Reference‘;M ‘ nua =

by Jonathan D. Simonoff

for

Macintosh User Education —

Apple Computer, Inc.

The Lisa
Applications
‘ToolKit
Reference

Manual

Jerathan D. Simonoff

Licensing Requirements far Software Developers

Apple has a low-cost licensing program, which permits developers of software
for the Lisa to incorporate Apple-developed libraries and object code files
into their proaucts. Both in-house and extemal distribution require a license.
Before distributing any products that incorporate Apple software, please
contact Software Licensing at the address below for both licensing and
technical information.

©1983 by Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, California 95014
(a08) 996-1010

Apple, Lisa, and the Apple logo are trademarks of Apple Computer, Inc.
Simultaneously published in the USA and Canada.

Customer Satisfaction

If you discover physical defects in the manuals distributed with a Lisa
proauct or in the media on which a software proguct is distributed, Apple will
replace the documentation or media at no charge to you auring the 90-day
period after you purchased the product.

In aadition, if Apple releases a corrective update to a software product during
the 90-day period after you purchased the software, Apple will replace the

~ applicable diskettes and documentation with the revised version at no charge
to you during the six months after the date of purchase.

In some countries the replacement period may be different; check with your
authorized Lisa dealer. Retum any item to be replaced with proof of
purchase to Apple or to an authorized Lisa dealer.

Limitation on warranties and Liability

. All implied warranties conceming this manual and media, including implied
warranties of merchantabllity and fitness for a particular purpose, are limited
tl;wumumwmty(maays from the date of original retall purchase of

$ proguct.

Eventmmﬁpplehastestedmesoftwamoescnowlnummwm
reviewed its contents, neither Apple nor its software s;\j:pllers make any
warranty or representation, either express or implied, with respect to this
manual or to the software described in this manual, thelr quality,
performance, merchantabllity, or fitness for any particular purpose. As a
result, this software and manual are sold “as is,” mdywtnepurcnaserare
assuming the entire risk as to their quality and performance.

In no event will Apple or its software suppliers be liable for direct, imlrect..
special, incidental, or consequential damages resulting from any defect in the
software or manual, even if they have been aavised of the possibility of such
damages. In particular, they shall have no llabllity for any programs or data
stored in or used with Apple products, including the costs of recovering or
reproducing these programs Or data.

The warranty a':a remedies set fort.h“waaove1 are exclusive and in lieu of all
others, oral or written, express or implied. No Apple dealer, agent or
employee is authorized to make any modification, extension or aadition to this
warranty.

Some states do not allow the exclusion or limitation of implied warranties or
liabllity for incidental or consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives you specific legal rights,
and you may also have other rights that vary from state to state.

License and Copyright

This manual and the software (computer programs) described in it are copy-
righted by Apple or by Apple's software suppliers, with all rights reserveq,
and they are covered by the Lisa Software License Agreement signed by each
Lisa owner. Under the copyright laws and the License Agreement, this
manual or the programs may not be copleq, in whole or in part, without the
written consent of Apple, except in the normal use of the software or to
make a backup copy. This exception does not allow coples to be made for
others, whether or not sold, but all of the material purchased (with all backup
coples) may be sold, given, or 1caned to other persons if they agree to be
bound by the provisions of the License Agreement. Copying includes
translating into another language or format.

You may use the software on any computer owned by you, but extra coples
cannot be made for this purpose. For some products, a multiuse license may
be purchased to allow the software to be used on more than one computer
owned by the purchaser, including a shared-disk system. (Contact your
authorized Lisa dealer for more information on multiuse licenses.)

PREFACE

This manual documents the Lisa Applications Tooliit. It is intended for
experienced programmers. At a minimum, readers should be familiar with
Lisa Pascal, Lisa Clascal, the WorkShop, the L/sg Lser Interface Gulcelines
and the Lisa office system. In particular, the reader is assumed to be
familiar with the meaning of the following terms:

Clascal class class-type object object reference
method - pointer handle field tool
window panel pane mouse mouse-pointer

view control scroll bar scroll arrow resize icon elevator

Chapter 1 describes the ToolKit in general. In particular it describes the
different parts of the ToolKit, and the way those parts fit together.

Chapter 2 describes UObject. That unit includes the basic definitions of
objects and definitions of classes for the creation and manipulation of files
and complex data structures.

Chapter 3 describes UDraw, which defines classes used to convert displayed
information from formats used by the ToolKit to formats used by QuickDraw,
and vice versa

Chapter 4 describes UABC, which implements mast of the functions common
to all Lisa applications.

Chapter S describes the debugging facllities avallable with the ToolKit.

Chapter 6 documents reference information for Tooliit units, including global
variables, proceaures, and functions, and non—class type definitions.

Part II contains reference sheets on all of the important ToolKit classes.
The following typographic and linguistic conventions are observed in this
manual:

1. All program fragments, including variables and reserved words, are in bold
type wherever they appear. Reserved words are, additionally, printed
entirely with capital letters.

2. All method, object, and class names are in bold type wherever they :
appear. This is to avold confusion; for example, when the word “view” is
shown in bold (view), it refers to an object called view. when “view" is
used in a more casual context, it is not bolded. An example is with
“window,” where there is the window as the box that appears on the
display and the window as the Instance of Twindow oOr instance of a
descendant of Twindow that controls the window on the display.

3. All class names begin with a capital T The letter following the T is also
capitalized.

p-1

4. Method names are always caplitalized.

5. Object-reference varlable names and fleld names are not capitalized, even

if they appear at the beginning of a sentence. (The one exception to this
rule is in section titles, where object names are capitalized)

6. Any words, or abbreviated words, appearing as parts of a class name,
method name, or fleld name begin with a capital letter. For example,
W Is a fleld name contalqing the words allow, mouse, and
outside.

7. Wwhen speaking of objects of some particular class, rather than of the class
itself, the object is usually given the class name without the T. This is
often used in a generic sense; for example, when speaking of
characteristics of objects of class TProcess or of some descendent of
TProcess, the object is called the process.

8. The word abcurnent refers to the data associated with an icon on the
‘desktop.

p-2

LIs& ToolKit Reference Mol T&ble of Conterits

Contents

Part]

Chapter 1

Introduction to the ToolKit
1.1 TheParts of the TOOIKILccciirencccnennnientencecstsesensnsetetensstansssssnssssssnne 1-3
1.2 TheParts of @ TOOIKIt APPHCALION ...ccuiveeecicntiiiiiitnnteniiinnneneieennannenes 1-5
1.3 Objects, Classes, and Space AllIOCAONceieeiiititnnensttancescsensesnnnnes 1-9
1.8 How the Parts Fit TOGEINETccccciiitteieccnnccetnensctansetrtennsssasessanseasane 1-13
1.5 Fallure CondItIoNS......cccccitreiiientatnnccninccenensassesencsressssscsessssesssassssens 1-15

Chapter 2

UObject
21 About UODJBCL...ccovuencnsenanes estatasessiatstesetestttatatatesesasestatarnsatesessasnnse 2-2
2.2 ODJECLS AN HBAPDS .. ceuuitueiieenttrsittsisitssesssassssessastarssssssssasasassssassssses 2-2
2 T 0111703 4 Lo o3P 2-6
28 SCAIMNEIS ccieveuieeartesscestesstsassessssssssssststsasssssestsssssssssesssssssssansassssssnnse 2-8

Chapter 3

UDraw
£ 35 NN (214 45753 018 (5o 0 S PP SRR 3-2
3.2 ThePurposes Of UDTaWcceciiieescirieressssssssisesssssssssssasssssassssssssassases 3-2
3.3 TR UDTAW ClaSSES..ucciiciittectesatsesettntossasesssessasssarstssnsenssssssssssssssssans 3-3
3.8 TheUDraw ROULINESccccciteeniitteesictaicsiensnsiisssstrtsssssrsssssasssssnsnssasass 3-4
3.5 when ToUse the Conversion ROULINEScccccivecitiencinneentesnnesecnnsessenes 3-4-
3.6 Variables DeClared INUDIaW ...ccciiieitaretecinsctassenstrstssttsstcssssssanssassness 3-4
3.7 TheUDraw Uity ROULINESccueeiiiemnniiannssineessissnnsiesseiccecssnenseseanes 3-S5

Chepter 4

The Application Base Classes
8.1 WHALNB ABC'S ATEcovesieressssesesesnsansssssssassssnsasssssssssssasassssansasssns a-2
4.2 which ABC's Contaln What FURCHIONScccciceneccriancnatnessssnestannceissssnss 4-2
8.3 GlODAl VAHADIES .cuccieieneenncietternsssiataitssessesssesestesssssssssssasnssssrsasessssss a-7
4.4 Global Proceaures and FUNCLIONScccceeeiinanitssenintansssssnnsessesesssssens 4-8

ChapterS

The ToolKit Debugger
S.1 The Debugging FaClItescuviniisnitiintenccitnntecsiseennestinansssnisssanessse S-2
5.2 ThePulldown DEDUGMEMU ...ccciiiictssnsiessstsssssssssasssssssassssssssssssssssassase 53
5.3 ThelInteractive DEDUQQEYccveieereesessessesssasssessansasssensssnssssssansssssenes 5-8

