2nd byte (neg) 2nd byte
OFFSET pointer to next OFFSET pointer to next OFFSET pointer to next
variable: add to address of ~ variable: add to address of variable: add to address of
this variable name this variable name this variable name
low byte low byte low byte
high byte high byte high byte
NO. OF DIMENSIONS NO. OF DIMENSIONS NO. OF DIMENSIONS
1 byte 1 byte 1 byte
SIZE Nth DIMENSION SIZE Nth DIMENSION SIZE Nth DIMENSION
high byte high byte high byte
low byte low byte low byte
SIZE 1st DIMENSION SIZE 1st DIMENSION SIZE 1st DIMENSION
high byte high byte high byte
low byte low byte low byte
REAL (0,0,...,0) INTEGER% (0,0,...,0) STRINGS (0,0,...,0)
exponent 1 byte highbyte length 1 byte
mantissa m. s. byte lowbyte address low byte
mantissa address high byte
mantissa
mantissa |. s. byte
REAL (N,N,...,N) INTEGER% (N,N,...,N) STRING$ (N,N,...,N)
exponent 1 byte highbyte length 1 byte
mantissa m. s. byte lowbyte address low byte
mantissa address high byte
mantissa
mantissa l. s. byte
m. s. = most significant
l.s. = least significant
277

Applesoft Memory Location

- ZeroPageUsage -
H.3

Table H-2 shows the locations that Applesoft uses in page zero of
memory (locations $ 0000 through $00FF hexadecimal). Ad-
dresses are given first in hexadecimal, then in decimal. All pointers
(memory addresses) are stored in the usual 6502 style, low-order
byte first. To find the value of a pointer, use the Applesoft expression

PEEK (SECNDADDR) * 256 + PEEK
(FIRSTADDR)

where FIRSTADDR and SECNDADDR are the addresses of the
two bytes of the pointer itself.

Table H-2 Applesoft Zero Page Usage
Location(s) Used for —

$0000 — %0005 Jump instructions to continue in Applesoft —

0 - 3
$000A — $000C Jumpinstruction for USR function (see Section 7.1.4) -
10 - 1.2
$000D — $0017 General purpose counters/flags for Applesoft -
13~ 23
$0020 — $004F Reserved for system Monitor program -
32 — 74
$0050 — $0061 General purpose pointers for Applesoft -
80 — a7
$0062 — $0066 Result of last multiply or divide ==
98 - 102
$0067 — $0068B Pointer to beginning of program. Normally setto $ 080 1. -
103 - 104

$0069 — $00BA Pointer to start of simple variable space. Also points to the
105 — 106 end of the program plus 1 or 2, unless changed with the
LOMEM : statement. —

$006B — $00BC Pointer to start of array space

107 - 108 -
$006D — $00GE Pointerto end of array space

109 - 110 =
$006F — $0070 Pointer to start of string start. Strings are stored from here to

111 - 112 valueof HIMEM:. -
$0071 — $0072 General pointer

113 = 114 -

$0073 — $0074 Highest location in memory available to Applesoft plus one.
115 - 116 Oninitial entry to Applesoft, set to the highest RAM memory
location available.

278 Zero Page Usage -

Table H-2 continued
Location(s) Used for

— $0075 — $0076 Line number of line currently being executed
117 - 118

Pt $0077 — $0078 "Oldline number” at which execution was interrupted by

119 — 120 END,STOP,or[CONTROL }-C

- $0079 — $007A “Old text pointer.” Location in memory of statement to be

121 — 122 executed next

w— $007B — $007C Line number of DATA statement containing next item for
123 - 124 READ

- $007D — $007E Absolute memory location of next item for READ
125 - 126

- $007F — $0080 Pointerto current source of INPUT. Setto $020 1 during
127 - 128 an INPUT statement. Duringa READ statement, set to

—_ the DATA item being read.
$0081 — $0082 Name of last-used variable

— 129 - 130

$0083 — $0084 Pointer to value of last-used variable
et 131 - 132

$0085 — $009C Generaluse
- 133 - 156

$009D — $00A3 Main floating-point accumulator
-~ 157 - 163

$00A4 General use in floating-point arithmetic
- 164

$00A5 — $00AB Secondary floating-point accumulator

165 - 174

L $00AC — $00AE General use flags/pointers
172 - 174

e $00AF — $00BO Pointerto end of program (not changed by LOMEM 1)
175 - 176

e $00B1 — $00CB8B Characterinput routine. Applesoft calls here every time it
177 - 200 wants another character.

e $00BB — $00B89 Pointer to last character obtained through character input
184 - 185 routine

— $00C9 — $00CD Random number
201 - 208

- $00D0 — $00DS High-resolution graphics scratch pointers
208 - 213

- $00D8B — $00DF ONERR pointers/scratch
216 - 223

- $00EO — $00EZ High-resolution graphics horizontal and vertical coordinates
224 - 226

Implementation Details 279

Table H-2 continued

Location(s) Used for
$00E4 High-resolution graphics color code -
228

$00ES — $00E7 General use for high-resolution graphics ==

228 - 231

$00EG Current high-resolution page being drawn on (decimal 3 2 if o
230 page 1;decimal G4 if page 2)

$00EB — $00E9 Pointer to beginning of shape table -
232 - 233

$00F0 — $00F3 Generaluse flags -
240 — 243

$00F4 — $00F8 ONERR pointers -
244 - 248

- KeywordTokens

= Applesoft tokenizes all its key words; that is, it converts them to one- -

byte codes called tokens to save memory space. Table H-3 gives a

list of the tokens representing the various keywords. -
Table H-3 Applesoft Keyword Tokens ot

Hex Dec Keyword Hex Dec Keyword

$80 128 END $8E 142 HLIN -

$81 129 FOR $8F 143 ULIN =

$82 130 NEXT $90 144 HGR2

$83 131 DATA $91 145 HGR .

$84 132 INPUT $92 146 HCOLOR = o

$85 133 DEL $93 147 HPLOT

$86 134 DIM $94 148 DRAW -

$87 135 READ $95 149 XDRAW sl

$88 136 GR $96 150 HTAB

$89 137 TEXT $97 151 HOME -

$8A 138 PR# $98 152 ROT = -

$8B 139 IN# $99 153 SCALE =

$8C 140 CALL $9A 154 SHLOAD -

$8D 141 PLOT $98B 155 TRACE =

280 Keyword Tokens -

b

- Table H-3 continued
Hex Dec Keyword Hex Dec Keyword

L $9C 156 NOTRACE $BB 187 CONT
$9D 157 NORMAL $BC 188 LIST

- $9E 158 INVERSE $BD 189 CLEAR

L $9F 159 FLASH $BE 190 GET
$A0 160 COLOR= $BF 191 NEW

- $A1 161 POP $CO 192 TAB

L $AZ 162 UTAB $C1 193 TO
$A3 163 HIMEM: $CZ 194 FN

- $Ad 164 LOMEM: $C3 195 SPC

L $AS 165 ONERR $C4 196 THEN
$A6 166 RESUME $C5 197 AT

- $A7 167 RECALL $CB 198 NOT

L $AB 168 STORE $C7 199 STEP
$A9 169 SPEED= $C8 200 s

. $AA 170 LET $C9 201 -

L, $AB 171 GOTO $CA 202 *
$AC 172 RUN $CB 203 /

ey $AD 173 IF $CC 204

- $AE 174 RESTORE $CD 205 AND
$AF 175 & $CE 206 OR

= $BO 176 GOSUB $CF 207 >

L $B1 177 RETURN $DO 208 =
$B2 178 REM $D1 209 <

= $B3 179 STOP $D2 210 SGN

L $B4 180 ON $D3 211 INT
$B5S 181 WAIT $D4 212 ABS

= $B6 182 LOAD $D5 213 USR

- $B7 183 SAVE $D6 214 FRE
$B8 184 DEF $D7 215 SCRN

- $B9 185 POKE $DB 216 PDL

L $BA 186 PRINT $D9 217 POS

- Implementation Details

Table H-3 continued J
Hex Dec Keyword Hex Dec Keyword
$DA 218 SOR $E3 227 LEN i
$DB 219 RND $E4 228 STR$
$DC 220 LOG $ES 229 VAL -
$DD 221 EXP $EB 230 ASC -
$DE 222 Ccos $E7 231 CHR$
$DF 223 SIN $EB 232 LEFT$ -
$EO 224 TAN $E9 233 RIGHTS el
$E1 225 ATN $EA 234 MID$
$E2 226 PEEK -

Implementation Details -

s e e e R e R
Appendix |

Display Formats for
Numbers

- This appendix describes the formats in which Applesoft displays or
prints numeric values. Numbers may not always be formatted in the

- way you might expect; this is particularly true for numbers more than
9 digits long or for exceptionally small numbers.

Ranges of numeric values Numeric values in Applesoft mustbe intherange — 1 ¥ 10 “ 38 to
- 1% 107 38. Any number whose absolute value is less than approxi-
mately 3% 10" — 39 is converted to zero. True integer values to be
- assigned to integer variables (such as A%) must be in the range
—32767t0 +32767.

A number typed from the keyboard or a numeric constant used in
an Applesoft program may have as many as 38 digits. However,
only nine digits are significant, and the last digit is rounded off. An
Applesoft statement that you type as

PRINT 1.23456787654321

—you type this from the
L keyboard
L will display
L 23456788 —you get this on the screen
L on the screen.
Al arithmetic done on reals Integers are always converted to real form before being used in arith-

metic calculations, and the results are converted back to integer form

when assigned to an integer variable. Conversion from real to integer
truncate: to convert areal numbertothe ~ form is by truncation to the next lowest integer, not by rounding to the
next lowest integer nearest integer.

— Display Formats for Numbers 283

Applesoft displays and prints numbers according to the following
rules:

Rules for number formats

e [fthe number is negative, it is preceded by a minus sign (-); if itis
zero or positive, no sign is used.

e |fthe number is an integer with an absolute value from © to
999 988 9889, itisformatted as an integer. —

e [fthe number is not an integer and its absolute value is between
+01and 988 989 899, 2, itis formatted with a decimal
pointin the usual way.

scientific notation: the representation ~ ® in all other cases, the number is formatted in scientific notation
of numbers in terms of powers of 10 (see below). -

Table I-1 shows examples of the formats used for displaying and -

Table I-1 Number Formats

284

printing numbers.

Number Output Format
+1 1
—1 —1
6523 6523
—23.460 —23.46
4572 %10"5 4572000
1%10°20 1E+20
—12.34567896 * 10" 10 —1.2345679E+11
1000000000 1 E+09
999999999 8988999899

Implementation Details

Figure I-1 Format for Scientific Notation

sign exponent symbol

SH v KHHHKKKKKESDD

e

each Xisadigit

sign of exponent

digits of exponent

The format Applesoft uses for scientific notation is shown in Figure |-1.
A sign is shown only if the number is negative. There is always ex-
actly one nonzero digit before the decimal point and up to eight digits
after it, with trailing zeros suppressed. There are never any leading

zeros; the digit before the decimal p

oint is always nonzero. If there is

only one digit to print after all trailing zeros are suppressed, no deci-

mal point is shown. The letter E (for

“exponent”) is always followed

by a sign and a two-digit exponent. The value of a number repre-
sented in this form is the number before the E times 10 raised to the

power after the E. For example,

PRINT 35 * 345 " 14

PRINT -3.14159 % 567 °

PRINT 1 / 998
PRINT -3 / 989

Display Formats for Numbers

yields 1, 18450085E+37
5

yields -1.841046G9E+ 14
yields 1 s 00O1001E-03
yields -3+ 003003E-03

Implementation Details -

el e LR R R R R R
Appendix J

On-Screen Editing and
Cursor Control

The figures and tables below summarize Applesoft’s facilities for on-
screen editing and cursor control. These features are discussed
briefly in Section 1.4, “Editing What You Type,” and at greater length
inthe Apple Ile Owner’s Manual and the Apple Ille Applesoft Tutorial.

te If you have the Apple lle 80-Column Text Card installed in your
computer, additional escape-mode features are available; see the
- 80-Column Text Card Manual.

