
An Introduction to Clascal

Susan Keohan
nacintoshUser Education

Apple Co.puter, Inc.

Preface

This is a conceptual introduction to ClascaL not a reference manual.
Example programs and syntax diagrams follow the text.
The purpose of this document is to introduce experienced Pascal
programmers to the concepts necessary to make the transition from a
traditional procedure-oriented environment to Clascal's .
object-oriented environment.
This document assumes you are familiar with Lisa Pascal and QuickDraw.
All programs and program fragments are boldface in this document. for
example, thisShape.Erase is a program fragment.

Table of Contents

Introduction
Comparing Pascal and Clascal

Pascal.
Clascal

Class Types.
Objects
Methods
SELF.

Class Hierarchy and Inheritance
Assignment Checking and Typecasting

. .
Creating and Freeing Objects
StPERSELF and Extensibility
Clascal vs. Pascal•..
Clascal and the Lisa Applications ToolKit.
.hen to Use the Clascal Extensions
Advanced Topics
The Example Programs

1

1

• • 2

• • 4
. , ,. 8

· . 9
12

16

17

20

21

22

25

26

26

27
30

.. J./~

AI7 InlrDtb:fion to CI6SC61 "1y198*,

An Introduction to Clascal
Introduction

ellsoll is I set of extensions to Lisl Pasoal that adds objects and
classes of objects to the language. The sesaantic extensions of
elascal were inspired by the language s.Blltalk 76. The syntactic
extensions were influenced by the language SillJII 67.. It is not
necessary to know s.alltalk or Simula before learning elascal.
elascal differs little fro. Pascal syntactically. The .. jor
difference between the languages is in progr_ing technique.
bn you write a Pascal proor., your procedure and fooction
specifications are separate fro. your data structure specifications.
When a Pasoal proor. is rCA data is passed to a procedure or
function, and the procedure or function acts on the data.
In elascal the data structures of an object and its procedures and
functions'ar~ specified together 1n a class declaration. Ihen the
program is rWl, objects are created. These objects use the functions
and procedures that the program.er specified when defining the data
structure. All the operations that an object eM perf 0111 are defined
by the object's class. As a result, progr .. modularity is i~roYed.
In Pascal, to add new variations to an old data type, you .. st either
define new types inc~atible rith the old type, or. edit existing code
to add new cases to a variant record type and to procedures that act
on that type. In ClasoaL you can define subclasses of existing
classes without editing existing code Met without introducing
incDq)atible types. As a result, progr_ extensibility is illproved.

CCJIIparing Pasc.l and Clascal

Clascal is a superset of Lisa Pascal. Because the readers of this
doc\IIent are Pascal progr...ers, CI.scal oonoepts are CGIIPIred to
Pascal concepts throughout. this doouIent. As a Pascal progrlllller, you
should have little difficulty adjusting to ClesoaL because III)St of
what you know about Pascal is true for Clasoal.

This docu.ent uses a Pascal program and a parallel Clasoal program to
give ex.-ples, .-.cI to contrast the t_ languages. The proora.s are
listed WMter The Exallple Progr_ at the end of this docuIent (see
page 30). All exlllPles .ithin this ~nt are fro. these progr..-s.
The Pascal progr_ Met Clascal progr_ tIhen rt,A do the sa. things.
The difference bet..., the progr .. is that the Clescal progr_
because of the structure of Clascal, can be easily extended. .-hile the
Pascal progr_ c..oot.

1

An Introduction to C/8SC8/ JlIy 198~

Pascal
PaRxlllple, the Pascal proor., is written in Lisa Pascal. When
PasExlIIPle is run, in the Lisa WorkShop, it prints a coamund line on
the top of the screen. The user chooses, fr. this COIIIMnd line, to
draw and MOve arcs or rectangles w1 th rounded corners. Only one shape
appears on the screen at a tiMe; when a shape is drawn or moved the
old shape is erased.

Note
PasExa.ple uses QuickDrH to dr .. and erase shapes.
It helps to have read the Appendix £, 6I/iekDr6' in
the P.se.l RII'IITllntJlIlIMNMl before reading this
docu.ent.

In PasExa.ple. arcs and rectangles with rounded corners are defined in
a record-type definition:

AShepe = REaR)

boun~ect: Rect;· '.

CASE kind: EShape of
kAro: (startAngle, aroAngle: INTEGER);
kRouncfiect: (ovallidth, ovalHeight: INTEGER);

Ell);

This example is the record definition of AShape. Thus, both arcs and
rounded rectangles have a boundRect field. Note that a variant record
part is used to add star tAngle and aroAngle to the kAro variant, and
oval'idt~ andovalHeight to the kRouncRect variant of AShape. The
figure below illustrates the fields an arc or rOlWJed rectangle have.

kArc kROlnIRect

fields fields

boundAect boundRect

startAngle ovalWidth

.. tAngle oval Height

Data fields in kAre and ltA_ect

2

An Introduction to CI6SC81 July '98if

Aside frOll storage allocation procedures, PasExMlPle defines six
procedures and functions. The Run procedure controls the execution of
the pr0Qr8IR. The other five procedures and functions act on arcs and
rounded rectangles. The NeeAro fWlCtion creates an arc and the
NewRoundRect function creates a rectangle with rounded corners. The
DrewShepe procedure dr .. s an arc or e rectangle with rounded corners,
and the EraseShape procedure erases an arc or a rectangle with rounded
corners. The RendoIIRect procedure assigns the rectangle wi thin which
the arc or rCUlded rectangle is dr Hn.

PasExailple .as illplaented using ·handles· -- double-indirect
pointers (....) to records -- and a heap on which the records are
stored. The heap is compactable. The type TShape is a handle on an
AShape-type record.
lithin Pascal programs, information is grouped by operations
(procedures and functions). This grouping by operations scatters
information about each type of data structure .ithin a Pascal program.
F or exallPl~ 1 f you -ent. to see what. can .be done .1~ arcs in
PacExallPle, you havQ to look at Ne.tArc, Dra.shape, EraseShapa, and
RandoIIRect.
In PasExallPle. there is one Dr a. procedure fot all shapes.

PROCEDlRE Dr a.shape(SELF: TShape);

BEGIN
CASE SELfAAkind of

kArc: Fra.eArc(SELfAA.boundRect. SELF startAngle.
SELf .. A.aroAngla);

kRoundRect: fr..aRoundRect(SELFAA.boundRec~
SELf A ... ovallidth. SELf A A . ovalHeight);

81);

fti);

The CASE statellent determines 00. to draw a particular shape. In
PasExallPle. as in all Pascal proor.... it .auld be easy to add a no
operation because it 1s • procedure-oriented language and infor.ation
is grouped by operation. It.wd. hoMver.. be difficult to add
another variant of AShepe. To do so.. you have to edit the declaration
of RECORD AShape in PasEXllllPle. and add to the case stata.ents in
all procedures and fwactions in the pr._. If the source code is
WMtvailabl~ or if the object cOde is fr_ a shared library.. it is
iJIpossible to add MOther data structure.

3

An IntrodtJction to C/IJSCI/ .Ally 198~

Clascal
Clascal progrils are structured around classes. A Clascal object is
defined by its class. An object's class defines both t.he type of data
structure the object has.. and the operations (procedures and
functions) that the object '*' perfoJ'll. Classes belong to a
hierarchy. This hierarchy -.kes it possible for classes to share
characteristics belonging to classes above ~ in the class
hierarchy. Figure 1 illustrates the basic C1ascal hierarchy, and
introduces some fundaMental Clascal ter.s.

supercl~of X .

Figure 1. Clascal Hierarchy
Every 'circ1e in diagr_ above is a class. lithin the hierarchy,
classes have relationships. It $U/JClMSS is a class that is one level
bela. in the hierarchy -- C, D... Met E are subclasses of X. A
$U/»rcJtI$$ is a class that is one level above a class in the hierarchy
-- B is XiS superc1ass~ Ancestor classes are classes that are above a
class on the hierarchy -- A and Bare X's ancestors. Descendent
classes are classes t.hat are bela. a e1_s in 'the hierarchy -- C, D,

~II

An IntrodJctiOl'l to ellSe,,1 .Ally ,gaif

E, f .. and 6 are descendents of X. These concepts are discussed in
80re detail later in this doo4.IIent.
Objects are organized in classes. A class is a kind of data type that
defines objects. A class is a t}1» in the traditional Pascal sense;
it is sildlar to a record ty~ but also associates operations .ith
the class. These operations era procaduras and functions. In Clascal
terMinology.. procedures and functions are called _t/lod£ to indicate
that they are associated with a class. An object uses the _thads
associated with its class. So.. tIhen you define a class.. you define
the data fields .. and all the _thods an object of that class can USQ.

A clns type is like a Pascal record type, but IIOre. Unlike a record
type, a class has associated with it, in addition to data fields.
_t.hads (procedures Md flft)t.ions).

An object is an instance of a class.. just as a record variable is an
instance of a record type. An object is not the s_ as a class. A
class defines the fields and -.thads an object of its type will haV1L

. but i, not one of the objects it .fines; jt.lSt· as a Pascal REaR) type
defines ao ·record. but is not one' of the records it defines.