LIsa ToolKit Reference Marugl ‘ Tavle of Contents

Chapter 6 .
Reference Information for Tooliit Classes

Partll
Class Reference Sheets

TOC-2

LIss ToOIKIt Reference Manual

11

Int.roductxon to the ToolKit
The Parts of the Tooliit 1-3
111 UODJECL.....ccciiinnnnctentenmecsssansennsssnanns {aresesnasasannssstsssstsnainsntsannnnasass 1-3
1.1.2 LUDTBW.euieenreencrentiersesssssesesssnssasssssasssssassssssssssssssanssessssssssssassasssanssas 1-4
1113 UABC ... cieerieiietecetenctesesesseseansesesesssssssesesesssnsassnsnsasesssnsnssesasasesnsnss 1-4
1.1.8 BULIGING BIOCKSccovueiiineeniennnsnentnncsssssansisnassssssnessssssssssassssasassssnane 1-5
The Parts of a ToolKit Application 1-5
1.2.1 TN WENOOW c.enreeitcintresensenssesanssssssessessessasssnsessasensassessnsasvssassonansass 1-5
1.2.2 TNB VIBW ceurnicecnrerecnnssensnenessssssssssnsasssesssssassasssnsssssasensssnsasenans seessns 1-6
" 1.2.3 ThePanel....cceeeceencsecsanssensens eesenssrsennsinsessansanseessasansatsessinsasanesanssass 1-6
128 TREPAH ..cceuieerecrcsencestenesesscanssassessasstssssssesssssssssssssssssensassssasssss veensl=8
1.25 TheSeleCtionc.cccciceeimireeecesesensesecsesencas . eetseesscantsesencnstsnens 1-8
1.2.6 The Menuand Commands......... atsesessesitsessusesseatanasenssettensansares vessvssess 178 °
Objects, Classes, and Space Allocation 1-9
How the Parts Fit Together. 1-13
........... 1-15

PIRS

Chapter 1

Introguction to the ToolKit

Fallure Conditions

1-1

Lise Toalkat Reference Merval | | Introcuction to the Toolkdt
Introduction to the ToolKit

Lisa applications are characterized by the following design principles:
* Extensive use of graphics, including windows and the mouse pointer.
¢ Use of pull-down menus for commands.
* Few operating modes, or none at all
* Data transfer between documents by simple cut and paste operations.

The ToolKit is a set of libraries that, wherever possible, provide standard
behavior that follows these principles. For example, all Lisa applications
have windows that can be moved around the screen; usually the windows can
be resized and scrolled. The Toolit provides all of these functions. The
ToolKit also displays @ menu bar for the active application, and provides a - -
number of standard menu functions, such as saving, printing, and setting aside.

However, the ToolKit 1s more than a set of libraries. Because the ToolKit is
written using Clascal, the ToolKit is almost a complete program by itself.
(See the Jntrocwction to Clascal) You can, In fact, write a flve-line main
program, complle it, link it with the ToolKit, and run it. what results is the
Generic Application. .

The Generic Application has many of the standard Lisa application
characteristics. A plece of Generic Application stationery can be tom off,
and, when the new document is opened, it presents the user with a window
with scroll bars, split controls, size control, and a title bar. The window can
be moved, resized, and split into multiple panes. There is a menu bar with a
few standard functions, so that the generic document can be saved, printed,
and set asice. The single Generic Application process can manage any
number of documents. You cannot, however, do anything within the window,
aside from creating panes. The space within the window, along with the
aaditional menu functions, Is the responsibiiity of the real appiication.

Tnerefore, when you write a Lisa application using the ToolKit, you
essentially write extensions to the Generic Application. It is easy to write
extensions to any Clascal program. In order to create your application from
the basic Generic Application, you create a set of subclasses, inciuding
methods to perform the work of your application. You then write a simple
main program and compile and link it with the ToolKit

whenever necessary, the ToolKit calls your application’s routines. In
particular, although the ToolKit draws the scroll bars and the rest of the
frame of the window, your application must draw the contents of the window.
For example, If the user scrolls the document, the ToolKIit tells your program

1-2

LIsa ToolKlt Reference Manual Introouction to the ToalKit

to redraw the changed areas. The ToolKit tells your program to redraw in
other situations as well, such as when the user opens the window, cnooses
"Revert to Previous version" from the menu, or enlarges the window.

One advantage of Clascal is that you can write applications in steps. You
can begin by doing the least amount possible, and get an application that does
very lime, but will run. You can then extend your application bit by bit,
tirou This characteristic of Clascal makes it easy to extend
the mpabm of ToolKit programs, even years after you write the original

program.

1.1 The Parts of the ToolKit
The basic ToolKit is contained in three units:

~* UObject defines class TObject, which is the ancestor class for all Clascal
- objects. It implements debugging, copying, and heap management for all
objects used in the ToolKit. It also implements a number of complex data
structures. These data structures -- arrays, strings, flles, and lists —-
allow your program to easily store groups of data. (This unit is also used
~ when writing Clascal programs without the rest of the ToolKit.)

* UDraw reimplements all QuickDraw procedures, using long integers in
place of QuickDraw's regular integers, so that documents can be as large
as necessary. (Ordinary QuickDraw procedures used with the ToolKit limit
documents to 41 pages.) It also defines a number of graphics routines that
are not defined by QuickDraw.

* UABC contains the bulk of the ToolKit: the Application Base Classes.

A set of other units, called bullding blocks, implement standard, but not
universal, behavior. These include bullding blocks for text editing, creating
rulers, and managing dialog boxes.

111 UGbject
UObject defines class TObject. All classes are descendants of TObject.

UObject implements the following characteristics for TObject:
* Objects are stored on a compactable heap.
* Objects have certain debugging facilities avallabie.
* Objects can be freed; that is, have thelir heap space released.
* Objects can be copled (cloned).

UObject also implements a number of standard data-structures for use with
Clascal and the ToolKit. Itirrplememsagmpofuuntyrwunesforwe
with the data structures. The data structures are

* arrays, which are one-dimensional arrays of records.
* lists, which are one-dimensional arrays of object-references.

1-3

LIsa ToolKit Reference Marnval Introoetion to the ToolKit

* strings, which are one-dimensional strings of characters.
* flles, which are disk-based one-dimensional strings of characters.

The utility methods provided for these classes allow your program to add,
delete, and retrieve objects from the structures.

In aadition, UObject provides a set of utllity classes that scan through the
structures. '

The structures are all quite similar to each other.

Any flles created and handled by flle objects are separate from the files used
to store the application’s documents. The document’s files are created and
managed entirely by the ToolKit, and you generally never deal with them

yourself. Every document has a docManager, an cbject of type TDocManager,
which handles the document’s flles.

Chapter 2 describes UObject more fully.

112 UDraw
QuickDraw is based on simple (16-bit) integers, and, as a result, has falrly
severe limitations on how large documents can be. The ToolKit therefore
provides unit UDraw, which defines drawing routines that use long (32-bit)
}megers,mimomnemotnplaoeof ckDraw routines that use simple
ntegers.

This change increases the maximum document length and width from &1 pages
in each dimension to something like four million pages in each dimension.

UDraw also provides a small set of aaditional routines. These routines
convert LRects (based on long integers) to Rects (based on simple integers)
and Rects to LRects, LPoints to Points and Points to LPoints. In aadition,
there are routines that provide other useful functions.

Chapter 3 describes UDraw more fully.

1.1.3 UABC
UABC, which defines the Application Base Classes, Is the heart of the
Toolkit. Most of the standard behavior providged by the ToolKit is
implemented in this unit. It defines TProcess, TDocManager, Twindow,
TPanel, TPane, TCommeand, among other classes. The routines that handle the
menus and the mouse are defined here. Most of the work you must do to get
your application running involves subclassing UABC classes.

For example, the class TDocManager contains methods to manage the flles
and data segments used by an application. You must always subclass
TOocManager, so that your own files, rather than the generic files, are
managed.

Chapter 4 describes UABC more fully.

1-4

LIsa ToolKdt Refefm Marval Introguction to the ToolKit

114 Bullding Blocks
The building blocks are units that provide useful behavior beyond what the
basic Toolkit does. The most commonly used buliding blocks are UText, the
Text Bullding Block, which provides simple text editing and formatting
functions, and UDialog, which provides for program dialogs with the user.

Another bullding block Implements universal text for clipboard communication
with non-ToolKit programs.

This document does not discuss the bullding blocks. Sample programs using
the existing building blocks, as well as some documentation, are avallable.

Because building blocks are units that are added to programs on top of the
existing ToolKit units, any developer can create them. Useful building blocks
might implement graphics editing, bitmap editing, data entry and formatting,
or table editing.

12 The Parts of a Toolit
One of the characteristics of Clascal is that programs should always deal
with objects. Almost everything In an application is represented by an object,
from the data to the scroll bars. For example, the window you see on the
- display is controlled by an instance of the ToolKit class Twindow. In this
manual, the window object Is usually called window.

A number of the objects your program will use are members of classes
defined by the ToolKit. The most important ToolKit classes for the

programmer are

There are also a number you never need to worry about. For example, the
scroll bars are gefined by ToolKit classes, but the ToolKit handles them. In
aadition, the panes are controlled by instances of classes gefined by the
‘ToolKit, but the programmer does not have to deal directly with them.

The objects that control the application's display are associated with the
parts of the display that they control in Figure 1-1. '

121 The window
A window object controls the region of the Lisa's display that belongs to one
window of a partioular application. The image proaduced on the Lisa display
by the window objects is called a window. Wwindows have title bars, borders,
mar)eslzelcons. (The scroll bars belong to the panel object. See Subsection
1.23.

1-5

LIsa Tooliit Referance Marusl | Introauction to the Toaliit

A sample window Is shown In the bottom of Figure 1-1. Notice that the
window surrounds the panels and panes, but the panels and panes are
controlled by separate objects.

Your application can manage several documents at a time, each in its own
window. At most, one window and its associated window object is bound to
the aadress space of the process at a time.

Your application does not need to do much to make each window function
correctly. Almost all window functions are handled by the ToolKit.

122 The View
Thevlevobjectcreatesagmmmlrepresentatlmofmedataummm

wpncauon. That graphical representation, the view's picture, is called the
view.

what you see in an application's window is usually just a part of a view. If
you scroll the window, you are essentially moving the window around on top

~ of the view. Figure 1-1 shows how two noncontiguous pieces of the view are
. shown in the window. The shaded area of the view shown in the figure does
mtwpearineltnerofmepmesa'dmmesmtmpear the window.

The user uses the scroll icons to show desired parts of the

A window can have more than one view object. There can beseveralviews
of a single set of data. A LisaGraph window, Wmmammnwmaa
graphical representation of the same set of data, has two views and one data
set. In other applications, separate views may display independent sets of

data.

