[AR AT TR S 1 EVY S M ¥ 41) T S AP MO AN ISEPL A PN OE Rt

Graphics Language Reference Manual

e
N IR [THH R | LRI)
~: Fﬂl’\m‘ ‘A \ :‘
! . : ‘_." ' :‘. :‘;IJ‘-n' :«A’ol'I; L"\Ja'u'«
[]
.".,' ‘S ;:. ” > ~v— 4 B
'! 0 * . li'.f";i'.'. ZA...'-' aA.' '». :
| 11800
' 10175 $.W. Barbur Bivd,
. - Sulte 2028 %
Portiand, OR 87219

(503) 244-4181 !

[

Y e Tccremama - -
i e« e B

—"
.- -
id

.. -

YR L ey —
o - . LT .-

5 9
LT .

-
- -

S
—wm T -
- .

SV e N,

-
-

GraFORTH
LANGUAGE MANUAL

Notice

Insolt and Paul Lutus reserve the right to make Improvements In the
product described in this manus! sl any lime and without notice.

Disclaimer of qll Warranties And Liabflities

Insoft Company and Puiv Lutus make no warranties, elther expressed or
Implied, with respect 1o the sofiware described In this manusl, Its quallity,
perlormance, merchantabllily or fitness for any particular purpose. This
soflware Is licensed “as is*. The entire risk as (o the quality and performance of
the soliwarae Is with the buyer. Should the software prove delective following
Its purchase, the buyer (and not INSOFT Company, or Paul Lulus, their relallers
or distributors) assumes the entire cost of all necessary servicing, repair or
correctlon and any incidental or consequential damages. in no event will
INSOFT Company, or Paul Lutus be liable for direct, indirect, Incidental or
consequentisl damages resulling from any defect in the software sven If they
have been advised of the possibilily of such damages. Some states do nol alfow
the exclusion or limitation of implied warrantios or liabilities for Incidental or
consequential damages, 3o the above limitation or exclusion may not apply

to you,

The word Apple and the Apple logo are registered trademarks of
Apple Compulter, .

Apple Computer, Inc. makes no warranties, elther expressed or implied,
regarding (he enclosed compuler soltware package, its merchantabliity or its
fitness for any particular purpose.

DOS 1.3 Copyright 1979-1981 Apple Computer, Inc,

- © 1982 INSOFT® -
- © 1981 P. Lutus -

Ea-
=
=3

—

—

-—
L]

-
Fw'—-
[l aad

==
o=

A PLAYul Preview

TABLE OF CONTENTS Poge

Disclaimer and Warranty
Teble of Contents
PART I: Setting the CONTEXT for GraFORTH. . .
CHAPTER ONE: PREVIEW
e oo™

How 10 Use This Manugl
Start-up Proceduros

- wd -
[7-N.-Xo- 3 N

CHAPTER TWO: BACKGROUND

What You'll Need to Have

What You'll Need to Know

What You'll Need to Do

Whet You'll Need to Be .

Y

PART ll: The CONTENT of GraFORTH. . .
CHAPTER THREE: STARTING GraFORTH

Purpose and Overview

First Things First

More Words

Delining New Words

Looping Structure

The Return Stack

Comparing Numbers

Decision and Branching Structures
Program Structure and Other Miscellany
Conclusion

CHAPTER FOUR: TEXT MAGIC

Purpose and Overview .
Strange and Wonderful Choracters
The Text Editor

Program Compilation

Comments

Using the Editor with GraFORTH

NN
(7Y YR

VOWWWWLWWWL
DNNNN = 2NN
QNN —=woa

.5.5&&5&
adw

5
‘:i

1

(7!
i

gLt

!

Il

)

|

!
rlar

-
¢
i

B |

&

iy
b —]

1
||

LI bl
g

l'?l
&A

CHAPTER ONE: PREVIEW

CHAPTER TABLE OF CONTENTS:

Introduction to GraFORTH

A Family of Languages .

Feotutes

Coinparison with Stendard FORTH
Comparison with TransFORTH
Progrom Editing and Storege

Manual Overview

Structure
Review of Content

lHow to Use This Manual

Differences of Style

Tutorial Learning

Relerence Aids
Muitiple Tables of Contents
Thae Word Library Definitions
Index ’

Conventions Used

Request for Feedback

Start-up Procedures

Product Information Card and Replacement Policy

Making and Using Backup Copies

A PLAYful Preview

An Introductory Tutorial
Running the PLAY Progrem

PREVIEW

TR wmice e 1@ e et

Page

‘-‘ddd
ABLON N

-
)

- - . o e wh
DUNNAUNUOD O

&

-~ e

E

T WS e o g O, © R, e, g o

picRaman 17— 1Y -

;

[0d..tio. ¢0 araFurtIM

™
“;.:?:;::':mv;:: has some potentially powerfu! qraphics
Sapebilities, 0 of the most imnressive of these fs the
Aene numberg ;reso'ution color qrephics, While there has b
bl oF proarams written which use this capabiiit een
o retamet] m:st dramatic way, and there have been sewry;
gutstanding arap fcs utilities written to ease the task of sddi
et sveciflc,!:o programs, until now, no computer langua : h v
bren Spect cally crested for the purpose of full 1 'ges e
edtures. GraFORTH 1s jJust such ¢ lammqoy explotting

A Family of Languages

GraFORTH 1s the Tatest membe

" ! °r of a powerfyl .
t::gzag::.t::v:loned for Insoft by Payl Lutu:f" T;:"::{s:'or

T eroapted ;nqgaqts to be released was TransFORTH, While

di i Toronan on "ra ORTI! are related, each of these Tanquages h
giperent nees ons and capabilities, and s desianed to he:t *
A "'sE dThey dre related 1n the ways members of .

fom lanquaoe‘ e' = they have the same parentage, that of the
o anauaae, df:f. moment, we'll take a look at that herftaqe
Implomactasy ine ”":r::::: b:t:?en GraFORTH and other FORTH o
GraFORTH you'1l very soon b; ::.r:1::7* ' the capabiiities of

Features

f
c.;:;g::rsuro;;des many features not seen before on small
color, at rat s tystem can draw three-dimensional fmages, in
'vsic.svnthe :s that make snimatinn possihle, A sophist; ted
msTc as well as Sound to aroronmi nrites 411ows the addition of
In any size, color, or type proarams, Text displa

neface, and mixed with Y may be
g:-:::d’.::dO: the screen. Personalized char:ct::‘?:::: Iaages
be ‘Mocl: ori tonts full of different two-dimensional ima noy be
control Cl" e? to any screen location under full pro r:;s ey
nnoltcai!ense:;.y' this 1s » proaramming 1anaquage destzned f
imortant, such :: t';:t&.::';"'"”““" oraphics capahiifty 1;"
software, *loorent of qames and entertainment

PREVIEW
. 1-2

O

r=

Comparison with Standard FORTH

The abave features are embodied in a very fast, fully como!led
version of FORTH, Nearly all other Apple lanquages (hoth RASICs,
1CSD Apple Pascal, Apple FORTRAN, and most other FORTHs) are
interpreted while they are running. This fs often done tn
provide what is called ‘code transnortability’, the avility te
take programs from one comuter and run threm on another with
either no or few modifications, Unfortunately, this drastically
reduces the spead of your proarams, fraFRTH (and TransFORTH)

have heen desiqned for the comouter own, the Apnle, They

oy
have hren specifically written to m{?'mxmm use of the

features huilt into your machine, and therefore no attemnt hat
heen made to create transportable code. By compiling directiy tn
6502 machine lanquage, speed was qreatly increased over nearly
every other lTanguage - a must for smooth, fast, animation auality
Even though GraFORTH s fully comiled for the nurnnse

araphics.
of Increased speed, commands may still he tyned directly at the
keyhoard, rather 1ike an interpreted lanaquaqe. As implemented,

then, GraFORTH has both the speed of 2 compiled lanquage and the
immediate feedhack of an interpreted lanquage, the best of hoth
worlds. Finally, GraFORTH, unlike standard implementations of
FORTH, uses standard Apnle DOS commands and file structures, to
retain compatibility with the work you have already done with
your computer, and to reduce the time 1t will take to learn

GralfORTH,

It you are already familiar with snother version of FORTH, you
will find many simitarities and many differences hetween Grafnafn
and other FORTH versions, as GraFORTH {s only loosely related to
these other lanquaaers. The neneral structure of the lanquane has
heen retained (at least outwardly), hut the implnmentation of
that structure is vastly different, These chanaes have heen made
for very specific reasons. In short, the intended usane of
Graf0eTH is very different {rom that for which FORTH was
originally desiqnad, GraFORTH {s a computer aranhics lanaquaqe,
and this in and of ftself brought shout many chanqes. further,
it was our intention to nake GrafNRTH as easy to learn and as
similar tn existing Apple environments as possible. Therefarn,
{f you already know FORTH, we hope you will hear in mind that
this lanmaqe has heen desiqned for those who do nnt share your
knowledae of FORTH-1{ke nnvironments and who want a fast, easv to
learn nraphics lanmuaqe. For those of vou who do no' knew roRTH,
dive Inl You will find GraFORTH to he a powerful, vet intuitive
lanmaae, Very soon you will bhe wsing your Apple to dn thinns

you never thought were possihle befnre!

PREVIEW

[e e

-

QOmparison with TransFORTH

By way of contrast, while GraFORTH s a powerful graphics
proarasming lanquaqe, restricted to whole number (inteqer)
‘calculations for the purpose of qraphics specd, TransFORTH {s @
scientific and business orlented lanquaqe with floating-point
arithmetic and 3 much more extensive oparating system,
TransFORTH also has two-dimensional line-drawing and
TURTLEGRAPHICS capabilities, hut no three-dimensional qraphics,
and character qraphics are limited to selection of pre-defined
character sets. Thus, TransFORTH has much more calculating
ahility, but less grephics, while just the opposite is truve of

GraFORTH,

Program Editing and Storage

Programs, subroutines, or ‘words', as they are known in FORTH,
can he written in the langusge editor and stored In text files
for later modification or use, Recause these files are standard
DOS text files, any editor of the user's choosing which creates
such files may be used. Because program seqments may he saved in
this way, the accumulation of proven proqram modules is
encouraged, which in turn encourages the practice ¢f good

prograsming techniques.

Manual Overview

Structure

The text portion of this manual is divided into three parts - an
fntroductory or context-setting section (Chapters 1 and 2), a
tutorfal-based content section of seven chapters to help you
understand and put to use the GraFORTH lanquage system (3 through
9), and a section of appended reference material, including the
GrafORTH Word Library Listings, Technical Nata, and Index.
Throughout these chapters, diagrams are used to support the text.
These {1lustrations and the abundant use of headings should make
it possible for you to skim the text, aqet a sense of the subject
matter, find general topic areas in the body of text, and never
lose your sense of where you are. The Index should help you find

specific topfcs quickly,

PREVIEM 1 -4

=
v

Review of Content

Part 11, the content of the manual (that is, that material which
is ahout the Tannuage itself) is presented in seven major chapter
divisions. Chapter 3 is primarily an introduction to the roORTH
language aspects of GralORTH, includina an explanation of the
definition of words, stack operation, and control structures.

(In addition to being a qood introduction to GraFORTH, ruch of
the material covered in this chapter pertains to other FORTHS as
well, making 1t an excellent FORTH overvigw.) Chapter 4 covers
text entry, special characters, and the supplied text rditor, It
shows how to write and modify GrafORTH programs or “words” and
how to compile them into memory from the editor buffer or from
disk. Chapter 5 prasents extended GrafORTH capabilities and
describes how it operates, how it relates to and uses the N0S 3.3
disk operating system, and how its dats structures - variahles
and strings - are created and used. Chapter 6 introduces
GreFORTH's two-dimensional araphics capabilities tncluding
plotting and line drawing, color selection/fillinq, and the
TURTLEGRAPHICS commands. Chapter 7 describes character araphics,
particularly a proqram called CHAREDITOR, which allows the desiqgn
of new character fonts and images that can be block printed to
the screen. Chapter 8 reveals the GraFORTH 3-D qraphics system,
{ncluding moving and manipulating odjects in 3.0 space. The
program IMAGEDITOR, which allows the creation and modification of
3-D objects, and another, called PROFILE, which speeds up the
process for the particular class of objects which rotate or
revolve around a central axis, are introduced. Another proqram,
named PLAY, winds up the discussion of 3-h qraphics by allowing
you to "play” with an object in space, as you will discover in a
short exercise at the end of this chapter, Chapter 9 descrihes
how to add music (as opposed to sounds) to your proarams, and
Chapter 10 concludes Part Il with a discussion of marketinn
software developed usinq GraFORTH, That's ¢ lot of content,
which you surely must he eaqer to qet to, hut first perhaps we
should talk ahout the manual for 8 hit.

PREVIEM

@ s Bas T

- W~ ——— N N O~ P "o s -
s s e e

- — - ——— — -~~~

'

How to Use This Manual

——— .

e e =

A}

Differences of Style

1t §s important to realize that everyon: uses manuals according
to his or her own fndividual learning styles and skill levels,
There are those of us who start from the beainning and carefully
read every word, and there are others who bound ahead looking for
just enough information to “"qet on with ft", Still others like
to live on the edae, hoot the disk first, and only use the manua!
11 they have to look something up later. furthermore, even the
came reader will have differing moods and levels of interest, and
will use a technical manual In different ways at different times
according to his or her current understanding of the product.

Tutorial Learning

This manual Is set up to be, first of all, a tutorial to quide
you qradually through the steps you need to take to learn the
GraFORTH lanquaqge and begin to put it to use. ‘'Tutorial
learning' has become the primary method of microcomputer
instruction. Actually, it's a bit of a misnomer. There {s
really no tutor, unless a technical manual cao be considered
such. For the most part, it will be just you and the manval and
whatever other resources you can pull together, Be advised,
however, that there are many differences between GrafFORTH and
other FORTI implementations. Recause of these differences (we -
think of them as improvements), we advise you, even {f you know
FORTH already, to read the manual carefully at the beginning,

Later, of course, you will be using the manual more as a
reference quide than as a tutorial, and will need to be able to
find specific items of Information quickly, There s nothing
more (rystrating than knowing that you saw something someplace,
but can't quite remember where, WNe'll help you find it, after
all, you may be living with this manusl for & few weeks, In
either case, tutorial or reference, we have tried to accommodate

all styles of learning.

PREVIEW

{ -

Reference Aids:

Multiple Tables of Contents

As mentfoned ahove, there are various reference aids which should
allow you to find what you want quickly when using the manual as
8 reference quide. At the beqinning of the manual, there s a
comprehensive table of contents which presents the major topics
of the manual, with page numbers, in the order in which they
appear, Each chapter has a similar, hut more complete tahle of
contents for that chapter,

The Word Library Definitions List

Appéendix A, in the back of the manual, contains an
alphahetically arranged 1ist of annotated definitions of all the
GrafFORTH words which come with the system, Recause this fs an
important source of information about the lanquage to which you
will be referring frequently, we placed it first, and have also
included an additional cross listing of the words by subject
groupings. ' '

Indéx

In Appendix E, at the end of the manual, there fs a comprehensive
index which lists the major topics and terms of the manual once
again, but this time alphabetically,

Conventions Used

Several standard conventions ere used to simplify the
descriptions, All commands which you are to type in are printed
in upper-case type. All 'system' responses are shown as they
appear on the screen, ‘'Control character' entries are denoted hy
ConTRolL-X, where X would be replaced with the actual character
entered, Control character entries are made by holding down the
ConTRol key while depressing the indica*ed key.

PREVIEW 1 -7

T N we

s
PO

- -y

v~

=~

A St

i

[L hg Xl

e
!

Request for Feedback

Let us know what you liked and didn’t like about this manual. We
have tried to make it as complete and friendly as possible, but
we know that something, somewhere may he confusing. Let us know
if We omitted a useful tip, or explained something poorly. Also,
let us know what worked for you so we can continue to produce
high quality manvals for future products.

Start-up Procedures

Product Information Card and Replacement Policy

The warranty of this diskette is covered in qgeneral hy the
statement at the hottom of the warranty and disclaimer page in
the front of the manual. Since its message 1s hidden in
leqalese, let's just say that roughly what is meant (s that we
d1d our hest to ship the diskette in perfect condition, but we
have no control over what happens to it enroute to your disk -
drive. If, for some reason, it will not ‘'boot' (come up on the
screen when the machine is turned on), then you should take or
send 1t back to the place where you purchased it. If they cannot
get it to boot, then we will replace it at no additional cost to
you, for a period of 30 days after you purchased it.

(Thereafter, a nominal replacement fee may be charged.) Once you
have a disk that boots and runs, then it is your responsibility
to protect 1t by using it only for the purpose of making
duplicate work disks and hbackups (see next section),

In the meantime, we would appreciate it {if you would fi11 out the
Product Information Card, This card aqives us valuable
information about our customers and helps us desian our products
and product line to better serve you. If everyone who buys
GraFORTH turns out to be retired and living in Florida, then this
manual will have to he rewritten with a different set of jokes.
The card also allows us to keep you up to date. If we decide to
send out an updated GraFORTH diskette, then you would prohably
want to know about that.

PREVIEW

Making and Using Backup Copies

If you have not yet made a backup copy of the GraFNRTH Hiskettn
then now §s a nood time tn do so. Never use the nriginal as a '
work disk, not even for a few minutes. Particularly, never use
an oriainal disk to try to solve a problem which blew up your
work disk. Make a new hackup {f you can, and use that to
experiment., Recause GraFORTH s compatible with DNS 1.3, any
copy nroqram you normally use to capy your l6-sector Appie nns
disks will work to copy this diskette. The COPYA program which
came with your NNS 3.3 System Master diskette is a particularly
reliable one, and we recommend using 1t. In fact, it is ’
recommended that you have two backup coples so that (f one noes
:::n; {:u won't have to open your lead-lined vault to aet at the
qinal,

A PLAYful Review

An Introductory Tutorial

We suqqest that you study the Tahle of Contents and the Manual
Diagram for a few minutes to qet an fdea of where we are and
where we have to qo, and then, hecause we know you are itching to
qet your hands hack onto that machine and create a few
three-dimensional forms to rotate in free-floating and
free-wheeling space, we'll give you & preview of what's to come
in future chapters...

If you catalog your disk, you'll find the text file PLAY on it.
PLAY s a set of routines (or “words"), which when compiled and
run, allows you to pull up a three-dimengional form of f the disk
(several are provided), and play with it in 3-D space. Later on,
we'll tell you how to use PLAY to understend better the 3-0
images you are creating. BRut for now, we are just going to have
some fun using PLAY. [f you have not yet made a backup copy of
your disk, we'll just have to insist that you do so now., From
now on, when we speak of your GraFORTH diskette, we will actually
he referring to the copy you use as & work diskette.

PREVIEW ' 1-9

e v .

L mmetrem e e e vesr® e = =
e e .

R TN

oy

o~ o——— w4 Sy W —

— e semem s @bt - .o aus G

Running the PLAY Program

To run PLAY, hoot your disk and respond with an 'N' 'NO'

or
:heegenonstratlnn question, When the "Ready” prompt cou:g o:?
o ' ’

READ ® PLAY " (return)

fle sure tn type it exactly as you see it, includin

hetween PLAY and the quotation marks, T;! wor:dREXHt?: :n::;;and
that tells the GraFORTI system to read a file on the disk and
compile it into the word 11brary, that s, turn it into machine
lanmuage for the machine to use. When the "Ready” promot
reappears, type 'RUN' and 4 set of Instructions will be displayed
on the screen, as 11lustrated in disqram bhelow:

r(uv - A 3-0 tmoge Mantpulotor \

TR Tl T
Py e e e

IS e

or gé‘.’.’ 12 att gt feremarers

'E Ei:’hu :‘luﬂluo

Tmage in (MIemary or on COJIN? U

I\ Y,

The words, ROT, SCALE, TRANS, and P)S refer to the f

parameters you may use to manipulate the image in sp:::. ROT
stands for the ability to rotate the object around any of three
axes, SCALE stands for the ability to change the scale or size of
:he object, T?ANS stands for the abflity to translate or move the
mage in Its 'space envelope’, and POS stands for the ability to

move the position of the image on the screen,

PREVIEN 1-10

m
__J‘J .
Lds

.

i
»‘1 -

- 1--':5
—
) ety

Exod

G|

" The characters, 123 456 789 :-, are pressed to activate any of

the ahove parameters alonq any of the axes, X, Y, and 2,
indicated helow them, The commands in the middle of the scrren
start and stop the selected action, or resnt the parameters to
their starting positions (called 'defaults’'). You are to press
just those keys which are high-light.d in inverse, If the actinn
ever gets too fast for you or you see something you'd 1ike to
study, pressing ConTRoL-S will stop the action until you press
another key. Similarly, 'N* will reset the currently active
paramnter to its default position, <ESC> will put you hack at the
beqinning, and 'Q' will put you out in the cold at the "Ready®

promot,

At the bottom of the screen, you are heina asked to answer @
question as to where the {mane 1s which you would like
manipulated, The quickest way to understand the proqram s to
dive 1n and try it, pressing the varfous keys alonq the way to
see thelr effects. Rut first, we need an image to play with,

shead of us, you do not have a 3.0 image in
memory yet, so select 'D' to answer the aquestion st the hottom of
the screen and to beafn the imaqe loadina process. Next, hit
Creturn) to default the address to 2016 (more on that later), and
enter 'XYZ' as the fmaqe filename. Aqain, hit (returnd, Your
screen should now show a picture of a vertical line crossed by &
horfzontal arrow. 1n a moment you'll see that these are really
three intersecting arrows. 0On the right side of the screen are
The movement commands, ROT, SCALE, TRANS, and P0S. Ignore the
latter two for the purposes of this short trial run, Now the fun
beqins, Press '2', and then the right arrow key., Mext press
"1', then the right arrow key, Observe the numhers chanainq over
on the right, See {f you can fiaure out what they do as you
select keys to press from the previous diaqram, Try the left
arrow keys, and watch the action and the numbers change. You may
freeze the selection last changed with 'F', and also by ysing the
arrow keys to get the parameters hack to zero.

Unless you're way

At this point, you should have a screen which looks something

_ 1ike the one on the next pane.

PREVIEN 1-1

iz T 2N

— - — o e—
—— e c—— — "

S —— C—— - —— -

e — . —

o e amme o . w——

3
—— .
o=/

-

-

-)

2
o0Z Qo®er O

-
R o

]
\C1Jxmor velve: 18 tae 4/

Now press ‘D' to reset your current parameter to its default; get
the fdea? The more you press the arrow keys, the faster the
tmage will turn, If you are working on a color screen, you will
see that each axis is a different color, which may help to keep
them straight. Remember, pressing <esc> will set 8] parameters
to their starting (default) positions, which may be needed {f
they start getting out of hand. In particular, 1f SCALE, TRANS,
and POS get beyond a certain size, they will no longer fit on the
screen, and they will beain to "wrap around”, appearing quite
unexpectedly on the opposite side of the screen. It will look

as {f you have lines bouncing off the walls, but {t is really

only wraparound. If you like that effect, then fine; but 1f not, .

Just keep the numbers smaller,

That's enough fun. We have to get back to work and learn the
rest of what GraFORTH has to offer. We'll come back to PLAY in
Chapter A, and learn what TRANS and POS actually do. But 1f you
just can't quite quit yet, we'll mention (while the boss s out
of the room) that the way to bring up another 3-D image to PLAY
with is to type 'Q' and then RUN again, repeating all steps
except the one where you enter the filename (try HOUSE).

PREVIEV 1-12

CHAPTER TWOQ: BACKGROUND

CHAPTER TABLE OF CONTENTS:

‘What You'll Need to Have

Hardware Requirements
Recommended Peripheral Options

Soltware Requirements

What You'll Naqd to Know

About Your Machine

About The DOS
Minor Modifications in DOS 3.3

Making Space on the Disk
Deleting Files
Entering Other DOS Commands

Qisk Care
About Programming
About Graphics
About Music

What You'll Need to Do

Get an Overview
Run the Demos
Plunge In

What You'll Need to Be

BACKGROUND

Page

RN N
o

»
o

NANRNNNANND
AREY. ¥ Y. ¥ W RY R X)

RN R
odo® &

»
©

2-1

PP G ¥ —_pey, o =

k_y-.——v—-- e v S— T T—— o~ G~ - g eme T : N
- ‘. PR . - - - - DO -

Y .

What You'll Need to Have

Hardware Requirements

GraFORTH requires that you ha th
components: y ve the following minimum hardware

An Apple or Apple + computer with 4nK RAM

One 00S 3.3 Apple disk drive with controller

A black and white (or green) video monitor, and/or
A color monitor or color TV with an RF modulstor

Recommended Peripheral Options

In addition to the ahove (includin

q the color displa {
hiqh:y recommended that you have a 16K RAM or'lan:uazz'Clgd'sto
provide more available memory, and a second disk drive. ’

Software Requirements

GraFORTH §s written in 6502 machine 1
anquage using the ALD SY
::;;m?;:;f:hic:'va;r:;;::en by 7aul Lutus and s :'so av:llzbfzzn
. ¢ s are internal and are theref
:::r;ete!y {ndependent of either Apple BASIC (INYEEE: ::'
'"ELlg?rlzsqrggargzrgnhoo::'rro:'the 'monitor', without a BASIC
q . uw notice by the pres
:;:er!s: prompt (rather than the nnsl{ prom::).e:::ixz g::tup.
b ;0:‘ 530:37"302: n;g::om {ndependent of any resident lanquaqe
R q the erences hetween Apple 11 and App!
::::!ne: which are sometimes troublesome to so!twor:. 7: :I::‘
"Ell;' owever, that it is not possible to add your own special
hELLO °'°3"" to'the disk to have it do your favorite tricks on
Gr.ro:;" ut don't despair; we will show you later how to have
pratD sutomatically run any program you wish on hootup.
urther, thet proaram can he written directly in GraFORTH,

B4CRGROUND ' 2.2

What You'll Need to Know

What You'll Need to Know about Your Machine

While it s intended that this manual serve as a tutorial in the
use of the -GraFORTH language, it is not intended to cover
material already covered quite thoroughly and thounhtfully in the
set of menuals distributed by the Apple Comouter Company. If you
are a new user, unfamiliar with how to use your Appole computer,
we suqaest that you take the time to no through the Apple
Reference Manual, which came with your machine, Yov will not
need to know everything fn 1t to use your Apple successfully, but
the more you know, the easier it will be to understand operations
which minht otherwise seem puzzling.

What You’l/ Need to Know ayout the DOS

With the exception of certain small changes (sce below), GraFNRTH
uses the standard Apple Disk Operating System, Version 3.3, known
affectionately as NOS 3.3, If you are at all unfemiliar with how
to use your disk operating system, we suanest you take the time

now to study the NNS Manual which came with your disk drive(s).

It will be time well spent.

Minor Modifications In DOS 3.3

Minor modifications have heen made in the disk operstina system
to make it run smoothly with GraFORTH, Most of these channes
will he ‘user-transparent', or not noticeahle, and ysing NUS from
GraFORTH {s the same as using DNS from either of Apple's nASICs.
Roth create TEXT tyne data files, and GraFORTH even uses TEXT
files for savina program 'source code’', The NOS on the supp!ied
diskette has heen modified, however, to take advantane of an
existing lanmane card or RAM card. If you have such a card, MS
will be loaded automatically into the lanquaoe card, leavina much
more room (almost 10K) in main memory for proardm devnlopment ,

To take advantaqe of this additional memory, *wo editors have
been provided on the disk; ONJ.ENITORT for systems without
lanauage cards and NRJ.ENITOR2 for systems with lanauaae cards,
Mote that GraFORTH requires the NNS it is supplfed with, You can °
not transfer GraFORTH to a dist with a different NNS!

BACKGROUND 2-13

P e

-~
o,

e 4

29—y ety -

[A

>,

—

— -~

o S

bor il
S

by

3"V

ey
s

X

=T e T =S
B

Dt e

IR ot

P e

A

[

Making Space on the Disk

The GraFORTH diskette, as delivered, is nearly full, Not only
does the disk contain all the system files needed to use
GraFORTH, 1t also contains many demonstration files a3 well as
some specialty files. After you have copled the diskette end
exhausted your interest in the demos, you mey want to trim your
work disk down & hit to make room for your own files. The
demonstration programs will probably be the first to qo.
Aopendix C 1ists the files on the disk, indicating those which
may be deleted without danger to the GraFORTH system by a i
See the sections which follow for help on how to delete files

from your work disk. ‘

Alternatively, you miqht want to leave your work disk intact and
set up another disk for proqram development. The GraFORTH system
would not need to be on such a disk; you could use, instead,
standard DOS diskette, If so, you will need to copy the editor
file or files onto that disk as the GraFORTH word, EDIT, looks
for the editor program on the 'current drive'. If you are using
a lanquage cprd, copy 0BJ.ENITOR2 onto your program developmen
disk, otherwise copy 08J.EDITORI onto that disk. .

Deleting Files -

There are three simple ways to delete-files from the disk. One
way is to hoot an Applesoft disk, then catalog the GraFORTH
diskette and delete the files you want to remove as you would on
8 standard D0S disk. Alternatively, you could use your favorite
File utility, such as FID on your DNS 3.3 System Master Disk, or
else boot GraFORTH and enter your DOS commands from the proaram
itself. If you are already in GraFORTH, the latter method is the
method of choice. To delete files directly from the program, you
will need to take the following steps:

'

BACKGROUND ' : 2-4

=2 3
:
aapbions |

>3

[acaii

=
:;',1
Eo

<=1

E:;'.;':d
ET::)
£1
‘*::l
=

|

J_1T
i

1. Moot GraFORTH and you will see the prompt
* Nemonstration (Y/N)?
2. Answer 'N' and the "Ready" prompt will appear.
3. Respond with:
EVIT <returm
The drive will whirl a bit, loading the editor, and then the

editing title will appear along with 8 flashing cursor.

4, To enter a NOS command, type:
ConTRoL-D <return>

and the following prompt will appear:
Enter 00S Command :

S Respond with:

CATALOG (return)
(or CATALOG,D1 <return)> for two drive systems)

and the catalog will be listed.
6. Select the files to be deleted and type:
NDELETE filename Creturn)

The drive will run briefly, make fits usual scratching saunds and
the file's name will he deleted from the disk directory. You may
confirm that fact with another CATALOG command. Then repeat the
procedure to delete the other files you wish to remove from the
disk. To return to the editor, press the Creturn) key twice
without entering any DOS commands, and you will see the blinking
cursor of the editor once aqain. To return back to GraFORTH,
type °BYE', then press <returnd. The GraFORTH header and the

“Ready® prompt should reappear.

BACKGROUND

S e

Rea R 3G W

i T e B

e v

Entering Other DOS Commands

The ahove steps represent the procedure to be followed to enter
any standerd NOS 3.3 command from GraFORTH {tself, Later on,
we'll descride another method which enables you to use 00S
commands from the "Ready” prompt directly without entering the
Qd‘toro

What You'll Need to .Know about Disk Care

We assume that by now you have made a copy of the original
diskette, have stored it in some safe place, have had some fun
with PLAY and are anxlous to get down to "work". Bear with us
for one more cautionary remark (admittedly unnecessary for almost
all of you). In case you are not familfar with the care and
feeding of floppy diskettes, what we mran by “safe place” s that
the disk {s stored vertically, is not hent or folded or exposed
to magnetic flelds or to temperatures outside of the range 50 to
125 deqrees F,, and that the "naked” portion of the disk (as seen
through the small oval opening in the plastic covering) {s not
exposed to dust, fingerprints, or cigarette ashes. We recommend
that you always keep your disk in its protective sleeve and box
whenever it is not actually in a disk drive, Never attempt to
write on 1t with a pencil or ballspoint pen, If treated in this
way, your diskettes should qive you years of devoted service, and
perhaps even become collector's ftems of considerable value to
your grandchildren (well, at least curiosities).

What You'll Need to Know about Programming

It is not necessary to know how td proaram to learn programming
in GraFORTH, It is our position that both TransFORTH and
GrafFONTH are simple enough to learn that novices can take them on
as beginning languanes, We also belfeve that they are so
powerfyl that advanced proqrammers can use them in a full range
of commercial applications. While it s not necessary to learn
programming prior to startina in on GraFORTH, 1f you are already
familiar with BASIC or another high-level langquage, you will, of
course, learn GraFORTI much faster, In particular, a familiarity
with Applesoft and/or Apple Pascal will speed the learning of the
contro! structures, data structures, and the filp handling
portions of the lanquane, Famil{arity with FORTH will qive you 8
head start on the operation of the stacks, postfix notation, and
the word librery,

BACKGROUND : 2.6

Eax
| S|
3

&:?]::3

.

What You'll Need to Know about Graphics

lere agein, prior experience in araphics proaremming s helpful
to learn programming in GraFORTN, but it fs not required.
Graphics is the heart of GraFORTH - all kinds of araphics -
standard two-dimensions! grephics, TURTLEGRAPHICS, color
araphics, hlock printing of imace fonts, three-dimensional
araphics, all at speeds which will support animation, and sot to
misic 1f you Vike, {f you do not fntend to do & ot of araphics
programming with GraFORTH, thea you may have the wrong lanquane,
(Perhaps you really need TransFORTH...)

With GraFORTH, powerful graphics editors sMow your imanes to he
created with considerable ease. A powerful command set allows
them to be put in motion, Routines can be set up &3 independent
words, then tested out and stored, to be used oqain and ega!n.
But you do not need to know It all before you start, We'll take

you through it a step st 2 time,

lowever, {f you are 8 beginner at graphics, you will learn faster
:g';o; araw znon scvera!gsources st once and approach the subjfect
from a!l sides. The Applesoft Tutorial has a qood introduction to
Apple graphics, as does the Aople User's Gui4e hv Lon Poole, et
al. The Apple Pascal Lanquage Reference Manual has a fgood
chapter on TURTLEGRAPHICS, and {f you really want to aqet into the
whole suhject, try Graphic Software for Microcomputers by B. J.
Korites (Kern Publications, 1981).

What You'll Need to Know about Music

As mentioned ahove, one of the features of araFORTH {s & music
synthesizer which enahles you to add music to the proqrams you
write in the languane. Operation is straightforward, and 8 note
table is provided to make use of the music synthesizer as simle
as possible, We think you will be amazed at the added dimensinn

it will qive to your proqrams.

BACKGROUND

- we E——e-

What You'll Need to Do

Get ah Overview

One of the most time-saving things you can do right now is to et
an overview of the manual and the structure of GraFORTH, Time
spent on the demos, and studylnr the table of contents and
dlagrams will qive you & genera framework which then just needs

to be filled in with detail,

In hetween this chapter and Chapter 9 are the chapters which
explain in detall how tg use GraFORTH, Chapter 3 gives an
introduction to the use of GraFORTH. It s something of &
mini-manual in itself, and even those of you who know FORTH may
find 1t a useful review of how GraFORTH differs from other FORTH
languaqges. The next six chapters build somewhat on one another
and should be taken in order, with the possible exception of
Chapter 9 on susic, which could be read and used anytime after

Chapter 5.

