

Notice
Apple Computer, Inc . reserves the right to make improvements in the
product described in this manual at any time and without notice .

Disclaimer of All Warranties and Liabilities
Apple Computer, Inc. makes no warranties , either express or implied , with
respect to this manual or with respect to the software described in this
manual , its quality, performance, merchantability, or fitness for any
particular purpose . Apple Computer , Inc. software is sold or licensed " as
is. " The entire risk as to its quality and performance is with the buyer.
Should the programs prove defective following their purchase , the buyer
(and not Apple Computer, Inc., its distributor, or its retailer) assumes the
entire cost of all necessary servicing, repair , or correction and any
incidental or consequential damages. In no event will Apple Computer , Inc .
be liable for direct, indirect , incidental, or consequential damages resulting
from any defect in the software, even if Apple Computer , Inc . has been
advised of the possiblity of such damages. Some states do not allow the
exclusion or limitation of implied warranties or liability for incidental or
consequential damages , so the above limitation or exclusion may not apply
to you .

This manual is copyrighted . All rights are reserved . This document may
not, in whole or part , be copied , photocopied , reproduced , translated or
reduced to any electronic medium or machine readable form without prior
consent , in writing , from Apple Computer , Inc .

© 1982 by Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010

The word Apple and the Apple logo are registered trademarks of
Apple Computer, Inc.

Simultaneously published in the U.S.A and Canada.

This manual was written for Apple Computer, Inc., by
Scot Kamins
Technology Translated
San Francisco, California

Reorder Apple Product #A2L2005

J

.J

J

J

J

J

J

Apple II Applesoft BASIC Programmer's
Reference Manual-volume 2

'-•

Welcome To Volume Two

Welcome to volume two of the Applesoft Reference Manual. This
volume contains the appendices, the glossary, and the index to both
volumes. The paging continues where volume one left off.

Welcome to Volume Two

Appendices

......

215 A. Summary of Applesoft Statements and Functions
235 B. Syntax Definitions
241 C. ASCII Character Codes
245 D. Reserved Words
247 E. Error Messages
253 F. Peeks, Pokes, and Calls
253 F. 1 Screen Text ,
258 F.2 Keyboard "-

258 F.3 Graphics
262 FA Miscellaneous Input and Output
264 F.5 Error Handling
267 G. Hints for Program Efficiency
267 G.1 Saving Space
270 G.2 Saving Time
273 H. Implementation Details
274 H.1 Apple lie Memory Map
275 H.2 Applesoft Memory Allocation

~ 278 H.3 Zero Page Usage
280 HA Keyword Tokens
283 I. Display Formats for Numbers
287 J . On-Screen Editing and Cursor Control

'- 289 K. 40/80-Column Display Differences
291 L. Comparison with Integer BASIC
292 L.1 Differences between Statements
293 L.2 Other Differences

'- 295 L.3 Converting BASIC Programs to Applesoft
297 M. If You Have a Cassette Recorder
301 N. Complete Listing of the Postage Rates Program
309 Glossary
331 Index

'-

"-

Appendices
213

'-

Summary of App/esoft
Statements and Functions

Listed below are abbreviated descriptions of all Applesoft statements
and functions. Each description is preceded by a syntactic definition
and at least one example ; see Appendix B for definitions of syntactic
terms used here. References in square brackets at the end of each
description give the section or appendix of this manual where more
detailed information about the feature can be found.

ABS

Syntax: A B S (aexpr)
Example: ABS (- 2.77)

Yields the absolute value (value without regard to sign) of the
argument. The example yields 2 • 77. [2.4.1)

ASC

Syntax: AS C (sexpr)
Example: ASC (" QUEST II)

Yields the ASCII code for the first character in the argument. The
example yields 8 1 (ASCII code for Q) . [4.2.5, C]

Assignment Statement

Syntax: [LET] avar = aexpr
[LET] svar = sexpr

Example: LET A = 23.567
A$ = II HUMBUG II

Assigns the value of the expression following = to the variable
preceding it. LET is optional. [2.2]

Summary of Applesoft Statements and Functions 215

216

ATN

Syntax: AT N (aexpr)
Example: ATN (t 8771)

Yields the arc tangent, in radians, of the argument. The example
yields t 720001187 (radians). [2.4.1]

CALL
Syntax: CAL L aexpr
Example: CALL -822

Executes a machine-language subroutine at the specified decimal
memory address. The example issues a line feed . [7.1.3, F]

CHR$
Syntax: C H R $ (aexpr)
Example: CHR$ (65)

Yields the character corresponding to the ASCII code given as an
argument. The example yields the letter A. [4.2.5]

CLEAR
Syntax: CLEAR
Example: CLEAR

Resets all variables and internal control information to their initial
state. Program code is unaffected. [1 .2.2]

COLOR =
Syntax: COL 0 R = aexpr
Example: Co L oR= 12

Sets the display color for plotting low-resolution graphics. The
example sets the display color to green. [6.1.2]

CONT

Syntax: CON T
Example: CON T

Resumes program execution after it has been halted by S T OP,
E ND, [CONTROL [-C , or (sometimes) [CONT ROL I-I RES ET [. [1 .3.3]

Summary of Applesoft Statements and Functions

I
~ cos

Syntax: COS (aexpr)
Example: COS (2)

Yields the cosine of the argument, which must be expressed in
radians. The example yields - • L11 8 1 LI 8 8 3 8. [2.4.1]

DATA

Syntax: D A T A [literal I string I real I integer]
[{ , [literal I string I real I integer] }]
Example: D A T A J 0 H N S MI T H, " C 0 D E 32", 2 3 • L15 ,

-8

Creates a list of items for use by REA D statements. In the example,
the first item is the string "J 0 H N S MI T H " , the second is the
string "C 0 D E 32 " , the third is the real number 2 3 • L1 5, and the
fourth is the integer - 8 . [5.1.4]

DEF FN
Syntax: DE F F N name (name) = aexpr
Example: DEF FN CUBE ()<) =)< *)< *)<

Defines a new function for use in the program. The example defines a
function that yields the cube of its argument. [2.4.3]

DEL
Syntax: DEL linenum , linenum
Example: DEL 2 3, 58

Deletes a range of consecutive lines from the program. The example
deletes all lines numbered between 2 3 and 58 , inclusive. [1 .1.5]

DIM
Syntax: DIM name['X, I $] subscript [{ , name['X, I $] subscript}]
Example: DIM MARK (5 0 ,3), NAME$ (50)

Defines and allocates space for one or more arrays. The example de­
fines a two-dimensional real array MAR K, whose first subscript var­
ies from 0 to 50 and whose second varies from 0 to 3, and a string
array N A M E $ with one subscript that varies from 0 to 50. [4. 1 .1]

Summary of Applesoft Statements and Functions 217

218

DRAW
Syntax: DRAW aexpr [A T aexpr , aexpr]
Example: DRAW 4 AT 50,100

DRAW 4

Draws a shape at a specified pOint on the high-resolution graphics
screen from the shape table currently in memory. The first example
draws shape number 4 , beginning in column 50 , row 1 00, using the
current color, scale, and rotation settings; the second example draws
shape 4 at the last point plotted by H PLOT , DRAW , or)-<DRAW.
[6.3.2]

END
Syntax: END
Example: END

Terminates the execution of the program and returns control to the
user. No message is displayed. [3.6.2]

Syntax: E)-(P (aexpr)
Example: E)-< P (2)

Yields the mathematical exponential of its argument (the constant
e = 2.7182818 raised to the power specified by the argument) . The
example yields e squared, or 7 • 38905 G 1. [2.4.1]

FLASH
Syntax: FLASH
Example: FLASH

Causes all text displayed on the screen with subsequent P R I NT
statements to flash between white-on-black and black-on-white. May
not work properly for lowercase letters (and other characters with
ASCII codes above 95) if the 80-Column Text Card is installed and
running in "active-80" mode. [5.2.4]

Summary of Applesoft Statements and Functions

I
~

r

FN
Syntax: F N name (aexpr)
Example: FN CUBE (6)

Applies a designated function to the value of the argument expres­
sion. Assuming the definition for the function CUB E given above
under DE F F N, the example yields the value 2 1 G. [2.4.3]

FOR
Syntax:
Example:

F D R name = aexpr TO aexpr [5 T E P aexpr]
FOR J = 1 TO 1 0
FOR MARK = 0 TO 1 00 S T EP 5
FOR NUMBER = 20 T O - 20 STEP - 2

Marks the beginning of a loop, identifies the index variable, and gives
the variable's starting and ending values and (optionally) the amount
by which it is to change (step) on each pass through the loop. The
first example begins a loop whose index variable J will take on all val­
ues from 1 to 1 0 , stepping by 1 ; the second begins a loop whose in­
dex variable MAR K will take on values from 0 to 1 0 0 , stepping by 5;
the third begins a loop whose index variable N U M B E R will take on
values from 20 to - 2 0, stepping by - 2 . [3.3.1]

FRE
Syntax: F R E (expr)
Example: FRE (0)

Yields the amount of remaining memory, in bytes, available to the
program. The argument is ignored, but must be a valid Applesoft
expression . [7.2.3]

GET
Syntax: GET var
Example: GET ANSWER$

Accepts a single character from the keyboard without displaying it on
the screen and without requiring that the I RETU RN I key be pressed.
Program execution is suspended until the user presses a key. In
the example, the character typed will be assigned to the variable
ANSWER$. [5.1.3]

Summary of Applesoft Statements and Functions 219

220

GOSUB
Syntax: GOSUB linenum
Example: GOSUB 250

Executes a subroutine beginning at the designated line number
(250 in the example). [3.4.1]

GOTO
Syntax: GOTO linenum
Example: GOTO 400

Sends control unconditionally to the designated line number (400 in
the example) . [3.1]

GR

Syntax: GR
Example: GR

Converts the display to 40 rows of low-resolution graphics with four
lines of text at the bottom. The screen is cleared to black, the cursor
is moved to the beginning of the last line, and the low-resolution
display color is set to black. [6.1 .1]

HCOLOR =

Syntax: H COL 0 R = aexpr
Example: HCOLOR = 1

Sets the display color for plotting high-resolution graphics. The
example sets the display color to green. [6.2.3]

HGR

Syntax: HGR
Example: H G R

Converts the display to 160 rows of high-resolution graphics with four
lines for text at the bottom. The screen is cleared to black and page 1
of high-resolution graphics is displayed. The contents of the text dis­
play, the location of the cursor, and the high-resolution display color
are unaffected . [6.2.1]

Summary of Applesoft Statements and Functions

HGR2
Syntax: H G R 2
Example: HGR2

Converts the display to full-screen (192 rows) high-resolution graph­
ics with no text. The screen is cleared to black and page 2 of high­
resolution graphics is displayed. The contents of the text display, the
location of the cursor, and the high-resolution display color are unaf­
fected . [6.2.2]

HIMEM:
Syntax: HIM EM: aexpr
Example: HI MEM: 32767

Sets the address of the highest memory location available to the
Applesoft program , including its variables. The example sets the end
of program and variable storage to 32767 . Used to protect an area
of memory for data, high-resolution graphics, or machine-language
code. [7.2.1]

HLIN
Syntax: H LIN aexpr1 , aexpr2 AT aexpr3
Example: H LIN 1 0 , 2 0 AT 30

Draws a horizontal line in low-resolution graphics, using the current
low-resolution display color. The example draws a line across row
30 from column 1 0 to column 20 . [6.1.4]

HOME
Syntax: HO M E
Example: HOM E

Clears all text from the text window and moves the cursor to the top­
left corner of the window. [5.2.4]

Summary of Applesoft Statements and Functions 221

222

HPLOT
Syntax: H P LOT aexpr , aexpr [{T 0 aexpr , aexpr}]

H P LOT TO aexpr , aexpr [{T 0 aexpr , aexpr}]
Example: H PLOT 75, 20

HPLOT 48, 115 TO 78, 84 TO 110, 115
HPLOT TO 270, 10

Plots a point or line on the high-resolution graphics screen in the cur­
rent high-resolution display color. The first example plots a single
point at column 75, row 20; The second example draws lines from
column 48, row 115 to column 79, row 84 to column 110, row 115; the
third draws a line to column 270, row 10 from the last pOint plotted
with H P LOT, using the color of the last point plotted (not necessarily
the current display color) . [6.2.4]

HTAB
Syntax: H T A 5 aexpr
Example: HTA5 23

Positions the cursor to a specified column of the text display. The ex­
ample moves the cursor to column 23. If you have the Apple lie 80-
Column Text Card, see the manual accompanying that product for
further information on using H T A 5. [5.2.4]

IF .. . THEN

Syntax: I F expr THE N statement [{: statement}]
IF expr THEN [G OTO]linenum
IF expr[THEN] GOTO linenum

Example: I F AGE < 18 THEN A 0: 5 = 1 :
c = 2

IF ANSWE R$ = "YES" THEN GOTO 100
IF N > MA>(THEN GOTO 25
IF N ,,:' MAi{ THEN 25
IF N > MAi{ GOTO 25

Executes or skips one or more statements , depending on the truth of
a stated condition. The first example sets A to 0, 5 to 1, and C to 2 if
the value of AGE is less than 1 8 ; the second branches to line 1 00 if
the value of AN S W E R $ is the string" YES" ; the last three all branch
to line 2 5 if the value of N is greater than that of M A i{. In all cases, if
the stated condition is false, execution continues with the next pro­
gram line. [3 .2.2]

Summary of Applesoft Statements and Functions

~

IN#
Syntax: I N# aexpr
Example: I N# 2

Specifies the source for subsequent input. The example causes sub­
sequent input to be read from the device in expansion slot 2. [5 .1.1]

INPUT
Syntax: IN PUT [sexpr ;] var [{ , var}]
Example: IN PUT A/,.

INPUT "TYPE AGE, THEN A COMMA,
THEN NAME " ; AGE, NAME$

Reads a line of input from the current input device. The first example
reads a value into variable A/'.; the second displays a prompting mes­
sage and then reads values into variables AGE and N A M E $. [5.1.2]

INT
Syntax: I NT (aexpr)
Example: I NT (98.6)

INT (-273.16)

Yields the integer part of the argument value . The examples yield 98
and - 27 LI, respectively. [2.4.1]

I Nl.'ERSE

Syntax: I NI.JERSE
Example: I NI.JERSE

Causes all text displayed on the screen with subsequent P R I NT
statements to appear in black-on-white instead of the usual white-on­
black. May not work properly for lowercase letters (and other charac­
ters with ASCII codes above 95) if the 80-Column Text Card is in­
stalled and running in "active-80" mode. [5.2.4]

LEFT$

Syntax: L EFT $ (sexpr, aexpr)
Example: LEFT$ (" AP PLESOFT " , 5)

Yields a specified number of characters from the beginning of a
string . The example yields the string " A P P L E " . [4.2.4]

Summary of Applesoft Statements and Functions
223

224

LEN
Syntax: LEN (sexpr)
Example: LEN (" NE I.JER A DULL MOMENT II)

Yields the length of a string in characters. The example yields 19.
[4.2.2]

LET
See "Assignment Statement," above.

LIST
Syntax: L IS T [linenum1] [- linenum2]

LIS T [linenum1] [, linenum2]
Example: L IS T

LIS T 150
L IST 2 0 0-300
LIST 2 0 0 , 30 0

Displays all or part of the program on the screen, or writes it to the
current output device. The first example lists the entire program ; the
second lists line 1 5 0 only; the last two list all lines numbered from
2 0 0 to 300 , inclusive. [1.2 .3]

LOAD
Syntax: LO AD [name]
Example: LO AD

LOAD DE MO

Reads a program into memory from a disk or tape. The first example
reads a program from a tape cassette ; the second reads from a disk
file named DE MO. If you have one or more disk drives, see your DOS
manual for further information. [1 .2.6, M]

LOG
Syntax: LOG (aexpr)
Example: LOG (2)

Yields the natural logarithm of the argument. The example yields
• G 9 3147181. [2.4.1]

Summary of Applesoft Statements and Functions

-......

L

LOMEM:
Syntax: L 0 M EM: aexpr
Example: LOMEM: 24578

Sets the address of the lowest memory location available to the pro­
gram for variable storage. The example sets the beginning of variable
storage to 24578. [7.2.2]

MID$
Syntax: MID $ (sexpr, aexpr [, aexpr])
Example: MID $ (" A NAP P LEA DAY", 4, 5)

MID$ (" AN APPLE A DAY " , 4)

Yields a specified number of characters beginning at a specified po­
sition in a given string . The first example yields the string " A P P L E " ;
the second yields the string" A P P LEA DA Y". [4.2.4]

NEW
Syntax: NEW
Example: NEW

Clears the current program from memory and resets all variables and
internal control information to their initial states. [1.2.1]

Syntax: N E){ T [avar [{ , avar] }]
Example: N D{T

ND<T I NDD<
NE)-{T J, I

Marks the end of a loop and causes the loop to be repeated for the
next value of the index variable, as specified in the corresponding
FOR statement. The first example ends the most recently entered
loop; the second ends the loop whose index variable is IN D E){; the
third ends the pair of nested loops whose index variables are J and
I. [3.3.2]

Summary of Applesoft Statements and Functions 225

226

NORMAL
Syntax: NORMA L
Example: NORMAL

Causes all text displayed on the screen with subsequent P R I NT
statements to appear in the usual white-on-black; cancels the effects
of I NI.JERSE or FLASH . [5.2.4]

NOTRACE
Syntax: NOTRACE
Example: NOTRACE

Stops the display of line numbers for each statement executed ;
cancels the effects of T R ACE. [7.3.2]

ON .. . GOSUB
Syntax: 0 N aexpr GO SUB linenum [{ , linenum}]
Example: ON I D GOSUB 100 , 2 00 , 2 3 , 4 005 , 500
Chooses a subroutine to execute depending on the value of an
expression. The example transfers control to the subroutine begin­
ning at line 100,200,2 3 , 4005 , or 5 0 0 , depending on whether
the value of I D is 1, 2 , 3 , 4 , or 5 ; if I D has none of these values,
execution continues with the next statement. [3.4.3]

ON ... GOTO
Syntax: 0 N aexpr GOT 0 linenum [{ , linenum} 1
Example: ON I D Go To 100 , 20 0 , 23 , 4 005, 500

Chooses a line number to branch to depending on the value of an
expression. The example transfers control to line 1 00 , 200 , 23 ,
4005 , or 500 , depending on whether the value of I Dis 1, 2,3 , 4 ,
or 5 ; if I D has none of these values, execution continues with the
next statement. [3.2.1]

ONERR GO TO
Syntax: oNERR GoTo linenum
Example: ON ERR GoTo 500

Replaces Applesoft's normal error-handling mechanism with a sub­
routine beginning at a specified line number. The example estab­
lishes an error-handling subroutine beginning at line 5 00. [3.5.1, E]

Summary of Applesoft Statements and Functions

PDL
Syntax: P D L (aexpr)
Example: PDL (1)

Reads the current dial setting on a designated hand control. The
example reads the dial on hand control 1. [5.1.6, F.4]

PEEK
Syntax: PEE K (aexpr)
Example: PEEK (37)

Yields the contents of a specified location in memory. The example
yields the contents of location 37 , which contains the current vertical
position of the text cursor on the display screen. [7.1 .1, F.1]

PLOT
Syntax: P L D T aexpr , aexpr
Example: PLD T 10 , 2 0

Plots a single block of the current display color at a specified position
on the low-resolution graphics screen. The example plots a block at
column 10, row 20. [6.1.3]

POKE
Syntax: PO K E aexpr , aexpr
Example: PoK E - 16302, 0

Stores a value into a specified location in memory. The example
stores the value 0 at location 49234 (65536 - 16 3(2), causing
the display to switch from mixed graphics and text to full-screen
graphics. [7.1 .2, F]

POP
Syntax: POP
Example: POP

Removes the most recent return address from the control stack,
causing the next RET URN statement to send control to the state­
ment following the second most recently executed GO 5 U B. [3.4.4]

Summary of Applesoft Statements and Functions 227

228

POS

Syntax: PO S (expr)
Example: POS (I))

Yields the current horizontal position of the cursor on the text display.
The argument is ignored, but must be a valid Applesoft expression.
[5.2.4]

PR#
Syntax: P R # aexpr
Example: P R # 1

Specifies the destination for subsequent output. The example causes
subsequent output to be sent to the device in expansion slot 1 . [5.2.1]

PRINT
Syntax: P R I NT [{ expr [,I ;] }]
Example: P R I NT

PRINT A$, ")(= I I. V
, 1\

Writes a line of output to the current output device. The first example
writes a blank line; the second writes the value of variable A $, fol­
lowed at the next available tab position by the string ")(= ", fol­
lowed immediately by the value of variable)(. [5.2.2]

READ
Syntax: READ var [{ ,var}]
Example: READ A, B 'X., C$

Reads values from D A T A statements in the body of the program.
The example reads values into variables A, B 'X., and C $. [5.1.4]

RECALL
Syntax: RECALL name['X.]
Example: RECALL M){

Reads values into an array from a tape cassette. The example reads
values into array M){. [M]

Summary of Applesoft Statements and Functions

I
REM
Syntax: REM {character}
Example: REM TH I 5 A REMARK

Includes remarks in the body of a program for the benefit of a human
reader. [1 .1.7]

RESTORE
Syntax: RESTORE
Example: RES TORE

Causes the next REA D statement executed to begin reading at the
first item of the first D A T A statement in the program. [5.1.5]

RESUME
Syntax: RES U M E
Example: RESUME

At the end of an error-handling routine (see 0 NE RR GOT 0) ,
causes resumption of the program at the beginning of the statement
in which the error occurred. [3.5.2]

RETURN
Syntax: RET URN
Example: RETURN

Returns control from a subroutine to the statement following the
GO SUB that called the subroutine. [3.4.2]

RIGHT$
Syntax: RIG H T $ (sexpr , aexpr)
Example: R IGHT $ ("APPLES OF T", 4)

