The Beagle
Compiler

by ALAN BIRD

&NOA Buijeal) uasq plUOM B} SMOH

Leonpoud soug ejfeeg eas 0} 83| NOA PINOM SIBMIOS JBUA,

Lisow 8sn NoA Op §12Npoid SJ/eMyOs |BIDIBWILWOD OM] JBUM

‘HILNIHd

(puBig) xiBW 1000

o egsusugjaid oNO €€ SOd0 SO00dE 'SO0QA ILIHOAVH

(puriq) Ayenp) Jene o

saiddol4

IOHUOW JOIPDD ¥20IDO WEPOWD eSNOWD

sgeNsipun T

(pueig) S¥siQ PiBH —

Pl

#4877 S3AIEA 40 'ON

AHOW3IW

STYHIHdIY3d

(pueiq) Auowew pepusiXx3Io MEZLE Mrdo MErOo
O 98O WpURI4o X0 2w 8o <o [0 ¢3SN NOA 04 31ddY HOIHM

enui B joB eanod i ‘puy

< T
0O D
c 0
% O
&
|§n
;—l
|m§
|:;
|
9 |
n
§
(]
[#2]
TR
|
|
{
L
[A]
o
~
oo
g

pien uonelsibay jonpoid soig ajbeag

THE BEAGLE COMPILER
APPLESOFT SPEED-UP PROGRAM
by Alan Bird
ISBN 0-917085-31-5

Published by Beagle Bros Micro Software, Inc.
3990 Old Town Avenue
San Diego, California 92110

TABLE OF CONTENTS
INTRODUCTION ..ootivcineinsseiissssrssiesmsssssesssass ssassesssanssmssonsisssssnas: 2-7
SELLING COMPILED PROGRAMS ... commmnrsssmsssmsssssanss v f
HOW TO..

Run an Applesoft program at compiled speed 10
Save a program on disk in compiled format il
Run a compiled program from disk 0 ¥
Make program changes ... s s 13
Make control-C stop a compiled program ..o, 14
Run a program at normal speed ... 15
Specify a new address for a program 16
Write programs for maximum compiled speed 17
Compile programs that use the CHAIN command......... 18
Compile programs that use STORE and RESTORE
Write ampersand routines for compiled programs 2
ERRORS .ot sseasss e iee s srsassassssssssmassesens R Jc & 15

COMPILER AND COMPILERSYSTEM.....cooiinininiciscnins
OTHER PROGRAMS ON THE DISKcoocooniiiniminminninnans
APPLESOFT/PRODOS COMMAND SUMMARY...
MODIFYING APPLESOFT VIA THE COMPILER ...

BEAGLE COMPILER AUTHOR, ALAN BIRD, LEAVES FOR WORK ;

ad

WELCOME TO

THE BEAGLE COMPILER!

The Beagle Compiler does one thing-it rewrites Applesoft BASIC
programs so they run faster, just as if they were written in
machine language. Machine language programs run much faster
than Applesoft programs because no time is wasted interpreting
"human” commands like HOME, GOTO, IF, THEN, and so on.
While the Beagle Compiler doesn't actually convert programs
into machine language (it actually converts them into its own
language), the effect is the same.

Applesoft BASIC may be slower than machine language, but
it is far easier (for most of us) to write programs with-and it's
casier to read. The Beagle Compiler gives you the best of both
worlds-easy-to-write programs and machine language speed.

FOR X=1 TO 5;:
PRINT CHES (A)::

BACKIT UP

The Beagle Compiler disk is not copy-protected, so you can (and
should) make a backup in case something happens to the
original. Use the copy program that came with your Apple, or
the 35-second DISK.COPY program from our Extra K disk. You
may also transfer files from disk to disk using our Big U disk's
FILEMOVER program or one of Apple's utilities.

Please don't give copies of our disks and programs away to
your friends, Every illegal copy is a vote for copy protection and
against friendly software. If you plan on giving copies of your
own compiled programs away, read page 6.

COMPILER FACTS .
Just like it says in the ads, "after you boot the Beagle Compiler
disk, you can run almost any Applesoft program at machine
language speed. FAST!"

HOW FAST IS5 IT?

Unscientific testing chows that compiled programs tend to run
between 2 and 15 times as fast as Applesoft programs; it dcplunu.i:i
on what the program actually does. Some functions i'ik{? string
and variable manipulations show a tremendous speed increase.
Other things like tloating point calculations aren't affected at all.

WHEN SHOULDN'T YOU COMPILE?

Machine language speed isn't always an advantage-some)
programs, like question-and-answer programs, work just fine in
plain old Applesoft. Too much speed will make many programs
impossible to use.

Some programs that benefit from compiling may have
certain sections that will need to be slowed down, Since you
can't compile just part of a program, you'll have to make
adjustments in Applesoft before compiling.

WHEN CAN'T YOU COMPILE?

Most Applesoft programs compile with ease. Occasionally, a
program will be too large to compile or contain commands that
are incompatible with the compiling process.

Non-Applesoft programs won't compile. (You can't compile
AppleWorks for example-it isn't written in Applesoft).
Copy-protected programs won't compile unless you unprotect
them first. Don't ask us how-we don't know how.

Dos 3.3 programs will usually compile after you convert them

into ProDQS (use one of Apple's programs to do the converting).

Make sure a converted program works before you compile it.

o

SPECIAL BENEFITS OF

THE BEAGLE COMPILER

The Beagle Compiler is better than any compiler we've ever

scen. And we've seen a few.

* Other compilers do not support Propos.

* Other compilers will not compile programs "on the spot*
using the standard RUN command.

* Other compilers produce code that is significantly larger than

the original program. The Beagle Compiler does the opposite.

Other compilers take minutes instead of seconds to convert

programs. And then you still might have problems.

* Other compilers choke on common Applesoft statements like
HIMEM, LOMEM, DEF FN, etc.

* Other compilers require many more program changes than
the Beagle Compiler requires. For example:

10 MAX=100:DIM AS (MAX), B3 (MAX),CS5 (MAX*2)

Other compilers would look askance at the above program
line and make you change it to:

10 MAX=100:DIM AS(100),BS(100),C5(200)

Then you have to recompile,

THERE ARE SOME MEMORY RESTRICTIONS

Booting the Beagle Compiler disk will cost you about 11K of
main memory. You can cut this figure in half by loading only
one of the Compiler's two files-see page 26.

ABOUT PROGRAM EDITORS
Most Applesoft programmers use some kind of program editor,
Unfortunately, you cannot have non-relocatable programs like
Beagle Bros' G.P.L.E. (Global program Line Editor) in memory
with the COMPILER.SYSTEM file—sorry, there just isn't room,
However PROGRAM WRITER by Alan Bird (1) will work just fine.

If you are hooked on G.P.L.E, boot normal ProDOS to use
G.PLL.E to write and test programs, then boot the Beagle Compiler
to run them at compiled speed. The COMPILER file (see page 26)
can be in memory with G.P.LE as long as you install G.P.IL.E. first,
then the COMPILER file.

To use PROGRAM WRITER, you must install things in the
proper order: (1) the COMPILER.SYSTEM file, (2) PROGRAM WRITER-
language card version, (3) the COMPILER file,

3]

SELLING (OR GIVING AWAY)
COMPILED PROGRAMS

You may legally sell or give away copies of programs that you
own and have compiled with the Beagle Compiler. Since the
Compiler itself is protected by copyright laws, the recipient ot
vour programs must use his or her own purchased copy of the
Compiler to run them.