The standard Clascal uni'tv tDbject.., defines a class .. TObJut.
TDbject defines the .ost generalcharacteristies of all Claseal
objects. For exampl~ TObject provides a general method for copying
an object, and a _thod for discarding ... object.. Additional classes
in a program are defined in unit UObject and other units.
A priMary Clascal concept is that the data fields Met _thods fr. one
class can be inherited by another class. Classes are organized in a
tree-structured hierarchy.. with TObject the ultillete .-.cestor class.

A new class is created by declaring it a subclass of another class.
This establishes a place for the new class in the hierarchy. The
subclass inherits the characteristics of the superclass.. and new
characteristics can be added.
An object of .. y class is ., instance of its OWl class. end a lllllber
of all its ancestor classes. For &XlIIIPle. all objects are ..mers of
the class TObject. as well as lllllbers of their CMtn classes.

CluExallple has two subclasses ofTObject: TShape and TControl.
TSINape has two subclasses: TAre Mel lRCUICItect. Figure 2 shoft the
class hierarchy in ClasExa.ple.

5

An /nfrodJctiOll to C/8SC8/ .lily 1984

figure 2. Class Hierarchy in ClesExa.ple

Inherited.data field6 cannot·be re~la.ented in •. subclass, but
inherited .ethods can be reilpla.ented. Reliplementing a lethad is
oalled -overriding a method-.
for example, oonsider ClasExlIIIPle. ClasEx..ple dr_s and .,ves arcs
and rounded rectangles. TShape defines tho IIOSt general
characteristics of shapes. These characteristics are a data fiel~
boun~eot and four non-aEATE methods:

• aEATE (Creates an Objeot of olass TShape)

• Ora.
• Erase
• Hove

(Dr_s an object of class TShape)
(Erases an object of class TShape)
(HoVIS an object of class TShape)

• Randa.Reot (Initializes boun~eot in an object of olas& TShape)
As subclasses of TShape, both TAre and TRoundReet inherit boundRect
and the four non-IJEATE lethods defined by TShape. Note that TAre
and TRoundRect inherit the definition of boundRect fr_ TShepe, but
that each member of the class has its very own boundReet field.
TAre adds two additional data fields, startAngle and arcAnale.
overrides Dr. and Erase, and adds its own aEATE fl.R)tion.
Likewise, TRoundReet adds two additional data fields, OY81lidth and
ovalHeight, overrides Ora. and Erase. and adds its 0Wt aEATE
function for the olass. Since dr .. ing and erasing arcs and rounded
rectangles is different, TAre and lA_eet define their own Or_
and Erase _thads. Initializing bouncRect is the SalE for all
shapes, so RandOllReet and Hove are inherited lI"Changed by both TAre
and TRouncReet. Figure 3 illustrates this exaMple.

6

An /nl'rl:detion to C/8SCII/

Class Definition of T Arc

Data Fields
DoundRect
startAngle
arcAngle

I'-1ethods
TAre .CREA TE
TAre .Draw
TAre .Erase
TShape .Move
T~ .R8IIdomR«t

.Ally 1984

Class Definition of TShape

Data Fi~lds
iJotndFI«t

~thods

T~.CREATE

T~.Ort1W
T~.Er.t'

TSh~.Mow
T~ .R6I1domRt'ct

Class Definition of TRoundReet

Data Fields
iJotndFIect
ovalWidth
ovalH~ight

t--1ethods
TR~ect .CREATE
TR~ect .Draw
TR~ect .Erase
T~.ft40vt'
T~ .RlII1t1omRt'ct

FigtM"e 3. Inheritance in ClasEQllPle

7

.An /ntrOtU:tim to C/IJ$C8/ .lily 1984

In ClascaL all object 1nformat1on 1s centra11zed w1th1n a class
definition and ~lement8tion. An operation definition within a
Claseal proor~ because it is organized within classes, is
distributed throughout the progr.. For t)(8IIple, if you want to aee
how "Or.- 1$ accoap11&hed 1n ClasExallPle, you have to look 1n the
Method implementations for TShape, 1R~ect, and TArc. In
PasExample, you had to look only in the one Draw procedure.
You ean e~end Claseal applications easily because of the class
structure. In this docuMent you .ill see how the class structure
allows easy extension of Clascal programs, and how this ability is
used by the ToolKit.

Class Types

Clascal adds a new kind of data type, cIas£ A class type is like a
Pascal record type# but has associated with i~ in addition to data
fields, IRethods (procedures and fooctions).

AnobJect-:-reFerence . .,.fiIJbIe is a special pointer-type vlriablethat is"
used to reference an object. The type of an object-reference variable
is always a class type. The value of an object-reference variable is
either NIL or a reference to an object. The ..chine representation of
an object reference is a IliJndlc a pointer to a pointer to a block on
the Clascal heap. In Cl.sEx-.ple:

control: TControl
thisShape: TShape

are object-reference variable definitions, oontrol is of class
TControl and thisShape is of class TShape.
Thus, an object-reference variable is not an object. When you refer
to an object's field or a Method .ith an object-reference variable,
the handle is auta.ltically dereferenced. This is different in syntax
from Pascal. In PasExallPle, SELF refers to an object. To reference
the arcAnale field in an arc, you .auld have to explicitly write

SELF roAngle
In ClascaL the double indirection is taken care of autCJl8tically. To
reference the Sale field in an .rc object. you would write

SELF •• rcAngle

8

')./ /I

An Introduction to CI8SC81 July 198~

Objects
-

An object is an instance of a class. An object is stored in a block
of dyn.nc IIIeIIIOry on a Clascal heap. An object knon its class, and
so kno.s .tU.ch _t.hods to usa.

Data fields Md associated _t.hods MIke up an object.. All object.s
that are instances of one class use the set of field names defined in
the class definition.

An object reference is anything that refers t.o an object. An object
reference stores a ~eon an object. A handle is a double-indirect
pointer an application uses to reference an object on the heap. A
handle points to a ..ster pointer; which points to the object' s block
on the heap.

Haster pointers are .. intained by the storage .anager. then the space
on the heap is relocated to make rOOll for other objects, the storage
tMnager changes the aster pointer. Since the application uses the
handle (which points to the _ster pointer), the. application does not
need to' know,' about the ·change in. the heap. . .
To reference a data field in an object, the forat is ..
oIJjectRtderence. ~.riiJIJlellMe. Note that no carets (loA) are used to
resolve the handle -- the double indirection is ~licit. In
ClasExClllPle:

INTERFACE

TYPE
· TAre = SlIBa ASS OF TShepe

startAngle, arcAnale: INTE8ER;
·

£11);

· DtPlEtENTATION

· lEaD

· SELF. arcAnale :. randa;

assigns the value of randa to SELf. arcAnale. SELF is the object
reference to the object .t'tich contains the field arcAnal.. Note that
in PasExa.ple. SELF .as declared ~llcltly as a variable. In
ClasEx.-ple. it is predeclared by the CQlpiler, as .ill be explained
later in this docuIent.

9

M Introduction to CI6SC81 .Ally 1984

To ..x1ldze modularity, pure Object-or1ented progralS leke the
restriction t.hat. fields of an object can only be accessed frOll the
bodies of _thads of that s.a object. In other _rd" all field
referenoes are of the font SELF. veriableN_. Aooess by other
objects 1s forced to go thrOUGh the .. thad 1nterface. For perforllance
reasons, Clueal proor.as often COIIpramse this principle. allowing
read and SOIIetu.S write access by other objects. The fields that can
be accessed frOil outside should be chosen with oare. otherwise. future
lIOdi fieations to the proor _ could have unexpected repercussions.
DoellDentation of each class should indioate .-hioh fields, if any,
permit external read and/or write access. OUr doct.ntation uses the
letters R and * to the left of the field MIle for this purpose.

Figure 4 s~s that object references in ClasExa.ple are handles on
objects in the heap. SELF is the object reference, ovallidth is the
field MIlle, and that SELF. ovallidth is a field designator that refers
to the object' $ ovallidth field.

TRoundRect. • SlIBCI ASS OF TShepe
ovallidth ovalHeight: INTEGER

SELF. ovallidth : = 20;
SELF. ovalHeight : = 15;

Figure 4. . Object References in ClesExMIPle.

10

M Introduction to CI8SC81 .Ally 1984

An object can have ~re than one handle. bUt each object has only one
aester pointer. The MSter pointer is the direct link to objects on
the heap. Hore than one object-reference variable can contain equal
handles; they .auld all point to the same master pointer. Assigning
the Sale handle to another object-reference variable creates a ne.
path to the S8Re object. Figure 5 illustrates the assigMent of one
object-reference variable to another in ClasExlIIPle. Note that
thisShepe and nextShepe are object-reference variables. Md so
reference an object of class TShepa. TArc .. or TRoundRect.
Since the value of an object-reference variable is actually a handle
on a block on the heap .. .men the value of one class-type variable is
assigned to another.. the teN) variables point to the saII8 block on the
heap. Assigning the value of one handle to another parallels
assigning the value of one Pascal pointer-type variable to another.