The application does not need to be concemned with what part of the view Is
actually shown in the window. The ToolKit can handle that. Your application
can, however, find out exactly what Is visible in the window, to improve
program efficiency.

A view is created separately from the display. In order to show a view in a
window, you assoclate the view object with a panel object.

123 The Panel
The panel object controls the scroll icons and shows a portion of the view.
Every view that is displayed is shown in a panel.

Some applications, such as Lisawrite, have only one panel per window.
Others, such as LisaGraph, have more than one.

1-6

Lisa ToolKit Reference Manual Introaction to the ToalKit

~~~~~~~ I walk through the long schoolroom questioning;y .

A kind old nun in white hood replies;
The children learn to cipher and to sing,
To study reading books and history, ‘\
To cut and sew, be neat in everything

in the best modern way--the children's eyes

P e R I e e LA e e S e e e s A T

Told, and it seemed that our two natures blent
Into a sphere from youthful sympathy,
Or else, to alter Plato's parable,
into the yolk and white of the one shell. -

selected .
object T
hﬁn- the long schoolroom questioning ;

A kind old nun in white hood replies;

The children learn to cipher and to sing,
To study reading books and history,

. To cut and sew, be neat imggverything
window » in the best modern way--the chil 's eyes

and single

Told, and it seemed that our two natures blent
Into a sphere from youthful sympathy,
Or else, to alter Plato's parable,
into the yolk and white of the one shell.

panel

VT

Figure 1-1 Window, Panel, Panes, and View

portions
shown in

panes

view

Note that there
are two panes,
but still only one

panel.

anes



Llsa ToolKit Reference Manual Introouction to the ToolKit

Each panel usually looks at a different view from every other panel.

Figure 1-1 shows a one-panel window. Notice that the panel’s vertical scroll
bar is diviced into two parts, one for each pane. Every panel object is
associated with a single view object, so any panes in the panel can only show
portions of that particular view. In Figure 1-1, both of the panes show
portions of the single view represented in the top of the flgure.

124 The Pad
The ToolKit's graphics are computed using long integers. QuickDraw actually
does the on-screen drawing using regular integers. ped objects are used to
convert from long Integers to regular integers, and the other way around.

Just as QuickDraw provides a global variable thePort, the ToolKit provides a
- global variable thePad to represent the current destination of graphic output.
The value of thePad changes as the destination of output changes, but those
changes generally are transparent to your program. |
Programs often call the TPanel method OnAllPadsDo, which assures that any
- changes made to a panel's display are shown In all parts of the panel.

Programs also occasionally call methods of thePad

pane objects are members of class TPad, because TPane Is a subclass of
TPad. The effect of this Is that any pane can be thePad, and, so, any pane
can be the destination for graphic output.

125 The Selection
Often, a command operates on an object that is currently selected. For
example, in order to change the type style In Lisawrite, you select some
characters and then choose a menu item.

Every panel object has a selection object associated with it. when a menu
command is chosen, a command number is sent to the selection object, which
then decides whether or not the command can be done. If It Is possible to
do, the selection object performs the operation, creates a command object
that performs the operation, or tells another object to perform the operation.

Every panel object has one and only one selection object. If there is more
Ummpmellnaglvmwirﬂw,meofthepuelob{ectsisdeﬂmwbe
the selectPanel for the window object. The selection In the selectPanel is
given the application's commands.

Any selection object can point to any number of display and/or data objects,
from zero on up. Those objects are the se/ected ajjects Selected abjects
generally are highlighted in some way to draw attention to them. Figure 1-1
shows a single selected object in the window in the lower part of the figure.
The selected object is highlighted by reverse video.

126 The Menu and Commends ' :
All commands avallable to an application user appear in pull-down menus that
are listed in the menu bar. You create these menus by putting the menu
names and item names In the phrase file for the application. whenever the

1-8



L/sa Toolkdt Reference Manual Introaction to the TaalKkit

user pulls down a menu, the application can enable or disable menu items, and
it can also mark menu items as checked off. If an Apple-key equivalent to a
menu command s allowed, that is also in the phrase flle.

when a menu command is chosen, mecormmlsglventotnesalecum
objectintmselectheloftheact.Ivewkmw

If the command is not one of the application’s commands, it is passed to the
ToolKit, which carries out the command if it‘is-a legal ToolKit command, or
notifies the user that the command cannot be done.

13 a)jacts Classes, and Space Allocation

ToolKit class is a descendant of class TObject. See the section on
l?ect (the unit that defines TObject) for more information.

Pleces of data used in ToolKit applications are often stored in instances of
classes, and so, are themselves objects. Data might be stored in objects of
class types defined in the application or in the collection classes defined in
UObject. It 1s important to store your program’s information in objects,

. rather than in global variables, because only objects are saved and restored
by the ToolKit. If you do not store your lnformation in objects, you must
make certain that the information Is saved and restored correctly.

Class-type variables and other object references are not class objects, but
actually are sandles (double-indirect pointers) on objects. Note that it is
not necessary (or even permissible) to use pointer variables or carets (") to
resolve these handles; when fields of the class are used, the variables are
automatically resolved to return the stored values.

Figure 1-2 shows how object references in programs are handles on objects
~ stored in the document heap.

1-9



TMyObject = SUBCLASS OF TObject;
fieldl: INTEGER;
field2: STRING [1..2] OF CHAR;
FUNCTION CREATE: TMyObject;

END;
MyObject : TMyObject;
BEGIN

Myobject := TMyObject.CREATE; wsate,

MyOb ject.fieldl = 7 wuwwoewmcomemasmssol

MyObject.field2 := 'HI';

Introguction to the Toolkdt

VAR MyQObject master pointer for object

. heap )
handle .
, : location -

Figure 1-2 Object References

1-10



Llsa ToolKiIt Reference Manual Introauction to the ToolKit

Every subclass must have 8 CREATE method written specifically for that
particular subclass. when a class‘s CREATE method is used, a new instance
of the class (an object) is created. That Is, CREATE allocates heap storage
for the data stored In the object, and for pointers to the methods of the
class. CREATE is a function that returmns a handle on the new class object.

when a class-type varlable's value is assigned to another class-type variable,
the target class-type varlable and the source, variable both ?aint to the same
oogt. Here is an example, where red and green end up pointing at the same
object:
TYPE
TColor - SUBCLASS OF TObject PDefines a new class.}
FUNCTION CREATE (object: TObject: itsHeap: THeap}TColor;
VAR
green : TColor; {Creates a TColor-reference variablel}
red : TColor; {Creates another TColor-reference variablel}
greem—TOotm.G?EATE(objch\ew): [Creates an instance of TColor.}
= green; {§Makes red point to the same object as green}

Notice that there is never a CREATE call for the variable red The CREATE
method allocates heap space for the ocbject. In the example above, the heap
space Is allocated by using CREATE to initialize the variable green. when the
value of green is assigned to red, red becomes a handle on the same heap
space on which green is a handle. CREATE methods create new storage
space; a direct assignment to a class-type variable creates a new access path
to the same storage space.

Suppose you used a sequence like this:
green > TCOIOI.CREATE (object, heep) praﬁates.}an instance of

red = TCOIOr.CREATE (object, heap) pmmmrm

red = green;  {§Makes red point to the same object as green}
The storage space created when you used TCOIOI.CREATE for red would be
lost, because red becomes a handle on the storage space created for green
(The storage space created for red may be permanently lost to the program's
webeewseﬂehemmwagermaintamsmespacemmltismmwd
with a Free method. TObject has a Free method, and, therefore, all
descendants of TObject also have one. If you wanted to get rid of the object
pointed to by red, you would have used the method call redFree before the
line red = green)

1-11



LIsa ToalKit Referance Marual Introauetion to the Toalld't

Figure 1-3 represents the way different assighments work in a number of
different cases. -

red : TColor;

green : TColor;

red := TColor.CREATE (heap),

green := red;

green := TColor.CREATE (heap); | :

Figure 1-3 Class-type Variable Assignments

when the variables green and red are first defined, they do not point

. After TColor.CREATE is used to create an object for red, red
points to @ master pointer, which polnts the new object. Green still points
nowhere. Assigning the value of red to green makes green point at the same
master pointer, hence the same object, as red when TCOIOT.CREATE Is
calledagalntocreatearewobjectforgmmpointstotnemter
pointer for the new object. :

Notice the crucial difference between a class-type variable and an ordinary
Pascal variable, such as a RECORD. A class-type variable is actually a
handle on a plece of storage.. Therefore, when the value of one class-type

1-12



Lfsa ToolKit Reference Manual Introguetion to the TaolKdt

variable Is assigned to another, the second variable and the first point to the
same plece of storage. when the value of a8 RECORD s assigned to another
RECORD, the second RECORD contains a duplicate of the first.

14 How the Parts Fit T
In an object-oriented program, the objects act on themselves when some
object tells them to act. In the ToolKit, the ultimate controlling object is

the process.
