An Introduction to Clascal

Yo | el

S

Susan Keohan
Macintosh User Education
Apple Computer, Inc.

Preface

This is a conceptual introductioh to Clascal, not a reference manual.
Example programs and syntax diagrams follow the text.

The purpose of this document is to introduce experienced Pascal
programmers to the concepts necessary to make the transition from a
traditional procedure-oriented environment to Clascal‘s
object-oriented environment.

This document assumes you are familiar with Lisa Pascal and QuickDraw.

All programs and program fragments are boldface in this document. For
example, thisShape.Erase is a program fragment.

A /;a

Table of Contents

Introduction iiiiiiiiii ittt ttaananaan 1
Comparing Pascal and Clascalcoiiinnnnnnnnnnnn 1
Pascal Cert s ittt ittt . R4
Clascal i ittt iiinnnncnnnan Cetersesaaienns 4
Class Types......... e cesaaeine Cetr et R -
1< 1T - P]
Hethods R Cereeeas R el 12
SELF i it ittt i ittt ittt ettt e et R |
Class Hierarchy and Inheritance 17
Assignment Checking and Typecasting eiseseseans 20
‘Creating and Freeing ObJeotSouvuevereeeeneenennns 21
SUPERSELF and Extensibility it 22
Clascal vs. Pascal i iiiiiiiiiiiiniiinnnnnans 25
Clascal and the Lisa Applications ToolKit.............. 26
¥hen to Use the Clascal Extensionsccvvuvnnn 20
Advanced ToPICS ... iiiiiiiiiiitnienaneanasesnnnannns 27
The Example Prdgrams 30

An Introdixction to Clascal July 1964

An Introduction to Clascal

Introduction

Clascal is a set of extensions to Lisa Pascal that adds objects and
classes of objects to the language. The semantic extensions of
Clascal were inspired by the language Smalltalk 76. The syntactic
extensions were influenced by the language Simula 67. It is not
necessary to know Smalltalk or Simula before learning Clascal.

Clascal differs little from Pascal syntactically. The major
difference between the languages is in programming technique.

¥hen you write a Pascal program, your procedure and function
specifications are separate from your data structure specifications.
¥hen a Pascal program is run, data is passed to a procedure or
function, and the procedure or function acts on the data.

In Clascal the data structures of an object and its procedures and
functions are specified together in a class declaration. When the
program is run, objects are created. These objects use the functions
and procedures that the programmer specified when defining the data
structure. All the operations that an object can perform are defined
by the object‘'s class. As a result, program modularity is improved.

In Pascal, to add new variations to an old data type, you must either
define new types incompatible with the old type, or edit existing code
to add new cases to a variant record type and to procedures that act
on that type. In Clascal, you can define subclasses of existing
classes without editing existing code and without introducing
incompatible types. As a result, program extensibility is improved.

Comparing Pascal and Clascal

Clascal is a superset of Lisa Pascal. Because the readers of this
document are Pascal prograsmers, Clasocal concepts are compared to
Pascal concepts throughout this document. As a Pascal prograsmer, you
should have little difficulty adjusting to Clascal, because most of
what you know about Pascal is true for Clascal.

This dooument uses & Pascal program and a parallel Clasocal program to
give examples, and to contrast the two languages. The programs are
listed under The Example Programs at the end of this document (see

page 30). All examples within this document are from these programs.

The Pascal program and Clascal program when run, do the same things.
The difference between the programs is that the Clascal program
because of the structure of Clascal. can be easily extended, while the
Pascal program cannot.

. aly

An introorction to Clascal Jly 1964

Pascal

PasExample, the Pascal program is written in Lisa Pascal. When
PasExample is run, in the Lisa WorkShop, it prints a commmand line on
the top of the soreen. The user chooses, from this command line, to
drav and move arcs or rectangles with rounded corners. Only one shape
appears on the screen at a time; when a shape is drawn or moved the
old shape is erased. '

Note
PasExample uses QuickDraw to draw and erase shapes.
It helps to have read the Agpendix £ QuickOrae in

the Pascal Reference Nanual before reading this
document. ,

In PasExample, arcs and rectangles with rounded corners are defined in
a record-type definition:

AShape = RECORD
boundRect: Rect; -
CASE kind: EShape of
~ kArc: (startAngle, arcAngle: INTEGER);
kRoundRect: (oval¥idth, ovalHeight: INTEGER);
END;

This example is the record definition of AShape. Thus, both arcs and
rounded rectangles have a boundRect field. Note that a variant record
part is used to add startAngle and arcAngle to the kArc variant, and
oval¥idth. and ovalHeight to the kRoundRect variant of AShape. The
figure below illustrates the fields an arc or rounded rectangle have.

kArc kRoundRect
fields fields
boundRect boundRect
_startAngle ovalWidth
" arcAngle ovalHeight

Data fields in kArc and kRoundRect

2/ 5

An Introduetion to Clasca/ Sy 1964

Aside from storage allocation procedures, PasExample defines six
procedures and funoctions. The Run procedure controls the execution of
the program. The other five procedures and functions act on arcs and
rounded rectangles. The NeeArc function creates an arc and the
NewRoundRect function creates a rectangle with rounded corners. The
DrasShape procedure draws an arc or a rectangle with rounded corners,
and the EraseShape procedure erases an arc or a rectangle with rounded
corners. The RandomRect procedure assigns t.he rectangle within which
the arc or rounded rectangle is drawn.

PasExa-ple _was implemented using “handles® -- double-indirect
pointers (*°) to records -- and a heap on which the records are
stored. The heap is compactable. The type TShape is a handle on an
AShape-type record.

Within Pascal programs, information is grouped by operations
(procedures and functions). This grouping by operations scatters
information about each type of data structure within a Pascal program.
For example, if you want to see swhat can be done with arcs in
PasExample, you have to look at NewArc, DrawShape, EraseShape, and
RandomRect.

In PasExample. there is one Draw procedure for all shapes
PROCEDURE DrawShape(SELF: TShape):
BEGIN
CASE SELF"“kind of

kArc: FrameArc(SELF~~.boundRect. SELF™".startAngle.
SELF"". arcAngle).

kRoundRect: FrameRoundRect (SELF““.boundRect,
SELF"“.ovalW¥idth, SELF"".ovalHeight):

m'
»
Em

»

The CASE statement determines how to draw a particular shape. In
PasExample, as in all Pascal programs, it would be easy to add a new
operation because it is a procedure-oriented language and information
is grouped by operation. It would, however. be difficult to add
another variant of AShape. To do so. you have to edit the declaration
of RECORD AShape in PasExample. and add to the case statements in
all procedures and functions in the program. If the source code is
unavailable, or if the object code is from a shared library, it is
impossible to add another data structure.

An introdction to Clascal Sy 1964

Clascal

Clascal programs are structured around classes. A Clascal object is
defined by its class. An object's class defines both the type of data
structure the object has, and the operations (procedures and
functions) that the object can perform. Classes belong to a
hierarchy. This hierarchy makes it possible for classes to share
characteristics belonging to classes above them in the class

hierarchy. Figure 1 illustrates the basic Clascal hierarchy, and
introduces some fundamental Clascal terms.

.....
.........

.....
......

........
............

Figure 1. Clascal Hierarchy

Every circle in diagram above is a class. Within the hierarchy,
classes have relationships. A suwbclass is a class that is one level
below in the hierarchy -- C, D, and E are subclasses of X. A
syperclass is a class that is one level above & class in the hierarchy
-- B is X's superclass. Ancestor classes are classes that are sbove a
class on the hierarchy -- A and B are X's ancestors. Descendent
classes are classes that are below 2 class in the hierarchy -- C, D,

An Introduction to Clascal/ SNy 1964

E. F, and G are descendents of X. These concepts are discussed in
more detail later in this dooument.

Objects are orgenized in classes. A class is 8 kind of data type that
defines objects. A class is a Zype in the traditional Pascal sense;
it is similar to a record type, but also associates operations with
the class. These operations are procedures and functions. In Clascal
terminology, procedures and functions are called met/ods to indicate
that they are associated with & class. An object uses the methods
associated with its class. So, when you define & class, you define
the data fields, and all the methods an object of that class can use.

