MicroSPARC Inc. Apple ll/lle

G.A.L.E.

by Sandy M. Mossberg MD

GALE

How to get the most out of this manual

This Manual is designed in two parts. The first part contains all of
the information that you need to know to take full advantage of all of
GALE’s powerful features.

The second part, Appendix A on page 49, is a tutorial that shows you
how to use many of GALE’s commonly-used commands. You should jump
ahead to Appendix A if you are unfamiliar with Applesoft line editors,
or even if you just want to get started with GALE right away!

REPLACEMENT POLICY

All MicroSPARC software may be returned for free replacement (please
add $1.50 for shipping) anytime within 30 days of purchase if it is found
to be defective. After 30 days, we will replace a damaged disk upon re-
ceipt of that disk along with $5.00 to cover our costs (please add $1.50
for shipping).

TECHNICAL SUPPORT

Technical support is available at our offices during normal business
hours (Eastern time). We welcome your phone calls (at 617-259-9039)
if you have a problem with using our software. We encourage you to write
with suggestions concerning our programs and documentation.

ISBN 0-912341-06-8
Copyright © 1982 by MicroSPARC, Inc.
Revised January 1984

GALE
TABLE OF CONTENTS

SECTION I: INTRODUCTIONttt 1
SECTION II: STARTUP INFORMATION 2
PART 1: SYSTEM REQUIREMENTS 2
PART 2: INSTALLATION AND CONTROL 2
SECTION III: IMMEDIATE MODE 4
PART 1: OVERVIEW R RN 4
PART 2: EDIT MODE ENTRY COMMANDS 4
NORMAL: ..z : cou s00mssmmas o o pessad dems e nss 4
COMPACTED.ot 5

OB s 5 sa 6 s wiisr s s ietns s sn mish s i srinde® S EH 5

PART 3: GLOBAL COMMANDS ::x:ssosmxsnss snsnssna 5
AUTO) w5000 008 5 oB6 Lo®® £@sa o s ovens o wfinio w sngmsce e e 5

BEOAD ;. imas snsmnns smsssnsians s anismsieon imws 6

CHANGEc0:000iamussnstnmesmesonsesnsssss 6

DISK SPACEFREE...... 8

ESCAPE FUNCTION (MACRO) 8

HIDE. g sms soms smms cmms s oms mphismdogims o amsivme 8
LINEFIND G :oewiiemmoi smmonmisima-d @03 maiins 9
MANUAL ..o cpussnmpivapssnusamrsmussnsssams s 9
POINTERS . . i evimenionewimm s cmass wiars s e mio s 9
RENUMBER ::i.iisississmssenissmissussans sun 9

SEARCH: s 55: embs s amosnmb faniwass smes wu s 13

UNHIDE ... 0 605 im0 s cosac o s sosasmn's i, 13 13
VARIABLE XREF ::.oscnssvvssmnrsns somes saass 14
EXHUME & . 5 s s om st mo v o s § i e oo 14

APPEND . ssis 50 snsssmniamsesasussnsssnsssnnss 15

iii

PART 4: MISCELLANEOUS COMMANDS 15

HELP SCREEN, 15
DECIMAL. TO HEX. : .coicmsimunssoms smas smvsnme 15
HEX TO DECIMAL 16
SECTIONIV: EDITMODEt 17
PART 1: OVERVIEW i, 17
PART 2: EDIT MODE SCREEN 17
PART 3: EDIT COMMANDS.............. 18
CASETOGGLEciiiiiiiiiiii... 18
COMPACT : i sominumismesmme sams smassmnsnnes 19
DELETE ... i 19
END OF LINEccoconeimss vumss sums smmsmus o 19
BIND ; cnmsmms smme smps smasmme vomire o AP TP 19
INSERT . ee vinme cwiwmse e S S5 RG0S R EE a0 20
KILL « cassmms soms cpmssmprnms smis same s saoratsr 20
OVERRIDE., 20
PEEK... 65 65 56 snniems nni 08 smasmar 21
QUIT .. e 21
RESTOREot cimn vwms sminssmssoutscas sanmss 22
START :ccoc suniomssmas smns smms smpramesgmegmms 22
TRUNCATEot 22

ZAP. ... insibEs e mni s EHE R RSB RS REE 22
MACROINSERT, 23
FEIP oo e e s i @3 s $ s Seeimme 23
EXIT EDIL MODE: csu: cumndesmss runs surinns v 23
ALTERNATE EXIT............oiiiiiiiiin, 23
ARROWS ceiiiiii it ionsnmssonssmurnnss 24
HELP SCREENoiiiiiiiiiiiin, 24
PART 4. TYPEOVER 24

iv

SECTION V: ESCAPE FUNCTIONS (MACRO MODE) 25

PART 1: OVERVIEW, 25
PART 2: MACROSCOPEcoiiiiiiinvnnnn. 25
ADD ESCAPE FUNCTION 26
DELETE ESCAPE FUNCTION.................. 28
LIST ESCAPE FUNCTION 28
LISTDEFINED KEYS 28
LOAD GALEFILEo .. 28
SAVE IGALE FILE « & s+ o on s st s s 5 50 o ol 056 578 29
CATALOG DISKETTE 31
EXIT MACROSCOPE : : s simsnas snws smussausa 31
PART 3: LIST OF STANDARD MACROS 31

SECTION VI: OTHER FILES ON PROGRAM DISKETTE 33

PART 1: GALEOUT 33
PART 2: HELLO .. .« v coviiniiein s wa s o555 678 s 33
PART 3: ESCTBL:ALT i w6 w5 swas swsws smosms sw ws wmmss 34
PART 4: GALEG4 it 34
PART 5: GALE//EA0)~ v vsninmsinsitns smesseos see 35
GENERAL :ocvupssssas vees samesassess vedmogs 35
EDEL (o i mas s gm memm s o o wios soponsan S5 5 68 S5 506 35
PART 6: GALE:AMP . .invimmssmmenssanssssomemsis 35
PART 7: GALE MACRO PRINTERS 36
SECTION VII: MEMORY USAGEoa... 39
PART 1: MEMORY MAPS. ..., 39
GALEAS . ..comsinmismnismns smnsmgesssmgsss 39
GALEG4 40
GALEAMPiiiiiiiiiiiicnanicnnenonans 41
GALE/EAQ <« sus smummes s sonass &5 o5 66 42
PART 2: FREE AREA 42

SECTION VIII: SUMMARY OF COMMANDS 43
PART 1: IMMEDIATE MODE COMMANDS 43
PART 2: EDIT MODE COMMANDS 44
PART 3: STANDARD ESCAPE FUNCTIONS (MACROS) 45

APPENDIX A: A SAMPLE GALE SESSION................ 46

vi

GALE-1

GALE
by Sandy Mossberg

SECTION I: INTRODUCTION

A sophisticated utility designed to facilitate all phases of Applesoft
program development, GALE (Global Applesoft Line Editor) is to the
programmer what a word processor is to the author of prose or poetry.
Not only is GALE beautiful, she is intelligent! Line editing, output con-
trol, hexadecimal/decimal conversion, auto line numbering, search and
change, renumber, append, variable cross reference and user-definable
macro function are but some of GALE’s extensive capabilities. Convenient
help screens provide a complete list of commands.

Despite the fact that all commands are simple and mnemonic, practice
makes perfect! Studying the manual and experimenting with GALE will
result in optimal utilization of this comprehensive utility.

GALE-2

SECTION II: STARTUP INFORMATION
Part 1: System Requirements

Operation of GALE requires an Apple II, Apple II Plus, or Apple //e
with Applesoft in ROM (motherboard or ROM card), at least 48K RAM,
one or more Disk II drives, DOS 3.3, and a video device. A printer is
useful but not essential.

Part 2: Installation and Control

There are four versions of GALE on the disk: one for 48K computers,
one for 64K (or larger) computers, one for the Apple //e in 40-column
mode, and one for use with MicroSPARC’s AmperSoft software. The
correct version is automatically installed upon booting the disk or run-
ning the HELLO program.

The discussion below pertains to all versions of GALE, since they are
functionally identical. Minor differences are listed in Section VI.

GALE is written entirely in machine language and does not require
an annoying BASIC interface. A write protect tab should be placed over
the notch on the Program Diskette. Since the Program Diskette is not
copy protected, make a back-up copy (use any copy program such as
COPYA on the DOS 3.3 SYSTEM MASTER diskette) or move all pro-
grams to your work diskette. FID on the DOS 3.3 SYSTEM MASTER
diskette is useful for this purpose.

Since GALE controls the input (KSW) and output (CSW) hooks, the
commands IN#0 and PR#0 will disconnect GALE’s input and output
hooks, respectively. This chore may be simplified by defining a macro
to do the work (see SECTION V, PART 2). RESET (autostart ROM) and
CALL 29952 (old monitor and autostart ROM) reactivate GALE.

GALE does not take kindly to resetting the text window. Doing so may
create "garbage” in the current program, thus damaging it irreparably.
If you desire to work with a contracted text window, first disconnect
GALE’s input hook.

GALE-3

Output, e.g. listing a program, may be aborted by hitting RETURN,
temporarily halted by pressing any other key and restarted by striking
a non-RETURN key. Sound output (bell) is less raucous than that pro-
duced by Applesoft.

GALE is transparent to the user. On installing the program, HIMEM
is set to the value as shown in the Memory Usage Table and MAXFILES
to 3. An immediate or deferred command that resets HIMEM to a value
greater than that noted above or MAXFILES to less than 3 may destroy
GALE and/or DOS.