PROCEotiE . TCont·roi. Run;
YAH thisShape: TShape

nextShape: TShape

thisShape : = nextShape ""'''r~'''. ~ ~ . ~----,
~ \.

--------~\~--------------~
~
r~

.. ster pointer
for object

~ ----.....

thisShape

objf!Ct on heap

Figure S. A NM Path to the S- Object.

11

An Intrt:dJctiOll to C/8SC81 .Ally 1984

ttathods

Methods are functions and procedures associatad .ith a class. Hethods
define the operations an object can perfonn. All objects of the Seme
class use the S8IIQ _thods.

A _thad declaration consists of' • heading (MIle. arguaents .. and
return type. 1 f a function) and a body. The heading is specified in a
SlBl.ASS declaration in the TYPE section of a ~n interface. The
bodies are specified in a t£ltO)S block in the ItR.Et£NTATIm. sact10n
of the same unit. See Cl.sEx .. le for illustrations.

An object's methods are defined in its class .. and are associated .ith
the object., as .ell as .ith all other objects of the sane class. The
data. structure and methods together are one entity -- an object.

The association of an object .ith its methods .ekes it possible for
the object to act on its an data. A _tlltJd IM11 tells an object to
execute one of its methods. lhenever an object executes a llethod,. the
method acts on the data tfhich that object stores. A -thad call is
similar to a' procedure 'or"' function· call. '

All objects of the same class respond to the same method calls. The
'orlOat of a method call is oIJjectRel'erence. Hethod(.ugunents).
Hethod(ngunents) has the same' syntax as a Pascal procedure or a
function call and _y .. optionally .. have argunents. Fr_ Cl.sE)(.. le

Progr .. nclasExaiple

VAIl

control: TControl

IEGIN

control. Run;

oontrol.Run is a llethod call .ith no argtllfmts. oontrol is an
object-reference variable of type TControl. control.Run tells the
object referenced by oontrol to execute its Run _thod. Figure 6
illustrates these steps.

12

An Intrtx/tJction to C/6SC8/ .Ally 1 98*f

mmmmm Fr. nt of ClasEx--le ;mmilili " ~ ' .. .

control: TControl

oontrol. Run """"",,,,,,,,,,,,,,,,,, If"".,

IIlHIN tEAP

Executes . Run

Figure 6. ttethod Call.

Classes and methods, COIIIbined with object ref.r~ alla. you to
.rite code .ith _thad calls upon objects, .ithout kl"KMling tthat object

13

M Introtlu,ction to C/8$ca/ .Ally 1984

will be referenced at run t1.e. This is beneficial because it
increases the extensibility of elaseal code. (Code extensibility is
discussed later in this doclMnt.) f or ex~lew in ClasExallPle

IF (ch • t a,) or (ch • 'A I
) THEN

thiaShape :. TArc .. CAEA1E(NIl. SELF. heep)

ELSE
th1sShape : = TRoun.-ect .. CREATE (NIL. SELF. heap);

thisShape.Dr .. ;

the value of t.hisShape is not. detendned until run ti.- .taen t.he user
choOses to draw an arc or a rounded rectangle. TAre and TRoundReet
each have a Dr a. ..thod. At run ti-. the correct Dr.. is Q)(Qcuted.

WITHIN HEAP

TAre .Dr ..
TArc .Erase
TSh.ape .Hove
TShape • RandallAect

fioure 1. One Method Table per Class.

14

An IntrOfAlction to CltlSC81 .Ally Ig8~

A run-tiM _thotl t4IJle 1s ut up for each class by the elaseal
COMpiler. The .. thod table for a particular class contains pointers
to the _thods that objects in that class use. All objects of the
sa.e class share the same .ethod table. Figure 7 illustrates this.
Notice that the lethod table includes Methods defined specifically for
the class as -.11 as .. thods inherited fro. the suparclass.
At cOlipile t:i.e.. thisShepe. Dr .. is lIIbiguous. The _thod tables
enable the correct illpleaaentation of Ora. to be invoked at roo time.
Note that the method table does not include the IHA 1£ .. thod. The
reason is that the call TArc.IHATE is unaMbiguous at compile tt.e
(see page 21).

In programmdng language theory, a procedure with multiple
implementations is called generic. 'Dr .. is generio, .ith t.o specifio
illlplanentations, TArc. Dr.. and TRouncRect. Dr... In languages like
Ada, it is possible to deterlline at cOlllPile tu. which of several
implementations a given generic procedure call will invoke. In

. languages like Clascal end Smelltalk. it is not possible to choose
among ·1~lementat1ons until run tillle. A generIc procedure wnch can
not'be resolved until run time is somet~s called polYlQrphic.
You may have noticed that the syntax for a reference to a data field
.ithin an object and the syntax for a Method call with no argumants
are identical. Their syntax is:

• objectRef'erence. v,ieleN6IJJe for a reference to a data field
• objllctRef'lIrence. I*thod for a method call

To help readers tell them apart. ToolKit typographical conventions
begin variable n .. s with a lowercase letter. w.ereas _thod names
begin .i th an uppercase letter. Thus. oont.rol. R.-. is • _thad oall ..
and SELF.arcAngle isa reference to a data field within an object.

15

02/ 1 '1

M Introduction to CIt1Scal July 1984

SELF
SELF is an object reference. Any _thod oan refer t.o SELF, and it
al.ays _ans the DlJJect th.ft is executing the _tlJDtl. Every llethod
has a SELF t.he compiler declares autOMatically. Its type is the class
that contains the method. for 8)(_1.. in ClasExlIIPle

thisShape.Dra_(gra,);
calls the Ora_ method for the object. lithin t.his _thad, SELF refers
to the same object thisShape did. In other .ords. assllDing that
thiaShepe stores a handle on an object of olass TAro,
th1sShape.DrH(gray) calls

PROCEDURE TArc.DrH(pat: pattern)

w-ioh behaves as i f it .re declared

PROCEDURE TArc. Dr .. (pat: pattern; SELF: TArc)

1ntm1ch

pet := gray

SELF :. thisShepe

Note thllt it is illeg.tl to decl"re SElF "s " p"r.tIIIfJter for" _thod.
It is 8utlJllJlltic811y dM:l8Tlld 8S 8 p8TlJlllllt.r iJy th6 COIIPilllr.

like any other object-reference variabl~ SELF can be used to call a
method, or to reference a data field, of an object that .ill be
det.ermined at run t.i.. For example, in ClesE)(allple. RandOllllAect. is
used to assign a value to the boundRect field of an object that is
detemned at rWOl t.t..
An important fact to understand is that at roo tille, the object
referenced by SElF in the _thod TShape.Roun~eot is necessarily a
.aMber, but not necessarily an instance, of class TShape. SElf could
ref erence an object of class TAro, TRoundReot, or any other
descendent of TShepe. On different calls to the llethod during a
single progr. execution, the referents of SELF could be objects of
different classes. . •

16

An /ntrotAJetiOl'l to C/6$C8/ .Ally 198~

If you find SELF confusina., you can compare the RandOllRect method in
ClaaEx8llple with the corresponding procedure in PuExallPle.. which
does the same thing:

In PasExa.ple:
PROOEDlIE RandOllAeat (SELF: TShape);

VM rend1. rend2: INTEGER;

BEBIN
rand1 :c Abs(Randa.) HOD 600;
SELF A A • boun~ect.left :. rand1;

rand2 : = Abs(Rend_) til) 150;

SELF boun~ect. top : = rand2 + 75;

SELF boun~ect. right:. SELF A A • bouncmect.left + 40;

SELF"-. boun~eat. batt_ :. SELF--. boundReot. ,op + 40;
. . .

In ClasExallPle, we include the class nan. in the headina-we OIIIit the
SELF perameter because it is illlPlici tly declared as a TShepe" and we
write SELF.boundRect instead of SElF-A.boundRect:

PROCEDtR: TShape. RandOllRect;

VM rend1, rend2: INTEBER;

BEGIN
rand1 := Abs(Randa.) noD 600;

SELF. boundReot. left :. r.nd1;

rand2 : = Abs(Ranct.) til) 150;

SElF. boundRect. top :. rend2 + 15;

SELF. bouncltect. right :. SELF. bouncfiect.left + 40;

SElF. boundReot. bott_ :. SElF. boundRect. top + 40;
£11);

Class Hierarchy and Inheritance
A _thad can be declared a default _thod in the interface by using
the DEfMl..T qualifier.. The OEFMl..T qualifier indicates to the
~iler that it is likely that this _thad .ill be overridden in the
subclasses. A DEfMl.. T _thod does not have to be reillPl.ented in a
subclass" Met a non-DEFIU.. T _thad can still be overriden. Using the
DEfNl.. T qualifier on _thods' that are usually overriden saves space at
reAl tiM.