Yields a specified number of characters from the end of a string. The
example yields the string" SO F T " . [4.2.4]

RND
Syntax: R N 0 (aexpr)
Example: RND (1)

Yields a random number between 0 and 1. Zero and negative argu­
ment values yield repeatable sequences of random numbers. [2.4.2]

Summary of Applesoft Statements and Functions 229

ROT=

Syntax: ROT = aexpr
Example: ROT = 1 G

Sets the angular rotation for high-resolution shapes to be drawn with
ORA W or >< 0 RAW. The example causes the shape to be rotated 90
degrees clockwise. [6.3.2]

RUN

Syntax:
Example:

RUN [Iinenum I name]
RUN
RUN 500
RUN DEMO

Executes an Applesoft program. The first example executes the pro­
gram currently in memory from the beginning ; the second executes
the program in memory, starting at line 500; the third loads and exe­
cutes a program from a disk file named DE MO. [1.2.4]

Syntax: SA t,J E [name]
Example: SA t,J E

SAt,JE DEMO

Writes the Applesoft program currently in memory to a disk or tape.
The first example writes the program to a tape cassette ; the second
writes it to adisk file named DEMO . [1 .2.5, M]

SCALE =

Syntax: S CAL E = aexpr
Example: SCALE = 10

Sets the scale factor for high-resolution shapes to be drawn with
DR A W or >< D RAW. The example causes the shape to be drawn ten
times bigger than the definition given in the shape table. [6.3.2]

Summary of Applesoft Statements and Functions

L

SCRN
Syntax: S C R N (aexpr , aexpr)
Example: SCRN (10, 20)

Yields the code for the color currently displayed at a designated posi­
tion on the low-resolution graphics screen. The example yields the
code for the color at column 10, row 20. [6.1.6]

SGN
Syntax: S G N (aexpr)
Example: SGN (- 1 LlLI)

Yields a value of - 1 , 0, or + 1 , depending on the sign of the argu­
ment. The example yields - 1 . [2.4.1]

SHLOAD
Syntax: S H LOA D
Example: SHLOAD

Loads a shape table into memory from a tape cassette. [6.3.2, M]

SIN
Syntax: SIN (aexpr)
Example: SIN (2)

Yields the sine of the argument, which must be expressed in radians.
The example yields • 808287 Ll2 7 . [2.4.1]

SPC
Syntax: S PC (aexpr)
Example: S PC (8)

Introduces a specified number of spaces into the line being written by
aPR I NT statement. The example writes 8 spaces. [5.2.4]

SPEED=
Syntax: S PEE D = aexpr
Example: SPEED = 50

Sets sets the rate at which text characters are sent to the display
screen or other input/output device. The slowest rate is 0; the fastest
is 255. [5.2.4]

Summary of Applesoft Statements and Functions 231

232

SQR
Syntax: S Q R (aexpr)
Example: SQR (2)

Yields the positive square root of the argument ; the example yields
1 • Ll1 Ll2135G . [2.4.1)

STOP
Syntax: S TOP
Example: S TOP

Terminates the execution of the program and returns control to the
user. A message is displayed identifying the program line in which the
S TOP statement appears. [3.6.1)

STORE
Syntax: STORE name['X.]
Example: STORE M>(

Stores values from an array onto a tape cassette. The example
stores the contents of array M){. [M)

--~ STR$
Syntax: S T R $ (aexpr)
Example: STR$ (12.45)

Yields a string representing the numeric value of the argument. The
example yields the string" 1 2 • Ll5 " . [4.2.5]

TAB
Syntax: TAB (aexpr)
Example: TAB (23)

Positions the text cursor to a specified position on the output line dur­
ing execution of aPR I NT statement. The example moves the cursor
to column 23. [5.2.4]

Summary of Applesoft Statements and Functions

L

L

TAN
Syntax: TAN (aexpr)
Example: TAN (2)

Yields the tangent of the argument, which must be expressed in radi­
ans. The example yields - 2 + 1 85 (> 3 9 8 7 . [2.4.1)

Syntax: T E){ T
Example: T E){ T

Converts the display to 24 lines of text, with the cursor positioned at
the beginning of the bottom line. [5.2.4)

TRACE
Syntax: TRACE
Example: TRACE

Causes the line number of each statement to be displayed on the
screen as it is executed. [7.3.1)

USR

Syntax: US R (aexpr)
Example: USR (3)

Executes a machine-language subroutine supplied by the user, pass­
ing it a specified argument. The subroutine is entered via a J M P
(Jump) instruction stored at addresses $ (> A through $ 0 C hexadeci­
mal. The example passes the argument value 3 . [7.1.4]

I.JAL

Syntax: 1.J A L (sexpr)
Example: I.J A L (" - 3 + 7 E Lj")

Yields the numeric value represented by the string supplied as an ar­
gument. The example yields - 3 7 (> (> (> . [4.2.5)

Summary of Applesoft Statements and Functions 233

234

1.J LIN

Syntax: t.J LIN aexpr , aexpr AT aexpr
Example: t.J LIN 1 0, 20 AT 30

Draws a vertical line in low-resolution graphics, using the current low­
resolution display color. The example draws a line down column 30
from row 10 to row 20. [6.1 .5]

1.J TAB

Syntax: t.J TAB aexpr
Example: t.J TAB 1 5

Positions the cursor to a specified row of the text display. The exam­
ple moves the cursor to row 15. [5.2.4]

WAIT

Syntax: W A I T aexpr , aexpr [, aexpr]
Example: WAIT 49347, 15

WAIT 49347, 15, 12

Suspends program execution until a specified bit pattern appears at
a specified memory location. Used to wait for a status signal from a
peripheral device. The second and (optional) third arguments are
masks: the second specifies which bits of the designated location are
of interest, the third specifies the values to be tested for in those bits.
The first example suspends execution until a one bit appears in any
of the four low-order bit positions of location 49347 ; the second
waits for a one bit in position ° or 1 or a zero bit in position 2 or 3.
[7.1.5]

)<DRAW

Syntax: ;{D RAW aexpr [A T aexpr , aexpr]
Example: ;'WRAW 4 AT 50, 100

}{DRAW 4

Draws a shape from the shape table currently in memory at a speci­
fied pOint on the high-resolution graphics screen. Each point in the
shape is plotted using the complement of the color currently dis­
played at that point. Typically used to erase a shape already drawn.
The first example erases shape number 4, beginning in column 50,
row 100, using the current scale and rotation settings ; the second ex­
ample erases shape 4 at the last point plotted by H P LOT , 0 RAW , or
}{DRAW . [6.3.2]

Summary of Applesoft Statements and Functions

AppendixB

Syntax Definitions

Terms used in the syntax definitions in Appendix A are defined below.
The following symbols are used in the syntax definitions:

means " is defined as"
separates alternative definitions
(alternative definitions for the same term may also be given
separately)

[1 enclose elements that may be omitted
{} enclose elements that may be repeated one or more times

aexpr (arithmetic expression)
real I integer I avar I fcali
unop aexpr
aexpr alop aexpr
sexpr relop sexpr
(aexpr)

Parentheses may not be nested more than 36 levels deep.

alop (arithmetic or logical operator)
: = aop I relop I lop

aop (arithmetic operator)

:= + I - I * I / I

avar (arithmetic variable)
: = realvar I intvar

character
letter I digit I spchar I quote I space

digit
o I 1 1 2 1 3 I a I 5 I G I 7 I 8 I 9

Syntax Definitions 235

236

expr (expression)
: = aexpr I sexpr

fcall (function call)
name (expr [{ , expr } 1)

integer
[+ I - 1 {digit}

Valid integers must be between - 327 G 7 and + 327 G 7 .

intvar (integer variable)
name'X, [subscript]

letter
uppercase I lowercase

line
linenum [{statement: }] statement I RET URN I

linenum (line number)
digit [{digit} 1

Line numbers must be in the range (> to G 3 8 8 8.

literal
[{character}]

lop (logical operator)
AND I DR

Notice that N D T is not included here.

lowercase

name

a I b I c

1 I III I n

IAI I x I }'

uppercase [{uppercase I digit}]

g I h I i I j I k

r I 5 I t I u I I)

A name may be of any length. When distinguishing one
name from another, Applesoft ignores any characters after
the first two. However, even the ignored portion of a name
must not contain a special character or any of Applesoft's
reserved words.

Syntax Definitions

quote
"

real
[+ I -] {digit} {. {digit}] [E [+ I -] [digit [digit]]]

. - [+ -][{digit}] • [{digit}][E [+ -][digit[digit]ll

The letter E in a real number stands for "times ten to the
power." Valid reals must be between - 1 E 3 8 and
+ 1 E38 .

Applesoft recognizes the following as reals and evaluates
them as zero:

+ . - . .E + .E - . E

.E+ • E- + .E + + .E - - .E + - .E-

In addition, the following are recognized as reals and
evaluated as zero when used as numeric responses to
I N PUT or as numeric elements of D A T A:

I SPACE I + E + E -E

E+ E- + E+ + E- - E+ - E-

The GET statement evaluates all of the single-character
reals listed above as zero.

realvar (real variable)
: = name [subscript]

relop (relational operator)
= I < I :> I <= I =:> >= = :> <:>

schar (string character)
letter I digit I spchar I space

Notice that the quote character (") is not included here.

sexpr (string expression)
string I svar I sfcall
sexpr sop sexpr
(sexpr)

Parentheses may not be nested more than 36 levels deep.

Syntax Definitions 237

><

238

sfcall (string function call)
:= name$ (expr[{ I expr} 1)

sop (string operator)
+

space
I SP ACE I

spchar (special character)
- + I I * I

I I I
@ I I [I

/

IX.

] {

-:::
'0;. I ..

$ # ? B: I I
} \ I

Control characters (characters typed while holding down
the I CONTRO L I key) and the null characer are also
considered special characters. Notice that the quote
character (") and I SPAC E lare not included here.

statement

string

subscript

See Appendix A for syntactic definitions of all Applesoft
statements.

" [{schar}] "
" [{schar}]

The second form of string can appear only at the end of a
line.

(aexpr [{ I aexpr}])

The maximum number of dimensions (aexpr's) is 89,
although in practice this is limited by the extent of memory
available.

svar (string variable)
: = name$ [subscript]

unop (unary operator)
+ I - I NOT

Syntax Definitions

~

uppercase
- A I B I c I D I E I F I G I H I I J I K I

L I M I N I D I p I Q I R I 5 T I u I l.J I

w I \I I y I z t\

var (variable)
- avar l svar

Syntax Definitions

Syntax Definitions

ASCII Character Codes

Below is a chart of the ASCII (American Standard Code for Informa­
tion Interchange) character codes. The first 32 codes represent con­
trol characters ; to type these characters from the Apple lie keyboard,
press the I CONTROL I key and hold it down while pressing the desig­
nated character. (Some of these characters also have single-key
representations, as noted.) The abbreviations given for these codes
in the column labeled "Char" represent standard control functions
originally intended for use on teletypes; the meanings of these ab­
breviations are given in the "Meaning" column. Functions marked
with an asterisk (*) are implemented on the Apple lie ; the others are
listed purely for historical interest.

Dec = decimal ASCII code
Hex = hexadecimal ASCII code
Char = ASCII character name
Type = Apple lie keyboard representation

Dec Hex Char Type Meaning

0 00 NUL I CONTROL I -@ * null character
1 01 50H I CONTROL I -A start of heading ,., 02 5T){ I CONTROL I-B start of text .:..

3 03 ET){ I CONTROL I-C end of text
LI OLi EDT I CONTROL I-D end of transmission
5 05 ENQ I CONTROL I-E enquiry
6 06 ACK I CONTROL I-F acknowledge
7 07 BEL I CONTROL I-G * bell
8 08 B5 I CONTROL I-H or ILEFT -ARRow l * backspace
8 08 HT I CONTROL)- I horizontal tab

10 OA LF I CONTROL)-J or IOOWN-ARROW) * line feed
1 1 OB l.I T I CONTROL)-K or IUP-ARROW) vertical tab
12 OC FF I CONTROL I-L form feed

ASCII Character Codes 241

Dec Hex Char Type Meaning

13 OD CR I CONTROL I-M or I RETURN I * carriage return
14 OE 50 I CONTROL I-N shift out
15 OF 5I I CONTROL 1-0 shift in
16 10 DLE I CONTROL I-P data link escape
17 1 1 DCl I CONTROL 1-0 device control 1
18 12 DC2 I CONTROL I-R device control 2
18 13 DC3 I CONTROL 1-5 device control 3
20 14 DC4 I CONTROL 1-T device control 4
21 15 NAK [CONTROL I-U or l RIGHT-ARROW I negative acknowledge _
22 16 SYN I CONTROL I-t,' synchronous idle
23 17 ETB I CONTROL I-W end of transmission

block
24 18 CAN I CONTROL 1-)-(* cancel
25 18 EM I CONTROL 1-Y end of medium
26 lA SUB I CONTROL I-Z substitute
27 lB E5C I CONTROL 1-[or~ escape
28 lC F5 [CONTROL 1-\ file separator
28 lD G5 I CONTROL 1-] group separator
30 lE R5 I CONTROL 1-"· record separator
31 iF US [CONTROL I-_ unit separator

The following characters can be typed directly from the keyboard:

Dec Hex Char

32 20 ~IJ
33 21
34 22 II

35 23 #
36 24 $

37 25 'X.
38 26 IS:
38 27
40 28
41 28
42 2A * 43 2B +
44 2C
45 2D
46 2E
47 2F /
48 30 0
48 31 1
50 32 2

242 ASCII Character Codes

Dec Hex Char

51 33 3
52 34 4
53 35 5
54 36 6
55 37 7
56 38 8
57 39 9
58 3A
59 3B
60 3C <:
61 3D
62 3E >
63 3F ?

64 40 @

65 41 A
66 4 '"' "- B
67 43 C
68 44 D
69 45 E
70 46 F
71 47 G
72 48 H
73 49 I
74 4A J
75 4B K
76 4C L
77 4D M

'- 78 4E N
78 4F 0
80 50 P
81 51 Q

82 52 R
83 53 S
84 54 T
85 55 U

"- 86 56 1.J
87 57 W

'"'- 88 58 \I
1\

89 59 Y
~ 90 5A "7

L.

91 5B [

--- 92 5C \
93 5D]

84 5E

ASCII Character Codes 243

Dec Hex Char

85 5F
86 60
87 61 a
98 62 b
99 63 c

100 6L1 d
101 65 e
102 66 f
103 67 9
lOll 68 h
105 69 i
106 6A j

107 65 f~

108 6C 1
109 6D ITI

110 6E n
111 6F 0

112 7{) p

113 71 "I

llL1 72 r
115 73 s
116 7L1 t
117 75 u
118 76 l)

119 77 1,,1

120 78 x
121 79 }'

122 7A z
123 7 5 {

12L1 7C
125 7D }

126 7E
127 7F I DELETE I

244 ASCII Character Codes

Reserved Words

Following is a list of Applesoft's reserved words. In most cases, these
character sequences cannot be used as, or embedded in, variable
names (but see the comments at the end of the list) .

ABS AND ASC AT ATN

CALL CHR$ CLEAR CDLOR = CO NT COS

DATA DEF DE L DIM DRAW

END D(P

FLASH FN FOR FRE

GET GOSUB GOTO GR

HCOLOR = HGR HGR2 HI MEM: HLIN HOME HPLOT
HTAB

IF IN# INPUT INT I NI,JERSE
'- LEFT$ LEN LET LIST LOAD LOG LOMEM:

MID$

NEW ND(T NORMA L NO T NOTRACE

ON ONERR OR

PDL PEEK PLO T POK E POP POS PR#
PRINT

"- READ RECALL REM RESTORE RESUME RETURN R I GHT$
RND RDT = RUN

SAI,JE SCALE = SCRN SGN SHLOAD SIN SPC
SPEED = SQR STEP STOP STORE STR$

TAB TAN TD(T THEN TO TRACE

~
USR

I,JAL I,JL I N InAB

WAIT

)-mRAW)-(PLOT

Reserved Words

246

Applesoft tokenizes these reserved words (converts them into one­
byte internal codes); see Section H.4 for a list of tokens. All other
characters in a program occupy one byte each of program storage.

The ampersand character (&:) is reserved for Applesoft's internal use
and for user-supplied machine-language routines. When executed as
an instruction, it causes a J S R to address $03 F 5 hexadecimal.

)-(P LOT is a reserved word that does not correspond to a current
Applesoft statement.

Some reserved words are recognized by Applesoft only in certain
contexts:

• COLOR , HCOLOR , ROT , SCALE, and S PEED are interpreted
as reserved words only if the next nonspace character is an
equal sign (=). This is of little benefit in the case of COL 0 Rand
H COL 0 R, as the embedded reserved word 0 R prevents their
use as variable names anyway.

• HIM E M and L 0 M E M are interpreted as reserved words only if
the next nonspace character is a colon (:).

• I Nand P R are interpreted as reserved words only if the next
nonspace character is a number sign (#) .

• S C R N, S PC , and T A 5 are interpreted as reserved words only if
the next nons pace character is a left parenthesis, (.

• AT N is interpreted as a reserved word only if there is no space
between the T and the N. If a space occurs between the T and
the N, the reserved word A T is interpreted instead of AT N.

• TO is interpreted as a reserved word unless preceded by an A
and there is a space between the T and the O. In that case, the
reserved word A T is interpreted instead of TO .

Even if you don't embed reserved words in your variable names, they
can sometimes pop up unexpectedly and cause problems. For exam­
ple, the statement

100 FOR A = LOFT OR LEFT TO 15

is interpreted as

100 FOR A = LOF TO RLEFT TO 15

and causes a syntax error. To force the correct interpretation, use
parentheses:

100 FOR A = (LOFT) OR (LEFT) TO 15

Reserved Words

L

I
'-

Error Messages

Below is a list of Applesoft's error messages and their causes. When
an error occurs in immediate execution , Applesoft sounds a "beep"
and displays a message of the form

?){){ ERROR

where)-(>~ is the name of the particular error, as listed below.

In deferred execution (during the course of a running program) , the
message takes the form

?)O~ ERROR IN YY

where Y Y is the line number of the statement in which the error oc­
curred ; the Applesoft prompt character (J) and the cursor are dis­
played, and control of the system is returned to the user. Variable
values and the text of the program remain intact, but internal control
information is erased and the program cannot be continued with the
CON T command (see Section 1.3.3) . An error in a deferred-execu­
tion statement is not detected until the statement is executed.

The error handling described above can be overridden by an error­
handling routine in the program itself, established with the 0 N ERR
GOT 0 statement (see Section 3.5.1). Error codes for use in such an
error-handling routine are given below in square brackets following
the error names. When an error occurs, the code listed is stored at
location 222 decimal; it can be retrieved from that location with the
PEE K function (see Section 7.1.1) . Errors for which no code is given
cannot occur in deferred execution.

Errors associated with the Disk Operating System (DOS) will also
register at location 222; see the DOS manual for further information.

Error Messages 247

248

Debugging suggestions given below under the individual error mes­
sages are not intended to be exhaustive or comprehensive ; the
causes of program bugs are numberless as the sands of the sea and
the stars of the sky.

BAD SUBSCR I PT [107]

A reference was made to an array element that is outside the dimen­
sions of the array. This error can occur if the wrong number of dimen­
sions is used in an array reference: for instance,

LET A (1, 1, 1) = Z

when A has been defined by

DIM A(Z,Z)

CAN'T CONTINUE

An attempt was made to continue a program with the CD N T com­
mand when no program exists in memory, or after an error, or after a
line has been changed , deleted from , or added to the program.

D I I.ll S I ON BY ZERO [133]

An attempt was made to divide by zero ; division by zero is mathemat­
ically undefined. Often occurs when a variable is used in an arithme­
tic expression before begin given a value (all numeric variables
initially have the value zero). To debug, examine the divisor of the
expression where the error occurred to see why it unexpectedly has
a zero value. Look particularly for variables that have inadvertently
been used without having been given a nonzero value.

FORMULA TOO COMPlE)< [191]

More than two statements of the form

IF "ZZ" THEN

were executed (where" Z Z" is any quoted string) . The Applesoft
IF .. . T HE N statement wasn 't intended to be used with strings, and
the results of such statements are not meaningful. The wisest policy
is to avoid this type of construction altogether.

Error Messages

ILLEGAL DIRECT
An attempt was made to use one of the following statements in imme­
diate execution :

• DEF FN

• GE T

• INPUT'

• DNERR GD T O

• READ

• RESUME

ILLEGAL QUANTITY [53]

The argument supplied to a statement or function was out of the al­
lowed range , This error can be caused by

• a negative array subscript (for example, LE T A (- 1) = 0)

• LOG with a negative or zero argument

• S Q R with a negative argument

• A '" B with A negative and B not an integer

• use of L EFT $, MID $, RIG H T $, W A I T, PEE K, PO K E,
CALL, TAB, SPC , ON " .GOTO , ON ... GOSUB , oranyofthe
graphics statements or functions with an improper argument

NE}{T WITHOUT FOR [0]
The variable named in a N E){ T statement did not agree with the vari ­
able in the corresponding FOR statement, or a nameless N E){ T was
executed when no FOR was in effect. The most common causes of
this error are forgetting a F OR or N E)-(T statement, typing the wrong
variable in the N E)-(T statement, crossing loops, or accidentally
branching into the body of a FOR loop.

Error Messages 249

250

OUT OF DATA [42]

ARE A D statement was executed after all D A T A statements in the
program had already been read. ARE A D statement may have been
executed more times than intended (for example, in an infinite loop) ,
or one or more D A T A statements may have been inadvertently omit­
ted. Sometimes caused by accidentally leaving out aRE S TOR E
statement.