The ampersand vector is not used by GALE, allowing the user to employ
this powerful character for his’/her own purposes.

When entering control characters, e.g. CTRL-C, depress the control
key and the character simultaneously.

GALE-4

SECTION III: IMMEDIATE MODE

Part 1: Overview

Edit mode, macro mode, global commands, hexadecimal/decimal con-
version, automatic creation of new line numbers and a HELP SCREEN
are all accessed via the immediate mode. A nonflashing cursor (NFC)
indicates that a command or portion thereof is expected. Edit commands
start with one or two slashes. Global commands begin with a period and
an inverse letter or symbol. Deferred mode commands (those in a run-
ning program) bypass GALE’s input hook, thus allowing normal pro-
gram operation and testing.

Error messages can originate from three sources: (a) A leading question
mark signifies generation from Applesoft ROM. (b) A leading exclama-
tion mark indicates origin from GALE. (c) No leading punctuation mark
defines a DOS message.

Syntactic abbreviations used below are self-explanatory except for d
which means "delimiter”. Parentheses define optional command struc-
ture. The hyphen is used for clarity and should not be entered on the
screen. No space should exist between a command and its argument.
Whereas Applesoft confines users to line numbers smaller that 64000,
GALE enables entry of line numbers as large as 65535. Pressing RE-
TURN ends all sequences that require an argument after the command.

Typing PR#slotnumber of printer before entering a command will
usually cause the information following the command to be hardcopied.
Notable exceptions are the .E and .L global commands which may cause
erratic activity of your printer because of control characters. On termina-
tion of printer activity, an automatic RESET is executed.

Part 2: Edit Mode Entry Commands

/ linenum
The line whose number follows the slash is presented for editing in
a format similar to that of a normal Applesoft listing. If the line is longer

GALE-5

than 251 characters, the message USE // flashes in the MODE section
of the edit screen and the user is returned to BASIC. If the entered line
number does not exist, a bell rings and the Applesoft prompt reappears.

// linenum

The line whose number follows the double slash is offered for editing
in compacted form, i.e. PRINT statements are replaced by ? to conserve
space in the input buffer. If the line is still longer than 251 characters,
the message TOO LONG flashes in the MODE display and edit mode
is aborted. Although GALE cannot create an illegal line length and Apple-
soft allows only 239 characters per line, with a bit of ingenuity one can
produce a line that contains more than 251 characters from the keyboard
or the system monitor. The practice is a poor (and unnecessary) one.
When encountered, such a line should be broken into two parts either
by cursor editing or by rewriting. Again, entry of a nonexistent line is
signalled by a beep.

CTRL-G

This command GETS the edit mode. When writing a program line,
command, or other text in the immediate mode, pressing CTRL-G
transfers the user directly to the edit mode with the cursor placed on the
first character in the line. No minimum number of characters is required,
i.e. typing CTRL-G directly following the Applesoft prompt presents the
edit mode with a blank flashing cursor on the left edge of the screen.
A need to make changes in the line being typed or to enter lower case
within a REM statement would evoke usage of this option. Implement-
ing the edit mode in this manner disables the RESTORE command in
edit mode (see SECTION IV, PART 3) and does not take advantage of
the EXHUME command (see this SECTION, PART 3).

Part 3: Global Commands

.A linenum (,increment)
AUTO line numbering facilitates entry of program line numbers in an

GALE-6

orderly sequence. A NFC prompts for the starting line number which
is required. The increment defaults to 10 if not specified.

Once AUTO is set, a line number is entered by pressing either the for-
ward or backward arrow immediately following the Applesoft prompt.
The forward arrow produces the starting line number and subsequent in-
crements. The backward arrow always prints the expected line number
(starting or incremented) minus the increment. If the backward arrow
is used to produce the starting line number, odd but predictable numbers
may be obtained, e.g. (a) .Al0,11 prints 65535 (10—11=—1 which to the
Apple means 65535). (b) .AlQ,1 prints 9 (10—1=9). It is always wiser
to use the forward arrow to produce the initial line number. The backward
-arrow should be employed to repeat a subsequent line number for the
purpose of rewriting the line. When a line number has already been
printed, if the next line number expected by pressing the forward arrow
exceeds 65535, a bell sounds and AUTO is disconnected.

The flexibility of this option is enhanced by the fact that by pressing
neither arrow, you may enter any line number desired.

.B ;

The starting (A) and length (L) parameters for the last BLOADED pro-
gram are printed. The optimal time for use of this option is immediately
after loading a binary program.

.C d-searchstring-d-changestring-(d)-(linenum or linerange)
C d-searchstring-d-d-(linenum or linerange)

The first CHANGE option allows substitution of one string for anoth-
er over an optional range of lines or within a single line. Unless a line
number or range is required, the ending delimiter may be omitted. The
second CHANGE option involves replacing the search string with a null
string, i.e. deleting the search string. A flashing cursor prompts for in-
put, and normal Apple ESCAPE editing functions are supported. The
backward arrow does not invade the .C command; otherwise, both arrows
operate normally. CTRL-C aborts input.

The delimiter may be any of the following ASCII characters

GALE-7

(""#$%&"'()*+,— ./). A potential delimiter may be placed
within either string provided that another valid delimiter is used. The
most popular delimiters are the quotation mark and the slash. To search
for the quote, you may use a slash as the delimiter, and vice versa. For
example, to change the string "FOR ME"” to "FOR US”, enter .C/"FOR
ME"/"FOR US” not .C""FOR ME""FOR US.

Strings may contain no more than 30 characters. Any control character
may be included in a string by preceding its insertion with a CTRL-O
(override). If the entry following CTRL-O is not a control character, it
is rejected and a bell sounds. Despite the listing formats used by GALE
and by Applesoft, spaces may exist only between quotation marks (see
above example) and after DATA and REM statements. For example, to
change B = 15 to BB = 15, type .C/B=15/BB=15, not .C/B = 15/BB
= 15. Failure to adhere to this convention causes undesirable results.

A line range must be separated by a comma and produces an error
message if the ending line number is less than or equal to the starting
line number. Failure to enter a line number or range results in a com-
plete program search/change.

The search string supports a universal match (wildcard) character, the
"at” symbol (@). If found in the change string, @ is interpreted literally.

GALE generates a !LINE #XX TOO LONG message if a replacement
causes the input buffer to exceed 249 characters (CHANGE aborts to
BASIC) or if a line in program memory detokenizes to more than 249
characters (CHANGE continues at next line). When the replacement
moves a program to within $100 (256) bytes of HIMEM, a !MEMORY
FULL message terminates the routine with all prior changes remaining
intact.

In using either CHANGE option, the user is given an opportunity to
visualize each change before it is made. The message CHECK CHANGES
(Y/N)? appears. By typing N, all replacements are done automatically.
Whereas this process usually occurs rapidly, if numerous changes are
required on a single line, a considerable time may elapse before the line
is printed, so be patient and do not press RESET. An affirmative response
causes GALE to present each change for review. A flashing cursor appears

GALE-8

at the start of the altered line. If you type N, the cursor is replaced by

an inverse N, the change is rejected and the original line reappears. Press-

ing Y converts the cursor to an inverse Y and directs the change to be

made in program memory. CTRL-C returns the user to BASIC. Any oth-

er reply evokes a beep and the cursor continues prompting for a response.

When all changes have been acted upon, immediate mode is reentered.
Output control is described in SECTION II, PART 2.

.D

This command displays the number of free sectors on the diskette in
the most recently accessed drive. A sample message would be DISK
SPACE FREE (D2) = 164.

E

This option displays the installed ESCAPE FUNCTION TABLE. With-
in the realm of GALE, "macro” is synonymous with "escape function”.
The meaning of special keys is presented on the second display line to
aid interpretation of the macro definition (see SECTION V, PARTS 1 and
2). After one screen page of macros is printed, the message PRESS ANY
KEY appears. By pressing a key, the next page comes into view. When
the macro table is completed, the Applesoft prompt emerges.

H

The HIDE command transfers the program currently in memory to
that location immediately below HIMEM. HIMEM is reset to protect
the hidden program, normal program memory is cleared and the message
PROGRAM NOW HIDDEN! appears. This option may be utilized for
two purposes: (a) Temporarily to tuck away your current program so that
new Applesoft code may be written and tested. (b) As a prelude to the
APPEND command.

If no program exists in memory, the HIDE command evokes the
message !NO PROGRAM IN MEMORY. If a program is already hid-
den, 'PROGRAM ALREADY HIDDEN is displayed. If the program end
is within $200 (512) bytes of HIMEM, !MEMORY FULL is printed.

GALE-9

.L linenum

LINEFIND locates the starting and ending RAM addresses of the line
whose number is given. It is useful for observing the tokenized line so
that the line may be altered within the system monitor. For example, if
one desired two or more credit lines (REM statements) with identical
numbers at the end of a program, the appropriate line or lines could be
located by LINEFIND and the line number bytes (3rd and 4th bytes in
the line) changed.

Should the given line number not be present, a beep sounds and Apple-
soft is reentered.

M
MANUAL line numbering turns off the AUTO line numbering mode.

.P

POINTERS displays the following Applesoft pointers: (a) START of
program. (b) LOMEM (equal to the start of simple variable space and
one or two bytes higher than the end of program). (c) Beginning of
ARRAY space. (d) Beginning of STRING storage. (¢) HIMEM. (f) FREE
bytes available for programming (the space between the top of arrays and
the bottom of strings). Free space will be meaningful only if the Apple-
soft program in memory has been run.