— Figure J-1 Single Cursor Moves

D
- B A
- G
Figure J-2 Long-range Cursor Moves
- I
L ol K
M

~ On-Screen Editing and Cursor Control 287

Table J-1 ASCII Equivalents of Arrow -

Keys AsCll Keyboard
Key Code Equivalent

8 [cowtror)H

21 (cowtoL}uU

11 [cowTRoL} -
10 [cowmaL}-d

Table J-2 Escape-Mode Functions -
Key Function

Moves cursor right one position; leaves escape mode
Moves cursor left one position; leaves escape mode —

Moves cursor down one line; leaves escape mode

Moves cursor up one line; leaves escape mode

Moves cursor up one line; remains in escape mode
Moves cursor left one position; remains in escape mode =
Moves cursor right one position; remains in escape mode

Moves cursor down one line; remains in escape mode

LEFT-ARROMW Moves cursor left one position; remains in escape mode
RIGHT-ARROW | Moves cursor right one position; remains in escape mode d
UP-ARROW Moves cursor up one line; remains in escape mode

DOWN-ARROW Moves cursor down one line; remains in escape mode

Clears from cursor to end of line; leaves escape mode

Clears from cursor to end of text window; leaves escape mode

Clears entire text window; moves cursor to top-left corner; leaves
escape mode -

288 On-Screen Editing and Cursor Control —

Table K-1 40/80-Column Display

Differences

el e e U i L
Appendix K

40/80-Column Display
Differences

The following chart summarizes the differences in the Apple lle’s be-
havior with and without the Apple lle 80-Column Text Card installed.
Notice that even 40-column display behaves somewhat differently
with the 80-Column Text Card installed and active than without it. See
the 80-Column Text Card Manual for further information.

Card Inactive:
40-Column
Display

Card Active:
40-Column
Display

Card Active:
80-Column
Display

Escape
Mode

Checkerboard
cursor

Plus-sign
cursor;
additional
escape-mode
features
available

Plus-sign
cursor;
additional
escape-mode
features
available

Inverse

Uppercase
characters only

Upper- and
lowercase

Upper- and
lowercase

Inverse

Home Flash

Clears text
window

to black;
characters
displayed in
inverse

Uppercase
characters only

Not available

* x *

DO NOT USE

Clears text
window

to white;
characters
displayed
in black

Clears text Not available
window

to white;
characters
displayed
in black

* ok *

DO NOT USE

Comma
Tabbing

Available

Available

Not available
for second
40 columns

HTAB

Available

Available

Not available

for second

40 columns; use
POKE 36 XX

40/80-Column Display Differences

289

40/80-Column Display Differences .

LR R R e SR R
Appendix L

Comparison with Integer
) BASIC

L. This appendix summarizes the differences between Applesoft and
Apple’s earlier Integer BASIC language. Section L.3 gives some hints

L on converting programs written in Integer or other versions of BASIC
to Applesoft.

If Integer BASIC is loaded into your computer’s memory, you can
switch from Applesoft to Integer BASIC by typing the command

INT

To switch from Integer BASIC to Applesoft, type

FP

F P stands for “floating-point,” the name for the internal format used by
languages like Applesoft to represent real numbers.

Comparison with Integer BASIC 291

s Differences between Features -

Table L-1 lists Applesoft statements and functions that are not avail-

Table L-1 Applesoft Features Not Avail- able in Integer BASIC.
able in Integer BASIC

ATN —
CHR% Cos

DATA DEF FN DRAW

EXP -
FLASH FN FRE

GET

HCOLOR= HGR HGRZ HIMEM: HOME HPLOT —
INT INVERSE

LEFT® LOG LOMEM:

MID$ -
NORMAL

ON...GOSUB ON...GOTO ONERR GOTO

POS —
READ RECALL RESTORE RESUME RIGHT% ROT =

SCALE= SHLOAD SIN SPC SPEED= SOR STOP STORE STR%

TAN -
USR

VAL

WAIT -
KDRAW

Table L-2 lists Integer BASIC statements and functions that are not i

Table L-2 Integer BASIC Features Not available in Applesoft.
Available in Applesoft —

AUTO

DSP -
MAN

MOD

292 Comparison with Integer BASIC _]

— Table L-3 lists Applesoft features that are expressed or accomplished
differently in Integer BASIC.

Table L-3 Applesoft Features Expressed

L Differently in Integer BASIC Applesoft Integer BASIC

k. CLEAR CLR
CONT CON

- HTAB TAB

i ON X GOTO 110, 120, 130 GOTO 100+ 10*X
ON X GOSUB 1100, 1200, 1300 GOSUB 1000 + 100 % X

== HOME CALL —936

— INVERSE POKE S0, 127
NORMAL POKE 50, 255

- FLASH POKE S04 B3

- K% (integer variable) X
<> or >< #

- OtherDifferences

L.2
As the name implies, the only numbers Integer BASIC can deal with

are integers (whole numbers). Real variables and constants (num-
bers with decimal points or exponents) are available in Applesoft but
not in Integer BASIC.

In Integer BASIC, the correctness of a statement’s syntax is checked
when the statement is typed (when you press the key). In
Applesoft, such checking is not done until the statement is executed.

Integer BASIC permits the line numberina GOTO or GOSUB
statement to be specified by an arithmetic variable or expression; in
Applesoft it may be specified only by an actual line number.

In Applesoft, only the first two characters in a variable name are sig-
nificant (for example, GOOD and GOUGE are recognized as the
same variable). In Integer BASIC, all characters in a variable name
are significant.

String operations are defined differently in the two languages. In

Integer BASIC, both strings and arrays must be definedina D I M
statement; in Applesoft, only arrays must be so defined.

Other Differences 293

294

Applesoft arrays may be multidimensional; Integer BASIC arrays are
limited to one dimension. There are no string arrays in Integer
BASIC.

Applesoft automatically sets all array elements to zero or the null
string on executing RUN or CLEAR. In Integer BASIC, your program
must explicitly set all array elements to their initial values.

In Integer BASIC, if the condition specifiedinan IF...THEN state-
ment is false, only the THEN portion of that statement is skipped. In
Applesoft, all statements following the keyword THEN on the re-
mainder of the same program line are skipped; program execution
proceeds with the next numbered line.

In Applesoft, the TRACE statement displays the line number of each
individual statement executed; in Integer BASIC, the line number is
displayed just once for each program line.

In Applesoft, PEEK, POKE, and CALL may use the true range of
memory addresses (0 to 553 35). In Integer BASIC, locations with
addresses greater than 327G 7 must be referred to by their corre-
sponding negative values (location 32768 iscalled -32767-1;
3276%9iscalled -32767; 32770 iscalled -32766; and so on).

If control reaches the end of an Integer BASIC program without an
END statement having been executed, an error message is dis-
played; in Applesoft, the END statement at the end of a program is
optional.

In Integer BASIC, every NEX T statement must include a variable
name; in Applesoft, the variable name is optional.

In the Integer BASIC I NPUT statement, the string representing the
optional prompting message is followed by a comma, not a semi-
colon as in Applesoft. If the first variable in the INPUT listis an arith-
metic (integer) variable, a question mark (7) is displayed whether the
optional prompting string is present or not; if the first variable in the
listis a string variable, no question mark is displayed, again whether
the prompting string is present or not. In Applesoft, the question mark
is displayed only if no prompting string is specified.

Comparison with Integer BASIC

e Converting BASIC Programs to Applesoft

Although different versions of BASIC are generally similar, there are
some incompatibilities that you should know about if you're planning
to convert programs to Applesoft from Integer or other versions of
BASIC. Here are some things to watch for:

® Some versions of BASIC use square brackets [1 to denote
array subscripts; Applesoft uses parentheses ().

® Many versions of BASIC require that you define the lengths of all
e strings in D I M statements before you use them. In converting a
program to Applesoft, remove all such D I M statements for
— strings; use D I M only to define arrays. In some of these other
versions of BASIC, a statement of the form

DIM A% (I J)

defines a string array of J elements, each of length I. Convert
— D I M statements of this type to

-~ DIM A%(J)
— ® Some versions of BASIC use acomma (+) or an ampersand (&:)

for string concatenation; Applesoft uses a plus sign (+).

® Applesoft uses the string functions LEF T$, MID#%, and
R IGHT % to extract substrings. Other versions of BASIC (such
as Integer BASIC) use the expression

A% (I)
to refer to character number I of string A%, and
A% (I, J)

to designate the substring of A% from character number I to
character number J. These expressions occurring on the right
side of an assignment statement can be converted to Applesoft
as follows:

Convert A%$(1)
i to MID$(A%, I, 1)

b Convert A$(I+ J)
to MID$(A%$ s I+ J — I + 1)

- Converting BASIC Programs to Applesoft 295

When these expressions occur on the left side of an assignment -
statement, convert them as follows:

Convert A$(I) = X%
to A$ = LEFT$(A%, I — 1) + X% + i
MID$ (A%, I + 1)
Convert A$ (I, J) = X% -

to A$ = LEFT$(A%, I — 1) + X$ + &
MID$(A%, J + 1)

® Some versions of BASIC allow “multiple assignment” statements
of the form]

LET 8 = £ = ‘B -
This statement would set both variables B and C to ©. i

In Applesoft, such a statement has an entirely different effect: all -
equal signs after the first are interpreted as logical comparison

operators. Thus the statement above will set variable B to 1 "
(meaning “true”) if C equals 0, to © (meaning “false”) if it

doesn't. . {

To convert such a multiple assignment statement into Applesoft,
rewrite it as

C=02:8B=2°C
or =
B =0:C=20

® Some verions of BASIC use a slash (/) instead of acolon () to

separate multiple statements on the same line. In converting to
Applesoft, change each such slash to a colon.

® Programs that use the MA T (matrix arithmetic) functions avail-
able in some versions of BASIC will have to be rewritten using -
FOR/NEXT loops to perform the corresponding matrix
operations. o

296 Comparison with Integer BASIC -

B R R T A R N R
Appendix M

If You Have a Cassette
Recorder

1L This appendix discusses Applesoft’s facilities for storing programs
and information on tape cassettes. For any of these features to work,
Lo all of the following conditions must be present:

— ® There must be a cassette tape recorder properly connected to
the computer.

® The tape recorder must be turned on.

- ® There must be a tape cassette properly mounted in the recorder.

® Therecorder mustbe setto “record” or “play,” depending on the
statement being executed.

None of the Applesoft tape operations checks for these conditions; if any
of the conditions doesn't hold, the system may hang indefinitely. Only

- CONTROL |-[RESET]: see Section 1.3.2 [conTrOL |- RESET |can interrupt a tape operation; only God can make
atree.

—_—

e The sAVE Command
B i SAVE

SAVE writes a program to tape The SAVE command writes the Applesoft program currently in
memory onto a tape cassette. No prompting message or signal of
any kind is given; the tape recorder must already be turned on and
set to “record” at the time the SAVE command is executed. Beeps
signal the start and end of the recording.

Occasionally a tape recorder will not work properly when both input and
e output cables are plugged in at the same time. This problem originates
from a ground loop in the tape recorder itself, which prevents making a
good recording. The easiest solution is to unplug the output cable (usu-
ally labeled “monitor” on the tape recorder) when recording. Such a
ground loop causes no trouble when reading a tape.

- If You Have a Cassette Recorder 297

M.2

LOAD reads a program from tape

M.3

STORE writes an array to tape

M.4

RECALL reads an array from tape

298

If your system is equipped with a disk drive and you have the Disk Oper-
ating System (DOS) loaded and running, a SAYE command with a
name following the keyword SAYE will write the current program onto a
disk under that file name. See Section 1.2.5 and your DOS manual for
more information.

The LOAD Command
LOAD

The LOAD command reads an Applesoft program into memory from
a tape cassette. No prompting message or signal of any kind is given;
the tape recorder must already be turned on and set to “play” at the
time the LOAD command is executed. A beep signals when the be-
ginning of information is detected on the tape; a second beep is
sounded when the program has been successfully loaded.