OUT OF MEMORY [77]

Any of the following can cause this error:

• Program too large

• Too many variables

• FOR loops nested more than 10 levels deep

• Subroutine calls nested more than 24 levels deep

• Parentheses nested more than 36 levels deep

• Too complicated an expression

• Attempt to set L 0 M EM: too high

• Attempt to set L 0 M EM: lower than present value

• Attempt to set HIM EM: too low

OI.IERFLOW [69]

. The result of an arithmetic calculation was too large to be repre­
sented in Applesoft's internal number format.

RED I MID ARRAY [120]

An attempt was made to define the same array twice in the same or
different DIM statements. This error often occurs if an array has
been referred to in a statement such as

LET A (I) = 3

before being defined in a DIM statement. At first reference, the array
is automatically defined with an assumed dimension of 1 0; if such a

Error Messages

-

I
'- statement is followed later in the program by

DIM A (100)

the RED I M'D A R RAY error will result. Another common cause of
the error is a program that loops back to a line before the DIM state­
ment, consequently executing it a second time.

This error message can prove useful if you wish to discover on what
program line an array was defined: just insert a DIM statementforthe
array in the first line, run the program, and the program will halt with a
RED I M'D A R RAY error when the original 0 I M statemer)! is
executed.

RETURN WITHOUT GOSUB [22]

ARE T URN statement was encountered without a corresponding
GO SUB having been executed. This error often occurs when control
aCCidentally branches into a subroutine via aGO T 0 statement, or
" falls into" a subroutine because there is no END or GO T 0 state­
ment at the end of the program segment preceding the subroutine.

STR I NG TOO LONG [176]

An attempt was made by use of the concatenation operator (+) to
create a string more than 255 characters long. This error tends to oc­
cur when a string variable is used more than once without being
cleared (that is, without being reset to the null string) .

SYNTA}-(ERROR [16]

A statement or expression doesn't conform to Applesoft's syntax
rules. There are a myriad of possible causes for this error, such as a
missing parenthesis, illegal character, or incorrect punctuation. Often
results from a simple typing error.

TYPE MISMATCH [163]

The left side of an assignment statement was a numeric variable and
the right side was a string , or vice versa; or a function that expected a
string argument was given a numeric one or vice versa. Often caused
by inadvertently leaving out the dollar sign ($) in a string variable or
function name.

Error Messages 251

252

UNDEF'D FUNCTION [224]

A reference was made to a function that had never been defined. May
occur when you type something like F N L ()-() when you meant to
type F N I ()<) ; that is, a simple case of mistaken identifier.

UNDEF'D STATEMENT [90]
I

An attempt was made to transfer control , via GOT 0 , GO 5 U B, or
IF ... THE N, to a nonexistent line number. Common causes include
accidentally deleting a line, changing a line number without changing
references from other lines accordingly, and simple typing errors.

Error Messages

L

PEE K function: see Section 7.1 .1

PO K E statement: see Section 7.1 .2

CAL L statement: see Section 7.1 .3

soft switch: a location in memory that
produces some special effect whenever
its contents are read or written

F.1

AppendixF

Peeks, Pokes, and Calls

This appendix discusses some of the many special features of the
Apple lie that you can use in your Applesoft programs by means of
PEE K, PO K E, or CAL L statements. Notice that some of them dupli­
cate the effects of other Applesoft features.

Many of these special addresses are soft switches with the property
that any reference to them, whether a read (that is, aP E E K) or a
write (a P OK E) , invokes the feature associated with the address. For
instance, the example given here for switching from text to graphics
without clearing the graphics screen is

POKE -16304, 0

but you can get the same effect by executing

)-{ = PEEK (-16304)

or by using PO KEto address - 1 63 0 4 with a value other than O.
This does not apply in cases where you must use PO KE to store a
specific value into the special address, such as a margin setting or a
cursor location.

For more information on special features accessible with PEE K ,
PO K E, and CAL L, see the Apple lie Reference Manual.

Screen Text
The special locations described in this section are used for control­
ling the display of text on the screen : setting the boundaries of the
text window within which characters are displayed and scrolled ,
clearing all text from all or part of the screen, scrolling text with in the
text window, and controlling the position of the cursor.

Screen Text

HOME, HTAB, l)TAB statements: see
Section 5.2.4

Setting the text window

TAB function: see Section 5.2.4

254

Setting the text window does not clear the remainder of the screen (for
which you can use HOM E) and does not move the cursor into the new
text window (use HOM E again, or H TAB and l,J TAB).

POKE 32t L
Sets the left edge of the text window to the value specified byexpres­
sion L . This value should be between 0 and 3 8 (or 0 and 78 if
you 're using the aD-Column Text Card) , where 0 represents the
leftmost column of the screen .

The change doesn't become visible until the cursor attempts to return to
the left edge of the window.

Warning
The width of the window is not changed by this statement: this means
that the right edge will be moved by the same amount you move the left
edge. To protect your program and Applesoft, first reduce the window
width appropriately (see below) ; then change the left edge.

POKE 33t W
Sets the width of the text window (number of characters per line) to
the value specified by expression W. This value should be between 1
and a 0 (or 1 and 80 if you 're using the aD-Column Text Card) .

Warning
Make sure the right edge of the text window doesn't extend past the right
edge of the display screen. The window width shouldn 't be set greater
than 1I 0 (or 80) minus the current left edge of the wiildow. For example,
if you've set the left edge of the window (see above) to 10, don't set the
window width greater than 30 (or 70 with the 80-Column Text Card).
Setting the window too wide will cause display text to be written outside
the usual memory area reserved for it, destroying parts of your program
or vital system information.

Warning
Do not set the window width to zero! The statement

POKE 33, 0

will cause the system to crash.

If IN is less than 33 , the TAB function in aPR I NT statement may
cause characters to be displayed outside the text window.

Peeks, Pokes, and Calls

'--

Clearing text from the screen

POKE 34t T
Sets the top edge of the text window to the value specified by expres­
sion T. This value should be between 0 and 23 , where (> represents
the top line of the screen.

Warning
Do not set the top edge of the window (T) lower than the bottom edge
(see below) .

POKE 35t B
Sets the bottom edge of the text window to the value specified by
expression B. This value should be between (> and 23 , where 2 3
represents the bottom line of the screen.

Warning
Make sure the bottom of the text window doesn't extend past the bottom
of the display screen. Setting the window bottom beyond line 23 will
cause display text to be written outside the usual memory area reserved
for it, destroying parts of your program or vital system information.

Warning
Do not set the bottom edge of the window (5) higher than the top edge
(see above) .

CALL -936
Clears all text within the text window and moves the cursor to the top­
left corner of the window. The effect is the same as that of the HOM E
statement or of typing ITill @ from the keyboard.

CALL -958
Clears all characters inside the text window from the current cursor
position to the bottom-right corner. Characters above and to the left
of the cursor are not affected. The effect is the same as that of typing
ITill F from the keyboard.

CALL -868
Clears all characters inside the text window from the current cursor
position to the end of the line. The effect is the same as that of typing
ITill E from the keyboard.

Screen Text
255

Scrolling text on the screen

POSitioning the cursor

256

CALL -822
Issues a line feed character, causing the cursor to move down
one line without changing its horizontal position. If the cursor is on
the bottom line of the text window, the contents of the window
are scrolled up one line. The effect is the same as that of typing
I CONTROL I-J from the keyboard .

CALL -812
Scrolls all text within the text window up one line. The old top line
is lost; the old second line becomes the top line; the bottom line
becomes blank. Text outside the text window is not affected.

PEEK (38)
Yields the current horizontal position of the cursor, which will be a
number between 0 and 39 (0 and 79, if you're using the aD-Column
Text Card) . The cursor position is given relative to the left edge of the
text window, not the left edge of the screen. The effect is the same as
that of the PO S function (see Section 5.2.4).

POKE 38t CH
Moves the cursor to the horizontal position specified by expression
C H, which is interpreted relative to the left edge of the text window,
not the left edge of the screen. The value of this expression should be
between 0 and the current width of the window, with 0 representing
the leftmost column of the window. The effect is the same as that of
the H T A 5 statement (see Section 5.2.4) , but is not limited to 4 0
columns.

Like H TAB, this statement can move the cursor beyond the right edge
of the text window, but only long enough to display one character.

a~-Column Text Card Users: You can use this PO K E statement to
position the cursor in columns a 0 to 78 of the screen, which are
inaccessible with H TAB.

Peeks, Pokes, and Calls

- '

L

• Warning
Don't move the cursor past the right edge of the display screen! The cur­
sor position shouldn't be set greater than LI 0 (or 80) minus the current
left edge of the window. For example, if you 've set the left edge of the
window (see above) to 10, don't set the cursor position greater than 30
(or 70 with the aD-Column Text Card) . Moving the cursor too far to the
right may cause display text to be written outside the usual memory area
reserved for it, destroying parts of your program or vital system
information.

PEEK (37)
Yields the current vertical position of the cursor, which will be a num­
ber between 0 and 23. The cursor position is given relative to the top
edge of the screen, not the top edge of the text window. A value of 0
represents the top line of the screen, 23 the bottom line.

POKE 37 t Cl.J

Moves the cursor to the vertical position specified by expression Ct.',
which is interpreted relative to the top of the screen , not the top of the
text window. The value of this expression should be between 0 and
23, with 0 representing the topmost line of the screen. The effect is
similar to that of the t.' TAB statement (see Section 5.2.4) , except that

• screen lines are numbered from 0 to 23, not from 1 to 24 as
with t.'TAB

• the specified cursor position is not limited to 24 lines

Like V TAB, this statement can move the cursor beyond the bottom
edge of the text window, but all subsequent text sent to the display
screen will then appear on that same line.

... Warning
Don't move the cursor past the bottom edge of the display screen! Set­
ting the cursor position beyond line 23 will cause display text to be writ­
ten outside the usual memory area reserved for it , destroying parts of
your program or vital system information.

Screen Text 257

F.2

Reading the keyboard

F.3

258

Keyboard
The special locations described below are used for reading input
directly from the keyboard.

PEEK (-18384)

Reads the last character typed from the keyboard. If the high-order
bit of this location is 1 (P E E K yields a result > 1 27) , then a new
character has been typed since the last PO KEto address - 1 6368
(see below); subtracting 1 2 8 from the value received gives the
ASCII code for the character typed . If the high-order bit is 0 (P E E K
yields a result > = 12 7), then no new character has been typed
since the last POK E to - 16368.

POKE -18388t 0

-......

Clears the high-order bit of location - 1638 a (see above) to prepare -.J

for reading another keyboard character. This should be done imme-
diately after reading the keyboard via PEE K (- 1 638 a) .

Graphics
Four areas are reserved in the Apple lie's memory for displaying text
and graphics on the screen:

• Low-resolution page 1 is located at addresses $ a 0 0 to $ 7 F F
hexadecimal (1 I) 2 a to 2 I) a 7 decimal) . Information stored in
this area can be interpreted and displayed on the screen in the
form of either text or low-resolution graphics. This is the usual
area of memory used for both these purposes, and is the area
used by Applesoft's T E){ T and G R statements.

• Low-resolution page 2, at addresses $ 8 0 0 to $ B F F hexadeci­
mal (2 I) a 8 to 3 I) 71 decimal) , can be used as an alternate area
for either text or low-resolution graphics. Since this is the same
area as the beginning of Applesoft's normal program storage
space (see Section H.1, "Apple lie Memory Map"), using it for
text or graphics is tricky and is not recommended.

• High-resolution page 1 , at addresses $ 2 0 0 0 to $ j F F F hexa­
decimal (8 1 92 to 1 6383 decimal) , is the usual area for high­
resolution graphics, and is accessible via Applesoft's H G R
statement.

• High-resolution page 2, at addresses $ a I) 0 0 to $ 5 F F F hexa­
decimal (1 638 a to 2 a 5 7 5 decimal) , serves as an alternate
area for high-resolution graphics, and is accessible via Apple­
soft's H G R 2 statement.

Peeks, Pokes, and Calls

L

soft switch: a location in memory that
produces some special effect whenever
its contents are read or written

For more information ...

Displaying graphics

To use the different text and graphics areas, you can use Applesoft's
built-in text and graphics facilities or you can use PEE K and PO K E
to manipulate the soft switches that control the display of text and
graphics. There are four such soft switches, each consisting of a pair
of special locations in the Apple lie's memory. Any PEE K or PO KEto
one of the locations in the pair sets the switch one way; aPE E K or
PO KEto the other location in the pair sets the switch the other way.

The addresses shown in parentheses in the list below are those of
the special locations that control the various settings of the switches.
Each address is given first in hexadecimal (preceded by a dollar sign,
$) and then iQ the equivalent decimal form.

The four soft switches controlling the display choose between

• text ($C051 , - 1 8303) and graphics ($C050 , - 1830 LI)

• high ($C057 , - 18297) and low resolution ($C 058,
- 18298)

• page 1 ($ C 0 5 LI , - 1 83 00) and page 2 ($ C 0 5 5 ,
- 18299)

• full-screen graphics ($ C 0 5 2, - 1 8302) and mixed text and
graphics ($C053 , -18301)

For further information on these and other soft switches in the Apple lie's
memory, see the Apple I/e Reference Manual.

POKE -18304t 0

Switches the display from full-screen text to graphics without clearing
the graphics screen. Depending on the settings of the other soft
switches, the resulting display may be high- or low-resolution graph­
ics, taken from page 1 or 2, and full-screen graphics or mixed text and
graphics.

Similar Applesoft Statements: The G R statement switches to mixed
text and low-resolution graphics from page 1 and clears the graphics
screen to black. The H G R statement switches to mixed text and high­
resolution graphics from page 1 and clears the graphics screen to black.
The H G R 2 statement switches to full-screen high-resolution graphics
from page 2 and clears the entire screen to black.

Graphics

Displaying text

Full-screen graphics

Mixed text and graphics

Displaying page 1

260

POKE -16303t 0
Switches the display from any form of grarhics to full-screen text
without resetting the text window. Depending on the setting of the
applicable soft switch, the text displayed may be taken from low­
resolution page 1 or page 2.

The T E){ T statement also switches to text display, but in addition se­
lects page 1 , resets the text window to the full screen, and positions the
cursor in the bottom-left corner of the screen (column 1, row 24) .

POKE -16302t 0

Switches the display from mixed text and graphics to full-screen
graphics. Depending on the settings of the other soft switches, the
resulting display may be either low- or high-resolution graphics and
may be taken from either page 1 or page 2. If full-screen text is cur­
rently being displayed, there is no visible effect.

POKE -16301 t 0

Switches the display from full-screen graphics to mixed text and
graphics, with four lines of text at the bottom of the screen. Depend­
ing on the settings of the other soft switches, the upper portion of the
screen may show low- or high-resolution graphics, taken from either
page 1 or page 2. The text displayed in the bottom four lines will be
taken from the same page number as the graphics in the upper part
of the screen. If full-screen text is currently being displayed, there is
no visible effect.

POKE -16300t 0

Switches the display from page 2 to page 1 , without clearing the
screen or moving the cursor. Depending on the settings of the other
soft switches, the resulting display may be text or low-resolution
graphics taken from low-resolution page 1 , or high-resolution graph­
ics taken from high-resolution page 1 ; if graphics, it may be either full­
screen graphics or mixed with four lines of text from low-resolution
page 1.

Always execute this PO K E statement before switching to Integer BASIC
if you've been using page 2 in Applesoft ; otherwise you'll be left still look­
ing at text (low-resolution) page 2 while Integer BASIC is writing its
screen output to page 1 .

Peeks, Pokes, and Calls

Displaying page 2

Low-resolution graphics

High-resolution graphics

Clearing the graphics display

POKE - 16299t (I

Switches the display from page 1 to page 2, without clearing the
screen or moving the cursor. Depending on the settings of the other
soft switches, the resulting display may be text or low-resolution
graphics taken from low-resolution page 2, or high-resolution graph­
ics taken from high-resolution page 2; if graphics, it may be either full­
screen graphics or mixed with four lines of text from low-resolution
page 2.

POKE -lG288t (I

Switches from high- to low-resolution graphics, without clearing the
screen. Depending on the settings of the other soft switches, the re­
sulting display may be taken from low-resolution page 1 or page 2,
and may be either full-screen low-resolution graphics or mixed with
four lines of text from the same low-resolution page. If full-screen text
is currently being displayed, there is no visible effect.

Always execute this PO K E statement before switching to Integer BASIC
if you 've been using high-resolution graphics in Applesoft ; otherwise In­
teger BASIC's G R statement will incorrectly display the high- instead of
the low-resolution page.

POKE -lG287t 0
Switches from low- to high-resolution graphics, without clearing the
screen. Depending on the settings of the other soft switches, the re­
sulting display may be taken from high-resolution page 1 or page 2,
and may be either full-screen high-resolution graphics or mixed with
four lines of text from the corresponding low-resolution page. If full ­
screen text is currently being displayed, there is no visible effect.

CALL -1888
Clears low-resolution page 1 to black if displaying low-resolution
graphics, or to black-on-white at-signs (@) if displaying text. If display­
ing high-resolution graphics, or text or low-resolution graphics from
page 2, there is no visible effect.

CALL -1884
Clears the upper 40 rows of low-resolution page 1 to black if display­
ing low-resolution graphics, or the upper 20 lines to black-on-white
at-signs (@) if displaying text. If displaying high-resolution graphics,
or text or low-resolution graphics from page 2, there is no visible
effect.

Graphics 261

F.4

Reading the hand control buttons

262

CALL -3086
Clears the current high-resolution page to black. (Applesoft remem­
bers which page you used last, regardless of the switch settings.)

CALL -3082
Clears the current high-resolution page to the color most recently
used in an H P LOT statement. (Applesoft remembers which page
you used last, regardless of the switch settings.)

Miscellaneous Input and Output
This section describes the special locations in the Apple lie's mem­
ory for controlling a variety of miscellaneous input and output de­
vices: reading the buttons on the hand controls, controlling the
annunciator outputs and the utility strobe, and producing sounds
through the built-in speaker.

The annunciators are four pins of the hand control connector that can
each be set to either of two states (on or off). The utility strobe is another
pin of the connector that is normally at + 5 volts but can be triggered to
drop to zero volts for one-half microsecond. These features are typically
used to control devices such as lamps and relays connected to the com­
puter through the hand control connector. See the Apple lie Reference
Manual for further information.

PEEK (-16287)

Reads the button on hand control 0; yields a result > 127 if the but­
ton is being pressed, < = 127 if it is not. The [0 PEN - APPLE I key on
the Apple lie keyboard is equivalent to this button and can be read in
the same way.

PEEK (-16286)

Reads the button on hand control 1 ; yields a result > 127 if the but­
ton is being pressed, < = 127 if it is not. The [SOLI D-APPLE I key on
the Apple lie keyboard is equivalent to this button and can be read in
the same way.

Peeks, Pokes, and Calls

Controll ing the annunciators

L

PEEK (-16285)
Reads the button on hand control 2; yields a result > 1 2 7 if the but­
ton is being pressed, < = 1 2 7 if it is not.

Notice that, although there are provisions for connecting four hand con­
trols (numbered 0 to 3) to the computer, there is no way to read the but­
ton on hand control 3.

POKE -16295t 0
Turns on annunciator output 0 (hand control connector, pin 15).

POKE -16296t 0
Turns off annunciator output 0 (hand control connector, pin 15).

POKE -16293t 0
Turns on annunciator output 1 (hand control connector, pin 14).

POKE -16294t 0
Turns off annunciator output 1 (hand control connector, pin 14) .

POKE -16291 t 0
Turns on annunciator output 2 (hand control connector, pin 13).

POKE -16292t 0
Turns off annunciator output 2 (hand control connector, pin 13).

POKE -16289t 0
Turns on annunciator output 3 (hand control connector, pin 12).

POKE -16290t 0
Turns off annunciator output 3 (hand control connector, pin 12).

Miscellaneous Input and Output 263

Controll ing the utility strobe

Controlling the speaker

ONE R R GOT 0 statement: see Sec­
tion 3.5.1

F.5

PEEK (- 16320)

Triggers the utility strobe (hand control connector, pin 5).

The utility strobe should always be controlled with PEE K, not with
PO K E. Using PO K E triggers the strobe twice instead of once. See the
Apple lie Reference Manual for further information.

PEEK (-16336)

Produces a single click from the built-in speaker; can be used in var­
ious combinations and frequencies to produce musical tones and
other sounds.

The speaker should always be controlled with PEE K , not with PO K E.
Using PO K E produces two clicks instead of one. See the Apple lie Ref­
erence Manual for further information.

PEEK (-16352)

Produces a single click on a cassette recording or on an audio ampl i­
fier connected to the cassette output jack via the amplifier's auxil iary
input jack; can be used in various combinations and frequencies to
produce musical tones and other sounds. See Appendix M for further
information on using a cassette recorder.

Cassette output should always be controlled with PEE K , not with
PO K E. Using PO K E produces two clicks instead of one. See the Apple
lie Reference Manual for further information.

Error Handling
This section describes the special locations associated with Apple­
soft's error handling mechanism. They can be used by user-supplied
error-handling routines established with the 0 N ERR GOT 0
statement. See Section 3.5 and Appendix E for further information.

--~-PEEK (216)

Yields a result > 1 27 if an error-handling routine has been estab­
lished with the 0 N ERR GO T 0 statement, < = 1 2 7 if normal error
handling is in effect.

Peeks, Pokes, and Calls

Clearing the control stack

POKE 216t 0

Restores Applesoft's normal error-handling mechanism; cancels the
effect of a previous 0 N ERR GOT 0 statement.

PEEK (222)
After an error-handling routine has been called , yields the error code
identifying the type of error detected. See Appendix E and Table 3-1
(Section 3.5.1) for further information on error codes.

Errors associated with the Disk Operating System (DOS) will also regis­
ter at location 222; see the DOS manual for further information.

PEEK (218) "* 256 + PEEK (218)
After an error-handling routine has been called , this expression
yields the line number of the statement in which the error was
detected.

CALL -3288
Clears from Applesoft's internal control stack information placed
there when an error-handling routine was called . Should be used be­
fore exiting from any error-handling routine with aGO T 0 instead of a
RES U M E statement.