Consult the APPLESOFT II BASIC PROGRAMMING REFERENCE
MANUAL, pp 140-141 (or the APPLESOFT BASIC PROGRAMMER'’S
REFERENCE MANUAL, p. 278), for the zero page addresses of the
pointers used above.

.R (N-linenum)(,I-increment)(,F-linenum)(,L-linenum)

The RENUMBER command must be followed by at least one (any one)
of the four possible parameters: (a) N-linenum is the new starting line
number (default = 10). (b) I-increment is the increment between
renumbered lines (default = 10). (c) F-linenum is the number of the first
line to be renumbered (default = first line of program). (d) L-linenum

GALE-10

is the number of the last line to be renumbered (default = last line of
program).

This syntax allows maximal ease and flexibility by using mnemonic
letters to indicate parameters, by not demanding a special order of entry,
i.e I may precede N, L may precede F, etc., and by permitting all or
some lines to be renumbered. The requirement for at least one parameter
is a fail safe mechanism to prevent the user from renumbering the pro-
gram after inadvertently pressing .R-RETURN. To renumber an entire
program in increments of 10, a shortcut command is available : .R- (no
RETURN is necessary).

Only valid input characters (N, I, F, L, decimal numerals, comma)
are accepted. A bell informs you of spurious input. The backward arrow
does not invade the .R command, and the forward arrow does not space
out of the input field. Should a nonexistent line number be chosen, the
next highest line number is selected.

If no program exists in memory, the Applesoft prompt returns follow-
ing a beep. You are assured of normal operation by observing back-and-
forth motion of an asterisk on the command line. Each movement of the
asterisk indicates that a line has been renumbered and the entire pro-
gram has been searched for compatible GOSUB, GOTO, THEN,
ON...GOTO, ON...GOSUB, ONERR GOTO, LIST, DEL, and RUN
statements which also have been renumbered. If RESET is pressed before
RENUMBER ceases, the program effectively is destroyed.

RENUMBER may convert a legal GALE line length (251 detokenized
characters or less) into an illegal length by adding numerals to the line
number. For example, by changing line number 1 to line number 10000,
four characters are added. If the detokenized line length originally was
148 characters, it would be 152 characters after renumbering and could
not be presented to edit mode (consult // linenum in this SECTION about
how to deal with illegal line length). For the above reason, try to keep
line size smaller than 248 detokenized characters.

Six error messages may occur, most for a variety of reasons: (a)
'RANGE ERROR is printed when L equals or is less than F, a zero in-
crement is entered, I would cause a line number larger than 65535, or

GALE-11

no line exists in the specified range. (b) !OVERLAP ERROR occurs when
any combination of parameters would cause lines out of numeric sequence
or duplicate line numbers. (c) ISYNTAX ERROR (GALE) occurs if no
parameter is given, the comma is the first character entered or duplicate
parameter letters are given. (d) 7SYNTAX ERROR (Applesoft) is
generated when no number is placed between a parameter letter and a
comma. (e) 2ZILLEGAL QUANTITY ERROR results from a line number
or increment greater than 65535. (f) '!MEMORY FULL occurs when the
program end is within $A00 (2560) bytes of HIMEM. This leeway is
adequate even for huge programs and is unlikely to prevent you from
using RENUMBER. Error examples are listed below.

SAMPLE PROGRAM

100 TEXT : HOME

110 INPUT "CHOOSE NUMBER ”;N$: PRINT
120 ON VAL (N$) GOSUB 200,300: END

130 PRINT CHR$(7): GOTO 100

200 PRINT "YOU CHOSE 1”: RETURN

300 PRINT "YOU CHOSE 2”: RETURN

EXAMPLES OF RENUMBER ERRORS

'RANGE ERROR

(1) .RF10,L9 or .RFI0,L10 (F <=L
(2) .RN10,I0 Ia=0
(3) .RF120,N1000,122000 (old #300 becomes new #6700

which is illegal)
(4) .RF210,L290,N250 (no # in specified range)

GALE-12

'OVERLAP ERROR
(1) .RFI110,1.200

(2) .RF120,N60

(3) .RF110,L.200,N120,1100

(4) .RN100,F110

(5) .RN200,150,F120,L.200

ISYNTAX ERROR

@ .R

2 R,

(3) .RN100,120,L200,N50

?SYNTAX ERROR
(1) .RN100,F,L500

(since N defaults to 10, old #110
becomes new #10 and #10 cannot
follow #100)

(old #120 becomes new #60 and
#60 cannot follow #110)

(old #130 becomes new #320
which is greater than
unrenumbered #300)

(old #110 becomes new #100
which duplicates unrenumbered
#100)

(old #200 becomes new #300
which duplicates unrenumbered
#300)

(no parameter)
(leading comma)
(N duplicated)

(no # between F and comma)

?ILLEGAL QUANTITY ERROR

(1) .RF10,L65570,N1000

(L parameter illegal)

GALE-13

.S d-searchstring-(d)-(linerange or linenum)

SEARCH displays the program lines that contain the search string over
an optional range of lines or within a single line. Unless a line number
or range is required, the ending delimiter may be omitted. A flashing
cursor prompts for input, and normal Apple ESCAPE editing functions
are supported (ESC-A-F, ESC-IJ KM, ESC-@; see APPLE 1I
REFERENCE MANUAL, pp 34-35, or the APPLE //e REFERENCE
MANUAL, pp 55-56). The backward arrow does not invade the .S
command; otherwise, both arrows operate normally. CTRL-C aborts
input.

The delimiter may be any of the following ASCII characters (! " # $
% &' ()* +,-./). Apotential delimiter may be placed within the
string provided that another valid delimiter is used. The most popular
delimiters are the quotation mark and the slash. To search for the quote,
use a slash as the delimiter, and vice versa. For example, to search for
the string "FOR ME”, enter .S/"FOR ME" not .S”""FOR ME".

The search string may contain no more than 30 characters. Any con-
trol character may be included in a string by preceding its insertion with
a CTRL-O (override). If the entry following CTRL-O is not a control
character, it is rejected and a bell sounds. Despite the listing formats used
by GALE and by Applesoft, spaces may exist only between quotation
marks (see above example) and after DATA and REM statements. For
example, to search for B = 15, type .S/B=15, not .S/B = 15.

A line range must be separated by a comma and produces an error
message if the ending line number is less than or equal to the starting
line number. Failure to enter a line number or range results in a complete
program search.

The search string supports a universal match (wildcard) character, the
"at” symbol (@).

Output control is described in SECTION II, PART 2.

U
The UNHIDE command transfers a hidden program to normal pro-
gram memory. If a program already exists in memory, the message OVER-

GALE-14

WRITE CURRENT PROGRAM (Y/N)? appears. Pressing N aborts
UNHIDE and prints PROGRAM STILL HIDDEN!. Hitting Y replaces
the current program with the hidden one. A successful restoration of the
hidden program produces the message PROGRAM UNHIDDEN!.

If no program is hidden, the message !NO PROGRAM HIDDEN is
printed.

A%

VARIABLE CROSS REFERENCE produces an alphabetical (ASCII
order) list of all program variables and the numbers of the lines in which
each variable occurs. Simple and array variables of each form (real,
integer, string) are referenced. If a function variable is defined (DEF FN),
it appears at the bottom of the list. Should program memory be empty,
a bell sounds and the prompt emerges.

Aside from being an invaluable aid in program development, this option
assists in determining if a desired new variable is already present. Be
alert to the fact that although names of variables may be different, Apple-
soft uses only the first two characters to distinguish one name from
another.

X

GALE stores the original version of each line presented to the editor
by the / or // commands. While in edit mode, if you change a line and
wish to recall the original line, the .X command accomplishes this feat
(see SECTION IV, PART 3). On exiting the edit mode, however, the
altered line is placed in program memory and the original line cannot
be recovered. EXHUME enables you to press .X to print the original
line in compacted form. By moving the cursor to the first numeral of
the line number (ESC-I,J,K,M) and tracing over the entire line with the
forward arrow, the original line may be restored. If edit mode is entered
via CTRL-G, the EXHUME buffer will retain the prior line.

If no line has been edited, EXHUME usually prints 0 REM GALE
but may display. garbage.

GALE-15

o

APPEND causes a hidden program to be attached to the end of a pro-
gram in memory. The first line number of the hidden program must be
higher than the a last line number of the program in memory, else the
following sample error message appears:

IOVERLAP ERROR
PART 1: LL = 700
PART 2: FL = 500

The error has occurred because the last line (LL) of the program in
memory (PART 1) is greater than the first line (FL) of the hidden pro-
gram (PART 2).

Blank program memory evokes the message !NO PROGRAM IN
MEMORY. If no hidden program exists, NO HIDDEN PROGRAM is
printed.

Part 4: Miscellaneous Commands

CTRL-@

Pressing CTRL-SHIFT-P clears the screen and displays all immediate
mode commands. This HELP SCREEN moves out of view as scrolling
occurs.

decnum

The DECIMAL TO HEX converter gives the hexadecimal equivalent
of the decimal argument (decnum). Any number between —65535 and
65535 is accepted. If this range is violated, ZILLEGAL QUANTITY
ERROR is generated. Only decimal numerals and the minus sign are valid
input. Leading zeroes are permissible. A !SYNTAX ERROR results from
invalid or absent input. A quirk of Applesoft produces a rare 70UT OF
MEMORY ERROR. If this occurs, reenter your number and all will work
normally.