A class type is like a Pascal record type, but more. Unlike a record
type, a class has associated with it, in addition to data fields,
methods (procedures and functions).

An object is an instance of a class, just as a record variable is an
instance of a record type. An object is not the same as a class. A
class defines the fields and methods an object of its type will have.

" but is not one of the objects it defines; juyst as a Pascal RECORD type -

defines a record, but is not one of the records it defines.

The standard Clascal unit, UObject, defines a class, TObject.

TOb ject defines the most general characteristics of all Clascal
objects. For example, TObject provides a general method for copying
an object, and a method for discarding an object. Additional classes
in a program are defined in unit UObject and other units.

A primery Clascal concept is that the data fields and methods from one
class can be inherited by another class. Classes are organized in a
tree-structured hierarchy, with TObject the ultimate ancestor class.

A new class is created by declaring it a subclass of another class.
This establishes a place for the new class in the hierarchy. The
subclass inherits the characteristics of the superclass, and new
characteristics can be added.

An object of any class is an instance of its own class, and a member
of all its ancestor classes. For example. all objects are members of
the class TObject, as well as members of their own classes.

ClasExample has two subclasses of TObject: TShape and TControl.
TShape has two subclasses: TArc and TRoundReot. Figure 2 shows the
class hierarchy in ClasExample.

An Introdixction to Clascal ; My 1964

Figure 2. Class Hierarchy in ClasExample

Inherited data fields cannot be reimplemented in a subclass, but
inherited methods can be reimplemented. Reimplementing & method is
called “overriding a method”.

For example, consider ClasExample. ClasExample draws and moves arcs
and rounded rectangles. TShape defines the most general
characteristics of shapes. These characteristics are a data field,
boundRect and four non-CREATE methods: '

* CREATE (Creates an object of class TShape)

* Orav (Draws an object of class TShape)

* Erase (Erases an object of class TShape)

* Hove (Moves an object of class TShape)

L Randod!ect (Initializes boundRect in an object of class TShape)

As subclasses of TShape, both TArc and TRoundRect inherit boundRect
and the four non-CREATE methods defined by TShape. Note that TArc
and TRoundRect inherit the definition of boundRect from TShape, but
that each member of the class has its very own boundRect field.

TArc adds two additional data fields, startAngle and arcAngle,
overrides Draw and Erase, and adds its own CREATE function.
Likewise, TRoundRect adds two additional data fields, ovalWidth and
ovalHeight, overrides Draw and Erase, and adds its own CREATE
function for the class. Since drawing and erasing arcs and rounded
rectangles is different, TArc and TRoundRect define their own Drae
and Erase methods. Initializing boundRect is the same for all
shapes, so RandomRect and Move are inherited unchanged by both TArc
and TRoundRect. Figure 3 illustrates this example.

2/

An Introdixction to Clascs/ ‘ My 1964

Class Definition of TShape

Data Fields
boundFect

Methods
TShape .CREATE
TShape .Oraw
TShape .Erase
TShape .Move
7Shape .RandornfRect

A\

Class Definition of TRoundRect

Class Definition of TArc

Data Fields Data Fields
boundRect boundRect
startAngle ovalWidth
arcAngle ovalHeight

Methods Methods
TArc .CREATE TRoundRect .CREATE
TArc .Draw TRoundRect .Draw
TArc .Erase TRoundRect .Erase
TShape .Move TShape .Move

TShape .ﬁambml?ec{ 7Shape .Randormfect

Figure 3. Inheritance in ClasExample

a/s0

An Introduetion to Clascal My 19649

Class

In Clascal, all object information is centralized within a class
definition and implementation. An operation definition within a
Clascal program because it is organized within classes, is
distributed throughout the program. For example, if you want to see
how “Oraw™ is accomplished in ClasExample, you have to look in the
method implementations for TShape. TRoundRect, and TAre. In
PasExample, you had to look only in the one Draw procedure.

You can extend Clascal applications easily because of the class
structure. In this document you will see how the class structure
allows easy extension of Clascal programs, and how this ability is
used by the ToolKit.

Types

Clascal adds a new kind of data type, class. A class type is like a
Pascal record type, but has associated with it, in addition to data
fields, methods (procedures and functions).

" An ofject-reference variable is a special pointer-type variable that is -

used to reference an object. The type of an object-reference variable
is always a class type. The value of an object-reference variable is
either NIL or a reference to an object. The machine representation of
an object reference is a Aandl/e a pointer to a pointer to a block on
the Clascal heap. In ClasExample:

control: TControl
thisShape: TShape

are object-reference vanable definitions, control is of class
TControl and thisShape is of class TShape.

Thus, an object-reference variable is not an object. When you refer
to an object's field or a method with an object-reference variable,
the handle is automatically dereferenced. This is different in syntax
from Pascal. In PasExample, SELF refers to an object. To reference
the arcAngle field in an arc, you would have to explicitly write

SELF““. aroAngle

In Clascal, the double indirection is taken care of automatically. To
reference the same field in an arc object, you would write

SELF. arcAngle

An Introduction to Clascal Sy 1964

Objects

An object is a;\ instance of a class. An object is stored in a block
of dynamic memory on a Clascal heap. An object knows its class, and
so0 knows which methods to use.

Data fields and associated methods make up an object. All objects
that are instances of one class use the set of field names defined in
the class definition.

An object reference is anything that refers to an object. An object
reference stores a /sandle on an object. A handle is & double-indirect
pointer an application uses to reference an object on the heap. A
handle points to a master pointer, which points to the object's block
on the heap.

Master pointers are maintained by the storage manager. When the space
on the heap is relocated to make room for other objects, the storage
manager changes the master pointer. Since the apphcauon uses the
handle (which points to the master pointer), the apphoatmn does not
need to know about the change in the heap.

To reference a data field in an object, the format 1s
objectRererence. variableName. Note that no carets (*") are used to
resolve the handle -- the double indirection is iwhcxt In
ClasExample:

INTERFACE

TYPE

TArc = SUBCLASS OF TShape
startAngle, arcAngle: INTEGER:

END;
IMPLEMENTATION

éELF .arcAngle := randa;

assigns the value of randa to SELF. arcAngle. SELF is the object
reference to the object which contains the field arcAngle. Note that
in PasExample, SELF was declared explicitly as a variable. 1In
ClasExample, it is predeclared by the compiler, as will be explained
later in this document.

2/r2

An Introduction to Clascal Sly 1964

To maximize modularity, pure object-oriented programs make the
restriction that fields of an object can only be aocessed from the
bodies of methods of that same object. In other words, all field
references are of the form SELF. variableName. Acoess by other
objects is forced to go through the method interface. For performance
reasons, Clascal programs often compromise this principle, allowing
read and sometimes write access by other objects. The fields that can
be accessed from outside should be chosen with oare, otherwise, future
modifications to the program could have unexpected repercussions.
Documentation of each class should indicate which fields, if any,
permit external read and/or write access. QOur documentation uses the
letters # and # to the left of the field name for this purpose.

Figure 4 shows that object references in ClasExample are handles on
objects in the heap. SELF is the object reference, oval¥idth is the
field name, and that SELF.ovalWidth is a field designator that refers
to the object's oval¥Width field.

Fra?ent of Cllaséxaﬁfle 5

TRoundRect = SUBCLASS OF TShape
oval!idth ovalHeight: INTEGER

master pointer
for object

heap
location

SELF
'”;,///”””””%m”////l

SELF. ovalb¥idth := 20;
SELF. ovalHeight := 15;

Figure 4. Object References in ClasExample.

10

2 /13

An Introdixtion to Clascal Sy 1964

An object can have more than one handle, but each object has only one
master pointer. The master pointer is the direct link to objects on
the heap. HMHore than one object-reference variable can contain equal
handles; they would all point to the same master pointer. Assigning
the same handle to another object-reference variable creates a new
path to the same object. Figure 5 illustrates the assignment of one
object-reference variable to another in ClasExample. Note that
thisShape and nextShape are object-reference varisbles, and so
reference an object of class TShape. TAroc, or TRoundReot.