If your system is equipped with a disk drive and you have the Disk Oper-
ating System (DOS) loaded and running, a L 0AD command with a
name following the keyword L DAD will read a program from a disk
under that file name. See Section 1.2.6 and your DOS manual for more
information.

The 5TORE Statement
STORE MY

The STORE statement writes the contents of an integer or real array
onto a tape cassette. The name of the array (I in the example
above) follows the keyword ST OR E, without a subscript. No prompt-
ing message or signal of any kind is given; the tape recorder must
already be turned on and set to “record” at the time the STORE
statement is executed. Beeps signal the start and end of the
recording.

String arrays cannot be written with the ST ORE statement.

The RECALL Statement
RECALL MX

The RECAL L statement reads information into an integer or real ar-
ray from a tape cassette. The name of the array (M in the example
above) follows the keyword RECAL L, without a subscript. The des-
ignated array must have been previously defined ina D I M statement
in the program issuingthe RECALL.

If You Have a Cassette Recorder

No prompting message or signal of any kind is given; the tape re-
corder must already be turned on and set to “play” at the time the
RECALL statementis executed. A beep signals when the beginning
of information is detected on the tape; a second beep is sounded
when the information has been successfully transferred.

String arrays cannot be read with the RECAL L statement.
The name of the array read with RECAL L need not be the same name
- used inthe S TORE statement that wrote the information onto the tape.
However, the dimensions of the array being read should be the same as
s those of the array originally written. For example, if the tape was written
by the statement
S STORE A
e where array A had been defined by
DIM A (55 5)
it can be read back with the statement
RECALL B
where array B is defined by
o= DIM.B (5% Bs B

e If the dimensions of the two arrays differ, RECAL L may scramble the in-
formation read into array B, or the program may halt with the message

?0UT OF MEMORY ERROR

I The SHLOAD Statement

M.
- i SHLOAD

SHLOAD reads a shape table from The SHLOAD (for “shape load”) statement reads a shape table into
his tape memory from a tape cassette. The shape table is loaded just below
the current settingof HIMEM : (see Section7.2.1, “The HIMEM :
w Statement”) and HIMEM : is reset to just below the shape table to
protect it.

No prompting message or signal of any kind is given; the tape re-
= corder must already be turned on and set to “play” at the time the
SHLOAD command is executed. A beep signals when the beginning
- of information is detected on the tape; a second beep is sounded
when the shape table has been successfully loaded.

shape tables: see Section 6.3 See Section 6.3 for extensive information on shape tables.

— The SHLOAD Statement 299

If You Have a Cassette Recorder =)

e R D B e O T T R e e
- Appendix N

- Complete Listing of the
) Postage Rates Program

Below is a complete listing of the postage rates program developed in
- Chapter 8. A copy of this program is included on the APPLESOFT

SAMPLER disk.
10 R’EI"I POSTAGE RATES —name of program
- 20 —colon leaves line empty
30 REM DETERMINES POSTAGE FEES
- —what program does

40 REM FOR EXPRESS:s 15T CLASS:
- 50 REM AND PRIORITY MAIL
—empty line inserted by embed-
- ding -J (line feed)
atend of REM statementin
- line 30

- 60 REM W29/01/82 —number and date of this
version
s 70 REM BY JOHN SCRIBBLEMONGER
—programmer’s credit line
100 REM MENU OF POSTAGE CLASSES

—(conTRoL J-J here

= 110 HOME —begin with a clear screen
120 TITLE$ = "POSTAGE RATES"
== 130 PRINT

140 HTAB 21-LEN (TITLE$) / 2
- —formula to center title
150 PRINT TITLE%
= 160 YTAB 6
170 PRINT "1, EXPRESS"
e 180 PRINT "2, FIRST CLASS"
190 PRINT "3, PRIORITY"
-~ 200 PRINT
210 PRINT "4, END THE PROGRAM"
= —the escape hatch

Complete Listing of the Postage Rates Program 301

300 REM —(conTRoL J-J here
GET CLASS OF MAIL

—(conTroL J-J here

310 YTAB 14
320 PRINT "Press the number of vour —

choice:"3 —semicolon keeps response on
same line -
330 GET C% —only one keypress needed;

cuts down on error possibili- -
ties. Note use of string variable

to get number; avoids type —
mismatch errors

335 REM —[conTroL)-J here -
CHECK FOR VALIDITY

—another [CoNTROL J-J (last -

time this is noted)

340 IF C% = "4" THEN END
—end program if user types a 4
350 IF VAL (C%) = 0O AND VAL (C%) < 4
THEN 380 —skip next two lines if valid
choice typed
360 PRINT CHR$(7)3 CHR$(7)1
—beep twice to get attention

370 GOTO 330 —response was invalid; try
again -
380 PRINT C4% —since choice accepted via

GET,itisn't displayed on the
screen. Display it back to user

390 C = VAL (C%) —need this value later to deter-
mine what section of program
to branch to for proper -
processing

500 REM ==

GET WEIGHT OF ITEM
205 VUTAB 16

510 PRINT "Please enter the WEIGHT - a =
number Plus an 0O (for ounces) or a
P (for pPounds) - and Ppress the
RETURN Kev: "3i —promptingmessage to tell
user what information to type
and how to type it
520 CALL -8G6G8 —clear to end of line; useful to
erase any errors that might be
typed

302 Complete Listing of the Postage Rates Program |

530 INPUT ""3 W% —semicolon suppresses ques-
tion mark
540 W1$ = RIGHT$ (W&, 1)

—rightmost letter should be
either O or P; use it later to see
if weight is consistent with
postal regulations

290 W = VAL (W$) —how many ounces or pounds?
255 REM
WAS ENTERED WEIGHT VALID?

- 360 IF W * O AND (W1$% = "0O" OR Wi$ =
"P") THEN 710 —ifaweightwastyped, and if
- last character was either O for
ounces or P for pounds, then
L proceed
570 PRINT CHR%$ (7)3 CHR$ (7)
- —beep twice to get attention
280 GOTO 300 —entry was invalid; try again
L 700 REM
CHECK CONSISTENCY

710 ON C GOSUB 10000, 11000, 12000
—branch to appropriate subrou-
tine to see if weight typed is
within postal rules or program
limitations for mail class
chosen
720 IF NOT EFLAG THEN 910
—if no inconsistency detected in
subroutine then proceed with
processing
730 GOSUB BOOOO : REM KEYSTALL
—uwait for user to acknowledge

message

740 EFLAG = 0O —clear error flag setin
- subroutine

750 CLEAR —reset all variables, clear
- arrays, etc.

760 GOTO 100 —restart program loop
- 900 REM

FIND APPROPRIATE CODE FOR
= PROCESSING —everything is valid and consis-
tent; now program can solve

- for the postage rate!

303
s Complete Listing of the Postage Rates Program

910 ON C GOSUB 1000, 2000, 3000 —
—branch to proper calculating

routine =
920 GOSUB G1000 : REM FORMATTER
—format result for display -
930 PRINT
935 REM —

DISPLAY RESULTS

940 PRINT "POSTAGE NEEDED: "3 T%
—finally, the postage due!

950 GOSUB BOOOO : REM KEYSTALL
—don’t go on until user is ready

960 CLEAR —prepare for restart...

970 GOTO 100 —...anddoit

999 REM o
SUBROUTINES BEGIN HERE

1000 REM

EXPRESS MAIL CALCULATION -

1010 W = INT (W + ,98)
—weight must be increased to
compensate for fractions;
postal rates read “NOT MORE

THAN x POUNDS”
1020 T = R (W) —rate array filled in express mail -
consistency-checking routine
(line 10000) -
1030 RETURN —end routine
2000 REM
FIRST CLASS CALCULATION =
2010 T = 420 4+ INT (W 4+ .99 - 1) * ,17
—first class rate is 20 cents first -
ounce plus 17 cents for each
additional ounce or portion -
thereof (April, 1982 rates)
2020 RETURN —end routine -
3000 REM -

PRIORITY MAIL CALCULATION

3010 W = INT (W + ,98)
—compensate for partial ounces
or pounds

Complete Listing of the Postage Rates Program

3020 IF W » 10 THEN 3160
—gotoline 3160 for weights

greater than 10 pounds
(ounce weights converted to
pounds in consistency subrou-
tine starting atline 1 2000)

3025 REM

PRIORITY RATES TO 10 POUNDS

s 3030 IF W <= 1 THEN T = 2.2

3040 IF W * 1 AND W <= 1,5 THEN T =
— 2430 —rates in half-pound increments
3050 IF W » 1.5 AND W <= 2 THEN T =
— 2.54
3060 IF W *» 2 AND W <= 2,5 THEN T =
- :078
3070 IF W *» 2.5 AND W <= 3 THEN T =
— 3.01
3072 IF W » 3 AND W <= 3.5 THEN T =
- 123
3078 IF W » 3.5 AND W <= 4 THEN T =
- 3.49
3080 IF W > 4 AND W <= 4.5 THEN T =
— 3+73
3090 IF W * 4.5 AND W <= 5 THEN T =
- Fe87
3100 IF W * 3 AND W <= 6 THEN T = 4,44
— —rates by the pound now!
3110 IF W * 6 AND W <= 7 THEN T = 4,92
- 3120 IF W » 7 AND W <= 8 THEN T = 5,39
3130 IF W 8 AND W <= 89 THEN T = 5.87
- 3140 IF W 9 THEN T = B.35
3150 GOTO 3 40 —branchto RETURN statement
- 3160 REM
PRIORITY RATES FOR OVER 10
— POUNDS
3170 T1 = INT (W / 5 - 1) * 2,38 +
- 3«87 —first 5 pounds cost $3.97; each

added 5 pounds cost $2.38
3180 W1 = W - INT (W /7 5) % 5
—how many odd pounds are
there (pounds that are not

multiples of 5 and must be

- charged at a special rate)?
3190 IF W1 = 1 THEN T2 = .47
- 3200 IF W1 = 2 THEN T2 = ,95

Complete Listing of the Postage Rates Program 305

3210 IF W1 = 3 THEN T2 = 1.42 o

3220 IF W1 = 4 THEN T2 = 1,890

3230 T = T1 + TZ —add the 5-pound-multiples rate .
to the odd-pounds rate

3240 RETURN —end routine

10000 REM
EXPRESS MAIL CONSISTENCY CHECK

10010 DATA 9.35» 9,35+ 9,55 9,90
10,30, 10,65y 11,00, 11.40, =

11,75 0 —express mail rates; O atend is
“lastitem” flag =
10020 X = 0 —set up counter to check how
many rates are read from bt
DATA list
10030 X = X + 1 —increment counter -
10040 READ R (X) —put price into proper array
element e

10050 IF R (X) = 0 THEN 10070
—price of O marks end of list =
10060 GOTO 10030 —aqet next price
10070 X = X - 1 —X includes count of “last item” —
flag from 1 0035 0; subtract it
from count sinceiit's a -

“dummy” item
10080 IF Wi1$ = "P" THEN 10100 —
—next line is for ounces only
10090 W = W / 16 —convert ounces to pounds —

10100 IF W <= X THEN 10140
—if weight in pounds is covered —
by the rate chart, then go
ahead —
10110 PRINT
10120 PRINT CHR$% (7)3 CHR$ (7)3% "TOOD —
HEAVY FOR MY TABLES - PLEASE
CALL THE POST OFFICE" —
—sorry; can’t help you

10130 EFLAG = 1 —set flag indicating inconsistent -
weight/type; will be checked at
line 720 -
10140 RETURN —end routine
11000 REM L
FIRST CLASS CONSISTENCY CHECK
11010 IF W1$ = "0O" AND W < 12,01 THEN =
11060 —OK if not more than 12 ounces

306 Complete Listing of the Postage Rates Program __

— 11020 PRINT
11030 PRINT CHR$ (7)3 CHR$(7)3% "TOO
L HEAVY FOR FIRST CLASS"
—sorry—inconsistent!
L 11040 PRINT "TRY PRIORITY MAIL"

—suggest alternative
= 11050 EFLAG = 1 —set flag indicating inconsistent
weight/type; will be checked at
- line 720
11060 RETURN —end routine

i 12000 REM
PRIORITY MAIL CONSISTENCY CHECK

12010 IF Wi$ = "P" THEN 12080

- —if in pounds, then skip down
12020 IF W > 12 THEN 12080

L —skip down if weight is between

12 and 16 ounces

. 12030 PRINT
12040 PRINT CHR% (7)3% CHR$% (7)3% "TOO

k= LIGHT FOR PRIORITY MAIL -"

—too light!
- 120530 PRINT "TRY FIRST CLASS"
—suggest alternative
— 12060 EFLAG = 1 —set flag indicating inconsistent
weight/type; will be checked at
- line 720
12070 GOTO 121350 —pbranch to end of routine
L 12080 W = W / 16 —convert ounces to pounds
12090 IF W <= 70 THEN 12150
- —final check: is item on the
charts?