GALE-16

$ hexnum

The HEX TO DECIMAL converter gives the decimal equivalent of
the given hex number (hexnum). Positive numbers between 0-$FFFF that
contain one to four hex digits are accepted. Leading zeroes are allowed.
Numbers between $8000-$FFFF produce positive and negative (com-
plementary) values. Any deviation from the above format forces a

ISYNTAX ERROR.

<— and —>
See .A in this SECTION.

GALE-17

SECTION 1V: EDIT MODE

Part 1: Overview

The GALE method of program line editing is unique in that GALE
continually updates the input buffer ($200-$2FF) by reading the line
directly from the screen. Other editors first update the input buffer and
then reprint the line in fixed format. The advantages of GALE’s method
are numerous. The line to be edited, once presented, requires no special
formatting, thus making readability optimal. No flickering of the line
is noted with each alteration. As graphically seen by the remarkable PEEK
command (see this SECTION, PART 3), the input buffer is maintained
in a continually packed state. Editing a line containing a REM or DATA
statement does not create that irritating extra space after the REM or
DATA. Whereas Applesoft and other line editors allow spaces within
DATA statements, GALE automatically packs all data not enclosed within
quotation marks, thus making the final product neater.

Experiment with lines formatted by Applesoft and by GALE. Although
many similarities exist, you will be pleased with the differences.

Part 2: Edit Mode Screen

Edit mode screen formatting is illustrated in FIGURE 1. The row be-
neath the title displays the last issued command and the number of signifi-
cant line characters. The sample line contains 39 significant characters.
The first space after REM never is counted but the space between
ACCESS and COMMAND is meaningful. All spaces preceding the REM
statement are extraneous to the input buffer but make the line easier to
read.

GALE-18

FIGURE 1: Sample EDIT MODE Screen With PEEK On
(Cursor On A, < And 0 Inverse):

GALE LINE EDITOR
MODE: INSERT [] CHARS: 39

10 D$ = CHRS$ (13) + CHR$ (4): REM ACCE
SS COMMAND <

10D$=CHR$(13)+ CHR$(4):REMACCESS COMMANDO

In contrast to Applesoft which allows a maximum of 239 line characters,
GALE permits 251 characters. On reaching the 245th character, the display
becomes inverse and a bell sounds with each additional entry. Good pro-
gramming habit dictates that the line be ended at this point or sooner.
When 250 characters are present, MAX flashes in place of the actual
count. One additional character is permissible, but on entering the 252nd
character, edit mode is terminated, all characters save the final one are
preserved and the message ABORT flashes in the MODE display (the
flashing is designed to irritate, not to please).

The line to be edited is shown between the two horizontal boundaries.
If present, control characters are displayed. An inverse < serves as the
end of line (EOL) marker and always is preceded by a space. Entry of
code is prevented if the EOL marker would be caused to invade the lower
boundary (a situation that may be provoked by playfulness, not need).

The PEEK buffer (see this SECTION, PART 3) is displayed below the
lower boundary.

Part 3: Edit Commands

CTRL-A (MODE: UP CASE) — Not Functional in Apple //e Version
The CASE TOGGLE switches between upper and lower case mode.

GALE-19

When lower case is activated, an inverse L appears in the word GALE
on the title line. Unless your Apple is equipped with a special adapter,
lower case characters are displayed on the screen as apparently mean-
ingless non-alpha "garbage” but are interpreted correctly by printers with
lower case capability.

CTRL-C (MODE: COMPACT)

The COMPACT command converts PRINT to its Applesoft abbrevia-
tion, ?. This conserves space, thus allowing more characters to be entered
in a given line. If an ending DATA or REM statment is followed by text,
a trailing space appears.

CTRL-D (MODE: DELETE [])

The DELETE command causes disappearance of the character under
the cursor, with appearance of that character between the brackets in the
MODE display. The cursor does not move, and the remainder of the line
is pushed left to fill the space.

CTRL-E (MODE: LINE END)

The END command moves the cursor to the end of the line (one posi-
tion to the left of the EOL marker). It is valuable as a prelude to adding
additional code or, with the backward arrow, to edit the last few line
characters.

CTRL-F searchchar (MODE: FIND [])

The FIND command is used to locate any control or noncontrol
character to the right of the cursor. If the search character is present,
the cursor jumps to its next occurrence in the line and the character is
placed between the brackets in the MODE display. Subsequent occur-
rences of the search character are located by again pressing that character.
Absence of the search character causes a bell to sound and the mode
display to clear.

For example, to find all occurrences of CTRL-D to the right of the
cursor, enter CTRL-F followed by CTRL-D repeatedly until the bell is
heard. When still active, FIND is terminated by pressing any character

GALE-20

other than the search character. If that entry represents a valid command,
it is executed. A complete line search is best accomplished by using the
START command to position the cursor at the beginning of the line, and
the FIND command to search the entire line except for the character under
the cursor. CTRL-X, CTRLY and CTRL-Z are used to find \ , [, and
__, respectively. The trade-off is that one cannot search for these three
symbolic control characters.

The FIND command is particularly useful for jumping from statement
to statement by using : as the search character.

CTRL-I insertchar or insertstring (MODE: INSERT [])

The INSERT command allows insertion of one or more noncontrol
character to the left of the character under the cursor. With each inser-
tion, the remainder of the line and cursor move right to make room for
the new character, which appears between the brackets in the MODE
display. To insert control characters, see CTRL-O.

For example, using FIGURE 1 as a reference, you will note by the
MODE display that INSERT is active. Typing the word DISK followed
by a space will make the REM statement more descriptive. Insertion mode
is terminated by entry of any control character. If that control character
represents a valid command, the command is executed; otherwise, the
MODE display clears and the editor awaits another command.

CTRL-K (MODE: KILL)
The KILL command prints \ and aborts to immediate mode with the
line unchanged from its original form.

CTRL-O ctrichar (MODE: CTRL ENTRY [])

The OVERRIDE command allows insertion of one control character
behind the cursor. A NFC prompts for input. The remainder of the line
and cursor move right to make room for the new character, which appears
between the brackets of the MODE display. The OVERRIDE command
becomes inactive following the insertion.

Characters such as CTRL-M (RETURN) and CTRL-J (linefeed) will
assist you in formatting REM statements.

GALE-21

CTRL-P (MODE: BUFFER)

The unique PEEK command toggles a display of the contents of the
input buffer below the lower boundary line (see FIGURE 2). PEEK is
an instructive method of watching GALE’s editor in action and observing
how the input buffer always remains packed. If the display is on when
the edit mode is exited, a hex printout of the tokenized input buffer is
presented along with a character count (see FIGURE 2). By comparing
the untokenized character count to the tokenized count, one usually finds
the latter to be smaller. Tokenization is Applesoft’s method of conserv-
ing space by replacing keywords with tokens. /un/Consult the APPLE-
SOFT II BASIC PROGRAMMING REFERENCE MANUAL, pp 121,
138-139, or the APPLESOFT BASIC PROGRAMMER’S REFERENCE
MANUAL, Volume 2, pp 280-282, for a keyword table and ASCII
character codes.

If the COMPACT, RESTORE or HELP SCREEN option is invoked,
the PEEK buffer disappears.

FIGURE 2: Sample Screen On Completion of EDIT MODE
(PEEK ON) (< And 0 Inverse):

GALE LINE EDITOR
MODE: CHARS: 11

20 FORI=1TO0S5 <

TOKENIZED INPUT BUFFER
32308149D031C13500
CHARS: 8

CTRL-Q (MODE: DONE)
The QUIT command deletes all characters from the cursor to the EOL
marker. Edit mode is exited with preservation of all code behind the

GALE-22

cursor. Lines with illegal line numbers may readily be deleted by posi-
tioning the cursor between the line number and the first line character
and pressing CTRL-Q.

CTRL-R (MODE: RESTORE)

The RESTORE command recalls the original line, thus negating all
changes. The cursor is repositioned on the first character after the line
number. If the edit mode was entered by CTRL-G, the RESTORE
command is disabled.

CTRL-S (MODE: LINE BEG)
The START command places the cursor on the first character in the
line. It is convenient as a prelude to changing the line number, deleting

a line with an illegal number and searching the entire line by using the
FIND command.

CTRL-T (MODE: TRUNCATE)
The TRUNCATE command deletes all characters from the cursor to
the EOL marker. Unlike the QUIT command, edit mode is preserved.

CTRL-Z zapchar (MODE: ZAP [])

The ZAP command deletes all characters from the cursor to the zap
character to the right of the cursor. The cursor appears on the zap
character, which is now shown between the brackets in the MODE display.
Pressing the zap character again performs another deletion. If no zap
character exists to the right of the cursor, a bell rings and the MODE
display clears.

For example, to delete two statements from a line, position the cursor
on the first character of the initial statement to be zapped, and type CTRL-
Z : :. When still active, ZAP is terminated by pressing any character
other than the zap character. If that entry represents a valid command,
it is executed.

GALE-23

CTRL-X, CTRLY and CTRL-Z are used to designate \ , [, and __ ,
respectively, as the zap character. Of course, these three symbolic con-
trol characters cannot be used as zap characters.

ESC indexchar (MODE: MACRO [])

Pressing ESCAPE followed by a defined ESCAPE FUNCTION key,
1.e. entering a macro, inserts the macro to the left of the cursor. The re-
mainder of the line and cursor move forward to accommodate the new
code, and the function key appears between the brackets in the MODE
display. The MACRO INSERT mode becomes inactive following the
insertion.

Any macro is available, regardless of whether it is recursive or it ends
with a carriage return (see SECTION V, PARTS 1 and 2).