There is an alternative: If you want to include the Beagle
C'nmpilor'q COMPILER.SYSTEM file on disks that you will be selling
or giving away, you may do so after paying a very reasonable
licensing fee to the Lumpﬂcrs author, Alan Bird. Call or write
for more information:

The Software Touch

¢/o Compiler Licensing

9625 Black Mountain Road, #204

San Diegop, California 92126

Or phone The Software Touch: (619) 549-3091
After a licensing contract has been signed and fees paid, only the
file COMPILER.SYSTEM may be put on the disk you are selling or
giving away. This is the file that actually runs compiled
programs. Under no circumstances are vou permitted to include
the COMPILER file on disks that you sell or give away.

IS THIS MANUAL UP TO DATE?
RUN NOTES NOW TO FIND OUT.

Run the Applesoft NOTES program on the Beagle Compiler disk
to learn about any changes or corrections that apply to this
instruction manual.

THE BASICFACTS
In writing this manual, we assume you know the "basics" about
loading and saving files, running Applesoft programs and so on.
Even if you don't, you still should be able to reap most of the
benefits of the Beagle Compiler by reading pages 1-15,

We highly recommend Apple's excellent programming
manuals, especially the Applesofi BASIC Programmer's
Reference Manual and ProD0Os User’s Manual.

HOW TO USE
THE BEAGLE COMPILER

RULE #1:
APPLESOFT PROGRAMS ONLY

The Beagle Compiler only works with unprotected ProDOs-based
Applesoft BASIC programs. You must have a copy of the program
you want compiled saved on a ProDOs disk.

When you catalog a disk (by typing CAT), "BAS" identifies a
file as being Applesoft BASIC:

BAS &You can compile BASIC programs,
BIN «You can't compile binary files.
IXT e=You can't compile text files,

sY¥s «Forgetit.

eDitta.

+ e=Here is a program that has been
saved in compiled format,

*COM will read as "INT" if the Compiler isn't in memory.

RULE #2:
BE SURE THE COMPILER IS INSTALLED

The Compiler's commands won't work until you "install" the
Compiler in your Apple’'s memory. The easiest way to do this is
to BOOT THE BEAGLE COMPILER DISK (put the disk in your
main drive and turn on your Apple}.

There are other ways to install the Compiler that save
memory and for disk space-see pages 26 and 27.

RULE #3:
WATCH OUT FOR CERTAIN THINGS

* ProDOs's CHAIN, STORE and RESTORE commands make
programs require special treatment-sce pages 18 and 19

* Ampersand (&) statements with parameters and the routines
that they call must be altered by someone with assembly

- language experience-see page 20.

* Some Applesoft commands are not compilable-specifically
CONT, PEL, LIST, LOAD, NOTRACE, RECALL, SAVE, SHLOAD,
TRACE and STORE (ProDOS s LOAD, SAVE and STORE will
compile). Removing any of these commands will not harm
99.6502% of the programs we have seen.

* Weird memory pokes are unpredictable. If the program you
want to compile pokes values into Zero Page or BASICSYSTEM
or some other exotic place, go ahead and try compiling-if
you're lucky, you'll have no problems at all.

* Giant Applesoft programs are usually compilable if you
cumpile them to disk without the COMPILER.SYSTEM file in
memory-see page 27,

L /

’ WITH
7 TESTPROGRAM

There is a short
Applesoft program
called TESTPROGRAM
on the Beagle
Compiler disk. No
big deal, but it usesa
lot of Applesoft
commands and
serves as a good
demo of how the
Compiler works. In
the examples on the
following pages,
almost any
=| Applesoft program

| may be substituted
for TESTPROGRAM.

10

HOW TO RUN AN APPLESOFT PROGRAM
AT COMPILED SPEED

This is easy. First, be sure the Compiler is installed in memory (it
is if you have booted the Beagle Compiler disk). Now just run
your program like you always do, by typing:

RUN NAME
or —-NAME
(NAME is the name—or pathname—of your Applesoft program.)

After a brief "COMPILING..." message, your program should be
running at machine language speed. If this isn't the case, the
Compiler probably isn't installed. If you see an error message on
the screen, read pages 20-22.

Since compiled programs have no line numbers, the
ProbDos command RUN HAME, €123 will not work (123
represents any program line number).

QUITTING APROGRAM
You can often quit an Applesoft program by pressing Control-C.
This might not work, however, when you're running at
compiled speed (see page 12 for a quick fix).

Control-Reset will almost always let you quit. Some
programs, however, are written so you can't quit no matter
what, and you may need to reboot to escape.

RE-RUNNING A PROGRAM

After you quit running a compiled program, you may type RUN
to re-run it. If you get a NOT A COMPILED PROGRAM error message,
something has disturbed the compiled program in memory.

EXAMPLE
To run TESTPROGRAM from the Beagle Compiler disk at
compiled speed:

1. Boot The Beagle Compiler disk.
2. Type RUNTESTPROGRAM

or type —TESTPROGRAM

3. To stop the program, press Control-Reset. 4
4. Type RUN to run TESTPROGRAM again.

HOW TO SAVE A PROGRAM ON DISK
IN COMPILED FORMAT

To save a compiled version of an Applesoft program on the
current disk, type:

COMPILE NAME, NEWNAME

(NAME is the name-or pathname-of your Applesoft program on
disk. NEWNAME s the name-or pathname—for saving the
compiled file.)

Your Applesoft program will be loaded, compiled and then
saved on disk. A FILE TYPE MISMATCH error message here might
mean that you used the same name for both files. You may use
the same name for the compiled file if you are saving onto
another disk or directory. For example, you could type:

COMPILE /DISK1/NAME, /DISKZ2/NAME
This command would load NAME from DISK1 and save it as
NAME on DISK2 in compiled format.

Cataloging the disk will reveal compiled programs as type
COM (that's COM for COMpilud instead of BAS for BASic). If you
catalog without the Compiler installed, COM will appear as "INT",

EXAMPLE

To save TESTPROGRAM on disk in compiled format:

1. Be sure the Compiler is installed.

2. Insert the Beagle Compiler disk in drive 1.

3. Set the prefix if necessary by typing PREFIX, D1

4. Type COMPILE TESTPROGRAM, TESTFAST
This will save a new version of TESTPROGRAM called
TESTFAST on the disk. When you catalog the disk (by
typing CAT), you will sce TESTFAST listed as a COM file.

WHY SAVE IN COMPILED FORMAT?

* You save time by not having to wait for compiling each time
you rtun the program.

* You save disk space because compiled files are generally
smaller than Applesoft files.

* You save memory space because the COMPILER file (see page
26) doesn’t need to be in memory when you run the program.

* Your programs aren't listable and snoopers can't look at them
and change them. (This can be a disadvantage).

12

A

HOW TO RUN A COMPILED PROGRAM
FROM DISK

You run a compiled (COM) file from disk the same way you run
an Applesoft (BAS) file. Type:

RUN NAME
or —NAME

(NAME is the name—or pathname—of your compiled program.)