CALL 54815
Empties the internal control stack of all control information, without
affecting the contents of any variables.

Error Handling 265

Peeks, Pokes, and Calls

L_----__
G.1

AppendixG

Hints for Program
Efficiency

The information in this appendix can help you write programs that run
faster or use less memory space. Section G.1, "Saving Space," gives
tips you can follow if you need to conserve memory space. Section
G.2, "Saving Time," suggests ways to speed up program execution .

Saving Space
Serious programmers often keep two versions of their programs: one
expanded and heavily documented with REM statements, the other
"crunched" to use the minimum memory space. There are a number
of utility programs on the market that will make Applesoft programs
more compact. They work by automatically removing REM state­
ments, combining several statements onto a single program line, and
eliminating optional semicolons in P R I NT lists. Here are some tips
for programmers who prefer to do the work themselves :

• Use multiple statements per line. There is a small amount of
overhead (5 bytes) associated with each line in the program. Two
of these bytes contain the line number. This means that no matter
how many digits you have in your line number (minimum line
number is 0 , maximum is G 3 8 8 8), it takes the same number of
bytes (two). Putting as many statements as possible on each line
will cut down on the number of bytes used by your program. (A
single line can include up to 239 characters.)

When combining statements into fewer lines, remember that when the
condition in an IF ... THE N statement is false, execution continues with
the next line and not necessarily with the next statement.

If you're counting bytes, remember to add in one byte for each colon
used to separate statements.

Saving Space 267

268

Combining many statements on one line makes editing and other
changes much more difficult. It also makes a program more difficult to
read and understand, not only for others but also for you yourself when
you return to the program later on. Use this technique only in programs
with serious space limitations.

• Delete all REM statements. Each REM statement uses at least
one byte (for the keyword REM itself) , plus one byte for each
character in the text of the remark. For instance, the statement

REM THIS I S A REMARK

occupies 18 bytes of memory. In the program line

140 }{ = }{ + Y : REM UPDATE SUM

the REM uses 12 bytes of memory, plus one for the colon sepa­
rating it from the preceding statement.

Take care not to delete REM lines that are referred to by other lines. For
example, if your program includes the lines

200 GoTo 300

300 REM THIS IS THE NEXT ROUTINE

and you delete line 300, the program will halt with an UNO E FlO
STATEMENT error.

Like programs with many statements on each line, those without de­
tailed REM statements are difficult to read and understand, not only for
others but also for you yourself when you return to the program later on.
You should consider eliminating REM statements only when faced with
a serious shortage of memory space.

• Use integer instead of real arrays wherever possible (see Sec­
tion H.2, "Applesoft Memory Allocation").

• Use variables instead of constants. Suppose you use the con­
stant 3 • 1 4 1 5 9 ten times in your program. If you insert a
statement

PI = 3.14159

and then use the variable P I instead of the constant 3 • 1 4 1 59
each time it is needed, you will save 40 bytes. This will also result
in a speed improvement.

Hints for Program Efficiency

• Applesoft programs need not end with an END statement, so you
can save a little space by omitting it.

• Reuse the same variables. If you use a variable T to hold a tem­
porary result in one part of the program and you need a tempo­
rary variable later in your program, use T again . Or if you 're
accepting a one-character input from the user in two different
places in the program , use the same variable both times.

• Use subroutines and functions when the same action must be
performed at different places in the program, to avoid having to
write the identical code more than once.

• Use the zero elements of arrays-such as A (0) or B (0 ,)-() -
since space is allocated for them anyway.

• Semicolons are optional before and after TAB calls; leaving
them out saves one byte per occurrence.

• Semicolons between items in aPR I NT list are optional so long
as the separate items are unambiguous. For instance, in line 50
of the following example all items will be displayed separately (al­
though concatenated), since the dollar signs at the ends of the
string variable names make it clear they are three separate
variables:

10 LE T A$
20 LET B$
30 LET C$
40 LET C =
50 PRINT A$

LATE!"

"WELL, "
" MARSHA, "
"IT LOOKS LIKE"

10
B$ C$ "FRED IS" C"

This program will display

HOURS

WELL, MARSHA, IT LOOKS LIKE FRED IS 10
HOURS LATE!

But in this example several of the variables will be run together
and interpreted as a single name:

10 LET A = 5
20 LET B = 10
30 LET C 1.0 = 15
40 LET D 10
50 PRINT A B COlo D

Saving Space

G.2

270

Applesoft interprets line 50 as saying "display the value of inte­
ger variable ABC /." followed by the value of real variable D ," and
will display

010

Since variable ABC '1" hasn't been assigned a value, its value is O.

• If a quoted string is the last item in the last statement of a line, the
closing quotation mark may be omitted , saving one byte :

10 PRINT "TH I S IS THE WA Y THE WORLD
ENDS,

20 PRINT " NOT WITH A BANG BUT A
WHIMPER

This last technique should be used with caution : bad things can happen
if the omitted quotation mark comes somewhere other than at the end of
aline:

10 PRINT " THIS WON'T WORK PR I NT " I,/ERY
WELL

This line will display

THIS WON'T WORK: PRINT 0

The final 0 is the value of the undefined variable 1,/ E RY W EL L.

Saving Time
Utility programs called compilers are now available that convert Ap­
plesoft programs to a form in which they run far faster than normally.
However, a compiled program can take as much as 50% more space
than a non-compiled one. The hints listed below should improve the
execution speed of your Applesoft programs. Notice that some of
these same hints were given in Section G.1 to save memory space.
This means that in many cases you can both shorten and speed up
your programs at the same time.

• This hint is probably ten times more important than any other in
the list: use real variables wherever possible instead of integer
variables or constants. It takes more time to convert an integer to
its real-number representation than to fetch the value of a real
variable. This technique is especially important within subrou­
tines, loops, and other program segments that are executed
repeatedly.

Hints for Program Efficiency

• Space for variables is allocated in the variable table in the order
in which they are encountered during the execution of the pro­
gram. A line such as

•

5A = 0:B = A:C = B

will place A first in the variable table, B second, and C third (as­
suming this line is the first executed in the program). When these
variables are referred to later in the program, Applesoft will have
to search only one entry in the variable table to find A, two entries
to find B, and three entries to find C. Try to arrange for those vari­
ables that your program refers to most often to be located as
early as possible in the variable table.

Omit the index variable in N E}{ T statements. The statement

is somewhat faster than

because no check needs to be made to see whether the variable
named in the N E}{ T statement agrees with the index variable
named in the corresponding FOR statement.

• When Applesoft encounters a backward reference from a later
line of the program to an earlier one, such as

900 GOTO 100

it scans the entire program from the beginning until it finds the
desired line number (1 00, in this example) . So you can speed
things up by placing frequently-referenced lines as early in the
program as possible.

Saving Time

272 Hints for Program Efficiency

....

Implementation Details

This appendix contains information on various qetails of Applesoft's
internal operation:

• Section H.1, "Apple lie Memory Map," summarizes the use of
memory in the Apple lie and identifies areas of memory reserved
for system use.

• Section H.2, "Applesoft Memory Allocation," describes the way
Applesoft allocates memory for program and variable storage.

• Section H.3, "Zero Page Usage," details Applesoft's use of
special locations in page zero of the Apple lie's memory.

• Section H.4, " Keyword Tokens," list? the internal codes
Applesoft uses to represent keywords occurring in a program .

Implementation Details 273

H.1

Table H-1 Apple lie Memory Usage

274

Apple lie Memory Map
Table H-1 summarizes memory usage in the Apple lie. Addresses
preceded by a dollar sign ($) are in hexadecimal; they are followed
on the next line by their decimal equivalents.

Memory Range

From To Used for

$ 0 0 00 $ Ol FF System workspace ; not advisable to use
0 5 11

$ 0 2 00 $02FF Keyboard character buffer
512 767

$ 030 0 $ 0 3 CF Available for short machine-language programs
768 9 7 5

$ 0 3D O $ 03 FF Used by DOS (available if you don't use a disk drive)
97 6 10 2 3

$01l 0 0 $07FF Low-resolution graphics and text display, page 1
10211 2011 7

$0800 $ 0 6FF Low-resolution graphics and text display, page 2
20118 30 71

$0800 $ O}{ }{}{ Applesoft program and variable space, where)-(>< >< is the
20118 ~<}{)-{ setting of H I MEM :. This may be set as high as 1I 915 1;

must be less if using DOS or reserving part of memory for
machine language routines or high-resolution display pages.

$2000 $3FFF High-resolution graphics display page 1
819 2 16383

$1I000 $5FFF High-resolution graphics display page 2
163811 211575

$9600 $6FFF DOS (Disk Operating System)
381100 1I9151

$C OO O $CFFF Hardware I/O Addresses
1I9152 532117

$D OOO $F 7 FF Applesoft
532118 631187

$F800 $FFFF Apple lie System Monitor
631188 65535

Implementation Details

.....!.

-"

H.2

Figure H-1 Applesoft Memory Map

Applesoft Memory Allocation
Figure H-1 shows how Applesoft allocates the memory space be­
tween the start of program storage (normally $ 8 00 hexadecimal,
20 a 8 decimal) and the end of variable storage (determined by the
setting of HIM EM:). The boundaries between areas may vary; the
left column gives "pointer" addresses at which the current settings of
the boundaries can be found.

start of program
$0067-$0068

103-104

end of program
$00AF-$0060

175-176 ~

start of variables
$0069-$006A(LOMEM:)

105-106

start of arrays ~
$0066-$0 0 6C

107-108

end of variables
$0060-$0 0 6E

109-110

start of strings ~
$ 0 06F-$0 0 7 0

111 - 112

end of strings (H I MEM :)
$ 0 073-$0074

115-11 6 ~

PROGRAM

SIMPLE
VARIABLES

ARRAYS

FREE SPACE

STRINGS

normally $ 0 8 00
(20 48)

Pointer addresses are given in hexadecimal first, followed by their
decimal equivalents. All pointers are stored with the low-order byte
first. Thus, for example, the address of the beginning of string space
can be calculated with the Applesoft expression

PEEK (112) * 256 + PEEK (111)

Applesoft Memory Location 275

276

Figure H-2 shows how space is allocated for individual variables and
arrays. Simple real, integer, or string variables use seven bytes each.
Real variables use two bytes for the variable name and five for the
value (one exponent, four mantissa, most significant first) . Integer
variables use two bytes for the variable name, two for the value, and
have zeros in the remaining three bytes. String variables use two
bytes for the variable name, one for the length of the string, two for a
painter to the contents of the string in memory, and have zeros in the
remaining two bytes.

Real arrays use a minimum of twelve bytes: two bytes for the array
name, two for the size of the array in bytes, one for the number of di­
mensions, two for each dimension, and five for each element of the
array. Integer array variables use only two bytes for each element.
String array variables use three bytes for each element: one for the
length of the string and two for a painter to its contents. Multidimen­
sional arrays are stored with the first subscript varying fastest.

String variables and arrays contain pointers (addresses) to the con­
tents of the strings themselves, which are stored in order of creation
from HIM EM: down, using one byte of memory for each character
in the string. The painter stored with the variable gives the address of
the first character in the string.

When a new function is defined by a DE F F N statement, 6 bytes
are used to store the painter to the definition.

Reserved words occurring in a program are converted into one-byte
tokens (see Section H.4, "Keyword Tokens"). All other characters in
a program occupy one byte of program storage each.

As a program is executed, space is allocated on the internal control
stack as follows:

• Each active FOR IN D{T loop uses 16 bytes.

• Each active subroutine (one that has been called and has not yet
returned) uses 6 bytes.

• Each pair of parentheses encountered in an expression uses 4
bytes.

• Each temporary result calculated in an expression uses 12
bytes.

Implementation Details

Figure H-2 Variable and Array Maps
Simple Variables

Real Integer String Pointers

NAME (pos) 1 st byte NAME (neg) 1 st byte NAME (pas) 1 st byte
(pas) 2nd byte (neg) 2nd byte (neg) 2nd byte

exponent 1 byte high byte length 1 byte
mantissa m.s. byte low byte address low byte
mantissa 0 address high byte
mantissa 0 0
mantissa I. s. byte 0 0

Array Variables

Real Integer String Pointers

NAME (pos) 1 st byte NAME (neg) 1 st byte NAME (pas) 1 st byte
(pas) 2nd byte (neg) 2nd byte (neg) 2nd byte

OFFSET painter to next OFFSET pointer to next OFFSET pointer to next
variable : add to address of variable: add to address of variable: add to address of
this variable name this variable name this variable name

low byte low byte low byte
high byte high byte high byte

NO. OF DIMENSIONS NO. OF DIMENSIONS NO. OF DIMENSIONS
1 byte 1 byte 1 byte

SIZE Nth DIMENSION SIZE Nth DIMENSION SIZE Nth DIMENSION
high byte high byte high byte
low byte low byte low byte

SIZE 1 st DIMENSION SIZE 1 st DIMENSION SIZE 1st DIMENSION
high byte high byte high byte
low byte low byte low byte

REAL (0 , 0, . .. ,0) INTEGER% (0 ,0, . .. , 0) STRING$ (0,0, ... , 0)
exponent 1 byte high byte length 1 byte
mantissa m. s. byte low byte address low byte
mantissa address high byte
mantissa
mantissa I. s. byte

REAL (N, N, ... , N) INTEGER% (N, N, . . . , N) STRING$ (N, N, ... , N)
exponent 1 byte high byte length 1 byte
mantissa m. s. byte low byte address low byte
mantissa address high byte
mantissa
mantissa I. s. byte

m. s. = most significant
I. s. = least significant

Applesoft Memory Location

H.3

Table H-2 Applesoft Zero Page Usage

278

Zero Page Usage
Table H-2 shows the locations that Applesoft uses in page zero of
memory (locations $ 0 0 0 0 through $ 0 0 F F hexadecimal). Ad­
dresses are given first in hexadecimal, then in decimal. All pOinters
(memory addresses) are stored in the usual 6502 style, low-order
byte first. To find the value of a pointer, use the Applesoft expression

PEEK (SECNDADDR) * 258 + PEEK
(FIRSTADDR)

where FIR S TAD D Rand SEC N DAD D R are the addresses of the
two bytes of the pOinter itself.

Location(s) Used for

$ 0 0 0 0 - $ 0 0 0 5 Jump instructions to continue in Applesoft
o - 5

$ 0 0 0 A - $ 0 0 0 C Jump instruction for US R function (see Section 7.1.4)
10 - 12

$ 0 0 0 D - $ 0 0 1 7 General purpose counters/flags for Applesoft
13 - 23

$ 0 020 - $ 0 0 a F Reserved for system Monitor program
32 - 79

$ 0 0 5 0 - $ 0 0 6 1 General purpose pointers for Applesoft
80 - 97

$ 0 0 6 2 - $ 0 0 6 6 Result of last multiply or divide
98 - 102

$ 0067 - $ 0 0 6 8 Pointer to beginning of program. Normally set to $ 0 8 0 1.
103 - lOa

$ 0 0 6 9 - $ 0 0 6 A Pointer to start of simple variable space. Also points to the
1 05 - 1 06 end of the program plus 1 or 2, unless changed with the

L D M EM: statement.

$ 0 0 6 B - $ 0 0 6 C Pointer to start of array space
107 - 108

$ 0 0 6 D - $ 0 0 6 E Pointer to end of array space
109- 110

$ 0 0 6 F - $ 0 0 7 0 Pointer to start of string start. Strings are stored from here to
1 1 1 - 1 1 2 value of HIM EM: .

$0071 - $0072 General pointer
113 - lla

$ 0073 - $ 0 0 7 a Highest location in memory available to Applesoft plus one.
11 5 - 1 1 6 On initial entry to Applesoft, set to the highest RAM memory

location available.

Zero Page Usage

-
Table H-2 continued

Location(s) Used for

$0075 - $0076 Line number of line currently being executed
117 - 118

$0077 - $0078 "Old line number" at which execution was interrupted by
119 - 120 END , STOP , or i CONTROL r C

$0079 - $007A "Old text pointer." Location in memory of statement to be
121 122 executed next

$0075 - $007C Line number of 0 A T A statement containing next item for
123 1211 READ

$0070 $007E Absolute memory location of next item for REA 0
125 - 126

$007F $0080 Pointer to current source of I N PUT . Set to $ 0 2 0 1 during
127 128 an I N PUT statement. During aRE A 0 statement, set to

the 0 A T A item being read .

$0081 - $0082 Name of last-used variable
129 - 130

$0083 $00811 Pointer to value of last-used variable
131 132

$0 0 85 $009C General use
133 156

$0090 $00A3 Main floating-point accumulator
157 163

$OOAlI General use in floating-point arithmetic
1611

$00A5 $00A5 Secondary floating-point accumulator
"-

165 171

$OOAC $OOAE General use flags/pointers
172 1711

$OOAF $0050 Pointer to end of program (not changed by L 0 M EM:)
175 176

$0051 $00C8 Character input routine. Applesoft calls here every time it
177 - 200 wants another character.

$0058 $0059 Pointer to last character obtained through character input
1811 185 routine

$00C9 $OOCO Random number
201 205

$0000 - $0005 High-resolution graphics scratch pOinters
208 213

$0008 $OOOF ONE R R pointers/scratch
216 223

$OOEO $00E2 High-resolution graphics horizontal and vertical coordinates
2211 - 22 6

Implementation Details

Table H-2 continued

H.4

Table H-3 Applesoft Keyword Tokens

280

Location(s)

$ OOE 4
228

Used for

High-resolution graphics color code

$ 0 0 E 5 - $ 0 0 E 7 General use for high-resolution graphics
229 - 231

$ 0 0 E G Current high-resolution page being drawn on (decimal 32 if
230 page 1 ; decimal G 4 if page 2)

$ 0 0 E 8 - $ 0 0 E 9 Pointer to beginning of shape table
232 - 233

$OOFO - $OOF3 General use flags
240 - 243

$OOF4 - $O OF8 ONE R R pointers
2 44 - 248

Keyword Tokens
Applesoft tokenizes all its key words; that is, it converts them to one-
byte codes called tokens to save memory space. Table H-3 gives a
list of the tokens representing the various keywords.

Hex Dec Keyword Hex Dec Keyword

$8 0 128 END $8E la2 HLIN

$81 129 FDR $8F la3 I.JLIN

$82 13 0 NE }{ T $80 laa HGR2

$83 131 DATA $81 la5 HGR

$8a 132 INPUT $82 la6 HCOLOR =

$85 133 DEL $83 la7 HPLOT

$86 13a DIM $8a la8 DRAW

$87 135 READ $85 la8){ DRAW

$88 136 GR $86 150 HTA5

$89 137 TE>(T $97 151 HOME

$8A 138 PR# $98 152 ROT =

$85 139 IN# $99 153 SCALE =

$8C laO CALL $9A 15a SHLOAO

$8D 1 a 1 PLOT $95 155 TRACE

Keyword Tokens

-

--
.... Table H-3 continued

Hex Dec Keyword Hex Dec Keyword

$8C 156 NoTRACE $BB 187 CoNT

$80 157 NORMAL $BC 188 LIST

$8E 158 INVERSE $BD 188 CLEAR

$8F 158 FLASH $BE 180 GET

$AO 160 COLOR = $BF 181 NEW

$Al 16 1 POP $CO 182 TAB

$A2 162 I.IT AB $Cl 183 TO

$A3 163 HIMEM: $C2 1811 FN

$AlI 1611 LoMEM: $C3 185 SPC

$A5 165 oNERR $ClI 186 THEN

$A6 166 RESUME $C5 187 AT

$A7 167 RECALL $C6 188 NOT

$A8 168 STORE $C7 188 STEP

$A8 168 SPEED = $C8 200 +

$AA 170 LET $C8 201

$AB 171 GoTo $CA 202 *
$AC 172 RUN $CB 203 /

$Ao 173 IF $CC 20ll

$AE 1711 RESTORE $CO 205 AND

$AF 175 ~, $CE 206 OR

$BO 176 GoSUB $CF 207 >

$Bl 177 RETURN $DO 208

$B2 178 REM $Dl 208 <

$B3 178 STOP $02 210 SGN

$BlI 180 ON $03 211 INT
'-

$B5 181 WAIT $Oll 212 ABS

$B6 182 LOAD $05 213 USR

$B7 183 SAI.IE $06 2111 FRE

$B8 1811 OEF $D7 215 SCRN

$B8 185 POKE $D8 216 PDL

$BA 186 PRINT $D8 217 POS

'-

Implementation Details 281

Table H-3 continued

Hex Dec Keyword Hex Dec Keyword

$DA 218 SQR $E3 227 LEN

$DEJ 219 RND $Ea 228 STR$

$DC 220 LDG $E5 229 1.'AL

$DD 221 E~{ P $E6 230 ASC

$DE 222 COS $E7 231 CHR$

$DF 223 SIN $E8 232 LEFT$

$EO 22a TAN $E9 233 R I GHT$

$El 225 ATN $EA 23a MID$

$E2 226 PEEK

282 Implementation Details

Ranges of numeric values

Display Formats for
Numbers

This appendix describes the formats in which Applesoft displays or
prints numeric values. Numbers may not always be formatted in the
way you might expect; this is particularly true for numbers more than
9 digits long or for exceptionally small numbers.

Numeric values in Applesoft must be in the range - 1 * 1 0 .'. 38 to
1 * 1 0 .'. 38 . Any number whose absolute value is less than approxi­
mately 3 * 1 0 .'. - 38 is converted to zero. True integer values to be
assigned to integer variables (such as A 'X.) must be in the range
- 32767 to + 32767.

A number typed from the keyboard or a numeric constant used in
an Applesoft program may have as many as 38 digits. However,
only nine digits are significant, and the last digit is rounded off. An
Applesoft statement that you type as

PRINT 1.23456787654321

will display

1.23456788

on the screen.