The process object contalns a method called Run.  Run consists of an event
loop that checks the display, updates it when necessary, and checks for a

command or other event. when a command Is received, the command Is sent
to the active selection object.

The event loop repeatedly checks for user events: key strokes, menu
commands, and mouse clicks. when an event is recelved, an action is taken

depending on what type of event it is and where it happens.

For example, when the mouse button is pressed, the window Manager, the part
of the Lisa office system that manages the display, first checks to see if the -
mouse was on the desktop, in one of the application windows, in the title bar
for a window, or in the menu bar. If the mouse was within the outer
boundary of an application's window (exclusive of the title bar), the window
Manager gives the event to the process object for that application. The
process gives the event to the window object. The window checks 1o see if
the mouse was clicked on the resize icon. If so, the window tracks the
mouse’s movement until the button is released, and grows or shrinks the
displayed window appropriately. If the mouse was not on the resize icon
when the button was pressed, the event is passed to the panel objects for the
application. Each of the panels checks to see if the event was within its
outer boundaries. when one of the panels discovers that the area in which
the mouse was clicked 1s within its boundaries, that panel tells its

objects to see If the mouse was Ifi

scrolls appropriately. If the event was not in a scroll bar,
whether the event was in a panel res

resizes appropriately. Otherwise, the panel asks each of the pane objects,
which control the visible contents of

within the area displayed by that pane. when one of the panes claims the
mouse click, it informs the view object that controls the objects displayed by
the pane. The view determines on which part of the view the mouse was
clicked, and then takes some action, usually beginning a new selection. Then
the panel is given control again. The panel tracks the movement of the
mouse, informing the pane, view, and

As another example, the mouse may have been clicked in the menu bar. In
that case, the window Manager gives the event to the process, which passes
it to the window, which glves it to the meruBar object. The menuBar waits
untll a command is selected, and then calls window.DoCommeand and sends it
the command number. The window object calls selection.CreateCommeand,
which creates a command object of the right type for that command. The

%



L/sa ToolKit Reference Marual Introauction to the ToolKit

commend cbject s then told to carry out the command. It may call ABC
methods, building block methods, or application specific methods.

Many of the higher level objects, such as the window and the selection, have
flelds that point to other objects. Twindow defines a fleld,
Twindow.selectPanel, which contains a handle on the selectPanel. Because all
handies are equivalent object-references, and all references to objects are
through handles, the window object can easlly.call a method of the
selectPanel object. In tum, the selectPanel has flelds for any objects it
needs to reach. -

mewgywsuwmmeseﬂemreferemeslswnuélwmwmpmgm
operates.

As a result of the fact that you often reach methods through flelds, the calls
~ to methoas In ToolKit programs may occasionally seem quite complex.

when myQbject is an object with the following definition:

T™YyODb, = SUBCLASS OF TOb {Creates 1
Tt O [Defims a fleld of s TMYODBRL]
FUNCTION CREATE(object:TObject; 1tsHeap:THeap) TMyGbject;
VAR |
myobject: TMyObject; Pefines a TMyObject-reference variable.}
and TQuark and quark have this definition:

TYPE

TQuark = SUBCLASS OF TLIst; {Creates a new class}
nmnmmm(?mmmm Ry .
ggcnoucramo:meml

VAR

quark: TQuark;  {Deflnes a TQuark-reference variable}
you can invoke method TQuark.ChangeSpin like this:
quark = TQuark.CREATE (abject, itsHeep, initialSize), {Creates an
instance of

TQuark)}
_ myObject = TMyObJect.CREATE (object, ns-gap);(gream an instance

myCbject.qualities = quark; mamwmnelomq%
myCoject cuelities Chengespin 0 [Galls & method of TQuem thiough
' the qualities fleld of myObject)
The effect of the last line is to change the spin in the ith element of the list
object for which both myObject.qualities and quark are handles. There is only

1-1a



L/sa ToolKdt Reference Manual Introduction to the ToalKit

one object, although It is shown here with two separate handles. The
following line has the same effect:

quark.ChangesSpin (it

15 Fallure Conditions
Some ToolKit methods and procedures retum error codes when there is a
fallure, but many do not. For example, if NewObject (a global proceaure
defined in UObject) falls to allocate because:the swapping space on the disk
is full, it does not retum an error code. Instead, when there is a fallure,
UObject's procedure ABCBreak is called. In the debugging version of the
ToolKit, the Lisa beeps, and enters the debugger. Press the right-option key
and the Enter key at the same time to display the alternate screen, which
shows the error message. In the production version of the ToolKit, the
Technical Difficulties alert is displayed. The application terminates when the
user responds to that alert.

To facllitate debugging, some error checks are enabled by commands in the.
Debug Meny, notably "Check List lndices, which enables subscript bounds

enecklng in lists.

1-15



LIsa Toolkit Reference Marxal | | oot

Chapter 2

- UObject
2.1 About UObject 2-2
2.2 Objects and Heaps.. . 2-2
2.2.1 HOW UODJECt MANa0ES BHEAD .....ccerrerenceressnensasacssesessasssssasessssssssssnns 2-2
2.2.2 CTEBUNGODIECLS..cvvvuvcreereerenesesesersresesessossaseassensssssseseasessssesssssssasnses 2-2
2.2.3 TODJECE .everereeressenecsssssnssssssssssassssssmasssssssssssssssssssssssssssssasessassseasans 2-3
2.3 Collections 2-6
2.3.1 TLISneeeeneveeseneenrsaeesssessensensessasensasasessasessensessessensensnesssssessensssenne 2-7
232 TAITAY «.veverreenracnccsssesssssssssesnssssssaseessssnsasssssssssasesasssssessssasssssanens 2-7
2.3.3 TSUANG ..eeeeneneeeeeneareeensssensensessesasessssrasaenssassssasesensenssnessrassssssasensansns 2-7
238 TFHIBunuieeeeeeeneeseneenensssssesasessassasasssssssonsensesesssensensasensensasnsasaseasensans 2-7
2.A Scanners ‘ 2-8
2.3.8 FLIBSCANNETS cev.eeeneeneeeeeeieseeseseesessssesasensessessensessansssessessensessaseasenee 2-10



L/sa Toolkit Reference Marval ket

UObject

21 About u:mect
UObject provides the basic structures for objects, object debugging, and object
organization. Sectlons 2.2 and 2.3 deal with the structure and concepts
underlying these units,

The type definitions provided by UObject ptovide capabllities in two
categories:

* Heap and memory management and debugging. This includes the definition
of type TObject, which is the ancestor of all classes. TObject and heap
management are discussed in Section 22. The Toolit debugger is
discussed in Chapter S.

* Organization, inspection, and manipulation of groups of objects and other
data. The collections provided allow for the creation and manipulation of
lists, strings, arrays, and flles. mesearedlswssedinSBctimz.s.

22 Objects and
UObject implements the most important and basic parts of the ToolKit, namely
heap t and the basic object definitions. The most basic object
definition, that for TObject, Is discussed in subsection 2.2.2. ToolKit heap
management is discussed In Section 2.2.1.

221 How UObject Manages a Heap
A heap consists of a header, an area for allocation of master pointers to
objects, and a variable length storage area in which frequent allomuon and
oeallocation occur.

The value of any class-type varlable is a double-indirect pointer: a a-byte
handle on a 4-byte master pointer to an object consisting of a starage block
(containing the flelds of the object) and an 8-byte header comprised of:

* A 2-byte indicator of the size of the object.

* A 2-byte locator for the master pointer.

* A 4-byte Indicator of the object's class.
Tr;cnaswx pointer and header together produce a 12-byte overhead for each
object.
Objects are relocatable. when a heap fills up, it is compacted and the master

pointers are updated. The master pointers are never moved. Because
object-references are pointers to the master pointers, they do not have to be
changed. lfmummdammwnemdoesmtyieIGMspaceme
heap is expanded.

222 Creating Objects
Every class must have its own, unique CREATE function. Whenywwmtto
create a new object of some class, invoke the CREATE function for that class
by calling TThisClass.CREATE, where TThisClass is the name of the class.



Lisa Toolkit Reference Manual ket

The CREATE function allocates space on the heap for a new object of that
class-type, and retums a handle on the new object. Each subclass is required
by Clascal to define its own CREATE function; CREATE is not a method, and
is not overridden by the subclass, because the CREATE function for each
subclass often has different arguments.

Every CREATE function should, by convention, have a TObject-type reference
as its first parameter, and a8 heap as its second parameter. The remainder of
the parameters depend on what you need to initialize the class. In general,

CREATE functions follow the following model, where TMyObject is the class

youaredaflnlng,andmjactlsaaoclassofmmjact
FUNCTION TMyObject.CREATE (abj TObject; heap: THeep;
parameters needed rar tils

avjeck
BEGIN

IF obj=NI. THEN ob}~- NewObjecttheap, THISCLASSY
SELF- TMyObject ﬂmmmm%m parameters

needed by TperaY,
if TMmect is a subclass of TObject, the previous line
is: SELF>= T™MyObjectiob}
finitialize myObject's parameters here}
when you create a new object of type TMyObject, pass in NIL as the value of
obj The CREATE function sets the class pointer to TMyObject, and then calls
each succeeding superclass, until TObject is reached. TObject allocates the
;f)lroper amount of heap space, and then each subclass in-tumn initializes its
elds.

Note that because the class pointer 1s set at the beginning (by NewObject), all
SELF method calls in any CREATE function in the superciass chain call
methods of TMyObject. If any of the superclasses’s CREATE functions call a
method through SELF and the method is overridden by TMyObject, or by some
other descendant of the calling class that is an ancestor of TMyQObject, and