12100 PRINT
12110 PRINT CHR% (7)3 CHR$ (7)3F "TOO
HEAVY FOR PRIORITY MAIL -"

—off the charts
L 12120 PRINT "TRY ONE OF THE AIR EXPRESS
COMPANIES" —too big for the Post Office!
L 12130 EFLAG = 1 —set flag indicating inconsistent
weight/type; will be checked at
- line 720
12150 RETURN —end routine

— Complete Listing of the Postage Rates Program

59999 REM
UTILITY ROUTINES
—routines useful for various
tasks but ancillary to rest of

program a
BOOOO REM
KEYSTALL —routine to interrupt program =
until user presses a key
BOO10 UTAB 24 —move cursor to screen bottom =
BO0OZ0 INVERSE —set text to appear black-on-
white =
BO0O30 PRINT "PRESS RETURN TO GO ON..."3
6o040 GET A% —uwait for keypress ~
BOOS0O NORMAL —restore ordinary white-on-
black =
BOOGBO RETURN —end routine
61000 REM =

MONEY FORMATTER
—adds zeros after the decimal -
point where needed

61010 T$ = 8TR$ (T) —turnthe calculated postage
feeinto a string
B1020 IF T = INT (T) THEN T% = T% +

tL.oo —if charge is in whole dollars, J
add a decimal point and two
zeros
61030 IF ASC (RIGHT$% (T%$:2)) = 46 THEN -
T$ = T% + "0O"—ifsecondcharacterfromthe

right is a decimal point (ASCII

code 4G) then number has

only one digit to right of deci-

mal—so add a “0" to the string
61040 RETURN —end the routine

308 Complete Listing of the Postage Rates Program =

Glossary

Glossary of Technical Terms

= address: A number used to identify something, such as a location in
the computer's memory.

algorithm: A step-by-step procedure for solving a problem or ac-
- complishing a task.

- AND: Alogical operator that produces a true result if both of its oper-
ands are true, a false result if either or both of its operands are false;
- compare OR, NOT.

— Apple lle: A personal computer in the Apple Il family, manufactured
and sold by Apple Computer.

Apple lle 80-Column Text Card: A peripheral card made and sold by
ks Apple Computer that plugs into the Apple lle’s auxiliary slot and con-
verts the computer’s display of text from 40- to 80-column width.

Apple lle Extended 80-Column Text Card: A peripheral card made
ks and sold by Apple Computer that plugs into the Apple lle’s auxiliary

slot and converts the computer’s display of text from 40- to 80-column
- width while extending its memory capacity by 64K bytes.

- Applesoft: An extended version of the BASIC programming lan-
guage used with the Apple lle computer and capable of processing

kL, numbers in floating-point form. An interpreter for creating and execut-
ing programs in Applesoft is built into the Apple Ile system in firm-

- ware. Compare Integer BASIC.

- application program: A program that puts the resources and capa-
bilities of the computer to use for some specific purpose or task, such

L as word processing, data-base management, graphics, or telecom-
munications. Compare system program.

- Glossary of Technical Terms 309

application software: The component of a computer system con-
sisting of application programs.

argument: The value on which a function operates.

arithmetic operator: An operator, such as +, that combines nu-
meric values to produce a numeric result; compare relational opera-
tor, logical operator.

array: A collection of variables referred to by the same name and dis-
tinguished by means of numerical subscripts.

ASCII: American Standard Code for Information Interchange; a code
in which the numbers from © to 1 27 stand for text characters, used
for representing text inside a computer and for transmitting text be-
tween computers or between a computer and a peripheral device.

assembiler: A language translator that converts a program written in
assembly language into an equivalent program in machine language.

assembly language: A low-level programming language in which in-
dividual machine-language instructions are written in a symbolic
form more easily understood by a human programmer than machine
language itself.

auxiliary slot: The special expansion slot inside the Apple lle used
for the Apple 80-Column Text Card or Extended 80-Column Text
Card.

back panel: The rear face of the Apple lle computer, which includes
the power switch, the power connector, and connectors for a video
display device, a cassette tape recorder, and other peripheral
devices.

BASIC: Beginner's All-purpose Symbolic Instruction Code; a high-
level programming language designed to be easy to learn and use.
Two versions of BASIC are avaiiable from Apple Computer for use
with the Apple lle: Applesoft (built into the Apple lle in firmware) and
Integer BASIC (provided on the DOS 3.3 SYSTEM MASTER disk).

binary: The representation of numbers in terms of powers of two, us-
ing the two digits © and 1. Commonly used in computers, since the
values 0 and 1 can easily be represented in physical form in a vari-
ety of ways, such as the presence or absence of current, positive or
negative voltage, or a white or black dot on the display screen.

Glossary of Technical Terms

- binary file: A file containing “raw” information not expressed in text
form; compare text file.

binary operator: An operator that combines two operands to pro-
— duce aresult; for example, + is a binary arithmetic operator, < isa

binary relational operator, and OR is a binary logical operator. Com-
- pare unary operator.

bt bit: A binary digit (O or 1); the smallest possible unit of information,
consisting of a simple two-way choice, such as yes or no, on or off,
- positive or negative, something or nothing.

- bit bucket: The final resting place of all information; see write-only
memory.

body: The statements or instructions making up some constructin a
- program, such as a loop or a subroutine.

- boot: To start up a computer by loading a program into memory from
an external storage medium such as a disk. Often accomplished by

L first loading a small program whose purpose is to read the larger pro-
gram into memory. The program is said to “pull itself in by its own

- bootstraps”; hence the term bootstrapping or booting.

boot disk: See startup disk.
bootstrap: See boot.

- branch: To send program execution to a line or statement other than
the next in sequence.

buffer: An area of the computer’s memory reserved for a specific
purpose, such as to hold graphical information to be displayed on the
screen or text characters being read from some peripheral device.
Often used as an intermediary “holding area” for transferring infor-
mation between devices operating at different speeds, such as the
computer’s processor and a printer or disk drive. Information can be
stored into the buffer by one device and then read out by the other at
adifferent speed.

bug: An error in a program that causes it not to work as intended.
byte: A unit of information consisting of a fixed number of bits; on the

Apple ile, one byte consists of eight bits and can hold any value from
0to Z255.

- Glossary of Technical Terms 3n

312

call: To request the execution of a subroutine or function.

card: See peripheral card.

catalog: A list of all files stored on a disk; sometimes called a
directory.

cathode-ray tube: An electronic device, such as a television picture
tube, that produces images on a screen coated with phosphors that
emit light when struck by a focused beam of electrons.

central processing unit: See processor.

character: A letter, digit, punctuation mark, or other written symbol
used in printing or displaying information in a form readable by
humans.

character code: A number used to represent a text character for
processing by a computer system.

code: (1) A number or symbol used to represent some piece of infor-
mation in a compact or easily processed form. (2) The statements or
instructions making up a program.

command: A communication from the user to a computer system
(usually typed from the keyboard) directing it to perform some imme-
diate action.

compiler: A language translator that converts a program written in a
high-level programming language into an equivalent program in
some lower-level language (such as machine language) for later exe-
cution. Compare interpreter.

component: A part; in particular, a part of a computer system.

computer: An electronic device for performing predefined (pro-
grammed) computations at high speed and with great accuracy.

computer system: A computer and its associated hardware, firm-
ware, and software.

concatenate: Literally, “to chain together”; to combine two or more

strings into a single, longer string containing all the characters in the
original strings.

Glossary of Technical Terms

conditional branch: A branch that depends on the truth of a condi-
tion or the value of an expression; compare unconditional branch.

constant: A symbol in a program representing a fixed, unchanging
value; compare variable.

control: The order in which the statements of a program are
executed.

control character: A character that controls or modifies the way in-
formation is printed, transmitted or displayed. Control characters
have ASCII codes between 0 and 3 1 and are typed from the Apple

lle keyboard by holding down the key while typing some
other character. For example, the character -C (ASCII

code 3) means “interrupt program execution.”

controller card: A peripheral card that connects a device such as a
printer or disk drive to the Apple lle and controls the operation of the
device.

control variable: See index variable.

CPU: Central processing unit; see processor.

crash: To cease operating unexpectedly, possibly damaging or de-
stroying information in the process.

CRT: See cathode-ray tube.

current input device: The source, such as the keyboard or a mo-
dem, from which an Applesoft program is currently receiving its input.

current output device: The destination, such as the display screen
or a printer, to which an Applesoft program is currently sending its
output.

cursor: A marker or symbol displayed on the screen that marks
where the user’s next action will take effect or where the next charac-
ter typed from the keyboard will appear.

data: Information; especially information used or operated on by a
program.

debug: To locate and correct an error or the cause of a problem or
malfunction in a computer program.

Glossary of Technical Terms 313

314

decimal: The common form of number representation used in every-
day life, in which numbers are expressed in terms of powers of ten,
using the ten digits © to 9.

default: (1) A value, action, or setting that is automatically used by a
computer system when no other explicit information has been given.
For example, if acommand to run a program from a disk does not
identify which disk drive to use, the Disk Operating System will auto-
matically use the same drive that was used in the last operation. (2)
That which, dear Brutus, is not in our stars.

deferred execution: The saving of an Applesoft program line for ex-
ecution at a later time as part of a complete program; occurs when
the line is typed with a line number. Compare immediate execution.

delimiter: A character that is used for punctuation to mark the begin-
ning or end of a sequence of characters, and which therefore is not
considered part of the sequence itself. For example, Applesoft uses
the double quotation mark (") as a delimiter for string constants: the
string "DOG" consists of the three characters D, 0, and G, and does
not include the quotation marks. In written English, the space charac-
teris used as a delimiter between words.

device: (1) A physical apparatus for performing a particular task or
achieving a particular purpose. (2) In particular, a hardware compo-
nent of a computer system.

digit: (1) One of the characters © to 8, used to express numbers in
decimal form. (2) One of the characters used to express numbers in
some other form, suchas @ and 1 inbinaryor @to 9 and Ato F in
hexadecimal.

dimension: The maximum size of one of the subscripts of an array.

directory: A list of all files stored on a disk; sometimes called a
catalog.

disk: An information storage medium consisting of a flat, circular
magnetic surface on which information can be recorded in the form of
small magnetized spots, similarly to the way sounds are recorded on
tape.

disk drive: A peripheral device that writes and reads information on
the surface of a magnetic disk.

Glossary of Technical Terms

diskette: A term sometimes used for the small (5-1/4-inch) flexible
disks used with the Apple Disk Il drive.

Disk Il drive: A model of disk drive made and sold by Apple Com-
puter for use with the Apple lle computer; uses 5-1/4-inch flexible
(“floppy”) disks.

Disk Operating System: An optional software system for the Apple
lle that enables the computer to control and communicate with one or
more Disk |l drives.

disk-resident: Stored or held permanently on a disk.

display: (1) Information exhibited visually, especially on the screen
of a display device. (2) To exhibit information visually. (3) A display

device.

display color: The color currently being used to draw high- or low-
resolution graphics on the display screen.

display device: A device that exhibits information visually, such as a
television receiver or video monitor.

display screen: The glass or plastic panel on the front of a display
device, on which images are displayed.