-you type this from the
keyboard

-you get this on the screen

All arithmetic done on reals Integers are always converted to real form before being used in arith-
metic calculations, and the results are converted back to integer form
when assigned to an integer variable. Conversion from real to integer

truncate: to convert a real number to the form is by truncation to the next lowest integer, not by rounding to tbe
next lowest integer nearest integer.

Display Formats for Numbers 283

Rules for number formats Applesoft displays and prints numbers according to the following
rules :

• If the number is negative, it is preceded by a minus sign (-); if it is
zero or positive, no sign is used.

• If the number is an integer with an absolute value from 0 to
888 888 888 , it is formatted as an integer.

• If the number is not an integer and its absolute value is between
.01 and 888 888 888.2 , it is formatted with a decimal
point in the usual way.

scientific notation: the representation • in all other cases, the number is formatted in scientific notation
of numbers in terms of powers of 10 (see below).

Table 1-1 Number Formats

284

Table 1-1 shows examples of the formats used for displaying and
printing numbers.

Number

+ 1

- 1

6523

- 23.460

45.72*10 ' 5

1 * 10 "' 20

- 12.34567896 * 10 ,', 10

1000000000

999999999

Implementation Details

Output Format

- 1

6523

- 23.46

45720 00

1 E + 20

- 1. 23 45G 79 E +1 1

1 E + 09

999999999

Figure 1-1 Format for Scientific Notation

sign exponent symbol

I I

y
each)(is a digit

sign of exponent

digits of exponent

The format Applesoft uses for scientific notation is shown in Figure 1-1.
A sign is shown only if the number is negative. There is always ex­
actly one nonzero digit before the decimal point and up to eight digits
after it, with trailing zeros suppressed. There are never any leading
zeros; the digit before the decimal point is always nonzero. If there is
only one digit to print after all trailing zeros are suppressed, no deci­
mal point is shown. The letter E (for "exponent") is always followed
by a sign and a two-digit exponent. The value of a number repre­
sented in this form is the number before the E times 10 raised to the
power after the E. For example,

PRINT 35 * 345 14
PRINT -3.14159 * 5G7

PRINT 1 / 999
PRINT -3 / 999

Display Formats for Numbers

yields 1 • 18450085E + 37
.'. 5

yields - 1 .841 04GG9E + 14
yields 1 • 0 0 1 0 OlE - 0 3
yields - 3 • 0 0 3 0 0 3 E - 0 3

285

Implementation Details

Figure J-1 Single Cursor Moves

Figure J-2 Long-range Cursor Moves

On-Screen Editing and
Cursor Control

The figures and tables below summarize Applesoft's facilities for on­
screen editing and cursor control. These features are discussed
briefly in Section 1.4, " Editing What You Type," and at greater length
in the Apple lie Owner's Manual and the Apple lie Applesoft Tutorial.

If you have the Apple lie aO-Column Text Card installed in your
computer, additional escape-mode features are available; see the
aD-Column Text Card Manual.

D

B A

c

I

J K

M

On-Screen Editing and Cursor Control

Table J-1 ASCII Equivalents of Arrow
Keys

Table J-2 Escape-Mode Functions

ASCII Keyboard
Key Code Equivalent

I LEFT -ARROW I 8 I CONT ROL I-H
I RIGHT - ARROW I 21 I CONT ROL I-U
I UP - ARROW I 11 I CONTROL I-K
I DOWN-A RROW I 10 I CONT RO L I-J

Key Function

A Moves cursor right one position ; leaves escape mode

B Moves cursor left one position ; leaves escape mode

C Moves cursor down one line; leaves escape mode

D Moves cursor up one line; leaves escape mode

Moves cursor up one line; remains in escape mode

J Moves cursor left one position ; remains in escape mode

K Moves cursor right one position ; remains in escape mode

M Moves cursor down one line; remains in escape mode

I LEFT - ARROW I Moves cursor left one position ; remains in escape mode

I RIGHT - ARROW I Moves cursor right one position ; remains in escape mode

I UP-ARROW I Moves cursor up one line; remains in escape mode

I DOWN - ARROW I Moves cursor down one line; remains in escape mode

E Clears from cursor to end of line; leaves escape mode

F Clears from cursor to end of text window; leaves escape mode

@ Clears entire text window; moves cursor to top-left corner; leaves
escape mode

On-Screen Editing and Cursor Control

'"'-

Table K-1 40/80-Column Display
Differences

Escape
Mode

'-

Card Inactive: Checkerboard
40-Column cursor
Display

...... Card Active: Plus-sign
40-Column cursor;
Display additional

escape-mode
features
available

Card Active: Plus-sign
"- SO-Column cursor;

Display additional
escape-mode
features
available

4O/80-Column Display
Differences

The following chart summarizes the differences in the Apple lie's be-
havior with and without the Apple lie aO-Column Text Card installed.
Notice that even 40-column display behaves somewhat differently
with the aO-Column Text Card installed and active than without it. See
the aO-Column Text Card Manual for further information.

Inverse Comma
Inverse Home Flash Tabbing HTAB

Uppercase Clears text Uppercase Available Available
characters only window characters only

to black;
characters
displayed in
inverse

Upper- and Clears text Not available Available Available
lowercase window

to white ; DO NOT USE
characters
displayed
in black

Upper- and Clears text Not available Not available Not available
lowercase window for second for second

to white; DO NOT USE 40 columns 40 columns ; use
characters POKE 36 t }<>~

displayed
in black

40/80-Column Display Differences 289

40/80-Column Display Differences

Comparison with Integer
BASIC

This appendix summarizes the differences between Applesoft and
Apple's earlier Integer BASIC language. Section L.3 gives some hints
on converting programs written in Integer or other versions of BASIC
to Applesoft.

If Integer BASIC is loaded into your computer's memory, you can
switch from Applesoft to Integer BASIC by typing the command

INT

To switch from Integer BASIC to Applesoft, type

FP

F P stands for "floating-point ," the name for the internal format used by
languages like Applesoft to represent real numbers.

Comparison with Integer BASIC 291

L.1

Table L-1 Applesoft Features Not Avail­
able in Integer BASIC

ATN

CHR$ COS

DATA

FLASH

GET

HCDLOR =

DEF FN

FN

HGR

I NT I NI.JERSE

LEFT$

MID$

NORMAL

LOG

DRAW

FRE

HGR2

LOMEM:

Differences between Features
Table L -1 lists Applesoft statements and functions that are not avail­
able in Integer BASIC.

HIMEM: HOME HPLOT

ON ... GOSUB

POS

ON ... GOTO ONERR GOTO

READ

SCALE =

TAN

USR

WAIT

)-(DRAW

RECALL

SHLOAD

RESTORE

SI N

Table L-2 Integer BASIC Features Not
Available in Applesoft

292

AUTO

DSP

MAN

MOD

RESUME R I GHH ROT =

SPC SPEED = SQR STOP STORE STR$

Table L-2lists Integer BASIC statements and functions that are not
available in Applesoft.

Comparison with Integer BASIC

Table L-3 Applesoft Features Expressed

Table L -3 lists Applesoft features that are expressed or accomplished
differently in Integer BASIC.

Differently in Integer BASIC Applesoft Integer BASIC

L.2

CLEA R

CONT

HTAB

ON){ GOT O 110 , 120, 130

ON >(GOSUB 1 100, 1200 , 13 00

HOME

NORMAL

F L ASH

>('X, (integer variable)

<> or ><

Other Differences

CLR

CON

T AB

GOTO 100 + 10* >(

GOSUB 1000+100* >(

CA LL - 9 36

POK E 50, 127

POK E 50,255

PO KE 50,63

As the name implies, the only numbers Integer BASIC can deal with
are integers (whole numbers) . Real variables and constants (num­
bers with decimal pOints or exponents) are available in Applesoft but
not in Integer BASIC.

In Integer BASIC, the correctness of a statement's syntax is checked
when the statement is typed (when you press the I RET UR N I key). In
Applesoft, such checking is not done until the statement is executed.

Integer BASIC permits the line number in aG O T 0 or GO SUB
statement to be specified by an arithmetic variable or expression ; in
Applesoft it may be specified only by an actual line number.

In Applesoft, only the first two characters in a variable name are sig­
nificant (for example, GOOD and GO U G E are recognized as the
same variable) . In Integer BASIC, all characters in a variable name
are significant.

String operations are defined differently in the two languages. In
Integer BASIC, both strings and arrays must be defined in a DIM
statement; in Applesoft , only arrays must be so defined.

Other Differences

294

Applesoft arrays may be multidimensional ; Integer BASIC arrays are
limited to one dimension. There are no string arrays in Integer
BASIC.

Applesoft automatically sets all array elements to zero or the null
string on executing RUN or C LEA R. In Integer BASIC, your program
must explicitly set all array elements to their initial values.

In Integer BASIC, if the condition specified in an IF ... THE N state- --'
ment is false, only the THE N portion of that statement is skipped. In
Applesoft, all statements following the keyword THE N on the re-
mainder of the same program line are skipped; program execution
proceeds with the next numbered line.

In Applesoft, the T RAe E statement displays the line number of each
individual statement executed; in Integer BASIC, the line number is
displayed just once for each program line.

In Applesoft, PE E K, PO K E, and CAL L may use the true range of
memory addresses (0 to 65535). In Integer BASIC, locations with
addresses greater than 32767 must be referred to by their corre­
sponding negative values (location 32768 is called - 32767 - 1 ;
32768 is called - 32767; 32770 is called - 32766 ; and so on) .

If control reaches the end of an Integer BASIC program without an
END statement having been executed, an error message is dis­
played; in Applesoft, the END statement at the end of a program is
optional.

In Integer BASIC, every N E){ T statement must include a variable
name; in Applesoft, the variable name is optional.

In the Integer BASIC IN PU T statement, the string representing the
optional prompting message is followed by a comma, not a semi­
colon as in Applesoft. If the first variable in the I N PUT list is an arith­
metic (integer) variable, a question mark (?) is displayed whether the
optional prompting string is present or not; if the first variable in the
list is a string variable, no question mark is displayed, again whether
the prompting string is present or not. In Applesoft , the question mark
is displayed only if no prompting string is specified.

Comparison with Integer BASIC

L.3
Converting BASIC Programs to Applesoft
Although different versions of BASIC are generally similar, there are
some incompatibilities that you should know about if you 're planning
to convert programs to Applesoft from Integer or other versions of
BASIC. Here are some things to watch for:

• Some versions of BASIC use square brackets [] to denote
array subscripts ; Applesoft uses parentheses () .

• Many versions of BASIC require that you define the lengths of all
strings in DIM statements before you use them. In converting a
program to Applesoft, remove all such DIM statements for
strings ; use DIM only to define arrays. In some of these other
versions of BAS IC, a statement of the form

DIM A$ (It J)

defines a string array of J elements, each of length I . Convert
DIM statements of this type to

DIM A$(J)

• Some versions of BASIC use a comma (t) or an ampersand (&:)
for string concatenation ; Applesoft uses a plus sign (+).

• Applesoft uses the string functions L EFT $, MID $, and
RIG H T $ to extract substrings. Other versions of BASIC (such
as Integer BASIC) use the expression

A$ (I)

to refer to character number I of string A $, and

A$ (It J)

to designate the substring of A $ from character number I to
character number J. These expressions occurring on the right
side of an assignment statement can be converted to Applesoft
as follows :

Convert A$ (I)
to MID $ (A $ tIt 1)

Convert A $ (I t J)
to MID $ (A $ tIt J - I + 1)

Converting BASIC Programs to Applesoft

296

When these expressions occur on the left side of an assignment
statement, convert them as follows:

Convert A$ (I) =)($

to A$ = LEFT$(A$, I 1) +)($ +
MID$ (A$, I + 1)

Convert A$ (I , J) =){$

to A$ LEFT$(A$, I - 1) +)($ +
MID$(A$, J + 1)

• Some versions of BASIC allow "multiple assignment" statements
of the form

LET B = C = 0

This statement wou Id set both variables Band C to O.

In Applesoft, such a statement has an entirely different effect: all
equal signs after the first are interpreted as logical comparison
operators. Thus the statement above will set variable B to 1
(meaning "true") if C equals 0, to 0 (meaning "false") if it
doesn't.

To convert such a multiple assignment statement into Applesoft,
rewrite it as

C o B C

or

B 0: C = (>

• Some verions of BASIC use a slash (I) instead of a colon (:) to
separate multiple statements on the same line. In converting to
Applesoft, change each such slash to a colon .

• Programs that use the MAT (matrix arithmetic) functions avail­
able in some versions of BASIC will have to be rewritten using
FOR IN E){ T loops to perform the corresponding matrix
operations.

Comparison with Integer BASIC

[CONTRO L 1-[RESET I: see Section 1.3.2

M.1

SA') E writes a program to tape

If You Have a Cassette
Recorder

This appendix discusses Applesoft's facilities for storing programs
and information on tape cassettes. For any of these featu res to work,
all of the following conditions must be present:

• There must be a cassette tape recorder properly connected to
the computer.

• The tape recorder must be turned on.

• There must be a tape cassette properly mounted in the recorder.

• The recorder must be set to " record " or "play," depending on the
statement being executed.

None of the Applesoft tape operations checks for these conditions; if any
of the conditions doesn't hold, the system may hang indefinitely. Only
I CONTROL 1-[RESET Ican interrupt a tape operation; only God can make
a tree.

The SAl.' E Command

The SA I.J E command writes the Applesoft program currently in
memory onto a tape cassette. No prompting message or signal of
any kind is given; the tape recorder must already be turned on and
set to " record" at the time the SA I.J E command is executed. Beeps
signal the start and end of the recording.

Occasionally a tape recorder will not work properly when both input and
output cables are plugged in at the same time. This problem originates
from a ground loop in the tape recorder itself, which prevents making a
good recording . The easiest solution is to unplug the output cable (usu­
ally labeled "monitor" on the tape recorder) when recording. Such a
ground loop causes no trouble when reading a tape.

If You Have a Cassette Recorder 297

M.2

L a A 0 reads a program from tape

M.3

5 TOR E writes an array to tape

M.4

R E CAL L reads an array from tape

298

If your system is equipped with a disk drive and you have the Disk Oper­
ating System (DOS) loaded and running, a SA t,J E command with a
name following the keyword SA \,J E will write the current program onto a
disk under that file name. See Section 1.2.5 and your DOS manual for
more information.

The LOA D Command
LOAD

The LOA D command reads an Applesoft program into memory from
a tape cassette. No prompting message or signal of any kind is given;
the tape recorder must already be turned on and set to "play" at the
time the LOA D command is executed. A beep signals when the be­
ginning of information is detected on the tape; a second beep is
sounded when the program has been successfully loaded.

If your system is equipped with a disk drive and you have the Disk Oper­
ating System (DOS) loaded and running, a LOA 0 command with a
name following the keyword LOA 0 will read a program from a disk
under that file name. See Section 1.2.6 and your DOS manual for more
information.

The S TOR E Statement
STORE M}{

The S TOR E statement writes the contents of an integer or real array
onto a tape cassette. The name of the array (M >(in the example
above) follows the keyword S TOR E, without a subscript. No prompt­
ing message or signal of any kind is given; the tape recorder must
already be turned on and set to "record" at the time the S TOR E
statement is executed. Beeps signal the start and end of the
recording .

String arrays cannot be written with the 5 TOR E statement.

The R E CAL L Statement
RECA LL M>{

The R E CAL L statement reads information into an integer or real ar­
ray from a tape cassette. The name of the array (M >(in the example
above) follows the keyword R E CAL L, without a subscript. The des­
ignated array must have been previously defined in a DI M statement
in the program issuing the R E CAL L .

If You Have a Cassette Recorder

5 H LOA 0 reads a shape table from
tape

shape tables: see Section 6.3

M.5

No prompting message or signal of any kind is given ; the tape re­
corder must already be turned on and set to "play" at the time the
R E CAL L statement is executed. A beep signals when the beginning
of information is detected on the tape; a second beep is sounded
when the information has been successfully transferred.

String arrays cannot be read with the R E CAL L statement.

The name of the array read with R E CAL L need not be the same name
used in the S TOR E statement that wrote the information onto the tape.
However, the dimensions of the array being read should be the same as
those of the array originally written. For example, if the tape was written
by the statement

STORE A

where array A had been defined by

DIM A (5, 5, 5)

it can be read back with the statement

RECALL B

where array B is defined by

DIM B (5, 5, 5)

If the dimensions of the two arrays differ, R E CAL L may scramble the in­
formation read into array B, or the program may halt with the message

?OUT OF MEMORY ERROR

The S H LOA D Statement
SHLOAD

The S H LOA D (for "shape load") statement reads a shape table into
memory from a tape cassette. The shape table is loaded just below
the current setting of HIM EM: (see Section 7.2.1, "The HI M EM:
Statement") and HIM EM: is reset to just below the shape table to
protect it.

No prompting message or signal of any kind is given ; the tape re­
corder must already be turned on and set to "play" at the time the
S H LOA D command is executed. A beep Signals when the beginning
of information is detected on the tape; a second beep is sounded
when the shape table has been successfully loaded.

See Section 6.3 for extensive information on shape tables.

The S H LOA D Statement

300 If You Have a Cassette Recorder

Complete Listing of the
Postage Rates Program

Below is a complete listing of the postage rates program developed in
Chapter 8. A copy of this program is included on the APPLESOFT
SAMPLER disk.

10 REM
20
30 REM

Ll O REM
50 REM

POSTAGE RATES -name of program
-colon leaves line empty

DETERMINES POS TAG E FEES
-what program does

FOR EXPRESS, 1ST CLASS,
AND PRIOR I TY MAI L

-empty line inserted by embed­
ding I CON TR OL J-J (line feed)
at end of REM statement in
line 50

GO REM V29/01/82 -number and date of th is
version

70 REM BY JOHN SCRIBBLEMONGER
-programmer's credit line

100 REM MENU OF POSTAGE CLASSES
- I CONTROL J-J here

1 1 0 HOM E -begin with a clear screen
120 TITLE$ "POSTAGE RATES "
130 PRINT
lL1 0 HTAB 21-LEN (TITLE$) / 2

-formula to center title
150 PRINT TITLE$
lGO
170
180
190
200
21 0

1,ITAB
PRINT
PRINT
PRINT
PRINT
PRINT

G
" 1 •
112.
" 3 •

"LI.

E){ PRESS "
FIRST CLASS"
PRIOR I TY"

END THE PROGRAM "
-the escape hatch

Complete Listing of the Postage Rates Program

300 REM -I CONTROL I-J here
GET CLASS OF MAIL

310 I,lTAB 14
320 PRINT "Press
c hoi c e : " ;

330 GET C$

335 REM
CHECK FOR

- 1r:C=-=O:-:-:N-=-T R=-CO::-:-L'I - J here

the nUMber of your
-semicolon keeps response on

same line
-only one keypress needed;

cuts down on error possibili­
ties. Note use of string variable
to get number; avoids type
mismatch errors

- I CONTROL I-J here
VALIDITY

-another 1 CONTROL I-J (last
time this is noted)

340 IF C$ = "4" THEN END

350 IF l,lAL (C$) >
THEN 380

380 PRINT CHR$ (7) ;

370 GOTO 330

380 PRINT C$

380 C l,lAL (C$)

500 REM

-end program if user types a 4
o AND VAL (C$) < 4

-skip next two lines if valid
choice typed

CHR$ (7) ;
-beep twice to get attention
-response was invalid ; try

again
-since choice accepted via

GET, it isn't displayed on the
screen. Display it back to user

-need this value later to deter­
mine what section of program
to branch to for proper
processing

GET WEIGHT OF ITEM

505 l,lTAB 18

510 PRINT "Please enter the WEIGHT - a
nUMber plus an 0 (for ounce s) or a
P (for pounds) - and press the
RET URN f, e Y : "; -prompting message to tell

user what information to type
and how to type it

5 2 0 CAL L - 888 -clear to end of line; useful to
erase any errors that might be
typed

Complete Listing of the Postage Rates Program

530 I N PUT ""; W $ -semicolon suppresses ques-
tion mark

5ao W1$ = RIGHT$ (W$, 1)
-rightmost letter should be

either 0 or P; use it later to see
if weight is consistent with
postal regulations

550 W = l.) A L (W $) -how many ounces or pounds?
555 REM

WAS ENTERED WEIGHT VALID?

560 IF W :> 0 AND (W1$ = "0" OR W1$
"P") THEN 710 -ifaweightwastyped,andif

last character was either 0 for
ounces or P for pounds, then
proceed

570 PRINT CHR$ (7); CHR$ (7)
-beep twice to get attention

580 GOT 0 500 -entry was invalid; try again
700 REM

CHECK CONSISTENCY

710 ON C GOSUB 10000, 11000, 12000
-branch to appropriate subrou­

tine to see if weight typed is
within postal rules or program
limitations for mail class
chosen

720 IF NOT EFLAG THEN 810

730 GOSUB 60000

7ao EFLAG

750 CLEAR

760
800

GOTO 100
REM

o

-if no inconsistency detected in
subroutine then proceed with
processing

REM KEYSTALL
-wait for user to acknowledge

message
-clear error flag set in

subroutine
-reset all variables, clear

arrays, etc.
-restart program loop

FIND APPROPRIATE CODE FOR
PRO C E S SIN G -everything is valid and consis-

tent; now program can solve
for the postage rate!

Complete Listing of the Postage Rates Program

304

910 ON C GOSUB 1000, 2000, 3000
-branch to proper calculating

routine
920 GOSUB 81000 REM FORMATTER

-format result for display
930 PRINT
935 REM

DISPLAY RESULTS

9ao PRINT "POSTAGE NEEDED: $"; T$
-finally, the postage due!