EXAMPLE

To run TESTPROGRAM in compiled format:

1. Compile TESTPROGRAM so it creates the COM file TESTFAST
(follow the steps in the previous example).

2. T}’Pe RUN TESTFAST or —-TESTFAST

The COMPILER.SYSTEM file must be installed to run compiled
programs (it is if you booted the Beagle Compiler disk). You can
save memory by not installing the COMPILER file-see page 27.

HOW TO MAKE A CHANGE
TO A COMPILED PROGRAM

You can't change a compiled program. Instead, change the
Applesoft "source” program (the one you compiled in the first
place). Make changes the way you always do, and always be sure
to save the changed program to disk before recompiling.

Read the note about program editors G.I.L.E. and PROGRAM
WRITER on page 5.

EXAMPLE
To make a change to TESTPROGRAM:

1. Type LOAD TESTPROGRAM
2. Type LIST 10 to see program line 10.
3. Type 10 X=5 to change line 10, This will have the effect

of changing the patterns on the screen when the program
is running.

4. Type SAVE TEST2 to save the Applesoft change.
(Any legal file name may be used.)

5. With the Compiler installed, type RUN TEST2 or
~TEST2 to run at compiled speed.
Or type COMPILE TEST2, NEWTEST2 to save in compiled
format.

6. To make more changes type LOAD TEST2 and go back to
step 2.

14

HOW TO MAKE CONTROL-C
STOP A COMPILED PROGRAM

Normally Control-C will stop an Applesoft program but have no
effect on compiled programs (except in response to INPUT
statements). To make Control-C halt a compiled program, add a
RESUME statement somewhere in the program you are going to
compile. Think twice before using this technique, because it will
have the side effect of making your compiled program run
somewhat slower,

The RESUME statement has an undesirable effect on
Applesoft programs, so you should put it somewhere where it
can't possibly get executed-like after the end of your program
(END: RESUME).

EXAMPLE

To allow TESTPROGRAM to be halted with Control-C after it is

compiled:

1. Type LOAD TESTPROGRAM

2. Type 60000 END: RESUME to add program line 60000,
(60000 may be replaced with any line number 1-63999; just
be sure the RESUME statement doesn't get executed.)

. Type SAVE TESTC to save the changed version.
(Any legal file name may be used.)

. Type —TESTC to run the program.

. Press Control-C to stop the program,

(95]

|53 =

HOW TO RUN A PROGRAM
AT NORMAL SPEED

The best way to run a program at normal speed is to remove the
Compiler from memory by boating a normal ProDOS disk.

Warning:
The method described below is not guaranteed to work. In fact,
with certain programs, it could cause serious problems that
require you to reboot.

Always SAVE YOUR PROGRAMS before running them!

After taking the warning above into consideration, load an
Applesoft program from disk and type :RUN. Notice that this
command begins with a colon (:), If you omit the colon you'll
get a NOT A COMPILED PROGRAM error message.

EXAMFLE
To run TESTPROGRAM at normal speed with the Compiler
installed: -
0. Read the Warning above.

1. Type LOAD TESTPROGRAM
2, Type :RUN

A NEW 7BREAK MESSAGE

When your compiled program is stopped by Control-C (or a STOP
statement or an error), you will see an error message something
like ?BREAK AT 50ABC. This tells you the hexadecimal address in
memory where the program stopped (instead of which line
number, because there are no line numbers in compiled
programs). See page 23 for more information about this number.

16

HOW TO SPECIFY A NEW ADDRESS
FOR APROGRAM

(for advanced programmers)

Compiled programs normally load and run at address 2049
(S0801), just like Applesoft programs. You may run a compiled
program at a different address by changing the Applesoft
program before it is compiled.

For example, insert the following line at the beginning of
TESTPROGRAM to run it above hi-res page 1 at 16384 (4000):

I IF PEEK(104)<>64 THEN POKE 163

104,64 PRINT CHRS{4)"RU)
Replace the b4's with 96's and the 16384 mth 24*?6 to de the
program above hi-res page 2 at 24576 (56000,

You may also specify an address with a RUN command
followed by a comma and the address. The following command
will cnmpiie and run an Applesoft program-or run a compiled
program-above page 1 and page 2 respectively:

RUN NAME, A54000

RUN NAME , AS6000

(Note: In this procedure, "RUN" cannot be replaced with a
hyphen.)

HOW TO WRITE PROGRAMS
FOR MAXIMUM COMPILED SPEED

(for advanced programmers)

The one major point to keep in mind to make compiled
programs run faster is avoid using floating point values
whenever possible. The Compiler does all of its math using
integer values whenever it can-integers process much faster
than floating point values,

Floating point is used:
* when a value has a fractional part (i.e. 3.5).
* when a value is greater than 32767 or less than -32767.
* when division is used in an expression.
* when any of the following functions are used:
ATN, COS, EXP, LOG, RND, SIN, 50K or TAN

BASIC TECHNIQUES DON'T APPLY
The following programming methods DO speed up Applesoft
programs but they DO NOT speed up compiled programs (they
also don't do any harm).
* Using real variables instead of integer variables.
(Using A%=3 instead of A=3 will not affect a compiled
program'’s speed.)
* Using variables instead of numeric constants.
(In a compiled program, A=PI exccutes no faster than A=3.14159.)
* Putting frequently-executed lines and subroutines near the
beginning of a program.
* Putting frequently-used variables near the beginning of a
pmgram_

18

HOW TO COMPILE PROGRAMS THAT USE
THE CHAIN COMMAND

The ProDOS CHAIN command works just like the ProD0Os RUN
command, but existing variables stay intact.

Programs that use CHAIN share common variables and
must be given special treatment for compiling to be successful,
Otherwise a FILE TYPE MISMATCH error will occur.

All programs involved with a CHAIN command must be
compiled to disk using the COMPILE command to compile one
program and a special COMMON command to compile the other
program(s), COMMON's syntax is simlar to COMPILE:

COMMON NAME , NEWNAME
COMMON must be used immediately after COMPILE. If you later
make a program change or add a new file that will CHAIN to or
from the existing (already compiled) files, you must start over
and recompile all of the files.

EXAMPLE

Say you have three programs— MAIN.PROG, PROG.A and
PROG.B-that share variables. MAIN.PROG is the startup
program and it will CHAIN to PROG.A which will CHAIN to
PROG.B which will CHAIN back to MAIN.PROG. Here's what
you do to compile these programs:

1. Compile MAIN.PROG with the usual COMPILE comma nd:
COMPILE MAIN.PROG,MAIN.COMP
(Any legal file name may be used.)

2. Immediately compile each program that is to share data
by using the COMMON command:
COMMON PROG.A,PROG.A.COMP
COMMON PROG.B,PROG.B.COMP

[#5]

RUN MAIN.COMP
or —MAIN.COMP
{Note: Even the COMMONed files may be run.)

19

HOW TO COMPILE PROGRAMS THAT USE
STORE AND RESTORE COMMANDS

Note: This page applies to the ProDOS STORE and RESTORF
commands. The Applesoft RESTORE command will compile just
fine. The Applesoft STORE command is obsolete.

The ProDOS STORE command normally saves the variables in
memory on disk in a VAR file. RESTORE loads these variables
back into memory.