DOS: See Disk Operating System.

edit: To change or modify; for example, to insert, remove, replace, or
move text in a document.

element: A member of a set or collection; specifically, one of the indi-
vidual variables making up an array.

embedded: Contained within. For example, the string
"HUMPTY DUMPTY" issaid to contain an embedded space.

ending value: The value against which the index variable is tested
after each pass through a loop, to determine when to stop repeating
the loop.

error code: A number or other symbol representing a type of error.

error message: A message displayed or printed to notify the user of
an error or problem in the execution of a program.

Glossary of Technical Terms 315

escape mode: A state of the Apple lle computer, entered by pressing
the key, in which certain keys on the keyboard take on special
meanings for positioning the cursor and controlling the display of text
on the screen.

escape sequence: A sequence of keystrokes beginning with the
key, used for positioning the cursor and controlling the display
of text on the screen.

execute: To perform or carry out a specified action or sequence of
actions, such as those described by a program.

expansion slot: A connector inside the Apple lle computer in which
a peripheral card can be installed; sometimes called peripheral slot.

expression: A formula in a program describing a calculation to be
performed.

FIFO: Firstin, first out.

file: A collection of information stored as a named unit on a periph-
eral storage medium such as a disk.

file name: The name under which a file is stored.

firmware: Those components of a computer system consisting of
programs stored permanently in read-only memory. Such programs
(for example, the Applesoft interpreter and the Apple lle Monitor pro-
gram) are built into the computer at the factory; they can be executed
at any time but cannot be modified or erased from main memory.
Compare hardware, software.

fixed-point: A method of representing numbers inside the computer
in which the decimal point (more correctly, the binary point) is consid-
ered to occur at a fixed position within the number. Typically, the point
is considered to lie at the right end of the number, so that the number
is interpreted as an integer. Fixed-point numbers of a given length
cover a narrower range than floating-point numbers of the same
length, but with greater precision. Compare floating-point.

flag: A variable whose contents (usually 1 or O, standing for true or
false) indicate whether some condition holds or whether some event
has occurred, used to control the program’s actions at some later
time.

316 Glossary of Technical Terms —

floating-point: A method of representing numbers inside the com-
puter in which the decimal point (more correctly, the binary point) is
permitted to “float” to different positions within the number. Some of
the bits within the number itself are used to keep track of the point’s
position. Floating-point numbers of a given length cover a wider
range than fixed-point numbers of the same length, but with less pre-
cision. Compare fixed-point.

L format: (1) The form in which information is organized or presented.
(2) To specify or control the format of information. (3) To prepare a
blank disk to receive information by dividing its surface into tracks
and sectors; also initialize.

function: A preprogrammed calculation that can be carried out on
request from any pointin a program.

GAME /0 connector: A special 16-pin connector inside the Apple
lle, originally designed for connecting hand controls to the computer,
but also used for connecting some other peripheral devices. Com-
pare hand control connector.

graphics: (1) Information presented in the form of pictures or im-
ages. (2) The display of pictures orimages on a computer’s display
screen. Compare text.

hand control: An optional peripheral device that can be connected
to the Apple lle’s hand control connector and has a rotating dial and a
pushbutton; typically used to control game-playing programs, but can
be used in more serious applications as well.

hand control connector: A 9-pin connector on the Apple lle’s back
panel, used for connecting hand controls to the computer. Compare
GAME I/O connector.

hang: For a program or system to “spin its wheels” indefinitely, per-
forming no useful work.

hard copy: Information printed on paper for human use.
hardware: Those components of a computer system consisting of

physical (electronic or mechanical) devices. Compare software,
firmware.

— Glossary of Technical Terms 317

hertz: The unit of frequency of vibration or oscillation, also called
cycles per second; named for the physicist Heinrich Hertz and abbre-
viated Hz. The current provided by a standard power outlet alternates
at arate of 60 hertz; that is, it changes polarity 60 times each second.
The Apple lle’s 6502 microprocessor operates at a clock frequency of
1 million hertz, or 1 megahertz (MHz).

hexadecimal: The representation of numbers in terms of powers of
sixteen, using the sixteen digits 0 to 8 and A to F. Hexadecimal num-
bers are easier for humans to read and understand than binary num-
bers, but can be converted easily and directly to binary form: each
hexadecimal digit corresponds to a sequence of four binary digits, or
bits.

high-level language: A programming language that is relatively
easy for humans to understand. A single statement in a high-level
language typically corresponds to several instructions of machine
language.

high-order byte: The more significant half of a memory address or
other two-byte quantity. In the Apple lle’s 6502 microprocessor, the
low-order byte of an address is usually stored first and the high-order
byte second.

high-resolution graphics: The display of graphics on the Apple lle’s
display screen as a six-color array of points, 280 columns wide and
192 rows high.

Hz: See hertz.

immediate execution: The execution of an Applesoft program line
as soon as itis typed; occurs when the line is typed without a line
number. Compare deferred execution.

implement: To realize or bring about; for example, a language trans-
lator implements a particular language.

infinite loop: A section of a program that will repeat the same se-
quence of actions indefinitely.

information: Facts, concepts, or instructions represented in an or-
ganized form.

index: (1) A number used to identify a member of a list or table by its
sequential position. (2) A list or table whose entries are identified by
sequential position.

318 Glossary of Technical Terms =

index variable: A variable whose value changes on each pass
through a loop; often called control variable or loop variable.

initialize: (1) To set to an initial state or value in preparation for some
computation. (2) To prepare a blank disk to receive information by di-
viding its surface into tracks and sectors; also format.

input: (1) Information transferred into a computer from some exter-
nal source, such as the keyboard, a disk drive, ora modem. (2) The
act or process of transferring such information.

instruction: A unit of a machine-language or assembly-language
program corresponding to a single action for the computer’s proces-
sor to perform.

integer: A whole number, with no fractional part; represented inside
the computer in fixed-point form. Compare real number.

Integer BASIC: A version of the BASIC programming language used
with the Apple Il family of computers; older than Applesoft and capa-
ble of processing numbers in integer (fixed-point) form only. An inter-
preter for creating and executing programs in Integer BASIC is
included on the DOS 3.3 SYSTEM MASTER disk, and is automati-
cally loaded into the computer's memory when the computer is
started up with that disk. Compare Applesoft.

interactive: Operating by means of a dialog between the computer
system and a human user.

interface: The devices, rules, or conventions by which one compo-
nent of a system communicates with another.

interpreter: A language translator that reads a program writtenin a
particular programming language and immediately carries out the ac-
tions that the program describes. Compare compiler.

inverse video: The display of text on the computer’s display screen
in the form of black dots on a white (or other single phosphor color)
background, instead of the usual white dots on a black background.

1/0: Input/output; the transfer of information into and out of a com-
puter. See input, output.

1/0 device: Input/output device; a device that transfers information
into or out of a computer. See input, output, peripheral device.

Glossary of Technical Terms 319

K: Two to the tenth power, or 1024 (from the Greek root kilo, meaning —
one thousand); for example, 64K equals 64 times 1024, or 65,536.

keyboard: The set of keys built into the Apple Ile computer, similar to
a typewriter keyboard, for typing information to the computer. .

keystroke: The act of pressing a single key or a combination of keys -

(such as -C) on the Apple lle keyboard.

keyword: A special word or sequence of characters that identifies a
particular type of statement or command, suchas RUN or PRINT. i

kilobyte: A unit of information consisting of 1K (1024) bytes, or 8K ol
(8192) bits; see K.

language: See programming language.

language translator: A system program that reads a program writ-
ten in a particular programming language and either executes it di-
rectly or converts it into some other language (such as machine
language) for later execution. See interpreter, compiler, assembler.
LIFO: Lastin, first out.

line: See program line.

line number: A number identifying a program line in an Applesoft
program.

load: To transfer information from a peripheral storage medium (such
as a disk) into main memory for use; for example, to transfer a pro-
gram into memory for execution.

location: See memory location.

logical operator: An operator, such as AND, that combines logical
values to produce a logical result; compare arithmetic operator, rel-
ational operator.

loop: A section of a program that is executed repeatedly, usually until
some condition is met (such as an index variable reaching a specified
ending value).

loop variable: See index variable.

320 Glossary of Technical Terms —

low-level language: A programming language that is relatively close
to the form that the computer’s processor can execute directly.

low-order byte: The less significant half of a memory address or
other two-byte quantity. In the Apple lle’s 6502 microprocessor, the
low-order byte of an address is usually stored first and the high-order
byte second.

low-resolution graphics: The display of graphics on the Apple lle’s
display screen as a sixteen-color array of blocks, 40 columns wide
and 48 rows high.

machine language: The form in which instructions to a computer are
stored in memory for direct execution by the computer’s processor.
Each model of computer processor (such as the 6502 microproces-
sor used in the Apple lle) has its own form of machine language.

main memory: The memory component of a computer system that
is builtinto the computer itself and whose contents are directly ac-
cessible to the processor.

mask: A pattern of bits for use in bit-level logical operations.

memory: A hardware component of a computer system that can
store information for later retrieval; see main memory, random-ac-
cess memory, read-only memory, read-write memory, write-only
memory.

memory location: A unit of main memory that is identified by an ad-
dress and can hold a single item of information of a fixed size; in the
Apple lle, amemory location holds one byte, or eight bits, of
information.

memory-resident: (1) Stored permanently in main memory, as firm-
ware. (2) Held continually in main memory even while not in use, as
the Disk Operating System.

menu: A list of choices presented by a program, usually on the dis-
play screen, from which the user can select.

MHz: Megahertz; one million hertz. See hertz.

microcomputer: A computer, such as the Apple lle, whose proces-
SOr is a microprocessor.

Glossary of Technical Terms 321

microprocessor: A computer processor contained in a single inte-
grated circuit, such as the 6502 microprocessor used in the Apple lle.

mode: A state of a computer or system that determines its behavior.

modem: Modulator/demodulator; a peripheral device that enables
the computer to transmit and receive information over a telephone
line.

monitor: See video monitor.

Monitor program: A system program built into the Apple lle in firm-
ware, used for directly inspecting or changing the contents of main
memory and for operating the computer at the machine-language
level.

nested loop: A loop contained within the body of another loop and
executed repeatedly during each pass through the containing loop.

nested subroutine call: A call to a subroutine from within the body
of another subroutine.

nibble: A unit of information equal to half a byte, four bits, or fifty
cents; can hold any value from O to 1 5. Sometimes spelled nybble.

NOT: Aunary logical operator that produces a true result if its oper-
and is false, a false result if its operand is true; compare AND, OR.

null string: A string containing no characters.
operand: A value to which an operator is applied.

operating system: A software system that organizes the computer’s
resources and capabilities and makes them available to the user or to
application programs running on the computer.

operator: A symbol or sequence of characters, suchas + or AND,
specifying an operation to be performed on one or more values (the
operands) to produce a result; see arithmetic operator, relational
operator, logical operator, unary operator, binary operator.

OR: Alogical operator that produces a true result if either or both of
its operands are true, a false result if both of its operands are false;
compare AND, NOT.

322 Glossary of Technical Terms L&

e output: (1) Information transferred from a computer to some external
destination, such as the display screen, a disk drive, a printer, or a
- modem. (2) The act or process of transferring such information.

- page: (1) A screenful of information on a video display, consisting on
the Apple lle of 24 lines of 40 or 80 characters each. (2) An area of
- main memory containing text or graphical information being dis-
played on the screen. (3) A segment of main memory 256 bytes long
- and beginning at an address that is an even multiple of 256 bytes.

- pass: A single execution of a loop.

— peek: To read information directly from a location in the computer’s
memory.

peripheral: At or outside the boundaries of the computer itself, either
ke physically (as a peripheral device) or in a logical sense (as a periph-
eral card).

peripheral card: A removable printed-circuit board that plugs into
- one of the Apple lle’s expansion slots and expands or modifies the

computer’s capabilities by connecting a peripheral device or per-
- forming some subsidiary or peripheral function.

- peripheral device: A device, such as a video monitor, disk drive,
printer, or modem, used in conjunction with a computer. Often (but

L not necessarily) physically separate from the computer and con-
nected to it by wires, cables, or some other form of interface, typically

— by means of a peripheral card.

e peripheral slot: See expansion slot.