Since the value of an object-reference variable is actually a handle
on a block on the heap, when the value of one class-type variable is
assigned to another, the two variables point to the same block on the
heap. Assigning the value of one handle to another parallels
assigning the value of one Pascal pointer-type variable to another.

goeas

iR

Fragment of ClastExample

PROCEDURE - TControi.Run; =~

VAR thisShape: TShape
nextShape: TShape

nextShape

master pointer
'f%/ for object
handl heap
andie location
thisShape

object on heap
Figure S. A New Path to the Same Object.

N

An Introdction to Clasca/ My 1969

Methods

Methods are functions and procedures associsated with a class. HMethods
define the operations an object can perform. All objects of the same
class use the same methods.

A method declaration consists of a heading (name, arguments, and
return type, if a function) and a body. The heading is specified in a
SUBCLASS declaration in the TYPE section of a UNIT interface. The
bodies are specified in a METHODS block in the IMPLEMENTATION section
of the same unit. See ClasExample for illustrations.

An object's methods are defined in its class, and sre associated with
the object, as well as with all other objects of the same class. The
data structure and methods together are one entity -- an object.

The association of an object with its methods makes it possible for
the object to act on its own data. A metiod cell tells an object to
execute one of its methods. Whenever an object executes a method, the
method acts on the data which that object stores. A method call is
similar to a procedure or function call. o : ‘

All objects of the same class respond to the same method calls. The
format of a method call is objectReference. Method(arguments).
Method(srguments) has the same syntax as a Pascal procedure or a
function call and may, optionally, have arguments. From ClasExample

Program MClasExample
VAR

control: TControl

BEGIN

control. Run;

control.Run is a method call with no arguments. gcontrol is an
object-reference variable of type TControl. ocontrol.Run tells the
object referenced by control to execute its Run method. Figure 6
illustrates these steps.

12
2 /15

An introdretion to Clasca/ Wy 1964

F ragment of clasExag_»le

control: TControl
- master pointer
. control for object

control. Bun < ”

NN

(Execut es .

Figure 6. Method Call.

Classes and methods, combined with object references, allos you to
write code with method calls upon objects, without knowing what object

13
2//6

An Introduction to Clascal Wiy 1964

will be referenced &t run time. This is beneficial because it
increases the extensibility of Clascal code. (Code extensibility is
discussed later in this document.) For example, in ClasExample

IF (ch = *a*) or (ch = *A*) THEN

thisShape : = TArc. CREATE(NIL, SELF. heap)
ELSE

thisShape : = TRoundRect. CREATE(NIL, SELF.heap):
thisShape.Drav;

the value of thisShape is not determined until run time when the user
chooses t0 draw an arc or a rounded rectangle. TArc and TRoundRect
each have a Draw method. At run time, the correct Draw is executed.

WITHIN HEAP

object of
class TArc

Hethod Table for TArc

TArc .Drav

TArec .Erase
TShape .Move
TShape .RandomRect

Figure 7. One Method Table per Class.

14

An Introdetion to Clescal ' Hly 1964

A run-time motHoo tadle is set up for each class by the Clascal
compiler. The method table for a particular class contains pointers
to the methods that objects in that class use. All objects of the
same class share the same method table. Figure 7 illustrates this.
Notice that the method table includes methods defined specifically for
the class as well as methods inherited from the superclass.

At compile time, thisShape.Draw is ambiguous. The method tables
enable the correct implementation of Draw to be invoked at run time.
Note that the method table does not include the CREATE method. The
reason is that the call TArc.CREATE is unambiguous at compile time
(see page 21).

In programming language theory, a procedure with multiple
implementations is called generic. Draw is generioc, with two specifio
implementations, TArc.Draw and TRoundRect.Draw. In languages like
Ada, it is possible to determine at compile time which of several
implementations a given generic procedure call will invoke. In

. languages like Clascal and Smalltalk, it is not possible to choose
among - implementations until run time. A generic procedure which can
not be resolved until run time is sometimes called polymorphic.

You may have noticed that the syntax for a reference to a data field
within an object and the syntax for a method call with no arguments
are identical. Their syntax is:

. object/?eférenm variableName for a reference to a data field
« pbjectReference. Method for a method call

To help readers tell them apart, ToolKit typographical conventions
begin variable names with a lowercase letter, whereas method names
begin with an uppercase letter. Thus, oontrol.Run is a method call,

and SELF. arcAngle is a reference to a data field within an object.

15
2/17

An Introduction to Clascal Jly 1964

SELF

SELF is an object reference. Any method can refer to SELF, and it
always means /He abject that 1Is executling the method Every method
has a SELF the compiler declares automatically. Its type is the class
that contains the method. For example, in ClasExample

thisShape. Drav(gray).

calls the Draw method for the object. Within this method, SELF refers
to the same object thisShape did. In other words, assuming that
thisShape stores a handle on an object of class TAro,

thisShape. Draw(gray) cealls

PROCEDURE TArc.Draw(pat: pattern)
which behaves as if it were declared

PROCEDURE TArc. Dru(pat pottern, SELF TArc)
in which

pat := gray
SELF := thisShape

Note thet it 1s illegal to declare SELF as a parameter for & methHod.
It is sutomatically declared as & psrameter by the compiler.

Like any other object-reference variable, SELF can be used to call a
method, or to reference a data field, of an object that will be
determined at run time. For example, in ClasExample, RandomReot is
used to assign a value to the boundRect field of an object that is
determined at run time.

An important fact to understand is that at run time, the object
referenced by SELF in the method TShape.RoundRect is necessarily a
member, but not necessarily an instance, of class TShape. SELF could
reference an object of class TArc, TRoundRect, or any other
descendent of TShape. On different calls to the method during a
single program execution, the referents of SELF could be otuects of
different classes ~

16 2/ 20

An introduetion to Clascal Sty 1964

If you find SELF confusing you can compare the RandomRect method in
ClagsExample with the corresponding procedure in PasExample, which
does the same thing:

In PasExample: v
PROCEDURE RandomReot (SELF: TShape):
VAR randi. rand2: INTEGER:
BEGIN
rand1 := Abs(Random) MOD 600;
SELF"“.boundRect. left := randi;
rand2 := Abs(Random) MOD 150;
SELF““.boundRect.top := rand2 + 75;
SELF"“. boundRect.right := SELF"".boundRect.left + 40;
SELF“". boundRect. bottom := SELF"". boundReot.top + 40;
In ClasExample, we include the class name in the heading, we omit the

SELF parameter because it is implicitly declared as a TShape, and we
write SELF.boundRect instead of SELF"".boundRect:

PROCEDURE TShape. RandomRect;
VAR randi, rand2: INTEGER;
BEGIN
rand! := Abs(Random) 10D 600;
SELF. boundRect. left := randt;
rand2 : = Abs(Random) MOD 150;
SELF. boundRect.top := rand2 + 75;
SELF. boundRect. right := SELF.boundRect. left + 40;
SELF. boundRect. bottom : = SELF.boundRect. top + 40;
END; |
Class Hierarchy and Inheritance

A method can be declared a default method in the interface by using
the DEFAULT qualifier. The DEFAULT qualifier indicates to the
compiler that it is likely that this method will be overridden in the
subclasses. A DEFAULT method does not have to be reimplemented in a
subclass, and a non-DEFAULT method can still be overriden. Using the
OEFAULT qualifier on methods that are usually overriden saves space at
run time. :

17
2 /&

An Introduction to Clascal Sy 1964

The OVERRIDE qualifier must be used in the interface whenever an
inherited method is reimplemented. Note that you must use OVERRIDE
regardless of whether the DEFAULT qualifier was used.

Every class must declarea a CREATE method. A CREATE method may never
be declared either DEFAILT or OVERRIDE.