Run the Demos

The set of demo programs on the diskette will qive you a good
sense of what GraFORTH can do. To run a demo, just answer 'Y to
the demo question which appears after bootup, and then simply
select from the menus which follow. Later we shall tell you how

to remove the demo question,

Plunge In

At this point, there is very little left to do but to load your,
work copy of GraFORTH in the drive, boot it up, and plunge in,
Start at a place in the manual appropriste for your ‘skills and
knowledge, read that section, turn to the program, work the
examples, and then see If you can amaze yourself with a few
examples of your own. That's all there is to ft. Remember, the
chapters, |ike the lanquage, tend to huild sequentfially, so it
may not be wise to skip around too much,

BACKGROUND

-

What You'll Need to Be

Confident, fearless, and fun-loving. Willing to take risks, make
migtakes, and learn from those mistakes. Wil1ing to ask stupid
questions and make a fool of yourself to find out what you need
to know. MWilling to let yourself enjoy 1ife and turn work {into
play. 1n short, just your average, run-of-the-mill, Apple wener.

BACKGROUNO

’

Rl T
- - em——

— -
. - A -
. W et ea s

- o

- | ep—— =
XNt _ e -
A A e
B -

-

ol .

-

-
o o

e e

e~ ——— - ———
g e = —— — e o g

-,
g

e
CHAPTER THREE: STARTING GraFORTH
y -3 Chepter Table of Contents: Poge
' ' . Purpose and Overview 3.2
.' &3 First Things First 32
P ‘we 3ystem g g
[PYON oras .
E M --:3 The Data Stack J-4
! Numbers 34
I = Hands-On Experience 3.4
1) £--d More Words 2.7
A . Stack Words 3.7
. t---. e Arithmetic Words 3.9
P e gl Using Words 31
"!_,'4 ' . Printing Text 313
?{‘ ‘ pr—-q Defining New Words 317
R) Forgetting Words 317
i) . --'= Looping Structures 319
| The Retumn Stack 321
! ! | . £ Comparing Numbers 3-23
ft,'f ! - Decision and Branching Word's 325
o L IF-THEN 3-25
A - s IF-THEN-ELSE 3.27
157 - . BEGIN-UNTIL 3.29
Lo N A : BEGIN-WHILE-REPEAT 3.31
2 "‘ : F=--3 CASE:-THEN 332
i ! "1 Program Structure and Other Miscellany * 3-35
H’ P . ' E -'.__3 Word References - 3-35
;)‘.‘i. g Speed and Flexibility vs. Error Checking 3.38
i Words Which Look Forward 337
'l",t*) . ' Text vs. Graphics 3.38
'."3‘ " --.-3 Memory Considerstions 3.38
'u. 1' K] - g o
AR
13 3 STARTING GraFORTH 3.1
fard N
iy
| X
’ u. .
) "': : -
i " _

-
£]

i

Y

Purpose and Overview

As you'll soon see, GraFORTH is a complete, structured language,
with all of the interesting nuances of such a language. In this
chapter, we'll introduce GraFORTH as a lanquage. We'll discuss
the GraFORTH system, the word library (sometimes called the
dictionary), and the concept of ‘words'. We'll show you how to
use the stack to do arithmetic using Reverse Polish Notation, and
then define your own words in terms of existing ones, We'll
discuss the looping and control features of GraFORTH, then tie up
the chapter with some rules of thumb for writing programs in
GraFORTH.) _ .

This chapter (as well as the others) contains numerous examples
to help you understand the GraFORTH system, We strongly
encourage you to try these examples on your computer. And as you
qain experience with the concepts, we encourage you to experiment
further, 30 that you become truly comfortable working with

GraFORTH,

First Things First
Insert your GraFORTH disk in the drive and boot 1t. After a few
seconds you'll see:

GrafFORTH J[(C) P. Lutus 1981

Demonstration (Y/N) ?

u haven't yet seen the GraFORTH system demonstration, you -
might want to do that now. The demonstration includes

explanations of what GraFORTH is and what it does. As we go on,
however, we'll ignore this question, assuming that you've efther
already seen the demo or are no longer interested, Later, we'll

show you how to remove the demo question entirely... Now let's
qet fnto the lanquage. Type an 'N' to the demonstration prompt,

and you will see:
GraFORTH][(C) P. Lutus 1981

Ready

‘If yol

STARTING GraFORTH

o

The word "Ready"® appears whenever the system {s ready for your
fnput. (Makes sense...) If at any time you do not see the word
*Ready® when you think you're supposed to, then it may be time to
start wondering... With the word "Ready” beckoning you on, let's
back up for a few moments to discuss GraFORTH,

‘The System

The lanquaqe can be divided into two main parts. The first part
contains the compiler and low-level system routines. For most
applications, the internal workings of these routines can be
fgnored. They usually do the things which need to he done
without a lqt of fanfare. The second part of the system is the
‘word 1ibrary‘. The word ibrary is the "visible® part of the
GraPORTH system, and is the basis for writing programs,

Words

The word library {s made up of & large number of firaFORTH

‘words'. You can ske this 1ist of words at any time by typina
the word. "LIST®, LIST {s & GraFORTH word that 1{sts all of the
GraFORTH words. (LIST will display 20 words at & time. To sen
the entire 1ist, press <return) at each psuse. Press ConTRoL -C

1f you want to stop the Visting.)

Each GraFORTH word accomplishes a particular task. For example,
the word "RELL" beeps the Apple speaker, the word "+ adds two
numhers together, and the word “DRAW" draws 2 three-dimensional
image on the screen. Nearly everything in GraFORTH {s either a
word or a numher. Words can be proqrams, sudbroutines, varfables,
or strinqs. Proqrams are written, not by entering "proarsm
lines”, but by stringina words together.

The name of a word can he any string of ASCII characters that
does not include a soace or carriage return. The space acts as @
divider hetween words, and a carriage return tells the system to
compile the entered line into machine lanquane and, in most
cases, execute it. Since GraFORTH uses spaces to determine when
one word ends and another beains, outting spaces between GrafFORTH

words i3 very important.

STARTING GraFORTH

Spat.

e

s SN0 Dl
P O

— g . - ———— A -

. LTV s b e s s - - o

.=
-

P, .

-

“ e

cpeeves . -

oy S e

STy o A g

— =
TRt e e
o =

—a emeas

r—

% .

Ceae

s
o

—— .

P

The Data Stack

- Words are executed in the order they are entered. When the word

"s" {3 executed, it wants to add two numbers tonether, right then
and there. This means that hoth of the numhers to be added st
already be avallable for "+° when it {s exccuted, Where do the
numbers wait before they are added? They are on the ‘data
stack', placed there by you before enterinn "4%,

A1 numbers in GraFORTH are routed through the dasta stack, which

* we'll usually just call the 'stack’, The stack is simply o stack

of numbers, one on top of another, much 1ike a deck of cards, or
e stack of dinner plates. When you enter a number, 1t {s put on
the top of the stack, above any numbers which might already be
there. Some words place‘numbers on the stack. Some words remove
numhers from the stack. Some words do both. The word "+" is an
exarple of this; it removes two numbers from the stack, adds

- them, and places the sum back on the stack. If the stack {s

empty, and 8 word tries to remove a number from the stack, 8
phenomenon called ‘stack underflow' occurs. Stack underflow will
he discussed in greater detail at the end of this chapter,

Numbers

© GraFORTH {s on 1nteger langquage, It uses mumbers in the range

-32768 to +32767, You can enter numhers outside of this range,
but they will be "folded” back into the ranqe (e.q. the number
32769 will be stored as -32767). Certain operations, such as
divisfon, will truncate decimal numbers back into integers., For
example, 7/32,333333, but GraFORTH will evaluate 7/3 as 2.

Hands-On Experience

Nearly every entry in GraFORTH {is ended by pressing the <retvrnd
key. For the ‘examples below, and throughout the rest of the
manual, press the (return) key after every entry unless we tell
you otherwise, .

STARTING GraFORTH 3.4

oy

I

'

m g
IR

iy
L

AS you step througn taese exsrples, you mdy misctype someching,
and find yourself in 8 situation you don't quite yet 'know how to
get out of. If you can't recover things proverly, don't worry:
The power switch was:- put on the Apple for & qood reason! Just
turn the power off and reboot anain, then try to figure ouvt
what went wrong. We'll help you alonq the way.

Enough theory. Let's try some examples. Type:

Ready) 4 5

The numbers 3, 4, and S have been put onto the stack. If you
have any doubts, just type the word STACK.

Ready STACK

B

Ready

Typing STACK turns on the stack display, so you can see what
numbers are on the stack. The stack display stays on until you
type STACK anain, This display is tongled on or off whenever you
type STACK, You may want to try thTs a hit, but as we o on,
have the stack display on, Now type:

Ready 6 7

The numbers 6 and 7 have been added to the ton of the stack,
Notice that the stack display fs “upside-down™: What we've heen
calling 'top of stack’ s shown as beina helow the other mmbers.
Here's why: stacks and 'top of stack’' are hoth standard
computerese conventions, and we didn't want to hreak tradition by
calling it the "hottom of stack”, Rut the GraFORTH stack can
hold up to 128 numbers while the Apple screen can only disnlay 28
lines. W{th the stack display turned upside-down, then the ‘top
of stack' (the most accessihle number) will always be the mumber
closest to the "Ready” prompt, instead of beinq scrolled off the
screen,

STARTING GraFORTH 3.5

e cm——— —

R . N R

i .

fnieT e

e e ey - .

—— e s .

e o g

WHEL LEH WE wv W e
T ard * * ‘serird}
{ype « puriod.

Now that we have Some numbers on the stecs,
t On¢ ng w rdo ~ rint 7T
removes & number from the stack and prints fit.

The 7 was removed from the stack and printed, Now type "

Ready ¢

(3]
(4)
(1]
Ready

The numbers 5 and 6 were removed from the stack by the word "+,
added together, and the sum placed back on the stack. Now type

three periods, separsted by spaces:

Ready « « «
1143

Ready

The 11, 4, and 3 were all printed, without any spaces between
them. We'll show you how to position the printing of both

numbers and text in a bit.

You now know how to put numbers on the stack, add them together,
and remove them by printing them. Since most words in GraFORTH
use the stack, It's important to know exactly what's happening on
the stack when a word is executed. Let's {ntroduce a notation
for the effect of a word on the stack. We'll list the word,
followed by a "before and after® representation of the stack,
then a brief description of what the word does. The stack
numbers are shown as letters, with a dash to the right indicating
top of stack. Rememher, the top of stack {s the dash on the
right. An empty stack 1s indicated hy three dashes. Using this
notation, here ars the four GraFORTH words we've shown so far:

STARTING GraFORTH

Ir
|
1-

-

|

¥
. . 4
w w w

3
]

A

,"’
Fl

-l

b
Ly

E AN § X
i
Ww

d
{

dprd Bef Al D ptic
Lists the words in the GraFORTH

Llst * o o * o o
. word library,

STACK - o= . e Toagles the stack display on and

off.
. n - - e Prints n,
+ mn- P - Takes m and n of the stack, adds

them and places their sum, p, hack
on the stack (p=men),

Note that there may he other numbers on the stack below those
shown in the before and after diagrams, hut these are not
affacted by the word. .

More Words

Stack Words

Here are some GraFORTH words which manipulate the numbers on the
stack:

DUP duplicates (makes a copy of) the top number on the stack.

SWAP swaps the position of the top two stack entries.

DROP removes the top number from the stack. The number {s lost.
OVER makes a copy of the numher {mmediately beneath top of
stack, placing the copy on the top of the stack.

PICK uses the top numher on the stack to select a numher from
within the stack, then the numbher is copied to top of stack.
For example, 1 PICK is equivalent to DUP, and 2 PICK s
equivalent to OVER.

STARTING GraFORTH

ye ~ ———

v - ——— - ——

———a

Nere are the same words defined using the stack diagram:

Word Before After Description

our "n- nn - Duplicates n,

SHAP mn e nme. Swaps m and n,

DROP ne e Drops (forgets) n.

OVER mn - mnanm. Coples m to top of stack,

PICK oM N = ooemq - Copies nth item to top of stack.

Keeping an eye on thbse definitions, some more examples may be
helpful here: .

Ready 1 2 3

Ready SWAP (Exchange positions of the 2 and 3.)

Ready DUP . (Make a copy of the 2.)

t2] - '

Ready DROP (Remove the copy just made.)

Ready OVER (Copy the second from top of stack.)

STARTING GraFORTH ' 3-8

Ready 4 PICK (Copy the fowrth position down stect.)
(1)

i

Ready NROP DROP , (Remove 3 and 1, then print the 2.)

2

() -

Ready DROP DROP (Remove the remaining 3 and 1.)

Ready (The stack 1s now empty.)

You n‘i l'l probably want to experiment further with each of these
words with the stack disolay on. While their functions may nnt

be terribly exciting, vou'll find they will be very vseful later
on for placing numhers where they need to be at the right time,

Arithmetic Words

You've seen how "+" works; on the next page {s @ listing of the
GraFORTH arithmetic words.

STARTING GraFORTH

(addition)
(subtraction)
(wltip\ication)
(division)
(modulo)

(change sign)

(absolute value)

(sign)

(sine)
(minimum)

(maximum)

-327684n<32767 (random number)

Mord Before After Description

+ an- P - pemén

- omn- p - pem-n

* an- P - pem*n

/ A - p- pem/n

noo an- re remainder

CHS n- " ms-n

ABS n- n- meABS(n)

SGN ne - m=] {f MO,
0 if n=0,
-1 1f n<0

SIN n- "n- -128¢m<127

RIN an- p - p-: '1: :((.n.

MAX mn- o - p-: ‘lff :)):.

RND - - n-

RNDB - .- n- 0<n¢255

STARTING GraFORTH

(rendom byte)

3-10

—A

E
E=3
=3
e

=3

==
-

= -
Py = o’

Sy
g —cwd

Nerg are some examples of the GrafORTH arithmetic words in
action:

Ready 23 6 / .
4

geldy 23 5 MOO .

(23 divided by 5 leaves 4, and 2 remainder of 3.)

Ready 6 CHS
(-6)

Ready ABS .

6

Ready 18 19 MIN
(18] '
7eady SGN .
Ready -7 SGN .
-1

Ready RND .
22317 '

RND leaves a random number on the stack, (Of course, the number
dtsolazed will most likely be different from the one shown
ahove.

Using Words

Now that we've introduced a whole slurry of words, let's put them
to use. o

For these examples, we'll assume the stack Is emoty before
beginning. There are @ few ways to empty the stack. With the
stack display on, you can type either NROP or "." repejtedly
until the stack display shows the stack is empty.

Another way to clear everything is to type the word ABORT, ARORT

restarts GraFORTH, rasetting thinas hack te their initial
conditions. ABORT can be handy when used from the keyhoard, but
if executed from a running program, {t stops the proaram
immediately, (There is an exception to this which will be
discussed in Chapter 5.)

STARTING GraFORTH ‘ 3-11

e —— -

PRI Y SR,

-

,
L cE N e v s

. - -

s ¥ S ® W e &
. e - >

o A
-y

XY

As yo_ .. alr__., seen, ..2 W8y v 8dd \wu wumbers 13 tO encer
the numbers first, then type "+°,

Ready) ¢ ¢,
7

Ready

This notation, where the numbers precede the operator, is called
Postfix, or Reverse Polish Notation, and 1s used in all versions
of Forth, as well as in most Mewlett-Packard calculators, its
main advantage over "standard" notation is that complicated
expressions can be evaluated without having to use parentheses.
For example, 1f you wanted to add) and 8 together, add 7 and 9
together, then multiply their sums in a language 11ke Basic, you
would type:

X=(3+5)*(749)

Note that since Basic always multiplies before adding,
parentheses were needed to group the sums together. In GraFORTH,
you can solve the problem this way:

Ready) §

(3]
(s)
Ready ¢+

(8]
Ready 7 9

This example was “unfolded” so you can see exactly what is
happening on the stack. Usually, the entire expression is
entered on one line:

STARTING GraFORTH 3-12

Ready 3 5+ 79+ ¢,
128
Ready

To find the cube of a number, you can type the number three times
and multiply:

Ready 333 * ¢,
'3

:nothor way {s to type the number once and use DUP to duplicate
t:

Ready 3 DUP DUP * ¢ ,
27

OUP allows you to use any number without having to enter it
repeatedly. This will be very useful for general purpose
operations inside programs,

Printing Text

Printing text In GraFORTN {s straightforward: type the word
PRINT, the word " (quote), the text to be printed, then another
quote: .

Ready PRINT " SUPER ZAPPD SPACE GAME "
SUPER ZAPPO SPACE GAME
Ready

Since the quote is a GraFORTH word, the spaces between the quotes
and the text are required. HNote that you can use quotes within
the quoted text, as long as it is not separated on both sides
with spaces:

Ready PRINT * THIS IS THE “"BEST" GAME EVER! "
THIS IS THE "BEST" GAME EVER|
Ready

Since PRINT does not automatically print o space or a carriage
return ot the end of the text, two other handy words to know are
SPCE and CR, SPCE prints a space, and CR issues a carriaqe
return, Notice the difference in the following three examples:

STARTING GraFORTH 3-1

<=

N SYCPE

o=

—

e, - -

-

~ T

e

‘
i~

Ao
N

-y

Ready PRINT * FIRE ° PRINT " ONE °
F IREONE

Ready PRINT ® FIRE * SPCE PRINT * TwWO *

FIRE TwO ' .

Ready>PRINT ® FIRE " CR PRINT " THREE -
FIRE
THREE

Printing text i3 not very useful if the system only prints the
text {smediately then (orasts ft. Fortunately, GraFORTH can do

much more then that.

Defining New Words

The power of GraFORTH as a lanquage lies in the ability to define
new words in terms of old ones. In fact, writing “programs” in
GraFORTH ts done hy simply defining a series of new words which
acconplish the desired task. These new words are added to the
word library and can be seen by typing the word LIST. In this
way, the GraFORTH lanquage ftself (of which the word library is &
g’rt) “expands” to become your program!

New words are created with ‘colon definitions' (so named hecause
they beqin with a colon). The form for a colon definition is:

. (word named <(string of defining words> ;

The colon tells the system to begin a new word. definition. The
name That immediately follows the colon will he the name of the
new word. The words that follow the name make up the
*definition® of the word; they are the words to be executed
whenever the defined word is typed. These words behave Just as
if they had heen typed in directly at the keyboard. The
semicolon marks the end of the colon definition, and causes the
:ora fo he tompiled into machine anguane and added to the word
fbrary.

As an example, let's define a word that adds two numbers then
prints their sum along with a short messaqe:

Ready : SUM PRINT ® THE SUM IS ® ¢ « §

STARTING GraFORTH 3I-14

Following the rTorm for coion gerinitions, sUM {2 v nang o the
new word, and

PRINT * THE SUM IS * ¢ .

is executed whenever the word SUM is entered. The word PRINT

causes the phrase “THE SIM 1S® to be printed, the ¢ adds the top
two numbers on the stack, and the period prints the sum. (Note
that there are two spaces hetween the word IS and che quote, so
that @ space wiTl appesr between the text and the number,) How

let’s try our new word:

Ready 25 31 SUM
THE SUM 1S 56

Ready
LIST the word 1ibrary, and you'll see that the word SUH hes heen
added:

Ready LIST

SUM
CHs

SGN
CALL

A nice addition to this word would be to reprint the numhers
being added., BAut before we commit ourselves to a colon
definition, let's try 1t “1ive®, where we can watch things one

step at a time:
Ready STACK
Ready 25 3l

(2s)
(31)

We need to make copies of the two numbers: one set will he
reprinted on the screen, and other set will be added toqether,
(Remember that many GraFORTH words consume n«nhzrs from the
stack, sn we need to have the numbers ready to “feed” them!) The
quickest way to copy 2 pair of numbers s by using OVER OVER:

STARTING GraFORTH 315

— - e—

Ready OVER .

(25)
(3)
[25]
Ready OVER

Now let's reprint the first set of numbers along with some
fnformative text: .

Ready PRINT " THE SUM OF * ,
THE SUM OF 31 '

(251
(3
(25

Ready PRINT * AND * , PRINT " IS *
AND 25 IS

[25%
3
Now let's add the numbers...

Ready +
(56]

veo8nd print the sum: : ¢

Ready .
56

Now let's put it into a colon definition, with s different name.

v?te’thlt you can enter the definition over several lines (if you
ke).

Ready : SUMI

Ready OVER OVER PRINT ™ THE SUM OF * ,

Ready PRINT " AND ",

Ready PRINT * IS " &, ;

STARTING GraFORTH $-16

After entering the definition, the word SUMI is also on the word
Iibrary:

Ready LIST

SuM1
SUM
cus
ABS

Ready 25 31 SUM)
THE SUM OF 31 AND 25 IS 56 ,

SUM1 can now he called at any time, from either the keyboard or
another word definition, as easily as any of the original
GraFORTH words in the word library.

Note: As you write and enter colon definitions, be sure to enter
a semicolon to finish the definition! If you don't, GraFORTH
will assume that everything you type {s part of a word to be
executed at a later time. If GraFORTH ever responds to words
Tike LIST with only a "Ready™ prompt, vou've probably left a
semicolon out of colon definition,

Forgetting Word's

You can see that {f we keep on dnrfinfng new words, the word
1ibrary will continue to grow until we use up a1l of the memory
avallahle. Sometimes words are no longer needed, or a word miqht
contain a mistake (77?). In either case, to delete one or more
words, the word FORGET {s used. It takes the form:

Ready FORGET <wordname)

FORGET cannot selectively remove words from the middle of the
word library, It only truncates off the top, deleting the
specified word and every word ahove it. In our example, to
delete both SUM and SUM1, type:

Ready FORGET SUM

STARTING GraFORTH ' 3j-1n

neady Lidt

CHS
ARS
SGN

.
\

Notice that both SUM and SUM] were rcmoved from the word library,

Had there been more words abo
lad ther ve them, they would also have been

Note: You will not get an error message {f you try to FORGET
word thas is not™Tn the word library. This makes {lple-ent!nga
program ‘ovarlays' easier. (Overlays will be discussed in
Chapter 5.) However, 1f you misspell the word you want to
;:zget;ts:e: :gozo{:s w:ll be :7;;"“ from the word library,

’ : ea to use to verif
or words have been deleted. Ify that the right word

STARTING GraFORTH : J-18

h —ean

-

Laoping Structures

The GraFORTH DO - LOOP construct 1s avatllahle for repetitive
tasks where the number of repetitions is known ahead of time,
The form for 8 DO - LOOP {s:

Cending value> <initial value> DO <words to be repeated Loor

The word DO removes two values from the stack. The top number is
used as an ‘initial value' and the next number is used as an
‘ending value'. The words between DO and LOOP are executed, then
the fnftia) velue s incremented by one. °‘If this incremented
value (which we'll call the 'loop value') Is still less than the
ending value, the proaram loops back to execute the words hetween
DO and LOOP again. This cycle {s repeated as long as the laop
value §s less than the ending value.

If you are familiar with Applesoft Rasic, you will notice that VO
- LOOP is similiar to Applesoft's "FOR -- NEXT® looping
structura.

It is often handy to retrieve the current loop value. Inside the
DO - LOOP, the word "1* retrieves the loop value and places it on
the stack. Here is an example:

Ready 5 0 NO PRINT * HERE IS NUMBER " I . CR LOOP
HERE 1S NUMRER 0
HERE IS NUMBER 1
NERE IS NUMRER 2
HERE IS HUMRER J
HERE IS NUMBER 4

5 0 NO sets up the looping structure for S loops. Inside the
loop, the phrase "HERE IS NUMBER® is printed, then the loop value
fs retrieved by 1, then printed with ".". CR causes the carriane
return to put each numher on fts own line, and LOOP marks the end
of the loop, causina the loop value to be fincremented and
compared with the ending value. Note that the loop cont{nues
only as lonqg as the loop valde is less than the ending value,
That's why the loop stops at 4, not & as in Applesoft.

STARTING GraFORTH) 3-1

— e, —

e ® <t
e o~ .

-® .
2.0 e
- v . T
-

el

St

The words DO and LOOP work as @ pair and must always he matched
up, elther on the same line together or entered in a colon
definition. Typing DO or LOOP alone can have nasty and
unpredictahle results,

To mike 2 Toop with sn increment other than 1, use +LOOP instead
of LOOP, +LOOP removes @ number from §he stack to vse as the
fncrement. This number can be either positive or negative (for
loops that count hackwards). Here s an example:

Ready 10 0 DO 1 . CR 2 +LONP

dDBRADND

(]

The 2 was used by +LONP as the increment,

Ready 150 200 DO 1 , CR -10 +LOOP

200

190

180

170

160 '

Loops can be nested inside one another. The loop value for the
current fnnermost loop is always accessed by "1", and the loop
value for the next outer level is accessed with the word "J°, as
in this colon definition®

Ready : DOUBLELOOP .

Ready 4 0 00

Ready PRINT ® MUTER LOOP: "T.CR

Ready JO0D0

Ready J.SPCET ., CR

Ready Loor

Ready LOOP ;

STARTING GraFORTH J-20

-y

Ready DOUOLELOOP
ONTER LOOP: O
00 :

0l

02
OUTER LOOP: 1
10
11
12
OUTER LOOP: 2

- NI - D

ER LNOP: 3

HHHS\)NN
N

The inner loop is cycled three times for each cycle of the outer
loop. Note that the outer loop value is referenced in the ouvter
loop with "1", but s referenced from the inner loop with "J".
Just remember that "I" always references the loop value for the

current innermost loop.

If more than two nested loops are being used, the loop valve of
the third Yaop out can be accessed from inside the {nnermost 1000

with the word "K".

The Return Staék

N0 - LNOPs make use of annther stack in the GraFORTH system,
similar to the date stack, known as the ‘'return stack'. The
return stack can also hold 128 numhers, thounh for most proarams
it rarely contatns more than a few. (Most versions of Forth,
hecause they are interpreted, use the return stack for a variety
of purposes, Recause GraFRTH Is compiled directly into machine
lanquane, the Apple's processor ftself takes care of these

thinas,)

When the word NN {s encountered, the top two values on the date
stack are moved over to the return stack, with the loon value on
top and the endinn valve underneath, The word LONP fncrements
the loop value on the return stack, The word “1° places A copy

. of the top return stack valve and places 1t on the data stack.

When the loop is finally exited, the two return stack values are
removed,

STARTING GraFORTH j-2

L]

There are a few words in GraFORTH that enable you to use the
return stack directly. The return stack can be 2 handy place to
put numbers for a moment while playing qames with other numbers
on the data stack. (In Chapter 5 we'll show you how to declare
varishles for more permanent storaqe.) Care should be taken to
avoid disturbing the value and placement of existing return stack
entries when using DO - LOOPs. (In other words, 1f you're not
sure, don‘tl) Here are the words that directly control the
return stack:

PUSH moves the top data stack entry to the return stack.
PULL moves the top return stack entry back to the dats stack.
POP removes the top return stack entry. The number 1s lost.

$upnosé there are three numbers on the stack and you want to
reverse the order of the bottom two. MHere 1s one way to do f{t:

Ready PUSH

t2)
?])
Ready SWAP

STARTING GraFORTH J.- 22

Comparing Numbers

A number of GraFORTH words are devoted to comparing nushers.
These words ere:

<> (not equal to)
- zequal to)

> greater than)

< less than)

b qreater than or equel to)
(e less then or equal to)

Each of these words removes two nushers from the stack, compsring
the second stack numher down with th. top steck number, and
returns on the stack either a 1 1f the comparison is true, or 0
If the comparison is false. liere are a few exarples:

Ready 5 5 = .

l 1

Ready 5 7 s .

0

Ready -32 -6 ¢ .
1

Ready 45 46)= ,
0

A couple of other words related to the comparison words are AND
and OR. These words remove two numbers from the stack and
perform & logical operation between each of the 16 bits of the
numhers, returning snother number to the stock,

AND performs & hitwise "AND" between the two stack values; M
performs a hitwise “OR". DNon't worry 1f you're unfamiltar with
the relationships hetween numbers and their dits. lsually the
{mportance nf AND and OR 1s hetween two zero or nonzero numhers:

If both the top stack value and the second stack value are
nonzero (representing *true”], then the AND of the two numhers
will also be nonzero. If either or Soth numbers are zero, then
the AND will also he zero.

STARTING GraFORTH j- 2

- e a on -

B)
Pl S vy g

PegiPy e
e T o amme .

-~

F e

bl T
OF it gt T AT * i St
-~ -

= .
—

-ay

If efther the top stack valve or the second stack value are
nonzero, then the OR of the two numbers will be also nonzero,
Only when both numhers are zero will the OR operation be zero.

AND and OR are usefyl for combining the results of two or more
tests. The following example tests whether or not a given number
is nreater than 5 and less than 10. We'l) test with two numbers,

7 end 3

Ready 7

(7]

Ready OUP 5)
(7]

(1
Ready SWAP

7 {s qreater than 5 and less then 10.

Ready 13
(13)
Ready OUP 5
(1)
|

13 s not greater than 5 and less than 10,

STARTING GraFORTH J- N

-3
3
3
3=
Eo |

-1

L
<A

Decision and Branching Words

An assential part of a computer language {s the abiiity to test o
condition, then make & decision on the hasis of the test,
GraFORTH has five different constructs that accomplish this.

Each of the constructs contains a word which removes a number
from the stack. In most cases, the "decision” 1s made on the
basis of whether the number {s zero or nonzero. Any nonzero
number represents a condition beinq true, and & zero represents
false. (MNote that the above comparison words place a one on the
stack ;r the comparison {s true, and zero Il the comparison is
false.

A simple flowchart s included with each of the following
constructs, showing the "flow" of the proaram. The arrows
fndicate what s executed in whet order. The boxes represent 2
qroup of words to be executed. The diamonds represent a test,
usually for a zero or nonzero number.

" Note: - Each of these constructs 1s made up of tw or more words,

Like NO - LONP, these decision words work toaqether, and cannot he
entered alone. They must be entered either on one line or from
within a colon definition.

IF - THEN

The simplest decision construct is IF - THEN,
THEN {s:

The form for IF -

(stack test value> IF
. <words to be executed)

THEN

The word IF removes a number from the stack. [f the numher {3
not zero, then the words between IF and THEN are executed. If
the number {s zero, then the words between (F and THEN are
skipped over. In efther cese, the program continues on after the
word THEN, The flowchart for IF - THEN follows on the next paqe:

STARTING GraFORTH 3.2

0

THEN

\ 4

Let's use IF and THEN in a couple of colon definitions:
Ready : TESTI

Ready PRINT * THE NUMBER IS *

Ready IF PRINT " NOT “ THEN

Ready PRINT " ZERO, * ;

The first and third PRINT words are executed every time. The
word IF removes a nusber from the stack (which we'll supply
before we execute TEST1). If the numher 1s nonzero, then :
PRINT ® NOT *, which is sandwiched between the IF and THEN, is
executed. If the number is zero, then it is not executed.

Ready 5 TESII
THE NUMBER IS NOT ZERO

Ready 0 TESTI
THE NUMDER IS ZERO

IF - THEN constructs can be used with numher comparison words.
Remember that these words return elther one or zero, depending on
the success or failure of the comparison. Suppose that for some
spplication, you want to set a limit on the size of numbers. The
:olloulnq word will let any number less than 25 pass through
unharmed®, but any number over 25 will he replaced with a 25:

STARTING GraFORTM

‘

3-2.

m
VY
i1

..y ‘e

Ready 1 UPPERLINIT
Ready DUP

Ready 25 > IF
Ready DROP 25

Ready THEN ;

The word DIIP makes a copy of the top stack value. The word ">°
compares the copy with the number 25, leaving a one on the stack
if the number 1S qreater than 25, or a8 2ero {r 1t 1s not. The
word IF ramoves the one or zero from the stack to decide whether
ar not to execute the following words. Rememb@r that the
qriginal number s still on the stack. If the comparison {s
false, then the words between IF and THEN are not executed, and
the number 13 left intect. If the comparison (s true, then DROP
25 13 executed, which removes the original numher from the steck
and replaces it with 25,

Ready 16 UPPERLINMIT .

16

Ready 37 UPPERLIMIT .
25

Ready

IF - ELSE - THEN

Another version of the IF - THEN construct is IF - ELSE - THEN.
The form is:

Ctest stack ‘valued
IF

(words executed if nonzero?
ELSE

«words executed {f zerod

THEN

As hefore, the word IF removes @ nunher from the stack, Wowever,
if the number is nonzero, then the words bhetween IF and ELSE are
axecited. 1 the aumher |s zero, then the words between FLSE and
INEN are executed. The proaram than continues after the word
IHEN. The flowchart for IF - ELSE - THEN follows on the next

paqe.

STARTING GraFORTH -0

DA X

ROt B &3

- ame em e

A sl T——T R
. ce .
A e = T
. r—— b .
T Teens S — - PR

Tt e s

LTI
[e

= o~

test H-20 IF
0o
words
ELSE
words
' THEN

Ready : TEST2
Ready NUP 100 > IF
Ready . PRINT " IS GREATER THAN 100 ®

Ready ELSE
Ready . PRINT ™ IS LESS THAN OR EQUAL TO 100 "

Ready THEN ;

Again, we've dunlicated the number before comparing so that we
could print It later, using one of the two periods inside the IF
- ELSE - THEN. Also note that the controlled words are indented.
This 1s certainly not a requirement, but it greatly improves the
readahility of the word definition, (In the next chapter, we'll
show you how to use the text editor to save the text of the word
definitions,)

Ready 106 TEST2
106 1S GREATER THAN 100

Ready S4 TEST?
54 1S LESS THAN OR EQUAL TO 100

Ready

As with loops, IF - TNEN constructs can be nested. This example
puts checks for hoth upper and lower 1imits on a numher:

STARTING GraFORTH 3.2

L
L

T !

=
..4‘
b
3
.3
b - el
o3

P—

Ready @ THOLIMITS

Ready DUP 25) IF
Ready PRINT * GREATER THAN 28 *

Ready DROP
Ready ELSE

Ready 10 ¢ IF

Ready PRINT " LESS THAN 10 "
Ready FLSE

Ready PRINT " BETWEEN 10 AND 25 *
Ready THEN

Ready THEN ;

One IF - ELSE - THEN is placed between the ELSE and THEN of
another one. Note that hefore the first comparison, we MPIicat
the mimber because we don't know yet whether or not it will be
needed for the second comparison. If the number {s qreater than
25, then it is not needed again, and {s NROPped.

Ready -62 TWOLIMITS
LESS THAN 10

Ready 19 TWOLIMITS
BETWEEN 10 AND 25

Ready 684 TWOLIMITS
GREATER THAN 25

BEGIN - UNTIL .

Another construct that allows repeated execution is REGIN -
UNTIL. The form {s: '

BEGIN
¢words to he repeatedd
Ctest stack value)
UNTIL

STARTING GraFORTH 3.