950 GOSUB 80000 : REM KEYSTALL

980 CLEAR
970 GOTO 100
999 REM

SUBROUTINES

1000 REM

-don't go on until user is ready
-prepare for restart ...
- ... and do it

BEGIN HERE

EXPRESS MAIL CALCULATION

1010 W = INT (W + .88)

1020 T R (W)

1030 RETURN

2000 REM

-weight must be increased to
compensate for fractions;
postal rates read "NOT MORE
THAN x POUNDS"

-rate array filled in express mail
consistency-checking routine
(line 100(0)

-end routine

FIRST CLASS CALCULATION

2010 T = .20 + I NT (W + .88 - 1) * . 17
-first class rate is 20 cents first

ounce plus 17 cents for each
additional ounce or portion
thereof (April, 1982 rates)

2020 RET URN -end routine

3000 REM
PRIORITY MAIL CALCULATION

3010 W = INT (W + .88)
-compensate for partial ounces

or pounds

Complete Listing of the Postage Rates Program

"-

...

3020 IF W > 10 THEN 3160
- go to line 3 1 60 for weights

greater than 10 pounds
(ounce weights converted to
pounds in consistency subrou­
tine starting at line 1200 0)

3025 REM
PRIORITY RATES TO 10 POUNDS

3030 IF W <: = 1 THEN T = 2.24
30LlO IF W > 1 AND W <: = 1.5 THEN T =

2 . 30 -rates in half-pound increments
3050 IF W >- 1.5 AND W <== 2 THEN T

2.5L1
3060 IF W 2 AND W <= 2.5 THEN T ...

2.78
3070 IF W >- 2 . 5 AND W -:: = 3 THEN T

3.01
3072 IF W ":. 3 AND .. W -:: = 3.5 THEN T

3.25
3078 IF W :::- 3 .5 AND W <= LI THEN T

3.Ll8
3080 IF W > LI AND W <= LI.5 THEN T

3.73
3080 IF W .. : . LI.5 AND W <= 5 THEN T ..

3.87
3100 IF W ... 5 AND W < = 6 THEN T LI.LILI

- rates by the pound now!
3110 IF W > 6 AND W (= 7 THEN T LI.82
3120 I F W > 7 AND W <= 8 THEN T 5.38
3130 IF W .. 8 AND W <= 8 THEN T 5.87 ,,:'

31 L1 0 IF W > 8 THEN T = 6.35
3150 GO TO 32L10 - branch to RET URN statement
3160 REM

PRIO RI TY RATES FOR ol,JER 10
POUNDS

3170 T1 = INT (W / 5 - 1) * 2.38 +
3.87 - first 5 pounds cost $3.97; each

added 5 pounds cost $2.38
3180 WI = W - INT (W / 5) * 5

- how many odd pounds are
there (pounds that are not
multiples of 5 and must be
charged at a special rate)?

3 180 IF W1 1 THEN Try
"- .Ll7

3200 IF W1 2 THEN T2 = .85

Complete listing of the Postage Rates Program 305

306

3210 IF WI = 3 THEN T2 = 1.42
3220 IF WI = 4 THEN T2 = 1.90
3230 T = T 1 + T 2 -add the 5-pound-multiples rate

to the odd-pounds rate
3240 RET URN -end routine

10000 REM
EXPRESS MAIL CONSISTENCY CHECK

10010 DATA 9.35, 9.35, 9.55, 9.9 0 ,
10.30, 10.85, 11.00, 11.40,
11 • 75, 0 -express mail rates ; 0 at end is

"last item" flag
1 0020)-(0 -set up counter to check how

1003 0 \I = \I + 1 i\ i\

10040 READ R O()

10050 IF R ()() =

10080 GoTo 10030
10070)-{ =){ - 1

0

many rates are read from
DATA list

-increment counter
-put price into proper array

element
THEN 10070

-price of 0 marks end of list
-get next price
-)-{ includes count of " last item"

flag from 1 00 50 ; subtract it
from count since it's a
"dummy" item

10080 IF Wl$ = "P" THEN 10100
-next line is for ounces only

1 0 0 8 0 W = W / 1 8 -convert ounces to pounds
10100 IF W < =)-(THEN 10140

10110 PRINT

-if weight in pounds is covered
by the rate chart, then go
ahead

10120 PR I NT CHR$ (7) ; CHR$ (7) ; " TOO
HEAVY FOR MY TABLES - PLEASE
CALL THE POST OFFICE "

10130 EFLAG = 1

10140 RETURN
11000 REM

-sorry; can 't help you
-set flag indicating inconsistent

weight/type; will be checked at
line 720

-end routine

FIRST CLASS CONSISTENCY CHECK

11010 IF Wl$ = "0" AND W < 12.01 THEN
11080 -OK if not more than 12 ounces

Complete Listing of the Postage Rates Program

11020 PRINT
11030 PR I NT CHR$ (7); CHR$ (7); "TOO

HEAl,ly FOR FIRST CLASS"
-sorry-inconsistent!

11040 PRINT "TRY PRIORITY MAIL"
-suggest alternative

11050 E F LAG = 1 -set flag indicating inconsistent
weight/type; will be checked at
line 720

11060 RETURN -end routine

12000 REM
PRIORITY MAIL CONSISTENCY CHECK

12010 IF 1,..11$ "P" THEN 12080
-if in pounds, then skip down

12020 IF 1,..1 > 12 THEN 12080
-skip down if weight is between

12 and 16 ounces
12030 PRINT
12040 PR I NT CHR$ (7); CHR$ (7);

LIGHT FOR PRIORITY MAIL
-too light!

12050 PRINT "TRY FIRST CLASS"

"TOO
"

-suggest alternative
1 2060 E F LAG = 1 -set flag indicating inconsistent

weight/type; will be checked at
line 720

1 2070 GOT 0 1 2 1 50-branch to end of routine
1 2080 1,..1 = 1,..1 / 1 6 -convert ounces to pounds
12080 IF 1,..1 < = 70 THEN 12150

-final check: is item on the
charts?

12100 PRINT
12110 PR I NT CHR$ (7); CHR$ (7);

HEAVY FOR PRIORITY MAIL
-off the charts

"TOO
"

12120 PRINT "TRY ONE OF THE AIR E)<PRESS
COM PA N I E S " -too big for the Post Office!

12130 EFLAG = 1 -set flag indicating inconsistent
weight/type; will be checked at
line 720

12150 RETURN -end routine

Complete Listing of the Postage Rates Program

308

58888 REM
UTILITY ROUTINES

80000 REM
KEYSTALL

80010 l.JTAB 24
80020 I Nl.JERSE

80030 PRINT "PRESS
80040 GET A$
80050 NORMAL

80080 RETURN
81000 REM

-routines useful for various
tasks but ancillary to rest of
program

-routine to interrupt program
until user presses a key

-move cursor to screen bottom
-set text to appear black-on-

white
RETURN TO GO ON ••• ";

-wait for keypress
-restore ordinary white-on-

black
-end routine

MONEY FORMATTER
-adds zeros after the decimal

pOint where needed

8 1 0 lOT $ S T R $ (T) -turn the calculated postage
fee into a string

81020 1FT = I NT <T) THEN T$ = T$ +
".00" -if charge is in whole dollars,

add a decimal point and two
zeros

81030 IF ASC (R I GHT$ <T$, 2)) = 48 THEN
T $ = T $ + "0" -if second character from the

right is a decimal point (ASCII
code 4 8) then number has
only one digit to right of deci­
mal-so add a " 0 " to the string

81040 RETURN -end the routine

Complete Listing of the Postage Rates Program

Glossary
~--------------~

Glossary of Technical Terms

address: A number used to identify something, such as a location in
the computer's memory.

algorithm: A step-by-step procedure for solving a problem or ac­
complishing a task.

AND : A logical operator that produces a true resu lt if both of its oper­
ands are true , a false result if either or both of its operands are false;
compare OR , NO T.

Apple lie: A personal computer in the Apple II family, manufactured
and sold by Apple Computer.

Apple lie BO-Column Text Card: A peripheral card made and sold by
Apple Computer that plugs into the Apple lie's auxiliary slot and con­
verts the computer's display of text from 40- to aO-column width.

Apple lie Extended BO-Column Text Card: A peripheral card made
and sold by Apple Computer that plugs into the Apple lie's auxi liary
slot and converts the computer's display of text from 40- to aO-column
width while extending its memory capacity by 64K bytes.

Applesoft: An extended version of the BASIC programming lan­
guage used with the Apple lie computer and capable of processing
numbers in floating-point form . An interpreter for creating and execut­
ing programs in Applesoft is built into the Apple lie system in firm­
ware. Compare Integer BASIC.

application program: A program that puts the resources and capa­
bilities of the computer to use for some specific purpose or task, such
as word processing, data-base management, graphics, or telecom­
munications. Compare system program.

Glossary of Technical Terms 309

310

application software: The component of a computer system con­
sisting of application programs.

argument: The value on which a function operates.

arithmetic operator: An operator, such as + , that combines nu­
meric values to produce a numeric result ; compare relational opera­
tor, logical operator.

array: A collection of variables referred to by the same name and dis­
tinguished by means of numerical subscripts.

ASCII: American Standard Code for Infprmation Interchange; a code
in which the numbers from <) to 1 27 stand for text characters, used
for representing text inside a computer and for transmitting text be­
tween computers or between a computer and a peripheral device.

assembler: A language translator that converts a program written in
assembly language into an equivalent program in machine language.

assembly language: A low-level programming language in which in­
dividual machine-language instructions are written in a symbol ic
form more easily understood by a human programmer than machine
language itself.

auxiliary slot: The special expansion slot inside the Apple lie used
for the Apple aO-Column Text Card or Extended aO-Column Text
Card.

back panel: The rear face of the Apple lie computer, which includes
the power switch, the power connector, and connectors for a video
display device, a cassette tape recorder, and other peripheral
devices.

BASIC: Beginner's All-purpose Symbolic Instruction Code; a high­
level programming language designed to be easy to learn and use.
Two versions of BASIC are available from Apple Computer for use
with the Apple lie : Applesoft (built into the Apple lie in firmware) and
Integer BASIC (provided on the DOS 3.3 SYSTEM MASTER disk).

binary: The representation of numbers in terms of powers of two, us­
ing the two digits <) and 1 . Commonly used in computers, since the
values <) and 1 can easily be represented in physical form in a vari ­
ety of ways, such as the presence or absence of current, positive or
negative voltage, or a white or black dot on the display screen.

Glossary of Technical Terms

binary file: A file containing " raw" information not expressed in text
form; compare text file.

binary operator: An operator that combines two operands to pro­
duce a result; for example, + is a binary arithmetic operator, < is a
binary relational operator, and 0 R is a binary logical operator. Com­
pare unary operator.

bit: A binary digit (0 or 1); the smallest possible unit of information,
consisting of a simple two-way choice, such as yes or no, on or off,
positive or negative, something or nothing.

bit bucket: The final resting place of all information; see write-only
memory.

body: The statements or instructions making up some construct in a
program, such as a loop or a subroutine.

boot: To start up a computer by loading a program into memory from
an external storage medium such as a disk. Often accomplished by
first loading a small program whose purpose is to read the larger pro­
gram into memory. The program is said to "pull itself in by its own
bootstraps"; hence the term bootstrapping or booting.

boot disk: See startup disk.

bootstrap: See boot.

branch: To send program execution to a line or statement other than
the next in sequence.

buffer: An area of the computer's memory reserved for a specific
purpose, such as to hold graphical information to be displayed on the
screen or text characters being read from some peripheral device.
Often used as an intermediary "holding area" for transferring infor­
mation between devices operating at different speeds, such as the
computer's processor and a printer or disk drive. Information can be
stored into the buffer by one device and then read out by the other at
a different speed.

bug: An error in a program that causes it not to work as intended.

byte: A unit of information consisting of a fixed number of bits; on the
Apple lie, one byte consists of eight bits and can hold any value from
o to 255 .

Glossary of Technical Terms 311

312

call: To request the execution of a subroutine or function .

card: See peripheral card.

catalog: A list of all files stored on a disk; sometimes called a
directory.

cathode-ray tube: An electronic device, such as a television picture
tube, that produces images on a screen coated with phosphors that
emit light when struck by a focused beam of electrons.

central processing unit: See processor.

character: A letter, digit, punctuation mark, or other written symbol
used in printing or displaying information in a form readable by
humans.

character code: A number used to represent a text character for
processing by a computer system.

code: (1) A number or symbol used to represent some piece of infor­
mation in a compact or easily processed form . (2) The statements or
instructions making up a program.

command: A communication from the user to a computer system
(usually typed from the keyboard) directing it to perform some imme­
diate action.

compiler: A language translator that converts a program written in a
high-level programming language into an equivalent program in
some lower-level language (such as machine language) for later exe­
cution . Compare interpreter.

component: A part; in particular, a part of a computer system .

computer: An electronic device for performing predefined (pro­
grammed) computations at high speed and with great accuracy.

computer system: A computer and its associated hardware, firm­
ware, and software.

concatenate: Literally, "to chain together"; to combine two or more
strings into a single, longer string containing all the characters in the
original strings.

Glossary of Technical Terms

conditional branch: A branch that depends on the truth of a condi­
tion or the value of an expression ; compare unconditional branch.

constant: A symbol in a program representing a fixed , unchanging
value; compare variable.

control: The order in which the statements of a program are
executed.

control character: A character that controls or modifies the way in­
formation is printed, transmitted or displayed. Control characters
have ASCII codes between 0 and 31 and are typed from the Apple
lie keyboard by holding down the I CONTRO L I key while typing some
other character. For example, the character I CO NT RO L I-e (ASCII
code 3) means " interrupt program execution."

controller card: A peripheral card that connects a device such as a
printer or disk drive to the Apple lie and controls the operation of the
device.

control variable: See index variable.

CPU: Central processing unit; see processor.

crash: To cease operating unexpectedly, possibly damaging or de­
stroying information in the process.

CRT: See cathode-ray tube.

current input device: The source, such as the keyboard or a mo­
dem, from which an Applesoft program is currently receiving its input.

current output device: The destination, such as the display screen
or a printer, to which an Applesoft program is currently sending its
output.

cursor: A marker or symbol displayed on the screen that marks
where the user's next action will take effect or where the next charac­
ter typed from the keyboard will appear.

data: Information; especially information used or operated on by a
program.

debug: To locate and correct an error or the cause of a problem or
malfunction in a computer program.

Glossary of Technical Terms

314

decimal: The common form of number representation used in every­
day life, in which numbers are expressed in terms of powers of ten,
using the ten digits 0 to 8 .

default: (1) A value, action, or setting that is automatically used by a
computer system when no other explicit information has been given.
For example, if a command to run a program from a disk does not
identify which disk drive to use, the Disk Operating System will auto­
matically use the same drive that was used in the last operation. (2)
That which, dear Brutus, is not in our stars.

deferred execution: The saving of an Applesoft program line for ex­
ecution at a later time as part of a complete program; occurs when
the line is typed with a line number. Compare immediate execution.

delimiter: A character that is used for punctuation to mark the begin­
ning or end of a sequence of characters, and which therefore is not
considered part of the sequence itself. For example, Applesoft uses
the double quotation mark (") as a delimiter for string constants : the
string " DOG" consists of the three characters D, 0 , and G, and does
not include the quotation marks. In written English, the space charac­
ter is used as a delimiter between words.

device: (1) A physical apparatus for performing a particular task or
achieving a particular purpose. (2) In particular, a hardware compo­
nent of a computer system.

digit: (1) One of the characters 0 to 8 , used to express numbers in
decimal form. (2) One of the characters used to express numbers in
some other form, such as 0 and 1 in binary or 0 to 8 and A to F in
hexadecimal.

dimension: The maximum size of one of the subscripts of an array.

directory: A list of all files stored on a disk; sometimes called a
catalog.

disk: An information storage medium consisting of a flat , circular
magnetic surface on which information can be recorded in the form of
small magnetized spots, similarly to the way sounds are recorded on
tape.

disk drive: A peripheral device that writes and reads information on
the surface of a magnetic disk.

Glossary of Technical Terms

diskette: A term sometimes used for the small (5-1 14-inch) flexible
disks used with the Apple Disk II drive.

Disk II drive: A model of disk drive made and sold by Apple Com­
puter for use with the Apple lie computer; uses 5-1 14-inch flexible
("floppy") disks.

Disk Operating System: An optional software system for the Apple
lie that enables the computer to control and communicate with one or
more Disk II drives.

disk-resident: Stored or held permanently on a disk.

display: (1) Information exhibited visually, especially on the screen
of a display device. (2) To exhibit information visually. (3) A display
device.

display color: The color currently being used to draw high- or low­
resolution graphics on the display screen.

display device: A device that exhibits information visually, such as a
television receiver or video monitor.

display screen: The glass or plastic panel on the front of a display
device, on which images are displayed.

DOS: See Disk Operating System.

edit: To change or modify; for example, to insert, remove, replace, or
move text in a document.

element: A member of a set or collection ; specifically, one of the indi­
vidual variables making up an array.

embedded: Contained within. For example, the string
" HUM P T Y DUM P T Y " is said to contain an embedded space.

ending value: The value against which the index variable is tested
after each pass through a loop, to determine when to stop repeating
the loop.

error code: A number or other symbol representing a type of error.

error message: A message displayed or printed to notify the user of
an error or problem in the execution of a program.

Glossary of Technical Terms 315

escape mode: A state of the Apple lie computer, entered by pressing
the ~ key, in which certain keys on the keyboard take on special
meanings for positioning the cursor and controlling the display of text
on the screen.

escape sequence: A sequence of keystrokes beginning with the
~ key, used for positioning the cursor and controlling the display
of text on the screen.

execute: To perform or carry out a specified action or sequence of
actions, such as those described by a program.

expansion slot: A connector inside the Apple lie computer in which
a peripheral card can be installed ; sometimes called peripheral slot.

expression: A formula in a program describing a calculation to be
performed.

FIFO: First in , first out.

file: A collection of information stored as a named unit on a periph­
eral storage medium such as a disk.

file name: The name under which a file is stored.

firmware: Those components of a computer system consisting of
programs stored permanently in read-only memory. Such programs
(for example, the Applesoft interpreter and the Apple lie Monitor pro­
gram) are built into the computer at the factory ; they can be executed
at any time but cannot be modified or erased from main memory.
Compare hardware, software.

fixed-point: A method of representing numbers inside the computer
in which the decimal point (more correctly, the binary point) is consid­
ered to occur at a fixed position within the number. Typically, the pOint
is considered to lie at the right end of the number, so that the number
is interpreted as an integer. Fixed-point numbers of a given length
cover a narrower range than floating-point numbers of the same
length, but with greater precision. Compare floating-point.

flag: A variable whose contents (usually 1 or 0 , standing for true or
false) indicate whether some condition holds or whether some event
has occurred , used to control the program's actions at some later
time.

Glossary of Technical Terms

floating-point: A method of representing numbers inside the com­
puter in which the decimal pOint (more correctly, the binary point) is
permitted to "float" to different positions within the number. Some of
the bits within the number itself are used to keep track of the point's
position. Floating-point numbers of a given length cover a wider
range than fixed-point numbers of the same length, but with less pre­
cision. Compare fixed-point.

format: (1) The form in which information is organized or presented.
(2) To specify or control the format of information. (3) To prepare a
blank disk to receive information by dividing its surface into tracks
and sectors; also initialize.

function: A preprogrammed calculation that can be carried out on
request from any pOint in a program.

GAME 1/0 connector: A special 16-pin connector inside the Apple
lie, originally designed for connecting hand controls to the computer,
but also used for connecting some other peripheral devices. Com­
pare hand control connector.

graphics: (1) Information presented in the form of pictures or im­
ages. (2) The display of pictures or images on a computer's display
screen. Compare text.

hand control: An optional peripheral device that can be connected
to the Apple lie's hand control connector and has a rotating dial and a
pushbutton; typically used to control game-playing programs, but can
be used in more serious applications as well.

hand control connector: A 9-pin connector on the Apple lie's back
panel, used for connecting hand controls to the computer. Compare
GAME 1/0 connector.

hang: For a program or system to "spin its wheels" indefinitely, per­
forming no useful work.

hard copy: Information printed on paper for human use.

hardware: Those components of a computer system consisting of
physical (electronic or mechanical) devices. Compare software,
firmware.

Glossary of Technical Terms 317

hertz: The unit of frequency of vibration or oscillation, also called
cycles per second; named for the physicist Heinrich Hertz and abbre­
viated Hz. The current provided by a standard power outlet alternates
at a rate of 60 hertz; that is, it changes polarity 60 times each second.
The Apple lie's 6502 microprocessor operates at a clock frequency of
1 million hertz, or 1 megahertz (MHz) .

hexadecimal: The representation of numbers in terms of powers of
sixteen, using the sixteen digits 0 to 9 and A to F . Hexadecimal num­
bers are easier for humans to read and understand than binary num­
bers, but can be converted easily and directly to binary form : each
hexadecimal digit corresponds to a sequence of four binary digits, or
bits.

high-level language: A programming language that is relatively
easy for humans to understand. A single statement in a high-level
language typically corresponds to several instructions of machine
language.

high-order byte: The more significant half of a memory address or
other two-byte quantity. In the Apple lie's 6502 microprocessor, the
low-order byte of an address is usually stored first and the high-order
byte second.

high-resolution graphics: The display of graphics on the Apple lie's
display screen as a six-color array of points, 280 columns wide and
192 rows high.

Hz: See hertz.

immediate execution: The execution of an Applesoft program line
as soon as it is typed ; occurs when the line is typed without a line
number. Compare deferred execution.

implement: To realize or bring about; for example, a language trans­
lator implements a particular language.

infinite loop: A section of a program that will repeat the same se­
quence of actions indefinitely.

information: Facts, concepts, or instructions represented in an or­
ganized form.

index: (1) A number used to identify a member of a list or table by its
sequential position. (2) A list or table whose entries are identified by
sequential position.