17

M /ntroductiOll to C/8SCa/ July 1984

The OVERRIIE qualifier ~t be used in the interface Whenever an
inherited _thod is reilllplemented. Note that you IIJst use OVERRIDE
regardless of .hether the DEfMLTqua1ifier AS used.
Every class must declare a CREATE method. A CREATE aethod may never
be declared either DEfMLT or OVERRIDE.

The type defini t10ns for TShape, TAre. and TRoun~ect are listed
below; note the use of DEfAll.. T end OVERRIDE :

TShape = SUBCLASS IF TObject

bouncfieot: Reot;

fUNCTION TShape.CREATE(Object: TObject;

itsHe.p: THeap):TShape;
PROCEDtIE TSMpe. nove;
PRQ(E)tJ£ TShape. RandOllRect;

PROCEDtIE T$hape. Ora •. (p.t: ~tter~); DEFML T;

PRQ(E)tJ£ TShepe. Erase; DEFMI.. T;

TAre = SUBCLASS IF TShape

startAnole, arcAngle: INTEI£R;

FUNCTION TAro.CREATE(objeot: TObjeot;
itsHeap: :neeap): TAre;

PROCEDURE TArc.Dr •• (pat: pattern); OVERRIDE;

PROCEDURE TArc.Erase; OVERRIDE;

TRouncfiect = SlIICI ASS OF TShape

ovallidth, oyalHeight: INTE6ER;

FUNCTION TRoundRect.CREATE(Object: TDbject;
i tstteap: 11feep): TRoun~ect;

PROCEDURE TRoundRect.Or .. (pat: pettern); OVERRIDE;

PRQ(E)tJ£ TRoundRect. Erase; OVERRIDE;

According to the syntax of ClascaL the next -to-last line above could
be abbreviated:

. PRQ(E)tJ£ Dr .. ; OVERRIDE;
i.e., the class name and dot are optionaL and the arguMent list is
also optional. When they are included, the CGIIPiler checks t .. for
type agreement with the inherited _thode FurtheJW)re, including theIR
ilproves readability and lekes searches in the text editor far easier.

18

M /ntrOthction to C/tlSC8/ .Ally 1984

figure 3 illustrates inheritance in ClasExa.ple. TAre and
TR~eot iMerit bouncReot and add addit.ional fields .. atar'tAngle
and arcAnale for TAre and ovall1dth and ovalHe1ght for TRouncRact.
TAro and TRoun.eot reiliplelDlnt theCREAlE. Dr and Er.se _t.hads ..
but the Hove and RandoIIReet _thods are inherited frOll TShape.

FrOID ClasExallple,
thisShape.Ora.(gray)

is a .athod call. thisShape 1s declared as a variable of type ~e.
This means that references to objects of classes TShape, TArc and
TRou~ect can be assigned to it. In the example progr • ., object
of type TSh.pe is never created because TShape describes shapes in
general" not particular shapes. Therefore" thisShape is a reference to
an object of ScJle subclass of TShape. As discussed above- the Ora.
method is t.pla.ented differently in each subclass. When the object
is told to execute the Ora. Method. it uses the _thod defined for its
particular subclass. Thus" if thisShepe is an object of class TArc"
it will execute ~ TAro .• Dr_. . likewise, if .thisSfMpe is an
object of class' TRoUndRect., it will execute PRCXEDlI£
TRoun~ect. Ora •.
'"'*' you create a new cln~ the Clascal COIIpiler creates, in effect"
a _thod table for that class that cOllbines pointers to the _thods
frOM the superclass with pointers to the .ethods for the new class.
The compiler reimplements superclass llethods with the subclass'
Methods where applicable. Figure 8 lists the Methods pointed to in
the _thad tables for TArc Md TRCU'KMect.

TArc .Draw
TArc .Erase
TShape .Hove

TShape • R...-..Rect

TRoUndRect • Dr ..
TRcudfect . Erase
TShape .Hove
TShape • RandoIIRect

figure 8. ttethod Tables.

19

An Introduction to Clascal .Ally 198Jf

Assignaent Checking and Typecasting
If a proor .. declared variables arel. ar02: TAre and variables
shape 1. shepe2: TShape. then the following assignllllnts would be legal
and are 8l .. ys saf.:

shapel :. ahape2;

arcl :. erc2;

Shape1 : = 8ro1;

But the folla.ing assioment .ould be illeoaL because the run-tilDe
value of shapel could be a lRoun.ect:

arc1 ::1: shape1;

If, in the context of the assig..-nt, you knotl that shapel lUst be a
lllellber of class TArc, then .ri te the following legal statement
instead: .

a~cl :- TArc(abapel); ,
The cOnstruct TArc(.' ..) is called a tyPecaSting construct; it tells
the compiler to treat the argunant as if its type _re TArc. ~
range-checking is on ({eA+}). this causes a rtl'l-tiE check that
shapel is indeed a IIIRbar of class TArc. Ih8n range-checking is off
({.-}), no code is generated, no checking is done.. and a msmatch
.ill cause anomalous behavior.

The follo.ing construct is legal. Constructs like it are often useful.

shapel := TControl(object).~epe(oh);

It is equivalent to the fo11.ina three lines of code:

VAR control 1 : TControl;

controll :- TContro1(object);

shapel :. controll • NewShape(ch);

Note that Nn. is • legal value of any object reference. However .. an
atteMPt to dereference NIL will cause • crash.

20

An IntroductiOfl to C/8SCI/ .Ally 196~

Creating end Freeing Objects
A nH object, - or instance of a class, is created by a spacial IIRthod.
the tJEATE function. A CREATE fooction IaJSt be declared in the class
definition of every class. A CREATE function allocates space for an
object on the heap. assigns the handle of this space to SELF. and
should initializa all objQCt fields. In ClasExallpla the CREATE
function for TArc is:

FUNCTION TArc.CREATE(objact: TObjact; itsHeap: THaap): TArc;
VAR rands. randa: INTEGER;

BEGIN
IF object = NIL no

object : = NElObjact(itsHaap.. THlsa.ASS);

SELF : =TArc(TShape. CAEATE(Object., itsHeap»;
rands :. Abs (R-*-) til) 210;

sELF • s~artAngle : = rands;. .

randa : = Aba (R) 10) 270;

SELF.arcAnal. := randa;
81);

This CREATE function creates an object of class TArc.

Every class .ust have a CREATE .athod .ritten specifically for it.
Its par_ters can be different fr_ the parameters in the CREATE
_thad of the superclass. lhenever you .rite a CREATE function,
debugging is easier if you initialize all data fields.

Except for "diate subclasses of TObject, a CREATE function usually
lUSt initialize both the fields declared in its a.n class and fields
inherited fraa ancestors. To do the latter. it can silRPly invoke the
CREATE of the superclass. ~ver. it .auld be .rong to allocate the
object Imre or lass than once. The first CREATE called IMISt do the
allocation. and the MCeStors aust not. By convention. the first
ar~t of CREATE is object: TDbjeot., and the second is itaHeap:
lIteep. A caller oonally passes NIL • the value of object. but the
CREATE of a subclass passes an already-created object to its
superclass CREATE instead. In the NIL case only" aEATE is expected
to allocate space for the objeGt on itsHe.... In either case, CREATE
is then suppo~:(. to initialize the fields declared by ancestors (by
calling the aEATE of the next superclass up) and then to initialize
the fields of its u.n class. See TArc.CREATE (above or in
U1ClesEx8llple) and TShape. CREATE (in U1ClasEx8llPle) for
illustrations.

21

An IntrtxNction to ellSe,,1 .Ally 1984

When ., application no longer needs an object, you should rellOve that
object fra. the heap, using the Free _thad.. so the space it occupied
c., be reallocated. The Free _thad r~ves objects froa the heap and
reallocates the space on t.he heap. Fr.. is a _thod of TOb jeot..
fra. ClasExlIIPle,

t.hisShape.Free

frees the object referenced by the handle contained in t.hisShape.
Generally, each new subclass does not have to provide its OWl Free
_thod; typically, it can just inherit it fro. TObject. Hoftver, if
the subclass' CREATE fooction causes additional objects to be created,
it is usually necessary for the Free _thad to free ~ and to do
so, the free _thad IIlJSt be overridden. The last statelDent of a free
method is generally SlFERSELF.Free, explained bela..

SlFERSELF end Extensibility

Applications written in Clascal can be functionally extended with a
~nimum of difficulty because of Clasoal's class structure. In .
Clascal, you~can create a software·library that doH not account for
en entire set of objects, just the 80st general. A progr_ can then
add new objects to the set in the library ... ithoUt affectina the basic
structure of the syst .. as long as the '*' objects have parallel
methods. For Q)(~le. to add a nett object to ClesExlIIPle.. so that it
can dr.. and IDOve ovals. as well as arcs and rounded reotangles, you
would add 8 unit. The new unit .auld contain an additional subclass
of TShape, called TOval, and a subclass of TCantral, called
TltyCantrol. This new hierarchy' is shawl in Figure g.

Figure g. NH Class Hierarchy in ClasExlllPle.