that method expects to have flelds initialized in the object, you should
initialize the flelds before initializing SELF. You can inmalize those fields
between the call to NewObject and the call t0 TSuperObject.CREATE.

223 TObject
All class types are descendants of the basic type TObject, defined in UObject.
TObject is the only class that has no superclass. It has no data fields, but it
proviges the basic methods used by all other classes.

Any descendant of TObject
* Inherits all methods and flelds of 1ts superclass.
* Can define methods itself.
* Can override any of its superclass’s methods.

2-3



Lisa Toolkit Reference Manual Ld,ect "

A subclass cannot, however, change the interface definition for methods
innerited from its superclass. The single exception for this is for CREATE
methods, the methods that create new objects of a glven class-type. Every
class dgeflnes its own interface 10 CREATE, as well as implementing the
method. (A few methods listed in the ToolKit interface units are defined as
CONCEPTUAL methods. These methods, which are commented out of the
interface, are listed only for information, and are not implemented or defined.
swclassﬁs can therefore define the interface ¥or CONCEPTUAL methods In
any way.

The following Is a brief discussion of the most important methods of TObject.
See the reference sheet for TObject in Part Il of this marual for more
complete information.

ol.w

Retumns the heap on which this object is allocated. This method is never
overriaden. »

+ Freecojeot

Deallocates the heap space taken by the object. The master pointer and
all references for the object are invalid after this method is executed.
Note that this method is rarely called directly. You usually call Free.
FreeObject is almost never overriaden.

* Free

Free calls the Free method for every object referred to in the flelds of
the original object. Free then calls FreeObject, to deallocate the space
used by the original object. TOb, simply calls FreeObject, because
TObject defines no flelds. ToolKit classes override Free so that it frees
all the objects referred to by flelds defined by that subclass. when you

- create a new subclass and add flelds to it, you override Free so that it
frees the objects in the fields you have added. You end by calling
SUPERCLASSFree. Eventually, this chain of SUPERCLASS calls reaches
TObjectFree, which calls TObjectFreeObject, and frees your object. The
following example assumes that head and tall are fields of class TPalr,
and are object-references.

PROCEDURE TPalrFree;
BEGIN
SELF headFree;
SELF.tall Free;
SUPERSELF Free;
END;
* CloneObject

Creates a copy of the object and retums a handle on the new object.
Tnis method is almost never overridden.

2-8



Lisa Toalkft Reference Marual Lokt

* Clone

Creates a copy of the object and all its flelds and retumns a handle on the
new object. Similar to CloneObject, but Clone also creates copies of
objects referred to by flelds of the original object. As with Free, you
must re-implement Clone in your subclasses so that it coples
fleld-referenced objects; TObject.Clone sirmly calls CloneObject. See the
description of Free for more information.

* Debug
Prints detalls about the object, such as its class and the contents of its

flelds, on the altermnate screen. It only exists in the debugging version of
the ToolKit. This method may be overridden, but it selcom needs to be.

* Flelds

Enumerates the contents of the fields of the objects. This is called by
Because TObject has no flelds, TObject.Fields does nothing. You
must implement Flelds if you add fields to a subclass you create. The
ToolKit implements Flelas for all’ Toolit classes. You simply write a "
routine that calls SUPERSELF Flelds and then enumerates the information
for the flelds you have added. Fields methods only exist in the
version of the Toolkit. You should compile your units {$#FC fDbg OK}. If
ywwanttopmwm:ggingooaelnaseparateseqmntfmrnmerest
of your program, you can use $S. See the reference sheet for TObject in
Part II of this manual for instructions for writing a Fleld method. You
should follow those instructions so that the information appears In the
correct format.

Here is a model for a Fields method.

PR(I.JFURE TMyClass.FleldsfPROCEDURE FieldnameAndType:
SZS58%;

BEGIN {The fielas must be listed in declared order, with none
omitted and none added.}

{Call the superclass's Flelds method first (unnecessary if the

superclass is TObject)
SUPERSELF.

The following type names are recognized by the parser.
F. BOOLEAN:



LIsa Toolklt Reference Marwal | Laject

e s

Fleld('someNumber: Real
lfthelastﬂelalsaayteorammmwepadutngtoaword
boundary by inserting:

Fleld()

Forsafety,ywmpmmatlneveryﬂewsmum It can
g:pear?'\ywerel;\meusung. ;

very class name Is recognized. For example:

Fleld'miscOb} TObject’)

FlolmyGet: Tyseiection’:

Fleld(appSpecific: TAppSpecific)

You may report more than one field in a single call to reduce
code space. ,
Fleld(bound_Rectd Rectsize-Polmt ptrPtrmySel: TMySalection’);
Unpacked invariant RECORDS are recognized.

Fleld(info: RECORD version: INTEGER; size: Point END)

If the record has variants, use a CASE statement to choose
between them.

CASE SELF.variant OF

flavorl: Fieldd'RECORD versione INTEGER; size: Paint END)
END .

If SELF.variant does not exist, choose one of the variant flelds.
Unpacked ARRAYS with literal bounds are recognized.
Fleld('desc: ARRAY [1.99] OF RECORD version INTEGER; i¢:
ARRAY [1.2] OF CHAR

Other constructs and type names are NOT mcoguzea, substitute
one of the above forms.

gss last resort, use ARRAY [1.SIZEOF(SELF.fleldName)] OF Byte.

23 Collections
UObject implements these basic orgmlzatlonal collections, all of which are
objects, and descendants of type TCollection

* lists are indexed lists of object-references.

' arrays are one-dimensional lists of records.

* strings are one-cimensional 1ists of characters. .

* files are one-dimensional lists of characters stored in disk files.

Notice that lists are made up of object-references. The objects themselves,
like all objects, are stored separately on the heap. arrays and strings store
thelr dgata within themselves. They themselves are objects stored on the heap,
however. messtoretneltdatamdlsk,memeobjectlsmeuoym
program as an interface to the disk flle.

2-6



LIsg Toolklt Reference Manug/ oot

Each of these class-types (except for flles, as explained below) has a set of
methods that allow you to

* Add members to the collection

* Delete members from the collection

* Allocate new space for the collection

* Remove unused space allocated for the collection

In aodition, each collection type has a corresponding class-type that defines a
scanner for that type of collection A scanner Is an object that is used to
move through a collection, acting in some way on each member in tum.
scanners are used, for example, to search for particular collection members.

You can also use scanners to add and delete collection members, but those
operations are typically done through methods of the collections. The

advantage of using scanners is that your current position in the collection is
maintained for you. : o

flles, unlike other collections, can only be accessed tnroug\ ﬁm\ers.

231 Tlist ‘
TList defines an object that maintalns a list of objects-references.

A list is similar to a Pascal ARRAY [L.size] OF object-references. The entire
list is stored as one variable-length, contiguous object of type TLIst. Because
list elements are object-references, elements of different lists (or multiple

~ elements of a single list) can refer to the same object.

232 TAITay :
An array is similar to a list, but where a list contains object-references, an
array contains records. It is simllar to a Pascal ARRAY [LSIZE] OF any type.
while an object can have references to it in several lists, an item can
normally be in only one array at a time. (Actually, you could put
ooject-referencesMmﬁy,wmmemmabemvalmtwam
The interface to Hsts is gned for use with object-references, however,
while the interface to arrays is not.)

233 Tsuing ~

A string is a one—dimensional array of characters, similar to a Pascal ARRAY
[Lsize] OF CHAR. The character string itself is stored in the string object;
any particular string of characters can exist in only one string object.

Each element of a satring occuples one byte of memory. An element of an
array occuples at least two bytes of memory. , |

233 Trlle '
A flle is similar to a string in the sense that it is used to handle a string of
characters. A flle, however, acts as an interface to a disk flle. when you
create a flle object, you specify an OS pathname. The ToolKit checks to see
if a flle with that name exists. If it does, the length of the file in bytes is
put into the size field of the flle object, and a call to fllefXists retums



 Lisa Toolkit Reference Manual Uofect

" TRUE. The flle Is not opened, however. If the flle does not exist, a 0 (zero)
is put into the fllesize fleld, and a call to flleExists retumns FALSE.

The disk file is opened when you create a flleScanner for the flle object.

The method flle.Scanner opens the flle for read and write access. To open the
file for more limited access, use file.ScannerFrom. See the (Operating System
Reference Manual for the Lisa for getalls on flle access options and error
codes.

24 Scamners
scanners are objects used to scan lists, strings, arrays, or flles and operate on
every member, search for something, or assist in locating the correct point to
insert, replace, delete, and so on. This section discusses how to use scanners
to manipulate your collections.

All scanners are instances of descendants of TScanner. Every type of
collection has a corresponding type of scanner: you use an instance of
TListScanner, TArrayScanner, TFileScanner, or TStringScanner. Each of the
collection classes has a Scanner method, which is a function that retums a
scanner object of the correct type. scanners are used and then thrown away;
they generally are used to go once through a collection. In fact, when a
scanner reaches the end of a collection, the scanner automatically frees itself.

Every scanner object has a position fleld. scannerposition is the point in the
collection presently occupied by the scaner. The position is the ingex number
of the last member of the collection retumed by the scanner, unless the