Programs that use 5TORE and RESTORE share common
variables and must be given special treatment for compiling to
be successful. The programs must be compiled to disk using the
COMPILE command on one program and the COMMON command
on the other (see CHAIN, previous page),

COMMON must be used immediately after COMPILE. If vou
later make a program change or add a new file that shares
variables with the existing (already compiled) files, you must

start over and recompile all of the files.

STORE and RESTORE in compiled programs create and use
variable files of type CVR instead of VAR,

EXAMPLE
Say you have a program called DATA SETUP that uses the
STORE command to write variables that will be loaded
{using RESTORE) by a program called BIG.GAME. Here's what
you do to compile these two programs:
I. Type COMPILE BIG.GAME, BIG.GAME . COMP
{Any legal file name may be used.)
2. Immediately type:
COMMON DATA. SETUP, DATA . SETUP . COMP
3. To run either program with the Compiler installed, type:
RUNBIG.GAME .COMP or -DATA.SETUP .COMP

. To run the program(s) with the Compiler installed, type:

20

HOW TO WRITE AMPERSAND ROUTINES
FOR COMPILED PROGRAMS

(For advanced assembly language programmers only.)

An ampersand routine without parameters (& by itselfy will
compile just fine. Ampersand routines with paramcters (like

&XXX or &XXX,YYY,2ZZ) are a different story. Both the ampersand

command and the machine language routine itself must be
modified.

CHANGE #1:
USE && INSTEAD OF &

When calling an ampersand routine from a compiled program,

you must use two consecutive ampersands (for example, you

would use &&SORT instead of &SORT). This is how the Compiler

detects programs that have or have not been modified.

CHANGE #2:
RE-EVALUATE YOUR PARAMETERS

With the Compiler installed, a JSR to $98FD will evaluate the

next parameter after an ampersand:
* [f the parameter is a string, a pointer to the string will be

found at $F6,8F7. All strings in a compiled program are stored

with the length in the first byte.

» [If the parameter is a numeric value and the carry flag is clear,

the value is an integer with its low byte in the X-register and

the high byte in the Accumulator.
» If the parameter is a numeric value and the carry flag is sef,
the value is floating point and stored in the FAC (at $900).

There is no way for the Compiler to determine if the correct

parameters are being passed to your ampersand routines. If the
correct parameters are not there, the program will most likely

crash miserably.

EX&MPLE
Let's write an ampersand routine that prints the first character in
string 55, N times. Our Applesoft program looks like this:

20 S5="COW": N=8D

al L&N, 55

This program'’s mission is to print 80 C's. The assembly code

would look like this:

evalute 535
restore N

Use 45 counter

¥
H
.
3
4
.
PR

HEY, COME BACK!
YOUR PROGRAM
JUST CRASHED!

‘ COMPILED PROGRAM
EXECUTION ERRORS

An Applesoft or Prop0Os program error will cause a compiled
program to crash just like an uncompiled program. The only
difference is that compiled programs produce strange error
messages like:

LLEGAL QUANTITY ERROR AT SOARC.
Uncompiled programs, as you know, produce messages like:

TILLEGAL QUANTITY ERROR 1N 123.
In this comparison, S0ABC is the hexadecimal location (address)
in memory of the error, and 123 is the line number of the error
tmmpiicd programs have no line numbers).

Since line numbers are easier to work with than memory
locations, the most efficient way to trap errors is to test your '
programs and get them working correctly before yvou compile.

THE PRINT.LINES PROGRAM
CONVERTS SADDRESSES TO LINE NUMBERS
(For advanced programmers)

[f you insist on ignoring our advice above: To determine the
line number that is equivalent to a hex error address, compile a
! program using the COMPILE or RUN command, then:
1. (optional) Turn an your printer by typing PR#L.
2. With the Beagle Compiler disk in the current drive, type:
1 BRUN PRINT.LINES or -PRINT.LINES
3. Type PR#0 to deactivate your printer if necessary,
The numbers produced by the PRINT.LINES program are the
starting hex addresses and matching decimal line numbers.

24

ERRORS FOUND
DURING COMPILING

If your Applesoft program contains errors, the Compiler will do
its level best to find them during the compiling process. Each
offending line will be listed with the approximate location
marked, The Compiler will then ask "CONTINUE WITH ERRORS?"
to see if you want to go ahead and run the program anyway
(some "errors” are intentional or cause no problem). If you
answer no, compiling will stop so you can make repairs. Save
your repaired program on disk; then recompile it.

Many errors will not be found by the Compiler-this
includes most ProDOS errors and errors inside quote marks. Here
are some common errors that will be found during compiling:

<?> (SYNTAX ERROR)

* A <> symbol could mean your program contains an Applesoft
keyword that is unacceptable to the Compiler- specifically
CONT, DEL, LIST, LOAD, NOTRACE, RECALL, SAVE, SHILOAD, STORE
and TRACE. Programs with these commands will not compile.
(Note: ProDOS’s LOAD, SAVE and STORE will compile),

= Other culprits are those you have encountered before, such as
missing parameters (like HPLOT with no coordinates), type
mismatches (like A5=3), misspelled keywords (like PIRNT),
missing commas and colons, and so on. Your Applesoft
instruction manuals will help you make program repairs.

<#> (UNDEFINED LINE NUMBER ERROR)
A <i#> symbol usually means your program used a GOTO or
GOSUB to a nonexistent line number.

<A> (ARRAY DIMENSION ERROR)
An <A> means your program has illegally allocated arrays. For
example: A(25)=3: A(6,3)=3 /

<#*> (ILLECAL QUANTITY ERROR)

The only illegal quantities the Compiler will find are illegal
addresses (for example, POKE 90000,0). Other illegal quantities (like
HPLOT 90000,0) won't be noticed until your program crashes.

INCLUDE APPENDED MACHINE CODE?

This message means the Compiler has found some extra space at
the end of your program. This could be useless garbage or it
could be valuable data or a routine that is called by the program.
When unsure, play it safe by answering Y (Yes, include the code),

KEYBOARD
ERRORS

These errors may occur immediately after you type a command:

FILE TYPE MISMATCH

« Maybe vou used the same two names when compiling a file to
disk (COMPILE NAME , NAME).

* Or you vsed a command like COMPILE NAME, NEWNAME and
NEWNAME was already on the disk as a type other than COM.

* Or you ran a program that uses CHAIN, STORE or RESTORE and
you didn’t compile with the COMMON command (page 18-19),

= Or you wrote an Applesoft (BAS) STARTUP program. STARTUP
must be a compiled (COM) file.

NO BUFFERS AVAILABLE

* You may have tried to install the the COMPILERSYSTEM or
COMPILER file more than once. One time is enough.

= Or you may have tried to run a program below address $0801.

= Or you may have pressed Control-Reset during a catalog.

Solution: Try again or reboot.

NOT A COMFPILED PROGRAM
With the Compiler in memory, you typed RUN after loading an
Applesoft program. See pages 10 and 15.

PATH NOTFOUND

Translation: File Not Found. If you're sure the not-found file is
on the disk and you spelled its name right, try typing PREFIX/
or PREFIX,S6,D1 (use your slot and drive numbers) or
PREFIX/DIR/SUB (use your directory/subdirectory names).

PROGRAM TOO LARGE

* Your Applesoft program is too large to fit in memory,

* Or you are trying to run a program at too high an address.