The type definitions for TShape, TArc, and TRoundRect are listed
below; note the use of DEFAULT and OVERRIDE :

TShape = SUBCLASS OF TObject
boundRect: Rect.
FUNCTION TShape.CREATE(object: TObject:
itsHeap: THeap): TShape;
PROCEDURE TShape.Move;
PROCEDURE TShape. RandomRect;
PROCEDURE TShape.Draw(pat: pattern); DEFAULT;
PROCEDURE TShape.Erase; DEFMAT;
TArc = SUBCLASS OF TShape
startAngle, arcAngle: INTEGER:

FUNCTION TArc.CREATE(objeot: TObjeot:
itsHeap: THeap): TArc;

PROCEDURE TArc.Draw(pat: pattern). OVERRIDE:
PROCEDURE TArc.Erase; OVERRIDE:

TRoundRect = SUBCLASS OF TShape
oval¥idth, ovalHeight: INTEGER;

FMTI(N TRoundRect.CREATE (object: TObject;
itsHeap: THeap): TRoundRect;

- PROCEDURE TRoundRect.Draw(pat: pattern); OVERRIOE;
PROCEDURE TRoundRect.Erase: OVERRIDE:

According to the syntax of Clascal, the next-to-last line above could
be abbreviated:

. PROCEDURE Dras; OVERRIDE;

i.e., the class name and dot are optional, and the argument list is
also optional. When they are included, the compiler checks them for
type agreement with the inherited method. Furthermore, including them
improves readability and makes searches in the text editor far easier.

18
2/ aa’

An Introdxction to Clascal Sy 1964

Figure 3 illustrates inheritance in ClasExample. TArc and
TRoundReot inherit boundReot and add additional fields, startAngle
and arcAngle for TArc and oval¥idth and ovalHeight for TRoundRect.
TArc and TRoundReot reimplement the CREATE. Draw. and Erase methods,
but the Move and RandomRect methods are inherited from TShape.

From ClasExample,
thisShape. Draw(gray)

is a method call. thisShape is declared as a variable of type TShape.
This means that references to objects of classes TShape., TArc and
TRoundRect can be assigned to it. In the example program an object
of type TShape is never created because TShape describes shapes in
general, not particular shapes. Therefore, thisShape is a reference to
an object of some subclass of TShape. As discussed above, the Draw
method is implemented differently in each subclass. When the object
is told to execute the Draw method, it uses the method defined for its
particular subclass. Thus, if thisShape is an object of class VArc,
it will execute PROCEDURE TAro.Draw. Likewise, if thisShape is an
object of class TRoundRect, it will execute PROCEDURE

TRoundRect. Draw.

When you create a new class, the Clascal compiler creates, in effect,
a method table for that class that combines pointers to the methods
from the superclass with pointers to the methods for the new class.
The compiler reimplements superclass methods with the subclass'
methods where applicable. Figure 8 lists the methods pointed to in
the method tables for TArc and TRoundRect.

Hethod ‘ for TArc Hethod Table for TN oundRect

TArc .Drae TRoundRect .Drae
TArc .Erase TRoundRect .Erase
TShape .Hove TShape .Move
TShape .RandosRect TShape .RandomRect

Figure 8. Method Tables.

19
a/23

An Introduetion to Clascal Sy 1964

Assignment Checking and Typecasting

If a program declared variables arcl, arc2: TArc and variables

shapel, shape2: TShape, then the following assignments would be legal
and are always safe:

shapel := shape2;
arcl := arc2;
shapel := arcl;

But the following assignment would be illegal, because the run-time
value of shapel could be a TRoundRect:

arcl : = shapel;

If, in the context of the assignment., you know that shapel must be a
member of class TArc, then write the following legal statement
instead: : '

arcl := TArc(shapel):

The construct TAre(...) is called a typecasting construct; it tells
the compiler to treat the argument as if its type were TArc. When
range-checking is on ({$R+}), this causes a run-time check that -
shapel is indeed a member of class TArc. When range-checking is off
({$R-}). no code is generated, no checking is done, and a mismatch
will cause anomalous behavior.

The following construct is legal. Constructs like it are often useful.
shapel := TControl(object).NewShape(ch):

It is equivalent to the following three lines of code: -
VAR controll: TControl:

control! := TControl(object).

shapel := controll .NewShape(ch);

Note that NIL is a legal value of any object reference. However, an
attempt to dereference NIL will cause a crash.

20
/3y

An Introduction to Clascal SNy 1964

Creating and Freeing Objects

A new object. or instance of a class, is created by a special method,
the CREATE function. A CREATE function must be declared in the class
definition of every class. A CREATE function allocates space for an
object on the heap, assigns the handle of this space to SELF, and
should initialize all object fields. In ClasExample the CREATE
function for TArc is:

FUNCTION TArc.CREATE(object: TObject: itsHeap: THeap): TArc:
VAR rands, randa: INTEGER:
BEGIN
IF object = NIL THEN
object := NEWObject(itsHeap, THISCLASS):
SELF :=TArc(TShape.CREATE(Object. itsHeap)):
rands := Abs (Random) HOD 270:
SELF. startAngle := ronds;
randa := Abs (Random) MOD 270;
SELF. arcAngle : = randa;
END;

This CREATE function creates an object of class TAro.

Every class must have a CREATE method written specifically for it.
Its parameters can be different from the parameters in the CREATE
method of the superclass. Whenever you write a CREATE function,
debugging is easier if you initialize all data fields.

Except for immediate subclasses of TObject., a CREATE function usually
must initialize both the fields declared in its own class and fields
inherited from ancestors. To do the latter, it ocan simply invoke the
CREATE of the superclass. However, it would be wrong to allocate the
object more or less than once. The first CREATE ocalled must do the
allocation. and the ancestors must not. By convention, the first
argument of CREATE is objeot: TObjeot, and the second is itsHeap:
THeap. A caller normally passes NIL as the value of object, but the
CREATE of a subclass passes an already-created object to its
superclass CREATE instead. In the NIL case only, CREATE is expected
to allocate space for the object on itsHeap. In either case, CREATE
is then suppo..:. to initialize the fields declared by ancestors (by
calling the CREATE of the next superclass up) and then to initialize
the fields of its own class. See TArc.CREATE (above or in
UiClasExample) and TShape.CREATE (in UiclasExwle) for
illustrations.

21
/25

An Introduction to Clascal Wy 1964

shen an application no longer needs an object., you should remove that
object from the heap, using the Free method, so the space it occupied
can be reallocated. The Free method removes objects from the heap and
reallocates the space on the heap. Free is a method of TObjeot.
From ClasExample, '

thisShape.Free

frees the object referenced by the handle contained in thisShape.
Generally, each new subclass does not have to provide its own Free
method; typically, it can just inherit it from TObject. However, if
the subclass' CREATE function causes additional objects to be created,
it is usually necessary for the Free method to free them, and to do
so, the Free method must be overridden. The last statement of a Free
method is generally SUPERSELF.Free, explained below.

SUPERSELF and Extensibility

Applications written in Clascal can be functionally extended with a
minimum of difficulty because of Clascal's class structure. In
Clascal, you can creste a software library that does not account for
an entire set of objects, just the most general. A program can then
add new objects to the set in the library, without affecting the basic
structure of the system, as long as the new objects have parallel
methods. For example, to add a new object to ClasExample, so that it
can draw and move ovals, as well as arcs and rounded rectangles, you
would add a unit. The new unit would contain an additional subclass
of TShape, called TOval, and a subclass of TControl, called
THyControl. This new hierarchy is shown in Figure 9.

Figure 9. New Class Hierarchy in ClasExample.

@2 5{/5”/

An Introduction to Clascal My 1964

In the main program M2ClasExample, you would add the new shape to
the command line. Salient parts of the new unit are listed below.
The entire unit, U2ClasExample, 1is listed at the back of this
document.