Glossary of Technical Terms

index variable: A variable whose value changes on each pass
through a loop; often called control variable or loop variable.

initialize: (1) To set to an initial state or value in preparation for some
computation. (2) To prepare a blank disk to receive information by di­
viding its surface into tracks and sectors; also format.

input: (1) Information transferred into a computer from some exter­
nal source, such as the keyboard, a disk drive, or a modem. (2) The
act or process of transferring such information.

instruction: A unit of a machine-language or assembly-language
program corresponding to a single action for the computer's proces­
sor to perform.

integer: A whole number, with no fractional part; represented inside
the computer in fixed-point form. Compare real number.

Integer BASIC: A version of the BASIC programming language used
with the Apple II family of computers; older than Applesoft and capa­
ble of processing numbers in integer (fixed-point) form only. An inter­
preter for creating and executing programs in Integer BASIC is
included on the DOS 3.3 SYSTEM MASTER disk, and is automati­
cally loaded into the computer's memory when the computer is
started up with that disk. Compare Applesoft.

interactive: Operating by means of a dialog between the computer
system and a human user.

interface: The devices, rules, or conventions by which one compo­
nent of a system communicates with another.

interpreter: A language translator that reads a program written in a
particular programming language and immediately carries out the ac­
tions that the program describes. Compare compiler.

inverse video: The display of text on the computer's display screen
in the form of black dots on a white (or other single phosphor color)
background, instead of the usual white dots on a black background.

I/O: Input/output; the transfer of information into and out of a com­
puter. See input, output.

I/O device: Input/output device; a device that transfers information
into or out of a computer. See input, output, peripheral device.

Glossary of Technical Terms 319

320

K: Two to the tenth power, or 1024 (from the Greek root kilo, meaning
one thousand); for example, 64K equals 64 times 1024, or 65,536.

keyboard: The set of keys built into the Apple lie computer, similar to
a typewriter keyboard, for typing information to the computer.

keystroke: The act of pressing a single key or a combination of keys
(such as [CONTROL I -C) on the Apple lie keyboard.

keyword: A special word or sequence of characters that identifies a
particular type of statement or command, such as RUN or P R I NT .

kilobyte: A unit of information consisting of 1 K (1024) bytes, or 8K
(8192) bits; see K.

language: See programming language.

language translator: A system program that reads a program writ­
ten in a particular programming language and either executes it di­
rectly or converts it into some other language (such as machine
language) for later execution. See interpreter, compiler, assembler.

LIFO: Last in, first out.

line: See program line.

line number: A number identifying a program line in an Applesoft
program.

load: To transfer information from a peripheral storage medium (such
as a disk) into main memory for use; for example, to transfer a pro­
gram into memory for execution.

location: See memory location.

logical operator: An operator, such as AND , that combines logical
values to produce a logical result; compare arithmetic operator, rel­
ational operator.

loop: A section of a program that is executed repeatedly, usually until
some condition is met (such as an index variable reaching a specified
ending value) .

loop variable: See index variable.

Glossary of Technical Terms

low-level language: A programming language that is relatively close
to the form that the computer's processor can execute directly.

low-order byte: The less significant half of a memory address or
other two-byte quantity. In the Apple lie's 6502 microprocessor, the
low-order byte of an address is usually stored first and the high-order
byte second.

low-resolution graphics: The display of graphics on the Apple lie's
display screen as a sixteen-color array of blocks, 40 columns wide
and 48 rows high.

machine language: The form in which instructions to a computer are
stored in memory for direct execution by the computer's processor.
Each model of computer processor (such as the 6502 microproces­
sor used in the Apple lie) has its own form of machine language.

main memory: The memory component of a computer system that
is built into the computer itself and whose contents are directly ac­
cessible to the processor.

mask: A pattern of bits for use in bit-level logical operations.

memory: A hardware component of a computer system that can
store information for later retrieval; see main memory, random-ac­
cess memory, read-only memory, read-write memory, write-only
memory.

memory location: A unit of main memory that is identified by an ad­
dress and can hold a single item of information of a fixed size ; in the
Apple lie, a memory location holds one byte, or eight bits, of
information.

memory-resident: (1) Stored permanently in main memory, as firm­
ware. (2) Held continually in main memory even while not in use, as
the Disk Operating System.

menu: A list of choices presented by a program, usually on the dis­
play screen, from which the user can select.

MHz: Megahertz; one million hertz. See hertz.

microcomputer: A computer, such as the Apple lie, whose proces­
sor is a microprocessor.

Glossary of Technical Terms 321

microprocessor: A computer processor contained in a single inte­
grated circuit, such as the 6502 microprocessor used in the Apple lie.

mode: A state of a computer or system that determines its behavior.

modem: Modulator/demodulator; a peripheral device that enables
the computer to transmit and receive information over a telephone
line.

monitor: See video monitor.

Monitor program: A system program built into the Apple lie in firm­
ware, used for directly inspecting or changing the contents of main
memory and for operating the computer at the machine-language
level.

nested loop: A loop contained within the body of another loop and
executed repeatedly during each pass through the containing loop.

nested subroutine call: A call to a subroutine from within the body
of another subroutine.

nibble: A unit of information equal to half a byte, four bits, or fifty
cents; can hold any value from 0 to 15. Sometimes spelled nybb/e.

NOT: A unary logical operator that produces a true result if its oper­
and is false, a false result if its operand is true; compare AND, DR.

null string: A string containing no characters.

operand: A value to which an operator is applied.

operating system: A software system that organizes the computer's
resources and capabilities and makes them available to the user or to
application programs running on the computer.

operator: A symbol or sequence of characters, such as + or AND ,
specifying an operation to be performed on one or more values (the
operands) to produce a result ; see arithmetic operator, relational
operator, logical operator, unary operator, binary operator.

OR: A logical operator that produces a true result if either or both of
its operands are true, a false result if both of its operands are false ;
compare AND, NOT.

Glossary of Technical Terms

output: (1) Information transferred from a computer to some external
destination, such as the display screen, a disk drive, a printer, or a
modem. (2) The act or process of transferring such information.

page: (1) A screenful of information on a video display, consisting on
the Apple lie of 24 lines of 40 or 80 characters each. (2) An area of
main memory containing text or graphical information being dis­
played on the screen. (3) A segment of main memory 256 bytes long
and beginning at an address that is an even multiple of 256 bytes.

pass: A single execution of a loop.

peek: To read information directly from a location in the computer's
memory.

peripheral: At or outside the boundaries of the computer itself, either
physically (as a peripheral device) or in a logical sense (as aperiph­
eral card).

peripheral card: A removable printed-circuit board that plugs into
one of the Apple lie's expansion slots and expands or modifies the
computer's capabilities by connecting a peripheral device or per­
forming some subsidiary or peripheral function.

peripheral device: A device, such as a video monitor, disk drive,
printer, or modem, used in conjunction with a computer. Often (but
not necessarily) physically separate from the computer and con­
nected to it by wires, cables, or some other form of interface, typically
by means of a peripheral card.

peripheral slot: See expansion slot.

plotting vector: A code in a shape definition representing a single
step in drawing a shape on the high-resolution graphics screen,
specifying whether to plot a pOint at the current screen position and in
what direction to move (up, down, left, or right) before processing the
next vector. See shape definition, shape table.

point of call: The point in a program from which a subroutine or func­
tion is called.

pointer: An item of information consisting of the memory address of
some other item. For example, Applesoft maintains internal pOinters
to (among other things) the most recently stored variabie, the most
recently typed program line, and the most recently read D A T A item.

Glossary of Technical Terms

poke: To store information directly into a location in the computer's
memory.

pop: To remove the top entry from a stack.

precedence: The order in which operators are applied in evaluating
an expression.

printed-circuit board: A hardware component of a computer or
other electronic device, consisting of a flat, rectangular piece of rigid
material , commonly fiberglass, to which integrated circuits and other
electronic components are connected.

printer: A peripheral device that writes information on paper in a
form easily readable by humans or literate androids.

processor: The hardware component of a computer that performs
the actual computation by directly executing instructions represented
in machine language and stored in main memory.

program: (1) A set of instructions describing actions for a computer
to perform in order to accomplish some task, conforming to the rules
and conventions of a particular programming language. In Applesoft,
a sequence of program lines, each with a different line number. (2) To
write a program.

program line: The basic unit of an Applesoft program, consisting of
one or more statements separated by colons (:).

programmer: The human author of a program ; one who writes
programs.

programming: The activity of writing programs.

programming language: A set of rules or conventions for writing
programs.

prompt: To remind or signal the user that some action is expected,
typically by displaying a distinctive symbol , a reminder message, or a
menu of choices on the display screen.

Glossary of Technical Terms

prompt character: (1) A text character displayed on the screen to
prompt the user for some action. Often also identifies the program or
component of the system that is doing the prompting; for example,
the prompt character] is used by the Applesoft BASIC interpreter, >
by Integer BASIC, and * by the system Monitor program. Also called
prompting character. (2) Someone who is always on time.

prompt message: A message displayed on the screen to prompt the
user for some action. Also called prompting message.

push: To add an entry to the top of a stack.

queue: A list in which entries are added at one end and removed at
the other, causing entries to be removed in FIFO (first-in-first-out) or­
der; compare stack.

RAM: See random-access memory.

random-access memory: Memory in which the contents of individ­
uallocations can be referred to in an arbitrary or random order. This
term is often used incorrectly to refer exclusively to read-write mem­
ory; but strictly speaking both read-only and read-write memory can
be accessed in random order. This misuse of the term random­
access is an attempt to confuse new users, creating a rite of passage
and an excellent market for glossaries of computer terms. Compare
read-only memory, read-write memory, write-only memory.

read: To transfer information into the computer's memory from a
source external to the computer (such as a disk drive or modem) or
into the computer's processor from a source external to the proces­
sor (such as the keyboard or main memory).

read-only memory: Memory whose contents can be read but not
written; used for storing firmware. Information is written into read­
only memory once, during manufacture; it then remains there perma­
nently, even when the computer's power is turned off, and can never
be erased or changed. Compare read-write memory, random-ac­
cess memory, write-only memory.

read-write memory: Memory whose contents can be both read and
written; often misleadingly called random-access memory, or RAM.
The information contained in read-write memory is erased when the
computer's power is turned off, and is permanently lost unless it has
been saved on a more permanent storage medium, such as a disk.
Compare read-only memory, random-access memory, write-only
memory.

Glossary of Technical Terms

326

real number: A number that may include a fractional part; repre­
sented inside the computer in floating-point form . Compare integer.

relational operator: An operator, such as :>, that compares numeric
values to produce a logical result ; compare arithmetic operator,
logical operator.

reserved word: A word or sequence of characters reserved by a
programming language for some special use, and therefore unavail­
able as a variable name in a program.

resident: See memory-resident, disk-resident.

return address: The point in a program to which control returns on
completion of a subroutine or function.

ROM: See read-only memory.

routine: A part of a program that accomplishes some task subordi­
nate to the overall task of the program.

run: (1) To execute a program . (2) To load a program into main mem­
ory from a peripheral storage medium, such as a disk, and execute it.

save: To transfer information from main memory to a peripheral stor­
age medium for later use.

scientific notation: A method of expressing numbers in terms of
powers of ten , useful for expressing numbers that may vary over a
wide range, from very small to very large. For example, the number of
atoms in a gram of hydrogen is approximately 6 • 0 2 E 2 3 , meaning
6.02 times ten to the 23rd power. (The letter E stands for "exponent.")
The number is easier to understand in this form than in the form
6020 00 00 0 00 0 0 0 00 0 000 00 00 .

screen: See display screen.

scroll: To change the contents of all or part of the display screen by
shifting information out at one end (most often the top) to make room
for new information appearing at the other end (most often the bot­
tom) , producing an effect like that of moving a scroll of paper past a
fixed viewing window. See viewport, window.

seed: A value used to begin a repeatable sequence of random
numbers.

Glossary of Technical Terms

shape definition: A coded description of a shape to be drawn on the
high-resolution graphics screen, consisting of one or more plotting
vectors. See shape table, plotting vector.

shape table: A collection of one or more shape definitions, together
with their indices.

shape table index: A list giving the memory addresses of the
shapes in a shape table.

simple variable: A variable that is not an element of an array.

soft switch: A means of changing some feature of the Apple lie from
within a program; specifically, a location in memory that produces
some special effect whenever its contents are read or written .

software: Those components of a computer system consisting of
programs that determine or control the behavior of the computer.
Compare hardware, firmware.

space character: A text character whose printed representation is a
blank space, typed from the keyboard by pressing the I SPACE I bar.

stack: A list in which entries are added or removed at one end only
(the top of the stack) , causing them to be removed in LIFO (Iast-in­
first-out) order; compare queue.

starting value: The value assigned to the index variable on the first
pass through a loop.

startup disk: A disk containing software recorded in the proper form
to be loaded into the Apple lie's memory in order to set the system
into operation. Sometimes called a boot disk; see boot.

statement: A unit of a program in a high-level language specifying an
action for the computer to perform, typically corresponding to several
instructions of machine language.

step value: The amount by which the index variable changes on
each pass through a loop.

stepwise refinement: A technique of program development in which
broad sections of the program are laid out first, then elaborated step
by step until a complete program is obtained.

string: An item of information consisting of a sequence of text
characters.

Glossary of Technical Terms 327

328

strobe: (1) An event, such as a change in a signal , that triggers some
action. (2) A signal whose change is used to trigger some action.

subroutine: A part of a program that can be executed on request
from any point in the program, and which returns control to the point
of the request on completion.

subscript: An index number used to identify a particular element of
an array.

substring: A string that is part of another string.

syntax: The rules governing the structure of statements or instruc­
tions in a programming language.

system: A coordinated collection of interrelated and interacting parts
organized to perform some function or achieve some purpose.

system program: A program that makes the resources and capabili­
ties of the computer available for general purposes, such as an oper­
ating system or a language translator. Compare application
program.

text: (1) Information presented in the form of characters readable by
humans. (2) The display of characters on the Apple lie's display
screen. Compare graphics.

text file: A file containing information expressed in text form ; com­
pare binary file.

text window: An area on the Apple lie's display screen within which
text is displayed and scrolled.

truncate: To shorten by discarding a part; specifically, to convert a
real number to the next lower integer.

unary operator: An operator that applies to a single operand ; for ex­
ample, the minus sign (-) in a negative number such as - G is a un­
ary arithmetic operator. Compare binary operator.

unconditional branch: A branch that does not depend on the truth
of any condition; compare conditional branch.

user: The person operating or controlling a computer system.

user interface: The rules and conventions by which a computer sys­
tem communicates with the person operating it.

Glossary of Technical Terms

value: An item of information that can be stored in a variable, such as
a number or a string.

variable: (1) A location in the computer's memory where a value can
be stored. (2) The symbol used in a program to represent such a lo­
cation; compare constant.

video: (1) A medium for transmitting information in the form of im­
ages to be displayed on the screen of a cathode-ray tube. (2) Infor­
mation organized or transmitted in video form . (3) An early space
pioneer.

video monitor: A display device capable of receiving video signals
by direct connection only, and which cannot receive broadcast sig­
nals such as commercial television . Most video monitors can be con­
nected directly to the Apple lie computer as a display device.

viewport: All or part of the display screen, used by an application
program to display a portion of the information (such as a document,
picture, or worksheet) that the program is working on. Compare
window.

window: (1) The portion of a collection of information (such as a doc­
ument, picture, or worksheet) that is visible in a viewport on the dis­
play screen; compare viewport. (2) A viewport. (3) A flat, rectangular
panel, usually made of silica, used in many archaic structures as a
human-to-nature interface.

wraparound: The automatic continuation of text from the end of one
line to the beginning of the next, as on the display screen or a printer.

write: To transfer information from the computer to a destination ex­
ternal to the computer (such as a disk drive, printer, or modem) or
from the computer's processor to a destination external to the pro­
cessor (such as main memory) .

write-only memory: A form of computer memory into which informa­
tion can be stored but never, ever retrieved, developed under govern­
ment contract in 1975 by Professor Homberg T. Farnsfarfle.
Farnsfarfle's original prototype, approximately one inch on each side,
has so far been used to store more than 100 trillion words of surplus
federal information. Farnsfarfle's critics have denounced his project
as a six-million-dollar boondoggle, but his defenders pOint out that
this excess information would have cost more than 250 billion dollars
to store in conventional media. Compare read-only memory, read­
write memory, random-access memory.

Glossary of Technical Terms 329

Glossary of Technical Terms

Index

A
ABS function 38,215
absolute value 38, 215
addition 32, 36, 86
American National Standards

Institute (ANSI) 3
American Standard Code for

Information Interchange, see
ASCii

ampersand character (&) 246
AND 35, 175
animation 150
annunciators 131 , 262, 263
ANSI : see American National

Standards Institute
Apple lie 80-Column Text Card, see

80-Column Text Card
arc tangent 41 , 216
argument of functions 37, 38, 125,

173,179
argument variable 44
arithmetic functions 38
arithmetic operators 31
array(s) 26, 29, 77ft, 217, 228, 248,

249, 268, 275ff, 293ft, 298
dimensions 79, 80
elements 29, 77, 269
names 29, 77
storage 179
variables 275ft

arrow keys 18,20
ASC function 215
ASCII (American Standard Code for

Information Interchange) 19,82,
215, 241ft,258

assignment statement 30, 215,
224,251 , 296

asterisk (*) 32
ATNfunction 41,216
auto-repeat 19, 20

Index

B
backslash character (\) 4, 18
BAD SUBSCR I PT error 79, 248
bell character ([CONTROL [- G) 130
BLOAD command 158
body of loop 55
booting 96, 112
branch 49ft, 220

conditional 51
unconditional 50, 220

built-in arithmetic functions 38ft

C
CALL statement 71 , 136, 216, 249,

253ft,281,294
CAN ' T CONT I NUE error 248
[CAPS LOCK \ key 4
caret("") 31
cassette input 110
cassette output 131 , 264
Celsius 44
character codes 82
CHR$ function 91 , 216
CLEAR command 9, 30, 129, 216,

294
colon (:) 5, 98ft, 105, 106, 177, 192,

246, 267, 296, 301
color, see display color
COLOR= statement 137, 216
comma (.) 98ft, 105, 113, 114, 115
commands, see names of

commands
concatenation 83,84,100,251 ,

295
conditional branch 51
constants 268
CONT command 16, 17, 73, 216,

247,248
control characters 100, 101,241

331

332

ICONTROL I key 15, 16, 18,241
-@ 98, 107
-5 176, 177, 181
-c 15ft, 50, 58, 69, 72,

98, 107, 159, 180, 216
-G 130
-H 100,107
-J (line feed character)

192, 193, 216, 301
-M 100, 107
- [RESETI 13-17, 96, 112,

161 , 162, 166, 171
-5 15
-}(18, 100, 107

control
stack 10, 62ff, 71 , 227, 265
statements 49ft

COS function 40,217
cosine 40, 217
crossed loops 60
current input device 104, 223
current output device 10 113 224

228 ' , ,

cursor 4, 18ft, 97, 113, 115, 119ft,
220ft, 232, 234, 253, 254

cursor control 287-288

D
DATA statement 103, 105, 108,

217, 228, 229, 250
debugging 11,180
DEF FN statement 44 177 217

249 ' , ,

deferred execution 4, 5, 9, 247
degrees 44
DEL command 6, 7, 217
I DELETE I key 7
DIM statement 79, 217, 251 293

295, 298 ' ,
disk 12ft, 112, 156, 230
Disk Operating System (DOS) 12

14, 16, 105, 157, 176 265 298 '
display color 137ft, 160 21'6 220ff

231 ' , ,

display screen 111
division 32
DIl.JISION BY ZERO error 248
dollar sign ($) 26 29 82 88 251 259 ' , , , ,

DOS (see Disk Operating System)
double quotation marks (") 28, 81

99 , 102, 270 '
[DOWN-ARROW I key 18, 19,241
DRAW statement 151 , 155,156,

160,161 , 162, 163, 164218230
231 ' , ,

Index

E
e 42
editing 287-288
Eighty-Column Text Card 4, 112,

114,115, 119, 124, 125, 127222
254, 287ff ' ,

END statement 17, 73, 216, 218,
251,269, 294

equal sign (=) 30, 34, 44, 129,1 37,
145, 163, 246

equal to (=) 34
error

codes 68, 69, 247ft
messages 247ft

error handling routines 67ff, 229,
247, 264
restoring normal 71

escape mode 19, 287
IT.§£] key 20, 242

- @ 20, 255
- A 20
-B 20
-C 20
- 0 20
- E 20
- F 20, 255
-1 19, 20
- J 19, 20
-K 19,20
-M 19, 20

exclusive-or 175
execution of program 16
D(P function 42, 218
expansion slot 96, 111
exponential 42, 218
exponentiation 32
expressions 31ff
D(TRA I GNDRED message 99

105 '

F
Fahrenheit 44
false 33ft
FILE NOT FOUND error 14
FLASH statement 127 128 218

226 ' , ,

floating-point accumulator 173
F N keyword 45, 219
FOR statement 55ft, 219, 225, 271
FORMULA TOO COMPLD(error

248
F P command 291
fractions 33
FRE function 178,220
free space 275

full-screen graphics 136, 138, 143,
144, 146, 221 , 260

function names 44
functions 37ff, 173, 177, 229

argument of 37, 38, 125, 173, 179
built-in arithmetic 38

G

call 37, 38, 45
names 44
user-defined 44-45, 217
ABS 38, 215
ASC 215
ATN 41 , 216
CHR$ 216
COS 40, 217
E)-(P 42, 218
FRE 178, 219
I NT 39, 223
LEFH 100,223, 249
LEN 224
LET 215
LOG 42, 224, 249
M I 0$ 100, 225, 249
PEEK 130, 131 , 177, 178, 180,

247, 249, 253ft
POL 109, 227
POS 125, 228
R I GHH 100, 229, 249
RNO 43, 229
S C R N 141 , 231
SGN 39 , 231
SIN 40, 231
SPC 113, 120-121 , 231 , 249
SQR 40, 232,249
STR$ 232
TAB 113, 120, 121 , 123, 126,