scanner is new. By default, new scanners have a position of 0, which is the
posmon before the first member. scanners can, in general, start in any
position,mver Reverse scamersneginwltnaposmmpstpattneemof
the collec

when you Create a scanner, you can specify its scanDirection A
scanDirection of scanBackward means that the scanner moves towards the
beginning of the collection; a scanDirection of scanForward means that the
scanner moves towards the end of the collection Every time you call the
method scanner.Scan, the position moves one member in scanDirection
fileScanners can only have a positive scanDirection; flles can only be scannhed
toward the end. The default scanDirection for all scamners is positive.

when a scanner is first created you can specify the initial postion ‘You do
that by specifying the Ingex number of the first member to be retumed by the
SCanner. wnenmemiscreateu,wmsmmismimexmmer
plmormimsone,oapemlngmmnmum

Every time you call scanner.Scan, which Is a function, you get a BOOLEAN
retum value, and a return parameter. The return value indicates whether or
not the scan is finished. It is finished when scannerposition is past the last
member of the collection, if scanDirection is positive; or when scanner.position
is before the first member of the collection, if scanDirection is negative. The
retumn parameter is the next member in the collection, in scanDirection



LIsa Toolklt Reference Marnial/ kot

Because scanner.position is updated when scanner.Scan is called,
scanner.position indicates the Index number of the retumed member. The
retumed member Is referred to as the cwrent memer

when scanner.Scan Is called after the l1ast member was retumed, the retum
value {s FALSE, and the retumed member parameter is Nil. or CHR(0),
depending on the type of the collection When you are done with a scanner
before the last member has been reached, call scanner.Done. After that call,
the next call to scanner.Scan retums FALSE, but the retumed member
parameter is left unchanged. The scanner then frees itself.

During a scan, objects can be Inserted before or after the current position, and
the current member can be deleted or replaced.

You can have more than one scamner on the same collection at the same time,
but if you do, you cannot Insert or delete using these scanners.

All types of scanners are used In the same way. The general format is:

VAR s TScamner;
member: TMember;
L: TCollection; -

$ = LScanner;

WHILE s.Scan(member) DO
BEGIN
{coae here accessing member}
END;

’

Creating the scanner with s = LScanner sets the scan position to a point just
before the first element in the list. If you want to set an inital position and
scanDirection, use the method ScannerFrom to create the scanner. Each
execution of the WHILE loop

* Advances value of Lscanner.position by 1.

* Sets member to the next member of the collection. wWhen the collection is
a list, member is an object-reference. when the collection is a string or
a flle, member is a character. when the collection is an array, member is
a pointer to a record.

* Runs the code in the WHILE loop.
when the scan position reaches a point just after the last element in the list
s s.Scan returmns FALSE. |
* obj is set to NIL, for lists and arrays, or CHR(D) for strings and flles.
* The scanner frees itself.

2-9



Lisa Toolkit Reference Marval Ugect

when the purpose of the loop is to search for a certain element, call s.Done
when the element being searched for Is found. Then

°* The nextvs.wm retums FALSE.
* The object variable retains its assigned value.
* The scanner frees itself.

The following example illustrates the use of a’ HstScanner to peel every banana
in a bunch of bananas and remove the rotten ones. If an underripe banana is
encountered, N0 more bananas are peeled.

PROCEDURE CheckBananas (buncie TList {OF Bananall
VAR s TListScanner;

tx TBanana; .
BEGIN
$ ™ bunch.Scanner; a scanner to scan bunchl)
WHILE sScan(d) DO or each b in bunch doz}
BEGIN .

bPesl; ell b to Peel itself.}

It b.underripe THEN b if it is underripe}
s.Done f so, force the scan to terminate.}

ELSE IF brotten THEN {Ask b if it is rotten)}
sDelete (TRUE)Y {If so, tell s to delete b from bunch and

- free it} '
END;
END;

2A.1 FileScanners ‘ "
flle objects, unlike other collection objects, can only be accessed through
scanners.

Once the flleScanner s created, further references to the flle object act as if
the contents of the flle were a string stored on the heap. The contents of the
disk file are not moved to the heap, however (they are paged through buffers
in the OS), so flle operations can take longer than string operations. If no disk
file with the glven name exists, the flle is created when the flleScanner is
created, and the file object acts llke an empty string. Note that the ToolKit
does not explicitly tell you whether or not the file exdsted before you created
the flleScanner.

2-10



LIsg ToolKIt Reference Mara/ Draw

Chapter 3

31 Introduction 3-2

32 ThePurposes of UDraw - 32

33 The UDraw Classes 33

B3l TATBA.ccuuiieetteenenisnereensnstsestsssssrssssasssasssssessnsnsssssasssnssssassasssssssssanese 3-3

332 TPA c.coecneicriennnenccsssnnescsssanssssnnsessasssssasssssssenssnsssansasssssesassassscassssens 3-3

34 TheUDraw Routines ..... 34

35 when ToUse the Corwersion Routines 3-4

36 \Variables Declared in UDraw 34

3.6.1 CONSLANLS ...cccceeeensnnenanernarenansens cevessaesesannasasnesesrasnasas cetssereenessasans 3-4
3.6.2 Orthogonal CONVETSIONS ....cciciiiiieeencieinsesesssesecssanesssacanns esessnnsinaene 3-4 -

3.6.3 Pen States for HIGHGNUNG .....ccieeninninnenniesstsnssssnssnsssssssssssssssessnsssess 3=

3.6.8 Pattems InVIew COOrdINAtes .......ccccciiieeencintsnctinnnecissscsstssccsssssessnssncs 3-S5

3.6.5 GraphiCs ATBAS ......ccecuiireerensensesereensssnatsssssnssssssssansenss ctessssestantanennes 3-5

3.6.6 ConVersion Pad(NOPA) ....ccceeeeeecersesanresseasssnsssssssassssassessesssssssanseassanss 3-S

3.7 TheUDraw Utllity Routines 35

3.7.1 Arithmetic and Utility Operations .........ccccecccccanennnnisesenesncssessssncssesses 3-6

3.7.2 GraphFUNCUONS....iccitrneitencentattenssenisssssassssssessesassasssnssessesansassensanss 3-7

3.7.2.1 ArthmetiConPOINLS ....ccccccictieientencitssnnantetnnstesssesssssansasencs 3-7

3.7.2.2 Arthmetic onRECLANGIES ...ccciicrernectennassssttesssssstensssssassassssss 3-9

3.7.2.3 Operations ONRECLANGIES .......ccceveeeestesaansastasscesssssasssasasnsans 3-10

3.2.3 Calculations with Rectangles and Points - View 'Coordinates.......... eeee 3-11

3.7.4 Drawing Operations for View Coordinates ........... essssassssasasasasassaninen 3-12

3.7.8.1 Line-DrawingROULINGS ......cccietreiiiesasannntnnsescesennsssessssaees 3-12

3.7.4.2 Graphic Operations onRECtaNGIes .....cccccvveiiitnecrsensenssensnniens 3-13

3.7.4.3 Graphic Operations ONOVAELS ......ccciresencssnciinssesssnsssctssasnssses 3-13

3.7.4.4 Graphic Operations on Rounded-Comer Recta'\gles .............. 3-14

3.7.45 Gm:hlcOperatimson AYCS NG WEOQES ..cceveenccsennsannscccesasans 3-15

3-1



Liss TaolKit Reference Marusl : orew

UDraw

3.1 Introduction
UDraw provides graphics routines for drawing in ToolKit programs. It must
be used with all ToolKit applications. The functions UDraw provides include
‘most of the functions provided by QuickDraw, except that UDraw uses 32-bit
long integer (LONGINT) coordinates instead of 16-bit integer INTEGER)
coordinates. UDraw also provides a few extra functions.

Using long integer coordinates prmddes coordinates that can rmge from
2147483648 (-231) to 2147483647 (231-1). However, no single object can
have a size greater than 21° In either dimension.

This chapter assumes that you are familiar with the QuickDraw
documentation, which is contained in the Pascal manual.

UDraw defines TArea, TPad, and TBranchArea

TArea implements methods for all parts of an application that draw on the
screen, Including bordered areas, such as windows and panels.

TPad, which Is a subclass of TArea, implements methods that take information
drawn In an application’s view, ang display it on the screen.

TBranchArea, which s also a subclass of TArea, Is used intemally to maintain
splittable panels. There is a reference sheet for TBranchArea in Part II of
this manual. Because do not deal directly with this class, It is not
discussed further in this chapter.

32 Tne Purposes of UDraw
UDraw exists for two main purposes. First, it defines the basic graphical
structures that characterize Toolkit applications: boragerea and unbordered
screen areas. Second, UDraw transiates graphics from Tooliit formats to
fomstn?tamoeuwauymckom. QuickDraw does all on screen drawing
on the Lisa :

QuickDraw always draws In a8 gra/Part A grafPort is a software-defined port
that connects your application’s drawing routines to the screen. when you
want to draw, you focus the grafPort on some part of the screen.

You normally do not need to worry about focusing In Toolkit programs. You
draw in your view, using the view coordinate drawing routines implemented in
UDraw and described In this chapter. Some of your appiication’s methods are
called with the grafPort already focused and ready to draw in a pane or on a
page. Other methoas are called for a whole panel, and must call the method
TPaneLOnAllPadsDo, which focuses on each pane in tum.

You use the drawing routines defined in UDraw, rather than the similar
routines in QuickDraw, because the UDraw routines use long integers, allowing
specification of larger coordinates than QuickDraw can handle. UDraw

3-2



Lisa ToolKlt Reference Maugl - Wraw

converts your long integer coordinates to integer coordinates, scaling the
coordinates and agjusting the grafPort so that the drawing appears correctly.
Altemately, a set of conversion routines is provided so that you can convert
long integers to Integers yourself, which In certain circumstances Is more
efficient. UDraw can scale coordinates automatically to handle pads with
difference resolutions (primarily used for low and high resolution printing) or
for zoom factors.

You can call QuickDraw routines directly, as‘long as you observe the
following restrictions:

* Your application's view does not print or zoom.
* The view must be small enough to use 16-bit integer coordinates.

If you want, you can use QuickDraw directly for drawing on the screen, and
weLﬁ)ramepﬂnmnnywwmmenmomffemtcwefoream