22

An Introduction to CI8SC81 .Ally 1984

In the _in progna rt2C lasExaIIP Ie., you would add the nn shape to
the CD •• and line. Salient parts of the new unit are listed belOtf.
The entire unit., U2ClasEx .. le., is listed at the back of this
docuIIent.

TYPE
lOval = SlII1.ASS m= TShape

FUNCTION TOval.CREATE(object: TObject; itsHeap: THeap):
TOval;

PROOEDlR TOval.Dr_(pat: pattern); OVERRIDE;

PROOEDlR lOval. Erase; OVERRIDE;
81);

THyControl • SUBCLASS of TControl

FUNCTION THyControl.CREATE(Object: TDbject;
i tsHeap: THeap; i tsline: S255; i taBox: Reet): THyControl;

. FtMCTIONTHyControl. Nei.shape(ch: CHAR): . TShape; OVERRIDE;

BI);

ItFLEt£NTATION
tEllIJDS OF TOYal;

FUNCTION TOval.CREATE(object: TObject; itsHeap: THeap):
TOval;

BEGIN
IF object • Nn. Tt£N

object: = NetlObjact(itsHeap; THIsa...ASS);

SELF :. TOval(TShape. aEA1E(Object. itsHeap);
EtIl;

PROOEDlR TOval.Dr .. (pat: pattern);
IEGD

FillOval(SELF. bounclleot. pat);

01);

EraseQval(SELF.boundRect);
01);

£11);

23

An Introduction to CltlScal July 198~

t£TIIIlS (F -lltyControl;

FtKTION TltyControl. CREA1E(objeot.: TObjeot; itsHeap: 1Heep;

i tsLine: 9255; i tsBox: Rec't): THyCont.rol;

BEGIN
IF object • NIL THEN

objeot :. Ne.object(itsHeep .. THISCLASS);

SELF: = THyControl(TControl. CREATE (objec't- itsHeap,

ItsLlne, ItsBox»;
. BIl;

FUNCTImt THyControl. Nedhape(oh: CHAR): 1'Shepe;

BEGIN

EtI);

IF (ch = ·0')· (It (ch = '0') THEN
Ne.shape := mval.aEATE(NIL .. SELf.heap)

ELSE
Ne.sh8pe : = SlPERSELF. Ne.sh8pe(ch);

EfI);

Note that FlI£TION THyControl. Ne.shape adds functionality and then
calls the _thad fra. the superc1ass, TCont.rol. FUNCTllIt
TltyControl. Ne.shape extends the ftl'K)tiona1i ty of the function by
adding an '0' ca..tand .. 1ch creates an oval.

IF (ch = '0') OR (ch = '0') THEN
Ne.sh8pe :. TOval. CREATE(ND- SELf. heap)

If the cc.aand the user enters is not M '0', it IIISt be one of the
original ccaaands that TCont.rol. Ne.shapa racogniz8s. The fol1a.ing
_thad call is used to deal .i th that situation.

NHShape : = SlPERSELF. NetfShape(ch);

This calls TCont.rol. NHSh.pe. SlPERSELF is usually used in an
OVERRIDE _thod to alla. an inherited .-t.hod to be not COIIPletely
overridden. but rather extended. At the point (or points) in the
OVERRIDE _thod re you t the inherited _thad to be invoked..
call it using SlPERSELF.

24

An Infrotb;tion to CI.c81 .JJ1y 1!IIN

Rule
lhen StFERSELF. Hath appears in the body of • _thod
of class C., subclass of S., it t.ells SELF to inyoke
'the illpl..m.ation of Hath that •• declared in
t£1lIJDS Of S or that AS inherited by S fr_ its
-.castors.

Note that a SlFERSElF call is oo_iguous at oOlllPile tille.The _thod
called need not hive the same R8I8 as the OilIer, but it usuilly does.
The _thod name _y not be CREATE.

The change required in tElnExlIIPle is

control:. TControl.CREATE(NIL _iNte.p, 'R)ound Rectangle,
A)rc., "love, O)uit I., t8llPReot);

to
control: = TttyControl.CREA1E(NIL. .. inHeap. 'R)ound Reotangle,

A)ro., O)v8L ")ove., Q)uit I, t8llPRect);
50 that the user can Choose to dr .. "afwj .:»Ve ovals.' Note that by
calling THyControl.CREATE instead of TControl.CREA~ the control
object is of class lltyControL and adds the additional fW"Ctionality
to the progr ...

Cllscal vs. Pascal -- Ihat Does elaseal Reali, 00 for You
Subclasses are the Clascal alternative to variant records. A
subclass is a .ore specific definition of its suPlrclass. In other
words, the super class defines general characteristics of a class, the
subclass inherits these characteristics and adds additional data
fields or _thods, or reillplaents inherited 1Ethods. In
CluEx8llPle, TShape contains bourMIfect: Reot as its only field.
TArc, a subclass of TSMpe, cont.ains the folla.ing fields:

boundReot: Heat

startAngle., aroAngle: INTEBER
Thus, TAro inherits bcMtcltect fro. TShape WKI adds startAngle and
eroAngle.

25

.An Introduction to Clascal .Ally 198~

In ClascaL subclasses are used instead of variant record parts to
handle special oases. In PaaExa.ple

AShepe = RECfII)

bOundRect: Reet;

CASE kind: EShape of

kAre: (.tartAngle, arcAngle: INTEGER);
kRouncitect: (ovallidth, ovalHeight: INTEaER);

EtI);

is the record definition of AShape. Note that a variant record part
is used to add the kArc variant to type AShape. Unlike the situation
with variant records, in elascal you can add a subclass like TArc and
not affect the rest of your application. You can even add the
subclass in I unit separate frOM the one in which the suparclass is
declared.

Clascal end the· Lisa ApplicatiOns· ToolKit
elascal was developed for use with the Lisa Applications ToolKit. The
ToolKit is comprised of libraries of Clascal code with predefined
classes that provide certain standard functions for an applications
wri ter . The ToolKit defines the lieneric IIppliC6tion. The Generic
Application provides standard Lisa Applioation behavior. Ihen you
write a ToolKit program you add extensions to the Generic Applicati~
by creating subclasses and methods to perfOI'll the work of your
application. For fIOre inforMtion, see The Lisa Applioations
ToolKit Referenoe nanual and the ToolKit seg.ents.
One of the RUst i~rtant features of elascal is that method calls are
used to tell an object to perfOI'll a IRethod on itself. This Means that
a ToolKit library can tell one of your application's objects to invoke
a .athod. For example, if a user pulls down a .anu and selects Cut,
the ToolKit will tell a selection object in your application to run a
_thad of a certain naIe. You _y have different selection classes
for different kinds of selections (text, graphic, table row, etc.) and
the appropriate cutting .. thad .ill be invoked in every case.

Ihen to Use the Cluo.l Extensions
As a general rule, you would use Clneal when you went to define
abstract or standard behavior in one place, and concrete or special
behavior in other pieces. The .ore COIIplex a Pascal progr_ is, the
Imre Claseal typically saves you. You can do &qUi valent things with
Pascal proorlllS, but Clascal lIIkes i1. .uch easier.

26

An IntroductiOll to CI6$cal .Ally 1984

lhenever you .rite a program using the Lisa Applications ToolKit you
.. t use Clascal to define the user interface portion of the progr •.
In the rest of your proar. you _y use straight Pascal, if you .ish.,
or you _y define your OWl classes.

Advanced Topics
Squ1shing Production Code .

• hen a program has been completely debugged, you can reduce object
code size by using the compiler a.itches {IR-} and {ID-}. The former
turns off range checking for array subscripts and turns off run-time
compatibility checking for class-typecasting expressions. The latter
turns off emission of procedure.. function. and _thad nllles into the
object code and thus precludes symbolic debugging.

Abstract .. thods and classes.
An MlstTtfct _thad is one that is declared in a class C" but. that can
be illlPlemented only in descendents of class C. not in C itself. An

. 8)(ample is Dr .. in ClasExallPla. Note that TShapa. Dr .. is declared
DEFAUlT in the interface of TShape and'that' it emits an error .. ssage
in the i~lementation. After the proor _ has been debugged and is
ready to ship" one ndght .ant to reduce code size by deleting the
implementation of TShape.Dra.. The compiler .auld co.plain that the
method is declared in the interface but not in the illlplaaentation. To
suppress the error IDeSSage, declare TShape. Dr.. to be ABSTRACT in the
interface instead of DEfML T. An abstract _thod _y not be
il8lplelAented in its OWl class, but only in descendent classes.

A CREATE method may be declared ABSTRACT. It has no illplementation.,
and should not be invoked frOli anywhere in the progr_ ,even from a
descendent • s CREATE _thode (Rainder: a CREATE _thad can not be
declared DEfAlLT or OVERRIDE.)

If an ABSTRACT _thad is invoked accidentally, it .ill cause a crash.

Classes like TShape that are not .ant to be instantiated are called
.t/JstTtfCt cltfsus.. Usually--but not al .. ys--an abstract class has many
abstract _thods .. often including CREATE. An abstract class defines
an interface that is shared by all its descendent classes.