The word NEGIN marks the heqinning of the construct. The words
hetween BEGIN and UNTIL are executed, thien the word UNTIL rewoves
2 numher from the stack. [f the numher is zero, then the program
branches back and the words hetween REGIN and UNTIL are executed
sgain. This loop 1s repeated unti) the stack value is nonzern,
then the program continues past the UNTIL. This is the flowchart

for BEGIN - UNTIL:

The following example starts with a zero on the stack, then
prln:s ;he nusher, adds 1 to it, then loops beck until the number
equals A:

.

Ready 0 BEGIN DUP ., CR | + DUP 8 = UNTIL

AN BWN =D

7
(8]
Ready

"The words "DUP . CR® print the number without losing it and

issue a carriage return; °1 +° increments the number; end

OUP B =" determines 1f the numher equals A. Notice that this
loop leaves a copy of the number on the stack when it finishes.
Adding DROP to the and of the line takes care of this,

.

STARTING GraFORTH -

b

BEGIN - vwHilLe - REFEAT

ihe DEGIN - WMIILE - REPEAT construct 13 similar to BEGIN - UNTIL.
The form {s:

BEGIN
(words to be repeated>
Ctest stack valued
NHILE
¢controlled words>

" REPEAT

The word BEGIN again marks the beqinning of .the construct. The
words hetween BEGIN and WHILE are exc.uted, then WHILE removes ¢
numher from the stack. If this number is nonzero, then the
control led words between WHILE and REPEAT are executed, then
execution fumps back aqain to the words after the BEGIN. If the
number {s zern, then the program jumps directly past the word
REPEAT and continues on. The key to remembering this is that the
controlled words are REPEATed WHILE the stack value remains

This Is the flowchart for BEGIN - WHILE - REPEAT. Note

nonzero.
that the test is at the beginaina of the controlled part:
! BEGIN
words
00 wHiLE
0
words

—
REPEAT
r—-———d

The following example is similar to the previous example for
BEGIN - UNTIL. The number is tested first this time, ‘While it
1s not equal to R, it is printed and incremented, and the cvcle

Is repoated:

STARTING GraFORTH 3-

— -
- .
T % v - = -

o e wrp—— g - "

— e s a— -
pugdivtr

k4

P

T

e

Ak IR

Ready 0 BEGIN DUP B €O WHILE DUP . CR 1 & REPEAT

AR BN

7
L))
Ready

CASE: - THEN

Somet imes a cholce needs to he made from a range of possible -
numbeds. The CASE: construct allows you to do this. The form
is:

C¢stack valved

CASE:

<word 0>
<word 1)
C(word 2>

2

<word n)

THEN .

The word CASE: removes 3 number from the stack and uses this
number to selrct and execute a single word from-a list of words.
A zero selects word 0, a one selects word 1, etc. The word THEN
marks the end of the CASE: construct, and s required. The
flowchart for CASE: follows on the next page:

STARTING GraFORTH 3.l

-—on

s P S aqe
Lo -

=3
L T

W amy g
Lind L

CASE!

*n

word n

THEN

v

The following example shows how CASE: works:
Ready ¢ X PRINT * THE NUMBER IS ZERO " ;
Ready : Y PRINT * THE MUMBER IS ONE * ;
Ready : 2 PRINT ™ THE NUMRER IS TWO " ;
Ready : CASE.TEST
Ready CASE:

Ready ' X

lieady Y

‘aeady t L.
Ready NELL

Ready THCN

X, ¥, and 1 are words we have defined and are called by the word
CASE.TEST. The CASE: Vist in CASE.TEST contains four words, so
the construct uses the numhers N throunh 3, lero selects X, |
selects ¥, 2 selects 7, and J selects RELL:

STARTING GraFORTH J-N

oy o

Ready 0 CASE,TEST
THE NUMBER IS ZERO

Ready 1 CASE.TEST
THE NUMBER IS ONE

Ready 2 CASE.TEST
THE NUMBER 1S TWO

Ready 3 CASE.TEST
(The Aople speaker beeps.)

Warning: If the number which CASE: removes from the stack s too
large or is less than zero, something strange and probably
not-so-wonderful will happen. For example, the system may hang
up. (lIn the above example, the only acceptshle numbers for
CASE.TEST are 0, 1, 2, and 3.) The key to avoiding trouble is to
simply not let numbers out of the CASE: range go into the word
CASE:. There are a number of ways to do this, Here is one for

the above exasple:

Ready : SAFE.CASE

Ready OUP DUP 3 (= SWAP 0 >= AND
Ready IF
Ready

Ready ELSE
PRINT *® THE MIMBER IS NOT .BETWEEN 0 AND 4 ©

CASE, TEST

Ready
Ready NROP

Ready THEN ;

SAFE.CASE first checks the number to ser that it is between 0 and
4 before passing it on to CASE.TEST. If it {s out of ranqge, 3
message is printed. (You may want to try the words “UpP DUP 3 (e
SWAP 0 >= AND" directly from the keyboard to see how they work

together).

Ready 2 SAFE,CASE
THE MIMBER 1S TW0

Ready 7 SAFE,CASE
THE NUMAER |S NOT BETWEEN 0 AND 4

STARTING GraFORTH J- N

" are built up.

Ready -6 SAFE.CASK
TIHE NUMBER 1S NOT BETWEEN O AND 4

Program Structure and

Other Miscellaneous Thoughts

‘Notice that in the Vast example for CASE: ahove, we began by

defining three short words: X, Y, and 2. Then we defined the
word CASE.TEST, which calls ane of thosc three words. Finally we
defined SAFE.CASE, which calls CASE.TEST.)

This "chain® of definftions s the way lonq pragrans in GraFORTH
The ‘low-level® words, which usually do rather
menfal tasks, are defined first. Then the next level of words,
which call the first set of words, are defined. This process
builds layer by layer until one last word 1s added to the top of
the word library, which “coordinates the show". The entire
program can be run hy simply typing the name of this top word.

The beauty of this scheme is that each level of words can be
thoroughly tested and dehuaqed before moving on to the next
higher level, This helos to prevent the all-too-familiar scene
of the programmer helplessly wading throuqh miles and mi'es of
computer print-out trying to find the elusive “buq” in a program,

Another advantage is that with separate word definitions, you can
have more than one “program® in memory 3t a time. Words can be
defined completely independently of each other, and used &S
individua) proarams or routines.

ves.Nhich brings us hack to some specific points on GraFORTH,

Word References

Nords in GraFORTH can only be defined in terms of already

existing words, which reside in the GraFORTH word 1ibrary at the
time. In fact, any reference to a word that s not currently in
the word library will produce an error wmessane, and the unknown

word will he ignored:.
Ready 5 0 N0 | . CR STRANGE LOOP

STARTING GraFORTH 3 -3

‘-

L — - —

e g e O -

e — c— T g——— —

S TS et~

TRAN _)t Fe..._ [Pre.. ...turn,

BN D

Ready

Another source of trouhle s defining a word with the same name
as an already existing word. I1f this happens, the new word {s
added to‘}he word library, but a warning messane is printed:

Ready : OVER PRINT " OVER THE RIVER AND THRU THE WOODS " ;

OVER Not linique (Return)

With two words with the same name in the word l{brary, how does
the system choose between them? For our example, any words that
referenced OVER before the new definition was added will stil)
reference the earlier word, Any new references to OVER will
reference the new definition. That means that the original
definition s no Yonger accessible from the keyboard!l In
qeneral, defininq wards with existing word names {s not a qood
idea and should be avoided.

Proqrammers who 1ike to dahble with recursion will be happy to

hear that GraFORTH words can call themselves. Word definitions

can also be nested one definition inside another, allowing the

inside and outside words to call each other, These capabilities

are very useful In certain recursive applications, hut should be

:;?:de?)!f not needed. (Your programs can qet hard for people to
ov

Speed and Flexibility vs. Error Checking

GraFNRTH fs o very fast language. It has to be to menipulate J-D
imaqes ot the speeds It does. GrafORTIT fs slso very flexihle,

As you'll see in Chapter 6, GraFORTH gives you direct control of
your Apple.

You nay be asking, "What's the catch?” The "catch” {s that
GraFORTN has 1ittle bullt-in error checking, In terms of speed,
17 your proqram works correctly, then repetitive error checking
schemes can only slow your proqram down. '

STARTING GraFORTH 3.3

W

LT

J."""

1
1

H
i

1l

]
|
ii

In terms of flexihility, If you're allowed to do nearly anything,
then there 1s nothinq “to protect you from", GraFORTH follows
the Forth convention that if you want error checking, you'l!
write 1t into your programs, If you don't need error checking,
you don't have to include fit. o

One example 1s 'stack underflow and overflow'. Stack underfiow
is where a word tries to remove a numher from the stack and the
stack s empty. [If this happens, GraFORTH will merely return the
number that was 1ast on the stack. Stack overflow is ceused by
trying to nlace more than 128 numbers on the stack, [f this
happens, the extra numhers are ignored. If & stack underflow
occurs when the stack display is on, a lonq.stream of stack
numhers may be displayed, [f this happens, just type ARORT to
clear the stack. (The key to avoiding stack problems {s to be
sware of what is happening on the stack at all times. Sometimes
"sinqle-stepping” through a 1ist of words with the stack display

on can help,)

Another examnle of error checking is with words that "expect”® q
number in a given ranqe. We've seen this already with the word
CASE:. Many words fn GraFORTH use numbers in a specified ranqge,
Some words don't mind the excess; they "fold” the number hack
into an appropriate ranqe and {gnore the difference. Other words
(11ke CASE:) do not fold hack, and must be given 2 valid number,
As we introduce words, we'll include any valid ranges.

Words Which Look Forward

Most words in GraFORTH look to the stack for any data or
information they might need. Some words, like PRINT or FORGET,
look forward down the input Vine for further data. Yov might be
tempted €0 huild a colon definition like the followina:

Ready : TESTWORD CR CR PRINT ;

Reqdy TESTMORD " HI THERE "

Don’t try it! The word PRINT looks for the text to be printed as
it is. comiled, not when it is executed. The ahove exarole wilT
ot work, and it may cause the system tn qo off the deep end...
The ather words (introduced in later chapters) which look to the
input Vine for data work the same way, and should be used as
described,

STARTING GraFORTH }- ¥

. -— - - .
——— e — —— ———

.t

i e

e i e 1

)

Tea: v's. raphics

Since the Apple graphics screen i3 used for the normal GraFORTH
display, mixed text and graphics, chanqeable character sets, and
lower case displays can all be used in GroFORTH., However, text
scrolling is not as fast as it would be on a standard text
display. GraFORTH includes two words, GR and TEXT, which enable
you'to switch between the graphics display and a text-only
display. The only advantage to using the text display s for
faster scrolling, which cen occasionally come in handy when
editing files from the editor.

Memory Considerations

Because of the larne number of features implemented in GraFORTH,
and the fact that both graphics screens are being used, free
memory for program development is somewhat limited. The presence
of & lanquage card or RN card eases this limitation
considerably. The memory map in Appendix A shows the available
free memory with and without a language card, and with or without
the text editor in memory, Memory considerations when using the
text editor will be discussed in the next chapter.

The way to keep memory free fs to always FORGET words that sre no
longer needed. Loading one larqe program onto the word library
above another is a sure way to run out of memory, Be aware of
what is on the word 1ibrary, and how much memory is heing used,

There are two words to help you:

The word PRGTOP places the address of the top of the word library
on the stack. This can let you know how large thinqgs are
getting. This example was done with no additional words on the
word Vibrary. (The addresses printed here are for example
purposes only. The address numhers displayed may be slightly
different.) : :

Ready PRGTOP .,
-32256

STARTING GrafORTH J-
A

For people who "think” {n hexadecimal, the word §LIST can also be
very useful. S$LIST fs fdentical to LIST, except that it also
displays the hexadecimal addresses of each word in the word
library. By comparing adjacent numbers, you can determine how
wuch memory each word takes. llere i3 a sample of & $LIST:

Ready $LIST

$B254 CHS
$R246 ABS
$n224 SGN
$81F4 CALL
$A1E9 PRER
$81DE YREG

Stnce SLIST displays the address at which each word beqins, the
first address shown is the heginning of the top word, not the top
of the word Yibrary at the end of the word. To determine the
address of the top of the word library in hexadecimal, you can
define & “dummy® word and then use SLIST. The top address will
be the top of the word 1ibrary after the dummy word is deleted:

Ready : IT ; ("1T" does not execute anything.)

Ready $LIST
$A26E 1T

$8254 CNS
$R246 ADS

Ready FORGET IT
$826E 1s the hex address of the top of the word library,

!
]

STARTING GraFORTH 3-39

; rme—————

— T
- ewe .

-

Toeemw T L.

- —l - e

PRI P

B R S X I

——e
N

e /1CusiOl

Let's take a bresk here, and digest some of this 'Mor‘uti |
on.

This might he a good time to grah a plzza, take & nap or come out

of hiding and visit someone who hasn’'t seen you in a few days!

Anyway, when you come back we'll move into the text aspects of

t(;;:f(')l'n:‘md’:'ntroduce you todthe supplied GraFNRTH text editor.

» so show you some wonderful specia! ch
your Apple a 1ittie more friendly...) characters to make

STARTING GraFORTH 3 - 40

CHAPTER FOUR: TEXT MAGIC

Chspter Table of Contents:

Purpose and Overview

Strange and Wonderful Characters
.Um ond Lower Case

Hiddon Characters
Cursor Moverment
Line insertions ,

The Text Editor

- Line Entries

List

-Autonum

Delete

Ernse

Automatic Insortions
Insert

Save

Get

DOS Commands
Printing Files

Memory Considerations
Leaving the Text Editor

Program Compilation
Comments

Using the Editor with GraFORTH

TEXT MAGIC

&
N

t haba
F NAYALS

BmaLlL.0DDDYND

WRNN - =0

I

b???&hh?bbhb&

4-1

Purpose and Uverview

In Chapter 3, we learned (amonq other thinas) how to define new
words in terms of existing ones. The words were added to the
dictionary and could bhe called at any time. However, there was
no way to save the text of the definition; to g0 back to the
string of words which defined it.

Enter the GraFORTH text editor, & straightforward qeneral purpose
line-oriented editor. Text can be created here, modifiad, saved

to disk, read back in, and more.

GreFORTH includes words to compile text into the system from the
editor or directly from the disk, [If any defl{ned words need to
be modified, they do. not have to be completely re-entered. They
can be changed from the editor, then recompiled by the system,

In this chapter, we'll discuss how to use the text editor and haw
to compile GraFORTH proarams from the editor or from disk, We'll
also give you some pointers to keep both system and editor memory
haopy. But first, we should discuss some of the special
characters used In GraFORTH, both in and out of the editor, snd
how they can help hoth your prograsming and your programs.

Strange and Wonderful Characters

Upper and Lower Case

If you've looked at the GraFORTH demonstration, vou've seen all
these lower case characters on your Apple screen, but unti) now,
we haven't told you how to enter lower case charecters yourself,

There's really no magic, s we'll soon seel

TEXT MAGIC

i

Upner and lower case can be set in & number of ways, and each s
8 two-key process.

While entering a line, type ConTRol-0, then

"g*: Suhbsequent entries will be in lower case unless ESC is
pressed in advance, If ESC {s pressed first, the
following character will be Tn upper case.

"S": Entries will be shifted to voper case 1f your Apple][
has the one wire shift key modification. (A wire
running from the shift key to the game paddie AN input).

"U*: ANl entries will be in upper case.

“wL*: ANl entrlgs will be in loer case.

“Hidden Characters’’

Although the Apple)[keyhoard won't accept all the ASCII
characters, GraFORTH will, Here are the keys to press to get the
*hidden characters®:

" ConTRoL-Shift-N qives a left bracket

ConTRolL-Shift-M qives an underline
ConTRoL-Shift-P qives a reverse slash
Shift-M qives a right bracket unless one of the lower
case shift options has heen set.

Cursor Movement

As you may have discovered hy now, the Apple arrow keys work as
they do fn most Apple applications: the left arrow is a
*backspace” key that snahles you ta back up on the line to
correct mistakes. The right arrow 1s a “retype” key. If you use
the right arrow key to move the cursor over text on the screen,
the text will he treated by GraFORTH as {f {t were being typed
aqain directly from the keyboard.

TEXT.MAGIC 4-13

. e o+ e =

S TN

. —

Ry

Caate y e Te R

e e
rag T TN TP ey sa
—ceTsa Lol s

T
o
-~

ETE re M e e SE e =

"3

"

=3
1T

Lo Syt o= ¥

v

ahe 100

LB
=l -

oy

po—
poy’
-

—3-<

3

"

g
5.

._.‘&,.,-

The Apple ESCape codes for moving the cursor a1so work from
GraFORTH. These can be handy for making fast corrections from
the GraFORTH text editor. If you're unfamiliar with the Apple
ESCape codes, we suqgest you consult one of the Apple manuals.
Most of the manuals discuss these codes.

Note: If any of the lower case shift modes have been set, then
the ESCape key cannot be vsed to move the cursor. To move the
cursor using ESCape, first set upper case only {ConTRoL-0, U)
shift mode.

Line Insertions

Insertions can be made into the middle of a line using ConTRolL-I.
Pressing ConTRolL-1 pushes any characters to the right of the
cursor one more space to the right.

To make an insertion using ConTRoL-1, first use the Apple ESCape
codes to move the cursor to the beginning of the line tn be
changed. lise the retype key to move the cursor to the point of
{nsertion, then press ConTRol-l enough times to open up & space
in the 1ine for insertion. Now enter the additional text, then
use the retype key to move the cursor to the end of the line, and
press Creturn),

Note: The ConTRol-! feature works for editing only one
40-character 1ine at a time. Pressing ConTRol-1 too many times
can push text off the right end of the screen and into
Never-Never Land....

The Text Editor

There are actually two text aditors on the GraFORTH system disk,
named ON.).ENTTORL and NDJ.ENITOR2, The first is used on systems
that do not have a languaae card or RAM card and can edit about
2000 characters without chanaing the default settings, The
second 1s uysed with systems that have lanquane cards and can edit
::out'lliSOU characters. Otherwise, the two editors are

entical.

TEXT MAGIC 4 -4

Note: GrafORTH and the GraFORTN editor both use standard DOS
text files for proqram storsqe. I you have a text editor that
you are accustomed to that also vses DOS text files, you may use
it fnstead of the GraFORTH editor. Large programs will be more
manageable in a text editor such as Apple Writer 2.0, Comniling

_proarams into the GraFORTH system from disk {s the same

reqardiess of what editor is used to create the file.

For the editor examples fn this chapter, we will use English
sentences for text instead of GraFORTH proqrams. The editor
doasn't know the difference, and it makes things essfer to read.
The editor is of course usually used for writing GraFORTH
pronrams, The GraFORTH word MEMRD, discussed in the rext
section, allows text to be read and compiled directly from the
editor.

To enter the editor from GraFORTM, type ENIT. The sopropriate
editor will automatically he loaded. In a few seconds you showld
see the GraFORTI editor header:

GraFORTH][Editor (C) 1981 P. Lutus

The first command to know in the editor s "?°, the question
mark. Entering a question mark qives you the Editor Command
Index, A 1ist of all the other editor commands:

?

Save

Get

Insert

Delete

Proaram

Momory . !
List

Nrite

Erase

Autonum

fye
ConTRoL-N=DNS

We'll discuss each of these commands in turn, but first let's
find out how to enter text into the text editor.

TEXT MAGIC : 4 -5

Line Entries

Entries to the text editor are preceded hy 1ine numbers. These
1ine numbers have no meaning to GraFORTH, and are not retained in
the program file when it fs saved to disk. They simply serve a8
an Index to the file while 1t is in memory. The editor line
numbers are in steps of 10, and whenever insertions or deletions
are‘-adc. the file s renumbered automatically, in steps of 10
again.

To enter 2 line, simply type a line number followed by the line,
Here are some example lines to enter:

10 My very first editor linel
20 Entering Yines in phe editor is
30 similar to entering lines in Basic.

LIST

To see that these text lines have heen stored, they can be listed
by typing "LIST® or simply the letter “L". (A1l of the editor
cownu?ds are single letters, and should be entered in upper

case.

L

10 My very first editor linel

20 Entering Yines in the editor {is

30 similar to entering lines in Basic.

Done

(The "None" messane is printed whenever an editor command {s
successfully accomlished, We're not qoing to show it in all of
our examples, though.)

Inserting ‘Vines in the text editor is much the same as in Basic.,
Simply enter a line number between the)ine numbers you want the
text inserted into. Remenber that after the insertion is made,
however, the lines will he renumhered in steps of 10, Let's
fnsert 4 line between line 10 and line 20 by giving it a line
numher of 15:

15 With some importent exceptions,

TEXT MAGIC 4 -6

e

Eff't:;'

“of the line after the line number,

Now let's 1ist the file again to see that the line was inserted
and the following lines were renumbered:

L

10 My very first editor linel

20 With some important exceptions,

3N Entering Vines in the editar is

34 similar to entering lines in Basic.

If the file beinq edited nets rather lonq, you don't have to list
the entire file every time. The listina automatically stops
every 16 lines. If you press ConTRol-C durinq the pause, the
1isting will stop. If you press any other key, the listing will
continue.

You can also use "List" to Vist a single line or & range of

|tnes.) Assuming o file contains at least 15 lines (numbered 10
to 150):

L 8o 1ists line R0 only.

L 80,150 1ists lines 80 through 150,
L 80, lists from Vine B0 to the end of the file.
L ,RO 1ists from the heginning of the file to line 80,

[

AUTONUM

The editor also provides automatic line numbering. Going back to
our original example, list the file, then press "A" for
“Autonum®. The next line number, 1ine 50, will appear for you.

‘Enter a couple af lines with Autonum on:

A

50 This 1s mich nicer than having
60 to enter the line numbers myself.
70 .

To stop the Autonum feature, just press <return) at the beainning

TERT MAGIC

- ——
= -

'S

. mT A o

c————
[

To change a line already in the editor file, simply retype the
line number followed by the corrected 1ine., The ESCape codes and
the right-arrow key can be vsed to retype 2 1ine that {s on the
screen, and ConTRol-l can be used to make insertfons within the
1ine,

Simply entering a 1ine number followed by <(returnd won't delete 2
Tine, as is true for Basfc. Instead this will creste @ blank
1ine, very useful in its own right for separating program
segments and word definitions. To make a blank line while the
Autonum feature is in use, enter 8 space, then press (return).

DELETE

The "D ("Delete”) command is used for deleting a line or range
of 1ines. [ts format‘is fdentical to "List” (though its effects

are very differentl): .

D A0 deletes only line RN,)

D 80,150 deletes 1ines B0 through 150,

0 A0, deletes from line BN to the end of the file,

n ,R0 deletes from the beginning of the file to 1ine RO,
ERASE

To erase the file in memory, press "E" for “Erase”. A prompt
will appear:
Erase (Y/N) :

This prompt prevents inadvertent file erasure. Enter "Y" and
press Return to erase the file.

Automatic Insertions

In o previovs example, we used Autonum to add to the end of the
file. When used in the middle of a file, Autonum also
sutomatically inserts the text, making room for the text nd
renumhering later 1ines, For these examples, let's start with a
?:w file. Erase the file in memory, then enter a couple of

nes:

10 Th!_' f'rst ""Q '” th' "'eooo
2N The last !ine.

TEXT MAGIC 4 -8

E—-3

= o

| ey

We can start an insertion by entering the first 1ine number of
the insertion ourselves:

15 must surely be followed by others.

Now, nressing "A® will couse autometic line numbering that starts
following the last entered line, line 15, and insert this text
into the file. Since line 15 is renumbered to become line 20,
the next 1ine pumber, printed with the Autonum feature, fs line

30:

A
30 Autonum does more than nenerate

- 40 1{ne numbers. It also inserts

50 into the middle of a file.
60

Again, Autonum is turned off by pressing <return> with no text.
Let's 1ist the file now:

L

10 The first line in the file...

20 mist surely be followed by others,
30 Autonum dons more than generate
an Vine numhers., It also inserts

50 into the middle of a file.

60 The last line,

INSERT

The "I ("INSERT") cormand can also be used to Inftfate
insertions into a file, Instead of typing the first inserted
Iine before using Autonum, INSERT is used to specify the starting
1ine number. Let's delete the lines we fust entered, and
re-enter them, this time using INSERT,

" Zﬂ.w .
None
L

10 The first Yine in the file...
20 The last line,

TERT MAGIC

e —
- et P B . e -

We want to insert between lines 10 and 20, so enter:

R

Autonum'will use this Vine nusher as the point of insertion,
fnstead of the last accessed line.

A
20 must surely be followed by others.

30 Autonum does more than aenerata
40)ine numbers. It also inserts
50 into the middle of & file.

60

List the file again, and you will see that these lines have been
re-inserted into the file.

SAVE

To save a file to disk, press "S". A promot will appear:

S
(Filename) :

Enter the file name you want the file to bhe saved under. If
desired, you can also specify a disk slot and drive numher here,
separated by commas using the standard 00S format, Here are 2

couple of examples:

Filename) : TESTFILE
Filename) : TESTFILE,S6,01

If you want to save only & portion of the file to disk, enter 8
slash after the filename, followed by the ranne of 1ine numbers

to be saved:
TESTFILE/B80,150 (Saves lines RO to 150)

Filename) :

Filename) : TESTFILE/,B0 Saves beginning to line 80)

Filename) : TESTFILE/RN, Saves line AN to end of the file)

TEXT MAGIC 4-10
—

GET

To get a file from disk and load it into the editor memory, press
*“G", A prompt will appear:

G
(Filename) :

Epter the name of the file to he loaded and, 1If desired, the disk
slot and drjvo at which it is located, using the same format as

SAVE,

To qet a file and insert it at @ particular location in the
existing file, enter a slash after the filename, followed by the
destination. Vine number in the current file. This example will
fnsert the file TESTFILE into the current editor file between

1ines 110 and 120:

(Filename) : TESTFILE/ILS

Note: "GET" always inserts the file into the present memory
contents. The file contents are not erased by "GET", To erase
the present file and get 3 new one, “ERASE® the present file and
then "GET" a new one. Seems simple enough,

Note: Since “"GET" and “SAVE" use slashes to specify certain
lines in a file, filenames that contain slashes cannot be used

with the text editor.

DOS Commands

To enter a DOS command directly from the editor, press ConTRolL-D
and <returnd, A prompt will appear:

Enter DOS Coswmand :

From this prompt, you can enter any NOS command, to get @
cataloq, delete files, lock files, etc. The prompt repeats after
each DOS command so that you can execute several commands without
having to press ConTRoL-D every time. To return to the editor
prompt (a flashing cursor with no promot line), simply press

Creturn) twice.

TEXT MAGIC 4-11

R B e e e ——
—— e— e ————

Printing Files
tditor files can be printed directly from the editor. Type

" ConTRol<D and Creturnd to get the nOS prompt, then type "PRI".

(17 your orinter is In snother slot, substitute that number.)
The printer will be activated, then press (Rnturm twice to remove

the DOS promnt.

With the printer ensbled, you can type """ to Vist the file

to the printer, pressing (return) when the Visting stops every 16
fines, A better way is to type "™ for "Write", This option
writes the editor file out without any pauses,

Since "PRIO” does not reconnect GraFORTH's special arephic
output, press Reset to turn the printer off and return to 8
normal display. The next chapter fincludes 8 discussion on how to
sccess peripherals and return to GraFORTH in 8 normal manner,

Memory Considerations

As the GraFORTI word Vibrary arows, it can begin to use the same
memory that is used from the editor. If the word Vibrary is
Yarge enovah, adding words can erase 8 part of the editor file,
or even the editor program {tself. Conversely, using the editor
can destroy the top of the word 11brary, requiring the system to

be rebooted,

In addition, the amount of usable editor file memory is
determined by the presence or shsence of a lang0aqe card. Ve
suggest you study the memory map in Appendix D and become
generally familiar with areas of memory used by the GraFORTH
language, the editor proqram and the editor file in your system.

To find the amount of free memory left in the editor file area,
press "M® for "Memory”". You will see:

Free Memory
followed by the mumber of bytes (or characters) of memory left,

You may want to adjust the amount of memory used by the text
editor, to avoid conflict with GraFORTH, To accomplish this, you
may position the file either up or down in memory. To do this,

press "P", A display will appear:

TEXT MAGIC 4. 12

Program Length
Position

Free Memory

Chanqe Position (Y/N) :

The lenath, position (starting address of the editor file ares),
and momory lahels will be follawed by their present numeric
valuns, To change the editor file position, enter “Y" to this
option, You will be prompted:

Enter Mew Position @

On a lenguane card system, the file position can he moved
somowhat higher to make more room for che GraFORTH word 1idbrary.
n a non-lanquaqge card system, 1t's often best to vse the editor
without reqard to keeping the word 1brary intact, save the
edited file to disk, and reboot GreFORTH from scratch. This
method will be outlined in the next section.

Leaving the Text Editor

To leave the text editor and return to.GraFORTH, simply type 3"
for "Bye",

Program Compilation

GraFORTH normally accepts {ts input from the keyboard. Each line
s compiled immediately and acted upon if necessary.

GraFORTH can also read lines from the editor file or from a disk
file, treating the 1ines as If they were typed from the keyboard.
GraFORTH proqrams can be written in the editor and saved to disk,
then read and compiled into the system,

The word to read and compile text from the editor huffer is
MEMRD. MEMRD removes a number from the stack, finterprets this
number as an address, and hegins reading text from memo.'y
starting at this address. It reads and compiles until ft elther
reads a zero hyte (marking end-of-file) or encounters an error.
Control is then returned back to the keyboard.

The address of the editor file huffer is 14A17, unless chanaed
with the Proqram Position option in the editor. To read the text

from the editor, type:

TEXT MAGIC : 4-1

Reagy 34817 HEMRD

To read and compile directly from a text file, the word READ is
vsed. The form for READ is:

READ *. <filename) *
READ reads to the end of & file, or until an error i3

. encountered.

MEMRD and READ are usually used to compile word definitions into
the word library, but immediate-execution lines can also be

{ncluded.

Comments

Usually, the GreFORTH Editor s used for writing and editing
GrafORTH proqrams instesd of the text used earlier In this
chapter. Comments in the source file of a GraFORTH progrem can
often he very helpful for understanding and keeping track of lonq

programs., .

The GraFORTH word "(® 1s available for inserting comments into
program files. In compiling the program, when GraFORTH sees a
(set off with a space on efther side, it {qnores the rest of
the text on the line until it sees a ")". Comments can be
inserted freely in the source file. Here is an example of such a

comment line:
10 (PARENTHESES ARDUND A COMMENT)

Using the Editor with GraFORTH

When smaller programs are being developed, the editor and the
GraFORTH system can he used closely together, Load the editor
and enter the program, then return to GraFORTH and compile the
program with MEMRD, If the program has buas or needs further
changes, simply return to the editor and make those changes.
When returning to GraFNRTH, FORGET the original word definitions
before compiling the new anes, to prevent “Not Unique® errors
from occurring. (Unless you're testing a very short program, you
should also save the program to disk after each edit.)

TEXT MAGIC 4 .- 14

When larqer programs are being developed and GraFORTH/editor
memory conflicts are likely, it's hest to scparate editing and
compiling. lise the editor to write the proaram, then save the
program to disk. Then return to GraFORTH and compile the proaram
with READ ar MEMRD. If the program needs to be changed, FORGET
the words before returning to the editor, so that editor usage
won't erase the top of the word)ibrary. From the editor, relosd
the program from disk and continue editing.

linderstanding and following the ahove guidelines will protect you

" from memory conflicts, and will make programming in GraFORTH much

casier.

As you hecome more comfortahle with programming in GraFQRTH, you
will prohably want ta use the editor to 1ist some of the progrem
files on the system diskette, We encourdqe you to do this, The
system files provide excellent programming examples 1n GraFORTH.

TEXT MAGIC 4 -15

—— — - —— e - ——

e o

1 e L o

-2
g

P

T~ T

Qe o g=pr ot 23

.

L G WA

T e tem s iy S e s e

——m e

~

L

ce te

im e~
o ..
P e -
< ce -

CHAPTER FIVE: DELVING DEEPER. . .

Chapter Table of Contents:
Purpose and Overview
Text Formatting

Data Storage and Retrieval
GroFORTH Memory Addresses
Storage and Retrievsl Words
Variables

Strings

Defining Strings

Using Strings

String Conversion

PAD: The System String

Accessing Individual Characters in Strings
String Words on Disk

Words Manipulating Individual Characters
Using Numbers in Other Bases

Using DOS From GraFORTH

Program Control Words

Saving the GraFORTH System

Overlays

Moving Memory and
Retrieving Word Addresses

Calling Machine Language Roctines
Compiling Number Tables

Leaving GraFORTH (gently)
Conclusion

DELVING DEEPER

gagana & o
Q@ N

- b d o s
NAUND-=Q

ol
N
N QO

5-23
5.26
5.27
5.29

5-30
531
5-32
532
5-32

5-1

—— o Ag—

TN Y T .

Purpose and Overview

Chapter 4 introduced GraFORTH as a language. In this chapter,

_we'll round out the language and give you some of the background

you need before moving on to the graphics festures (“What? You
mean this language has graphics too?!®) in the next three

chapters.

We'll start off by introducing the GraFORTH standard text
manipulation words (not to be confused with the fancy ones we'll
show you in Chapter 7). Then we'll discuss storing dats in
memory, and the various words used to accomplish this., We'll
talk about the two other kinds of words in GraFORTH (variables,
and strings), and how they can be used to set aside memory for
data storage in very convenient ways. Following this will be @
discussion of the string operators built into the system and on 8

disk file.

Next, we'll talk about using NOS from GraFORTH, and introduce
SAVEPRG, the word that makes your work permanent. We'll tie wp
the loose ends with a numher of words which are extresely useful,
but evade strict cotegorization.

Text Formatting Words

These are the words which are used to position text and
characters on the screen, and clear the screen,cor portions of
ft. CEach of these words s straightforward.

Review

You have seen how to use PRINT, SPCE, and CR already in Chapter
3. For a quick review...

PRINT prints following quoted text starting at the current
cursor position,

CR fssues a carriage return, moving the cursor to the
beginning of the next line.

SPCE prints a space.

DELVING DEEPER ° § -2

New Text Positioning Words:

HTAB removes a numher from the stack, interprets 1t as @
horizontal cursor position, and tabs to that cursor
position., The cursor remains in the same vertical

position,

VIAB remgves & number from the stack, interprets {t as a
vertical cursor position, and tabs to that cursor position.
The cursor remains in the same horizontsl positfon.

The valid ranges for HTAB and VTAB depend on the current
character size (CHRSIZE), which will be discussed in Chapter 7.
For the normal character size we are using now, the range for
NTAB 1s 0 to 39, and the range for VIAB {s O to 23.