- plotting vector: A code in a shape definition representing a single
step in drawing a shape on the high-resolution graphics screen,

— specifying whether to plot a point at the current screen position and in
what direction to move (up, down, left, or right) before processing the

ks next vector. See shape definition, shape table.

—~ point of call: The point in a program from which a subroutine or func-
tion is called.

pointer: An item of information consisting of the memory address of
- some other item. For example, Applesoft maintains internal pointers

to (among other things) the most recently stored variabie, the most
» recently typed program line, and the most recently read DA T A item.

- Glossary of Technical Terms 323

poke: To store information directly into a location in the computer’s =
memory.

pop: To remove the top entry from a stack.

precedence: The order in which operators are applied in evaluating
an expression. -

printed-circuit board: A hardware component of a computer or -
other electronic device, consisting of a flat, rectangular piece of rigid
material, commonly fiberglass, to which integrated circuits and other !
electronic components are connected.

printer: A peripheral device that writes information on paperin a
form easily readable by humans or literate androids. _

processor: The hardware component of a computer that performs -
the actual computation by directly executing instructions represented
in machine language and stored in main memory. -

program: (1) A set of instructions describing actions for a computer el
to perform in order to accomplish some task, conforming to the rules

and conventions of a particular programming language. In Applesoft, -
a sequence of program lines, each with a different line number. (2) To

write a program. —d

program line: The basic unit of an Applesoft program, consisting of =
one or more statements separated by colons ().

programmer: The human author of a program; one who writes
programs. o

programming: The activity of writing programs. -

programming language: A set of rules or conventions for writing -
programs.

prompt: To remind or signal the user that some action is expected,

typically by displaying a distinctive symbol, a reminder message, or a .
menu of choices on the display screen.

324 Glossary of Technical Terms =

- prompt character: (1) A text character displayed on the screen to
prompt the user for some action. Often also identifies the program or

- component of the system that is doing the prompting; for example,
the prompt character 1 is used by the Applesoft BASIC interpreter,

- by Integer BASIC, and * by the system Monitor program. Also called
prompting character. (2) Someone who is always on time.

prompt message: A message displayed on the screen to prompt the
- user for some action. Also called prompting message.

— push: To add an entry to the top of a stack.

= queue: Alist in which entries are added at one end and removed at
the other, causing entries to be removed in FIFO (first-in-first-out) or-
s der; compare stack.

s RAM: See random-access memory.

- random-access memory: Memory in which the contents of individ-
ual locations can be referred to in an arbitrary or random order. This
- term is often used incorrectly to refer exclusively to read-write mem-
ory; but strictly speaking both read-only and read-write memory can
- be accessed in random order. This misuse of the term random-
access is an attempt to confuse new users, creating a rite of passage
- and an excellent market for glossaries of computer terms. Compare
read-only memory, read-write memory, write-only memory.

read: To transfer information into the computer's memory from a
- source external to the computer (such as a disk drive or modem) or
into the computer’s processor from a source external to the proces-
- sor (such as the keyboard or main memory).

2 read-only memory: Memory whose contents can be read but not
written; used for storing firmware. Information is written into read-

k=t only memory once, during manufacture; it then remains there perma-
nently, even when the computer’s power is turned off, and can never

o be erased or changed. Compare read-write memory, random-ac-
cess memory, write-only memory.

read-write memory: Memory whose contents can be both read and
AR written; often misleadingly called random-access memory, or RAM.
The information contained in read-write memory is erased when the
L computer’s power is turned off, and is permanently lost unless it has
been saved on a more permanent storage medium, such as a disk.
et Compare read-only memory, random-access memory, write-only
memory.

~ Glossary of Technical Terms 325

real number: A number that may include a fractional part; repre- -
sented inside the computer in floating-point form. Compare integer.

relational operator: An operator, such as :, that compares numeric
values to produce a logical result; compare arithmetic operator, -
logical operator.

reserved word: A word or sequence of characters reserved by a
programming language for some special use, and therefore unavail-)
able as a variable name in a program.

resident: See memory-resident, disk-resident.

return address: The pointin a program to which control returns on
completion of a subroutine or function. -

ROM: See read-only memory. -

routine: A part of a program that accomplishes some task subordi- -
nate to the overall task of the program.

run: (1) To execute a program. (2) To load a program into main mem-
ory from a peripheral storage medium, such as a disk, and execute it. -

save: To transfer information from main memory to a peripheral stor- -
age medium for later use.

scientific notation: A method of expressing numbers in terms of

powers of ten, useful for expressing numbers that may vary over a -
wide range, from very small to very large. For example, the number of

atoms in a gram of hydrogen is approximately G + 0 2EZ 3, meaning —
6.02 times ten to the 23rd power. (The letter E stands for “exponent.”)

The number is easier to understand in this form than in the form —

screen: See display screen.

scroll: To change the contents of all or part of the display screen by

shifting information out at one end (most often the top) to make room =4
for new information appearing at the other end (most often the bot-

tom), producing an effect like that of moving a scroll of paper past a -
fixed viewing window. See viewport, window.

seed: A value used to begin a repeatable sequence of random
numbers. -

326 Glossary of Technical Terms —

- shape definition: A coded description of a shape to be drawn on the
high-resolution graphics screen, consisting of one or more plotting
- vectors. See shape table, plotting vector.

- shape table: A collection of one or more shape definitions, together
with their indices.

shape table index: A list giving the memory addresses of the
- shapes in a shape table.

- simple variable: A variable that is not an element of an array.

- soft switch: A means of changing some feature of the Apple Ile from
within a program; specifically, a location in memory that produces
hes some special effect whenever its contents are read or written.

= software: Those components of a computer system consisting of
programs that determine or control the behavior of the computer.
- Compare hardware, firmware.

- space character: A text character whose printed representation is a
blank space, typed from the keyboard by pressing the bar.

stack: A listin which entries are added or removed at one end only
- (the top of the stack), causing them to be removed in LIFO (last-in-
first-out) order; compare queue.

starting value: The value assigned to the index variable on the first
b pass through a loop.

- startup disk: A disk containing software recorded in the proper form
to be loaded into the Apple lle’'s memory in order to set the system
L into operation. Sometimes called a boot disk; see boot.

L statement: A unit of a program in a high-level language specifying an
action for the computer to perform, typically corresponding to several
L instructions of machine language.

- step value: The amount by which the index variable changes on
each pass through a loop.

stepwise refinement: A technique of program development in which
broad sections of the program are laid out first, then elaborated step
by step until a complete program is obtained.

string: An item of information consisting of a sequence of text
characters.

s Glossary of Technical Terms 327

strobe: (1) An event, such as a change in a signal, that triggers some -
action. (2) A signal whose change is used to trigger some action.

subroutine: A part of a program that can be executed on request
from any point in the program, and which returns control to the point -
of the request on completion.

subscript: Anindex number used to identify a particular element of
an array. |

substring: A string that is part of another string. o

syntax: The rules governing the structure of statements or instruc- -
tions in a programming language.

system: A coordinated collection of interrelated and interacting parts
organized to perform some function or achieve some purpose. —

system program: A program that makes the resources and capabili- -
ties of the computer available for general purposes, such as an oper-

ating system or a language translator. Compare application -
program.

text: (1) Information presented in the form of characters readable by
humans. (2) The display of characters on the Apple lle’s display -
screen. Compare graphics.

text file: A file containing information expressed in text form; com-
pare binary file. -

text window: An area on the Apple lle’s display screen within which =
text is displayed and scrolled.

truncate: To shorten by discarding a part; specifically, to convert a
real number to the next lower integer.

unary operator: An operator that applies to a single operand; for ex-
ample, the minus sign (—) in a negative number such as — G isa un-
ary arithmetic operator. Compare binary operator.

unconditional branch: A branch that does not depend on the truth
of any condition; compare conditional branch.

user: The person operating or controlling a computer system.

user interface: The rules and conventions by which a computer sys-
tem communicates with the person operating it.]

328 Glossary of Technical Terms

- value: An item of information that can be stored in a variable, such as
a number or a string.

variable: (1) A location in the computer's memory where a value can
- be stored. (2) The symbol used in a program to represent such a lo-
cation; compare constant.

video: (1) A medium for transmitting information in the form of im-
- ages to be displayed on the screen of a cathode-ray tube. (2) Infor-

mation organized or transmitted in video form. (3) An early space
- pioneer.

- video monitor: A display device capable of receiving video signals
by direct connection only, and which cannot receive broadcast sig-

— nals such as commercial television. Most video monitors can be con-
nected directly to the Apple lle computer as a display device.

viewport: All or part of the display screen, used by an application

L program to display a portion of the information (such as a document,
picture, or worksheet) that the program is working on. Compare

L window.

. window: (1) The portion of a collection of information (such as a doc-

ument, picture, or worksheet) that is visible in a viewport on the dis-
- play screen; compare viewport. (2) A viewport. (3) A flat, rectangular
panel, usually made of silica, used in many archaic structures as a
human-to-nature interface.

L wraparound: The automatic continuation of text from the end of one
line to the beginning of the next, as on the display screen or a printer.

write: To transfer information from the computer to a destination ex-
ternal to the computer (such as a disk drive, printer, or modem) or
from the computer’s processor to a destination external to the pro-
cessor (such as main memory).

L. write-only memory: A form of computer memory into which informa-
tion can be stored but never, ever retrieved, developed under govern-
ment contract in 1975 by Professor Homberg T. Farnsfarfle.
Farnsfarfle’s original prototype, approximately one inch on each side,
has so far been used to store more than 100 trillion words of surplus
federal information. Farnsfarfle’s critics have denounced his project
as a six-million-dollar boondoggle, but his defenders point out that
this excess information would have cost more than 250 billion dollars
to store in conventional media. Compare read-only memory, read-
write memory, random-access memory.

— Glossary of Technical Terms 329

Glossary of Technical Terms —

Index

A

ABS function 38,215

absolute value 38,215

addition 32, 36, 86

American National Standards
Institute (ANSI) 3

American Standard Code for
Information Interchange, see
ASCII

ampersand character (&) 246

AND 35,175

animation 150

annunciators 131, 262, 263

ANSI: see American National
Standards Institute

Apple lle 80-Column Text Card, see
80-Column Text Card

arctangent 41,216

argument of functions 37, 38, 125,
173,179

argument variable 44

arithmetic functions 38

arithmetic operators 31

array(s) 26,29, 77ff, 217,228, 248,
249, 268, 275ff, 293ff, 298
dimensions 79, 80
elements 29, 77, 269
names 29,77
storage 179
variables 275ff

arrow keys 18,20

ASC function 215

ASCII (American Standard Code for
Information Interchange) 19, 82,
215, 241ff, 258

assignment statement 30, 215,
224,251,296

asterisk (¥) 32

ATN function 41,216

auto-repeat 19,20

Index

Index

B

backslash character (\) 4,18
BAD SUBSCRIPTerror 79,248
bell character (-G) 130
BLOAD command 158
body of loop 55
booting 96, 112
branch 49ff, 220
conditional 51
unconditional 50, 220
built-in arithmetic functions 38ff

C

CALL statement 71,136, 216, 249,
253ff, 281, 294

CAN’T CONTINUE error 248

key 4

caret (") 31

cassette input 110

cassette output 131, 264

Celsius 44

character codes 82

CHR% function 91,216

CLEAR command 9, 30, 129, 216,
294

colon (:) 5,98ff, 105,106, 177, 192,
246, 267, 296, 301

color, see display color

COLOR= statement 137,216

comma (+) 98ff, 105,113, 114,115

commands, see names of
commands

concatenation 83, 84, 100, 251,
295

conditional branch 51

constants 268

CONT command 16,17,73, 216,
247,248

control characters 100, 101, 241

331

332

key 15,16, 18,241
-@ 98,107
-B 176,177,181
-C 15ff, 50, 58, 69, 72,
98, 107, 159, 180, 216
-G 130
-H 100, 107
-J (line feed character)
192,193, 216, 301
-M 100, 107
-[RESET] 13-17,96, 112,
161, 162, 166, 171
-5 15
-%X 18,100, 107
control
stack 10, 62ff, 71, 227, 265
statements 49ff
COS function 40,217
cosine 40,217
crossed loops 60
currentinput device 104,223
current output device 10, 113, 224,
228
cursor 4, 18ff, 97,113, 115, 119ff,
220ff, 232, 234, 253, 254
cursor control 287-288