The availability of macros in both immediate and edit modes is a power-
ful feature of GALE.

CTRL- ~ , (MODE: FLIP)

Pressing CTRL-~ , replaces the edit mode screen with the screen
present before entering edit mode. The very next keypress returns you
to edit mode. This FLIP option is convenient for reviewing the contents
of a line that was erased by the edit mode screen. Exiting to the original
text page one is accomplished by the .X command which is described
below in this Part.

RETURN (MODE: DONE)
Pressing RETURN (CTRL-M) ends edit mode and places the line into
program memory.

CTRL-X

This alternative method of EXIT from the edit mode places the line
in program memory and returns you to the screen page that was present
on entering edit mode.

GALE-24

——> and <—— (MODE: —>) (MODE: <——)

The forward arrow (CTRL-U) and backward arrow (CTRL-H) work
normally except that the former does not impinge upon the EOL marker
and the latter does not back into the upper boundary line.

CTRL-@

Pressing CTRL-@ toggles a HELP SCREEN display beneath the lower
boundary line. All edit mode commands are listed. If the PEEK buffer
(CTRL-P) is entered, the HELP SCREEN disappears.

Part 4: Typeover (MODE: TYPE [])

If none of the edit commands (see PART 3 of this SECTION) is entered,
typing a noncontrol character replaces the character under the cursor.
The new character appears within the brackets in the MODE display.
Control characters are inserted by using the OVERRIDE command (see
this SECTION, PART 3).

GALE-25

SECTION V: ESCAPE FUNCTIONS (MACRO MODE)

Part 1: Overview

ESCAPE FUNCTIONS are user-definable commands that may be
elicited by pressing the ESCAPE key followed by a character (index code)
that evokes the function. A NFC prompts for the index code. Typing an
undefined key ends macro mode, and a flashing cursor returns. ESCAPE
FUNCTIONS are stored in GALE’s memory as strings of characters that
are printed on the screen exactly as if they had been typed by the user.
Pressing .E in immediate mode (see SECTION II, PART 3) lists all
ESCAPE FUNCTIONS, i.e. the index codes followed by the character
strings.

In defining ESCAPE FUNCTIONS, a macro command is created by
placing a carriage return (CR) at the end of the string. Recursion is the
ability of a macro to call itself, i.e. to remain in macro mode when the
function is completed. Recursive function is defined by placing an asterisk
(*) at the end of a character string and is particularly valuable in
manipulating cursor movements.

Macros may be employed for numerous purposes. A partial list
includes: (a) Inserting commonly used words or phrases into program
lines in immediate and edit modes. (b) Issuing standard Applesoft and
DOS commands in immediate mode. (c) Evoking creative and useful com-
mands in immediate mode. (d) Controlling cursor movement in immediate
mode.

Part 2: MACROSCOPE

This machine language program requires no Applesoft interface. Run
it with the command BRUN MACROSCOPE (with the appropriate suffix,
if necessary), or, if GALE is installed, press ESC-@. To move
MACROSCORPE to your work diskette, the FID program on the DOS

GALE-26

3.3 SYSTEM MASTER diskette may be used. Running MACROSCOPE
destroys the Applesoft program in memory, so save it before using
MACROSCOPE.

A brief explanation of how GALE is installed is useful when employ-
ing the LOAD and SAVE options of MACROSCOPE. When GALE is
BRUN, it is loaded at $3200, the DOS buffers are moved down and the
program is transferred into the freed space between DOS and its buffers
where it becomes activated. When MACROSCOPE refers to the
"currently installed program,” it denotes the active GALE program. When
MACROSCOPE loads GALE from the diskette, it loads the inactive
version, which can be saved back to the diskette.

Temporary macros are created by loading the currently installed macro
table into MACROSCOPEs edit buffer, adding or changing macro defini-
tions and saving the altered table back to the active GALE program.
Permanent changes must be made to the GALE program on the diskette.
GALE first is loaded, its macro table comes to reside in the
MACROSCOPE edit buffer and, after making the desired changes, the
entire GALE program must be saved back to the diskette.

On running MACROSCOPE a menu is presented, below which a count
of free and used bytes is listed. No more than 512 bytes can exist in the
macro table. At any time, pressing RESET (autostart ROM)) returns you
to the menu; in fact, the only method of terminating the program is to
choose the proper menu selection or to turn off the power. In most cases,
pressing RETURN at the beginning of an input sequence or typing CTRL-
C during the input also places you back in the menu.

Your first step should be to employ the LOAD option to move a macro
table into the MACROSCOPE buffer. If this is not done, an attempt to
choose an option other than EXIT produces the error message !NO FILE
LOADED. Each menu choice is explained below:

() A - ADD ESCAPE FUNCTION: This option evokes a HELP
SCREEN. The following important characters are defined: CTRL-[
(ESCAPE), CTRL-M (CR), CTRL-U (forward arrow), CTRL-H
(backward arrow) and * (recursion). Special characters include the final
four listed above plus] ([), / (\), — (), CTRL-C and CTRL-O. To en-

GALE-27

ter a special character, press CTRL-O followed by the desired character.
@cmd\@CTRL-[may be entered directly by hitting the ESCAPE key.
Free bytes are displayed below the HELP SCREEN and are continually
updated as macro definitions are constructed.

Creation of a macro is prompted by the message ADD WHICH KEY?
RETURN (CTRL-M) is the only key that permits direct escape from this
input request. Any character except CTRL-M is acceptable and may be
typed without use of CTRL-O. The character that you enter is the index
code for the macro. If your chosen character already is in use, an error
message is shown. For example, if A is pressed, the message A
ALREADY DEFINED! appears, and by pressing any key you are pro-
mpted for another selection.

To redefine an existing macro, it first must be deleted. Entry of an
unused character evokes the message DEFINE FUNCTION:. Creation
of the macro is simple — just type it in. The forward arrow is disabled
and the back arrow is destructive. No more than 254 characters are allow-
ed. A bell warns when the 251st character is entered. If the limit is ex-
ceeded the message MORE THAN 254 CHARACTERS! appears and
you must start again. Remember that CTRL-O must precede entry of
special characters (NFC appears). For example, to place a CR after a
macro, type CTRL-O CTRL-M. When RETURN is pressed, the defined
macro is added to the edit buffer of MACROSCOPE.

In defining macros, when five or fewer free bytes remain and another
character is typed, a warning bell sounds. If no bytes remain, further
entry generates the message '!MACRO TABLE LIMIT EXCEEDED. On
pressing any key, the menu is reentered.

To make a macro recursive, CTRL-O * is required. Since no character
may follow the symbol for recursion, the cursor disappears and two
options exist. CTRL-C aborts the input, while any other key places the
definition in the edit buffer.

Avoid using ESCAPE as the final character in a macro definition. It
serves no purpose and may create a flashing index character which you
cannot access or delete.

An example of creative macro programming is the definition

GALE-28

CALL-375: CALL—365: CALL 1002 CTRL-M. Its function is to discon-
nect GALE’s hooks by resetting normal hooks. The calls to $FE89 (—375)
and $FE93 (—365) are equivalent to IN#0 and PR#0, respectively. The
final call notifies DOS, and CTRL-M is a CR. Define the X key
(mnemonic for "exit GALE") in this manner and you will have a valuable
new macro. As you can see, the possibilities are vast.

(2) D - DELETE ESCAPE FUNCTION: On pressing D from the
menu, the query DELETE ENTIRE TABLE (Y/N)? appears. A Y
response produces CONFIRM DELETION (Y/N)?. Rejection of the con-
firmation causes the menu to reappear, whereas an affirmative answer
wipes out the entire macro table. An N reply to the initial question evokes
DELETE WHICH KEY? RETURN is the only key that allows direct
escape from this input request. If the character chosen (index code) has
not been defined, a NOT DEFINED message appears, and pressing any
key returns you to the last input request. Selecting a defined key prints
the macro character string and CONFIRM DELETION (Y/N)? Confir-
mation deletes the macro and returns you to the menu. A negative answer
allows you another chance to delete a macro. The display of free and
used bytes is not updated until the menu is reentered.

(3) E - LIST ESCAPE FUNCTION: As with the .E command in
immediate mode (see SECTION II), a list of all macros, one screen at
a time, is presented in ascending ASCII sequence. The index code key
appears on the left of each line, and the character string follows. A long
macro definition at the bottom of a screen may cause scrolling to obliterate
the top macro on the screen. Arrange the macro table carefully to pre-
vent this from happening.

TABLE EMPTY! appears if no macro has been defined.

(4) K - LIST DEFINED KEYS: This convenient option simply shows
the index code characters that are defined currently.

(5) L - LOAD GALE FILE: All sessions of macro editing must begin
with this option. When L is pressed, all or part of the following submenu
appears:

GALE-29

GALE MACRO TABLE TO LOAD:
CURRENTLY INSTALLED (C)
PROGRAM ON DISKETTE (P)

TABLE ON DISKETTE (T)

SELECTION:

If GALE is not active, the first option is not presented. Assuming that
you have run MACROSCOPE with GALE installed, choosing C loads
GALE’s escape table into the MACROSCOPE edit buffer and recalls the
main menu.

Pressing P replaces the submenu with NAME OF PROGRAM TO
LOAD:. "Program” means the inactive diskette version of GALE. Typing
GALE (assuming you have not renamed her) and pressing RETURN loads
the program into RAM with its macro table in the MACROSCOPE edit
buffer. Typing the name of a nonexistent program produces the error
message FILE NOT FOUND. In either instance, the menu is reentered.