181 , 232, 233, 249, 254
TAN 4, 233
USR 172, 233
I,J AL 102,105,233

GAME I/O connector 109
GET statement 16, 19, 104, 220,

249
GOSUB statement 61ff, 220, 227,

229, 251 , 293
GOT 0 statement 50, 53, 64, 71 ,

220, 251 , 265, 293
GR statement 136, 140, 220, 258,

259, 261
graphics 119, 135ft, 258
greater than (» 34
greater than or equal to (> = or =)-)

34
ground loop 297

Index

H
hand control 109, 262
hand control connector 109, 131 ,

262, 263
HCOLO R= statement 145, 160, 220
HGR statement 143, 145, 149, 161 ,

162, 220, 258, 259
HGR2 statement 144, 145, 149,

161 , 162, 221 , 259
high-resolution graphics 136, 140ft,

150, 176ft, 218, 220ft, 230, 261
HI MEM: statement 149, 156, 165,

176, 179, 221 , 250, 275, 299
HL I N statement 139, 221
HOM E statement 221 , 254
HPLOTstatement 146, 161 , 218,

222, 262
HTAB statement 120, 122, 126,

181 , 222, 254, 256
Humpty Dumpty 19

I
IF • • • THE N statement 33, 36, 52,
222 , 248 , 251 , 26~294

ILLEGAL 0 I RECT error 249
I LLEGAL QUANT I TY error 40,

42, 52, 66, 86ft, 92, 97, 109, 112,
121ft 129, 138ff, 146, 147, 161ft,
170, 171 , 175ft, 249

immediate execution 4, 7, 9, 257
I N# statement 96, 223
index variable 55ft, 219 , 225, 271
infinite loop 58
input 95, 223

numeric 100
Input Anything Routine 102
IN PUT statement 16, 17, 97,

102, 223, 249 , 294
input/output 93ft
string 99

I NT function 39, 223, 291
integer

constants 270
part 39 , 223
variables 26, 27, 44, 58, 270,

275ft
Integer BASIC 260, 291
I NI,JER SE statement 126, 128,

223, 226

J
J M P (Jump) instruction 173, 233
J SR (Jump to Subroutine)

instruction 173, 174, 246

333

K
keyboard 96, 258
keyword tokens 280ff
keywords 4

L
LEFH function 86, 100, 223, 249
I LEFT - ARROW I key 18, 19, 100,

241
LEN function 83,85, 224
LET statement 215, 224
less than «) 34
less than or equal to « = or = <) 34
line feed character (I CONTROL I- J)

192, 193,216, 255
line numbers 5ft, 50, 51 , 64, 65, 70,

180,220, 226, 232, 233, 251 , 265,
267, 293, 294

LIS T Command 7, 10, 224
L OAD Command 14, 110,224,298
LOG function 42, 224, 249
logarithm, natural 42, 224
logical operators 35, 54
logical values 33, 36, 54
LoMEM: statement 177,225, 250
loops 10, 55ft, 219, 225, 250, 270,

296
body 55
crossed 60
nested 59

low-resolution graphics 135, 216,
220,221,231,234, 258, 261

M
machine language 172, 176, 177,

179, 216,221 , 233, 246
mask 174
MAT functions 296
memory allocation 25, 275
memory management 176
M I D$ function 87, 100, 225, 249
minus sign (-) 36,105
mixed graphics and text 119, 136,

138, 140, 141 , 143, 146, 220, 260
Monitor program 16, 72, 155ft, 172,

173, 176, 177, 181
multidimensional array 80
multiple input 98
multiple statements per line 5
multiplication 32

N
natural logarithm 42, 224
nested loops 59

Index

nested subroutines 62
NEW command 9, 30, 150, 177, 225
NE)-(T statement 55ft, 225, 271 ,

294
NE)-(T WI THDU T FOR error 10,

60, 249
NORMAL statement 126, 128, 226
NOT 35, 54
not equal to « > or > <) 34
NOT RAC E command 181 , 226
null character (I CONT ROL I- @) 98,

100, 101 , 105
null string 9, 12, 28, 30, 81, 82, 88,
9~98 , 100, 106, 251 , 294

numberformats 117
numbersign(#) 96, 111 , 180, 246
numeric constants 117, 283
numeric input 100

o
ON ••• Go SUB statement 65, 226,

249
ON • •• GoTo statement 51 , 226,

249
on-screen edit 17
oNERR GoTo statement 68, 72,
226 , 229 , 24~239 , 264 , 265

I OPEN-APPLE I key 110, 262
operators 31ff

arithmetic 30
logical 35, 54
precedence of 36
relational 33, 54

OR 34, 54
OUT OF DATA error 106, 250
OUT OF MEMOR Y error 60, 64,

177, 178, 250, 299
output 111
o t}ERFLoWerror 90, 91 , 250

p
parentheses 37, 250, 276
POL function 109, 227
PEE K function 68, 70, 110, 130,

131 , 170, 177, 178, 180, 227, 247,
249, 253ft, 294

percent character (,1.,) 26, 28
period (.) 105
PLOT statement 138, 227
plotting vector 150ft
plus sign (+) 36, 84, 105, 295
point of call 61 , 64
pOinter 275

POKE statement 71 , 72, 129ff, 136,
143,149, 155, 156, 159, 170ft,
227, 249, 253ff, 294

POP statement 66, 227
PO S function 125, 228
pound sign (#) 96
PR# statement 10, 111 , 228
precedence 36
PRINT statement 105, 113ft, 120,

121 , 223,226, 228, 231 , 232, 254,
267
TAB used in 121ff

printer 10, 111
program 275

execution 16
layout 189
lines 3
planning 185
specification 185

prompt character (]) 4, 16, 119,
247

prompting message 97, 294
pure cursor moves 19

Q
question mark (?) 97, 116, 294

R
radians 40, 41 , 44
RAM (random-access memory)

176, 179
random numbers 43, 229
READ statement 105, 108, 207,

217, 129, 250
real variables 25, 27, 44, 58, 270,

275-277
RECA L L statement 110, 298
RED I M' D ARRA Y error 79, 250
REENTER message 99, 100
relational operators 33, 54, 82
REM statement 7, 229 , 267
reserved words 27, 245-246, 276
I RESET I key 16
reset vector 16
restarting the system 96, 112, 176,

181
REST OR E statement 106,108,

229, 250
Restoring Normal Error Handling

71
RESUME statement 69, 70, 229,

249, 265
return address 63,66, 227

Index

I RETURN I key 4, 6, 10, 13, 16, 18,
100, 104, 158, 165, 219, 241 , 293
I N PUT statement use 97, 98

RETURN statement 61ff, 220, 227,
251

RETURN WI TH OUT GOSU5 error 64,
67, 251

right bracket U) 4, 16, 119, 247
RIGHT \ function 100, 229, 249
I RI GHT-ARROW I key 18, 19, 241
RND function 43, 229
ROT = statement 160, 164, 230
rotation 230
rounding 39
RTS (Return From Subroutine) 174
RU N Command 12, 14, 30, 108,

145, 150, 230, 294

S
SAI.l E Command 13, 131 , 230, 297
scale factor 230
SCALE = statement 160, 163, 164,

230
scientific notation 43, 91 , 118, 283
SCR Nfunction 141 , 231
scrolling 253
seeding 43
semicolon (j) 113ft, 122, 267, 269
SG N function 39, 231
shape definition 150
shapetable(s) 150ft, 230, 231 , 234,

299
index 153
loading 154ft

SHLOAD statement 110, 156, 158,
165, 231 , 299

sign of a number 39, 231
simple variables 275- 277
SIN function 40, 231
sine 40, 231
slash (/) 296
soft switches 253, 259
I SOLID-APPLE I key 110, 262
space bar 19, 21
space character 99, 101 , 105, 231
S PC function 113, 120-121 , 231 ,

249
speaker 130, 264
S PEE D ~~eme~ 128, 231
S Q R function 40, 232, 249
square root 40, 232
statements 3, 223, 269

see also names of statements
step value 57ft
stepwise refinement 189

335

336

STOP statement 17, 73, 216
STR$ function 89, 232
string(s) 28, 81 , 113, 229, 232, 233,

270, 275ft, 293,295
comparison 82
constants 28, 81 , 83
conversion 89
input 99
null 28
pOinters 275- 277
storage 179
variables 26, 28,44, 83, 102,

104,105, 107
STR I NG TOO lONG error 84,

85, 114, 251
subroutine(s) 10, 61 ft , 171 , 229,

250, 269, 270, 276
call 61
execution 220
nested 62

subscripts 29, 77, 79
substrings 86, 295
subtraction 32,36
syntax definitions 235ft
syntax error 13, 14, 54, 58, 105,

107, 143ft, 166, 251

T
TAB function 113, 120, 121ff, 126,

181,232, 249, 254
TAN function 41 , 233
tangent 41 , 233
tape cassette 13, 14, 110, 156, 158,

165, 228, 230, 231 , 297ft
termination 218, 232
text 142, 253

window 115, 119ft, 129, 136, 143,
221 , 253ft

TE :n statement 119, 136, 143,
233, 258

T RACE command 180, 181 , 226,
233, 294

trigonometric functions 40-41
true 33ft
truncation 28, 39, 51 , 65,86, 88,

91 , 117, 120ft, 283
T Y PE MISMATCH error 87, 88,

251

U
unconditional branch 50, 220
UNDEF 10 FUNCTI ON error 251
UNDEF 10 STA T EMENT error 12,

50, 51 , 64, 251 , 268
I UP-ARROW I key 18, 19, 241

Index

user-defined function 44-45
USR function 172, 233
utility strobe 131 , 261 , 264

V
I.JAL function 83, 86, 90, 102, 105,

107, 233
validation of data 187
values, logical 33, 54
variable(s) 25ft, 51 , 97, 98, 177,

216, 268
argument 44
index 55, 57, 58, 60
integer 2627, 44, 58
name 26, 293
real 25, 27, 44, 58, 270, 275ft
string 26, 28, 44, 102, 105

l,' l I N statement 140, 234
I.'TA B statement 119, 120, 124,

181 , 234, 256

W
WA I T statement 174, 234, 249
wraparound 4, 120, 122

X
;.mRAW statement 151 , 161ff, 230,

231 , 234
;.(P LOT statement 246

y

Z
zero page 278

Cast of Characters
" (double quotation marks) 28, 81 ,

99, 102, 270
iP (number sign) 96, 111 , 180, 246
$ (dollar sign) 26, 29, 82, 88, 251 ,

259
'X, (percent character) 26, 28
&: (ampersand) 246
() (parentheses) 37, 250, 276
* (asterisk) 31 , 32
+ (plus sign) 31 , 36, 84, 105
I (comma) 98ft, 105, 113ft
- (minus sign) 31 , 36, 105
• (period) 105
/ (slash) 31 , 296

(colon) 5, 98ft, 105, 106, 177, 192,
246, 267, 296, 301

(semi-colon) 113ft, 122, 267, 269

-
<: (less than) 34
<: = or = <: (less than or equal to) 34
= (equal sign) 30,34, 44, 129, 137,

145, 163, 246
:> (greater than) 34
:> = or =:> (greater than or equal to) 34
<: :> or :> <: (not equal to) 34
? (question mark) 97,116, 294
] (right bracket) 4, 16, 119,247
\ (backslash) 4, 18
.. (caret) 31
80-ColumnTextCard 4, 112ft, 119,

124, 125, 127, 222, 254, 287ft

Index 337

r

r

r

r

c
r

r
r-

r
r

r

r

Apple II

Applesoft BASIC
Quick Reference Card

Editing and Cursor Control Operations on Whole Programs

ILEFT - ARR OW I Erase previous character NEW Erase current program, reset all
I RIGHT -ARRowl Recopy character under cursor variables
I CONTROL I-}(Cancel input line CLEAR Reset all variables

LIST Display current program
I Es c i A Move right ; leave escape mode LI ST n1-n2 Display from line n1 to line n2
I Esc l B Move left ; leave escape mode RUN Execute program from
I Esc l C Move down; leave escape mode beginning
IEs cl D Move up ; leave escape mode RUNn Execute program starting at

linen
I Esc l I Move up; remain in escape RUN name Load and execute program

mode name from disk
I Esc l J Move left ; remain in escape LOAD Load program from tape

mode LOAD name Load program name from disk
IEscl K Move right; remain in escape SA l.' E Save current program on tape

mode SA l.' E name Save current program on disk
lEse I M Move down; remain in escape as name

mode

After I ESC I, arrow keys are the same as I , J , K, M Interrupting and Resuming

IEsc l E
IEsc l F
IEsc l @

DELn1,n2

Clear to end of line
Clear to end of screen
Clear entire screen ; move

cursor to top

Delete from line n 1 to line n2

Statements and Lines

Lines typed without a line number are executed
immediately; those with a line number are saved for
later (deferred) execution.

Separates multiple statements
on same line

REM Remarks for human reader

I CONTROL I -S Suspend output (any key to
resume)

I CONTROL I-C Interrupt program execution
CON T Continue execution after

I CONTROL I-C , STOP, or END
I CONTROL I- I RESET I Cancel program execution

Variables

Type Name Range

Real AB + /- 8,88888888 E + 37
Integer AB'X, + /- 32767
String A B $ 0 to 255 characters

where A is a letter, B is a letter or digit. Name may be
more than two characters , but only first two are
significant.

Control

GoTo n Branch to line n
ON expr GOT 0 n 1 , n2 , n3 , . . .

Branch to line n 1, n2, n3, ...
depending on value of expr

I F cond THE N s 1 : s2 : s3 : .. .
Execute statements s 1, s2, s3, .

. . if condition cond is true
FoRv = xToySTEPz

NDnv
GoSUBn
RETURN

Begin loop for all values of v
from x to y by z ; if S T E P
omitted, 1 is understood

Repeat loop for next value of v
Branch to subroutine at line n
Return from subroutine to point

of call
ON expr GoSUB n1 ,n2 ,n3 , . . .

POP

Branch to subroutine at line n1 ,
n2, n3, . . . depending on value
ofexpr

Remove last return address
from subroutine stack without
branching

oNERR GoTo n Establish error-handling routine

RESUME

STOP

END

beginning at line n
Reexecute statement causing

error
Halt execution with message

identifying line
Halt execution with no message

String Operations

+
LEN (s)
LEFT$ (s, x)
MID$ (s, x,

y)

Concatenate strings
Length of string s
Leftmost x characters of string s
y characters beginning at
position x in string s

RIGHT$ (s, x) Rightmost x characters of string
s

STR$ (x)

l.'AL (s)
CHR$ (x)

ASC (s)

String representing numeric
value x

Numeric value of string s
Character with ASCII code x
ASCII code for first character of

string s

Input/Output

IN# n
IN# 0
INPUT s j x, y,

z

GET c

READ x, y, z

DATA x, y, z
RESTORE

RECALL a
PDL (n)

Accept input from slot n
Accept input from keyboard
Prompt with string s, then read

values into variables x, y, z ; if s
omitted, ? is used

Read one character into
variable c

Read values from D A T A list
into variables x, y, z

Add values x, y, z to D A T A list
Restart D A T A list from

beginning
Read array a from tape
Read dial of hand control n

Send output to slot n PR# n
PR# 0
PRINT
STORE

Send output to display screen
x, y, z Display or print values x, y, z
a Write array a to tape

TE)<T
HOME

SPC (x)

TAB (x)

HTAB x
l.!TAB Y
PoS (0)

I Nl.'ERSE
FLASH
NORMAL
SPEED= x

Display text
Clear screen and send cursor to

top
Start next item at cursor position
Start next item at next tab

pOSition
Display or print x spaces

(P R I NT statement only)
Move cursor to column x

(P R I NT statement only)
Move cursor to column x
Move cursor to line y
Current horizontal cursor

position
Display text in black-on-white
Display flashing text
Display text in white-on-black
Set text display rate to x (0

minimum, 25 5 maximum)

Arrays

Type

Real
Integer
String

Typical Element

AB (XI y l z)

AB 'X, (XI y l z)
AB$ (XI y l z)

where A is a letter, B is a letter or digit. Name may be
more than two characters , but only first two are
significant. Array size limited only by available
memory.

DIM a (x I Y I z) Define array a with maximum
subscripts x, y, Z

Arithmetic Operators

+

* /

Assign value to variable (L E T
optional)

Addition
Subtraction

Division
Exponentiation

Relational Operators

<
:>
<= = >
>= =(

<:> ><

Equal to
Less than
Greater than
Less than or equal to
Greater than or equal to
Not equal to

Yield value 1 if true, 0 if false. Can also be used to
compare strings.

Logical Operators

AND
OR
NOT

Both true
Either or both true
Is false

Interpret 0 as false, nonzero as true. Yield value 0 if
false, 1 if true.

Precedence of Operators

+ NOT

* /
+

< >
<= = <
>= =>
< > ><
AND
OR

Parentheses
(innermost first)

Signed arithmetic,
logical "not"

Exponentiation
Multiplication ,

division
Addition,

Subtraction
Relational operators

Logical "and"
Logical "or"

Arithmetic Functions

ABS (x)
SGN (x)
INT (x)
SQR (x)
SIN (x)
COS (x)
TAN (x)
ATN (x)
D(P (x)
LOG (x)

RND (x)

DEF FN (x)

= expr

Absolute value of x
Sign of x
Integer part of x
Square root of x
Sine of x radians
Cosine of x radians
Tangent of x radians
Arc tangent, in radians , of x
Exponential of x
Natural logarithm of x

If x > 0 , generate random
number between 0 and 1

If x = 0 , repeat previous
random number

If x < 0 , begin new repeatable
sequence of random numbers

Define function

Graphics

GR
COLOR = X

PLOT X I Y

HLIN x1 I

AT Y
l.IL I N y1 I

AT X

SCRN (x I

x2

y2

y)

Display low-resolution graphics
Set low-resolution display color

tox
Plot single block at column x,

rowy
Draw horizontal line from

column x1 to column x2 in row y
Draw vertical line from row y1 to

row y2 in column X

Color on screen at column x,
rowy

Columns numbered from 0 to 38 ; rows from 0 to 38
in mixed text and graphics, 0 to a 7 in full-screen
graphics.

H G R Display high-resolution
graphics, page 1 ; mixed text
and graphics

H G R 2 Display high-resolution
graphics, page 2; full-screen
graphics

H COL 0 R = X Set high-resolution display color
tox

H P LO T X I Y Plot single point at column x,
rowy

H P LOT x1 I y1 TO x2 I y2 TO x3 I y3
Draw high-resolution lines from

column x1 , row y1 to column x2 ,
row y2 to column x3 , row y3

H P LOT TO Extend previous line to column
X I Y X, rowy

Columns numbered from 0 to 2 78 ; rows from 0 to
1 58 in mixed text and graphics, 0 to 1 8 1 in full­
screen graphics.

SHLOAD
DRAW n AT
x I Y
){oRAW n AT
XI Y
SCALE = x

ROT = x

Load shape table from tape
Draw shape number nat
column x, row y

Erase shape number nat
column x, row y

Set scale factor for drawing
shapes tox

Set rotation for drawing shapes
tox

Utility Statements

PEE K (addr) Contents of memory location
addr

PO K E addr I x Store value x at memory
location addr

CAL L addr Execute machine-language
subroutine starting at location
addr

US R (x) Execute user-supplied
machine-language function
routine with argument x

W A I T addr I Suspend execution until bit
m1 I m2 pattern specified by masks m1,

m2 appears at location addr
HIM EM: addr Set highest memory address

available for variable storage to
addr

L 0 M EM: addr Set lowest memory address
available for variable storage to
addr

F R E (0) Amount of available storage
remaining

T R ACE Display line number of each
statement executed

NOT R ACE Stop displaying line number of
each statement executed

-.
..,.I

,

...J

I
~

-

	Document (1)
	Document (2)
	Document (3)
	Document (4)
	Document (5)
	Document (6)
	Document (7)
	Document (8)
	Document (9)
	Document (10)
	Document (11)
	Document (12)
	Document (13)
	Document (14)
	Document (15)
	Document (16)
	Document (17)
	Document (18)
	Document (19)
	Document (20)
	Document (21)
	Document (22)
	Document (23)
	Document (24)
	Document (25)
	Document (26)
	Document (27)
	Document (28)
	Document (29)
	Document (30)
	Document (31)
	Document (32)
	Document (33)
	Document (34)
	Document (35)
	Document (36)
	Document (37)
	Document (38)
	Document (39)
	Document (40)
	Document (41)
	Document (42)
	Document (43)
	Document (44)
	Document (45)
	Document (46)
	Document (47)
	Document (48)
	Document (49)
	Document (50)
	Document (51)
	Document (52)
	Document (53)
	Document (54)
	Document (55)
	Document (56)
	Document (57)
	Document (58)
	Document (59)
	Document (60)
	Document (61)
	Document (62)
	Document (1)
	Document (2)
	Document (3)
	Document (4)
	Document (5)
	Document (6)
	Document (7)
	Document (8)
	Document (9)
	Document (10)
	Document (11)
	Document (1)
	Document (2)
	Document (3)
	Document (4)
	Document (5)
	Document (6)
	Document (7)
	Document (8)
	Document (9)
	Document (10)
	Document (11)
	Document (12)
	Document (13)
	Document (14)
	Document (15)
	Document (16)
	Document (17)
	Document (18)
	Document (19)
	Document (20)
	Document (21)
	Document (22)
	Document (23)
	Document (24)
	Document (25)
	Document (26)
	Document (27)
	Document (28)
	Document (29)
	Document (30)
	Document (31)
	Document (32)
	Document (33)
	Document (34)
	Document (35)
	Document (36)
	Document (37)
	Document (38)
	Document (39)
	Document (40)
	Document (41)
	Document (42)
	Document (43)
	Document (44)
	Document (45)
	Document (46)
	Document (47)
	Document (48)
	Document (49)
	Document (50)
	Document (51)
	Document (52)
	Document (53)
	Document (54)
	Document (55)