D

DATA statement 103, 105, 108,
217,228, 229, 250

debugging 11,180

DEF FNstatement 44,177 217,
249

deferred execution 4,5,9,247

degrees 44

DEL command 6,7, 217

key 7

DIMstatement 79,217, 251, 293,
295, 298

disk 12ff, 112, 156, 230

Disk Operating System (DOS) 12,
14,16, 105, 157, 176, 265, 298

display color 137ff, 160, 216, 220ff,
231

display screen 111

division 32

DIVISION BY ZEROerror 248

dollar sign (%) 26, 29, 82, 88, 251,
259

DOS (see Disk Operating System)

double quotation marks (") 28, 81,
99, 102, 270

key 18,19,241

DRAMW statement 151, 155, 156,
160, 161, 162, 163, 164, 218, 230,
231

Index

E

e 42
editing 287-288
Eighty-Column Text Card 4, 112,
114,115,119, 124, 125, 127, 222,
254, 2871t
END statement 17,73, 216, 218,
251, 269, 294
equal sign (=) 30, 34, 44,129, 137,
145, 163, 246
equalto(=) 34
error
codes 68,69, 247ff
messages 247ff
error handling routines 67ff, 229,
247,264
restoring normal 71
escape mode 19,287
key 20,242
-@ 20,255
-A 20
-B 20
-C 20
-D 20
-E 20
-F 20,255
-1 19,20
-J 19,20
-K 19,20
-M 19,20
exclusive-or 175
execution of program 16
EXP function 42,218
expansion slot 96, 111
exponential 42,218
exponentiation 32
expressions 31ff
EXTRA IGNORED message 99,
105

F

Fahrenheit 44

false 33ff

FILE NOT FOUNDerror 14

FLASH statement 127, 128, 218,
226

floating-point accumulator 173

FN keyword 45,219

FOR statement 55ff, 219, 225, 271

FORMULA TOO COMPLEZX error
248

FPcommand 291

fractions 33

FRE function 178,220

free space 275

full-screen graphics 136, 138, 143,
144,146, 221, 260
function names 44
functions 37ff, 173,177,229
argumentof 37,38, 125,173,179
built-in arithmetic 38
call 37,38,45
names 44
user-defined 44-45,217
ABS 38,215
ASC 215
ATN 41,216
CHR$ 216
COS 40,217
EXP 42,218
FRE 178,219
INT 39,223
LEFT$ 100,223, 249
LEN 224
LET 215
LOG 42,224,249
MID% 100,225,249
PEEK 130, 131,177,178, 180,
247,249, 253ff
PDL 109,227
POS 125,228
RIGHT$ 100,229, 249
RND 43,229
SCRN 141,231
SGN 39,231
SIN 40,231
SPC 113,120-121,231,249
SOR 40,232,249
STR$ 232
TAB 113,120, 121, 123, 126,
181, 232, 233, 249, 254
TAN 4,233
USR 172,233
YAaL 102,105,233

G

GAME I/O connector 109

GET statement 16, 19, 104, 220,
249

GOSUB statement 61ff, 220, 227,
229, 251,293

GOTO statement 50, 53, 64, 71,
220, 251, 265, 293

GR statement 136, 140, 220, 258,
259, 261

graphics 119, 135ff, 258

greaterthan (») 34

greater than or equal to (= or =)
34

ground loop 297

Index

H

hand control 109, 262

hand control connector 109, 131,
262, 263

HCOLOR = statement 145, 160, 220

HGR statement 143, 145, 149, 161,
162, 220, 258, 259

HGRZ statement 144,145, 149,
161, 162, 221, 259

high-resolution graphics 136, 140ff,
150, 176ff, 218, 220ff, 230, 261

HIMEM: statement 149, 156, 165,
176, 179, 221, 250, 275, 299

HL IN statement 139, 221

HOME statement 221,254

HPLOT statement 146, 161,218,
222,262

HTAB statement 120, 122, 126,
181, 222, 254, 256

Humpty Dumpty 19

]

IF...THEN statement 33,36, 52,
222,248, 251, 267,294
ILLEGAL DIRECT error 249
ILLEGAL QUANTITY error 40,
42,52, 66, 86ff, 92, 97, 109, 112,
121ff 129, 138ff, 146, 147, 161ff,
170, 171, 175ff, 249
immediate execution 4,7,9,257
I N# statement 96, 223
index variable 55ff, 219, 225, 271
infinite loop 58
input 95, 223
numeric 100
Input Anything Routine 102
INPUT statement 16, 17, 97,
102, 223, 249, 294
input/output 93ff
string 99
INT function 39, 223, 291
integer
constants 270
part 39,223
variables 26, 27,44, 58, 270,
275ff
Integer BASIC 260, 291
INVERSE statement 126, 128,
223, 226

J

JMP (Jump) instruction 173,233
JSR (Jump to Subroutine)
instruction 173, 174,246

333

334

K

keyboard 96, 258
keyword tokens 280ff
keywords 4

L

LEF T4 function 86, 100, 223, 249

key 18,19,100,
241

LEN function 83, 85,224

LET statement 215, 224

lessthan (<) 34

lessthanorequalto(<=or=<) 34

line feed character ((CONTROL |-J)
192, 193, 216, 255

line numbers 5ff, 50, 51, 64, 65, 70,
180, 220, 226, 232, 233, 251, 265,
267,293, 294

LIST Command 7 10,224

LOAD Command 14, 110, 224, 298

LOG function 42,224,249

logarithm, natural 42,224

logical operators 35, 54

logical values 33, 36, 54

LOMEM: statement 177,225,250

loops 10, 55ff, 219, 225, 250, 270,
296
body 55
crossed 60
nested 59

low-resolution graphics 135, 216,
220, 221, 231, 234, 258, 261

M

machine language 172,176,177,
179, 216, 221, 233, 246

mask 174

MAT functions 296

memory allocation 25,275

memory management 176

MID% function 87, 100, 225, 249

minus sign (—) 36, 105

mixed graphics and text 119, 136,
138, 140, 141, 143, 146, 220, 260

Monitor program 16, 72, 155ff, 172,
173,176,177, 181

multidimensional array 80

multiple input 98

multiple statements perline 5

multiplication 32

i

natural logarithm 42, 224
nested loops 59

Index

nested subroutines 62

NEWcommand 9, 30, 150, 177, 225

NEXT statement 55ff, 225, 271,
294

NEXT WITHOUT FORerror 10,
60, 249

NORMAL statement 126, 128, 226

NOT 35,54

notequalto (< > or <) 34

NOTRACE command 181,226

null character ((CONTROL |-8) 98,
100, 101, 105

null string 9, 12, 28, 30, 81, 82, 88,
97,98, 100, 106, 251, 294

number formats 117

number sign (#) 96, 111, 180, 246

numeric constants 117, 283

numericinput 100

(0

ON. . .GOSUB statement 65, 226,
249
ON. . .GOTO statement 51, 226,
249
on-screen edit 17
ONERR GOTO statement 68, 72,
226, 229, 247, 239, 264, 265
key 110,262
operators 31ff
arithmetic 30
logical 35, 54
precedence of 36
relational 33, 54
OR 34,54
OUT OF DATAerror 106,250
DUT OF MEMORY error 60, 64,
177,178, 250, 299
output 111
OVERFLOWerror 90,91, 250

P

parentheses 37,250, 276

PDL function 109, 227

PEEK function 68, 70, 110, 130,
131,170, 177,178, 180, 227, 247,
249, 253ff, 294

percent character (%) 26,28

period (+) 105

PLOT statement 138, 227

plotting vector 150ff

plussign (+) 36, 84,105,295

pointofcall 61, 64

pointer 275

POKE statement 71,72, 129ff, 136,
143, 149, 155, 156, 159, 170ff,
227,249, 253ff, 294

POP statement 66, 227

POS function 125, 228

pound sign (#) 96

PR# statement 10, 111,228

precedence 36

PRINT statement 105, 113ff, 120,
121,228, 226, 228, 231, 232, 254,
267
TAB usedin 121ff

printer 10, 111

program 275
execution 16
layout 189
lines 3
planning 185
specification 185

prompt character (1) 4,16, 119,
247

prompting message 97,294

pure cursormoves 19

Q
question mark (?) 97, 116,294

R

radians 40, 41,44

RAM (random-access memory)
176,179

random numbers 43, 229

READ statement 105, 108, 207,
217,129, 250

real variables 25, 27, 44,58, 270,
275-277

RECALL statement 110,298

REDIM’D ARRAY error 79,250

REENTER message 99, 100

relational operators 33, 54, 82

REM statement 7,229, 267

reserved words 27, 245-246, 276

key 16

reset vector 16

restarting the system 96, 112, 176,
181

RESTORE statement 106, 108,
229, 250

Restoring Normal Error Handling
71

RESUME statement 69, 70, 229,
249, 265

return address 63, 66, 227

Index

[RETURN | key 4,6,10,13,16,18,
100, 104, 158, 165, 219, 241, 293
INPUT statementuse 97,98

RETURN statement 61ff, 220, 227,
251

RETURNWITHOUT GOSUB error 64,
67, 251

right bracket (]) 4, 16, 119, 247

RIGHT\ function 100, 229, 249

[(RIGHT-ARROW | key 18,19,241

RND function 43, 229

ROT = statement 160, 164, 230

rotation 230

rounding 39

RTS (Return From Subroutine) 174

RUN Command 12, 14,30, 108,
145, 150, 230, 294

S

SAVE Command 13, 131, 230, 297

scale factor 230

SCALE= statement 160, 163, 164,
230

scientific notation 43,91, 118, 283

SCRN function 141,231

scrolling 253

seeding 43

semicolon () 113ff, 122, 267, 269

SGN function 39, 231

shape definition 150

shape table(s) 150ff, 230, 231, 234,
299
index 153
loading 154ff

SHLOAD statement 110, 156, 158,
165, 231, 299

sign of anumber 39, 231

simple variables 275-277

SIN function 40,231

sine 40, 231

slash (/) 296

soft switches 253, 259

key 110,262

space bar 19,21

space character 99, 101, 105, 231

SPC function 113, 120-121, 231,
249

speaker 130, 264

SPEED statement 128, 231

SOR function 40, 232, 249

square root 40, 232

statements 3, 223, 269
see also names of statements

step value 57ff

stepwise refinement 189

335

336

STOP statement 17,73,216
STR% function 89,232
string(s) 28,81, 113, 229, 232, 233,
270, 275ff, 293, 295
comparison 82
constants 28,81, 83
conversion 89
input 99
null 28
pointers 275-277
storage 179
variables 26, 28, 44, 83, 102,
104, 105, 107
STRING TOO LONGerror 84,
85, 114, 251
subroutine(s) 10, 61ff, 171, 229,
250, 269, 270, 276
call 61
execution 220
nested 62
subscripts 29, 77,79
substrings 86, 295
subtraction 32, 36
syntax definitions 235ff
syntax error 13, 14, 54, 58, 105,
107, 143ff, 166, 251

T

TAB function 113, 120, 1211f, 126,
181, 232, 249, 254

TAN function 41,233

tangent 41,233

tape cassette 13, 14,110, 156, 158,
165, 228, 230, 231, 297ff

termination 218, 232

text 142,253
window 115, 119ff, 129, 136, 143,

221, 253ff

TEXT statement 119, 136, 143,
233, 258

TRACE command 180, 181, 226,
233,294

trigonometric functions 40-41

true 33ff

truncation 28, 39, 51, 65, 86, 88,
91, 117, 120ff, 283

TYPE MISMATCHerror 87,88,
251

u

unconditional branch 50, 220
UNDEF ‘D FUNCTIONerror 251
UNDEF ‘D STATEMENT error 12,
50,51, 64, 251, 268
[UP-ARROW | key 18,19, 241