TYPE
TOval = SUBCLASS OF TShape

FUNCTION TOval.CREATE(object: TObject. itsHeap: THeap):
TOval:

PROCEDURE TOval.Oraw(pat: pattern); OVERRIDE:
PROCEDURE TOval.Erase; OVERRIDE:

END;

THyControl = SUBCLASS of TControl

FUNCTION TMyControl.CREATE(object: TObject;
itsHeap: THeap; itsLine: $255; itsBox: Reot): THMyControl:

" FUNCTION THyControl.NewShape(ch: CHAR): TShape: OVERRIDE:
END; '
IMPLEMENTATION
METHODS OF TOval;

FUNCTION TOval.CREATE(object: TObject: itsHeap: THeap):
TOval:

IF object = NIL THEN
object := NewObject(itsHeap; THISCLASS):

SELF := TOval(TShape.CREATE(object, itsHeap):

END;
PROCEDURE TOval.Draw(pat: pattern):
BEGIN
, FillOval(SELF. boundReot, pat):
END;
PROCEDURE TOval.Erase;
BEGIN
- Erase0Oval (SELF. boundRect).
END;
END;

23

9,/517

An Introduetion to Clascal , Sy 1964

METHODS OF THyControl:
FUNCTION TMyControl.CREATE(objeot: TObjeot: itsHeap: THeap.
itsLine: S255; itsBox: Rect): THyControl:
BEGIN
IF object = NIL THEN
object : = NewDbject(itsHeap, THISCLASS):
SELF := THyControl(TControl.CREATE(object. itsHeap,
itsLine, itsBox)):
" END;
FUNCTION TMyControl.NewShape(ch: CHAR): TShape;
BEGIN
. IF (ch = *0°) . OR (ch = "0°) THEN
NewShape := TOval.CREATE(NIL, SELF.heap)
ELSE
NewShape := SUPERSELF.NewShape(ch):
END;
END;

Note that FUNCTION THMyControl.NewShape adds functionality and then
calls the method from the superclass, TControl. FUNCTION
mycontrol Ne'Shape extends the functionality of the funcuon by
adding an ‘o' command which creates an oval.

IF (ch = ‘0*') OR (ch = *0°*) THEN
NewShape := TOval.CREATE(NIL. SELF.heap)

If the commend the user enters is not an '0'. it must be one of the
original cosmands that TControl.NeswShape recognizes. The following
method call is used to deal with that situation.

NewShape := SUPERSELF.NewShape(ch):

‘This calls TControl.NewShape. SUPERSELF is usually used in an
OVERRIDE method to allow an inherited method to be not completely
overridden, but rather extended. At the point (or points) in the
OVERRIDE method where you want the inherited method to be invoked,
call it using SUPERSELF.

24

2/as

An Introduction to Clascsl Joly 1964

Rule

¥hen SUPERSELF.Meth appears in the body of a method
of class C, subolass of S, it tells SELF to invoke
the implementation of Meth that was declared in
METHODS OF S or that was inherited by S from its
ancestors.

Note that a SUPERSELF call is unambiguous at compile time. The method
called need not have the same name as the caller, but it usually does.
The method name may not be CREATE.

The change required in MClasExample is
control := TControl.CREATE(NIL. mainHeap., °‘R)ound Rectangle,
A)rc, M)ove, Qluit®, tempRect);

to
control := TiyControl.CREATE(NIL, mainHeap, °‘R)ound Rectangle,
Mrc, O)val, Wove, Qluit’, tempRect);

s0 that the user can choose to draw and move ovals. Note that by
calling TMyControl.CREATE instead of TControl.CREATE, the control
object is of class THyControl, and adds the additional functionality
to the program.

Clascal vs. Pascal -- What Does Clascal Really Do for You

Subclasses are the Clascal alternative to variant records. A
subclass is a more specific definition of its superclass. In other
words, the superclass defines general characteristics of a class, the
subclass inherits these characteristics and adds additional data
fields or methods, or reimplements inherited methods. In
ClasExample, TShape contains boundRect: Rect as its only field.
TArc, a subclass of TShape, contains the following fields:

boundReot: Reot
startAngle, arcAngle: INTEGER

Thus, TArc inherits boundRect from TShape and adds startAngle and
arcAngle. .

25

/a9

An Introdretion to Clascal Wy 1964

In Clascal, subclasses are used instead of variant record pbrts to
handle special cases. In PasExample

AShape = RECORD
boundRect: Rect:
CASE kind: EShape of
kAroc: (startAngle, arcAngle: INTEGER):
kRoundRect: (oval¥idth, ovalHeight: INTEGER).
END;

is the record definition of AShape. Note that a variant record part
is used to add the kArc variant to type AShape. Unlike the situation

with variant records, in Clascal you can add a subclass like TArc and
not affect the rest of your application. You can even add the
subclass in a unit separate from the one in which the superclass is
declared.

Clascal and the Lisa Applications ToolKit

- Clascal was developed for use with the Lisa Applications Tooll(xt. The
ToolKit is comprised of libraries of Clascal code with predefined
classes that provide certain standard functions for an applications
writer. The ToolKit defines the &eneric Application The Generic
Application provides standard Lisa Application behavior. When you
write a ToolKit program you add extensions to the Generic Application,
by creating subclasses and methods to perform the work of your
application. For more information, see The Lisa Applications
ToolKit Reference Hanual and the ToolKit Segments.

One of the most important features of Clascal is that method calls are
used to tell an object to perform a method on itself. This means that
a ToolKit library cen tell one of your application‘s objects to invoke
a method. For example, if a user pulls down a menu and selects Cut,
the ToolKit will tell a selection object in your application to run a
wmethod of a certain name. You may have different selection classes
for different kinds of selections (text, graphic, table row, etc.) and
the appropriate cutting method will be invoked in every case.

¥hen to Use the Clascal Extensions

As a general rule, you would use Clascal when you want to define
abstract or standard behavior in one place, and concrete or speclal
behavior in other places. The more complex a Pascal program is, the
more Clascal typically saves you. You can do equivalent things with
Pascal programs, but Clascal makes it much easier.

26
:L/ 30

An Introduetion to Clascal ‘ Sy 1964

¥henever you write a program using the Lisa Applications ToolKit you

must use Clascal to define the user interface portion of the program.

In the rest of your program you may use straight Pascal, if you wish,
or you may define your own classes.

Advanced Topics
Squishing Production Code.

When a program has been completely debugged, you can reduce object
code size by using the compiler switches {$R-} and {$D-}. The former
turns off range checking for array subscripts and turns off run-time
compatibility checking for class-typecasting expressions. The latter
turns off emission of procedure, function, and method names into the
object code and thus precludes symbolic debugging.

Abstract methods and classes.

An abstract method is one that is declared in a class C. but that can
be implemented only in descendents of class C, not in C itself. An

- example is Draw in ClasExample. Note that TShape.Draw is declared
DEFAULT in the interface of TShape and that it emits an error message
in the implementation. After the program has been debugged and is
ready to ship, one might want to reduce code size by deleting the
implementation of TShape.Draw. The compiler would complain that the
method is declared in the interface but not in the implementation. To
suppress the error message, declare TShape.Draw to be ABSTRACT in the
interface instead of DEFMILT. An abstract method may not be
implemented in its own class, but only in descendent classes.

A CREATE method may be declared ABSTRACT. It has no implementation,
and should not be invoked from anyswhere in the program even from a
descendent's CREATE method. (Reminder: a CREATE method can not be
declared DEFAMLT or OVERRIDE.)

If an ABSTRACT method is invoked accidentally, it will cause a crash.

Classes like TShape that are not meant to be instantiated are called
abstroct classes. Usually--but not always--an abstract class has many
abstract methods, often including CREATE. An abstract class defmes
an interface that is shared by all its descendent classes.

27
2/ 3/

An Introduetion to Clascal My 1964

Conditional compilation is recommended for all of the above
techniques, for example:

INTERFACE

PROCEDURE TShape.Draw(pat: Pattern); {$IFC myDebugFlag} DEFAULT
{$ELSEC)} ABSTRACT {$ENDC):

INPLEMENTATION

{$1IFC myDebugFlag)}

PROCEDURE TShape.Draw(pat: Pattern);

BEGIN '

UritelLn('You can only draw in subclasses of TShape, not TShapel'):
{senoC)

SuperduperSELF.