WINDOW removes four numbers from the stack to establish a text
window, The text window is @ rectanqular area on the
screen desiqned to protect other parts of the screen from
being overwritten. A1l text scrolling will occur inside
the window, leaving the rest of the screen unaffected.
The form for WINDOM {s:

)

Cleftd <width) <top> <bottomd WINDOW

Left, top and hottom are actual marqins for the window, Width
spccifles the riqht marqin as the number of characters from the
left marqgin. The hottom marqin numher should reference the ling
immediately below the window, For example, a window 10
characters wide hy § lines hiah in the lower right corner of the

screen would be set hy:

Ready 30 10 19 24 WINDOW

(The left marqin is at position 30, the window width is 10
characters, the top margin is at line 19, and the hottom furqin

{s ahove line 24,)

DELVING DEEPER

ot L e e eagem e

- .me -

TR SR ms Swaye G wm = o &

T —— .

-
-

- -

o L S .

. e - -

R

e T e— O T

P

e
T

s

T

— T P— =
— e . ——— —

'—
.
o as..

T
L
d - o~
Mg I P
-t

....-.-‘
s FE

3
-
-

e . —

-—— b S — — — — . P B - i

. ——
- - - ——
Te - "=

e o

Ne“~ eras e sc ing he t nde...

CLEOP (ClLear to End Of Page) erases the screen from the current
cursor position to the end of the text window,

CLEOL (CLear to End Of Line) erases from the current cursor
position to the end of the line,

ERASE erases the entire screen, regardiess of the setting of the
text window, ERASE s usually faster than MOME,

Data Storage and Retrieval

GraFORTH has the capability of examining and changing the value
stored in sny location in memory. [f desired, the actual decimal
memory address can be entered from the keyboard for storage or
retrieval. We'l) show you data access in this way first, and

~ then discuss an easier technique using named varfables,

GraFORTH Memory Addresses

The Apnle][contains 65536 addressable "locations®. These
locations are usvally numbered from 0 to 655)5. Most of them are
used for RAM memory, which can be efther read from or written to.
Each mmory location can stare one R-hit 'hyte', representing a
numher from 0 to 255. Two locations, or two hytes, can store 2
number from N to £55)5. Since two bytes can only reference
positive numbers in the ranne 0 to 65535 and people sometimes
TTke to vse nrqative numbers, one 'bit’' of the aumber {s used to
tell us the numbers sian, positive or nenstive. Therefore,
GraFORTI yses a number range of -32768 to 32767. Since it is
desirable that zero In both systems be zero, a “wrap-around”
scheme is used: Addresses ahove 32767 are treated as neqative
numhers, and continue to increase until they again reach zero.
(This s identical to the system used by Anple's Inteqer Basic,
where 2 call tn enter the system monitor must he done with »
neqative number: CALL -151.) A diagram will hest explain this:

NELVING DEEPER 5 -4

.

=3

— o

- @

Ed

]
iii!

Positive GraFORTH
Necimal Addresses Decimal Addresses

0 0
1 1
2 2

32766 32766

32161 32767

32760 32768

32769 32767 _

32170 32766

65533)

#5534 2

65535 -1

Notice that both address ranqes continvally increase, except that
the GraFORTIl addresses have & transition in the middle from
positive to neaative numbers. The memary map in Appendix D
includes GraFORTH decimal addresses and hexadecimal addresses,

Storage and Retrieval Words

To store a number directly into 2 desired memory location, simoly
place the number you want to store and the address where you want ft
stored on the stack, Then type "POKEN", The word "POKEW"

stands for "poke-word" and removes two numhers from the stack, .
interpreting them as value and address, and stores the dats valve

at the aiven location. Since GraFORTH numbers occupy two hytes
(commonly called a 'word’, not to be confused with GrafORTH

words), it actually uses the given location and the one

{mmediately after it.

This exsmnle stores the number 12345 ot location 281K (which
happens to he the heainning of a large free area of memory in

GrafFORTH):

Rrady 12345 2016
[12345]

[7816)

Ready POKEW
Ready

DELVING DEEPER §-5

> SN YT
e ¢ B s s

-

To recall & numher from memory and place it on the stack, nlace
he a s of des __ memo., .ocati_.. _1 the ...ck .. P
“PEEKN". The word "PEEKN" stands for “peek-word” and removes &
number from the stack, interprets 1t as an address, retrieves @
number from that address, and places the retrieved numher on the
stack. The following example recalls the number we just stored

in memory:
Ready 2816

[2815)
Ready PEEKW

[12345)
Ready

To store a single-bytp value to one memory location, the word
*POKE" s used instead of "POKEN®. The form is the same. This
example stores the number 255 to location -28721:

Ready 255 -28721 POKE

The word "PEEK" is used to retrieve sinqle hytes from memory.
The form for "PEEK® 1s the same as for "PEEKN". This exasple °
reads a8 spectal Apple location that contains the current
horizontal cursor position:

Ready PRINT ® Demonstrating PEEX * 36 PLEK
Demonstrating PEEK

(18)
Ready .

P}tntinq the phrase "Demonstrating PEEK" moved the cursor out to
position 18, Reading location 36 retrieved this position as @
number.

DELVING DEEPER

L.
oy

10 summariza, here is a table of the four storage end retrieval
words:

Word Delore After Nescription

POKEW mn - - e = Puts two byte m into Jocation n

PEEKM n- "ne- - Reads two byte m from location n
POKE mn- - e Puts one byte m into location n

PEEK n- ne - Reicds one byte m from location n
Variables

GraFORTN allows you to set aside space for number storane through
the word "VARIABLE", VARIABLE creates a new word and places it
on the GrafFORTH word library. VARIABLE has two forms; the (irst

one is:

'VARIABLE C(variable named

The varfahle name {s the name of the word created and placed on
the word Vihrary. For example:

Ready LIST

CHS
ARS
SGN

Ready VARIABLE TEMP
Ready LIST

TEMP
CHs
ABS
SGN

DELVING DEEPER S -1

Deaac—

-

=

—

TP

.
T IR

Y

<TTETVL T

- e — -
e - -, et G W - - ceEE—

.-

——— — s X
. . - -

x
r

L s 3

-

v

- e

. e

e o eiie .

3 8 e e on
-

~es

S

.~
..o

-~ .o

T -—

1~
™= new | TET O asis two st i cbyte -..ce S | S Ready 35 VARIAD Nt '
und: forhstor:::] m'mber.t;nd a'canft:hm M:e;;ul Gr::ma{ \ [" - y 35 VARIAMLE COU
routine that efther places the value © e variable on the stac COUNT wi
or stores the stack value into the variahle, . over 1::" contaln the value 35 until another value I3 stored {
'. B
To store the numher 12343 in TEMP, type: b j Ready COUNT , v
k1)
Ready 12345 , !
[:zgzs] b g 1
. - Ready 87 -> COUNT H
Ready -> TEMP - Ready COUNT . tl
: 87 ! .
Ready hf”‘"j i
. 1 We should brin omething important here, Th l
""—"G"'OM" "z'd "‘) Is ‘| ”"‘:‘ word '"'“: “d"h;’“"" ;:‘t"" (as well as Stgl\"::..‘whlch w:'l:“:'i.scu:s s;:rtly)eizordcm:ﬁks ‘ l!
It is created by typing a minus sign ' followed by & riq ‘ e word, in that it produces new words ftself. It is also a word 1
arrow '>'. This word.seu an intercal flag used by variables to - --j that looks forward down the input line for the word name, It “
determine {f a '“";’ or & ;“":" °'"’;:“‘:"‘ is to :"" ”:"" therafore must be used with more care than most GraFORTH words, N
Nhen the "-)" word |s execute sets this flag so the nex i ’ '
referenced variahle will do a store, rather than a recalT.” Note “":""j Yo be spectfic, a VARIADLE declaration cannot appear fnside of o | 4
That the variable will clear this f'ag S0 no special operator s b g colon definition, TE mist be aTon :
. e on its own |ine, not mixed 1
needed when rdoing a recall. . J with other GralURTH words. Any initial value provided when the ”
' ; variable s declared is taken directly Trom the Input line, not ‘i
Therefore, to reca!l the value just stored in the varfahle TEMP, ;__.__,5 Trom the stack— Since The TaTtTaT vaTue 75 not From The stack, o{.
Just tyoe its name: ki !:‘ian't be a computed number. For example, the following line R
w not work: '
Ready TEMP : —_ ' "
[12345] &.’T“.‘j Ready 25 7 * VARTABLE THING “ y
Whenever you need to recall the value of a variable, simply type .
fts name. To store a value into a variable, always type the . . Strin S
GraFORTH word ™->" before typing the variable name, E*lj g
Unless otherwise specified, when a variable fs first created and Strings fn GraFORTH are words with space sat aside for storing
compiled using the word VARTARLE, the initial value of the = characters or text, rather than numhers, Strinas are used
""“":'9 Is zero. ;:':;zg ' ""‘:""h' different :":"': ":"’- < - 1Tﬂ whenever input is requested from the keyboard, or text has to he
the other form of V s used, where the InTtial valve is - manipulated in any way. String words are created with the word
entered on the line with the declaration: STRING, and @ number of words devoted to menipulating strinas and
—— character da tncluded in GraFORTH, Additional ds,
cinitial valued VARIABLE <varfable named ' E:‘ —-j more co:l';lext:t:::g t:s:sfdca: t::‘fwnd on a d:s:nn l?:ahedor
: ~§mns WORNS", and can be compiled into the word Vibrary at any
time,
T~ -
adis . |
|
foud '“j
DELVING DEEPER , S-8 DELVING DEEPER 5-9

- e -
— .

P B - b ATy © i

- sem s ceew o o————— e

Defining Strings

The word "STRING® is used to create words in the GraFORTH word
Jibrary that are used for strinq storage. The form for the word

STRING 1s:
Cstring sized STRING (string named

The string name Is the name of the word to be added to the word
library. The strina size is a number specifyina the number of
bytes, or characters, the strinq will hold, Rememhering how
precious computer memory is, the string size should be fust larqe
enough to hold whatever string data is expected to qo into the
string. On the other hand, sufficient room must he allotted in
the string for any value ever stored into it. If you sttempt to
store too much text into a string, you will actually damage_the
GraFORTH word library. This will force you to rehoot the entire
system from scratch! To increase speed, FORTH implementations
(GrafORTH included) typically do very little error checking.
Therefore it is up to you to determine belarehand the sfze string

you will need,

Similar to variables, string declarations draw both their string
name and string size from the input line, and have the same
restrictions for use as variable declarations.

The following example creates a new word called TESTSTRING which
can store a string up to 45 characters long: .

Ready 45 STRING TESTSTRING
Ready LIST

TESTSIRING
cis ‘
ARS '
SGN

DELVING DEEPER 5-10

T
i

mmn
ba i

1

1£)

GraFORTH strings are indexed from 0 to the strinq size-1. When
string word is executed, the word removes a number from the
stack, adds this number to the address of the beginning of the
string, then places this address on the stack, Note that strings
differ from variables in that a varfable actually places its
value on the stack, while a string places the address of the
beginning of the string plus the specified index on the stack.
Getting the address instead of the value of the string may not
seem 1ike much fun, but in a moment we'll show you some powerful
words to move string information aroundl

In the following example, entering "0 TESTSTRING® will placd, the
address of the beginning of the string on the stack. ¢Enterihq °5
TESTSTRING® will place the address of character nusher 5 in
TESTSTRING on the stack. The last character position of
TESTSTRING {s accessed with “44 TESTSTRING*. Any portion of the
string can be accessed quickly in this way.

Ready 0 TESTSTRING .
-3224)

Ready & TESTSTRING .
-32236

Ready 44 TESTSTRING .
-32197

Notice the addresses returned are neqative. If you don't
understand why, be sure to turn hack a few paaes to the
discussion of GraFORTH memory addresses!

Note: The addresses we show are for examole purposes. The
actual values may be slightly different.

Using Strings

In this section, we'll show you how to use those memory addresses
that strings leave on the stack, We'll ASSIGN text to 2 string,
and MRITE and READ lines of text to and from the Apple's screen

and keyboard.

DELVING DEEPER s-1

c.

.. ,4
b A S RS 5 S —
.

s

= &1
pll

- .
o W iy el W 8.

. -——

N
o P il .

To store text directly into a string (or anywhere in memory), the
word "ASSIGN" {s used, with the form:

¢string address> ASSIGN * Cquoted text> *

ASSIGN removes & number from the stack, interprets it as a memory
address, then stores the text hetween the quotes into memory
starting at that address. Usually the address {s supplied by
entering the name of 8 string before typing ASSIGN, Here {s an

example:

Ready 0 TESTSTRING
[-32241]

Ready ASSIGN " SHE SELLS SEASNELLS "

Ready

The phrase "SHE SELLS SEASNELLS™ has been stored into the string
TESTSTRING,

To write the contents of a string to the screen, the word
“WRITELN" is used. WRITELN removes 2 number from the stack,
{nterprets it as a memory address, then writes the text starting
at that address to the screen, The form of WRITELN is:

¢string address> WRITELN

The following example writes the contents of the string
TESTSIRING to the Apple screen:

Ready 0 TESTSTRING WRITELN
SHC SELLS SEASMELLS

Text can be read in from the keyboard and stored in a string (or
anywhere in memory) using the word "READLN", READLN removes 3
number from the stack, interprets it as a memory address, then
reads a line of text from the keyhoard and stores the text in
memory starting at that address. Like WRITELN, the form of

READLN fs:
¢string address> READLN

DELVING DEEPER S - 12

Pl

B

Here is an example:

Ready 0 TESTSTRING READLN
SEASMELLS
Ready

The phrase "SEASHELLS® has been read into the string TESTSTRING.,

(You type this 1ine)

Ready O TESTSTRING WRITFLN
SEASHELLS

0f course, assigning, reading and writing don't have to start at
the beginning of & string. Strings can he modified by reading
into the string, but starting in the middle of the string:

Ready 3 TESTSTRING READLN
SHORE

Ready N TESTSTRING WRITELN
SEASHORE

The word "SHORE™ was read into TESTSTRING, starting at character
number 3, over the top of "SHFLLS".

Ready 2 TESTSTRING WRITELN
ASHORE

The string was printed starting with character number 2, ledving
only the_*A" in "SEA",

When a string is stored in memory using ASSIGN or REANLN, @
carriage return is placed after the last character, marking the
end of the string. When WRITELN writes a string from memory, ft
starts at the specified address and continues until it finds
either a carriage return or 2 byte containing a zero, €Either of
these mark the end of a string for WRITELN,

DELVING DEEPER S -1

- xa

e e 3

Pt

ey

——

o.

- me ® cocm—-

0 ® e

o

String Conversion

Somet imes a string will contain a number stored as text. The
GraFORTH word "GETNUM® s used to read the number from the text,
placing the value on the stack. GETNUM removes a number from the
stack, again iInterpreting 1t as a memory address. [t then reads
the text starting at that address and attempts to find a number,
which it places on the stack.

In the following example, the number 321 (s first read into a
string as text, then converted to a stack value with GETMIM;

Ready O TESTSTRING READLN
321

Ready 0 TESTSTRING GETNUM
(321) :

When using GETNUM, nonnumeric characters may follow the numbher
without interfering with the conversion, but the number must
begin as the first character of the string.

1t GETNUM cannot find a number at the given string address, it
places a zero on the stack. To determine for certdin whether or
not the string-to-number conversion was successful, the word
“YALID® is used. VALID leaves a number on the stack. If the
last GETNUM was successful, the number will be nonzero; If the
conversion falled, VALID will retyrn 2ero:

Ready 0 TESTSTRING READLN
555

Ready O TESTSTRING GETNUM .
555

Ready VALID .

253

(VALID 1s nonzero since GETNUM wad able to convert the number.)
Ready O TESTSTRING REAOLN

YOU CALL THIS A NUMBER??

Ready O TESTSTRING GETNUM .

n .

Ready VALIOD .
n

(VALIO is zero since GETNUM failed to find a nuaber.)

DELVING DEEPER s -

PAD: The System String

GraFORTH includes a predeclared temporary string space of 124
characters called PAD, PAN is convenient for reading keyhoard
input without having to define a string first.

Actually, PAD {s two things: a 124-byte free area of memory used

for storing string data, and a word in the GraFORTN word Vibrary

nawmed PAD which places the address of this free area of memory on
the stack. Note that the usual string indexing is not used with

PAD: '

Ready PAD
[a12)-

(R12 is the address of the PAD string buffer.)

(812]
Ready READLN
Goin' back to my pad.

Ready PAD WRITELN
Goin' hack to my pad.

To access the middle of the PAD buffer, simply add an offset to
the address:

Ready PAD

[812]

Ready 6 + -
(RIR]

Ready WRITELN

back to my pad.

Note: PAD {s considered a temporary strina soace because the
same space is used by the GraFORTIT system when compiling words
onto the word library, overwriting the previous contents of PAD,
Predeclared strings should be used for more permanent string

storage.

DELVING DEEPER 5-1%

Accessing Individual Characters in Strings

Since esch character in 8 string occupies one memory loncation,
individua) characters fn strinas can be accessed using PEEX and
POXE, [In this examole, 8 Vine of text is placed in TESTSTRING
then the ASCIl value of the first character is read onto the '

stack:

Ready O TESTSTRING ASSIGN * String pickings *

Ready N TESTSTRING PEEK
(211]

211 s the ASCII value for the letter "S". "0 TESTSTRING" pi

the address of the first character of the string on the ;tngk‘ced

::en.?ttf read :he-v:lue from this address. (n the next examalo.
e "1" in "string" is overwritten with the | e

fts ASCIT valye: etter 0% by storing

Ready 239 3 TESTSTRING POKE

Ready 0 TESTSTRING WRITELN
Strong pickings

DELVING DEEPER 5 -16

String Words on Disk

There s a file on the GraFORTH system diskette called "STRING
WORDS". This file contains additional words for manipulating
strings in more comolicated ways. To make the string we~ds
active, simply compile the file into memory by typing:

Ready READ * STRING WORDS *°
llere are the words in the file "STRIN® WORDS":

END? is called by a few of the other words to determine {if the
end of a strinq has been reached. It removes an address from the
stack, reads the value from that address, and returns a 1 If the
value §s 0 or 141 (the ASCII value for a carriage return), or

returns 0 otherwise.

LENGTH removes 8 string address from the stack and returns the
Tength (number of characters) of that string:

Ready PAD ASSIGN ® How long am 17 *

Ready PAD LENGTH

(14]

Rememher that string indexing starts at 0 and ends at the string
length-1, so the last character of the ahove strinag is character

number 13,

LEFTS 1s similar to the Applesoft “LEFTS" function. The form
Tor LEFTS is:

<snurced <Cdestinationd <7 of characters) LEFTS

LEFTS coples the given number of characters from the source
string to the destination strinn, In the following example, the
string TESTSTRING is read, then the first S characters of

TESTSTRING are assianed to PAD: . .

Ready 0 TESTSTRING READLN
ELIZABETH

Ready N TESTSTRING PAD 5 LEFTS

Ready PAD WRITELN
ELIZA

DELVING OEEPER s - 17

.
SO i
S

— e-.

.-

RIGHTS fs similar to Applesoft’'s “RIGHTS". The form is the same
as Tor LEFTS, however the given number of characters are copied
from the right end of the string. Continuing from the previous
example, 4 characters from the right end of TESTSTRING are now
assigned to PAD, overwriting its previous contents:

R;ady 0 TESTSTRING PAD 4 RIGHTS

Ready PAD WRITELN
BETH '

Notice that with GraFORTH's string indexing, the Applesoft

function "MIDS® can be duplicated with LEFTS. This example reads

: char;ctcrs (rom TESTSTRING starting with the character number |
not 0):

Ready | TESTSTRING PAD 3 LEFTS

Ready PAD WRITELN
Liz

MOVELN simply copies a string from one location to another. The
Torm 1s:

<sourced <destination> MOVELN
The following example copies the contents of TESTSTRING to PAD:
Ready O TESTSTRING PAD MOVELN

Ready PAD WRITELN ,

ELIZABETH i

CONCAT concatenates two strings together. The form for CONCAT
$:

Cstringld <strinq2> CONCAT
CONCAT copies the contents of string2 to the end of stringl. The
contents of strinq? are unchanqed., In this example, strinqs ere

read into hoth PAD and TESTSTRING, then CONCAT is used to comhine
the strings 1a PAD:

DELVING DECPER §-18

Ready PAD REANLN
GraFORTH;

Ready 0 TESTSTRING REANLN
The Apple Graphics Language

Ready PAD 0 TESTSTRING CONCAT

Ready PAD WRITELN
GraFORTH: The Apple Graphics Lanquage

COMPARE makes an alphahetical comparison between two strings,
returning a value on the stack. The form for COMPARE f{s:

¢strinal> <string2> COMPARE

If stringl Is qreater than string? (in alphabetical order,
stringl comes after string2), COMPARE returns 2 1. If strinal is
less than strinq?, COMPARE returns a -1. If the two strings are
nqual, COMPARE returns a 0, Here is an example:

Ready PAD ASSIGN “ LIST *

Ready 0 iESTStRING ASSIGN * LOST *

Ready PAD ‘0 TESTSTRING COMPARE

-1

The word COMPARE returned a -1 on the stack because the contents
of PAD is “less than" the contents of TESTSTRING.

Words Manipulating Individual
Characters

GraFORTH also contains words that print {ndividual characters to
the screen, and get individual characters from the keyhoard.
These words interpret numhers as the ASCII values for characters.
(A table of ASCII characters can he found in Abpendix 0.)

The GraFORTH word "PUTC® (PUT Character) prints a sinqle
character to the screen. PITC removes & nunher from the stack,
fnterprets it as the ASCII number for & character, and prints the
character at tha current cursor position:

DELVING DEEPER 5-19

e o - ——-

—l
Tie o . s
ki L O e G S .- -
Bt il
. H - . P
N S . T

- - ——— . - - -

. —— —— — - ——

Ready 193 (193 is the ASCII value for the letter "A",)

[193)

Ready PUTC

A

PUTC removed the 193 from the stack and printed the character

. .AI.

The GraFORTH word GETC (GET Character) places a flashing cursor
on the screen, waits Tor a character from the keyhoard to be
entered, then places its ASCII value on the stack:

Ready GETC
(Type the character “8°.)

[194]
(RETC returns 194, the ASCII value for the character "B".)

To print a character read in with GETC, simply DUPIfcate the
value read, and write it to the screen with PUTC:

Ready GETC miP PUTC
(Type the character "Y".)

Y
(217

(217 1s the ASCII value for the character °Y".)

To check {f a key has been pressed without stopping to wait, ;
“GETKEY" and "CLRKEY" are used. GETKEY and CLRKEY directly wse
the Apple's special keyhoard nemory location,

When a key is pressed, its Apple ASCII value is stored in the
Apple keyhoard Incation. 1f a key has been pressed, the numher
fn this location is always 12R or greater. GETKEY reads this
Yocation and places fts value on the stack., Executing CLRKEY
forces the value in the keyhoard location to less than 128, The
next keypress after CLRKEY 13 exacuted will sasin bring the value
to 128 or aresater,

.

DELVING DEEPER 5 .20

T
4
m

-

B3

——

" ag -

Thus, to read the keyhoard using GETKEY and CLRKEY, First execute
CLRKEY to make the keyhoard location less than 128, then use
GETKEY wnti] the returned value is 120 or greater. This numher
will he the ASCII value for the key that is pressed. GETKEY can
he Interspersed with nther tasks so that other thinas cen occur
while simultancously reading the keyhoard. Here is a simple
example that uses GETKEY and CLRKEY to “arah a character”:

+ GRAR,CHAR
CLRKEY
REGIN
GETKEY DUP
128 ¢
WHILE
ornp
REPEAT
CLRKEY ;

DELVING DEEPER 5. 21

ce - wme -

- - a——

-

— — —— - —

Using Numbers in Other Bases

,’

GraFORTH can accept and display number in hases other than base
ten. Four words (HEX, BINARY, DECIMAL,and BASE) allow you to
select what base GreFORTH uses,

The word "HEX® causes GraFORTH to read and print numbers in
hexadecimal, base 16. In this example, a number is placed on the
stack, then base 16 1s selected using HEX.

Ready 45
(e5)

Ready HEX
(2n)
Simflarly, the word “BINARY" selects base two:

Ready BINARY
[101101]

The GraFORTH word DECIMAL gets us back to familiar territory:
Ready DECIMAL .
45

The word °"BASE" can be used to select ;gl base. BASE acts as 2
varfable: the word "-)>" is used to assign the hase. The

following selects base 8 (octal):

Ready 8 -) BASE

Note that since BASE is a variahle, its current value can bhe read
and displayed. llowever, any base value displayed in its own base
1s “10°, For example, 2 2 in base 2 is 10, and a 16 in
hexadecima) is also 10. Thus, to print the base, you must place
its value on the stack, change BASE to some other base, then
print the stack value. In this short example, the base selected
above is displayed before and after changing back to decimal:

Ready BASE
(10)

DELYING DEEPER

| Sy

Ready NECIMAL
(8]

Because hexadecimal and some other base numbers use letters of
the alphabet as dinits, possihle conflicts between numbers and
word names may occur. For example, in hexadecimal, is “ACE" a
GraFORTH word name or a nuumber? To help prevent this, GrafORTH
allows dollar signs (“$") to precede numbers:

Ready HEX

Ready $ACE
[ACE]

Note: All of the examples in this manual have assumed that base
ten is selected. In addition, some of the programs on the
GraFORTH system disk have number formatting that requires base
ten. You are free to use other hases, hut the resuits may be

quite unpredictable!

Using DOS From GraFORTH

DOS Commands

Using the Apple Disk Operating System from GraFORTH {s much the
same as from Basic. DOS commands can be called directly from
GraFORTH, either from the keyboard or in a word definition. D0S
responds to a command that has been preceded by a carriage return
and a ConTRoL-D (ASCII! number 132). (See the Apple NOS manual
for more information on disk access in general.) The form for 3

DOS command from GraFORTH is:

CR 132 PUTC PRINT * <DOS command> ° (R

“CR* prints a carriage return and "132 PUTC® .brints a ConTRol-N.

The D0OS command is printed next, and the line {is ended with
another tarriage return. llere is an example that prints o

catalog:
Ready CR lazbvutc PRINT * CATALDG * CR

DELVING DEEPER 5-2)

4

L 41

e e

o._.
e i N -

— v ——

.
N -

. -

e sy e

-

Using Data Files

Text file access fs also similar to Basic. The file is opened
using standard NNS commands, and data can bhe read from or written
to the file using REANLN or WRITELN. File access can be
simplified by defining file words ahead of time, for example, to
heqin reading from a text file, you can use @ word like
OPEN.READ, (The filename has been stored in PAD.):

: OPEN,READ
CR 137 PUTC PRINT ® OPEN ® PAD WRITELN CR
CR 132 PYTC PRINT * READ ™ PAD WRITELN CR

After executing this word, the file will be opened for reading,
and data can be read in using READLN, At the end of the text,
the file can be closed by simply using the GraFORTH word *CLOSE",
CLOSE closes any open file,

Since GraFORTH does not have a function similar to Applesaft's
"ON ERROR GOT0", NNS errors, including End Of Nata, will produce
an error messaqe and stop the program, This means that efther
the lennth of the file must be known shead of time, or there must
he a special marker at the end of the file so that no more data
will be read by the program, The last character in the file must

also be a carriage return,

Here is a sample file that makes use of a special End Of File
marker. The marker used here is an asterisk on the last line:

This §s my test file,

tach of these lines will be printed

by the proqram helow.

The last)ine must he 8 special marker
to end the file. MNere it is:

[]

Let us say that we have saved this file with the name *TEST".
Here 1s a program that will read and print esch 1ine in the file,
and will stop when {t encounters the end marker wan,

DELVING DEEPER

: READER '
PAD ASSIGN * TEST * (Place filename in PAD and call)

OEEN.READ (OPEN,READ from ahove to open file,)
BEGIN

PAD READLN (Read a 1ine from file.)

??2 PEEK (Get first character from line.)

(9] :

WHILE (WHILE this character is not "¢°:)

PAD WRITELN (Write the line to the screen, and)
REPEAT (REPEAT back for the next line,)
CLOSE ; (Close the file.)

As the special GraFORTH NOS allots only one file huffer, only one
file can he open at a time, The NOS commands "PRAn" and "INgn®
(where n is a number from 1 to 7) can be used from GrafMRTH to
route data to and from peripheral cards in the hack of the Apple,
In this way, program text or data can be sent to a printer or
other peripheral. After using "PRIn" or "INIn", either the
GraFORTH word GR or TEXT can be typed to re-establish the
standard GraFORTH 1/0. Do not attempt to use "PRIN" as ft will
not leave GraFORTH fintact.

The following word will print the.text in the editor buffer to a
printer in slot 1. * It reads the' characters one at a time and
prints them out until it finds a zero byte, marking the end of
the editor file.

: PRINT.BUFFER -
CR 132 PUTC PRINT * PRI1 * CR
34R17
PEGIN

NUP PEEK OUP ,

0o S
WIILE

PUTC

L+
REPEAT
GR ;

DELVING PEEPER s. 8

Program Control Word's

RUN

The GraFORTH word RUN automatically executes the top word on the
dictionary. This cen he a great convenience when loaiing and
running proqrams from disk, By using RUH, vou don't have to
check what the top word on the dictionary is after compiling a
file in order to run it. In addition, 1f the top word has & name

something like:
SUPER ,ZAPPO,ELECTRO.BLASTERS. APPLE .VINEO, GANE ,

using RUN can save a bit of typing, too....

AUTORUN

The word AUTORUN qoes a step beyond this. AUTORUN removes a
nunher from the stack. [If this number is nonzern, then GraFORTH
will automatically execute the top word on the dictionary every
time program control is returned to the GraFORTH system level
(1.e. whenever you expect to see a “"Ready" prompt). DNOS errors,
GrafORTI or machine lanquage errors, executing the word ABORT, or
pressing the Reset key with the AUTORIN option on will all cause
the top dictionary word to be executed. llere is sn example to
qive you a feel for the way AUTORUN uorl.:s:

Ready : TEST PRINT ® AUTORUN IS ONII) * ;

We've added this word to the top of the dﬁ:tiomry so that
AUTORUM will have a vary visible effect.

Ready 1 AUTORUN
AUTORUN 1S ONIIY

Ready 3 §
AUTORUN IS ONI I

8

5

Ready SWAP
N;lﬂlﬂll IS 0Nl

3

DELVING OEEPER $§-2

Ready ABORT
(The screen clears.)

GraFORTH][(C) 1981 P, Lutus
NITORUN 1S ONILT
Ready

Fortunately, the AUTORUN option can be turned off by typing:
Ready N AUTORUN

Ready

1€ the top dictionary word runs a “closed” program which never
exits to the system level, the AYTORUN option effectively makes
the GraFORTH lanquage ftself inaccessible. Any errors or ABNRTS

simply restart the program.

Saving the GraFORTH System

The GraFORTH language is stored on the system disk as an
executable binary file with the name “0BJ.FORTH®, As mentioned
in Chapter 3, when the disk is booted, this file is automatically

loaded and run,

The GraFORTH word SAVEPRG §s used to create GraFORTH binary files
similar to 0BJ.FORTH., SAVEPRG saves the current GraFORTH system,
including any new words added to the dictionary, as a binary

file. Once created, this file can be BRUN at any time, brinqing

the modified GraFORTH system back into memory.

SAVEPRG is a powerful tool, You can save “customized” systems,

with your favorite special-purpose words already in the
dictionary when the system is booted, You can also save finished
applications programs, in such a way that the proqram
automatically starts up when booted. This 1s ideal for-games
applications, where the obvious presence of a “lanquage” is
neither needed nor desirable.

To use SAVEPRG, first compile the words to produce the “"finished®
system you want to save, then type SAVEPRG:

DELVING DEEPER 5-0

L e
. -

-
es .

e e 3
e R il o

S
-t

=

. -

el 2B dad : N
RN s - e e

.-y

R e

TRl T T

-—

A

-
-

e
T S
- - —
- -

._.‘.
e tia

-

[od

Reardly SAVEPRG
SAVE FILE NAME :

this prompt asks for the filename you want the new system

saved as. The firaFORTH systen disk automatically BRiNs the file
"0BJ.FORTH", so {f you want this new system to hoot
automatically, you should name your file “OBJ.FORTH" too. Your
{ile will then overwrite the suppTied GraFORTH system. (Make
sure you're using a copy of the disk and not the originall) You

are then prompted:
MITORUN (Y/N) :

This prompt asks whether or not you want the saved system to hoot
up with the AUTORUN option on. If you answer Yes to this
question, then the new system will automatically run the top word
on the dictionary, startinq a progrem in motion. If desired,
your proaram can later turn the AUTORUN optfon back off,
returning access of the GraFORTH lanquage to the user. 1f you
answer the AUTORUN question with Mo, the new system will display
the "Ready” prompt on boot-up, with immediste access to the

languagqe.

After answering this question, this disk whirs for & bit, saving
the new system to disk.

Note: As discussed in Chapter 2, a slightly modified version of
NOS is used with GraFORTH. Any system saved with SAVEPRG
requires this version of DOS to be in memory, New systems should
he saved to a copy of the GraFORTH disk, so that the special nns
will be present.

The GraFORTH system as supplied includes an additional word on
the top of the dictionary which asks the demonstration prompt on
boot-up. This word can be found in the disk file *QUERY", The
system was saved with the AUTORUN option on, so that the demo
prompt would come up automatically. When you answer No to the
demo question, the word turns AUTORUN of f (freeinq the system),
then FORGETs itselfl This leaves the system in its “usual®
state,

The GraFORTI system can he saved to disk without the demo prompt
simply by using SAVEPRG with no additional words on the word
Vibrary. (This should only be done to a copy of your disk, in
case lightning decides to strike while the system is being
w;itten to disk.) Boot the disk, answer No to the demo question,
then type:

DELVING DEEPER

rn
iy

|

e
e
able.
| ol
Ry o
by g ol

IT IY
v ¥
L4l

a4
¥l

T
' d
!'
il

Ready SAVEPRG
SAVE FILE NAME :08J.FORTH
AUTORUN (Y/N) :N

After the disk stops whirring, turn your Apple off, then on
again. When the system hoots, the demo prompt will be qone,
You can also put the demo prompt back into the system. Type:

Ready READ " QUERY *

This adds the word that asks the demo question to the top of the
dictionary. Now type: .

Ready SAVEPRG

SAVE FILE NAME :08J.FORTH

AUTORUN (Y/N) :Y

The system will he.saved with the demo prompt back in,

Overlays

GraFORTH programs can automatically load and run other GraFORTH
programs, and even deletc themselves to free' up memory. Proaram
seqgments that overwrite cach other in this way are often called
"overlays®. The GraFORT! demonstration programs use overlays

extensively,

To execute an overlay, include a word in the first file that
reads the overlay, Make the first 1ine in the overlay FORGET the
words already in memory, and the last line in the overlay file
the word RUN, To be more specific: . .