27

An Introduction to CI6SC81 .Ally 198~

Conditional compilation 1& recommended for all of the abOve
techniques .. f.or exaaple:

INTERFACE

PROCEDURE TShape.Dra_(pat: Pattarn);{IIFC .yDebugFlag} DEFAULT
{tELSEC} ABSTRACT {tEtIlC};

ItFLEtENTATION

{IIFC .yDebugFlag}
PROCEDURE TShape.Dra.(pat: Pattern);
BEGIN

'rit~n(~You oan only dra. in subclasses of TShape. not TShape');
. .

EtI); .

{EfIJC}

SuperduperSELF.

As explained earlier, SUPERSELF.Heth appearing in a Method of class C
.111 cause the Hath of the suparclass of C to be invoked regardless of
the run-time class of SELF. In the same spirit- Cis. Heth. WMu'e CIs
is either C or MY ancestor of C# .ill cause . SELF to execute the
Hath of CIs regardless of the run-t~ class of SELF. This construct
1s called the superduperSELF construct- because 1 t 1s generally used
to skip over the ancestor's ~lementation to the one at the next
level. Be sure to use the actual class MAe.. not -stJperduperSELf.·

Suppose TShape had declared a Fr •• _thod., and that TArc had
overriden it.. but for SOlE reason TArc. Free .anted to invoke
TObject. Free instead of TShape. Free. Instead of .riting
SlFERSEL.F. Free; --tfhich .ould be equivalent to TShape. Free--one would
.rit. lDbject.Free;.

The superduperself construct is rarely necessary, and is somewhat
confusing. so IK)st people avoid it tlhenever possible, and try to aake
SlFERSEL.F suffice.

28

An Introtl&tion to CIIISC6I

, .. iAg the ohair out fr •ser you.
In TAro. CREA~ the follCMri.ng t.o lines appear:

rands :. Abs(R~) til) 270;

SELF. st.rtAngle :. rands;
One Idght expect to be able to write sillp1y:

SElF. at.rUngI. :. Abs(R~) til) 270;

.lJ1y 1984

HoWever, this would generate a syntax error fra. the COIPiler alluding
to -___ safe use of handle. - The reason is that the code generated by
the Pascal COIIPiler leaves a pointer (not a t.M:Ile) to
SElF. at.rtAngle on the stack before calling the fWlCtion R..... If
the function happened to cause a heap COIIIpaCtion, the pointer would
becoIIe invalid. The c~iler does not know which procedures and
fooctions (including _thods) c., cause COIIIpaCtion. Therefore, to be
safe, it assumes that all of theiCOlllpaCt. and it always gives you an
error llessage.
If you. are sure and absolutely :cert.ain. n fully convinced that the
call· .ill never allOcate and never cause the heap to COIPICt. you can
tell the compiler and avoid breaking the stata.ent into two. The way
you tell it is to bracket the code section .ith { .. -} and {IH+}. All
calls within thlt section will be assUied to be beni~ and the error
messages .ill be suppressed:

{tH-} SElF. at.rUngle :. Aba(R) 10) 270; {Itt + }

The following constructs generate error .aISeges for sildllr relsons:
passing In object field as a VAR par_ter to a procedure or fWlCtion,
and calling a procedure or function within a 11TH object. field block.
There are Ilso constructs that are dangerous for the s.e reasons but
thlt do not generate error .sseges, e. g.. passing 8obJeot. field IS
en arou-ent to a procedure or function. calling a procedure or function
in the subscript of an array-type field of an object. and doing
.,ything 8eIltioned in these paragraphs with a doubly-dereferenced
handle instead of an object referencer e. o. :

hAA.fld :-R~

29

An Introduction to CI6Scal July 198'"

The Ex .. le Progrills

A Clasoal prograM and a Pasoal prograM are listed in this section.
These programs are referred to throughOUt this dOCu.ent. The two
progr IllS are parallel.. &)Coapt. that the Clasoal program has been
extended.. and the Pascal proar. has not.
The two programs usa tha Toolkit typographic and structural
conventions. The recommended Toolkit structure contains a .ain
program and t.W\its. Thus. the 8XlIRPles contain a _in program and
unit(s).

,The Clescal example is ~rised of

• H1ClasExallPle (The main program for the Clascal exlq)le -­
before extensions)

• tl2ClasExallPle (The main proor. for the ellseal example -- after
extensions)

• U1ClasExallPle '(~ unit prOor. for the Clascal ex...,le)

• U2ClasExa.ple (A unit program for the Clascal exllRPle)
The Pascal example is ca.prised of

• ttPasE)(allple (The _in progr ... for the Pascal mcample)

• tFasExallPle (A unit proor. for the Pascal ex~le)

Some other important Toolkit typographic conventions are that method
names begin with a capital letter, whereas variable names begin with a
lowercase letter. Thus, boUndRect is a variable naIIe, . and Erase is a
_thad name. Type MIleS. including olass nanes, also begin with an
uppercase letter .

• i thin this docunant, ClasExallPle rafers to "'ClasEx8llP1e.
tl2ClasExallPle. U1ClasEx8llPle. WId U2ClasExallPle. PasExallPle
refers to IFasEx .. l ... lFasEx8llP18. Thus, an ax.-ple fr_
ClasExlIIPle could calM! 'ra. H1ClasExflllPle.. tt2ClasEx8llPle..
U1ClasEx8IIP1L or l.I2ClasExMPle.

ClasExlMIPle and PaaExallPle use QuickDrH procedures to draw shapes.
These 8XlIIIPles use QuickDr .. to dr .. Met erase shapes. It helps to
have read Appendix £, QuicltDr8l1 in the P.sCtll Reference IfrJnu.fl before
reading this doctJ8)t.

30

.An Introduction to CI6SC61

PAOGIWt ltP.sExa.pl .. ;

USES

{IU OObject}
{$lJ QuickDra.}
{ttl lJl.sExallPle}

VAR

OObject.

QuickDr
IF.sExallPle;

.Ally 198~

error: INTEGER; {output para.eter of FHapen: positive 1f an
error}

lIJPort: BrefPort; {for use by QuickDr •• }
ctrlReet: Reet; {The area of the screen to be used for the

oa.and line}
. PROCfI)lR FttOpen(VM error: INTEGER.>;· EXTERfW..;

{EXTERNAL because not defined 1n any INTERfACE .e can USE}

BEGIN

{In a TooIK1t132 progrllL UABC (the generic application) .ould have called
FHOpen & OpenPort auto.&tioally}

fHOpen(error); {Gain access to the Lisa Font Hanager; ignore errors for
this 8Xallple}

OpenPort (-.,port); {Provide QuickDra •• ith • Gr.fPort}

SetRect (ctrlRect. 20., 20., 500., 40);

Run('R)Round Rectangle .. A)rc .. H)ove .. Q)uit ' , otrlRect inHeap);
Bit

31

M Introduction to C/8Sce/

LMIT lPasExallPle;

INTERfACE

USES

{at lIlbjeot}

{Ill QuiekDra.}

TYPE

OObjeet.,

Qui okDr a.;

. EShepe = (kAre .. kRoUncfiect);

. Tc.cLine· = s1.rlnG(80]; .

TShape = APShape;
PShape • AAShape;

AShape = RECORD

boundRect: Reet;

CASE kind: EShape of
kAre: (startAngle., arcAngle: INTEBER);

kRoundReet: (ovallidth.. ovalHe1ght: INTEGER);
Eti);

July 198~

PROCEDlIE· Run (oa.ancl..ine: Tc.cLine; ea.andBox: Reet; i tsHeap: THeap);

IItPLEtENTATIIii
{EXTERNAl routines oalled by HFree; do not oall these directly. instead

use IFree}

fUNCTION HzFra.H(h: Handle): THeap; EXTERNAL;

32

M /ntrotlwtion to C/8$C8/ July 198~

-
{Allocate a handle of a certain size; EXTERNAL because not defined in any

INTEAfAfE we can USE}

ft.N:TION HAllocate(heap: THeap; size: INTE8ER): Handle; EXTERtW..;

{Free a handle that .as allocated by HAllocate}
PROCEDURE HFree(h: Handle);
BEGIN

FreeH (HzFra.H (h), h);
EtIl;

PROCEDURE Dra.shepe(pet: Pattern; SELf: TShape);
BEGIN

CASE SELFAA.kind of
kArc:

f1llArc(SELf AA. boun~ect. SELf A" . stertAngle. SELf arcAnale. pat);
k.Roun~ect :

FillRoundRect (SELF boundReot. SELF ov.l'idt.~ SELF ovelHeight,
pat);

EtI);

81);

PROCEDURE Er aseShape(SELF: TShape);
, HEr-T.N
~ SELF kind of

kArc: Er.seArc(SELF boundRect, SELF st.rtAngle.
SELF rcAnal.);

kRoundReot: Er •• eRoundRect(SELF boundReot, SELF ov.l.idth,
SELF ov.lHeight;

81);

81);

33

An Introduction to CI8SC81

PROCEDlR RandOllRect (SELf: TShape);

VM rand1, rand2: INTEGER;

BEGIN
rand1 : = Abs(Rand_) til) 600;