Try compiling to disk, then removing the COMPILER file (page 27).

ISYNTAX ERROR

* Maybe vou spelled a command wrong.

s Or maybe vou used the COMPILE or COMMON command
without installing the Compiler.

* If you get a ?SYNTAX ERROR as a response to typing something
you know is legal (like "LIST"), memory is probably damaged,
and you should reboot. Try pressing Control-Reset first. (It
might not help, but it feels kind of good.)

26

COMPILER AND
COMPILER.SYSTEM

When you catalog the Beagle Compiler disk, you will see the two
files COMPILER (BIN) and COMPILER.SYSTEM (5YS) listed.

=» COMPILER is the program that converts Applesoft programs
into compiled format.

=» COMPILER.SYSTEM is the program that runs programs that
have already been compiled.

When you boot the Beagle Compiler disk, here's what happens:
1. COMPILER.SYSTEM is installed into memory.
2. STARTUP is loaded and run.
3. COMPILER is installed in memory.
If no COM file named STARTUP exists on the disk, the above
process stops after step 1. Beagle Compiler's STARTUP loads
COMPILER, although you may change that if you like by replacing
STARTUP with your own version. STARTUP must be a COM file,

65535 _ ________4FFFF
49152 -l 4co00
38400 49600
- 47000 OMIT ONE OF
TO
32000 46600 SAVE SPACE.
24576 || o || $80DD
(HI-RES PAGE 2)
16384 $4000
(HI-RES PAGE 1)
BT Notnsmer e e nn, o B SI000
204g | PROGRAMS GHUWIFH{]MHEFIE 4a000
0 iipasiels (RESERYED): ::ziziict 40000

OMIT COMPILER
TO SAVESPACE

If you are only going to be running compiled (COM) programs
and not converting Applesoft (BAS) programs, you can conserve
about 6K of memory by not installing the COMPILER file. Any one
of these methods will do the trick:

+ Rename the STARTUP file on the Beagle Compiler disk before
booting. Then boot the disk.

* Or, replace Beagle Compiler's STARTUP with your own version
that doesn't install COMPILER. STARTUP must be a COM file.

Or, copy the COMPILER SYSTEM file onto another disk that
contains the file PRODOS (but not COMPILER or BASIC.SYSTEM).
Boot this disk and you will be able to run compiled programs,
but not convert Applesoft programs.

OMIT COMPILER.SYSTEM
TO COMPILE LARGE PROGRAMS

If you are going to compile a very large Applesoft program, there
may not be room in memory for your program and both Beagle
Compiler files. A solution might be to install the COMPILER file
without COMPILER.SYSTEM, then compile your Applesoft
program to disk.

To prevent COMPILER.SYSTEM from loading, boot a normal
Propos disk that loads BASIC.SYSTEM, then insert the Beagle
Compiler disk and type the command BRUN COMPILER (or
—coMPILER). Do this only once because COMPILER eats 6K of
memory each time it's installed,

Remember, COMPILER.SYSTEM will have to be installed
(alone or with COMPILER) to actually run compiled programs,

Hfh

28

MENU

MENLU is a COM file that lets you select disk drives and programs
from an AppleWorks-style menu. You can make MENU run
when you boot a disk by renaming it STARTUP. Or you can make
your STARTUP program run MENU.

To get MENU going, type —-MENU. A list of all of the available
ProDOS drives will appear at the top of the screen. "56,D01"
means Slot-6 Drive-1, "S6,D2" means Slot-6 Drive-2, etc.
53,D2 represents ProD0S's RAM disk. Below that will be all of the
executable files (BAS, BIN and COM) on the highlighted drive.

Do this to run a program from one of your drives:
1. Press the "< >" keys or a number to highlight the drive

number that contains the program you would like to run.

That drive's file names will be displayed on the screen.

2. Press the ARROW Keys and /or the TAB key to highlight the
program you would like to run,

3. Press the RETURN key to run the highlighted program.
If a subdirectory is highlighted when you press RETURN,
its file names will be displayed-go back to step 2.

To quit MENU at any lime, press the ESC key.

MENU ERROR MESSAGES

* I/O ERROR might mean a drive door is open.

* NO DEVICE ERROR usually means you are trying to read a
slot's drive 2 when no drive 2 exists.

* PATH NOT FOUND probably means you switched disks.

OTHER POSSIBLE PROBLEMS

* If a program crashes, it probably wasn't written to be run (for
example, it might be a hi-res picture instead of a program).

* If you don't see a program listed on the screen and you know
it's on the disk, it might be a non-executable file type like TXT
or VAR. Or there might not be room for it on the screen. The
limit in 80-columns is 60 file names/10 disk drives. In 40-
columns the limit is 30 file names/5 drives.

29

ENHANCEMENTS
TO COMPILER.SYSTEM

The programs on this page make patches to the Compiler.
Just BRUN the file after booting the Beagle Compiler disk
(COMPILER.SYSTEM must already be in memory).

INPUT.ANYTHING

This patch replaces the Compiler’s INPUT statement with one
that allows commas and colons. This is very handy when
inputting data from text files.

SLOW.PDL

Installing SLOW.PDL puts a small delay in the PDL (paddle)
function so you will always get the correct reading.

The Appleseft BASIC Programmer's Reference Manual
recommends that if you are doing consecutive reads of the game
paddle or joystick with the PDL function, that you put a small
loop in between the reads such as FOR X = 1 TO 10: NEXT. Because
the Compiler causes programs to run much faster, you will have
to increase these delays. Or utilize SLOW.PDL.

FAST.HPLOT

FAST.HPLOT replaces the HPLOT statement with one that is much
faster. It's not normally installed in the Compiler because it takes
up a considerable amount of memory. Don't use this patch

unless your programs are heavily into hi-res plotting. .?.
e

wouLb You
JUSTHGR T

1 CALL-3109: PORE
230,32: CALL=3086;
HCOLOR=7: HPLOT
9,9:; ONERR GOTQ 1

2 HPLOT TO RND(1)*290,

BNDG (1) *200: RUN 2

30

APPLESOFT/PRODOS
COMMAND SUMMARY

Use this list for reference. For more complete information, check
the nearest Applesoft or ProDOS instruction manual.