Pressing T replaces the submenu with the message NAME OF TABLE
TO LOAD:. "Table” refers to a diskette macro table. By typing the name
of the desired table and pushing RETURN, the table comes to rest in
the edit buffer and the menu is returned to the screen.

(6) S - SAVE GALE FILE: For a clear understanding of this option,
please read the LOAD option first. To become effective, additions and
deletions must be saved.

Pressing S brings all or part of the following submenu onto the screen:

GALE MACRO TABLE TO SAVE:
CURRENTLY INSTALLED (C)
PROGRAM ON DISKETTE (P)

TABLE ON DISKETTE (T)

SELECTION:

GALE-30

If GALE is not installed, the first option is not printed. With GALE
active, pressing C replaces GALE’s macro table with the table in the
MACROSCOPE edit buffer, thus creating temporary macros. The main
menu is reentered.

If the GALE diskette program was the last option loaded, typing P prints
NAME OF PROGRAM TO SAVE: GALE? (assuming that you have load-
ed the file name GALE). The cursor is positioned on the question mark.
Pressing the Y key saves GALE forthwith. Pressing any other key moves
the cursor to the first letter of the name (G), where pressing RETURN
terminates the input sequence, or saving GALE under another name may
be accomplished by typing that name followed by RETURN. If the GALE
diskette program was not the last option loaded, no name appears after
the request. Simply type a name, press RETURN and the program will
be saved.

If you desired to load GALE but mistakenly chose another LOAD
option, you are likely to discover the error when no name of the loaded
table is printed automatically. If so, to preserve your editing session and
end up with a new permanent macro table within GALE, employ these
steps: (a) Press CTRL-C to enter the main menu. (b) Using the SAVE
option, press T. (c) Type a name for the inadvertently loaded and edited
macro table, press RETURN, and the MACROSCORPE edit buffer is saved
as a new table. (d) Load GALE by using the P option of the LOAD
submenu, typing GALE and pressing RETURN. (e) Load the newly
created macro table by pressing the T option of the LOAD submenu and
typing the name assigned to the table. (f) Save GALE (the new table is
contained within GALE) by pressing the P option and typing Y. It may
seem confusing initially, but by purposely making the error and by
recovering from that error as described above, you will learn much about
the flexibility of macro table interchange. Please use a noncritical diskette
for the experiment!

Should you choose the P SAVE option, be certain that the P LOAD
option was invoked at some time during the current editing session, other-
wise the GALE program on diskette effectively will be destroyed or a
nonfunctional program will be written.

GALE-31

Why should you consider renaming GALE? The only important reason
is that you may prefer to have two versions of the entire program, each
with a different macro table. In practice, however, this is less wieldy than
transferring macro tables from one location to another.

Pressing T replaces the submenu with the message NAME OF TABLE
TO SAVE:. If you had loaded a table, its name and a question mark is
printed after the above message, and by pressing Y you may save the
table under the name indicated. Pressing any other key positions the cursor
on the first letter of the name and permits escape by pressing RETURN
or typing another name and pressing the RETURN key. In this situation,
inadvertent loading of the GALE diskette program instead of the macro
table causes no problem, even if the mistake goes undetected. If you had
loaded the currently installed table or the GALE diskette program, no
name appears after the above message. Simply type a name, press
RETURN and the table will be saved.

(7) C - CATALOG DISKETTE: Pressing C will catalog the diskette
in the current drive. After viewing the directory, press any key to recall
the menu.

(8) X - EXIT MACROSCOPE: Pressing X prints the message BACK
FOR "SAVE"” OPTION (Y/N)?. If you have forgotten to save your work,
this is your final chance. Pressing Y returns you to the menu, whereas
pressing N exits MACROSCOPE.

Short of turning the power off, this option is the only method of exit-
ing MACROSCOPE. Since an automatic FP is performed, a preexisting
Applesoft program will have been wiped out.

Part 3: Standard Macros

The ESCAPE FUNCTIONS listed in SECTION VIII, PART 3 are con-
tained within GALE’s macro table and also are present as the table
ESCTBL.STND on the Program Diskette. Hyphens are used for clarity
and commas indicate that the prior character is repeated. CTRL-M (CR),

GALE-32

CTRL-H (back arrow), CTRL-U (forward arrow), and * (recursive final
character) are frequently used symbols.

Several definitions require explanation. Cursor functions employing
the standard ESC-A,B,C,D sequences are nonrecursive. Cursor functions
using the standard ESC-I,J,K,M sequences are recursive. Because of near
redundancy, you may wish to redefine the nonrecursive set. ESC-CTRL-
U (ESC- —>) and ESC-CTRL-H (ESC- < ——) move the cursor six
columns forward and backward, respectively. ESC- A recursively moves
the cursor up six rows. ESC-Z prints the address defined by the variable
Z. For example, if you type Z = 115 followed by RETURN in the
immediate mode, and then type ESC-Z, HIMEM is printed (115 is the
pointer for HIMEM). As you see, nearly any unagmable function probably
can be defined as a macro.

GALE-33

SECTION VI: OTHER FILES ON
PROGRAM DISKETTE

Part 1: GALE Out

Although GALE may be disconnected by the IN#0 and PR#0 com-
mands (see SECTION II, PART 2), the program remains intact between
DOS and its buffers. If more memory is required to run a huge program,
complete removal of GALE is in order. The command BRUN GALE OUT
(with the proper suffix, if necessary) destroys GALE, resets HIMEM
to $9600 (38400), normalizes the RESET vector, and prints GALE OUT!.
An Applesoft program in memory is not destroyed.

To move this short binary program to your work diskette, use FID on
the DOS 3.3 SYSTEM MASTER diskette.

Part 2: HELLO

The sample HELLO program on the GALE disk determines the type
and memory size of your computer, prints GALE BEING INSTALLED,
and runs the proper version of GALE. Normally, only BASIC programs
can be booted. Should you prefer to run a binary program like GALE
directly from DOS 3.3 boot code, a minor patch is required. Follow these
instructions: (a) Boot the DOS 3.3 SYSTEM MASTER diskette. (b)
POKE 40514,52 from Applesoft or type 9E42:34 from the system moni-
tor. (c) Insert a work diskette containing no important material and type
INIT GALE. (d) Following initialization, type DELETE GALE. (e)
Transfer GALE to the newly created diskette by using one of the methods
described in SECTION II, PART 2. You now have a DOS 3.3 work diskette
that will BRUN GALE on booting.

GALE-34

Part 3: ESCTBL.ALT

An alternate diskette macro table is provided on the GALE disk to
demonstrate commands not found on ESCTBL.STND, which is discuss-
ed in SECTION V, PART 3. Two macros are worthy of comment: (a)
ESC-CTRL-T prints TEXT: HOME: POKE—16298,0: POKE—16300,0:
POKE—16368,0. In many programs, this is an excellent starting line
because it sets a normal text window, clears the screen and homes the
cursor, turns off HIRES, sets text page one, and resets the keyboard strobe.
(b) ESC-CTRLW prints W=20—(LEN(T$)/2): IF W THEN HTAB(W1):
PRINT T$: RETURN. This subroutine centers text assigned to the
variable T$. If the next program line is PRINT T$: RETURN, you have
a complete subroutine that centers literals containing 40 characters or
less and prints longer strings flush left. Assign the latter line to another
macro if you wish.

ESCTBL.ALT also includes ideas for graphic and DOS file commands.
Eventually, you will devise primary (within the diskette GALE program)
and secondary (diskette macro table) macro tables that best suit your
needs.

Part 4: GALE.64

This version of GALE is designed to work with computers which have
64K or more RAM. This includes Apples with RAM cards of 16K or
larger in any slot. GALE.64 resides entirely in upper RAM, leaving
motherboard RAM for DOS and your programs.

When using GALE.64, you should run the versions of GALE OUT,
MACROSCOPE, and ESCTBL which have the .64 suffix. :
NOTE: When using the GALE.64 and GALE //E 40 versions, do not
press the RESET key while performing GALE functions. The system may

hang.

GALE-35

Part 5: GALE//E40

This version of GALE is designed to work on the 40-column screen
of the Apple //e. GALE//E 40 differs from the other versions in the follow-
ing respects:

1. General:
(a) Most non-error message text is in mixed upper/lower case.
(b) Cursor appearance and function are compatible with the new
monitor input routine (KEYIN).

2. Edit Mode:

(a) The DELETE key deletes the character under the cursor.

(b) The TAB key activates insert mode (as does CTL-I).

(c) All four arrows move the cursor within the active edit window
(between the beginning of the line and the EOL marker).

(d) CTL- \ replaces CTL-K as the kill line command.

(e) The case toggle (CTL-A) has been removed.

(f) The help screen reflects the above changes.

When using GALE //E 40, you should run the versions of GALE OUT
and MACROSCOPE which have the //EA40 suffix.

Part 6: GALE.AMP

This version of GALE is designed to work with AmperSoft, version
2.3 (MicroSPARC, Inc.), a programmer’s developmental tool that moves
DOS 3.3 into an extra memory bank, e.g. a RAMCARD in slot zero,
and provides enhanced Applesoft and DOS commands.

GALE.AMP must be installed by typing BRUN GALE.AMP. If
AmperSoft is not in place, the message AmperSoft NOT INSTALLED
appears. Successful installation places GALE.AMP above HIMEM

GALE-36

($9200) and beneath the AmperSoft RAM vector table ($BD00-$BFFF).