SELfAA.boundRect.left :- rand1;

rand2 : = Abs(Randa.> til) 150;

SELF boundRect. top : - rand2 + 75;

July 19811/

SELF A A . boundRect. right : = SELF A ... boundRect.left + 40;

SElf A ... boundRect. bott_ : = SElf boundRect. top + 40;

Eti);

FUNCTION Ne~rc(itsheap: THeap): TShape;

VM SELf: TShape;

rands, randa: ENTEGER;
BEGIN

SELF: = POINTER(ORD(HAllocate(itsHeap, SIZEOF(AShape»»;

Randa.Rect(SELf);

rands: = Abs(Rand_) til) 270;
SELF tartAngle :- rand.;
rande := Abs(Ren~) HOD 270;
SELf rcAngle := rand.;
SELF kind := kAre;

NetfAre :. SELF;

Ell);

34

An InlrDtAJction to CI.u1

RK:TION NftRoundfect(ltsheep: THe.): TShepe;

VM SELF: ~;

BEaD

.lily 1!IIN

SElf :. POINTER(ORO(HAlloolte(itsHeap, SIZEIF(ASh.,e»»;

RendOllRect (SElF);

SELF A A • oy.llidth :. 20;

SElF AA.oY.lHeight :- 15;
SElF A A. kind :. kRoundfect;

NftRoundfect: • SELF;
EfI);

PROCEDtR Run {oa.and..ine: TCld..ine; co.encIJox: Reet; itsHeap: THeap};

VAR ch: Ghar;

BEGIN

. shape: . 1S""8; .

oonsoleFile: TEXT; {used to .11ow Read(Ln) or Irite(ln) with the
_in console}

shape : - NIL;
Reset (consolefile, ' __ inconso1e-d.-yfileN_');

EraseRect(c~);

HoyeTo(ca..andBox.1eft, ca..andBox.botta.);

Dra.string(ca..endline);

REPEAT

Reed (oonsoleFile. ch);

CASE ch OF

'r', 'R', •••• 'A':

BElIN
If shape <) NIL no

lEaIN
Era$eShepe(she~);

HFree(Pointer(ORO(shape»);
81);

35

M Introduction to CI8SC81

If (ch = • r .) or (ch :I: • R·) Tl£N

shape ::1: N"~act(itsHeap)

ELSE
shape :. NnArc(itsHeep);

Dra.shape(gray. shape);

81);

I.'. 'H':
IF shape () NIL TtEN

BEGIN
EraseShape(shape);
RandolRect(shape);
Dr..shape(gray. shape);

EfI);

91);

UNTIL (oh • 'qa) or (ch • 'g');
Eti);

36

.Ally 1984

An Introduction to CI6SC81 .Ally 1986/

PROGRAH "1ClasEXalple; {"ain Progr .. }

USES

{IU UObject} UObject. {Needed to ca.plle the U1ClasExa.ple INTERfACE}
{IU QuickDra.} QuickDra.. {Needed to ca.pile U1ClasExa.ple INTERFACE}
{tu U1ClaaExa.ple} U1ClaaExa.ple; {Declares 01a8ses TShape. TArc.

WAR
error:
lIJPort.:
control:

TRoun~ect. TControl}

INTEGER; {output para.et.er of FHapen: posit.ive if en error}
GrafPort; {for use by QuickDr .. }
TControl; {a reference (handle) to an instance of TControl}

ctrlReet: .Reet; ~The area.of the .sereen.used for the Da..and line}

PROCEDlRE FttOpen(WAR error: INTEGER); EXTERNM.;
{EXTERNAL because not defined in any INTERfACE .e can USE}

BEGIN {Hain Progr.. Stat ... nts}

{In a ToolKit/32 proar~ UABC (the generic application) . .auld have called
FHOpen & OpenPort auta.atioally}

FHDpen(error); {8ain eccess to the Lisa Font Hanager; ignore errors for
this ex..,le}

OpenPort (-.yPort); {Provide QuiokDr ... ith • GrafPort}

{Create an instance of TControl to interact .1th the user}
SatRect(ctrlRect. 5. 20. soo.. 60);

oontrol :. lControl. CAEA1E(NIL. _inHeap.
'R)ound Rectangle. A)rc. ")ove. Q)uit·. ctrlRect);

{Run the oa.and loop watil the user types e.g- for Quit}

control. Run;
END. {Hein PrOar .. Stat..ants}

31 . ~/c/I

An Introduction to CI8Sctll July 198if

UNIT U1ClasExa.ple;

{Declares classes TShape, TAre, TRouncfieet. TCont.rol}

USES

{IU UObjeet} UObjeet, {Declares TYPE TObject and procedures such as
Ne.object}

{IU QuickDra_} QuickDra.; {Declares TYPE Pattern and procedures such as
FillAre}

TYPE

TShape = SUBCLASS Of TObjeet
boundReet: Rect; {Bounding box}

fUNCTION TShape.CREATE(object: TObject; itsHeap: THeap): TShape;
PROCEDURE TShape.Randa.Rect; {Assign randa. rectangle to boundRect}
PROCEDURE TShape."ove; {Assign ne_ coordinates to boundRect}
PROCEDURE TShape.Dra_(pat: Pattern); DEFAULT; {The default is an

error _ssage}
PROCEDURE TShape.Erase; DEFAULT; {The default is an error .. ssage}

EtI);

TAre I: !l1BCI ASS IF 1Shape

startAngle.. arcAngle: INTEGER; {Clock.ise degrees fra. vertical to
first radius & bet..aan radii}

flI£TION TArc. CREATE (objact.: TObject.; it.sHeap: THe.,): TArc;
PROCEDURE TAro. Dr .. (pet.: Pat.tern); OVERRIDE;
PROCEDURE TAre. Erase; OVERRIDE;

ErI);

38

.An Introduction to CI6SC8/ .. .Ally 198'"

TRoun~act = SlIBa ASS (F TShape

ovallidtt\, ovalHeight: INTEGER; {Curvature of rounded corners}

FUNCTION TRoundRect.CREATE(object: TDbject; ltsHeap: THeap):
TRou~ect.;

PROCEDURE TRoundRect.Ora_(pat: Pattern); OVERRIDE;
PROCEDURE TRoundRect.Erase; OVERRIDE;
Eti);

Teont.rol = SlIBClASS OF TOB.ECT
ca..andline: Str255; {Text displayed In the oa..and line}
e~ndBox: Reet; {Screen araa .~ere ea.aand line is displayed}

FUNCTION TControl.CREATE(object: TObject.; it.sHeep: THeep;
itsLine: Str255; itsBmc: Rect.):
Teontrol;

PROCEDURE TControl.Dra.; {Dr .. the ..nu}
PROCEDURE TControl.Run; {Run the ca..and loop}
FUNCTION TControl.Ne.shape(oh: CHAR): TShape; {Create the TShape

specified by user input}
EtI);

39

An Introduction to CI8SCtll .Ally 1984

tEllIJDS OF TShape;

FtI£TIm. TShape.CREATE(object: TObject; itsHeap: nteap): TShape;
BEGIN

IF object = NIL THEN {If space is not already allocated}
object := Ne.object(itsHeap, THISClASS); { then allocate it}

SELF : = TShape(object); {Typecast fro. TObject to TShape}
SELF.Randa.Rect; {Assign a ra~ reotangle to boundReot}

Ell);

PROCEDURE TShape.Dra.(pat: Pattern);
BEGIN

IriteLn('Vou can only dra. in subclasses of TShape. not TShape ');
EM);

PROCEDURE TShape.Erase;
BEGIN

IriteLn('You can only erase in subclasses of TShape. not TShape');
Eti);

SELf.Ra~ect;

Eti);

40

An /ntroductiOll to C/6SC6/

PROCEDlIE TShapa. RandoilRect.;

VM randl, rand2: INTEGER;

BEGIN
randl := Abs(Randa.) HOD 600;
SELF. boun~ect.left : == rend1;
rand2 :. Ab8(Rancto.) HOD 150;

SElf. boundRect. top : == rand2+ 75;

SELF • boun~ect. right :. SELF. boundRect. laft + 40;

SELF. boundRect. botta. : == SELF. boundRect. t.op + 40;

EM);

. £11);

41

July 19B.f

..An Introduction to CllJScal July 198'1

t£nD)S IF TArc;

FUNCTION TArc.CREATE(Object: TDbject; itsHeap: THeap): TArc;
VAft rands, randa: DTEHER;

BEGIN
IF object • NIL THEN {If space is not already allocated}

object := Ne.object(itsHeap, THISCLASS); { then allocate it}
SELF := TArc(TShape.CREATE(Object, itsHeap»; {Initialize inherited

fields}
rands := Abs(Randa.) HOD 270;
SELf. startAngle : = rands;
randa :=.Abs(R.n~a.).HOD.270;
SELf. arcAngle : - randa;

EtIl; .