A Applesoft f file/pathname m,n,i,j integers
P ProDOS A$ string xy,z real numbers
* Beagle Compiler X variable
A ABS(x) Absolute (positive) value of x
A AND Logical "and” in an IF statement
I APPEND f Add data to a sequential text fle
A ASC("A") AsCI value of a character
A ASC(AS) ASCIH value of a string's first character
A AT See DRAW, XDEAW, HLIN and VLIN
A ATN Arctangent of x in radians
PP BLOADT{ Load binary file f
P BRUN f Load and execute binary program f
P BSAVE f,An,Lm Save data; Address n, Length m
A CALLn Branch to machine language routine at n
P CAT Display disk contents in 40 columns
P CATALOG Display disk contents in 80 columns
P CHAINF Run file f without clearing variables
A CHRS(n) Character whose ASCII value is n
A CLEAR Clear all variables
P CLOSEf Stop reading or writing a text file
A COLOR=n Set lo-res color to n (0-15)
COMMON f1,£2 Compile a share-variables file to disk
* COMPILE f1,f2 Load {1 (BAS), compile and save as {2 (COM)
A CONT Continue a program
A COSix) Cosine of x in radians
P CREATEf Create a subdirectory file
A DATA ASxyz Strings and values to be READ
A DEF EN A(X)=f(x) Define a function
A DEL n,m Delete program lines n through m
P DELETEf Delete file f from disk
A DIM X(m) Dimension a numerical array
A DIM A$in) Dimension a string array
A DRAW n AT i,j Draw a hi-res shape n at i,j
A END Stop a program with no message
P EXECf Execute text file f from the kevboard
A EXP(x)

e (2.718289) to the xth power

N o b S S

=

FLASH

FLUSH

FN

FORX=nTO m
FRE

FRE(D)

GET AS

GET X
GOSUBn
GOTOn

GR
HCOLOR=n
HGR

HGR2
HIMEM: n
HLIN n,m AT j
HOME

HPLOT i,j
HPLOT i,j TO n,m
HTAB n
IF..THEN...
IN#n

INPUT X
INPUT "ABC";AS$
INT(RND(1)#n)
INVERSE
LEFTS(A$,n)
LEN(AS)

LET X=Y

LIST

LIST-n

LIST n-

LIST n-m
LOAD

LOADf
LOCKf
LOG(x)
LOMEM: n
MID$(AS%,n,m)

3

Set flashing screen output (40-columns)
Write buffer to disk without closing file
See DEF FN

Let X=n, X=n+1... until X=m

Free all available memory

Amount of free memory available
Wait for one-character user input
Wait for one-number user input
Branch to subroutine at line n

Branch to line n

View and clear lo-res page 1

Set hi-res color to n (0-7)

View and clear upper hi-res page 1
View and clear full hi-res page 2

Set highest memory address available
Draw a horizontal lo-res line

Clear text screen to black

Plot a hi-res point

Draw a hi-res line

Position cursor at horizontal position n
Logical "if" true, "then" execute

Take input from slot n

(or AS) Wait for user input

{or X) Print "ABC" and wait for input
Random integer 0 to n-1

Set black-on-white text output

First n characters of a string

Number of characters in a string

Set X equal to Y (LET is optional)

List a program from the beginning
List to line n

List from line n

{or n,m) List lines n through m

Load a program from tape (obsolete)
Load a file from disk

Protect a disk file from alteration
Natural logarithm of x

Set start-of-variables location

m characters of A5, starting at n

32

COMMAND SUMMARY (continued)

e

P

o = =

l'.l
[I
1')‘

-

P

PEEIEPEERPF P PP 3B

IJ

NEW
NEXT X
NORMAL
NOT
NOTRACE

ON X GOSUB n,m...
ON X GOTO n,m...

ONERR GOTOn
OPENf

OR

PDLin)
PEEK(n)
PLOT i
IPOKE n,m
rop

rosio)
POSITION
PR#n

PREFIX f
PREFIX/
PRINT
PRINT "ABC"
PRINT X
READ AS
READf
RECALLX
REM
RENAME f1,2
RESTORE
RESTORE f
RESUME
RETURN
RIGHTS(AS,n)
RND(D)
RND{1)
ROT=n

RUN

RUN n

RUN f

RUN f

Delete current program from mermnory
Define the end of a FOR-NEXT loop

Set normal white-on-black text output
Logical "not" in an 1F statement
Cancel TRACE

GOSUB Xth line number

Branch to Xth line number

Branch to line n if an error occurs
Begin READ or WRITE of a text file
Logical "or” in an I¥ statement

Value (0-255) of paddle n (0-3)
Memory value at location n

Plot a lo-res dot

Set location n to value m

Cancel most recent GOSUB

Horizontal cursor position

Locate READ or WRITE in a file

Send output to slot n

Change default directory

Cancel current prefix

Skip a text line

Print characters within quotes

Print value of variable X

{or X) Read a DATA string or value
Initiate reading a disk text file
Retrieve array from tape (obsolete)
Programmer's remark follows
Rename a file on disk

Reset pointer to first DATA statement
Retrieve strings and variables from file f
Continue program where error occurred
Branch back to statement after GOSUB
Last n characters of a string

Repeat last random number

Random number (0 to 0.999995999)
Set rotation of a shape to n (0-64)
Execute a program from beginning
Execute a program from line n

Load and execute a program from disk
Load, compile & execute a program from disk

T R O PEF OFEF O ERPERPREPPIEE OPEEPEEEERERR

SAVE
SAVEF
SCALE=n
SCRNIL))
SGN(X)
SHLOAD
SIN(x)
SPCin)
SPEED=n
SOR({x)
STEP n
sTOP
STORE f
STORE X
STRS(x)
TAB(n)
TAN(x)
TEXT
THEN

TO
TRACE
UNLOCK f
USRi(x)
VAL(AS)
VERIFY f
VLIN n,m AT i
VTAB n
WAIT i,j,k
WRITE |
XDRAW n AT i,j
XPLOT

—f

?

33

Save a program to tape (obsolete)
Save a program f to disk

Set scale for DRAW or XDRAW (0-255)
Lo-res screen color at point i)

Sign of X (+1, =1 or)

Load shape table from tape {obsolete)
Sine of x in radians

n spaces in a PRINT statement
Character output rate (0-255)

Square root of x

Increment-size in a FOR-NEXT qup
Stop program and print line number
Store current variables as VAR file f
Store an array on tape (obsolete)
String cquivalent of value x
Position the cursor in a PRINT statement
Tangent of x in radians

Switch to text mode; cancel windows
Logical "then” in an IF statement
See FOR and HPLOT

Print line numbers as executed
Cancel LOCK

Pass x to a machine subroutine
MNumeric value of a string

Verify that file f is on the disk

Draw a vertical lo-res line

Move the cursor to text line n

Insert a conditional pause

Initiate writing to a disk text file
DRAW in the opposite color
(Unused Applesoft reserved word)
Execute file f

Same as PRINT

MODIFYING APPLESOFT
VIA THE BEAGLE COMPILER

Actually, we're not going to tell you much on the next few pages,
but we do want to give all the hackers, snoopers and other nice
people out there a taste of how the Compiler works. Please
consider this information as a freebie only-don't call Beagle Bros
for help in analyzing the Compiler's functions.

HAVE FUN IMPROVING

(OR RUINING) APPLESOFT!

Programmers have always had a desire to modify the Applesoft
interpreter to add more power and efficiency to a somewhat stale
language. Since the interpreter is in ROM, it is a bit difficult to
patch. The Beagle Compiler's interpreter, however, is in RAM,
and you can change statements and functions at will.

The Jump Table starting on the next page goes from 59900 to
S99FF and contains vectors (addresses) to each part of the
Compiler that processes statements and functions. A few well-
placed pokes from BASIC or machine language will "steer”
commands to any area of memory you choose.

For example, the following program, when compiled, will
make HOME act like HGR. From there, you're on your own.