Nhen you need an overlay, execute & READ <filename), where
<filenamed is the name of the overlay. This file will now he
read into memory, but since the first 1ine of the overlay
contains a FORGET (wordnamed, where wordname is the name of the
GraFORTH word you wish to forget back to (inclusive), the
original file (or portion thereof) will be removed, As redding
of the overlay continues, it will now fill memory previously
occupied by the original file,

DELVING DEEPER $.2

mew wm—— - e

n 4

T S e

2

(9

L e

o

- =

——- e GE—— - T c® - cm— e+

— —— .

_file does mot cause an error if th

We urge you to examine the demonstration file listings as an
example of overlays. Since the FARGET at the beginning of each
e word being forjotten does not

exist, the demo files (or any overlay) can also be directly loaded

and run.

Moving Memory

a hlock of memory from one location to
The form

MOVHEM simply moves
another. MOVMEM removes three nunhers from the stack.

for MOVMEM {s:
¢sourced (destination> < of bytes) MOVMEN

The (source)> nusher is the starting address of the data to be
moved. The (destination> is the address of where the block is to
be moved to. <# of bytes) specifies how many bytes are to be
moved. For example, to move 256 bytes from address 2048 to

address 2816, enter:

Ready 2048 2816 256 MOVHEM

MOVMEM can be handy for relocating character sets and 3-D images
in mewory, as will be discussed in Chapters 7 and A.

Retrieving Word Addresses

The word * (an apostrophe, also called 3 *tic") places on the
stack the address of the word that follows it, and prevents that

word from beinq executed. llere is an example:

Ready ' ERASE
(30749)

The tic placed the address of the
pravented ERASE (rom heing executed. Hote that the tic 1s & word

that looks forward down the input Vine, and retrieves the address
when it s compiled, not every time it is executed.

greater than the
This is hecause the $LIST

word ERASE on the stack, and

The address returned by "tic" is always

hexadecimal address shown with $LIST.
address indicates the beginning of the word definition, and “tic®

returns the address of the executing portion of the word. See
Appendix B for more informstion on the word library structure.

OELVING DEEPER 5-%

Calling Machine Language Routines

Machine lanquage programs in memory can be called directly from
GraFORTH with the word CALI. CALL removes a nunber from the
stack, interprets it as a memory address, then calls the machine
lanquaqe routine at that address. (The routine should end with
an RTS (ReTurn from Subroutine) instruction to return to GrafORTH
properly.) Machine lanquane proqrams can be loaded from disk
using the.DNS command "BLOAD® {nto any free area of memory, then

CALLed frowm GraFORTH.

Before a machine lanquage CALL is made, values can he placed in
the Apple processor's A, X, Y and P reaisters using the GrafNRTH
variables AREG, XREG, YREG and PREG. Before making the machine
lanquage CALL, simply place the desired values into AREG, XRER,
YREG and PREG as you would any other variahle. When CALL {s
executed, it loads the processor reqisters with the values from
these variables hefore doing the call, (Note the importance of
loading a proper value into PREG. If improper processor bits are
set, GraFORTH will not operate!) After the routine has executed,
the values of the registers are loaded back into the variahles
and can he read from GraFORTH, again, just as any other variable,

Mere is a nice example, which uses CALL to read the qame paddles.
The Apple System monitor contains @ routine at location -1250 for
reading the gqame paddles. It expects to see the number of the
qame paddle (0 to 3) in the processor's X register. It returns a
number from 0 to 255 (hased on the position of the paddle) in the
Y register, The followina word reads the value of a qame paddle
by placing the top stack value in XREG, calling the paddle
routine, then placing the value of YRER on the stack:

¢ READ.PADDLE
=) XREG
-1250 CALL
YREG ;
» .

(The Apple manuals warn that two consecutive readinqs of a qame
paddle can produce incorrect results, and suggest a short wait

loop between readings.)

DELVING DEEPER -3

'y

Sy
=

P

WL . e

Padonatl Satin JRRT P

reoa--

2
- . me— R, W —pa

'R o winpw =
APy
A

. T oo,
el
e -——-

-—te e — e

Compiling Number Tables _ ‘

The word "," (comma) causes & numher to he complled as a byte
directly into GraFORTH, Small assembly lanquane routines can he
compiled using commas, or numher tables can he aenerated. Here
s an example of 8 word that contains a number tahle of the
visihle high resolution colors. The numbers are stored as
{ndividual bytes following the word name in memory:

. COLOR.TARLE 1 , 2,3 ,5,6,3

These numbers correspond to the colors green, violet, white,
orange, and blue, (Colors in GrafORTH will be discussed in
detail In the next chapter.) Each number can be accessed by
using the tic to retrieve the address of COLOR.TABLE, then adding
an offset (0 to 4) to pick out the appropriate number with PEEK,
Note that COLOR.TABLE is not an executahle word!

The comms is the only GraFORTH word that assemhles directly at
the hyte level, and some precautions are required to use it
effoctively, The comma should only be used within word
definitions. Also, for internal reasons, the first hyte of n
assembly of code or data may not he greater than 127 (hexadecimal
$7F), nor can it be equal to 10 ($A). Here are the reasons: 10
s a special reserved compiler flag, and a numher less than 12
must follow each GraFORTH word name to mark its end. (For more
information, see Anpendix 8 for technical information on
GraFORTH's dictionary link structure.)

Leaving GraFORTH (gently)

The GraFORTH word “BYE® can be used to enter the Apple][system
monitor. The GraFORTH languaqe beains at hex location 36000, To
rostart GraFORTN from the monitor, type "6ONNG". '

Conclusion

That ahout wraps up the language features of GraFORTI, From here.

on out we'll he talking ahout the many types of qraphics
available with GraFORTH, (That s what you hought it for, fsn't
1t?) The next chapter will cover hasic point and 1ine drawing in
GiraFORTH, as well as a discussion of the supplied TURTLEARAPHICS.
We'll qet into the various modes, color selectfons and...

Well, that's the topic of chapter 6l

DELVING DEEPER $ - 32

=g

CHAPTER SIX: TWO-DIMENSIONAL GRAPHICS

Chapter Table of Contents:

Purpose and Overview
Apple Graphics
GraFORTH Graphics

Two-Dimensional Graphics Words

PLOT, LINE and FILL

COLOR

UNPLOT, UNLINE and EMPTY
INVERSE and NORMAL
ORMODE and EXMODE
GPEEK

Turtlegraphics

MOVE _
TURNTO
TURN
MOVETO .
Examples

TWO-DIMENSIONAL GRAPHICS

Page

6-2

6-3

PRAPIND O -3
~aO®
53 o> A A

o
-
N

POPRD
d-.-.ﬂ.ﬂ
SLbLHWW

6-1

-

WO By o P
o .
n e
B

CA

sy

-

— -

< —
.]
PR

=Y.

.-
— S 4. S0 g GV —

)

P i
L=
.

1 4

-—— ceam s

YT, Y A ey ar e

Purpose and Overview

i

The qraphics capabilities of iraFORTH can he divided into three

main qroups:
*nraphics of the First Kind")

draw lines, and fill
variety of colors and

Two-Dimensional Graphics (or
fncludes comaands that plot points,
cectanqular areas on the screen, using @

options.

Character Graphics (or *Graphics of the Second Kind®) includes
using and creating new character sets, displaying text with
different sizes and colors, and defining completely new shapes
and pictures in terms of character sets and displaying these
shapes using a special block printing function.

raphics of the Third Kind")

Three-Dimensional Graphics (or "G
-dimensional color images

{ncludes creating and displaying three
at high speed for animated effects.

This chapter will discuss
by talking about what. the Apple itself is capable of, and how

GrafFORTH uses these capabilities. We'll show you how to plot
points and draw)ines, and then undraw them aqain, effectively
removing them from the screen, We'll discuss color and the
drawing modes (NRMODE and EXMONE) and how they affect the
drawing process. MWe'll also talk about using Turtlegraphics,

which is especially useful for creating certain kinds of
qraphics displays.

TVO DIMENSIONAL GRAPHICS

two-dimensional graphics. We'll start

.
!

[

10
il L

Iy
34

4
7
|

rr
34
W w w

!]
2

™
i1
F U]

m
FR
W ul

re
_:J

rn
1

]
H
el
1]

m
=
L

m
e
Ll

Apple Graphics .

The Apple screen display, whether it be text or graphics, is
mnade out of the same units, called pixels. A pixel (abbreviated
form of ‘picture cell') is the smallest unit, or dot, which may
be turned on or off of the surface or the screen, There are
53,760 of these smallest units which make up the entire screen,
arranged in a matrix 280 dots wide and 192 dots high,

The standard Apple text display divides the screea into 24
horizontal lines, each R dots high. Seven of these A vertical
dots are used to form the characters, while the eighth is used
to separate the lines from one another. Horizontally, the
screen is divided into 40 columas, each 7 dots wide. Five of
these 7 horizontal dots are used to form the character, while
one on each side of the character is used for spacing hetween
the characters. The ASCIl values for the characters on “he text
screen are stored in a 1024 byte memory area. The hardware
inside the Apple continuously reads the values from this area
and places the appropriate characters on the screen,

The Apple qraphics di'splay allows you to turn on or off all
53,760 dots on the screen individually. There are two 'graphics
pages' in memory reserved for this function, but because of the
higher resolution, each requires R192 bytes to he set aside. It
is possible to alternate between the pages very rapidly for
animation effects (GraFORTI does. this automatically for 3-n
displays), but the Apple display hardware cannot merqge or hlend
the information on the two pages. These two hiah resolution
pages are often called ‘picture buffers', Each dot on the
screen represents one bit from the picture buffer. Seven of the
B bits in each byte are displayed on the screen, with the last
bit used in determining the colors of the other dots in that

byte.

THO DIMENSIONAL GRAPHICS

B e R e SO
:.._,,.'",_; -

-
C —— e .

TN e vy

— e
-

i)
— t—
e
e e -
- e

ey

ce e —

PTr—————r S
g . oo S

=

e

. c——

GraFORTH Graphics

While it fs possible to use the Apple text display from GraFORTH
(with the word TEXT), the usual display {s the araphics display.
To specify points on the qraphics screnn, firaFORTH usas
'cartesfan coordinates’. This is straiqhtforward way to
select a point hy naminq the column and the row the point 1s in.
The horizontal position is the X coordinste and the vertical

position is the Y coordinate.

The ranae of screen coordinates for GraFORTH graphics is:
X from 0 (screen left) to 255 (screen right)
Y from N (screen top) to 191 (screen bottom)

Thus, the upper-left corner of the screen can bhe represented
with X=0 and Ys0, or simply the X-Y pair (0,0).

Mote: The GraFORTH qraphics screen is 9 percent narrower than
the maximm possible (256 points wide rather than 280) for the
sake of operating speed. This is one factor that contributes to
GrafFORTH's fast line drawing. ’

The standard Apple text display still uses all 280 dots across
the screen for 40 characters per line, The characters
themselves, instead of beinq placed on a text screen by the
Apple hardware, are "drawn" from the text paqe onto the graphics
picture buffer. The full character space, 7 dots by 8 dots, can
be used, and is used for lower case characters and special
character styles,

Two-Dimensional Graphics Words

PLOT, LINE and FILL .

For these examples, we don't want text scrolling all over our
heaut1ful qraphics, so let's establish a text window in the
hottom part of the screen, These examples will keep the
qraphics above the text window and away from harm, To establish

the window, type:
Ready 0 40 18 24 WINDOW

THO DIMENSIONAL GRAPHICS 6 -4

This sets a 4N-column wide window from line 18 to the bottom of
the screen, Now type:

Ready ERASE

This clears the text that was still above the text window,

Let's hegin at the beginning, with plotting points. The
GraFORTH word PLOT removes two numhers f~om the stack,
interprets them as X and Y coordinates, and plots a point at

those coordinates on the screen. The form for PLOT is:

¢X-coordinated (Y-coordinated PLOT

This examnii will plot a point in the upper left corner of the
screen: .

Ready 0 0 PLOT

llere is another point, in the upper right portion of the screen:

Ready 200 25 PLOT

The word LINE, 1ike PLOT, removes two numbers from the stack and
interprets them as X and Y coordinates, LINE then draws a

straight line from the last plotted point to the aiven
coordinates. To draw a line, we use the last point we plotted

as one of the endpoints. We simply give LINE the coordinates of
the other endpoint:

Ready 50 100 LINE

This draws a diagonal line from the point (200,28) to (%0,100).
We can draw another)ine, by using PLOT and LINE toqether aaain:

Ready 100 10 PLOT 100 140 LINE

This draws a vertical line through the other line and almost
into our text window. . .

Rectanqular areas can be filled in quickly with the word FILL.
FILL also removes X and Y coordinates from the stack. It treats
the last plotted point as one corner of the area, and the aiven
coordinates as the opposite corner, This exarple fills in 2
rectanqular area on the right side of the screen:

THO DIMENSIONAL GRAPHICS

L-—

er "t

; f:é
i o
)

.

Ready 120 125 PLOT

Ready 200 75 FILL

For both LINE and FILL, the "last plotted point” is always the
point last used by a plotting word, whether it was PLOT, LINE,
or FILL. Another word, POSN, remaves X and Y coordinates from
the stack to act as & “"last plotted point” without doing any
plottina. POSN can he used to determine the first endpoiht of a
line or one corner of an area. This example uses POSN to set the

first endpoint of a line:
Ready 225 50 POSN
Ready 250 125 LINE

COLOR

Of course, GraFORTH can draw in colors, too! The color is set
with the word COLOR. COLOR removes a number from the stack and
uses it to select a color. The eight color numbers (0 through
7) are the same as those used by Applesoft Rasic. Here is a
listing of the graphics colors:

Color Number Color

not used

Green (1)

violet (!)

white (1)

not used

Orange }2; idepends on monitor)
Blue 2) (depends on monitor)
white (2)

NOAVAEAWN=D

The orange and blue colors may appear different shades on
different color monitors. The colors can be divided into two
qroups. The numhers in parentheses represent the “qroup number"
(efther 1 or 2). Because of some Apple][hardware constraints,
it may be desirable to use colors from the same qroup when
drawing Vines or areas close together. We'll show you an
exampla of this in a bit. (The Apple][Reference Manual
contains more information on the internal details of these

constraints.)

If you don't mind a bit of typing, this example will display 6
diagoaa) lines in each of the visible colors:

TNO DIMENSIONAL GRAPHICS

-.1..,_~

Ready ERASE

Ready 1| COLOR O 0 PLOT 100 100 LINE

Ready 2 COLOR 20 0 PLOT 120 100 LINE

Ready 3 COLOR 40 0 PLOT 140 100 LINE

Ready 5 COLOR 60 O PLOT 160 100 LINE

Ready 7 COLOR 100 0 PLOT 200 100 LINE

With your color monitor properly adjusted, the colors of these
lines (from left to right) should be grean, violet, white,
oranqe, blue, and another brand of white. Note that the colored

1ines are not broken at all, as they are with some graphics
displays (1ike Applesoft). GraFORTH draws all colored lines

without breaks.

Lines and points can he drawn over FllLLed areas, but the colors
will he, affected:

Ready ERASE
Ready 5 COLOR
Ready 0 0 PLOT 100 100 FILL

This draws an orange rectenale in the upper left portion of the
screen. Now let's draw a line of a different color through it:

Ready 6 COLOR
Ready 0 0 PLOT 100 100 LINE
Note that 6 COLOR specifies blue, but because of the oranpe

hackaround, the line appears white. Now let's try the same
example again, this time using colors from different color

Aroups: .
Ready ERASE. S COLOQ

Ready 0 O PLOT 100 100 FILL

Ready 1 ODLOR

Ready 0 0 PLOT 100 100 LINE

TWO DIMENSIONAL GRAPHICS

- e - " -

Whoops! You should sce a series of small aqreen rectanqles slong
the diaqonal, This s the result of the Apple][hardware
limitations. The solution te avoiding this trouble iIs to simply
use colors of the same yroup when lines or areds are
superimposed or placed close toaether,

UNPLOT, UNLINE, and EMPTY

So far we've been using the word ERASE to clear the qraphics
from the screen. In GralRTH, poiots, lines, and areds tan bhe
selectively erased, Let's ERASE the entire screcn now and set
the color back to white, then plot a few points:

Ready ERASE 3 COLOR

Ready 50 25 PLOT

Ready 100 25 PLOT

Ready 150 25 PLOT

Points can be Individually removed with the word UNPLOT, UNPLOT
has the same form as PLOT, however it erases the point at the
aiven coordinates. (1f there is no poTnt there to heqin with,
nothing happens.) Let's use UNPLOT to erase two of the points
we have on the screen:

Ready 50 25 UNPLOT

Ready 100 25 UNPLOT

Similarly, Vines can be erased with the word UNLINE, This
example draws two lines, then erases one of them:

Ready 0 0 PLOT 100 1IN0 LINE
Ready 50 O PLOT 150 100 LINE
Ready 0 O UNPLOT 100 100 UNLINE

Rectangular aress created with FILL can be erased with the word,
EMPTY, Here we'll FILL two areas, and erase one:

THO DIMENSIONAL GRAPHICS 6 -8

| e |

e

E:’J:E

Ready 25 75 PLOT 100 125 FILL
Ready 175 25 PLAT 225 100 FILL

" Ready 25 75 UNPLOT 100 125 EMPTY : .

Points, lines, and areas must be UNdrawn using the same color
they were drawn in. For example, all of the above ohjacts were
drawn with 3 COLOR set. The same color was still in effect when
some of the objects were erased. Let's change the coldr and try
erasing the remaining line and area:

Ready 1 COLOR
Ready 50 O UNPLOT 150 100 UNLINE

Since 1 COLOR is set, the GraFORTH system assumes a green line
{s to be erased, and leaves a string of violet dots geﬁlnd.

Ready 2 COLOR
Ready 175 25 UNPLOT <225 100 EMPTY

With 2 COLOR set, GraFORTH tries to erase a violet colored area,
changing the white to qreen.)

INVERSE and NORMAL

1¢ you prefer to do graphics on 2 white background, you can do
this with the word INVERSE, [INVERSE simply draws the
‘complements’ of the selected color: white becomes black, black
becomes white, green becomes violet, blue becomes orange, etc.
To show the effects of INVERSE, let's first erase the screen,
then enter INVERSE:

Ready ERASE .

Ready INVERSE

Notfice that the "Ready® on the last line fs now displayed in
*inverse”: black characters on a white background. Since only
the word "Ready” was printed after executing INVERSE, it {is the
only thing displayed in inverse. Now type:

TWO DIMENSIONAL GRAPHICS 6-9

M RS~ e

o) Jeamsna o

-

L= e

L CRE oy

-

,‘j

Ready HWOME

Since HOME clears the text window, now everything inside the
text window 1s (n inverse. Now type:

Ready ERASE

FRASE has “erased” the entire screen to white,
six colored lines aqain:

Ready | COLOR 0 O PLOT 100 100 LINE

Let's draw the

Ready 2 COLOR 20 0 PLOT 120 100 LINE
Ready 3 COLOR 40 0 PLOT 140)00 LINE
Ready 5 COLOR 60 O PLOT 160 100 LINE
Ready 6 COLOR 80 0 PLOT 1A 1NN LINE

Ready 7 COLOR 100 0 PLOT 200 100 LINE

Note that the colors of the lines have all changed. From left
to right, the colors are now violet, gqreen, black, hlue, orange,
and another black. .
Me'll eventually want to return to a normal black-background
display. The word NORMAL causes GraFORTH to use the normal
colors again, including good ol* black:

Ready NORMAL
Ready ERASE

ORMOODE and EXMODE

GraFORTH has two different “drawing modes®, called “ORMONE" and
CEXMODE", Amazinqly enough, these modes are set with the
GraFORTH words ORMODE and EXMONE., The ‘default’ mode (the mode
GrafORTH uses when a mode 13 not specified) Is ORMODE. The
philosophy hehind ORMODE {s that the plotting words put dots of
the specified color on the screen renardless of what is already
on the screen. With EXMODE however, & drawing cosmand will put
points on tha screen only where points are not already plotted.
If some points to he plotted are already plotted, those points
will instead be turned off,

TWO DIMENSIONAL GRAPHICS 6§-10

r ra
{— 4
il 1

| adrg
L.

|

A couple of examples will be helpful here. Let's first FILL on
area, then draw an overlapping line in ORMODE!

Ready 100 50 POSN 150 100 FILL
Ready 50 50 POSN 200 100 LINE

The line goes straight through the middle of the rectanale.
Watch what happens when we try to erase the line:

Ready 50 50 POSN 200 100 UNLINE

' The line was erased, but it neatly chopped the rectangle in

half, too. Using EXMODE, anythina that can be done can also he
undone. Let's do the same example again, this time in EXHODE:

Ready ERASE EXMODE

Ready 100 50 POSN 150 100 FILL

Ready 50 50 POSN 200 100 LINE

The line is whitey except where it passes'ovcr the white
background of the rectangle. Here it 1s chanqed to black. Now

to erase the line, we want to make the white sections black, and
the black trace through the rectangle white. And this is

_exactly what happens with reqular plotting in EXMODE. We can
erase the line by telling GraFORTH to draw it again:

Ready 50 50 POSN 200 100 LINE

The line is erased, and the rectangle 1s aqain intact. The key

to understanding EXMODE is that if something is drawn once, it
sppears on the screen, 1f it is drawn again, it disappears,
leaving the screen as {f the object had never been drawn.

EXMODE works equally well with colors. In this examole, A areen
line {s drawn through the rectangle, the white rectangle fis
erased, then the line {s erased:

Ready 1 COLOR 50 50 POSH 200 100 LINE

Notice that the line is violet inside the rectangle.

Ready 3 COLOR 100 50 POSN 150 100 FILL

TNO DIMENSIONAL GRAPHICS 6 -11

-— e -

R a IS, B .

Py

— D e PO s @ o oy

S—r .
™ T e 2 A Fcs

o e

-

. " N T—— g -
g ey

', -

et e o e a—.a
Y g —s T
oLy IS JETE et e O

e

. cma Ve e

St~ g .

. —

- e em—— .

c—

P

- -
o — -

e’

srmm 0 "
Ptueii

T o= ..

- ——

o o

The line is now completely green, a3 1t the rectanqle never
existed,

Ready 1 CPLOR 50 50 POSN 200 100 LInE

EXMONE and ORMONE can be comhined with INVERSE and NORMAL alonq
with the six colors to produce a wide variety of cnlor and '
pattern combinations, more than we could hope to fully exnjore
here. We suqaest that you experiment further with these various
combinations, to see how they can work best for your

applications,

GPEEK

Your programs can determine whether or not 2 qiven point on the
screen has bheen plotted with the word GPEEX. GPEEK removes X
and Y coordinates from the stack, looks to those coordinates on
the screen, and places a non zero number stack {f the point
there is "on” (not black) or a zero if the point is "off"
(black), The following example draws a Vine, then checks twd
points, one on the line and one off:

Ready 3 COLOR 0 0 PLOT 100 10n LINE
Ready 50 50 GPEEK .
?

Ready 200 10 GPEEK.
0

Turtlegraphics

Turtiegraphics is aiso available from GraFORTH, Turtlegraphics
is a somewhat different way of specifying how to draw 1ines in
GrafORTH., Imagine a tiny turtle sitting on the middle of the
screen with ink on his tail, Wherever he moves he draws a line
behind him. We can tell him to turn to the left or the right,
and we can tell him to walk forward a gqiven distance leaving &
straight 1ine hehind him, (For the mathematicians among us,
this way of drawing lines could be considered as using "relative

polar coordinates”.)

The Turtlearaphics words in GraFORTH are found on the system
disk in a text file called "TURTLE". We can compile these words
into the dictionary by typing:

TWO DIMENSIONAL GRAPHICS 6 - 12

Sbparme

E—3

Ready READ ® TURTLE "

We can see the words addrd to the dictionary by typing LIST. A
few of the words are used by the other words: TURTLE.X,
TURTLE.Y, and TURTLE.ANG are variahles, and TURTLE,WALK {s
called by both MIVE and MOVETO,

Let's "inftialize” Turtlegraphics by typinq:

Ready TURTLE

TURTLE resets araphics mnde, erases the screen and sets a text
window along the bottom four 1ines, then sets 3 COLOR (white)

and positions the turtle in the center of the screen, facing
toward the top.

MOVE

The word MOVE moves the turtle in the direction it is pointina,
drawing a 1ine. The form {s:

<distance> MOVE

The distance s measured in pixels, or dots. To move the tﬁrtle
50 pixels, type:

Ready 50 MOVE

TURNTO

The turtle can be turned to c'certaln anqle with TURNTO, TURNTD
has the form:

<angle)” TURNTO

The angle given 1s in deqrees, and increasing anqles are in @
clockwise direction. Zero is straight vp, 90 {is to the-right,
180 1s facing down, and 270 s to the left, Let's move the

turtle in our example to face to the right (to 90 dearees), then
move 1t 75 pixels:

Ready 90 TURNTO
Ready 75 MOVE

THWO DIMENSIONAL GRAPHICS 6 - 13

 ————— - —— -~

-
' s.“'E
TURN B . A faster way is to repeat the words in a loop:
The word TURN turns the turtle clockwise from its current . u..."f':‘i . JURTLE
direction a given angle. Im; form is the same as for TURNTO, eady
but TURN §s a relative turn from the turtle's current direction. '
The following example now turns the turtle 45 more deqrees ey Ready 4 0 DO 50 MOVE 90 TURN LOOP
clockuise, then moves the turtle 50 plxels: : b This 1ine can be put into a word definition and used at any
Ready 45 TURN time:
.y vl .
Ready 50 MOVE , = A] 20:»;;
. . 50 MOVE
MOVETO ——d 90 TURN
ey el 100P ;
Lastly, MOVETO moves the turtle directly to a specified X,Y : h
position on the screen without drawing any line. The form for the square ::“ b:‘d"f“"‘ starting at any point on the screen
MOVEID {is: E::-.--.E turned any direction:
<X coordinate) <Y coordinated MOVETO Aeady TURTLE
MOVETO s similar to POSN in that it simply establishes a new - Ready 0 100 MOVETO SQUARE
point on the screen, but MOVETO also updates the turtle's .
position for further Turtlearaphics commands. We can move the Ready 55 100 MOVETO 30 wnu.m SQUARE
turtle to the upper-left corner of the screen, turn it to face .
to the lower-riqht, then move it back to the éenter. drawing a o _a Ready 120 100 MOVETO 60 TURNTO SQUARE
lne, with the following comands: ' Ready 190 100 MOVETO 90 TURNTO SQUARE
Ready N O MOVETO = "‘”
e
1~ Note: The GraFORTH word SIN is used to compute sines of angles
Ready 127 TURKTO \Ssed in Yurt.leqercs. if you have anh:gp}k,:utis?zs proqras that
- uses angles, the word SIN can be very pful. removes &
Readr 160 WINE E-. p ...3 er ?ro-'thc stack and uses it to select and return o sciled
ne value. The table repeats for every 128 numbers, end
EX&ITIP/BS . gturmd values range from -128 to 127.)
-3
The advantage of Turtlegraphics is that shapes can be drawn in | . . .
different sizes and facing different directions with little \
work. For example, to draw a square, you can type the |
following: . E ;.,_.3
U.Q‘t*
Ready TURTLE ‘ ‘
Ready 50 MOVE 90 TURN 50 MOVE 90 TURN ~;:
Ready 50 MOVE 90 TURN 50 MOVE |
THO DIMENSIONAL GRAPMICS ' 6 - 14 ‘
E'.""" P40 DIMENSIONAL GRAPHICS 6-15
".1.. .

-—

S, T

e . D ey e o

e e el

. aw

PRRCSE

A — - T e

A e

e

D eem o

o i dayegmaprd AR
-& — S ok av g

gt X GO LSNPSR R TREE TP e
:,"." -— - o,
RIS

TE

o —en

~~ -

I

CHAPTER SEVEN: CHARACTER GRAPHICS

Chapter Table of Contents:
Purpose and Overview

Special Output Characters

Changing Character Size and Color

Font Selection

The CHAREDITOR

Selecting and Displaying the Character Set
Displaying a Block of Characters

Delining Your Own Shapes

Saving a Character Set

Block Printing from GraFORTH
Setting the Block Size (BLKSIZE)
Drowing the Block (PUTBLK]

Exclusive Or Mode (EXMODE)

Summary

Conclusion

CHARACTER GRAPHICS

Page
7.2

7-2

A

. T ARG

P

Purpose and Overview

GraFORTH can do weird and wonderful things with the characters
displayed on the screen. Text can bhe reverse scrolled, down the
screen, Characters can be made much larger, and displayed (n
color. Different character styles, or ‘fonts' can he selected
and even created in GraFORTH, Entire images can be defined
within a character font and rapidly printed as a block of
“characters” for animated displays.

In this chapter we'll show you how to make use of each of these
features and give you some suqqestions for tncorporating them
into your own proqgrams,

‘Special Output Characters

Besides the special input characters (ConTRoL-I, ConTRoL-0, etc.)
discussed in Chapter 4, GraFORTH also uses two special output
characters, ConTRolL-L, and ConTRoL-K. These characters are
usually printed from within a program, instead of entered at the
keyboard. (They can be typed from the keyboard, but GraFORTN
will try to resd them as characters in a GraFORTH word,)

ConTRoL-L (Apple ASCII numher 140) ersses the screen inside the
text window. Printing a ConTRoL-L s equivalent to executing the
word HOME,

ConTRoL-K (Apple ASCII number 139) causes a reverse line feed, so
that subsequent printing will be one line higher. If priating is
already on the top line of the text window (the vertical tab
equals the top window margin), then the display will scroll in
reverse, moving text down the screen.

CHARACTER GRAPHICS

e vye-

e

e = o

3

k---‘—‘
oy oy.-

L
Do pee

e
| 2aali)

=3

moed
e o

Changing Character Size and C&Ior

GraFORTH has the unique ability to print characters in A
different sizes usinq the word CHRSIZE.
from the stack to select the character size. Valid numhers are
from 0 to 8. Character size 0 specifies the usval GraFORTH
character display.’ Character sizes | through R cause the
characters to be "drawn“ onto the screen using GraFORTH's color
qraphics capabilities. Character size 1 is the same size as
character size 0, and the others are 2 through 8 times larger.

Let's introduce some of these features through examples. First,
we'll set everything back to normal hy typing:

Ready ABORT

Now let's erase the normal sized characters from the scrien and
select a larger character size:

Ready MOME 2 CHRSIZE

(Erasing the screen with HOME s a normal but not required step
in changing character size. If HOME {s not used before chanqging
size, in some cases not all entered characters will be printed.)

The "“Ready"” prompt is now twice its normal sizel You will notice
that the large character sizes take a longer time to print, and
that if allowed, scrolling is much slower than it is when using
the standard character size. Also, the screen {s actually 9%
narrower than the standard size, since the araphics featufes are
used to print them.

The large characters can also be displayed in color| Iypi:
Ready HOME 1 COLOR ’

This will clear the screen, then make the text qreen. We ileari‘
the screen again because comhining two colors of text on the

screen can have some unusual effects of its own, To see tAese
effects, type:

CHARACTER GRAPHICS

CHRSIZE removes a number

- T .

.
L e e e g = - a—

—

by

- . e o e

o

 —

Ready 2 COLOR

Now hit the Creturn) key a few times to cause the text to scroll,
The "Ready” prompt that was areen qets overwritten with the
violet, but does not scroll, Only text of the current color and
of the current stze will hehave as expected with text commands.

Obviously, when the characters sre larqer, fewer characters can
be displayed on the screen. When you select a new character size
with CHRSIZE, GraFORTH automatically sets the text window size to
the correct 1{mits, to keep the text on the screen, DBelow is 2
tahle relating character sizes to the number of characters that
can he displayed, and indicating whether or not colored text is
possible for that character size:

Size Columng Rows Color?

] 40 u Mo
1 32 24 Yes (with funny effects)
2 16 12 VYes {ulth hetter effects)
3 1n + A Yes
q 8] Yes
5 6 L} Yes
6) 4 Yes
7 4 k] Yes
8 q 3 Yes

You might want to try the following to see GraFORTH's largest
character size in color, First type ABORT to qet yourself back

to a predictable place, then type:
Ready HOME 8 CHRSIZE S COLOR

A mammoth orange "Resdy® prompt will appesr, split across two
11nes, with a huge lumhering cursor! Allowing time for the text
to scroll, now enter:

Ready INVERSE

After another scrall, the display changes to inverse. Obviously,
you wouldn't want to enter a long program this wayl Larqe ‘
character sizes work very well for proaram or qame displays, bit
weren't really fintended to be used for input, The fastest way
out of our current situation (hesides hitting Creset)) 1s to

type:

/

CHARACTER GRAPHICS

o
W W i

Ready ARORT

After the text scrolls once more, the ABORT {s executed, and
things are back to normal,

Font Selection

The character “style” used in a text display (the sctual set of
shapes of the characters displayed) 1s called & character 'font’,
or character set. The Apple][contains an uppercase-only
character set stored in its hardware. GraFORTH yses this when
TEXT mode {s selccted. However, GraFORTH's usual qraphics
display instead uses a character set from memory. This character
set {s stored in a hinary file on the GraFORTH system diskette,
and s read into memory when GraFORTH {s first booted.

The disk actually contains several character sets, and any of
;he: can be used for text display. The character set files on
1sk are:

CiR, SYS
CHR.STOP
CHR, SLANT
CHR.GOTHIC
CHR,BYTE
CHR, STUFF
CHR ,MAXWELL

(The last two are special character sets used for 'character

qraphics’, and do not work well for a text display. We'll show
you how to work with these in a bit...)
In memory, a character set occupies 768 bytes, There are 96

printable characters, and each character uses 8 bytes in the
character set, Thecse B-byte blocks are actually graphics
“pictures” of each character. When GraFORTH is hooted, it losds
CIR.SYS into memory starting at location 2049, Whenever {t
displays a character, it looks up the "picture” of that chorac‘er
from this area of memory, and places it on the screen, :

Character sets elsewhere in memory can also be used for the .
screen display. Let's load another character set from disk info.
a free area of memory, The location 2816 is the beainning of
large free area of memory. We'll use a standard 00S call to | .
the file in:

CHARACTER GRAPNICS 7.8

- - ————

PO A

- - e

Ready CR 132 PUTC PRINT " DLOAD CHR.BYTE ,A2816 * CR

The disk whirs a bit, and the character set is loaded. To use
this character set for the display, the word CHRADR is used.
CHRADR stands for CHARacter ADdRess, and it {is used to select the
memory location of the current character set. The form is:

Caddress of character set> CHRADR

We loaded the character sat into mewory starting at location
2816, so this is the address we qive to CHRADR:

Ready 2816 CHRADR

A)l printing will now use the new character set. The characters
that were already on the screen in the old character set,
however, are unchanged. Characters from different character sets
can he displayed on the screen at the same time. lowever, if the
screen is scrolled, these characters will be reprinted a line
higher, using the newest character set.