As explained earlier, SUPERSELF.Meth appearing in a method of class C
will cause the Meth of the superclass of C to be invoked regardless of
the run-time class of SELF. In the same spirit, Cls.Meth, where Cls
is either C or any ancestor of C, will cause . SELF to execute the
Heth of Cls regardless of the run-time class of SELF. This construct
is called the superduperSELF construct, because it is generally used
to skip over the ancestor's implementation to the one at the next
level. Be sure to use the actual class name, not “SuperduperSELF.*

Suppose TShape had declared a Free method, and that TArc had

overriden it, but for some reason TArc.Free wanted to invoke
TObject.Free instead of TShape.Free. Instead of writing ,
SUPERSELF . Free; --which would be equivalent to TShape.Free--one would
write TObject.Free;.

The superduperself construct is rarely necessary, and is somewhat
confusing. so most people avoid it whenever possible, and try to make
SUPERSELF suffioce.

28
| a/3a

An Introdixction to Clascal Jly 1964

Yanking the ohair out from under you.

In TAroc.CREATE, the following two lines appear:
rands := Abs(Random) MOD 270;
SELF.startAngle := rands;

One might expect to be able to write simply:
SELF. startAngle := Abs(Random) MOD 270;

However, this would generate a syntax error from the compiler alluding
to "unsafe use of handle.” The reason is that the code generated by
the Pascal compiler leaves a pointer (not a handle) to

SELF. startAngle on the stack before calling the function Random. If
the function happened to cause a heap compaction, the pointer would
become invalid. The compiler does not know which procedures and
functions (including methods) can cause compaction. Therefore, to be
safe, it assumes that all of them compact, and it always gives you an
error message.

If you are sure and absolutely certain and fully convinced that the
call will never allocate and never cause the heap to compact, you can
tell the cmmler and avoid breaking the statement into two. The way
you tell it is to bracket the code section with {$H-} and {$H+}. All
calls within that section will be assumed to be benign. and the error
messages will be suppressed:

{$H-} SELF.startAngle := Abs(Random) MOD 270; {$H+}

The following constructs generate error messages for similar reasons:

- passing an object field as a VAR parameter to a procedure or function
and calling a procedure or function within a WITH object. field block.
There are also constructs that are dangerous for the same reasons but
that do not generate error messages, e.g., passing ®object.field as
an argument to a procedure or function, calling & procedure or function
in the subscript of an array-type field of an object. and doing
anything mentioned in these paragraphs with a doubly-dereferenced
handle instead of an object reference, e.g.:

h““.f1ld : = Random;

29
&/ 33

An Introduction to Clascal | Hly 1964

The Example Progia‘ns

A Clascal program and a Pascal program are listed in this seotion.
These programs are referred to throughout this document. The two
programs are parallel, except that the Clascal program has been
extended, and the Pascal program has not.

The two programs use the ToolKit typographic and structural
conventions. The recommended ToolKit structure contains a main
progzu; and units. Thus, the examples contain a main program and
unit(s). :

The Clascal example is comprised of

* MiClasExample (The main program for the Clascal example --
before extensions)

* M2ClastExample (The main program for the Clascal example -- after
, extensmns) .

= U1ClasExample (A unit program for the clascol exumle)

* UzZClasExample (A unit program for the Clascal example)
The Pascal example is comprised of

* MPasExample (The main program for the Pasoal example)

= UPasExample (A unit program for the Pascal example)

Some other important ToolKit typographic conventions are that method
names begin with a capital letter, whereas variable names begin with a
lowercase letter. Thus, boundRect is a variable name, and Erase is a
method name. Type names. including class names, also begin with an
uppercase letter.

within this document, ClasExample refers to MiClasExample,
M2ClasExample, U1ClasExample, and U2ClasExample. PasExample
refers to HPasExample, UPasExample. Thus, an example from
ClasExample could come from M1ClasExample, M2ClasExample,
UlClasExampla., or U2ClasExample.

ClasExample and PasExample use QuickDraw procedures to draw shapes.
These examples use QuickDraw to dras and erase shapes. It helps to
have read Appendix £ QuickDraw in the Pascel Reference Manual before
reading this document.

» | | °?/3sf

An Introdction to Clesca/ wly 1964

PROGRAH HPasExample;

USES
{SU UDbject} Uob ject,
{$U QuickDraw} QuickDrav.
{$U UPasExample} UPasExample;
VAR
error: INTEGER; {output parameter of FMOpen: positive if an
. error}
myPort: GrafPort; {for use by QuickDraw}
ctrlRect: Rect; {The area of the screen to be used for the

~ command line}
' PROCEDURE FMOpen(VAR error: INTEGER); EXTERNAL:
{EXTERNAL because not defined in any INTERFACE we can USE}

BEGIN

{In a ToolKit/32 program. UABC (the generic application) would have called
. FMOpen & OpenPort automatically}

FHOpen(error). {Gain access to the Lisa Font Hanager: ignore errors for
this example}

OpenPort (amyPort). <{Provide QuickDraw with a GrafPort}
SetRect(ctriRect, 20, 20, 500, 40):

Run(‘R)Round Rectangle, A)rc, M)ove, Q)uit‘’, otrlRect, mainHeap):
END.

3
- 2/35

An Introduction to Clascal My 1964

UNIT UPasExample;

INTERFACE
USES
{$U UObject} UOb ject,
{$U QuickDraw} QuickDraw;
TYPE

EShape = (kArc, kRoundRect):
. TCmdLine = string{80); -
TShape = “PShape;

PShape = “AShape;

AShape = RECORD
boundRect: Rect.
 CASE kind: EShape of
kArc: (startAngle, arcAngle: INTEGER).
kRoundRect: (oval¥idth, ovalHeight: INTEGER):
END;

PROCEDURE Run(commendLine: TCmdlLine; commandBox: Rect: itsHeap: THeap):

IMNPLEMENTATION

{EXTERNAL routines oalled by HFree; do not call these direotly. instead
: use HFree}

FUNCTION HzFrosH(h: Handle): THeap: EXTERNAL:
PROCEDURE FreeH(heap: THeap: h: Handle). EXTERNAL:

32 a/3e

An Introdiection to Clescal My 1964

{Allocate a handle ‘of 8 certain size; EXTERNAL bccause not defined in any
INTERFACE we can USE)

FUNCTION HAllocate(heap: THeap; size: INTEGER): Handle; EXTERNAL:

{Free a handle that was allocated by HAllocate)
PROCEDURE HFree(h: Handle):
BEGIN
FreeH(HzFrodi(h). h):
END; ‘

PROCEDURE DrawShape(pat: Pattern; SELF: TShape):
BEGIN = T : o
CASE SELF"“.kind of
- KAre: A
FillArc(SELF"".boundRect, SELF"".startAngle, SELF"".arcAngle, pat):
kRoundRect:

F 111Round!ect(SELF“)boundtect. SELF““.oval¥idth, SELF"“.ovalHeight.
pat):

. Elo.
E'no

PROCEDURE EraseShape(SELF: TShape):
. BENTN
SASE SELF"“.kind of
kArc: EraseArc(SELF"°.boundRect. SELF"°.startAngle,
SELF"". arcAngle):

kRound%eot EraseRoundRect (SELF““. boundReot, SELF"“.oval¥Width,
SELF ““. ovalHeight;

Em
(4
m

.