AmperSoft features a FREE SECTOR display when the diskette is
cataloged and a new DOS command, PADDR, which prints the starting
address and length of the last BLOADed program. For these reasons,
the global commands .B and .D (see SECTION III. PART 3) are not
found in GALE.AMP.

GALE.AMP may be moved to another diskette by employing the FID
program on the DOS 3.3 SYSTEM MASTER diskette or by the sequence:
(a) BLOAD GALE.AMP, (b) BSAVE GALE.AMP, A$31B7, L$2A75.

The programs GALE.AMP OUT and MACROSCOPE.AMP must be
used in conjunction with GALE. AMP. Parameters are listed in SECTION
VII, PART 3. ESCTBL48STD (see SECTION V, PART 3) and
ESCTBL48ALT (see this SECTION, PART 3) are supported by
GALE.AMP.

Part 7 GALE MACRO PRINTERS

A hardcopy of the macro table of any version of GALE may be obtain-
ed by utilizing GALE MACRO PRINTER. It may be used whether or
not GALE is installed. The printer should recognize the code CTRL-I
80N to set page width. To transfer the program to another diskette, use
FID on the DOS 3.3 SYSTEM MASTER diskette or follow these steps:
(a) BLOAD GALE MACRO PRINTER, (b) BSAVE GALE MACRO
PRINTER, A$6000, L$457.

The first step is to BLOAD the desired version of GALE or its com-
patible ESCTBL. BRUN GALE MACRO PRINTER to activate the pro-
gram. The following questionnaire ensures maximal printing flexibility:

(1) HAS GALE BEEN BLOADED (Y/N)? Y. As with all subsequent
input, the default response ("Y"” in this instance) may be accepted by
hitting RETURN, and the program may be aborted by pressing CTRL-C.
A negative reply returns you to BASIC and allows you to BLOAD the

GALE-37

GALE program, at which point GALE MACRO PRINTER must again
be run. An affirmative answer evokes the next request.

(2) 48K, 64K, OR AMP VERSION (4/6/A)? 6. Pressing RETURN
(64K default — also used for the Ile version), 4 (48K version), or A
(AmperSoft version) sets the starting address of the desired macro table.

(3) PRINTER SLOT (1-7)? 1. The slot number containing the printer
interface card should be selected.

(4) AUTO OR MANUAL FORMFEED (A/M)? A. Continuous sheet
paper makes the auto option convenient. Single sheet paper requires a
manual formfeed.

(5) LINEFEEDS PER PAGE (30-60)? 60. The program counts
carriage returns. Output is double-spaced. On standard 9.5 by 11 inch
paper (66 lines per page), the default option (60) is most efficient. If
shorter sheets are used, choose the option that best fits your needs.

(6) CHARACTERS PER LINE (40-80)? 80. Standard paper accepts
80 column output. Shorter line length is available for narrower paper.

On completing the above queries, the message TURN PRINTER ON
AND PRESS ANY KEY appears. Even at this point, CTRL-C will abort
the program. If you proceed, turn the printer on and set the "top of form”
switch when the printer head is positioned several lines below the top
of the page. Pressing any key starts the printout, striking a non-ESCAPE
key causes printing to pause, pressing a non-ESCAPE key again causes
printing to resume, and hitting ESCAPE aborts output and returns you
to Applesoft. With auto formfeed, once the printout begins you may relax
until the printer stops. If paper insertion is performed manually, as each
page is completed, the message INSERT NEW PAGE flashes. Once the
new sheet is in place, striking any key causes the flashing message to

GALE-38

disappear and printing to resume. When the Applesoft prompt reappears,
the job is finished.

The last page of the printout contains a convenient key to the symbols
employed. Upper case indicates non-control characters, lower case denotes
alpha control characters, and special symbols represent important non-
alpha control characters.

SECTION VII: MEMORY USAGE

Part 1: Memory Map — GALE 48

GALE ACTIVE GALE INACT MACROSCOPE

ZERO PAGE $06-$09, none $06-$09
$1E-$1F

EXT. BUFF. none none $2000-$20FF
$2800-$28FF
$5929-$5B29

HIMEM $6C00 unaffected unaffected

INT. BUFF. $7300-$74FF none none

START $7500 $3200 $5C00

END $9C00 $5B2A $6979

LENGTH $2701 $2926 $D7A

GALE-39

GALE OUT
$06-$07

none.

$9600
none
$370
$3CE
$5F

GALE-40

Memory Map — GALE.64

GALE.64 ACT
ZERO PAGE $06-$09,
$1A-$1B
$1E-$1F
EXT. BUFF. variable
HIMEM $9600
INT. BUFF. $D000-$DIFF
START $D000
END $FF00
LENGTH $2F01

GALE.64INACT MACROSC.64

none

none

unaffected
none
$5000
$7FCE
$2FCF

$06-$09

$7BCE-$7FCE
$8000-$83FF

unaffected
none
$8600
$93E9
$DEA

GALE.64 OUT
$06-307

none

$9600
none
$360
$3C7
$68

Memory Map — GALE.AMP

GALE.AMP
GALE.AMP ACT INACT
ZERO PAGE $06-$09, none
$1A-$1B
$1E-$IF
EXT. BUFF. variable none
HIMEM $9200 unaffected
INT. BUFF. $9200-$93FF none
START $9200 $31B7
END $BCO00 $5C2B
LENGTH $2A01 $2A75

GALE-41

MACROSC.AMP GALE.AMPOUT
$06-$09 $06-$07

$5A2B-$5C2B none
$7000-$73FF

unaffected $9200
none none
$5D00 $360
$6ADA $3C6

$DDB $67

GALE-42

MEMORY MAP — GALE//EA40

G//EA0 ACT G//EA0 INACT MACROSC//EA0

ZERO PAGE $06-$09, none $06-$09
$1A-$1B
$1E-$1F
EXT. BUFF. variable none $7BB9-$7FB9
$8000-$83FF
HIMEM $9600 unaffected unaffected
INT.BUFF. $D000-$D1FF none none
START $D000 $5000 $8600
END $FF00 $7FB9 $93D1
LENGTH $2F01 $2FBA $DD2

Part 2: Free Area

G//EA40 OUT
$06-$07

none

$9600
none
$360
$3CB
$6C

Just as $300—$3CF is an excellent area to tuck away short machine
language programs. GALE possesses a free area ($9C01 —$9CEF) which
also may be used to locate similar programs. This convenient space is
protected only if GALE is installed. Running GALE OUT causes the

DOS buffers to overwrite this segment of memory.

GALE-43

SECTION VIII: SUMMARY OF COMMANDS

Part 1: Inmediate Mode Commands

COMMAND MEANING
B 3 7y i B U R A T SR R i NORMAL edit
T T R e N O T R 3 COMPACTED edit
ARG 5 525 5 550w st me o BEREE RS a5 s w S TS B B GET edit directly
S G T 1) PRRUSE SI V. S AUTO numbering
Bl v e S Eem Y B s S B BB S e ey DS B S BLOAD parameters
C d- searchstr-d-changestr—(d) -(linenum or range) CHANGE — regular
C d-searchstr-d-d-(linenum or range) CHANGE — delete
D e o BB 5 e S 5 0 S BT S s w e s B RS BA D e DISK space free
B s S e e e o R R G e o e o B T R SV S B ESCAPE function
T o ooen s ans O LT S o e R YRS s v o o D N R . P o e HIDE
15 AT 15 15 0w s o . 1 .0 6 L 6 s D 1 2088 0 e 4 5 LINEFIND
M af o sws a5 e sBEREE s sms e s TSR EE S TS MANUAL numbering
TP e v o 18 R 5 5 0 e S OB s vt o T S R B e 1 g e T POINTERS
.R (N-linenum)(,I-inc)(,F-linenum)(,L-linenum) RENUMBER
.S d-searchstr-(d)-(linenum or range).cooviunn SEARCH
U oo 85 B2 5 i stersmin om 15 B SR SGTETA B oo i SEB A B & e 0w ssisnwedSB UNHIDE
N sensmemse s s 854505 s swnsenitss @ araswvmssss VARIABLE XREF
T waiegas i SRR BENAEP Ris v S BIRRSD s e v e I D S E U Ve EXHUME
T S RITRID 5 g i 0 b covns B (6 0 sy s 0 6 R B R) e s w ST R DS APPEND
CTRIZ® «vosi55 55 05 Sraw s sin o S Bl 5 o s RS SEaEE RE GRS HELP screen
& OO ¢ 5 65 56 5 w1010 B B W BB 85 50s s e i B Y S o v DECIMAL to hex
LY T T RS O I T L T HEX to decimal

GALE-44

Part 2: Edit Mode Commands

COMMAND MEANING
CTRLAA . ..ot CASE TOGGLE
BEREAE . o 000w 6 i 0 9 o i COMPACT
GBI 0 2583 0 0511 e s 25 0 B DELETE
CTRLE.0oooee e END OF LINE
CTRL-F ..o e FIND
CTRLAI ..ot INSERT
IERE T 4 0 v e S e 5 i s e B R KILL
CIRE A 1 o 2250515 161508 10 v o o B SR S R B OVERRIDE
CTRLP ... PEEK
IR el . o 8 0 0 B o 0 5 5 s s i S RS S S QUIT
(3) D | S U RESTORE
RIS 303 1 505 00 10538 5.0 3 3 10 115 51 450 5 e START OF LINE
B . et b5 s i O B e s o BB A R R TRUNCATE
CTRL-Z . ..ot ZAP
CEREAD 5 oo 35 00 3 B s o 8 i s S HELP SCREEN
TR R s 0 8 5 1 e s e R B 6 5 s s FLIP
ESC ot MACRO INSERT
RETURNooitiiiiiii e EXIT EDIT MODE

GALE-45

Part 3: Standard Escape Functions (MACROS)

CHARACTER STRING
BRUN MACROSCOPE
BLOAD

CHR$(

DELETE

FLASH

GOSUB

CTRL-H,H,H,H,H,H,H,H- *

FORI = 1TO

FORJ = 1 TO

MID$(

LEFT$(

NORMAL

INVERSE

POKE

RIGHTS$(

STR$(
CTRL-U,U,U,U,U,U,UU- *
\

LIST
CATALOGDI-CTRL-M
CATALOGD2-CTRL-M
CALL-151-CTRL-M

D$=CHRS$(4)
D$=CHRS$(13)+CHRS$(4)

* Recursive function.