The ASCII numbers for the printing characters ranqe from 160 to
255, 1o display all of the printing characters in the set at
once using PUIC, type:

Ready 256 160 00 1 PUTC LOOP

You may want to load the other character sets into mewory to sec
what they look like. You can load them into the same area of
memory and overwrite CHR.BYTE, or you can use another free area
of memory and select it with CHRADR, The mmmory mep in Appandix
8 shows the free areas of memory, Therefore, it is possible (and
easy!) to have several character sets in memory at once, quickly
changing from one to another. Care should be taken, however, to
avoid overwriting a portion of the GraFORTH system. Remember
that each character set occupies 768 bytes of memory.

Usually, you will want to return to the system (CHR.SYS)
character set. The GrafORTH word CHRSET returns the address of
this character set, 2048. Thus, to switch back to this display,
you can type:

Ready CHRSET CHRADR

(Of course {f you want to, you can overwrite this area of memory
with another character set, too.)

CHARACTER GRAPHICS

E

The CHAREDITOR

On the GraFORTH system diskette 18 a file called CHAREDITOR,

This program enables you to read in character sets, examine and
wodify character shapes, create large block irmages that are
stored as a series of characters, and save the new character sets
to disk again.

CHAREDITOR is one of the laryer programs, so it would be a qood
idea to LIST the dictionary and FORGET any words you may have
added before loading in CHAREDITUR. To load the program in,

type:

Ready READ * CHAREDITOR ®
To run CHAREDITOR, type:
R;ady HOME RUN

Notice that we cleared the screen hefore running the proqram,
CHAREDITOR does not automatically clear the screen. This i3 ¢o
that any graphics images on the screen can be retained and used
within the CHAREDITOR, allowing you to “pull™ images and shapes
from other programs into your GrafORTH character sets,

You will see a list of commands to the right, the prompt

*Enter command:" near the bottom of the screen, and a flashing
dot in the upper-left corner. This flashing dot is the “drawing
cursor” and will be used for creating your own character shepes,

Selecting and Displaying the Character Set

The character editor works with one character set at a time. To
get an understanding of things, let's start by looking et the
system character set that starts at Jocation 2048. The editor
uses single-letter commands. To specify the address of the
desired character set, press “A* for Addrasa. Yoy will then see
the prompt:

CHARACTER GRAPHICS 1-1

o o " o e 12 o

—
. W e

e
L e et o g~ wme—— -

e~

e w9 =

RS

RE S
-~

BT Avi
e
. & e

-

—
-

T Ye-
P S
——
-
s

. S0 e
e T

... ,
~rT

-

e

el S "t D WA 8D e

Enter Charset
Work Area Address : 2816

The input cursor is flashing over the "2R18". This {s the
default address, the address used if you do not specify one. You
can keep this address simply by pressing creturnd, However, we
want to enter the address of GrafORTH's standard character set,
Type "204R" over the top of the "2816" and press Creturn), Now
zg:: is the address of the character set used hy the character
editor.

Type "D" for "Nisplay characters”. You'll see s display across
the bottom of the scrcen of all the characters in the character
sot, in inverse, To the left are the numbers 0, 32, and A4,
These are index numbers., When manipulating charscter shapes in
GrafFORTH, character numbers in the ranqge of 0 to 95 are used
{nstead of the ASCII values (which range from 150 to 255 for
printing characters), The first row of characters are numbered 0
throuah 31, the second row 32 through 63, and the third row 64
throuah 95,

Displaying a Block of Characters

If we want, we can take a sequential strinaq of characters and
display them in a rectanqular block on the screen, Let's display
the 6 characters "n" throuqh "s” in a Slock that is 1 characters
wide by 2 characters tall, To select & block of this size, press
“8" for "Blocksize"., You will be prompted:

Enter Block Horizontal Size @

Enter a 3 and press Creturn>, You will see:

Enter Dlock Yertical Size :

Enter a 2, press <returnd, and you will aet the reqular

"Enter command:" prompt back. Also notice that 4 more dots have

;?pe:red at the top of the screen, outlining our 3 by 2 character
ock, .

Press "N® to hring the character set display back, Counting

across the hottom row from the index numher 64, you will find

that the character "n” is character numher 78, To display the
block of 6 characters starting with "n", type "R" for "Read”.

CUARACTER GRAPHICS 7-8

-3

br—a

-

3

v:..,r.
B

F—=

You will see:

Enter character number
to be read :

We want character number 78, so type *78%, The 6 characters will
appear in the block surrounded by the 4 dots.

You can also display blocks starting on other characters, or vse

s different blocksize. When changing hlocksize, you myy want to

erase the block from the screen. To do this, simply type "E° for
*Erase”, then answer “"Erase (Y/N) :" with a "Y",

We've heen lookinqg at a hlock of standard characters, to show you
how hlock printing is done. Now let's see some actual character
graphics. To protect our precious system character set, press
“A" and select an address of 2816 again, hack into open memory.
Type "G" for "Get". This option allows you to load a character

set in from disk. You will see:
Enter Load File Name :

Type "CHR.STUFF®." This charicter set will load into memory
starting at the location 2816. Type "D" to display this
character set. Except for a few punctustion symhols, those don’t
look much 1ike characters! You can see pieces of the Insoft
loan, parts of faces, and an assortment of lines which are
actually pieces of a helicopter used in the GraFORTH

demonstration proqram.

If you've changed the Mlocksize, set It back to 3 characters
horizontally by 2 characters vertically, Now type "R" and read
character number 78. A smiling face wi)l appear in the upper
left., _By pressing "0" anain, you can see that this face occupies
the same six characters that the characters “n" through "s"
occupied in the system character set. The other three faces
begin at character numbers 84 and 90, Just press "R" and enter
the character number to see them, ' :

The Insoft logo uses 8 blocksize of A by 2 characters, and hegins
at character number 16. The three helicopters use a blocksize of
5 hy 3 characters and beain at character numbers 33, 4A, and 63,
You will probably want to erase the block (with "€") before
changing the blocksize, so that part of the previous image won't
remain on the screen beside the new Mock,

CHARACTER GRAPHICS 7-9

Sy | e, o

g —p

P

phgtant

w0 —— . s
I o - o e e e it £
Tl TS

- P —

o

-

- e (e et =

e s
SR et e

Defining. Your Own Shapes

To create your own shapes with the character editor, first select
a blocksize for the imane you want to draw. Erase the block {f:
necessary. Here's where the drawing cursor comes in. By
pressing the |, J, K, and M keys, you can wmove this cursor one
pixel up, left, right, or down within the block. If you want to
plot a point at the position of the cursor, press "p* for “Plot™,
To draw a line fron the last plotted point to the cursor, press
“L*. Notice that "P" and "L" are actually PLOT and LINE
comands, with the coordinates specified by the cursor. The
character image s created by moving the cursor and drawing the
noints and lines that make up the image. '

in addition, you can create character images in color. Press 'C‘.

for “"Color"™ and enter the number of the color you want to work
fn, (When colored character images are displayed in GraFORTH,
the colors may be different, depending on whether the image is
drawn heginning on an odd-numbered column or an even-numhered
colum. This comes ahout as a result of the way the Apple][
qenerates high-resolution color.)

i
If you plot & point that you didn't want, you tan erase it by
pressing "U",which UNPLOTs the point, Similarly, you can erase
lines hy pressina "I*. If the drawinq cursor moves too slowly,
you can increase its step size by pressing “X*, then entering the
number of pixels you want the cursor to wove whenever you press a
cursor-moving key (1, J, K, M). If your image isn’'t coming out
the way you'd like....well, press “"E" to erase it and try againt

Experiment with these keys to get a feel for creating images.

All of the images in CHR.STIFF were created with the character
editor. If you like, you can read an existing image from the

character set and use the drawing keys to modify it.

When you've created an image that you want to save, first
multiply the block vertical size hy the horizontal size, to
determine how many characters your image will occupy. Then press
*D% to see the current character set, and choose a range of
characters in the character set to write your image to. Press
“§* for “Mrite". You will be prompted:

Enter character number
to be written :

CUARACTER GRAPHICS

' 7-10"

Type the character number of the first character in the desired
range. VYour image will be written into the character set
starting at that character. Press "D" again and vou will see
your image neatly dissected and placed in the charactet set.

Images from one character set can be copied to another using the
CMAREDITOR *T* (“Transfer") option. You will be prompted for a
“From" address, a “To" address, and a length. To copy an entire
character set from one address to another, simply enter the
address of the character set to he transferred, the address of
where 1t is to go, and enter 768 for the length. Remember that
character sets are 76R bytes long.

Transferring only part of a character set is a little trickier.
Remember that each character occupies 8 bytes. Compute the
“From" and “To" addresses based on the character number and the
addresses of the character sets. The length is the number of
characters times 8.

Saving a Character Set

After a new character set has been created, you can save it to
disk to be used again later. To save a character set, press “S*

for “Save", You will see:
Enter Save File Name :

Type the filename you've selected for the character set. Be sure
that there are no files with that name on disk, unless you want
to overwrite that file. Note that all of the character sets on
the GraFORTIl system disk begin with the prefix "CHR.". This f{s
not a requirement; the prefix simply acts as & reminder that the
file contains a character set.

When you want to leave the character editor, type “Q" for "Quit",
If you want to begin work with another program, it would prohably
be best to FORGET the character editor first, since it takes up 2
lot of room in the word Vibrary. The word ‘i‘ is the first word
in the character editor, so to delete the editor, type:

Ready FORGET X

CHARACTER GRAPHICS 7 -1

"o

P T e e P ...r-;w.a.._;.;- -

Loz -

m— e =

Block Printing from GraFORTH

Printing blacks of characters is done directly from GraFORTH much
the same way as in the character editor, character set fs
loaded into memory, an appropriate blocksize ‘s selected, and a
sequential ranne of characters fis printed In the block at the
current horizontal and vertical position,

Let's display some of the same images we saw eartier in the
character editor. First, l1oad "CHR.STUFF" back into memory:

Ready CR 132 PUTC PRINT " BLOAD CHR,STUFF,A2816 " CR

You could now type "2816 CHRADR" to select the character set, but
remember that this character set doesn't have mich in the way of
recognizable characters! It contains helicopter parts and other
things. GraFORTH can recognize the characters fine, bhut the
screen display s unusahle. MHhen we display a character {maqe,
we'll jump into the character set, display the image, then jump
back out.

BLKSIZE

The hlock size in GraFORTH {s set with the word BLKSIZE. The
form for ALKSIZF {s:

chorizontal sized <vertical sized BULKSITE

As in the character editor, the horizontal and vertical size are
measured in characters, NALXSI2E remains set until chanqged, The
word ABORT does not reset BLKSIZE.

To prepare to see the smiling faces, set & blocksize of 3
characters wide by 2 characters tall:

Ready 3 2 BLKSIZE

CHARACTER GRAPIICS 7-12

Fr—q

r—

- q

Mg - ed
Fo-H
S

PUTBLK

The word that actually puts the hlock of characters on the screen
Is PUIRLK, - PITALK removes @ numher from the s.ack and uses it as
the starting character numher for the hlock to he displayed.
Character numhers ranqe from N to 95, as in the editor, The
numher of characters to be printed is determined by DLKSIZE. The
position of the block on the screen is set the same way text is
positioned, with HTAD and VTAR, or the other text positioning

comnands.

Let's block-print one of the faces in CHR.STUFF, For this

example, type this entire line at once:

TR PUTALK CHRSET CHRAPR 12 VTAB

Ready IOME 2R1A CHRADR
"IOME™ clears the screen and positions printing to the unper-left
corner, "2816 CHRANR" sets the character set dddress for
CHR,STUFF, “7R PUTBLK" actually priats the imane, "CHRSET CHRADR®
resets the system character set, and "1? VTAD" aets the following
*Ready” prompt down out of the wav, so that it won't overwrite
the block just printed. '

A smiling face should have appeared in the upper-left corner of
the screen.

To save on typing a hit, let's define a couple of new words to
help us in and out of the special character set. We'll call
these words "IN" and "OUT":

Ready : IN 2R16 CHRADR HOME ;
Ready : MUT CHRSET CHRANR 12 VIAR
To display another face, wo can simoly type:
Ready IN A4 PUTBLK OUT .

[]
Unlike text printing, PUTBLK does not update the horizontal
cursor position., Therefore, once 8 printing position has heen
established, several images can be drawn sequentfally in the same

space. The following example prints the three heliconter {mages
in the same space 100 times. Keep your eyes open; ft's fast:

Ready § 3 BLKSIZE
Ready IN 100 0 DO 33 PUTBLK 48 PUTBLK 63 PUTBLK LNOP OUT

CHARACTER GRAPHICS 7-13

S . - o

—

After chanaing the Slacksize, the Insoft 100 (which starts at
character number 16) can be displayed centered on the screen:

feady A 2 BLKSILE
Ready IN 5 VIAR 16 HTAB 16 PYTALK QUT

We're beinq cautious ahout the display here hecause we're mixing
the printing of block imaqges using one character set with reading
keyboard input using another. Most finished programs will have
the changes planned out, so that the most effective ‘mixing of
character images and text display can occur,

To erase a character imaqe, the word UNBLK {s used. UNBLK simply
erases & block in the current blocksize at the current printing
position. The following example erases the Insoft loqo we placed
on the screen:

Ready 5 VIAB 16 HTAD UNBLK

The VIAD and ITAB determine the position of the block to bhe
erased. Since UNBLK doesn't print any characters, we don't need
to specify a character set.

Of course, character images can also be made larqer by using
EMRSIZE. This example displays the Insoft loqo four times as
arge:

Ready IN 3 CHRSI2E | COLOR 16 PUTBLK O CHRSIZE ONT

EXMODE Character Graphics

Character sizes 1 throuqh B will be drawn in “EXMODE™ {f EXMODE
fs set. This allows you to draw characters or character images
over other graphics, then erase them, leaving the original
qraphics intect. However, EXMONE character graphics requires a
few special considerations,

As GraFORTH displays characters on the graphics screen, it stores
the ASCII values for thase characters in the text screen dred.

If -8 character about to he printed {s already in place oh the
screen, no high-resolution printing is done, since the character
1s already present, This saves much time in printing and
scrolling.

CHARACTER GRAPHICS ' 7-14

However, when using EXMODE, you usually want lo reprint the same
characters in the same location to cause them to disappear anain,

“Therefore, to unprint a line using EXMODE, you must first erase

the text screen (this is the actual Apple][text screen, not the
high resolution screen used by GraFORTH) to force a reprinting,
To do this, you use the Apple][monitor's screen erase routine
(*-936 CALL*), then print the same line in the same position,

The following word definition is an example of using EXMOOE
character qraphics. [t draws a diagonal line, writes text over
the line, then er.ses the text, leaving the line iIntact. It
repeats this 4 times:

: EXMODE .DEMO

ERASE
1 CHRSIZE (Set up EXMODE character graphics)
EXMONE
0 0 PLOT 100 100 LINE Praw the line to be written over)
4 000 Loop 4 times)
3000 0 DO LOOP (Delay loop, to slow it down)
S VTAR
S0N0 ' (Print the line 5 times)
PRINT * This line can be erased “ CR
LOOP
-936 CALL (Erase the text screen)
Loop

0 CHRSIZE ;

Summary

Output Characters

GraFORTH uses two special output characters: ConTRoL-L erases
the screen inside the text window, and ConTRoL-K causes a reverse
line feed, making the screen reverse scroll {f the cursor is at
the top of the text window, . .

Character Sizes

The GraFORTH word CHRSIZE uses a number from the stack to select
a character size. Valid numbers are 0 through 8. Stzes |
through B can be drawn in color using the word COLOR. Character
size 0 is the normal text display.

CHARACTER GRAPHICS ?71-15%

Font Selection
Yarious character fonts can be used hy RLOADInq them into free

memory and selecting that memory with CHRANR, GraFORTH's system
character set begins at location 204, The word CHRSET returns

this address.

CHAREDITOR

The proqram CHAREDITOR is used to modify and save character
shapes and imaqes. llere is the normal sequence of events in the
use of CHAREDITOR, with example entries:

1. Load and run the CHAREDITOR program:

Ready READ " CHARENITOR *

Ready HOME RUN

2. Select a character set work address:

Enter Charset
Work Area Address : 2816

3. (optional) Load a character set:
Enter Load File Name : CHR, STUFF

4. Select a block size (single characters are always 1 by 1;
imaqes may be larger):

Enter Block Morizontal Size : 3
Enter Block Vertical Sfze : 2

5. Nraw the imane or character using the described sketching
keys.

6. Vrite your imaqe or character into the character set:
Enter Character Humber to be Written : 90
7. Save the modified chgracter set to disk:

Enter Save File Name : CIR, TEST

CHARACTER GRAPHICS . 7 -16

-
_
E-
|
3
P-4
o
==

Block Printing from GraFORTH .

Displaying character qriphics from GrafORTH usually involves the
following steps: :

1. Load a character set 1¢to memory: .

Ready CR 132 PUTC PRINT * BLOAD CHR.STUFF,A2816 = CR
2. Select the character set:

Ready 2816 CHRADR

3. Choose an appropriate blocksize:

Ready 3 2 BLKSIZE

4. (optional) Select a character size and color:
Ready 2 CHRSIZE 1 COLOR

5, Position the cursor and draw the block:

Ready 5 VTAB 2 HTAB 90 PUTALK

Since PUTBLK does not advance the cursor, several blocks may be

drawn on top of one another without having to reposition the
cursor. The word UNDLK erases a block at the current position of

the given blocksize.

EXMODE Character Graphics

Character sizes 1 through B may be drawn using EXMONE, This way,
characters can be displayed over other qraphics without erasing
them. Nowever, to erase a line printed in EXMODE, the text
screen must first be erased with “-936 CALL® before the line {s

reprinted,

CHARACTER GRAPHICS 7-17

e W

Bt A T e

EX PP W

Y.

-
= — ¢ a—
e re e e - - —

e o

Conclusion

This chapter introduced GraFORTH's character araphics
capabilities. So far we have covered the lanquage features of
GraFORTH, {ts point and line qraphics, and now the set of
graphics that manipulate characters and block images, Néxt
chapter, we'll introduce the most amazing aspect of GraFORTH, Its
three dimensional color qraphics capability. So hold on to your

keyboard, here we qol

CHARACTER GRAPHICS ' 7-18

m

|

|
i

rr
4
Lis

T
4
L

B

h' e
£:3
A Jaad

fr 3

CHAPTER EIGHT: 3 D GRAPHICS
Chapter.Tgbla of Cantents:
Purpose and Overview
3-D Graphics at a Glance
3-D Image Format
Image Parameters

Rotation

Scaling

Tiwee-Dimensional Perspective
Position

Translation

Object Color

The Image Editor

Address and Image Selection
Getting a Good View

linage File Entries

Creating New Images
Saving the Image File

Three-Dimensional Display Methods

Rodrawing Without Change
Erasing Individual Objects
Overlapping Objects and UNDRAW
Other Effects

Profile

Setting Parameters

Entering DATA from Keyboard
Entering DATA from Disk
Memory Considerations
Playing Around
Conclusion

3-D GRAPHICS

Page

® ® ® o
a b NN

- ODID N

% coovowm
o

-
o

Proom
-‘d-‘d;
NN = s

®
Y
[

oO®®
- s
oNuNo

8-18
8-19
8-19
8-20
8-21
8-22
8-24
8-1

S
Ao o Ty v,

>

—. .. —,
—
'

—

TR e a2l e T e 055 e,

=N

P w—a

Purpose and Overview

Perhans the most exciting aspect of GraFORTH {s its high-speed
3.N qraphics capahilities, GraFORTH can manipulate up to 16
three-dimenslonal shapes simultaneously, In this chapter we'll
discuss how to use these features.

We'll heqin with an overview of how 3-dimensional shapes are
accessed and manipulated, and qfve you some fintroductory
examples. We'll then explain the varions 3-0 parameters and
discuss the image "format” in detail., We'll show you how to use
the IMAGEDITOR to create your own J-N imaqes, then discuss 3-0
display methnds. Lastly, we'll discuss two very useful programs
for developing and manipulating your 3-D image f{les, '

3-D Graphics at a Glance

To display a)-D object In GrafORTH, the "imaqe” {nformation
describing the shape of the ohject is (irst loaded into a free
area nf memory, then commands are entered which tell the firafORTH
system where the imane is in memory, and how the imane s to be
displayed.

fraFORTH uses an internal array to store the current information -

ahout a1l of the 1-D objects being displayed, The array stores
the locations in memory of the actual imanes and the display
narameters (position, rotation, size, etc,). A number (from 0 to
15) is used to refer to each ohfect, and to select which object
is currently being menipulated,

To view a 3-N imaqe, let's first make sure things are back to
normal: !

Reardy ABORT

:nd set a text window so that text doesn't scroll over our 3-D
manes:)

Ready 0 40 20 24 WINDOW ERASF

3-.D GRAPHICS 8 -2

e -y

Now let's 1oad an imaqe from disk {nto & free ares of memorv,
The binary file "XYZ" on the GraFORTH disk contains an imane of
three arrows, each.a different color, and each poninting &
different direction, This is the same ohject that was used in

the PLAY demonstration in Chapter 1.
Ready CR 132 PUTC PRINT * NLOAD XYZ,A2815 " CR

Nefore we can view "XYI", we have to initialize the internal 3.0
graphics array. Since we're starting from scratch, enter the
word OBJERASE, OBJERASE clears the array, and should be used
when beginning all 3-N programs.

Ready ORJERASE

Now we want to assign a number to the obfect we're about to view,
Remember that GraFORTH can handle up to 16 objects at a time,

The word ONJECT §s used to specify which object to manipulate.
ODJECT removes a numbher from the stack, and uses this number to
select the current ohject. Let's give the image "XYZ" the number

0 in the array:

Ready 0 ORJECT .

For our example, we will want the shape to he drawn automatically
after each entered command. To do this, the word MITONRAW s
used. AUTODRAN removes a number from the stack, If this number
s 1, then the currently srlected object will automatically he
drawn after each graphic command. [f the numher is N, then
automatic drawing will not occur. (Entaring the word DRAW will
draw the ohjects when AUTODRAW {s not in effect.) det's turn on
sutomatic drawing with AUTONRAW:

Ready 1 AQTOPRAV

We've inftialized the array, set object number 0, and turned on
sutomatic drawing, but we haven't specified where the current
ohject 1s in memory. The word OBJADR {s used, to specify ¢this
sddress. We loaded the object into memory starting at 2R15, so
this {s the number we qive to OBJADR:

Ready 2616 ORJADR

At this point (because AUTODRAV {s turned on) the imaqe will
appear on the screen. Right now it looks like a sinale arrow
with 8 line through it, hut that's only because we're sdeing it

head-on,

3-D GRAPHICS 8 -3

~

TR e e

- dem

>

3.t
T e ——t -

W e
e

O .

GraFORTH has 12 separate words for controlling the position,
size, and orientation of 3-D ohjects, We'll introduce these
words properly in a hit, hut to aqlve you a taste, let's rotate
the image a little for bhetter viewing: '

. Ready 11 YROV

Now it's beqinning to come into view, and you can see parts of
al) three arrows. Let's wove it a little wore:

Ready 16 XROT
and add a little perspective:
Ready § SCALZ

3-D Image Format

Just as two-dimensional graphics use Cartesian coordinates
Iahelgd X and Y, three-dimensional qraphics use a Cartesfan
coordinate system with the three directions labeled X, v, and Z.
The arrows in "XYZ" represent the three directions, or three
‘axes'. X 1is a point alonq the horizontal, from left to right.
Y is a point on the vertical, from top to bottom. I is a point
from rear to forward, pointing at the viewer,

The points that make up a 3-D image are expressed as three
numhers, one for each of the X, Y, and 2 coordinates. The valid
range for each of these numbers is -128 to +127. Each arrow lies
on an axis, with two coordinates equal to zero, and the ends of
each arrow reaching from -128 to 127. At the center of the cube,
:hcrc all three arrows meet, the three coordinates are all equal
0 2ero. '

3-D GRAPHICS

-
—.328
—|
Y
317
-
\
- ‘
‘::"-/ QS"

\.\l‘

The above diaqram shows the limits for each of the three
coordinates. Note that these limits define a “cube of space”,
256 units along each side. A1l 3-D objects reside in this space.
When more than one object is being displayed, each object has its
own 3-D space, though‘these spaces may overlap or even coincide
on the screen.

Image Parameters

Once an imaqe has been loaded into memory and selected with
ORJECT and OBJADR, it can be rotated, positioned, scaled, and
translated in a number of ways.

Rotation

An image can be rotated around any axis, using XROT, YROT, or
IROT. XROT rotates the imagye around the X-axis, YROT around the
Y-axis, and IROT around the Z-axis. Each of these words reinoves
a number from the stack and rotates the image to the selected
angle. Angles are specified in units between 0 to 256 rather
than degrees. An entry of (0 to YROT (or for that mutter, XROT or
IR0T) rotates the image around to a normal position facing the
viewer. An entry of 64 rotates to 90 deqrees, 128 rotates to 170
dearees, and so forth, until 256, which (like 360 degrees) is the

same as zero: a full revolution.

3-D GRAPNICS

e T Brear N - we "

. S @ b GWIEL e T

T

.

- >

TR I I T e —— . T - & —— —

T

T~

-l

—

=

- e
N

”:;-.-'—_-.-.-

To s w— .~

R

R vy

R

— . -

PR NRRY e

—
f e e -

-

e e p—— e o .

EEPN

-

AT T 0 et cmp—————
. cr—— —

PP

N e iy s’ — BT e ~

L od

. ° - - .

- o—

——

o .

—

Earlier, we used XROT and YROT to tip the imane a bit so that we
could ant a hetter view, Ve can also use a loop and cause the
fmage to rotate a full circle. The following word definition
exacutes YROT repeatedly, with an increasing rotation value:

+ YSPIN
2,0 N DO
1 vrOT
4 +L00P ;

Ready YSPIM

When YSPIN {s finished, the ohject has 8 Y rotation of N, To get
it hack to our previous view, we enter the sppropriate value for
YROT anain: ’

Ready 14 YROT
XROT and IROT can, of course, he manipulated in {dentical ways.

Scaling

The Imaqe can he chanaed in wiith or helght with the words SCALX
and SCALY. Doth of these words remove a number from the stack: to
select the qiven X or Y scale, The valid ranqe is from -31 to
+31. Humhers outside of this ranae will be “folded back” into
the range. When the 3-D object array s inftialized with
ORJERASE, SCALX and SCALY are set to 16. Try these examples with

XYL
Ready 25 SCALX
Ready R SCALY

Ready & SCALX

Setting a scale of zero causes the ohject to have no "thitkness"”
at all: ‘

Ready N SCALX

Nenative scale numbers reverse the imane:

Ready -8 SCALX

3-D GRAPHICS

Note: This raverse scaling s useful in unexpected ways, For
example, {f you are creating the fmane of a bird, vou only need
one wing image, The other wing is simply the first with one
neqative scale numher to reverse the imane,

Nere's a prouramming example of scalina:
Ready : SOMASH 12 <12 DO | SCALX LOOP ;
Ready SQUASH

Sinca for most qraphics anplications you will want to chanae both
the X and Y scale to chanae the total size of the ohject, the
GraFORTH word SCALE {s provided, SCALE has the same form as
SC?[X and SCALY. 1t simply sats both SCALX and SCALY to the same
value:

Ready § SCALE
Ready 12 SCALE

Three-Dimensional Perspéctive

There is a fourth scaling word in GraFORTH, SCALZ. SCALZ doesn't
change the size of the ohject in the same way that the other
scaling words do; instead it chanqes the perspective of the
ohject. Entrins for SCALZ are also in the range -31 to 31, The
default value for SCALZ is zero, which doesn't provide
perspective views. (The front of a cube, for example, will be
the same size as the back.) If you enter a nonzero numher for
SCALZ, perspective will be provided. If the entry is positive,
the front of the ohject will be larger than the hack. I the
entry is negative, "reverse perspective” occurs, a most unususl
phenomenon! You may wish to trv the following examples:

Ready 20 SCALZ YSPIN .
Ready -10 SCALZ YSPIN
Ready 0 SCALLZ YSPIN

Note: When SCALZ 1s nonzero, images take ahout 20X lonner to
draw in exchange for the perspective features,

3-D GRAPHICS 8-

—— e e v e

R
T YT T N L m—

I RE LA S
TR e S e o B =

—

- & . pe <
- -

s g a3

ormimenE s

TreerE

cradl SR W SN

¥

Translation 'f

serspective. “houeusr: 11 you are 1oplepig s tat st 43T Translation occurs when the ohiect 1o moved, Mot on the oiet |
Taroe satuncs o1 perabect o, bhe Snor L%, T wSing GrafoRT, objacts can b transiated slonn the 4, ¥, r axls

— . ! n [
this happens, break the image up into a serfes of shorter lines, a with the words XTRAN, YTRAN, and ZTRAN. When using translation, i

[R T "
s0 that all endpoints meet other endpoints, rather than megting a % - you must keep the imaqe inside the confines of its “cuhe of

"V Yl .

line itself,

space”, If you do not, then "3-D wrap-around” will occur,

because GraFORTH cannot represent points outside of its cube of

1t/ N -~ 3-D space. .
Position Ny --d |
) ’ Our curtent imaqe, “XY2" already reaches to the edqes of its t'

Three-dimensional imaqes can also be placed anywhere on the v space on all three axes, We can translate it, but wrap-around
screen with the words XPOS and YPOS. XPOS and YPOS remove a :},:‘ will occur immediately: h

number from the stack to determine the X or Y position on the

screen of the center of the 3-D cube. Especially {f the scale is

large, to avoid screen wrap-around, ample room must be left on
either side for the edges of the images. The valid entries for
XPOS are 0 to 255; valid entries to YPOS are 0 to 191, The .
default values are 128 for XPOS and 96 for YP0S, which is the

center of the screen.

To move the image around, let's first make

it a bit smaller, to

Ready § XTRAN

for some examples of translation, let's first load another 3-0

image, one that doesn’t fill {its space. We'll load and set
the image “HOUSE":

Ready ERASE

) . non * CR :
avold wrap-around, then try a few different positions on the) Ready CR 132 PUTC PRINT * BLAAR HOUSE A3 !‘1.-
screen: e i

t. .3 Ready 1 0BJECT 3000 ORJADR [l
. \

Ready 5 SCALE The image of a house should appear. Let's qet a better view: K
R . -
s4dy 50 P05 —. -.B Ready 20 XROT .
Ready 40 YPOS Ready 10 YROT i{ !
.‘c” ’)
R..d’ 200 xPOS t‘ . 3 Ready B SCALZ . t:. "
We can cause the fearad wrap-around by placing the objett close -
to one of the edges: P 4 = .3 Ready 10 SCALE . ,&}
(_- translated, It can be moved ahout a bit d’
Readr § 1P0s 230::%2::::::25:5;round. (ln the next' sect:'oni H{K‘E‘D:‘T o;ﬂj' how W
t object from the .
Now let's move the image back to a more reasonadle position: (= ...j to deteraine the true size of an ob] " |
Ready 96 YPOS - Ready -50 ZTRAN X
i 0 TTRAN N

&, "'3 Ready §

"‘ Ready -25 XTRAN
]
Exr
“pe

3-D GRAPHICS

3-D GRAPHICS

-

rn
L

Just for fun, try usind YSPIN with the house, now that it has]
heen translated away from the center of its space:
E:‘-'“."'
Ready YSPIN - vl
Object Color | SR
e e —d
You noticed that each of the three arrows in "XYI" was a
different color, Images can he created with or without colors =~)
specified, If no color s specified, then the object's color can E ~ -l
be determined when it is drawn later, using OBJCOLOR, OBUCOLOR —y el
removes 3 numher from the stack to select the color of the
current obfect, The usual GrafORTH color numhers are used. = !
E-—-.--j
The house does not have a set color, so we can set its color with b
0RJCOLOR:
Ready 1 0BJCOLOR -
Ready 5 OBJCOLOR o
. : 'q-. 3
Note that 1.D qraphics, 1ike two-dimensional and character :
graphics, can be done in either INVERSE or NORMAL, and either
DRMONE or EXMODE, producina a wide variety of graphics effects. | L.
[

We encourage you to try some 3-D graphics commands with various rr-
combinations of display modes,

At the end of this chapter is a discussfon of the program PLAY,
which enables you to set all of these parameters (except for
OBJCOLOR) into motion. PLAY is very useful in qetting an

intuitive feel for exactly what each of these parameters does, |
E—3
g
[J
The Image Editor
. ~—-
On the GraFORTH system disk 1s & file called IMAGEDITOR, which =gt
contains a program enabling you to create your own 3-D images,
To use the imsae editor, first delete any new words on the word ,
Vibrary to make room, then type: _"::‘_
Ready ABORT
Ready READ ™ IMAGEDITOR * E'.T -
T -
[S,
3-D GRAPMICS 8 - 10 E

(NOTE: The imane editor is a fairly larqe prooram. On
non-lanquaqe card systems, loading the image editor will move the
top of the word 1ibrary into the same memory used by the text
editor proaram. If the cditor 1s loaded into memory, ft will
overwrite the top of the word library, forcing you to reach for
the power switch, as the firaFORTH system will become fnoperahle.
After using the imaqe editor, rememher to FARGET the proqram
before using the text editor,) -

Now run the program:
Ready RUN

You will see a 1ist of commands to the right and » prompt: “"Enter
command:". The imane editor works with one 3-D image at a time,

Address and Image Selection

As in the character editor, you must selmact a work ares address
(or use the default address). To select an address, press "A"
for "Address”. You will see the prompt:

Enter File Address :,

followed hy the number “2016". (You should he qetting pretty
familiar with that number!) If you want to use another area of
memory, enter that address. For this example, just hit <Creturny,
and the address 2316 will he selected,

If you are doing these examples sequentially, the image "XV2*
will still be in memory at 2816, If you've turned the Apple off
since that time, you will need to load it again., Type "G" for
"Get"” and enter the filename "XYI", The file will be loaded into

memory.,

'Getting a Good View

If the imaqe was already in memory, it won't 'appear unttl you
rotate it or move it on the screen., Images can be rotated,
positioned, and scaled from the imane editor.

To rotate the image, type "R", You will see:

Rotate [X (num) to 2 (num)] :

3-D GRAPNICS 8 - 11

e

e e e e e co—

S e T oman . e

—— 2 . -

. ——

e o e | S ey eee b

- o m—ma T

e 3 L TP el TV s
3o

For this command enter the letter of the axis you want to rotate
around followed hy the anqle you want to rotate. For this
example, type “V16". The image will rotate aroumd the Y-axis.
Type "R® acaln and enter "X1A*, - Now you can se¢ the arrows well,

To scale the object, type “S*, You will sce the prompt:
Scale [(nua), or X,Y,2 (num)] :

To scale X and Y similtaneously, simply enter a numher. To scale
one of the coordinates, type X, ¥, or I, and then the scale
numher. Since we're keeping the image in the corner of the
screen, it's best to keep the scale small. The scale is
inisfally set to 8,

To change the position of the ohbject, type "P*. You will see:
position [X (num) or Y (num)] :

Enter an X or a Y followed hy the desired screen position, The
image has an inftial screen position of X=64 and Y=48.