PROCEDURE TArc.Dra_(pat: Pattern);
BEGIN

FiIIArc(SELF. boun~ect..SELF. startAngle.. SELF. arcAngle.. pat);
{A QuickDra. call}

Eti);

PROCEDURE TArc.Erase;
BEGIN

EraseArc(SELf. bounclfect. SELF. startAngle. SELF. arcAnale);

{A QuickDra. oall}
EtI);

Eti);

42

An Intrtxhction to CltlSctll July 1984

t£1ID)S IF TR~ect;

FtJ«:TION TRoun~ect.CREATE(object: TObject; itsHeep: THeep): 1Ro~ect;

BEBIN
IF object • NIL THEN {If space is not already allocated}

objeot. : - Ne.objeot(itaHeep, THISClASS); {then allocate it}

SELF : = 1Roun~ect(TShape. fHATE(object. itsHeap»; {Initialize
inherited fields}

SELF.ovallidth :- 20;
SELF. ovalHeight : = 15;

Elm;

PROCEDURE TRoundRect.Dra.(pat: Pattern);

BEGIN
fl11Rouncfiect(~f. bouncfiect. SELf.ovaI11dth, SELf.ovalHeight. pat);

{A QuickDra. call}
EtI);

PROCEDURE TRoundRect.Erase;

BEGIN
EreseRoundRect(SELF. boundReot. SELF. ovallidth. SELF. ovalHeight);

{A QuickDra. cell}

EIIl;

Ell);

43

M Introduction to CI8Scal July 1984

t£11II)S IF TContrdl;

FUNCTION TControl.CREATE(object: TObject; itsHeap: THeap; itsLine:
Str255; i tsBox: Rect): TControl;

BEGIN
IF object = NIL THEN {If space is not already allocated}

object: = NelObject(itsHeap .. lHISClASS); {then allocate it}
SELF := TControl(object); {Typecast fro. TObject to TControl}
SELF. c~ncLine :- itsline;
SELF. c~ndBox : = itsBox;

PROCEDURE TControl. Dr a.;,
BEGIN

EraseRect(SELF.ca..andBox);
{A QuickDra. call}

"oveTo(SELF.ca..andBox.left. SELF.ca..andBox.botta.);
{A QuickDra. call}

Dra.string(SELF.ca..andL1ne);
{A QuickDra. call}

EtIl;

ch: char;

thiaShape:

nextShape:

TShape;

TShape;

consolef11e: TEXT;

BEGIN
thlsShape : = NIL;

naxtShape : = NIL;

{used to allo. Read(Ln) or Ir1te(Ln) .1th
the .. in console}

An Introduction to CI8SC81 .July 198.,

Reset(consoleFlll. ·-.alnconsole-d~lleN ... ·);
SELF. Dr.;

REPEAT

{Dr. the ca..and line}

EfI);

Read(consoleFil~ ch); {Accept one typed charcater fra. the user}
CASEchDf

'.'. 'H':
IF thisShape () NIL ll£N

BEGIN
thlsShape.Erase; {Erase the shape fra. its present location}
thisShape."ov8; {Assign it a ne. location}
thisShape.Dra.(gray); {Ora. it in its n .. location}
EtI)~

OllERlISE
BEGIN
nextShape :. SELF. Nedhape(oh); {NIL if an unrecognized

ca.anc1 else a TShape}
If next Shape () NIL TI£N

BEGIN
IF thisShape () NIL TI£N {Erase and deallocate any

existing shape}
BEGIN
thisShape.Erase;
thisShape. Free;
Eti);

thisShape :. nextShape;
thisShape.Dr .. (gray);
Elm;

81);

£11);

UNTIL (ch = 'q') or (ch = 'Q');

45

{Erase the old shape}
{Deallocate it fra. the heap}

{Ora. the new shape}

An Introduction to C/8$c81

FlIET:u:. TControl. Ne.shape(Ch: CIMR): TShape;

BEGIN
If (oh • '.1) OR (oh • 'AS) THEN

Ne.shape : = TAre. CREATE (NIL. SELF. heap)

ELSE
IF (ch = art) OR (ch = 'R') THEN

N • .shape : = TRouncitect.. CREATE (NIL. SELF. heap)

ELSE

Ne.shape : = NIL;

EtIl;

EtIl;

81).

46

July 1984

An Introduction to CI8SC81 July 198.,

PROGfWt tl2ClasExMiple;

{The only differences fra. "1ClasExa.ple are:
-- Unit U2ClasExa.ple is added to the USES chain;
-- O)val is added to the .. nu;
-- THyControl is used instead of TControl,;
}

USES

{IU UObjeot} UObjeot. {Needed to oa.pile the U1ClasExa.ple INTERFACE}

{IU QuickDra.} QuickDra.. {Needed to co.pile the U1ClasExa.ple
. .INTERF~}

{IU U1ClasEx8llple} U1ClasExa.ple, {Deellres claases TShape. TAre,
TRoun~ect. TControl}

{SU U2ClasExa.ple} U2ClasExa.pla; {Declares classes TOval,
THyControl}

VAR

error:

lIJPort:
control:

etrlRect:

INTEGER; {output para.eter of fHOpen: positive If an
error}

8rafPort; {for use by Quic~ra.}
TControl; {. reference to an instance of TControl (.

hendle)}
Reet; {the erea of the screen to be used for the

c ___ nd line}

PRf.XZDtIE fllJpen(VAR error: INTE6ER); EXTERNN..; {EXTERNAL because not
defined in any INTERFN;E .e can USE}

47

. ;1./ 6/

An IntrodtJction to C/8SC8/ .kJ1y 19B4

BEGIN {Haln PrograM Stateaents}

{In • TooIKit132 progr~ UABC (the generic application) .ould have called
FHOpen & OpenPor~ auta.a~1cally}

FttOpen(error);
OpenPort (-.yPort);

{Cre.~e an ins~.nce of TCon~rol ~o in~erac~ .ith the user}
SetRect (ctr IRect.. 5.. 20.. 500.. 60);

{Run the c~nd loop until the user types -Q- for Quit}
control: = lltyControl. mEATE(NIL inHeap .. eR)ound Rectangle,. A)rc,.

0) val ..
"love. Q)uit ' , ctrlRect);

control. Run;

END.

48

An Introduction to ellSe,,1 .Ally 1984

{Declares classes TOYal (subclass of TShape), THyControl (subclass of
TControl)}

INTERfACE

USES

{tu UObject} UObject, {Needed to oa.pile the U1ClaaExa.ple INTERFACE}
{IU QuickDraw} QuickDra.. {Declares TYPE Pattern and procedures such as

FillArc}
{tu U1ClasExa.ple} U1ClasExa.ple; {Deolarea 01a8ae8 ~

. ~ TAre, TRountRect., TControll

TYPE

TOval = SlID ASS OF TShape

FUNCTION TOyal.CREATE(object: TDbject; itsHaap: THeap): TOval;
PROCEDURE TOyal.Dra_(pat: pattern); OVERRIDE;
PROCEDURE TOyal.Erase; OVERRIDE;

BIJ;

TltyControl • 811JC1 ASS OF lControl
FUNCTION TltyControl.CREATE(object: TObject; itsHeap: THeap;
1tsL1ne: STR255; 1tsBox: Reet): ntyControl;
FUNCTU* THyControl.NHShape(ch: CJtAR): TSh._; OVERRIDE;

{TControl.NHShepe needn't be OEfMl.T}

EfI);

DFl.Et£NTATION

M Introduction to C/asca/ July 1984

HETHODS OF TOYal;

fUNCTION TQyal.CREATE(object: TObject; itsHeap: THeap): TOYal;
BEGIN

IF object = NIL THEN {If space is not already allocated}
object: -= Ne.object(itsHeap. THISCLASS); { then allocate it}

SELF := TOyal(TShape.CREATE(object. itsHeap»; {Initialize inherited
fialds}

81);

PROCEDURE TOYal.Dra.(pat: pattern);
BEGIN

FilIOyal(SELF. bouncRect. pat);
{A QuickDra. call}

EfIl;

PROCEDURE TOyal.Erase;
BEGIN

EraseOyal(SELF.boundRect);
{A QuickDra. call}

50

~/ 5'1

M Introduction to CI6SC81 July 198~

tETtII)S IF ntyCont.rol;

FUNCTION THyCont.rol.CREATE(Object.: TObject.; it.sHeap: THeap;
it.slina: STR25S; it.sBox: Rect.):
ntyCont.rol;

BEGIN
IF object. = NIL THEN {If space is not. already allocat.ed}

object. :- Ne.object.(it.SHeap, THISCLASS); { t.hen allooat.e it}

SELF : = THyControl(TCont.rol. CREATE(Object., it.sHeap, itsline, it.sBox»;
. {Init. inherited fields}

Eti);

FUNCTION . TnyControl. Ne.shape(Ch:· . CHAR) : TShape;

BEGIN
IF (oh • '0') OR (oh • '0') THEN

NeWShape : = TOval. CREATE (NIL, SELF. heap)

ELSE

EtIl;

EtIl;

Ne.Shape : = SlPERSELF. Nedhapa(ch); {Calls TCont.rol. Nedhape
regardless of SELF's class}

51