Index

user-defined function 44-45 -
USR function 172,233
utility strobe 131, 261, 264

v

VAL function 83, 86, 90, 102, 105,
107,233
validation of data 187
values, logical 33, 54
variable(s) 25ff,51, 97,98, 177,
216, 268
argument 44
index 55, 57,58, 60
integer 2627, 44,58
name 26,293
real 25,27, 44,58, 270, 275ff
string 26, 28, 44,102, 105
VL IN statement 140, 234
UTAB statement 119, 120, 124,
181, 234, 256

w

WA IT statement 174, 234, 249
wraparound 4,120, 122

X

XDRAMW statement 151, 161ff, 230,
231,234
XPLOT statement 246

Y

Z
zeropage 278

Cast of Characters

" (double quotation marks) 28, 81,
99,102, 270
(numbersign) 96, 111, 180, 246
$ (dollarsign) 26,29, 82, 88, 251,
259
% (percentcharacter) 26,28
& (ampersand) 246
() (parentheses) 37,250, 276
* (asterisk) 31,32
+ (plussign) 31,36, 84, 105
+ (comma) 98ff, 105, 113ff
- (minussign) 31, 36,105
+ (period) 105
/ (slash) 31,296
: (colon) 5,98ff, 105,106, 177, 192,
246, 267, 296, 301
i (semi-colon) 113ff, 122, 267, 269

< (lessthan) 34
<=or=< (lessthanorequalto) 34
= (equalsign) 30, 34, 44,129, 137,
fo 145, 163, 246

» (greaterthan) 34
— »=or=2x (greaterthanorequalto) 34
< rorx< (notequalto) 34
? (questionmark) 97,116,294
1 (rightbracket) 4,16, 119,247
\ (backslash) 4,18
— “ (caret) 31

80-Column Text Card 4, 112ff, 119,
b 124,125, 127,222, 254, 287ff

— Index 337

Apple /i

Applesoft BASIC

Quick Reference Card

Editing and Cursor Control

Erase previous character
Recopy character under cursor
(CONTROL J-X Cancel input line
& Move right; leave escape mode
B Move left; leave escape mode
esc] C Move down; leave escape mode
D Move up; leave escape mode
I Move up; remain in escape
mode
esc|] J Move left; remain in escape
mode
Esc] K Move right; remain in escape
mode
[Esc] M Move down; remain in escape
mode

After [Esc , arrow keysarethesameas I, J, K, M

E Clear to end of line
F Clear to end of screen
@ Clear entire screen; move
cursor to top
DEL n71+n2 Delete from line n7 to line n2
Statements and Lines

Lines typed without a line number are executed
immediately; those with a line number are saved for
later (deferred) execution.

Separates multiple statements
on same line
REM Remarks for human reader

Operations on Whole Programs

NEW Erase current program, reset all
variables

CLEAR Reset all variables

LIST Display current program

LISTn1-n2 Display from line n7 to line n2

RUN Execute program from
beginning

RUNR Execute program starting at
linen

RUN name Load and execute program
name from disk

LOAD Load program from tape

LOAD name Load program name from disk

SAVE Save current program on tape

SAVE name Save current program on disk
asname

Interrupting and Resuming

-5 Suspend output (any key to

resume)
-C Interrupt program execution
CONT Continue execution after

(conTrROL]-C,STOP,orEND
(conTroL]-(RESET] Cancel program execution

Variables

Type Name Range

Real AB +/- 9.,99999999 E+37
Integer ABZ + /- 32767
String AB% 0to255characters

where Ais a letter, B is a letter or digit. Name may be
more than two characters, but only first two are
significant.

Control

GOTOn Branchtolinen
ONexprGOTON1:+n2:n3 ...
Branchtolinen1,n2,n3, ...
depending on value of expr
IFcond THENS7 :s2:831: ...
Execute statements s7, s2, s3, .
.. if condition cond is true
FORv=xTOySTEPz
Begin loop for all values of v
fromxtoybyz;if STEP
omitted, 1 is understood

NEXTv Repeat loop for next value of v
GOSUBN Branch to subroutine at line n
RETURN Return from subroutine to point

of call
ONexpr GOSUBNT +n2:n3 ...

Branch to subroutine at line n7,
n2,n3, ...depending on value
of expr

POP Remove last return address
from subroutine stack without
branching

ONERR GOTOn Establish error-handling routine
beginning atline n

RESUME Reexecute statement causing
error

STOP Halt execution with message
identifying line

END Halt execution with no message

String Operations

+ Concatenate strings

LEN (s) Length of string s

LEFT% (ss+ x) Leftmostxcharactersofstrings
MID%$ (ss x» ycharactersbeginning at

y) position x in string s
RIGHT% (s x) Rightmostx characters of string
s
STR® <Xx) String representing numeric
value x
VAL (s) Numeric value of string s
CHR% (x) Character with ASCII code x

ASC (s) ASCII code for first character of

string s

Input/Output

IN# n

IN# O
INPUTs3 x+ y+
Z

GET c
READ x»+ y» z

DATA x» ys z
RESTORE

RECALL a
POL. (a)

PR# n

PR# O

PRINT xs ys» z
STORE a

TEXT
HOME

.
1
+

SPC (x)
TAB (x)

HTAB x
UTAB y
POS (0)

INVERSE
FLASH
NORMAL
SPEED= x

Accept input from slot n

Accept input from keyboard

Prompt with string s, then read
values into variables x, y, z; if s
omitted, 7 is used

Read one character into
variable ¢

Read values from DATA list
into variables x, y, z

Addvalues x, y, zto DATA list

Restart DATA list from
beginning

Read array a from tape

Read dial of hand control n

Send output to slotn

Send output to display screen
Display or print values x, y, z
Write array a to tape

Display text

Clear screen and send cursor to
top

Start next item at cursor position

Start next item at next tab
position

Display or print x spaces
(PR INT statement only)

Move cursor to column x
(PRINT statement only)

Move cursor to column x

Move cursortoliney

Current horizontal cursor
position

Display text in black-on-white

Display flashing text

Display text in white-on-black

Set text display rate to x (0
minimum, 253 maximum)

Arrays

Type Typical Element

Real AB (x» y» z)
Integer ABZ (x» ys+ 2Z)
String AB% (x:» y»r Z)

where A is a letter, B is a letter or digit. Name may be
more than two characters, but only first two are
significant. Array size limited only by available
memory.

DIMa (x» y: z) Definearraya with maximum
subscripts x, y, z

Arithmetic Operators

Assign value to variable (LE T

optional)

+ Addition

— Subtraction

#

/ Division

Exponentiation
Relational Operators

= Equalto
< Less than
Greater than
{= =3 Less than or equal to
p= = Greater than or equal to
> >4 Not equal to

Yield value 1 if true, O if false. Can also be used to
compare strings.

Logical Operators

AND Both true

OR Either or both true
NOT Is false

Interpret O as false, nonzero as true. Yield value O if
false, 1 iftrue.

Precedence of Operators

()
+ — NOT

-

Parentheses
(innermost first)

Signed arithmetic,
logical “not”

Exponentiation

Multiplication,
division

Addition,
Subtraction

Relational operators

Logical “and”
Logical “or”

Arithmetic Functions

ABS (x)
SGN (x)
INT (x)
SQR (x)
SIN (x)
Cos (x)
TAN (x)
ATN (x)
EXP (x)
LOG (x)

RND (x)

DEF FN (x)

= expr

Absolute value of x

Sign of x

Integer part of x

Square root of x

Sine of x radians

Cosine of x radians
Tangent of x radians

Arc tangent, in radians, of x
Exponential of x

Natural logarithm of x

If x > 0, generate random
number between O and 1

Ifx = O, repeat previous
random number

Ifx < 0, begin new repeatable
sequence of random numbers

Define function

Graphics

GR
COLOR= x

PLOT x» y

HLIN x73+ x2
AT y
ULIN y7s y2
AT x
SCRN (xs y)

Display low-resolution graphics

Set low-resolution display color
tox

Plot single block at column x,
row y

Draw horizontal line from
column x1 to column x2 in row y

Draw vertical line from row y7 to
row y2 in column x

Color on screen at column x,
row y

Columns numbered from O to 39; rows from © to 39
in mixed text and graphics, © to 47 in full-screen

graphics.
HGR

HGRZ2
HCOLOR= x
HPLOT x» y

Display high-resolution
graphics, page 1; mixed text
and graphics

Display high-resolution
graphics, page 2; full-screen
graphics

Set high-resolution display color
tox

Plot single point at column x,
row y

HPLOT x7s y1 TO x2+ y2 TO x3+ y3

HPLOT TO
X1y

Draw high-resolution lines from
column x7, row y 7 to column x2,
row y2 to column x3, row y3

Extend previous line to column
X, TOW y

Columns numbered from O to 279; rows from O to
159 in mixed text and graphics, 0 to 191 infull-

screen graphics.
SHLOAD
DRAW n AT
X+ y

XDRAW n AT
X+ y
SCALE= x
ROT= x

Load shape table from tape

Draw shape number n at
column x, row y

Erase shape number n at
column x, row y

Set scale factor for drawing
shapes tox

Set rotation for drawing shapes
tox

Utility Statements

PEEK (addr)

POKE addr: x

CALL adar

USR (x)

WAIT addr

m1s m2

HIMEM: adar

LOMEM: addr

FRE (0)

TRACE
NOTRACE

Contents of memory location
addr

Store value x at memory
location addr

Execute machine-language
subroutine starting at location
addr

Execute user-supplied
machine-language function
routine with argument x

Suspend execution until bit
pattern specified by masks m7,
m2 appears at location addr

Set highest memory address
available for variable storage to
addr

Set lowest memory address
available for variable storage to
addr

Amount of available storage
remaining

Display line number of each
statement executed

Stop displaying line number of
each statement executed

[|

[|

8

"ggple computer

20525 Mariani Avenue
Cupertino, California 95014

-

(408) 996-1010

TLX 171-576 030-0507-A

A

	Document (1)
	Document (2)
	Document (3)
	Document (4)
	Document (5)
	Document (6)
	Document (7)
	Document (8)
	Document (9)
	Document (10)
	Document (11)
	Document (12)
	Document (13)
	Document (14)
	Document (15)
	Document (16)
	Document (17)
	Document (18)
	Document (19)
	Document (20)
	Document (21)
	Document (22)
	Document (23)
	Document (24)
	Document (25)
	Document (26)
	Document (27)
	Document (28)
	Document (29)
	Document (30)
	Document (31)
	Document (32)
	Document (33)
	Document (34)
	Document (35)
	Document (36)
	Document (37)
	Document (38)
	Document (39)
	Document (40)
	Document (41)
	Document (42)
	Document (43)
	Document (44)
	Document (45)
	Document (46)
	Document (47)
	Document (48)
	Document (49)
	Document (50)
	Document (51)
	Document (52)
	Document (53)
	Document (54)
	Document (55)
	Document (56)
	Document (57)
	Document (58)
	Document (59)
	Document (60)
	Document (61)
	Document (62)
	Document (1)
	Document (2)
	Document (3)
	Document (4)
	Document (5)
	Document (6)
	Document (7)
	Document (8)
	Document (9)
	Document (10)
	Document (11)
	Document (1)
	Document (2)
	Document (3)
	Document (4)
	Document (5)
	Document (6)
	Document (7)
	Document (8)
	Document (9)
	Document (10)
	Document (11)
	Document (12)
	Document (13)
	Document (14)
	Document (15)
	Document (16)
	Document (17)
	Document (18)
	Document (19)
	Document (20)
	Document (21)
	Document (22)
	Document (23)
	Document (24)
	Document (25)
	Document (26)
	Document (27)
	Document (28)
	Document (29)
	Document (30)
	Document (31)
	Document (32)
	Document (33)
	Document (34)
	Document (35)
	Document (36)
	Document (37)
	Document (38)
	Document (39)
	Document (40)
	Document (41)
	Document (42)
	Document (43)
	Document (44)
	Document (45)
	Document (46)
	Document (47)
	Document (48)
	Document (49)
	Document (50)
	Document (51)
	Document (52)
	Document (53)
	Document (54)
	Document (55)