You can choose a color for the image, if the color is not already
set {n the image file. Press “C* for “Color” and enter the '
desired color number. You can also choose hetween EXMODE and
ORMODE views. Press "M" for “Mode", then enter “X" for EXMODE or
*0" for "ORMODE", .

Image File Entries

Now type “L* for "List" to see the numhers that make up the
fmage. You can press <return)> to see all of the entries or press
ConTRoL-C to stop. Remember that, as explained above, GraFORTH
uses Carteslan coordinates, a system of three number$ for each
defined point.

3-D GRAPHICS . 8- 12

m—

(] cq-

afunantes

Fo-S
o
adfutie

+ oyl

P —

En-3

Each entry in the IMAGEDITOR Jisting has the folloving
information:

1. Whether the point is to be (M) moved to without drawing, or

(D) drawn to from the arevious Vine endina. (This means that
each imaqe file rust beain with (M), not {N), since there are
no previous lines at that time.)

2. What color should be used for the line. The color nunher (if
present) is directly under the letter "C* in the hrading,
(1f it is desired to use the word “OBJCOLOR" to specify
object color, then don't make any color entries within the

imaqe file.)

3. The X, Y, and Z coordinates of the point (each coardinate
lies within the range -128 to 127).

4. The address of the entry. Each entry occupies four bytes.

The last six lines of the imace file can also be seen by pressing
“£* for “Enter". We will use the “Enter® command in a morneat to
create our own 3-D shape, For now, press C(returnd to leave the

“Enter” mode.

while using the imaqe editor, you may want more screen space for
text and less for imaqe drawinn, or vice versa. To accomplish
this you can use "W" to move the text window up or down, pasition
the image using “P*, and scale the image using “S*. The “List*®
and “Enter® commands will use as many Jines as the text window

allows.
Somet imes, while adjusting the image position, the image will
“wrap around” on the graphics screen. If you want to clean up

the screen, type “W" and reenter 14 or some other window top
value. °“N* clears the screen when it sets a new window.

Creating New Images

Now we will create our (wn image, & cube. ‘First, we néed to
erase "XV2°. Press “2°, and you will see:.

Erase File (Y/N) :

Type a “Y* to erase the file. The imaqe won't disappear riaht
away. (If the presence of the old image disturbs you, press '
and enter 14 to cause the “Window" comsand to erase the screen.)

3-D GRAPUHICS 8 - 13

e ey -,

—p-
-

- g -

= ey
A -
-

Sn that we will he able to see all sides of our ohject as 1t ix
created, enter a 2 scale of A for perspective (press "S", then
“18"), llow press "E" again. Motice that no file entries are
Visted, since we have erased them, You will see a promt:

(M)ove, (D)raw, (-) Delete, (CR) Nuit :
Since the first entry must he a move, type "M", You will be

prompted for a color., Let's not use A color, so that later we
can select Its cnlor with NBJCOLOR. Just press Sreturnd,

You will then be prompted for X, Y, and 1 values in turn, We're

nofna to start with the point at the lower left front corner of
the cube, X at the left is -127, so enter -127 and press

Creturnd., Y at the bottom is 127. Enter 127 and press <(return),

1 at the front is 127, so enter that and press Creturnd,

You stil) won't see anything drawn, because we have only defined

a sinale point, and points aren't plotted in GraFORTH 3-D
qraphics, only lines, Now let's draw our first line, Type *D"

this time instead of "M", Now enter an X value of 127 (remember

the last entry was -127). Ve want the other two values to stay
the same. In this "Enter® mode, to keep & previous valus, just

press <returnd, The last value will be repeated. Press <(returnd

for both Y and 2. Now a line will appear from left to right
(from X = 2127 to X « 127).

Now repeat the entry procedure, pressing D" each time and
changing only one number per entry, pressing <return) for the
others:

17to -127
X to =127
and 1 to 127 aqain,

These entries will draw a squere at the bottom of the imane
space. (If the view isn’t very good, press <return) to leave
"Enter” modé, chanqe the rotation or the scaling, then press "t*
to return to "Enter" mode.)

Note: 1f at sny time you make an incorrect entry, just finish
:?: entry, then press ".", "-* deletes the last entry in the
e, . .

Now {f we change Y to -127 and repeat the entire procedure, we
will have most of the cube. ’

3-D GRAPHNICS -1

‘- -evend

g

LN R

At this point three ednes are stil) missina. Con you flqure out
how to draw the missing edges?

The solution is to (M)ove to each of the following locations, and
(D)raw a vertical 1ine (using Y) from bottom to top:

1. (M) X =127, Ye127, 2127
2. }D) X (same), Y = <127, 1 (same)
3. (M) X (same), Y e 127, 2 = -12]
q, §n§ X (same), ¥ = <127, T (same)
5. zu) X s 127, Yel21, 1 ium
6. Yo 2127, T (Sanme

D) X (same),

Saving the Image File

Now we can save our cuhe. Press (returnd with no entry to leave
the "Enter” mode, then press "K* for "Keep”. You will be
prompted:

Fnter File Name to Keep :
Enter & file name here. The GraFORTH system diskette already
contains a file named "CUBE".. (It contains a cube identical to

the one we just made here.) [If you're usinqg another disk, vou
can use the filename "CURE" or another filename.

Three-Dimensional Display Methods

From within a program, the word DRAW {s usvally used instead of
AUTONRAW to draw 3-N imaqes. This way, several parameters can he
chanqed at once hefore the next image is drawn. When AITODRAW {3
off, executing DRAW causes the imaaes to he drawn,

Aside from the mathematical methods (described in Appendix n),
GraFORTH has a rather complex display method for 3-0 imanes. in
general, when & DRAW command {s issued, the following events
occur:

3-D GRAPHICS 8. 18

- e n . W — —— -

Do e PR

T3 L, T s -
-+ —— - . -

——
o o - o

F

- Adan,

TS TR

- —

I. The drawing routines are directed at the araphics screen that
;s not currently beinq displayed, so that the drawing won't
e seen. .

2. The previous image on the Invisihle screen is “undrawn®,
using information stored when it was drawn,

3. The new image is drawn,
4. The display is switched to the freshly drawn screen.

This method quarantees high-quality animation images, since the
entire process of drawing is concealed from the viewer.

You may wish to note that character graphics, discussed in the
last chapter, also draws to hoth screens, so that character and
3.D qraphics can be freely intermixed,

Redrawing Without Change

For maximum speed, an object is only redrawn hy NDRAW if a new
command is fssued to 1t. So in a program with several objects,
only those that have been referenced since the last DRAW will be
redrawn, Example:

0 OBJECT 16 XROTY
J ORJECT 24 YROT
DRANW

Only objects 0 and) will be redrawn when DRAW is axecuted.

If an ohject has been changed and then drawn, the imaqes of the
object on the two qraphics screens will not be the sane. {f
other objects are then repeatedly chanqed and drawn, causing
GraFORTH to switch graphics screens, then the two unlike Images
of the object wtl) be alternated, causing a back-and-forth type
of residual motion. .

Therefore, if saveral objects are befnq drawn independently, they
should be referenced (using the word OBJECT), 1f not chanqed, to
cause the Tmage to be redrawn. This way, the images on hoth
graphics screens will always be updated. For example, ’

1 OBJECT

causes a redraw of object | at the next draw command.,

3-D GRAPUICS 8-16

|
[P

Erasing Individual Objects

The GraFORTH word NFF is used to “undraw® an ohject hut not

redraw it. Most ohjects -tay on the screen after the last imaqe
entry to their tahles. OIF selectively erases ohjects that are
no lonyer needed. Subsequent commands to en ohiect will redraw

ft. MNere is an example of UOFF:

Ready 3 OBJECT OFF

Overlapping Objects and UNDRAW

In a case where there are several overlapping objects, or objects
are drawn over text, it is best to use “EXMODE™, since this
causes drawing and undrawing to occur without destroying the
screen's oriqinal contents. Alternatively, 1f all the objects
are in continuous motion, it may be desirable to use the word

UNDRAW,

UNDRAW simply erases a block of character spaces specified hy
ALKSI2E, just as UNBLK does. However, UNDRAW also causes the
next DRAW command to. not do an automatic line “undraw®” before
drawing the next imaqe, This way, you can use INDRAW to erase
the 3-D images yourself. Using UNDRAW is frequently faster than
the automatic line undraw that is carried out by DRANY,

For example, let us say wce have an image in the center of the
screen (at X = 128, Y = 96) that extends 20 plotting points in
radius -around this point. Rememher that numbers entered to
ALKSIZE refer to characters, not points. Text characters of size
0 are 7 points wide and B points high. So an entry to BLKSIZE of
6 by 5 will cover an area 42 by 40 polnts, large enough for our
sample image. Remember that UNDRAW, 1ike UNBLK, is controlled by
VIAB and MTAR, Let's set the blocksize, then position and

execute an UNDRAW before the next DRAN:

Ready 6 5 BLKSIZE ,
Ready 1R°VIAB 17 HTAB UNDRAW DRAW

3-D GRAPNICS 8 -17

.' '.._,.
o2 s ey~ S g,

— W

s
-

s
St et = wit

Rememher also that UNPRAW, 1ike PUTALX and UNALK, doesn’t advance
HTAB across the screen as for printing, Once positioned, UNDRAW
can be used rcpeatedly over the same area. .

Other Effects

It you wish to prevent undrawing of the imanes (for special
effects), sirmly use UNDRAW, hut place the undraw hYock away from
the imaqe, For speed, select 8 hlocksize of 1 by 1 in this case.

It {s alsn possihle to prevent screen saquencing altonether,
using SEQUENCE, so that the process of drawing may be ohserved.
SCOUENGE removes a numher from the stack. If this number is a n,
screen sequencing s turned off, If the number s 1, screen
sequenzing s turned hack on. This example will stop screen

sequencing:
Ready 0 SEQUENCE

Usually used with "0 SEOUENCE", the word “SCREEN" selects which
graphics screen to display. The screens are numhered 0 and 1,
This example displays screen number 1

Ready 1 SCREEN

PROFILE

There is another program on the GraFORTH system disk used for
creating 3-D imaqes, called PROFILE. PROFILE acts as a sort of
graphics "lathe”, creating images that are cylindrical in nature
from a set of points defining the profile of the imane. The file
“CHAL" on disk contains the imane of a chalice, and is an example
of the kinds of images that can be created with PROFILE,

To run PROFIL&. first make sure that there i3 room on the word
Yibrary hy FORGETting any extra words, then type: '

Ready READ " PROFILE .
Ready RUN .

3-D GRAPHICS 8- 18

Setting Parameters

You will ses the PROFILE heading and some instructions, Ve're
qoinq to use PROFILE in this example tn create a simple cone,
The first question asked is:

Enter number of polyqon sides :

This determines how smooth the cones circumference will be. For
a perfect circle, you would ideally want to enter an infinite
number of sides. lnfortunately, your Apple does not contain an
infinite amount of memory! For this example, enter 8 20,

The next promot reads:
Enter Object File Address :

with a qood ol' 2R16 already selected for you, Imaqes created
with PROFILE can easily use a lot of memory. Usually you will
want to use the area of memnry beainning at 2814 or the space
ahove the word library. (To find this address, print the

value of PRGTOP after loading PROFILE, and add ahout 50 or 170 to
this address for extra space,) For this example, just press
<return) to keep the address 2016,

Entering Data from the Keyboard

Now you will see:
Data from [X]eyboard or [N]isk ?

You can either enter the profile coordinates directly from the
keyhoard or use a text file that contains the coordinates, Here
we will enter the coordinates directly. Press °Kk* for
"Keyboard”. VYou will see:

[}

Enter X,Y pair (end « “E*) :

This {s where you actually enter the coordinates. The ¥
coordinate is the vertical position in the profile, The valid
range is -128 to 127. The X coordinate can actually be
considered a radius, since it determines the distance from the
edge to the center of the object. Its valid range s also -12R
to 127, hut neqatfve entries sre fdentical to positive ones, so
only numbers from 0 to 127 need he used.

A

3.0 GRAPHICS 8- 19

§oo > —

e ¥ =T A S

--

i T

LT RS

-

Bro N gt

. - ¥

. . -

T abae e FTEPC AN

’Z-:\.v‘—.-'-‘".

h B
it

—
P e

We're qoing to start our cone as a single point, and work down,
The top of the cone is at Y = -12, and the radius (X) is zero.
As we move down with incrcasing Y values, we'll also steadily
increase the radius. Make the following entries:

Enter X,Y pair (end = “€*) : 0,-128
Enter X,Y pair (end = “E") : 32,-64
Enter X,Y pair (end = "E") : 64,0
Enter X,Y pair (end s “E*) : 96,64
Enter X,Y pair (end = “E*) : 127,12}
fnter X,V pair (end » “t") : E

The last entry must be "E"., For a few seconds, the phrase:

Generating image file (A24 bytes) . . .

will appear on the screen as PROFILE computes the points that
make up the cone, then the screen will be erased and the cone
will appear. Notice that the cone has 20 vertical Vines around
its circumference. This 1s hecause we selected 20 polygonal
sides. There are 4 circles around the cone and & point at the
top. These are hecause we made 5 profile entries. At the bottoms
of the screen will be the message:

Enter object file name :

This is so you can save the 3-D object to disk. If you want to
save the cone to disk, enter a filename and press <return). If
you.don't want to save the image, just press <return> and the
program will end.

Entering Data from Disk

As discussed earlier, PROFILE can also read a list of coordinates
from a disk file. The textfile “BIGCHAL" contains a list of
coordinates that describes the profile of a chalice. You may
wish to see this 1ist at some point. When PROFILE is no longer
{n memory, you can enter the text editor, get the file DIGCHAL ,
and list {t. You will see a list of numbers similar to the one
we entered to mike the cone, but longer. Note that the last

3-D GRAPHICS 8 - 20

o |
~ = e

entry in the file is “£", marking the end of the list,

For now thouah, let's run PROFILE anafn, this time using the
textfile BIGCHAL instead of keyhoard entries., RUll the proaram,
select 8 polygon sides, the address 2816, then "0* to read data
from disk. You will then be prompted:

Enter Data File Name :

Enter the name "BIGCNAL*. The disk will whir for a bif, then the
messane:

fienerating image file (2724 bytes) ...

will appear, After a pause, the chalice will appesr on the
screen. As hefore, you can either save the 3-D imaqe to disk, or

press <return> to exit.

Memory Considerations

Because PROFILE can qenerate very larae imane files rapidly,
imaqe size checking has bheen added to help prevent overwriting

importent parts of memory.

Usually you will ust one of two areas of memory for the 3-D imace
file when using PROFILE: either the free space from Yacations
2016 to SBR7, or the space above the top of the word library, |If
you select an address between 2816 and SARY, PROFILE will prevent
the image from extending beyond location 5887.

If you select an address qreater then 5887, then PROFILE assumes
the imaqge is above the word library. It then checks for the
presence of a lanquage card, If you are using a lanquage card,
PROFILE will allow images to extend to location -16138S,
immediately below the Apple J[1/0 area. If you do not have a
lanquage card, PROFILE prevents the image from extending beyond
location -26113, immediately below NOS.

If the image is too large to fit in the provjded space, .the image
will not be created or drawn, and the following message will

appear:

Not enough room here.
(Requires nnnn hytes.)

with nann being the actua) number of bytes the image requires.

3-D GRAPHICS 8 - 21

PRSI

. i
PO L € B

M

R I e bl L

_ .3-B BRAPHICS

Netice that 1f the starting address yov select is in & “sofe”
area of memory, then PROFILE will prevent the fsaqe from
clobhering important information, However, 1f you selmct an
address in the middle of something important, vou'll find
yourself having to rehoot the system from scratch,...

PLAYing Around

The progqram PLAY was bdriefly introduced in Chenter 1. PLAY was
desiqned for you to "play” with a 3-N image, manfpulating its
rotation, scale, translation, and position parameters. Any or
all of these parameters can he set into motion, aiving you 8
rapid intuitive "feel” for what each of the parameters does. And
PLAY is a lot of fun! :

Note that PLAY, 1ike IMAGENITOR, uses the same nnory as does the
text editor on non-lanquane card systems, Be sure to forset any
extra words in the word 1ibrary (PLAY is rather a large program),
then type:

Ready READ * PLAY °
Ready RUN

The instructions are fairly self-explanatory. Once the imsne is
loaded and you begin “playing®, you can select a parameter with
one of the number keys. To set the parameter in motion, press
one of the arrow keys, The right arrow incresses the psremeter
value; the left arrow decreases it. Ry pressing several numher
keys and arrow keys alternately, you can set 3 number of
parameters in motion at once, ’ :

It any one parsmeter gets out of hand, you can press “F" to
“freeze” its motion, leaving it at the curreat value, You cCan
8130 press "D°, to hring it hack to fts “Defavit” value,

If you want to pavse everything, fust press ConTRol-S. The
display wil) pavse, and a flashing curser will sppesr in the
unper-left corner, Just press sy key to reswme., if you

went to bring everything to a complete halt, press ESC. Al
motion will stop end all perameters will be sat beck to their
default valves. Finally, typing “1° will display the iastruction
screen aqain, and “0" will quit the progrem. - : S

!

5--3
e
b

Let's answer the start-up auestions and eet things moving:

The first prompt you will see fs:

image in [Wlewory or on [0]isk?

If you already have an imsce in remory, press *M", 1f you want
to Yoad an imaqe from disk now, press *D*. For this example,
press "0". Mext {s the now-famous addiess question:

Enter image address @

anain with-the number 2816 waiting for you. [f you want to use
the address 2816, just press (return); otherwise enter the
address you want, Press (returnd for this example. I[f you
selected to 10sd an image from disk a moment aqo, you will then

see:
Enter image filename :

Type the name of the file you want to load. Let's load the file
"WOUSE". Lastly:

Press Return to beqin...

The screen will be erased and the image will appear. Along the
right side are the values for each of the paraceters. When you
press a number key, the selected parameter will also be displayed
on the bottom line with fts current valse and increment.,
Pressing the arrow keys will change the increment nd set the

ebject in motion.

You'll also see a question mark in the lower right corner. Thig
1s just to remind you that the instructions can be displayed at

any time by typing "?°.

With PLAY, ft's very easy to get some of the parameters out of
bounds, causing screen or “"space” wrap-around, 1t doesn't hurt
snything, and {t can sometimes produce rather, a-wsing effects!

3 GRAPNICS

u s

O 2o @ w= o

.

-

=y

-t i

Conclusion

We've now looked at all three kinds of qraphics: two-dimensional
graphics, character qraphics, and three-dimensional qraphics.
With the information presented in these chapters, you can
incorporate a wide variety of animated color graphics effects
{nto your own proqrams, then use SAVEPRG to produce 3 system that
hoots and runs them automatically!

The next chapter explains how you can create susic and sound
effects with GraFORTI. (We'll also mention another progrem you
may be interested in...) So without sny further delay, on to
chapter 91

3-0 GRAPHICS ' 8- 24

IT IT

.
R

1

id

1

ii

1T

1

? -

|

4

ey

CHAPTER NINE: MUSIC WITH GRAFORTH

Chapter Table of Contents:
Introduction
VOICE

NOTE

Determining Duration and Pitch

Useful Music Words

MUSIC WITH GRAFORTH

Page

’

92
92
93
93

94

9-1

L e p—————em .

P DT S I g B Y - -

I e e ST s T SO o . A -~ .

i e s S i N A et P Tes
b - - R = R Lt T

7

AT e o o S B P

82 -3 LIRS

o

AR

MUSIC WITH GRAFORTH

Introduction

GraFORTH has a sophisticated music synthesizer that plays throunh
the Apple [builit-in speaker, Notes may be played in nine
distinct voices (not simultaneously), Thege features allow you
to incorporate music or snund effects into your applications or
game proarams,

The two GraFORTH words that control! the synthesizer are VOICE and
NOTE.

VOICE

The GraFORTH word VOICE selects one of 9 voices {h which to play
notes. VOICE removes a number from the statk, and uses {t to
select a given voice. Here are the VNICE numbers and their
meanings:

Number Yoice

-6 to -1 Selects a constant 'duty cycle' for the note,
producing 2 note that is constant in volume, -1 = 50%
duty cycle, <2 = 25% duty cycle, «1 =« 12,5% duty
cycle, etc. Smaller duty cycles decrease volume and
increase the amount of high-frequency energy in the
note,

0 Note begins at 50% duty cycle, then decreases to 0.
The note seems to die away,

1 The note bhegins at 0%, increases to 50%, then
decreases again,

2 The note benins at 0%, then increases to 50%, The
note seems to iIncrease in volume,

NOTE

The GraFORTH word NOTE actually causes a note to he played, WOTE
removes two numbers from the stack to select pitch and duration,
then plays the note, The form for NOTE is: '

!
<pitchd <durationd NOTE
The valid numbers for pitch and duration are in the range 2 to
255. Laraer numbers for duration produce lo-ger notes. Larqer
numbers for pitch produce lower pitched notes.
Let's play 8 couple of notes. The voice used if one has not been
selncted {8 voice N, This example plays an "A" two octaves belnw
middle A:
Ready 124 255 NOTE
Let's try a different note:
Ready 62 128 NOTE

This plays & note an octave higher for half as long. Maw let's
change the voice and play the same note:

Ready -1 VOICE
Ready 62 128 NOTE
Notice the change in tone quality. Experiment with the different

voices to hear their differences.

Determining Duration and Pitch

The duration of a note is directly related to the size of the
duration number., 255 can be considered a whole note, 128 a half
note, 64 a quarter note, and so forth, 0f course, 1f you want to
play notes at a faster tempo, simply use smaller numbers.

MUSIC WITH GRAFORTH

Mera is & table relating notes to the pitch numbers which produce
them:

Note Octave | Octave 2 Octave 3 Octave 4

A 248 124 62 3l
A) 234 11 SA 29
A 221 110 55 '
c 209 104 52 26
Cs 197 9 49 24
n 1846 9 46 23
D 175 87 4 2l
3 166 Al L} 20
F 156 i))9 19
Fe 147 X 36 18
6 139 69 M n
G 131 65 2 16

Useful Music Words

It you don't want to look up the pitches for each note, you tan
use the following program to generate the table and store it in 2
strina array called "PITCH". Each element of PITCH, instead of
containing a character, contains the pitch value for a note.

S0 STRING PITCH

: COMPUTE,NOTES
20870
48 0 DO
OUP 100 / I PITCH POKE
OUP 18 / -
DUP 1655 / -
LOOP PROP ;

Ready COMPUTE.NOTES

Running COMPUTE.NOTES qenerates the table in PITCH, Now the
pitch values for the 4R notes (numbered 0 through 47) can be
found by reading the. value from the proper element of PITCH, For
example, the pitch value for the note 3 in the tahle (a “C* from
the first octave) can be found in position number 3 in PITCH:

MUSIC MITH GRAFORTH 9-4

.. o
T *

—
R
oo - e

b

[

o~ ————

Ny -

e -

bawre ey o

Ready 3 PITCH PEEK .
209

To play -this note as a half note, you can enter:
Ready 3 PITCH PEEK 128 NOTE

You can also define a short word that retrieves the pitch value
for you: .

Ready : GETPITCH PITCH PEEK ., ;.

feady 3 GETPITCH
209

This word can be used with NOTE:
Ready 3 GETPITCH 128 NOTE

Since the notes are now numbered from O to 47, we can play all of
the notes in the scale by using a loop:

Ready 48 0 DO | GETPITCH 32 NOTE LOOP

With a little patience, we can put tonether a sonal The
following word definition plays the first phrase from the "Happy

Dirthday” song:

: HAPPY.B
12 GETPITCH 50 NOTE
12 GETPITCH 50 NOTE
14 GETPITCH 100 NOTE
12 GETPITCH 100 NOTE
17 GEYPITCH 100 NOTE
16 GETPITCH 200 NOTE ;

For longer tunes, repeating the words GETPITCH and NOTE will
waste a lot of space. We wanted to show here how simply the
tunes can be constructed. A much more effigient method is to
store the numbers in memory or on the stack, and read them and
play the notes from a loop.

.

MUSIC WITH GRAFORTH 9-5

e - e e e ®oem
B o

T - —— s

o -

- P . S e
.

o m—

g

-
e

S e e

P

Postscripts -

Note: The quality of the synthesizer {s higher than can be
demonstrated with the Apple][built-in speaker. The use of a
Yarqe external speaker is recommended for serious misic work.
See the Apple][Rnference Manual or your local dealer for
connection information,

For two-part music anplications, the Electric Nuet, also whitten
by Paul Lutus, is available from Insoft, The Electric Nuet' plays
2 simultaneous notes through either the Apple speaker or #n
external amiifier, and can be used to play music directly flom
your GraFORTN programs. [t contains a full feature music editor
with the ahility to transpose both note pitch and duration,
Music can be directed to either the internal speaker or the Apple
J{ tare output jack. The suqqested price of the Electric Nuet is
only $29.95. For more information, contact Insoft or your local
Apple dealer,

MUSIC WITH GRAFORTH 9.6

= o

oy e

-

By poo

1

'
~ -'-—EE!
L
—
| adiih ot
ey om g

; hadd el
[

-3
[oowmsia-

CHAPTER TEN: FINAL. WRAP

We've made 1t] You have now been introduced to the GraFORTH
system, from lanquage features to complex araphics. From here on
out, you will probably be using this manual mare as a reference
muide than as a tutorial; therefore, we suagest you qet
acqualinted with the appendices. You will find the Word Library
listings invaluable, and the Index very helpful for findinqg those
definitions you've forgotten. The technical data section covers
very useful information we suqnest you at least hrowse through,
and the GraFORTH diskette file listing and ASCII code tables are

excellent references when you need them,

Please note that 1f you are using or fntend to use GraFORTH to
develop software for re-sale, we would like to talk with you.
Insoft represents fine software (such as this!) for Aople, 18M,
Atari, NEC and other popular microcomputers. 0Our rayalty rates
are amonq the hest in the industry, and our support team {is
second to none. Let us show you why using our team of
profrssionals makes qood sense!

If you decide to market software on your own, please call us for
information on a license aqreement to use GraFORTH, There is no
fee for this license, however, we do have a few restrictions on
Tow it is marketed (We'll show you how to lock GraFORTH so that
only your program can be run.) Either way, please contact:

Michael Brown

Insoft
10175 SW Barbur Blvd. Suite 2028

Portland, Oregon, 97219
(503) 244-4181

You now have 8 graphics system that is quité nearly limited only
by your imagination! We hope you enjoy learnina and using
GrafFORTH as much as we have enjoyed the opportunity to bring it

to youl

FINAL WRAP 10 - 1

R N

A

Zoon

g

—— - - -

Ne

APPENDIX A:
WORD LIBRARY LISTING

The following is a list of the words in the GraFORTH word
library. The 1ist includes the word name, a "before and after®
stack picture, the page number in tte text where the word is
first introduced, and a brief description of what the word does.

The stack picture shown represents relevant. numbers on the top of
the stack as letters. The top of the stack is to the riaht, as

indicated hy a dash, Three dashes represent an empty stack, How
words use the stack can usually be inferred simply from the stack

picture.

The word descriptions here are not meant to he comprehensive.
For more information on each word, we suqqest you refer back to

the text, using the paqe numbers provided.

GraFORTH WORD LIBRARY LIS TING

Word Name Refore After Page

o - - = - & = 3_)3

A set of quotes surrounding text causes the text to b compiled
into the program, Used with PRINT, ASSIGN, and READ.

SLIST .- - .-) 5.30
Lists words in word Vibrary with hexadecimal addresses.

. $-30

, and prevents that word's

4
- - = F
a = addrass of the word that follows
execution.
4- 14
to be passed over

Y

{ .-
Indicatas the beginning of & program comment ,
by the GraFNRTH compiler.

APPENDIX A: WORD LUBRARY LISTING A -1

—~———— o —

-
cac N mawm o

- e -

GraFORTH Word Library Listing

Word Name Mefors _ After Page
. mn - p - 3-10
pemen (mitiplication)

+ LI b - -6

pemaen (addition)

+LO0OP n- .-~ 3.9

Marks the end of a loop structure, using n as & loop value
i{ncrement,

. ... PR 8.32
Compiles 3 sinale bhyte within word definitions. '

- mn - p - 3-10
pem-n (subtraction)

-> (not applicahble) , 5-8
Causes the next variable reference to store the top stack value
into the variahle, rather than placing the variable value on the

stack,

. N - & = 3.6
Prints n,

/ ma-. D= 3.10
p=m/n (division)

- - .- -4

‘Marks the beqinning of an executable word definition,

,' [} - ® e * ®» ® 3.l‘
Marks the end of a word definition,

< nme p- 3.21
pelifndcm, otherwise p = 0, ‘

(= ' nme P - 3.23
pe1lifn ¢=m otherwise p = 0,

APPENDIX A: WORD LIBRARY LISTING A2

"' GraFORTH Word Library Listing

Word Name Refore After , Pane
< nm- P - .23
pelifn ¢ m otherwise p = 0.
= nm- p - .23
pelif nem otherwise p = 0,
> nm- p - 3.23
pelifn)d>m otherwise p = 0,
= nm- p - 3.3
p=114f nd>em otherwise p = N,
ABORT - a- - e 7-1

Restarts GraFORTH from scratch. The screen is erased, character
size of 0, color of 3, all stack pointers inftialized to 0.

ABS n- n- 3-10
m = absolute numeric value of n.

AND nm- P - 3.2
p =1 1f both n and m arn nonzero, otherwise p = 0.

AREG (variable) 5-31

value of AREG s placed in processor A reqister before a CALL,
After CALL, contents of A register are loaded back into AREG.

ASSIGN a- - .- 5-12
Places following quoted lext into memory starting at address a.
AUTODRAW .- 8-3

[I
If n is nonzero, 3-D objects will automatically be drawn after
every graphic command. If n s zero, this feature is turned off,

AUTORUN "n- S 5-26
If n is nonzero, the top word 1ibrary word will automatically
execute ot every return to the system, [f n is zero, this
feature 1s turned off,

APPENDIX A: WORD LIBRARY LISTING A-3

ANl S~ "

- o—— -

. e o —

GraFORTH Word Library Listing

Word Hame Before After Page
BASE (variable) 522

Value determines what base numbers are accepted and displayed in.
BEGIN - - - 3-29
Provides a proqram return point for the words REPEAT aqd UNTIL.
BELL - e - e 1.

Beeps the Apple speaker,

BINARY --- - .- 622

Sets numher {nput and output to base two.

BLKSIZE hy- -e-e 1-12

Selects a blocksize of h characters horizontally hy v vertlcally
for use by PUTALK, LINBLK, and UNDRAW,

BYE - e .- 5-12
Exits GraFORTH to Apple monitor.
CALL - .- 5-31 -

Loads processor registers from AREG, XREG, YREG, AND PREG, calls
-aﬁhlnc lanquage routine at address a, then stores reolslnr
values.

CASE: n- .- 3-32
Selects and executes nth following word from 1ist of words
numbered starting from 0.

CHRADR a- - 7-6
Selects a as address of current character set. :
CHRSET {vartable) 7-8
Value s address of default character set (2048).

CHRSIZE n- - e 7-3

Selects character size for suhsequent character printing using
PRINT, WRITELN, PUTC, and PUTBLK.

APPENDIX A: HORD LIBRARY LISTING

-l

GraFORTH Word Library Listing

Word Name Before After Paqe
CHS n- n- 3-10
n=-m (change sign)

CLEOL .- .- .- 5.4
Clears from the cursor position to the end of the current 1ine,
CLEOP - = - - : 5.4
Clears from the cursor position to the end of the text window.
CLOSE -~ - .- 5.24
Causes DOS to close any open files.

CLRKEY - - - S 5-20

Clears the Apple [keyhoard strobe so that a key can be read
with GETKEY.

COLOR : .- - 6-6
Selects the color for hne and larqe character drawing.
CR - - - - -1
Prints -a carriage return (ASCII value 141).

DECIMAL .- - - - - §-22
Sets number input and output to base ten.

DO an - .- 3-19

Initializes a loop, using n for an initial value and m as an
ending value.

DRAW “ e A-15
Causes all 3-D objects referenced since the' last DRAW to be

drawn, using 3-D display methods.

DROP n - - ‘ 3.7
Discards n from the stack.
DUP ne an- 3.

Makes & copy of n on the stack.

APPENDIX A: WORD LIBRARY LISTING A-S

c—ty et - W o —————

- e——-— -

—— .

R ey %iry
;. - .

b3 Moy

T
el -

s o

leeeta

bl o Lo o o
BAREE S

W e

GraFORTH Word Library Listing

Mord Name Before After Paqe

EDIT .- .- '
Loads from disk ({f necessary) and runs the appropriste text

editor,

ELSE .- “e- 3.27
Separates the two controlled areas in an IF - ELSE - THEN
construct,

EMPrY Xy - o o = 6 “
Erases a rectanqular area from the last plotted point to (x,y).
ERASE -.e “.- 5.4
Erases hoth qraphics screens. .

EXMQODE - . 6-10

Causes plotted pnints to turn on corresponding screen locations
that are of!, and turn off locations that are on,

FILL ry - .- 64
Fitls a rectanqulae area from the last plotted oo!nt to (x.y).
FORGET .o - - 3-17

Truncates the GraFORTH 1ibrary back to the word that fo)lows
FORGET,

GETC « .o n - 5-20
Gets a single charscter from the keyboard, placing its ASCll
value on the stack.

GETKEY e aa 8.20,
Reads the keyboard without vc!tinq. returning an ASCI! value,
Values over 128 are valid. Should be followed by CLRKEY,-

GETNUM :- n- 5-14 -

Converts text strinq at address & Into a number. Unsuccessful
conversions return 0,

APPENDIX A: WORD LIBRARY LISTING A-6

b""'."d

Y g ol

GraFORTH Word Library Listing

Word Name Refore After Pane

GPEEK XV - ne k.12
Examines paint at screen coordinates (x,y). n s nonzero if
point 1s turned on, or 0 if point is turned off,

GR .- .« e .18
Reestablishes normal GraFORTH input and output, and sets the
qraphic disnlay mode,

HEX - e .o - 8-22
Sets numher fnput and output ‘to hase 16.
HOME - e .« = 5.4

Erases the screen inside the text window and sets NTAR and VTAR
to the upper left corner of the window.

HTAB h- - - 5.3
Sets the column for subsequent printing.

1 - - o n - 3-19
Returns the current inniermost loop value.
IF n - - - 3-25

1f n is nonuro. words hetween IF and THEN (or IF and ELSE) are
executed, otherwise execution continues after THEN (or between
ELSE and THEN).

INVERSE .- - e 6-9
Complements the color for all text and graphics displays
(including black-on-white text).

J - o= n- J.20
Returns the loop value for the next outer looo

K - e o Ne 3'21
Returns the loop value for the third outer loop.

L,NE Xy - - o » 6-4

Draws a line from the last plotted point to (x,y).

APPENDIX A: WORD LIBRARY LISTING A -

Ao
-

GraFORTH \Lord Library Listing

Word Name Before After Page
LIST - .. - 3-3
Lists the words in the GraFORTE word 1ibrary.