CODE

N<CCH IO IvWOZEIrR—-—~IT QMmoo QOw»

)\—l

CHARACTER STRING

ESC-A

ESC-B

ESC-C

ESC-D

ESC-E

ESC-F

GOTO

HTAB

ESC-D- *

ESC-B- *

ESC-A- *

LIST-CTRL-M

ESC-C- *

ESC-C,C,CCCC- *

ONERR GOTO

PEEK(

HOME-CTRL-M

RETURN

SAVE

TEXT

UNLOCK

VTAB

9PEEK(Z)PEEK(Z1)
*256-CTRL-M

[

ESC-D,D,D,D,D,D- *

GALE-46

APPENDIX A
A Sample GALE Session

This Tutorial is a step-by-step walkthrough designed to help you become
familiar with the use of GALE as quickly as possible.

We will cover most but not all of the major GALE commands and func-
tions here.

Before you continue, you must make sure that you have completed Sec-
tion II of this manual: Startup Information which tells you how to install
GALE on your computer.

Let’s Get Started!

First you have to load GALE into your Apple. To do this place your
GALE disk into your disk drive and turn your Apple on. You will see
a disk catalog displayed on the screen, and the message GALE 48 BEING
INSTALLED (GALE.64 if you have a 64K computer; GALE//E 40 if
you are using an Apple //e), followed by the Applesoft prompt. GALE
is now ready.

Remove the GALE disk from the drive an replace it with the disk on
which you want to store your program. We will be using the following
short Applesoft BASIC program to demonstrate GALE (enter it exactly
as shown, including the apparent mistakes):

10 REM GALE DEMONSTRATION PROGRAM

20 PRINT "THIS PROGRAM DRAWA A TRIANGLE ON
THE SCREEN"

30 PRINT "FROM THREE SETS OF COORDINATES THAT
YOU ENTER”

GALE-47

40 PRINT "ENTER THE COORDINATES IN THE
FOLLOWING FORM:"

50 PRINT ” X,Y AND PRESS THE RETURN KEY AFTER
XY PAIR”

60 PRINT "MAKE SURE THAT YOUR X VALUES DO
NOT EXCEED 279"

70 PRINT "AND YOUR Y VALUES DO NOT EXCEED 159"

80 INPUT "ENTER YOUR FIRST COORDINATES ”;X1,Y1

90 INPUT "ENTER YOUR SECOND COORDINATES ”;
X2.Y2

100 INPUT "ENTER YOUR THIRD COORDINATES ”;X3,Y3

110 HIME: HGR: HCOLOR=3

120 HPLOT X1,Y1 TO X2,Y2 TO X3,Y3 TO X1,Y1

Let’s start by telling GALE that we want to use automatic line
numbering. To do this type the following:

.A10

A tells GALE to turn on automatic line numbering, and the 10 tells
GALE to start with line number 10. Automatic line numbering is con-
trolled by the Apple’s left and right arrow keys. Pressing the right arrow
key gives you the next line number, and the left arrow key gives you the
previous line number.

Now press the right arrow key, and the line number 10 will appear
on the screen. Enter line 10 of the program now, and press the RETURN
key. Before you type in the second line, press the right arrow key. You
will see the next line number, which is 20, appear on the screen.

Enter the next line of the program exactly as it appears below, mistakes
and all, without pressing the RETURN key:

20 PRINT"THIS PROGRAM DRAWA A TRIANGLE ON
THE SCREEN"

GALE-48

Editing the Line We Have Just Entered

As you can see, there is a mistake in the line — the word DRAW.

Press CTRL-G. The screen will change and you will see the line at
the top of the screen with the cursor flashing at the beginning of the line,
like this:

GALE LINE EDITOR
MODE: CHARS: 48

20 ? "THIS PROGRAM DRAWA A TRIANGLE ON
THE SCREEN" <

You are now in Edit mode. Move the cursor to the A at the end of
DRAWA using the right arrow key, and press S. The A will be replaced
by S. Press the RETURN key, and the cursor will jump down to the bot-
tom of the screen. The message DONE will appear next to MODE.

LIST the program, and you will see that the error has been corrected.

There are three ways to edit a line of the program. The one we have
just used is called the IMMEDIATE mode, which means that we were
already typing that line when we decided to edit it.

Enter the rest of the lines of the program EXACTLY as they are listed
above (mistakes and all. Don’t forget to press the right arrow key each
time you press the RETURN key to select the next line number.

Editing a Line That Has Already Been Entered

Line 110 has an error in it. Let’s fix it now. Type the following:

GALE-49

mo

and press the RETURN key. You will see the following on your screen:

GALE LINE EDITOR
MODE: CHARS: 20

110 HIME: HGR : HCOLOR= 3 <

We are now back in the Edit mode. There is a difference here, though.
The cursor is not at the very beginning of the line. Instead it is position-
ed at the first character of the line that is not part of the line number.

We can edit this line in the same way that we edited line 20. Move
the cursor to the I with the right arrow key. Press O and the RETURN
key. The message DONE will appear next to MODE at the top of the
screen, and the cursor will appear at the bottom of the screen.

The CHANGE Command

Let’s assume that you decide that you don’t like one of your variable
names, and you want to change it. GALE gives you pwoer to do this
quickly throughout the program with the CHANGE command.

Let’s change the variable name X1 to XRAY. Here’s how to do it: Type
the following:

C/XUXRAY/

and press the RETURN key. The message: CHECK CHANGES (Y/N)?

GALE-50

will appear. Press N. If you press Y instead, you will have to OK each
of the changes by typing Y. (This will give you the option to refuse a
particular change.)

LIST the program. You will see that all occurrences of X1 have been
replaced by XRAY. This form of the CHANGE command will change
every occurrence of X1 anywhere it appears in the program. If you only
wanted to change X1 on one line, say line 80, the command would look
like this:

C/X1/XRAY/80

The CHANGE command can be used to change any string in the pro-
gram as long as it is less than 31 characters long.

Renumbering Our Program

GALE has a powerful renumber command. Let’s say that we want to
change the line number increment of our program from 10 to 100. To
do this type the following:

.RN100,1100

and press the RETURN key.

LIST the program, and you will see that the first line is now numbered
100, and the last line is now numbered 1200. RENUMBER can also be
used to renumber part of the program without disturbing the other parts
of the program. Say, for example, that we want to renumber lines 300-800
with an increment of 50 (instead of 100). To do so type the following:

.R300,150,F300,L800
and press the RETURN key.

LIST the program. You will see that lines 300-800 are now lines
300-550.

GALE-51

Searching for a Particular String

Let’s say that you want to find the program lines that have the variable
XRAY in them. GALE provides a command that will do just this. Type:

.S/XRAY

and press the RETURN key. Lines 550 and 1200 will appear on the

screen, since these are the two lines of the program that contain XRAY.
If you are only interested in finding the occurrences of XRAY in the

lines following line 600, for example, type the following:

.S/XRAY/600,1200

and press the RETURN key. Line 1200 will appear on the screen, since

it is the only line after 600 that contains XRAY.

Listing All of Your Variables

GALE will list all of the variables that are in your program, along with
the line numbers where they are found. To do this, type the following:

Y
and press the RETURN key. GALE will list all of your variables on the
screen with their associated line numbers.
A Brief Review
In this tutorial we have:

Edited a line in the Immediate mode.
Edited a line that we have previously entered.

GALE-52

Used the CHANGE command to change a variable name.
Renumbered our program with the RENUMBER command.
Searched our program for a particular string.

Listed all of our program’s variables.

We hope that this tutorial has helped you to become comfortable with
the operation of GALE. GALE is very powerful, and we are sure that
after having used GALE to edit your programs, you will find your
programming time much more enjoyable.

	GALE User's Manual
	Table of Contents
	1. Introduction
	2. Startup Information
	System Requirements
	Installation & Control

	3. Immediate Mode
	Overview
	Edit Mode Entry Commands
	Global Commands
	Miscellaneous Commands

	4, Edit Mode
	Overview
	Edit Mode Screen
	Edit Commands
	Typeover

	5. Escape Functions (Macro Mode)
	Overview
	Macroscope
	Standard Macros

	6. Other Files on Program Diskette
	GALE Out
	HELLO
	ESCTBL.ALT
	GALE.64
	GALE//E.40
	GALE.AMP
	GALE MACRO PRINTERS

	7. Memory Usage
	Memory Map - GALE.48
	Memory Map - GALE.64
	Memory Map - GALE.AMP
	Memory Map - GALE/E.40

	8. Summary of Commands
	Intermediate Mode Commands
	Edit Mode Commands
	Standard Escape Functions (MACROS)

	Appendix A
	Back Cover