33
a/37

An Introduction to Clascal Wy 1964

PROCEDURE RandomRect (SELF: TShape).
VAR randl, rand2: INTEGER;
BEGIN
randl := Abs(Random) HOD 600;
SELF"". boundRect. left := randi
rand2 : = Abs(Random) HOD 1S0;
SELF”". boundRect.top : = rand2 + 75;
SELF"". boundRect. right := SELF"".boundRect. left + 40;
SELF"“. boundRect. bottom : = SELF"". boundRect.top + 40;
END; '

FUNCTION NewArc(itsheap: THeap): TShape:
VAR SELF: TShape;
rands, randa: INTEGER;
BEGIN
SELF := POINTER(ORD(HAllocate(itsHeap, SIZEOF (AShape)))):
RandomRect (SELF);
rands : = Abs(Random) HOD 270;
SELF"". startAngle : = rands;
randa : = Abs(Random) MOD 270;
SELF"“. arcAngle := rands;
SELF"".kind := KkArc;
NewArc := SELF;
END;

34
2/3%

An Introduction to Clascal July 1984

FUNCTION NewRoundRect(itsheap: THeap): TShape:
VAR SELF: TShape;
BEGIN
SELF := POINTER(ORD(HAllocate(itsHeap, SIZEOF (AShape)))):
RandomRect (SELF);
SELF"“. oval¥Width := 20;
SELF"". ovalHeight := 15;
SELF"".kind : = kRoundRect;
NewRoundRect: = SELF;
END;

PROCEDURE Run {commandLine: TCmdLine; commandBox: Rect; itsHeap: THeap};
VAR ch: char: :
shape: TShape;

consolefFile: TEXT; {used to a,lloi Read(Ln) or ¥rite(Ln) with the
main console} ,

BEGIN
shape := NIL;
Reset(consolefFile, °‘-mainconsole-dummyFileName');
EraseRect (commandBox):
toveTo(commandBox. left, commandBox. bottom);
OrasString(commandLine);
REPEAT
Read(consolefile, ch);
CASE ch OF
‘r’,*R', ‘a’, ‘A':
BEGIN
IF shape <> NIL THEN
" BEGIN
EraseShape(shape):;
Hrree(Pointer (ORD(shape)));
END;

35

2/ 39

An Introduction to Clascal Jly 1964

IF (ch = ‘r°) or (ch = 'R*) THEN
shape : = NewRoundRect (itsHeap)
ELSE ~
shape := NewArc(itsHeap):
DrawShape(gray, shape):
END;
‘a’, ‘H:
IF shape <¢O NIL THEN
BEGIN
EraseShape(shape);
RandomRect (shape):
DrasShape(gray. shape):
END.
END; '
UNTIL (ch = *q') or (oh = *Q’);
END;
END

36

2/we6

An Introduction to Clascal My 1964

PROGRAM Mi1ClasExasmple; {Main Program}

USES
{$U UObject} UObject, {Needed to compile the UiClasExample INTERFACE}
{$U QuickDraw} QuickDraw, {Needed to compile Ui1ClasExample INTERFACE}

{$U U1IClasExample} UiClasExample: {Declares classes TShape, TArc,
TRoundRect, TControl} ‘

VAR
error: INTEGER: {output parameter of FMOpen: positive if an error}
myPort: GrafPort; {for use by QuickDrae}
control: TControl; {a reference (handle) to an instance of TControl}
ctrlRect: Rect; {The area of the screen .used for the command line)}

PROCEDURE FMOpen(VAR error: INTEGER); EXTERNAL:
{EXTERNAL because not defined in any INTERFACE we can USE}

BEGIN {Main Program Statements}

{In a ToolKit/32 program, UABC (the generic application) would have called
FMOpen & OpenPort automatically}

FMOpen(error); {Gain access to the Lisa Font Manager; ignore errors for
: this example)

OpenPort (amyPort); {Provide QuickDraw with a GrafPort}

{Create an instance of TControl to interact with the user}

SetRect(ctrlRect., 5. 20, 500, 60):

control := TControl.CREATE(NIL., mainHeap, ~
*‘R)ound Rectangle, A)rc, H)ove, Q)uit’, ctrlRect):

{Run the command loop until the user types "Q" for Quit}

control. Run;

END. {Main Program Statements}

3
- oz/c//

An Introduection to Clascal SHily 1964

UNIT UiClasExample;

{Declares classes TShape. TArc. TRoundRect, 'Tcontrol}

INTERFACE
USES

{$U UObject} UObject, {Declares TYPE TObject and procedures such as

NewOb ject}
{$U QuickDraw} QuickDrae: {Declares TYPE Pattern and procedures such as
‘ FillArc)

TYPE

TShape = SUBCLASS OF TObject ,

boundRect: Rect; {Bounding box}

FUNCTION TShape.CREATE(object: TObject: itsHeap: THeap): TShape:
PROCEDURE TShape. RandomRect: {Assign random rectangle to boundRect}
PROCEDURE TShape.Move: {Assign new coordinates to boundRect}

PROCEDURE TShape.Draw(pat: Pattern): DEFAULT; {The default is an
error message}

PROCEDURE TShape.Erase; DEFAULT: {The default is an error message}
END; ‘

TArc = SUBCLASS OF TShape

startAngle, arcAngle: INTEGER: {Clockwise degrees from vertical to
first radius & between radii}

FUNCTION TArc.CREATE(object: TObject: itsHeap: THeap): TArc:
PROCEDURE TArc.Draw(pat: Pattern); OVERRIDE:

PROCEDURE TArc.Erase; OVERRIDE:
END;

38

VA

An Introduction to Clascal - My 1964

TRoundRect = SUBCLASS OF TShape
oval¥idth, ovalHeight: INTEGER; {Curvature of rounded corners}

FUNCTION TRoundRect.CREATE (object: TObject; itsHeap: THeap):
TRoundReot;

PROCEDURE TRoundRect.Draw(pat: Pattern); OVERRIDE;
PROCEDURE TRoundRect.Erase; OVERRIDE:
END;

TControl = SUBCLASS OF TOBJECT
commandLine: Str255; {Text displayed in the comsand line}
commandBox: Rect: {Screen area where command line is displayed}

FUNCTION TControl.CREATE(object: TObject; itsﬂeap: THeap:
itsline: Str255; itsBox: Rect):
TControl; : '

PROCEDURE TControl.Draw; {Draw the menu}
PROCEDURE TControl.Run; {Run the command loop)

FUNCTION TControl.NewShape(ch: CHAR): TShape; {Create the TShape
specified by user input}

END;
L4

39
2/«3

An Introduction to C‘/asca/ | Wity 1964

INPLEMENTATION
HETHODS OF TShape;

FUNCTION TShape.CREATE(object: TObject: itsHeap: THeap): TShape:
BEGIN
IF object = NIL THEN {If space is not already allocated}
object := NewObject(itsHeap, THISCLASS): { then allocate it}
SELF := TShape(object): {Typecast from TObject to TShape}
SELF.RandomRect; {Assign a random rectangle to boundRect}
END;

PROCEDURE TShape.Draw(pat: Pattern);
BEGIN

WritelLn('You can only draw in subclasses of TShape. not TShape®').
END;

PROCEDURE TShape. Erase;
BEGIN

¥Writeln('You can only erase in subclasses of TShape, not TShape'):
END;

PROCEDURE TShape. Hove;
BEGIN

SELF. RandomRect;
END;

40

2/4e

An Introduction to Clascs/

PROCEDURE TShape. RandomRect.
VAR randl, rand2: INTEGER:
BEGIN
randl := Abs(Random) MOD 600;
SELF. boundRect. left := randi;
rand2 := Abs(Random) MOD 150;
SELF. bound!ect.top‘:s rand2 + 75;
SELF. boundRect. right := SELF. boundRect. left + 40;
SELF. boundRect. bottom : = SELF. boundRect. top + 40;

END:
£ 4

41

Wy 1964

/5"

An Introduction ta Clascal | Sy 1964

METHODS OF TArc;

FUNCTION TArc.CREATE(object: TObject; itsHeap: THeap): TArc;
VAR rands, randa: INTEGER:
BEGIN
IF object = NIL THEN {If space is not already allocated}
object := NewObject(itsHeap, THISCLASS): { then allocate it}

SELF := TArc(TShape.CREATE (object, its}ﬂeap)): {Initialize inherited
fields

rands := Abs(Random) HOD 270;
SELF. startAngle := rands;
randa := Abs(Random) MOD 270;
" SELF. arcAngle : = randa;
END; -

PROCEDURE TArc.Draw(pat: Pattern);
BEGIN
FillArc(SELF. boundRect. SELF.startAngle. SELF. arcAngle, pat):
{A QuickDraw call}
END;

PROCEDURE TArc.Erase;
BEGIN
EraseArc(SELF. boundRect, SELF.startAngle, SELF. arcAngle):
{A QuickDraw call}
END;

END;
4

42

2/

An Introduction to Clascal Sy 1964

METHODS OF TRoundRect:

FUNCTION TRoundRect.CREATE(object: TObjeot: itsHeap: THeap): TRoundRect;
PEGIN
IF object = NIL THEN {If space is not already allocated}
objeot := NewObjeot(itsHeap, THISCLASS); { then allooate it}

SELF := TRoundRect (TShape. CREATE (ob ject, itsHeap)): {Initialize
inherited fields}

SELF. oval¥Width : = 20;
SELF. ovalHeight : = 15;
END;

PROCEDURE TRoundRect.Draw(pat: Pattern):

BEGIN _

FillRoundRect (SELF. boundRect, SELF.ovalWidth, SELF.ovalHeight, pat);
{A QuickDraw call}

END;

PROCEDURE TRoundRect.Erase;
BEGIN
EraseRoundRect (SELF. boundRect, SELF.ovalWidth, SELF.ovalHeight):
{A QuickDraw call}
END;

END;

43
/47

An Introduction to Clascal Hily 1964

HETHODS OF TContrdl:

FUNCTION TControl.CREATE(cbject: TObject; itsHeap: THeap; itslLine:
Str255; itsBox: Rect): TControl:

BEGIN
IF object = NIL THEN {If space is not already allocated}
object := NewObject(itsHeap, THISCLASS): { then allocate it}
SELF := TControl(object). {Typecast from TObject to TControl}
SELF. commandLine := itslLine;
- SELF. commandBox := itsBox:
END;

PROCEDURE TControl.Draw;
BEGIN '
EraseRect (SELF. commandBox):
{A QuickDraw call}
MoveTo(SELF. commandBox. left, SELF.commandBox. bottom);
~ {A QuickDraw call}
DrawString(SELF. commandline).
{A QuickDraw call}
END;

PROCEDURE TControl.Run;
VAR ch: char;
thisShape: TShape;
nextShape: TShape;

consoleFile: TEXT; {used to allow Read(Ln) or ¥rite(Ln) with
the main console}

BEGIN
thisShape := NIL;
nextShape := NIL:

44
2/ «g

An Introguction to Clasca/ Sy 1964

Reset(consoleFile, ‘'-mainconsole-dummyFileName®):

SELF.Draw; {Draw the command line}
REPEAT
Read(consoleFile, ch): {Accept one typed charcater from the user}
CASE ch OF
- ‘m, N
IF thisShape <> NIL THEN
BEGIN

thisShape_ Erase; {Erase the shape from its present location}
thisShape.Move; {Assign it a new location}
thisShape.Draw(gray). {Draw it in its new location}

- END; '

OTHERWISE
BEGIN

nextShape : = SELF.NewShape(oh): {NIL if an unrecognized
command, else a TShape}

IF nextShape <> NIL THEN

BEGIN

IF thisShape <> NIL THEN {Erase and deallocate any
existing shape}

BEBIN | 4
thisShape. Erase; {Erase the old shape}
thisShape. Free; {Deallocate it from the heap}
END;
thisShape := nextShape;
thisShape. Draw(gray). {Draw the new shape}
END;
~ END;
END;
UNTIL (ch = °q*) or (ch = 'Q*):
END;

45
&a/w9

An Introduxction to Clascal Mly 1964

FUNCTION TControl.NewShape(ch: CHAR): TShape:
BEGIN)
IF (oh = 'a') OR (oh = *A°) THEN
NewShape := TArc.CREATE(NIL, SELF.heap)
ELSE
IF (ch = °r*) OR (ch = *R*) THEN
NewShape := TRoundRecot.CREATE(NIL, SELF.heap)
ELSE
NewShape := NIL;
END;

END;

END.

46

R/ 8o

An Introduction to Clescel/ Ny 1964

PROGRAM M2ClasExasiple;

{The only differences from MiClasExample are:

-- Unit U2ClasExample is added to the USES chain;
-- 0)val is added to the menu;

-- THyControl is used instead of TControl.

}

USES
{$U UObject} UObject., {Needed to compile the UiClasExample INTERFACE}

{su Quicknra-} QuickDra- {Needed to compile the U1clasExalp1e
INTERFACE} .

{sv U1clasExa-p1e} UlclasExalple, {Declares classes TShape, TAro
TRoundRect, TControl}

{$U U2ClasExample} U2ClasExample; {Declares classes TOval,

THyControl}
VAR _

error: INTEGER; {output parameter of FMOpen: positive if an
error}

ayPort: GrafPort; {for use by QuickDraw}

control: TControl; {a reference to an instance of TControl (a
handle))

ctrlRect: Rect; {the area of the screen to be used for the

command line)}

PROCEDURE FMOpen(VAR error: INTEGER); EXTERNAL; {EXTERNAL because not
defined in any INTERFACE we can USE}

47

2/ 8/

An Introduction to Clascal Sy 1964

BEGIN {Main Prograa Statements}

{In a ToolKit/32 program. UABC (the generic application) would have called
FMOpen & OpenPort automatically}

FMOpen(error);
OpenPort (amyPort);

{Create an instance of TControl to interact with the user}
SetRect(ctrlRect, S, 20, 500, 60):

{Run the command loop until the user types “Q* for Quit}

control := TMyControl. CREATE(NIL, na)inﬂeap, ‘R)ound Rectangle, A)rc,
0)val,

H)ove, Q)uit’, ctrlRect);
control.Run;

END.

48

2/53&

An Introduction to Clascal Sy 1964

UNIT U2ClasExamplé;

{Declares classes TOval (subclass of TShape), THyControl (subclass of
TControl)}

INTERFACE

USES
{$U UObject} UObject, {Needed to compile the UiClasExample INTERFACE}

{$U QuickDraw} QuickDraw, {Declares TYPE Pattern and procedures such as
FillArc)

- {su U1clasExa-p1e} U1ClasExalp1e {Declares classes TShape,
-TArc, TRoundRect, TControl}

TYPE

TOval = SUBCLASS OF TShape
FUNCTION TOval.CREATE(object: TObject: itsHeap: THeap): TOval:
PROCEDURE TOval.Draw(pat: pattern). OVERRIDE;
PROCEDURE TOval.Erase; OVERRIDE:

END;

THyControl = SUBCLASS OF TControl
FUNCTION THyControl. CREATE(object: TObject: itsHeap: THeop.

itsLine: STR255; itsBox: Rect): TMyControl:
FUNCTION THMyControl.NewShape(ch: CHAR): TShape; OVERRIDE:
{TControl.NewShape needn’'t be DEFAULT}
END;

INPLEMENTATION

49

a/53

An Introduction to Clascal Jly 1984

METHODS OF Toval:

FUNCTION TOval.CREATE(object: TObject:; itsHeap: THeap): TOval:
BEGIN 4
IF object = NIL THEN {If space is not already allocated}
object := NewDbject(itsHeap, 'lHISGU&SS); { then allocate it}
SELF := TOval(TShape. GREATE(objc;cit.,ldit}sHeap)); {Initialize inherited
elds

END;
-

PROCEDURE TOval.Draw(pat: pattern);
BEGIN -
FillOval(SELF.boundRect, pat);
{A QuickDraw ceall}
END;

PROCEDURE TOval.Erase;
BEGIN
EraseOval (SELF. boundRect):
{A QuickDraw call}

END;
L4

-
L4

S0

&/ sy

An Introduction to Clasca/ SNy 1964

METHODS OF TMyControl:

FUNCTION THyControl.CREATE(object: TObject: itsHeap: THeap;
itsline: STR255; itsBox: Rect):
THyControl;

BEGIN
IF object = NIL THEN {If space is not already allocated)}
object := NewObject(itsHeap, THISCLASS). { then alloocate it}

SELF : THyControl(montrol CREATE(object, itsHeap, itslLine, itsBox)):
{Init. inherited fields}

END;
L4

FUNCTION TryControl. NewShape(ch: CHAR): TShape;
BEGIN
IF (ch = '0') OR (ch = '0') THEN
NewShape := TOval.CREATE(NIL., SELF.heap)
ELSE

NewShape := SUPERSELF.NewShape(ch); {Calls 'Tcontrol.NuShape
regardless of SELF's class}

END;
£ 4

END:

51
a/s5s