LOOP cee e ' 319

Marks the end of & loop structure, incrementing the loop value
and looping back to the word after N0 {f the loop value is less
than the ending value,

MAX an- p - ©3-10

p » Lhe qreater of m or n.

MEMRD a- - - 4-13
Reads and compiles text in memory starting at address a,
MIN an- - 3-10

p = the smaller of m or n.

MOD mn- p- 3-10

p = remainder after dividing m by n.

MOVMEM ahn- --- 5-30
Moves a hlock of n hytes from address a to address b.
NORMAL .- .« 6-9
Resets normal color (white-on-black text) display.

NOTE pd- .“-- 9.3
sounds & note of pitch p and duration d in the current voice.
OBJADR) a- .- 8-3
Selects a as address of currently selected 1-N ohjects
OBJCOLOR n- .- 8-10
selects color of current 3-D object.

OBJECT n .- 8-3

Selects which object subsequent 3-D comsands will refer to.

APPENDIX A: WORD LIBRARY LESTVING

GraFORTH Word Library Listing

Word Name fefore After Paqa

OBJERASE .- - - .- R-1
Initializes the 3-D imaqge array. Should he used ot the healnnina

of 3-0 qraphics proqrams.

OFF RN R-17
Causes the next DRAW command to undraw the 3-D object.
OR . = mn- b- 3-2

p is bit-wise OR of m and n, (p {s nonzero if either m or n {s

nonzero, otherwise p = 0.)

ORMODE .- - 6-10

Causes points to be plotted reqardiess of what screen locations
are pn or off,

OVER R anm- 37
Copies m to top of stack,

PAD --- a - 5-15
Returns the address (R12) of a 120-byte string space. .
PEEK 4 - n- 5-h
Reads a single byte n from address 3.

PEEKW : - n - 5.6
Reads number n from address a.

PICK M N - Jmp - 1.7
Coptes the nth stack item to top of stack.

PLOT Xy - -~ - . 6-4
Plots a point at (x,y).

POKE na- - e 5-6
Stores single byte n at address a.

POKEW na- - .- 5-5

Stores number n at address a.

APPENDIX A: WORD LIBRARY LISTING A-9

GraFORTH Word Libbary Listing

Nord Neme fefore After Page
POP- 322
NDiscards top return stack value, .

POSN 1y - .« 6-6

Establishes a position for a "last plotted point™ without
plotting.

PREG (variahle) 5-31
Yalue of PREG {s stored in processor status reqister hefore 2
CALL. After CALL, value of status register {s stored hack into
PRER.

PRGTOP .- 2 - 3.3
Returns the address of the top of the word 1ibrary,

PRINT - = ... 3-1]
Prints following quoted text.

PULL - - n- 3.22
Moves top return stack value to data stack.

PUSH n- .- ' 3-22
Moves top dats stack value to return stack.

PUTBLK n - - e 7-13

Draws a block of characters with present hlocksize starting with
character number n at the current cursor position. ‘

PUTC - .- 5-19

n e
Prints character with ASCI! value n at thé current cursor
position,

READ - - - -1

Reads and compiles text from file with fellowing quoted filensme,
READLN IR - o w 5-12 R

Reads a)ine from keyboard into string starting at address 4.

APPENDSIX A: WORD LIBRARY LISTING A-10

-

rv
%
{4l

oo o

E3

| SRR

Fo-s
&]

Hord Name

. GraFORTH Word Library Listing

Refore After Page

REPEAT cee e 3
Marks the end of the BEGIN - WHILE - REPEAT construct, ceusing
execution to jump hack to words following REGIN.

RND - n- 3-10
n is a random number,

RNDB .- n- 3.10
n is a random number from 0 to 255.

RUN .- --- 5-26
Executes the top word on the word 1ibrary.

SAVEPRG i e 527
Saves current system to disk,

SCALE n- - 8-7
Sets the X and Y scales for the current 3.0 object.
SCALX n- .- 8-6
Sets the X scale (width) for the current 3-N ohject.
SCALY n- - - 9.6
Sets the Y scale (height) for the current 3-D ohject,
SCALZ n- - - R-6

Sets the 2 scale (perspective) for the current 3-D object,
Faster drawing occurs with a SCALZ of O.

SCREEN ne - 8-18
Selects display of the qiven qraphics screen:(0 or 1), °
SEQUENCE ne - A-18

{f n= 1, sutomatic screen sequenting for 3-0 drawing is enabled.
If n = 0, sequencing is enabled. (Defavitel)

SGN

m - n- 3-10
nelifmd>N, Oifmeo, -1{ifmcO

APPENDIX A: WORD LIBRARY LISTING A -1

i
!
|
i.

-
SRR P

— e " aw -

TR -

B el 4y - — - G——— i ®

-
PR, 104

g s e o S ——paaa
5 S o St Sy T S T e g ™ e W
LRI S IR St e e .o . L

T

s =
-

GraFORTH Word Library Listing

Word Name Before After Page

SIN n- n - 3.10
n is a scaled sine value for m, in the range -128 to 127,
repeating for every 128 numbers.

SPCE - .- - .- 3-13
Prints a space (ASCII value 160).

STACK .- . . 3.5
Toqqles the stack display on or off.

STRING .- - .- 5.9

Daclares a strina array with following name, setting aside number
of characters specified before STRING.

SWAP mn- nm- 3.7
Swaps position of top two stack valuves,
TEXT - .- - - - 338

Reestablishes normal GraFORTH input and output, and sets text
display mode (no graphics).

THEN - - - 3.25
Marks the end of an IF - THEN construct, whare execution

continues from,

UNBLK . .- - .- 7-14
Erases a block with present blocksize at the current cursof

position,

UNDRAW '- 8-17
Erases a block and prevents the next DRAW from performing an
automatic line undraw.

UNLINE xy- .- 6-8
Erases a line from the last plotted point to (x,v)s
UNPLOT xy - --- 6-8
Erases a point at (x,y). .
UNTIL - - 3.29

[I
If n » 0, execution jump back to words that follow BEGIN. .

APPENDIX A: WORD LIBRARY LISTING A - 12

!
1

T
W Wi

T

t

W W il

m
|

m
i

'fﬂ
T
1]

GraFORTH Word Library Listing

Word Name Before After Paqe

VALID .- - n- - 5-14
n is nonzero {f last GETNUM produced a valid numher, otherwise n

= 0,

VARIABLE - - .- - , 5.7
Declares a variable with following name. Any precedina number {s

used as the varfable's initial value.

VOICE n- .- . 9.2
Sets the voice for subsequent NOTE commands. Valid numhers are

-6 to 2.

VIAB n- .- 5.3
Sets the row for subseauent printing.
WHILE ., n- .- 3-1

If n is nonzera, execution continues after WHILE, otherwise
execution jumps to words after REPEAT,

WINDOW Lwthb- - 5-3
Sets a text window with left margi~ L, width w, top margin t, and

bottom marqin b.

WRITELN a - - .- 5-12
Writes text to screen from string at address a.

XPOS n - .« .- A-8
Sets X-position of current 3-D object to n.

XREG (variable) 5-31

Value of XREG is placed into processor X gegister hefore a CALL.
After CALL, value of X register is stored back into XREG,

XROT n - .- - R-S
Sets rotation of current 3-D object around X-axis to n.
XTRAN 1 n - - - R-9

Translates current 3-D object alonq X-axis hy n,

APPENDIX A: WORD LIBRARY LISTING A-13

19t

0 e\ wew——— - ——

——
P

P . e ——— N - -

.

—— —

<. R
o] R T T e
. -, A

e A i
e -

-~

A - g - ew
N - e—— .
- > T
- -

-
-

GraFORTH Word Library Listing

APPENDIX A: WORD LIBRARY

Nord Hame Before - After Page BY SUBJECT GROUP
:POS n- . 5.0 E.:-,,_.
ets Y-position of current 3-D object to n -
h ' Numeric Operator Words
mffor YREG 15 p! ("J""’J" 5-31 F -+ P
] aced {into processar Y reqister befor - Y
After CALL, value of Y reqister is stored hack into Ylgg(e;.‘ e chs AnS 5"'"E '"‘"E RMTA
MIN MAX POXKEW POY. O
:ﬁ?:: te i . R-§ | oS- . > <). '
otation of current 3.0 object around Y-axis by n, W OR AND PEERW PEEK SWAP
OROP poP I J K
r,?:f,:v, n - --- -9 , PULL PuSH P OVER PICK
es current 3-.D ohject along Y-axis hy n, E,_,; MOD / N N .
ZROT " - _ -t 'S“!):" » exsrn rrnctzmt RINARY HEX
Sets rotation of " 8-5 . Lt iE
current 3-D objfect around Z-axis hy n, = 3
Translates current 3-N object along Z-axis by by n. 8-9 Program Branchrng or Contro oras
F == +L00P LDOP 00 REPEAT WHILE
e DNTIL BFGIN IF THEN ELSE
' AYE STACK FORGEY VARIABLE RIN
- AUTORUN ARORT READ MEMRD H
E I 5 : CASE: (CLOSE eny
T " PRGTOP SAVEPRG >
b ——w nput/Output Operator Words
| ~F— HOME CLEOP CLEOL GETC GETKEY
- -.-.,,.3 CLRKEY PUTC . sLIST LIST
- ! . .
noe—e Text Display Function Words
-) VTAD 1TAR CHRADR CHRSET CR
N —— SPCE TEXT WINDOW PRINT ASSIGN
® cev g " STRING PAD READLN WRITELN
;“:‘ \
[L
APPENDIX A: WORD LIBRARY LISTING A- 14
- - APPENDTIX A: WORD LINRARY LISTING A - 15
'w“

R e

| ol WIS UIUP

Tt e

- P
T ——y o

LRt el MO
AR

o e emul ewme ®

—— —— . -

-

General Graphics Words

GR GPEEK ORMODE E XMNOE ERASE
COLOR INVERSE NORMAL

Two-Dimensional Graphics Words

POSN PLOT lINPLOT LINE UNL INE
FILL EMPTY

Character Graphics Words

PUTBLK CHRSIZE BLKSIZE UNBLK

Three-Dimensione! Graphics Words

SCREEN DRAW SEQUENCE UNDRAW AUTODRAW
ORJECT OBJADR OBJERASE 0BJCOLOR SCALE
SCALX SCALY SCALZ XPOS YpPOS
XTRAN YTRAN LTRAN XROT YROT
ZROT OFF

Miscellaneous Words

CALL PREG AREG XREG YRER
' NOTE VOICE NELL

APPENDIX A: WORD LIBRARY LISTING

A- 16

B

[t

op—
| e

n e
| TR

o

.y -
. — N

| BN g
L Badl i
o

| il ud
[R

.
| e
. —cre
e
[SERTT Y
1

—
P = oy
[Radal T od

E.-d

=.. ™M

APPENDIX B: TECHNICAL DATA
Table of Contents

GraFORTH Memory Map

Page Zero Map
Image Data Map

Mathematical Method
Image Table Format

Word Library Structure and Compilation

TECHNICAL DATA

8-5

8-6

87

8-1

a ..

B)

. oo

0 to 255

256 to 511
512 to 767
768 to A1l
812 to 935
936 to 975
976 to 1023
1024 to 2047

2048 to 2815
2816 to 5887
5888 to 6655

6A56 to 7479
7680 to 7935
7934 to 619!
8192 to 16383
16384 to 24575

24576 to -32256 * $6000 to $8200

APPENDIX B:

GraFORTH Memory Map

$0000 to $OOFF 6502 Page Zero. See Page lero

11sting below,
$0100 to $NIFF 6502 Stack

$0200 to $02FF GraFORTH Line Input Auffer
$0300 to $0328 3-D Matrix scratch-pad ares .
$032C to $03A7 Compiler Stack, PAD String Area
$03AB to $03CF Graphics Morizontal Color Buffer

$0300 to $OIFF DOS Link Area

$0400 to $07FF Text Display Screen (used for

graphics also)

40800 to $O9FF Primary character set Storage area
$0800 to $16FF >>> User Free Space <C¢

$1700 to $19FF Image position and rotit'on data
(See the Image Data 1isting betow.)

$1A0N to $10FF Graphics address lookup tables

$1E00 to $1EFF Data stack

$1F00 to $1FFF Return stack
$2000 to $3FFF Graphics screen 0
$4000 to $SFFF Graphics screen |

(Address approximate)

TECHNICAL DATA

GraFORTH System as dellvered

P el
wud

[SR TIP

o~

[

B
b"‘-b .

.
. '

E" el

- ——ge

i S

(i

o
[

'
e
| o aindl b

'
-

'0-..—
B =g

.'.1 —
.o- -

-3N720 to
-20972 to
-26114 to
-163R4 to
-12208 to

-30720 to
-18944 to
-16384 to
-12288 to

000031
032.079
N80
ng2
004
0086
096-127
12R-255%

APPENDIX B:

-28673
-26113
-16385
-12289
-1

-18945
-163A5
-12289
-1

$00-1F
$20-4F
150
$52
$54
$56
$60-7F) not used (some DOS uses)
$80-FF

TECHNICAL DATA

GraFORTH Memory Map
Without Language Card

$8800 to SAFFF Text editor flle area (when used)
$9000 to $99FF Text editor program (when used)
$9A00 to $BFFF DOS 3.3

$CO00 to SCFFF Apple][hardware 1/0

$D000 to $FFFF Apple][ROM area (Basic, Monitor)

With Language Card
48800 to $BSFF Text editor file area (when wsed)
48600 to $BFFF Text editor program (when used)
SCON0 to SCFFF Apple][hardware 1/0
$0000 to $FFFF DOS 3.3 and Monitor

' GraFORTH Page Zero Map

not used

Apple J(monitor use

GraFORTH text pointer 1 (2 bytes}
GraFORTH text pointer 2 (2 bytes

GraFORTH qraphics pointer 1 (2 hvtes;
GraFORTH qraphics pointed 2 (2 bytes

used by GraFORTH

[‘

.

Useful locations in Page Zero:

128 (380) last plotted X position
130 $82 last plotted Y pasition
156 $9C pointer to data stack

157 $9D) pointer to return stack
218-255 ($DA-FF) page zero matrix work area

Image Data Map

There are three data sets:

5888 $1700 undraw
6144 $1800 interim
6400 $1900 draw

Each data set contains 16 data tables, one for each of the 16
possible objects. Each data table 1s 16 bytes long:

Function Relative Byte '
Flag (draw, nodraw) 0

XROT 1

YROT 2

IROT K}

XTRAN 4

YTRAN 5

ZTRAN ! 6

XPOS ?

YPOS 8

SCALX 9

SCALY 10

SCALZ 11
0B8JCOLOR R ¥4

image Address 13 and 14

Each table begins at a multiple of 16. Therefore to find the object
color for object 3:

16 * 3 (object 3) ¢+ 12 (object color offset)
+ 6400 (data table base address) = 6460

APPENDIX B: TECHNICAL DATA

b = v
hl"~]-

o oy =

(—

oy -

0 Bl

g

.
e
el

F e

— - g

Three-Dimensional Mathematical

Method

The three-dimensional display method used in GrafORTH][uses & system
of matrices that are successively multiplied to provide the ultimate
position for each line in the displayed image.

In the follbulng dlagrams, (X) through (2) refer to rotation anqles,
and X through 1 refer to cartesian scalar values.

‘Natrln 1:
Scale X 0
n Scale ¥
0 0
Matrix 2:
1 0
0 cos(x)
0 SIN(X)
Matrix 3:
cos(Y) 0
0 1
SIN(Y) 0
Matrix 4:
cos(z) -SIN(2)
SIN(2) cos(2)
0 0

APPEND" 1:

0
0
Scale 2

0
-SIN(X)
cos(x)

-SIN(Y)
0
cos(Y)

TECHNICAL DATA

't
e - . -
— S -

PR S PR
e, el . CE

- .
—-——- .

Lrce Sl e iveemm o o

This matrix transformation occurs once per image. Then the resuit
matrix fs used to transform each Vine position using this Vast matrix:

X+XTRAN YoYTRAN L+2TRAN
0 0 0
0 0 0

After this, {f a nonzero value has been selected f

or SCALZ, »
perspective computation {s made (in which case image drawiﬁg is about
201 slower), The plotting coordinates then are offset by the
user-provided YPOS and YPOS values, and the line is drawn.

Image Table Format -

There are four bytes for each Vine entrilfn the 0 dat :

a table. ;Three
of these bytes are one-byte signed numbers having a range of -128 to
;z:; :ngizzf byte contains data ahout color and whether to position or

For each entry,
Byte 1 bit 7 (high bit) fs set 1f a line 1s to be drawn, clear

otherwise. Bits 0-2 contain a color number 0-7 ({f zero, no
- color
chanqe). Use of zero s recommended, this makes it poss;blc to cohtrol

"image color from the program using O8JCOLOR,

Bytes 2.4 are X, ¥, and 2 positions within the 30 space.

The end of the image tahle is indicated ‘ X

APPENDIX B: TECHNICAL DATA -6

P - ii!

o= § =

F ~.'- -".

h-—ur.--

B ——

wy —rqe-

Word Library Structure
and Compilation

Each word entry in the 1ibrary consists of three parts:

1. A "pointer location® containing the address of the next lower word
in the word Vibrary.

2. The word name (ASCII characters with high hit set).
3. The executable machine lanquage code for the word.

The hexadecimal numbers displayed by SLIST are the addresses of the
pointer locations, A number returned by tic (') fs the address of the

executable portion of a word.

During compilation, GraFORTH separates the fnput Vine by spaces into

individual words, then searches through the library for each word,

For each word search, GraFORTH first reads the current value of PRGTOP
to find the top of the word 1ibrary. It then looks here to find 2
pointer containing the address of the tap word within the word
1ibrary. Beginning with this first word, it follows the pninters from
word _to word down throudh the library, At each word, 3 check is made
to see 4f this is the word being searched for. If the word s not
found, the search falls throuah to @ routine which attempts to convert
the word into a number, If this routine falls, the “"Not found® error

is qiven,

Program Vines are compiled directly into 6502 machine lanauane in the
memory immediately abnve the top of the word Vibrary. (f the line s
&n “immediate” command, and not part of word definition, the machine
lanquage code is executrd, then promntly foraotten, If the line s
part of a word definition, the code {3 sovep. not executed, and the

word 1ibrary expands.

At execution time, calls to other words are made through direct
machine lanquage jumps. This s @ major factor in the speed of

GraFORTH,

APPENDIX B: TECHNICAL DATA 8 -7

Lt '
[R el
-y s

.E _—
dad [d

Appendix C: Disk File Directory

TYPE FILENAME LENGTI REMOVE (K?

8 0RJ.FORTH 36 NO

] OBJ.ENITOR] 11 YES, IF 64K

8 0BJ.ENLTORR 1] YES, IF 4Rk

T CHAREDITOR 21 Ho

T IMAGED 1 TOR 24 NO

T PROF ILE 15 K0

T TURTLE 4 NO

T PLAY 22 NO

T STRING WORDS 4 N0

8 CHR.SYS 5 ho

A CHR,STOP L] YES

8 CHR, SLANT 5 YES

] ClR.BYTE] YES

] CHR.GOTHIC 5 YES

8 CHR, STUFF 5 YES

| B CHR .MAXWELL S YES

T QUERY 2 YES - DEMO

T HEADER ¢ 17 YES - DEMO

T MENU A YES - DEMO

T GRAPHICS] A YES - DEMO

1 GRAPMICS2 A YES - NEMO

T GRAPUICS] 10 YES - DEHO

T TEXTDEMO 12 YES - DEMD

T FORTHDESC 17 YES - DEMO

T FLEDERMAUS 12 YES - DEMO

L P1ANO 11 Y[S - DEMO

T CLoCK] YES

8 TETRA 2 Yes - 30

8 xy2 2 YES - 3D

8 BAT 2 YES - 30

8 CUBE 2 YES - 3D

8 HOUSE 2 YES - 3D

(] CHAL 10 . YES -

T BIGCHAL k] YES » PROFILE
c-1

- ——— e

P - A L . a—

e = e
= Ol s

T RTTITTES

T
-~ —

Sad

S TR TR WS g e - ce— eem— - -
- N =

—E—-. =

ASCII Characters & Equivalent Numbers

Appenaix D:
Set Niqh Bit
DEC HEX nec
128 an 0
129 Al 1
130 A2 2
131 13 3
132 - 04 4
133 ns 5
134 an A
135 n 7
136 an 8
137 n9 9
1R RA in
139 m 11
140 AcC 12
14} a 13
142 AE 14
143 AF 15
144 90 Jh
145 91 17
146 92 18
147 93 19
148 R 20
149 95 21
150 9 22
151 97 23
152 9n 24
153 99 25
154 9A 28
155 93 27
156 C 2n
157 0 29
158 9t n
159 " n
160 AD k]
161 Al 1
12 A2 kL)
163 A3 35
164 A 36
165 AS ¥
166 A6 k)
16/ A7 39
168 AO 40
169 A9 41

APPENDIX D: ASCUI CODE TABLE

Clear

HEx

no
nl
02
n3
nA
ns
on
n
nA
no

e

ConTRol.-P
ConTRoL-A
ConTRolL-R
ConTRol -C
ConTRolL-N
ConTRal. -E
ConTRol -F
ConTRol.-G (Rell)
ConTRoL-N (Left Arrow)
ConTRolL-1
ConT0l.-J
f.onTRoL-r
ConThal.-L
ConTRoL-M (Return)
ConTRol-H
ConTRoL-0N
ConTRolL-P
ConThol -1
ConTiolL-R
ConTRol -S
ConTRol-T
ConTitaL-1} (Right Arrow)
ConTRol -V
ConTRonl. -W
ConTRol -X
ConTRolL-Y
ConTRoL-2

ESCape

Reverse Slash

iip Arrow

SPACE .

MVI T S

— o~ -

n -

D e g ——am— . — — - — — —

APPENDIX D: ASCII CHARACTERS AND EOUIVMENT NUMBERS

APPENDIX D: ASCIT CHARACTERS AND EQUIVALENT RUMNBERS
Set MWigh pit Clear

..

Set High Bit Clear = DEC HEX DEC HEX CHAR
DEC HEX Dec nex CUAR ' ;T 212 n4 84 o I
. 213 0§ RS ¢
170 AA 42 2A b h' ' 214 ne A6 56 v
172 AC a4 2C N ' 216 ng LT 58 X
oY & B T T B
! . - 218 DA N SA 4
175 A 4 ”* / o 219 o 9]) [
:;;’ :‘,’ :g ;‘l’ ? ! 220 0C a2 5 Reverse Slash
221 Do a3 50]
174 B2 50 » ? = _.,‘,.:a 272 nE 9 5€ p Arrow
o " 3 - 3 b ceepe 223 DF 95 5
LY, : 224 £0 9 60 *
mooE o n B slg o Zonoonooa
: m- 226 £2 p
::: 2; 22 gs{ ; = ::E 221 €3 929 63 c
: : : 278 £4 100 64 d
185 9 57 39 9 | 229 £S5 11 56 e
186 BA SA A : o —— 230 F6 102 66 f
::; 2:3 23 333] """‘"a 21 3 103 61 a
: < 232 €3 104 6R h
1R9 80 Al n . - 213 £9 s 61 i
190 BE 62 3k > "'"'"_'a 234 EA 106 A A
191 BF 63 ¥F ? - 215 { 107 50 k
192 co 64 an e i ~ 108 C 1
193 cl RS al A _ | §§? Enc) 109)] n
194 c2 66 a2 (] - ""g 230 £F Hn s n
195 cl A7 4 c 1T 219 €F 1l RF 0
196 4 6R “ n 240 F0 12 0 p
197 cs A9 45. 3 = 241 3 1"l n qQ
A B il A S S
: 241 F3 »
200 co 12 an] 294 ra 116 2 t
20} €9 13} 49 [= ~ 245 ¥4 12 7% v
207 CA 7 " J no = 246 F6 118 ’ v
20 8 5 4 K 24) F1 119 n "
204 cc 76 4C L _ 248 Fa 120 " x
08) 1] an M ..~~.,-E 249 F9 121 7 ¥
206 cE 78 4 N -— 250 FA 122 A !
207 CF 19 aF 0
208 00 an 50 P L
209 n Al 51 0,..a
210 02 82 52 R ey
211 nl A3 53 3
;_":""":E APPENDIX D: ASCII CODE TABLF.
APPENDIX D: ASCII CODE TABLE D -2
Fr

———— e - - —

Apr “dix E: Index

2
. 3-13 BLKSIZE 7-12
?UST 5.3n Rlock Imaqe 7-R
5-30 Block Printing 1-A
.‘. 4-14 Blocksize 7-8
. g-éo BYE §-.32
+.00P 3.20
. 5-32 (o
5 a0 caLy 5.31
: 1.6 Carteston Coordinates 6-4
. 314 Character Graphics 1-7
. 3:23 Character Size -3
2 3.23 Character Sets 1-%
o 3.2 Characters, ASCII n-1
o 3.23 Characters, lising 5-19
. 3.23 CHARENITOR 1.7
- CHRADR 1-6
) 3-2 CHRSET 7-6
)= 3-2) B
CHRSI2E 7-3
. . algm 3-10
5-4
A i
SE 5.24
ARORT 7-3 CLRKEY 5-20
ABS 3-10 COLOR 6-6
Addresses 5-4 é.‘gments, Editor a.14
AND 3.2 MPARE 5-19
Apple Graphics 6-3 gow:;:nq Nembers 3-2)
AREG ' 531 ompiling 4-13
Arithmetic Words 3-9 Conventions Used 1-7
ASSIGN 5.12 ‘c:rut:ng gh;ncurs 7-10
AUTODNRAW R-3 reating 3-D Imaqes R-13
“Autonum, Editor 4.7 Cursor Movement -3
AUTORUN 5.26 CR 3-1)
B D ,
Packup Copies 1-9 Dats Storane 5.4
BASE 5.22 Data Stack 3-4
Nases £.22 NECIMAL $-22
BEGIN 3-29 Decision Vards 3-2%
BELL 3-3 Defining Strings 5-10
DINARY 5-22 Nefining Variahles 5-1
APPENDIX E £ -

—— - — . .

e am—-

]
- List -3 OVER 3-7 ;
""’l"'a List, Editor 4-6 Overlays 5-29
T Loop 3-19 Overview 1-4 '
Lowercase Entry 4-2 :
D G .

. ;"'-r"_a P i ,
Defining Words -4 Get, Editor 4-11 o Lt M ‘
Delete, Editor 4-7 GETC 5-20 PAD 5-18 i
Developing Software 10-1 GETKEY 5.20 _ Mathematical Method 8-§ Page lero Memory Map B-1 ;e
Diskette Copy 1-9 GETNUM 5-14 &-:"-a MAX 3-10 PEEX 5-6 I
Display Speed 3.38 GPEEK 6-12 - Memory Addresses 5-4 PEEKW 5-6 '
)] 3-19 GR 3.38 Memory Considerations 3-38 Perspective 8-7)
p0S Commands, Editor 4-11 Graphics Colors 6-6 Memory, Editor 4-12 PICK 3.7)
DOS Communication 5-23 Graphics Display 3.38 t“' l"a Memory Map n-2 Pitch, Music 9-1 i
DOS Location 2-] MEMRD -1 Pizza 3-40 '
D0OS Modifications ~ = 2-3 H MIN 3-10 PLAY n-22)
NRAW 8-15 . . MOD 3-10 pLOT 6-4 ’ '
Drawing 3-D Images 8-3 HEX 5.22 MOVETO 6-14 POKEW 5-5 ‘
OROP g'; Hidden Characters 4.3 Moving Memory 5-30 poP 3-22 X
oupP : - HOME 5.4 oo MOVELN 5-1A4 Position A-8 4
Ouration, Music 9-3 HTAB 5.3 A MOVMEM 5-30 POSN 6-6 s

, Music 9-2 Postfix Notation 3-12 i
Word 9-4 PREG 5.31 '
E 1.J.K = husle Hords PRGTOP 3-8 i
e ,,.,g . ol
EDIT 4-2 I 3-19 b ny o N PRINT 3-13 X
gEditor, Character 7-1 IF 3.26 Pr?nunq :::cs fai 2-?3 :
foitors e SN0 wceolTos - printing lles, Laitar 432
Editor, Text - Image Table Format B-6 , m 'P’E Nested Definitions 3-36 PROF ILE A 1R :
Electric Duet T Insertions 4-4 N I L 6-9 Proqram Compilation A:IJ -
ELSE 3-2 Insertions, Editor 4-8 - - NOTE 9.3 b ot ol Mords 526 :
ENPTY - 6-8 INVERSE 69 — Numbers 3-4 Proarem Size T 3w
ERASE 5-4 J 3-20 ™ 1=md uaber Bases 5.22 Procram Structure 1035
Erase, Editor 4-8 K 3-21 e Number Tables 532 roarem Structy 322 ‘
Erasing 3-D Objects A-17) Numeric Range 3-4 PuLL‘)22 ;
Error chacking 3-36 L . — PuSI - '
EXMONE 6-10 ::1-3 :ﬁ;:“ ;::
£ ' Lanquage Card 2-3 0 ‘
Leaving Editor 4-13 _— A 8-3 . .
Leaving GrafORTH 532 woa=md ORICOLOR 10 R , ;
FILL 6-4 LEFTS Se17 - OBJECT 8-3 READ 4-14 '
Font Selaction 1.5 LENGTH. 5.17 Object Color A-10 READLN %-12 .
FORGET .3 LINE 6ud -- T Objects A-2 REPEAT 131 '
Forqetting Words -7 Line Entries, Editor 4-6 _l_v__:r':g ONJERASE -1 Return Stack 3-21
Forth 13 Line Insertions .4-4 ’ OFF 8-17 Reverse Scroll)-2
" M e S
o - ORMONE - J° 1
[e T {
--'-?«g . Output Characters 1-2 RNDD : \J-I“
U i APPENDIX € £ - :
. o
APPENDIX E E -2
| W i
o

Rotation B-S U

RUN 5.26
UNRBLK 7-14
S . UINDRAW 8-17
. UNL INE 6-8
Save, Editor .10 UNPLOT _ 6-8
SAVEPRG 5.27 UNTIL : 3-29
Saving Character Sets 7-11 Upper and Lower Chse 442
Saving Imaqe Files 8-15 v .
Saving the System 5-27 St
SCALE R-7 ’ ' -
Scaling R-6 YALID 5-14
SCALX R-6 VARI[ABLE . 5-7
SCALY 8.6 Variables 5-17
SCALZ B-A VOICE 9.2
SCREEN R-18 VTAR 5-3
SENUENCE 8-1R
SGN 3-1n w
SIN 3-10
Software Nevelopment 10-1 WIILE 3.3
Snaces in Entries 3.3 WINDOW 5.3
SPCE 3-13 Word Addresses ~ 5230
Sneed 3-36 Word References 3-35
STACK 3.5 Words 3.3
Stack Words 3.7 -
WRITELN 5-12
Start-up Procedures 1-8
Storage and Retrieval 5-5
STRING 5.9 X
Strings 5-9
String Words on Disk 5-17 XP0S 8-8
SWAP 31 XRFG 5-11
XROT" :--;'
XTRA -
T
TEXT 3-8 Y
Test Display 3.3R
Text Files 5.24 YPOS 8-a
Text Formatting Words 5-2 YREG 5-31
THIN 3-25 YROT _ 8-5
3-D Graphics 8-2 YTRAN 8-9
TransFORTH 1-4
Translation . fn.o z
TURN 6-14
TURNTD 6-13 IROT A-$
Turtleqraphics 6-12 LTRAN 8-9

APPENDIX E E - A

GraFORTH Word Library Listing

Word Name Befnre After Page

EDIT - - .7
Loads from disk (4f necessary) and runs the appropriate text
editor,

ELSE .- .- 3.27
Separates the two controlled areas in an IF - ELSE « THEN
construct,

EMPTY xy- --- 6-8
Erases a rectanqular area from the last plotted point to (noy).
ERASE R, .. 5.4
Erases hoth graphics screens, .

EXMODE - ... 8-10

Causes plotted points to turn on corresponding screen locations
that are off, and turn off locations that are on, '

FILL Ry - .o 6t
Fi11s a rectanqular arca from the last plotted uoint to (x,y).
FORGET .o .- -1

Truncates the GraFORTH 1ibrary back to the word that follows
FORGET.

GETC - * = N e s-m
Gets a single character from the keyboard, placing its ASCI!
value on the stack.

GETKEY . aa 5.20.
Reads the keyboard without wntlnn. returning an ASCII valve,
Values over 128 are valid, Should be followed by CLRKEY.

GETNUM ’ - n- 5-14
Converts text string at address a into a numher, Unsuccessful
conversions return 0,

APPENDIX A: WORD LIBRARY LISTING A-6

- oen ued
[IR
EEE......EE!

-

oo gue el

GraFORTH Word Library Listing

Word Name Refore After Pane

GPEEK Xy - ne- A-12
Examines point at screen coordinates (x,y). o {3 nonzero {f
point is turned on, or 0 if point is turned off,

GR - -ea 3.38
Reestahlishes normal GraFORTH {nput and output, and sets the
qraphic disnlay mode.

HEX --- .- 5.22
Sets number fnput and output to base 16,
HOME .- .« 5.4

Erases the screen inside the text window and sets HTAR and YTAR
to the upper left corner of the window,

HTAB L h- - == 5.3
Sets the column for suhsequent printing,

! - .- n- 3-19
Returns the current inncrmost loop value,
IF n - - - - 3.2

Ifnis nonnro. words hetween IF and THEN (or IF and ELSE) are
executed, otherwise necutton continues after THEN (or between
ELSE and THEN). :

INVERSE - - e 6-9
Complements the color for all text and graphics displays
(including black-on-white text).

J - - n - 3.20
Returns the loop value for the next outer lm.
K - .2t
Returns the loop value for the tMrd outer loop.
LINE Xy - .- 6-4

Draws & Vine from the last plotted point to (x,y).

APPENDIX A: WORD LIARARY LISTING A -

—

GRAFORTH MANUAL ERRATA

As with any manual as comprehensive as GraFORTH's, a
few "bugs" managed to creep past our editors.
Please make note of the following changes:

PAGE
3-23

3-31

4-12

8-17

CHANGE

The last paragraph is inaccurate. The
bitwise AND of some nonzero numbers
will produce a zero result. However,
the word AND is usually used with
number comparisons that yield a 1 or
0. If both the top stack value and
the second stack value are 1
(representing "true") then the AND of
the two numbers will also be 1. 1If
either or both numbers are zero, then
the AND will be zero.

The BEGIN...WHILE...REPEAT diagram has
the =0 and <0 reversed. The text for
this section is correct.

The fifth paragraph should refer to
Appendix B, not D.

The word OFF does not immediately
erase the currently selected object.
It causes the next DRAW command to
erase the object,"without redrawing
it. Subsequent commands to the object
w1l redraw it. The folliowing example
erases a 3-D object: :

Ready 3 OBJECT OFF DRAW