10 POKE 3%208,PEEK(39282): REM 59928,39972
20 POKE 392009,PEEK(39283): REM 589929, 0'3'3."
21 : REM 5$85928-29 IS TH 3 H
23 3 M 59972-73 IS THE AD
. NOW WORKS
' 0,0 TO ?11,|0'
Warning: Programs like the one above can quickly open up a
whole Ban of wopmi)

'QE iﬁlumhub
ﬁpaghttncobc

THE BEAGLE COMPILER

JUMP TABLE
Address Name
S9900 init
59902 run
S9U04 clear
S996 restore
SOG08 on
S900A goto
S990C gosub
S9U0E return
S9910 pPop
59912 end
595914 let
596 for
59918 step
SOO1A numprt
$991C strprt
SO9E spe
59920 tab
59922 mmma
SOG4 crout
59926 text
SOUZE home
SA92A normal
S492C inverse;
SUG2E flash
S9430 next
59932 nextvar
59934 letstr
SOU3A OneTT
55438 prom
S093A inrum
£003C readn
S993E reads
594940 gen
S9042 gets
50044 plot
i vlin
55548 hlin
SU94A if
5994C inputn
S994F inputs

Function

Initialize and run the program
RUN line number

CLEAR

RESTORE

ON GOTO/GOSUB

GOTO

GOsLB

RETURN

rop

END (halts program)

assign value to simple numeric variable
FOR {set TO value and initialize loop)
STEP

evaluate and print a numeric value
evaluate and print a string value

SpC

TAB

comma function in PRINT statement
print a RETURN

TEXT

HOME

NORMAL

INVERSE

FLASH

NEXT

NEXT statement with a variable
assign value to simple string variable
ONERR GOTO

PR#

IN#

READ a numeric value

READ a string value

GET a numeric value (shouldn't be used)
GET a string value

PLOT

VLIN

HLIN

IF

INPUT a numeric value

INPUT a string value

JUMP TABLE (continued)

Address
594950
$9932
59054
59656
S9658
S995A
S995C
945K
S496(0
59962
59964
S9966
SO06E
FI96M
F096C
5996E
39970
L9972
20974
S9976
S99TH
S997A
9970
S99T7E
F9980
59482
59584
59986
9988
S9G8A
S998C
S998E
59990
55992
20994
S099¢;
509098
S0094
S890C
59991

Name
priqm
gr

draw
drawat
xdraw
xdrawat
hplot
hplotto
stop
heolor
htab
viab
color
speed
poke
call
hgr2
|1_|;r
scale
rot

usr

pdl
peck
letint
letary
letstrary
dim
himem
lomem
resyme
ampersand
wait2

wiaitd
def
byle
integer
fp
literal
getnvar
getsvar

Functiom

print a '’

GR

DRAW

DRAW with an AT
XDRAW

XDRAW with an AT
HPLOT

HIPLOT TO

S5TOP
HCOLOR
HTAB
VTAB
COLOR
SPEED =
POKE
CALL
HGR2
HGR
SCALE=
ROT =
USSR
PDL
PEEK

assign value to simple integer variable

assign value to array
assign value to string array
DI

HIMEM

LOMEM

RESUME

& (use 2 of them)

WAIT with 2 parameters

WAIT with 3 parameters

DEF FN

1“3—'!{" numeric constant

ill‘-L"gt'r numeric constant
floating point constant (packed)
string constant

get value of numeric variable
get value of string var

Address Name
29940 or
SUaAZ and

59944 relop

S9AR strcomp
SO9AR add
SH9AA minus
SOAC times

S9OAE div
59980 power
S99B2 not
S99B4 asc
S99B6 chr
S99B8 pos
S99BA len
S99BC left
S99BE right
S99C0 mid2
SO0C2 mid3
£99C3 str
£99CH abs
S99CH md
S99CA s
s99CC int
SH9CE val

599000 neg
sKD2 concat
59904 sam
$99D6 fre
$9908 sqr
FIO10A log

S99DC exp
S9DE oS
S99E0D sin
$99E2 tan
S99E4 atn
$99E6 getnary
S99E8 gotsary
SO9EA fn
SS9EC savres
S9UELE error
S99F0 input

$99F3-599FF
END OF TABLE

Funchon

OR
AND
relational operator determined by the next byte:
ke dies b= e 120215
string relational operator (see above)
+ {addition)
- {subtraction)
* (multiplication) [Note: Arithmetic expressions
[(division) are in prefix (Polish) format.]

A {exponentiation)
NOT

ASC

CHRS

POS

LEN

LEFTS

RIGHTS

MIDS with 2 parameters
MIDS with 3 parameters
5TRS

ABS

RND

SGN

INT

VAL

nigate
+ (string concatenation)
SCRN
FRE
SQR
LOG
EXP
Cos
SIN
TAN
ATN
get value of numeric array
get value of string array
N {user-defined function)
save code pointer if RESUME exists
(before each statement that can generate an error)
process an error
prepare for a numeric or string input
reserved-you touch and we call the cops!

34

USER-AVAILABLE ROUTINES
The following routines are available to help you in writing
assembly language routines that will interface with Applesoft:

Address
S9BE8

S98EB

$98EE

S98F1

$58F4

598F7
S98FA

598FD

Name
MOVSTR

BYTE

PRTNUM

ERROR

GETSPA

PRTSTR
PROC

EVAL

Function

Muoves a string (no length byte, must end with 0 byte) to
string space which has already been allocated with
"GETSPA”". On entry, A = LSB of string address and X =
MSB of string address.

Evaluates a numeric parameter and verifies that it is a
byte value {0-255). Anything else gives ILLEGAL
QUANTITY. The value is returned in both A and X,

Prints a numeric value. Set the carry flag if the value is
floating point {in the FAC), If the value is integer,
clear the carry flag and the value should be in X (LSB}
and A (MSEB).

Calls ERROR to report an error. X should contain the
number of the error message (see Apple BASIC
Reference Manual), If ONERR is not enabled, the
program will stop and print the error message.
Allocates space in the string area. A = length of the
string. One additional byte is allocated because the
first byte contains the length of the string. Put the
string where $F6,5F7 points.

Prints the string pointed to by $F6.5F7.

Processes the next statement. A jump to this location is
done at the end of every BASIC statement. If you are
replacing a statement, your code should end with this.

Evaluates a numeric or string parameter.

BC F6pp Boy3®
odaip2C 55.5 Dps
B gTi.D ?553%.9 “Dr‘ﬁﬁl:‘ g Bfg@ s
3 §D D'B-Ol Og 24

39

VARIABLES

Variables are indicated by a byte value ($00-FF). The values for
the variables are accessed by using the byte value as an index into
the tables at the addresses indicated by the following pointers:

viype (57B) Variable type
bit 7 = 1 if array, (0 if not
bit 6 = 1if string, 0 if numeric
bit 5= 1if FN (user-defined function)
bit 4 = 1 if integer
bits 0-3 = number of dimensions if array

The following information depends upon the type of variable involved.
FP=floating point. LSB=least significant byte, MSB=most significant byte.

vwvall (S7A): Array: LSB of address of array header
String: LSB of address of string
FP: Non-zero value indicates this is floating
point type. 1st byte of packed FP value,
Integer: This value is zero if variable has an
integer value.

vval2 (S7Ch Array: M5B of address of array header
String: M58 of address of string
FI" 2nd byte of I’ value
Integer: L.5B of integer value
vval3 (STE): Array: LSB of address of array
FP: 3rd byte of FP value
Integer:MSB byte of integer value

vvald (SBOX Array: MSB of address of array
FI" 4th byte of FP value

vval3 (SB2) Array: Number of dimensions, 0if not
dimensioned yot
EP: 5th byte of FP value
If variable A% has a variable index of 2, then the following code would assign
AS the string pointed at by PTR:

L ivariable AS

oy
""\
A

INDEX

Address of program......... 16 FAST.HPLOT program 29
Ampersand (&) .o 20 Giving programs away 6
Appended machine code .. M GREE i GsmnaE 5
Applesoft s 7,830 HPLOT speed ..
Applesoft, chun};in&; 13,34 INT files ...
Backups ... soonnd INPUT.ANYTHING pmbmm 29
Break at sXXXX |'|1u1-ahu 14,23 Installing the Compiler... 8,27
.18 Joystick problems 29
Changing programs 13 Licensing the Compiler........ 6 8? @ g o § % o)
Commands ..o 30 MENU Program ..o 28 = § 3 g > |a =
COM B o s ' NOTES program ... 7 @) o= (®) S | wn
COMMON command .. Paddle problems 29 P == 2 |4=
COMPILE command .. 11,18,19 PRINT.LINES program 23 tg = 5’ m e P -
COMPILER file voocvvriveers 6,26,27 PROGRAM WRITER ..ococeveene B - 5| @5 12N
COMPILERSYSTEM file . 6,26,27 Relocating programs 16 Q S > 4 A E 83
Control-C . RESTORE command.... =3 8 @ o
CVR files Running programs... o § >
DOE S st 4 Saving grl!‘mgr.?ms g % 3 2 3 g)
Errors siomisnes 23-25 Saving space d: T02 |e m
<>, <>, <A>, <¥> . 24 Selling programs om® § |z iy,
Error at $XXXX message ...23 SLOW.PDL program 29 nNeE - g
File Type Mismatch 25 Speed, maximum i T O § '<
Line nos., converting23 STARTUP program . ©c_.a o
No Buffers Available 25 STORE command oo Z g
Not a Compiled Program.25 TESTPROGRAM .occcoionnncimrans H § >
Program Too Large ... 25 Uncompilable commands .. 9 g z F
Syntax ETTOr .oooovvuvevserernens Worms, can of ... jod ”

Disclaimer of All Warranties and Liabilities

Event though the software descrived in this manual has been tested and reviewed, neither
teagle Bros nor its software bL.}'!‘%llll’“ make any warrenty of represetiation, either express or
implied, with respect to this manual, the software and/or the diskette; their guality, perfor-
mance, merchanlability, or fitness for any particular purpose. As a result, the diskette, soltware
and manual are sold "as is," and you, the purchaser, are assuming the entire risk s lo their
quality and performance. In no event will Beagle Bros or its software suppliers be liable for
direct, indirect, inddental, or consequential damages resulting from any defect in the diskette,
software, or manual, even il they have been advised of the possibility of such damages., In parti-

culaf, they shall have no liabihty for any programs or dita stored in o used wilh Beagle Bros
products, including the costs of recovering or reprodudng these programs or data. Some states
do not allow the exclusion or limitation of implied warranties or lability for incidental or conse
guential damages, so the above limitation or exclusion may not apply to you,

About ProDOS: This product includes software, ProDOS, licensed from Apple Computer, Inc.
Apple makes no warranties, either express or implied, regarding the enclosed software
package, its merchantability or Atness for any purpese. Some states do not allow the exclusion
or limitation of implied warranties or lability for incldenlal or consequential damages, so this
limitation or exclusion may not apply 1o you

49pI0 asemyos—uysny

S3LVLS O3L4INN
JHL NI
a3anvin I
AHVYSS3D3N
J9VLSOd ON

Using The Beagle Compiler With Extended Memory

MEMORY TO BURN!

The latest version of the Beagle Compiler takes advantage of two
types of extended memory, letting you automatically store
strings and arrays outside of main (48K) memory. This gives you
room for larger compiled programs.

[Use AUX.SLOT. SYSTEM instead of COMPILER.SYSTEM with:
= Apple lic or £
wa
» Applied Engineering RamWorks™ (all models)

s Checkmate MultiRam™ (all models)

Use APPLEMEM.SYSTEM instead of COMPILER.SYSTEM with:

@ * Apple Memory Expansion Card
* Applied Engineering RamFactor

* Flipster

To use one of these SYSTEM files, transfer it to another disk along
with the file PRODOS. Then boot that disk. The file you want
installed during bootup (COMPILER.SYSTEM, AUX SLOT.SYSTEM or
APPLEMEM.SYSTEM) must be the first type-5Ys file whose name
ends in ".SYSTEM" on the disk.

To prevent the need to transfer files from the Beagle Compiler
disk, you could simply rename the two SYSTEM files that you
don’'t want to use. Use names that don't end in "SYSTEM",

Note: The Beagle Compiler's STARTUP program, if used, will
report "COMPILER.SYSTEM INSTALLED" regardless of which of the
three SYSTEM files has been installed.

Another Note: APPLEMEM.SYSTEM uses memory more
efficiently than AUX.SLOT.SYSTEM, which does not use about 28%
of the memory available. (Not that you have a choice-the type of
hardware you have determines WhlL‘h SYSTEM file you must use.)

— e e
_NO STORE OR RESTORE —
Sorry, ProDOS's STORE and RESTORE commands will not work __)
‘_‘J:'_i‘t_h APPLEMEM.SYSTEM or ALIX.SLOT.SYSTEM. = __,,,/

IMPORTANT RAM DISK NOTES

When you install APPLEMEM.SYSTEM or AUX.SLOT SYSTEM,
anything stored in a RAM disk will be WIPED OUT. Be sure all of
your files are copied to a real disk first!

I[{,&,PMYSTFM cannot be used with a RAM-dick—
AUX 5[OTSYSTEM can be configured to work with a RamWorks—
| or MultiRam RAM disk. Here's what you de:-
| 1. With BASICSYSTEM installed (not one of the Compiler's
SYSTEM programs), run the CONFIGURE.BANKS program and
specify the minimum and maximum memory banks that wi
be used by the Compiler. Press RETURN to save a reconfigured
version of AUX.SLOT.SYSTEM.
Be sure the range you have selected does not overlap the
memory that will be used by your RAM disk.*
2. Use the partition program that came with your RAM disk to
limit the memory your RAM disk uses. Be sure this memory
does not overlap the memory used by the Compiler.*

*Most RAM disks don't use Bank 0. You can probably skip step 2 by configuring
the Compiler to use only Bank 0 {in step 1, set both minimum and maximum to 0).

MAXIMUM ARRAY SIZES
With APPLEMEM.SYSTEM or AUX.SLOT.SYSTEM installed, arrays
may be dimensioned to the following maximum sizes:

Array type AUX.SLOT.SYSTEM APPLEMEM.SYSTEM

Real 9419 13106

Integer 23550 32766

String 15699 21844
PROGRAM SPEED

Your compiled programs may run slightly slower under
AUXSLOT.SYSTEM and APPLEMEM.SYSTEM. The difference in Spt:fd
will depend mainly upon how much string manipulation your
Applesoft program does,

HOW MUCH FREE MEMORY?

After installing AUX.SLOT.SYSTEM or APPLEMEM.SYSTEM, run the
Applesoft program HOW.MUCH to see how much free memory
you have for variables. Get ready to see some big numbers!