operation.

33 The UDraw Classes :
UDraw provides the classes TArea and TPad TArea defines a screen area
with a border. TPad provides drawing and conversion routines used to display
part of a view on the screen. Reference Sheets for these classes are
provided in Chapter 7.

331 TArea
You generally do not use TArea or its methods directly. Instead, you use
Twindow or TPanel, which are subclasses of TArea TBand a class that is
rarely used in applications, is also a subclass of TArea These classes are
defined in UABC and are described in Chapter 4.

TArea defines an area on the screen with a border. This area is defined by
two rectangles: outerRect, which describes the whole area inciuding the
border, and innerRect, which excludes the border. You can look at these
variables to find the size of an ares, but do not change their values. To
change the size of an areg, use the methods SetOuterRect and SetinnerRect.

Methods of TArea take care of functions such as setting the size of an area,
drawing the frame, erasing the contents of the area, and focusing.

3A2 TPad ,
Tpad is a subclass of TArea. It provides methods to convert between view
coordinates and GrafPort coordinates. These methods are called by the utllity
routines that do drawing in view coordinates (see Section 3.5 UDraw
Routines). You can use these methods directly to increase efficiency by
avoiding conversion operations for every routine called.

The grafPort is always focused on some Instance of a descendant of TPad,
whose handle Is stored in the global variable thePad In essence, a pad is the
place where drawing actually occurs. Drawing is only done on a single pad at
a time. Wwnhich pad it Is, however, is taken care of by the ToolKit. Instances
of TPane, a subclass of TPad, are usually used as thePad

3-3



LIsa ToolKit Reference Marual | | LOraw

3.4 The UDraw Routines
The Udraw routines provide functions similar to QuickDraw, using long integer
view coordinates in place of QuickDraw’s integer grafPort coordinates. Udraw
also addas some other functions for both grafPort and view coordinates.

These routines can be called to perform drawing operations in the view. All

conversions between view and grafPort coordinates are done by the
view coordinate drawing routines. You can do conversions yourself to avold
unnecessary calculations, and then use the grafPort coordinate axawlng
routines in QuickDraw.

35 when To Use the Conversion Routines
The conversion routines can be used when your application uses grafPort
coordinates for a series of operations. Since all on-screen drawing occurs
in grafPort coordinates, every view coordinate UDraw routine first
omvertsfromvxewtografponooomlmtes and then calls a grafPort
coordinate routine in QuickDraw. You can, if you wish, call the
conversion routines yourself, and then use the converted values in calling
grafPort coordinate routines directly.

3.6 Varlables Declared in UDraw
: A number of variables are declared inthemitLDraw This secuon describes
the most useful of them.

36.1 Constants
The following variables are used as constants in UDraw, and are shown
here for your use.

2eroPt: Point point with grafPort coordinates of (0,0)

zeroRect:  Rect; grafPort coordinates for a rectangle with
; topLeft and botRight both (0,0)

fwgeRect: Rect) ~ rectangle with tou.e,g (0.0) and botRight

. MAXINT/2MAXINT. ‘
zeroLPt LPoint; point with view coordinates of (0,0)
zeroLRect: LRect;  view coordinates for a rectangle with toplLeft
| ‘ and botRight both (0,0)
hugelRect: LRect rectangle with topLeft (0,0) and botRight
ZMAXLINT/2)

(MAXLINT
3.62 Orthogonal Conwersions

The following array is for performing orthogone! conversions by mepping v to
h and vice versa.

orthogonal: ARRAY [v.h] OF V-Select

Truevalueofmmguulsmmretea ype:el v or h. orthogonalfv]
nasavalwofr\.immﬂh]msa ue of v

-4



Lisg ToolKit Reference Manua! LOorsw

3.63 Pen States for Highlighting _
The following array Is used to set the QuickDraw pen state for highlighting.

highPenr-  ARRAY [THighTransit] OF PenState;

The value of highPerfhighTransit] Is a pen state. highTransit has a value that
depends on the state of highlighting at that time, and on what highlighting is
desired, from the set (hNone, hOffTaDim, hOffToOn, hDImToOn, hDIMTOOff,
hOnToOff, NOnToDim). highPer(highTransit] has as its value the correct pen
state setting to produce the required highlighting.

364 Pattems in View Coordinates
Pen pattems are central to drawing on the Lisa display. QuickDraw defines a
mmb?r of standard pattems. The following provide the same pattems in view
coordinates.

Patwhite: LPattemn Maps to QuickDraw pattem white.
WPatBlack: LPattem;  Maps to QuickDraw pattem black.

:  LPattem Maps to QuickDraw pattem gray.
IPatl tGray: LPattem;  Maps to QuickDraw pattem 1tGray.
WPatDkGray: LPattem; Pmstommoauemmeray.

365 Graphics Areas -
AmgiminmdomwismpanmgrmpofpartsofagrmwobjecLA
region does not have to be contiguous, although in the ToolKit all of a single
region must be in a single view.

focusRge RgnHandie The part of the pad that needs to be updated.
, thePact TPad; The pad currently focused on.
366 Conversion Pad (noPad)
The conversion pad is provided so that you can call cetain methods of TPad

when neeutowltrnnmdlngwcmteanewpmooject.a‘uwim
chmgganyvalueslnm

noPact TPad; Dummy pad that can be used to convert
between short and long integer coordinates
without arithmetic on the coordinates. For
example:
noPadRectToLRECt(rect1, IRect1)
sets IREctLtop to recti.top. It performs
similar operations on the other three

’ coordinates.
37 The UDraw Utllity Routines
This section describes the utllity procedures and functions implemented in
UDraw. These routines are not methods; methods of the classes defined in
UDraw are described in the reference sheets for the classes: TArea,

TBranchAree, and TPad

su'oetrmeareglwalprweunaanﬂmums,ywemwemmmy
time, from any part of your program.

3-5



Lise Toayit Reference Marncal Lorsw

- 371 Arithmetic and Utllity Operations
UDraw defines a number of arithmetic and utllity procedures and functions
that may be useful in your program. Most of these correspond to standard
Pascal language functions. UDraw reimplements those to use long integers.
A few others are additions you may find useful.

PROCEDURE BoolToStr (bool: BOOLEAN; str: TPstring:

;allool'l'asu returns a string (str) containing TRUE if bool is true, FALSE if it is
se.

FUNCTION IsSmaliPt (sroPt: LPoknt: BOOLEARG

ls&muPtreum\sTRtEifbomcoomlnatesofmpointombeemressealn
grafPort (INTEGER) coordinates.

FUNCTION IsSmallRect (srcRect: LRecty BOOLEAN:

IsSmallRect retums TRUE if the coordinates of the rectangle can be
expressed in grafPort (INTEGER) coordinates.

FUNCTION LImMDivint (I LONGINT; § INTEGER} LONGINT;
FUNCTION LiIntDiviLint (1, § LONGINTY LONGINT;

These functions return the result of a long integer, 1, divided by } LinDivint
takes an integer as a divisor; LitDivLInt takes a long integer as a divisor.
This acts like the Pascal DIV operator. LMD} is identical o 1 DIV j in
results and similar in performance. However, Ini is much faster
tfmiDle(wmnla'u]amLmGNr),Mltmymtpmmcetrecorrect
result in all cases.

FUNCTION LintMulint (: LONGINT; § INTEGER)} LONGINT;

LintMulint retums the result of 1 multiplied by } It is faster than i) when i
or J is a LONGINT.

FUNCTION LIntOvrint (i LONGINT; § INTEGER} LONGINT;
Uses the formula (1+J/2)j to round /] to the nearest LONGINT.
FUNCTION Max (I, } LONGINTY LONGINT;

Max retumns the larger of two numbers.

FUNCTION Min (1, } LONGINTY LONGINT;

Min retums the smaller of two numbers.

PopFocus restores the last focus pushed onto the focus stack with PushFocus.
The current focus is lost.



Lise TaolKit Reference Manus! Orsw

PROCEDURE PushFFocus;

PushFocus stores the current grafPort focus on the focus stack. Use
PopFoous to restore it

PROCEDURE Reduce (VAR numerator, denominator: INTEGERY

Reduce reduces the fraction numerator/denominator to its lowest whole
number terms. Note that the values of numerator and denorminator may

change.
Rect; tabHeight, sbwidth, sbHeight: INTEGER: VAR newPt: Point)
This procedure is used to draw the temporary lines displayed when the user is

resizing a panel, , or window. It is called automatically in those cases
but you can call 1t mself to implement similar feedback.

3.72 Qraph Functions
Most functions and procedures defined in this section have two versions: one
for grafPort coordinates and one for view coordinates. Each version operates
identically, except that operands and results in the view coordinate routines
are LONGINTSs, and operands and results for the grafPort coordinate routines
are INTs. In every case, the first routine given is the grafPort coordinate
routine. You can tell the routines apart by their names: the names for
grafPort coordinate routines usually eontaln Pt (for point) or Rect (for
rectangle), while the names for view coordinaterwtinesuwany contain LPt
(for long point) or LRect (for long rectangie).

3721 Arithmetic on Points
PROCEDURE PtPiusPt (operandl, operand2 Point; VAR result: Point)

PROCEDURE LPtPlusiPt (operandl, operandz LPoint; VAR result: LPoint)

FUNCTION FPtPusPt (operandl, operand2: Pointl LONGINT;

The two procedures add the coordinates of operandl to the coordinates of
and retum the result in resullt. The function adds the two points,
and gives the result as the retum value.

Because functions cannot retumn a Poimt, the result is retumed as a LONGINT,
which can be coerced into a Point. For example, where pt Is of type POINT,

you can use pt= Polnmt(fPtPusPt(pti, ptZ): to convert the result to a POINT.
In all cases, operandl and operand2 are unchanged.

PROCEDURE PtMinusPt (operandl, operand: Point; VAR result: Point)
PROCEDURE LPtMinusL Pt (operandl, operand2 LPoint; VAR resut: LPoint);
FUNCTION FPtMinusPt (operandl, operand2: Pointy LONGINT;

The two procedures subtract the coordinates of operand2 from the coordinates
of operandl, and retumn the result in resuit. The function performs the same
operation, but gives the result as the retum value.

3-7



Lisa ToalKit Reference Maruel UDraw

Becaseﬂncﬁmsmtreumammresmtisreum\eGasaLMNT,-
wnleniwxbeooeroeolnwam SeeFPtlePtformemleof
coercion.

In all cases, operandl and operand2 are unchanged.

PROCEDURE PtMulint (operendi: Point; operend2: INTEGER; VAR resuit:
PROCEDURE LPtMulint (operandl: LPoint; operand2: INTEGER; VAR result:
FUNCTION FPtMulint (operandl: Point; operand2: INTEGERY LONGINT;

mNoproeemresmntiplybothcoordlnatesofmmIbymmam'
return the result in result. The function multiplies the two operands, and
gives the result as the return value.

Because functions cannot retum a Polrt, the result is returmned as a LONGINT,
which can be coerced into a Point. SeeFPu?hsPtformemleof
coerclon.

mmlm,mmmmqnmmmm

PROCEDURE PtDivint (operandl: Point; operand2 INTEGER: VAR result
PROCEDURE LPWDivImt (operandl: LPoint; operandz: INTEGER: VAR result:
FUNCTION FPtDIvint (operandl: Point; operend2 INTEGER) LONGINT;

The two procedures divide both coordinates of operandl by operand2 and
return the dividend in result. The function divides the two operands, and
gives the dividend as the retumn value.

Because functions cannot return a Point, the result Is retumned as a LONGINT,
which can be coerced into a Point. See FPtPlusPt for an example of
coercion.

In all cases, operandl and operand2 are unchanged.

FUNCTION EquaiPt (operandl, operand2: Point BOOLEAN;

FUNCTION EquailPt (operandl, operand2 LPointy BOOLEAN;

mmwmtwmmmmmmumyarem
or FALSE If not.

WW(MMWLMT

- This function retumns a point with coordinates equal to the largest of the two
corresponding coordinates in the operands. The maximum of each coordinate
Is taken separately; therefore the retum value may not be either of the two
points given as operands. ltmybeacmblnatlmofthetwo.



L/sa ToolKilt Reference Mol : UWrsw

MWW(MWWLW:

This function returns a point with coordinates equal to the smallest of the
two corresponding coordinates in the operands. The minimum of each
coordinate is taken separately; therefore the retum value may not be either
of the two points given as operands. It may be a combination of the two.

FUNCTION FDiagRect (rectangie: Recty LONGINT;

This function retums a point designating the:lower right comer of rectangle
as if the upper right comer is at (0,0)

Because functions cannot retumn a Point, the result is returmed as a LONGINT,
wrumicmbecoercealmoam See FPtPIusPt for an example of
coercion.

PROCEDURE PoltToStr (pt: Point; str: TPstring}
PROCEDURE LPOIMToStr (pt: LPolrt; str: TPstringl
Theseprooewrescorwenmtotnesumm

3722 Arithmetic on Rectangles
FUNCTION Emynactu-mct):aoa.sm

FUNCTION Emptyl Rect (r: LRecty BOOLEAN;

These procegures return TRUE if the given rectangle is an empty rectangle or
FALSE if not. A rectangie Is considered empty if the bottom coordinate is
equal to or less than the top or the right coordinate is equal to or less than
the left.

FUNCTION EquaiRect (rectA, rectB: Recty BOOLEAN;

FUNCTION EquallRect (rectA, rectB: LRecty BOOLEAN:

These procedures compare the two rectangles and return TRUE if they are
equal or FALSE if not. The two rectangles must have identical boundary
coordinates to be considered equal.

PROCEDURE RectMinusRect (operandl, operand2: Rect; VAR result: Recty

PROCEDURE LRectMinusLRect (operandl, operand2 LRect; VAR resuit:

These procedures subtract the operand2 rectangle from the operandl
rectangle, retuming the result in resuit

PROCEDURE RectPlusRect (operandl, operand2 Rect; VAR result: Rect)
WW(MWLMVARMM

These procedures add two rectangies and retum the sum in resuit
Rectmglesareaﬂdedbyaﬂdrgﬂahoonespudmtopleftaﬂbotmﬂmt

3-9



Lisa TaolKit Refererce Marvgl ' LOraw

3723 opa-atms Rectangles
m&m«mmmwmmm&

mwwmmmmmm
VHSelect)

These procedures change dstRect to match srcRect in the vhs direction.
FUNCTION Lamm(rmmmmmm

FUNCTION LaWLRect(rLRechhs:\A-Select):LGGM

These procedures retum the length of the rectangle side in the vhs direction
FUNCTION RectHasPt (destRect: Rect; pt: Pointy BOOLEAN;

FUNCTION LRectHasLPt (destLRect: LRect; pt: LPointy BOOLEAN;

These procedures determine if the point Is inside the rectangle and retum
TRUE if s0 or FALSE if not. These procedures check if pt Is greater than or
equal to the top left point and less than or equal to the bottom right point of

~ the destination rectangle. (QuickDraw's PtinRect procedure retums FALSE If
the topleft point Is equal to the bottom rignt point.)

PROCEDURE RectHavePt (dstRect: Rect; VAR pt: Point)
PROCEDURE LRectHavel Pt (destiRect: LRect; VAR pt: LPoint)
These procedures force the point to be inside the rectangle if it is not, by

changing the point so that pt is greater than or equal to the top left
coordinate of the rectangle, and less than or equal to the bottom right

coordinate. (toplLeft <= pt <= botRight) |
FUNCTION Rectshat(am,h\er:mct)mw
FUNCTION LRectsNest (outer, inner: LRecty BOOLEAN;

These procedures determine if the inner recta?le is inside (or touches) the
outer rectangle and return TRUE if so, FALSE If not.

PROCEDURE RectifyRect (VAR dstRect: Rect}
PROCEDURE RectifyLRect (VAR destLRect: LRect)

These procedures exchange opposing coordinates of a rectangle until the top
left coordinate is less than or equal to the bottom right coordinate.
FUNCTION RectisVisible (rectinPort: Recty BOOLEAN;

FUNCTION LRectisVisible (srcLRect: LRecty BOOLEAN;

These procedures return TRUE if the rectangle intersects the current update

region. The grafPort must be focused on the view containing the rectangle.
You can call LRectisvisibie to test whether a part of your document requires

drawing. You can speed up your application by not drawing parts that cannot
be seen by the user.

3-10



LIsa ToolKit Reference Merxaal LDraw

PROCEDURE RectToStr (r: Rect; str: TPstring:
PROCEDURE LRectToStr (r: LRect; str: TPstring:
These procedures convert the rectangle r to the string str.

3.73 Calculations with Rectangies and Polnts - View Coordinates
’ PROCEDURE SetLPt (VAR destPt: LPolnt; itsH, 1tsv: LONGINT)

SetlPt assigns two LONGINT coordinates to a variable of type LPoint.

PROCEDURE SetLRect (VAR dstRect: LRect; itsLeft, itsTop, itsRight,
itsBottom: LONGINTY

SetlRect assigns the four boundary coordinates to the rectangle dstRect The
result is a rectangle with coordinates (ItsLeft.itsTop itsRight.itsBottom).

This procedure is supplied as a utility to help you shorten your program text.
If you want a more readable text at the expense of length, you can assign
LONGINTS (or Lpoints) directly into the rectangle’s fields. There is no
significant code size or execution speed advantage to either method.

- PROCEDURE OffsetLRect (VAR dstRect: LRect; dh, dv: LONGINTY

Offsett Rect moves the rectangle by adding dh to each horizontal coordinate
and av to each vertical coordinate. If dh and v are positive, the movernent
is to the right and down; if either is negative, the corresponding movement is
in the opposite direction. The rectangle retains its shape and size; it is
moved on the coordinate plane. This does not affect the screen unless you
subsequently call a routine to draw the rectangie.

PROCEDURE InsetLRect (VAR dstRect: LRect; dh, dv: LONGINTY

InsetlRect shrinks or expands the rectangle. The left and right sides are
moved in by the amount specified by diy the top and bottom are moved
toward the center by the amount specified by dv. If dh or ov is negative, the
appropriate pair of sides is moved outward instead of inward. The effect is
to alter the size by 2=dh horizontally and 2=av vertically, with the rectangie
remaining centered in the same place on the coordinate plane.

If the resulting width or height becomes less than 1, the rectangie is set to
the empty rectangle (0,0,0,0).

FUNCTION SectLRect (srcRectA, srcRectB: LRect; VAR dstRect: LRect}
BOOLEAN;

Secti.Rect calculates the rectangle thet is the intersection of the two input
rectangies, and retums TRLUE if they indeed intersect or FALSE if they do
not. Rectangles that “touch” at a line or a point are not considered

intersecting, because their intersection rectangle (really, in this case, an
intersection line or point) does not enclose any bits on the bitmap.

311



Lisa ToolKit Refererce Marval ‘ ‘ ' raw

If the rectangles do not intersect, the destination rectangle is set to (0,0,0,.0)
mwmsmnecuyevenlfmofmmmwmesismwm
nation.

PROCEDURE UnionLRect (srcRectA, srcRectB: LRect; VAR dstRect: LRect)

Unionl_Rect calculates the smallest rectangle that encloses both input
rectangles. It works correctly even if one of the source rectangles is also
the destination.

FUNCTION LPUNLRect (pt: LPoint; 1 LRecty BOOLEAN;

PtinLRect determines whether the pixel below and to the ngwt of the glven
coordinate point Is enclosed in the specified rectangle, and retums TRUE if
so or FALSE If not.

3.7.4 Drawing Operations for View Coordinates
The following routines are similar to QuickDraw calls, but use long integers
(view coordinates) so that they can perform graphics in the view. See the
Lisa Pascal on QuickDraw for the corresponding routines for ‘
grafPort coo tes. In general, the grafPort routines are identical to these,’
except that the routine name does not have the L that indicates these are for
long integers.
You must focus the grafPort on your view before calling these routines.

3.74.1 Line-Drawing Routines
PROCEDURE MoveTol (h, v: LONGINTY

MoveTol. moves the pen to location (hv) in view coordinates. No drawing is
performed.

PROCEDURE Movel (dh, dv: LONGINTY

Movel. moves the pen a distance of dh horizontally and dv vertically from its
current location; it calls MoveTol(h~dhv+V), where () is the current
location in view coordinates. The positive airecuons are to the right and’

down. No drawing is performed.
PROCEDURE LineTol. (h, v: LONGINT)

LineToL draws a line from the current pen location to the location specified

?nvieweoomiram)byha\uv. Thenewpenlwaumlscw)aftermenne

PROCEDURE LineL (dh, dv: LONGINTY

Linel. draws a line to the location that is a distance of dh horizontally and dv
vertically from the current pen location; it calls LineToL(h+dhv+av) where
0w) Is the current location. The positive directions are to the right and
down. Thepenloeaﬁmbeoomesmecoomlmwcoftmwmtheuneaner
the line is drawn.

3-12



Llsa ToolKIt Reference Marug/ LOraw

3.7A2 QGraphic Operations on Rectangies
PROCEDURE Framel Rect (r: LRect);
Framel Rect draws an outline just inside the specified rectangle, using the
current views pen pattem, mode, and size. The outline is as wide as the pen
width and as tall as the pen height. It is drawn with the the current pen
pattem (pnPat), according to the pattem transfer mode (pnMode). The pen
location Is not changed by this procedure.

PROCEDURE PaintLRect (r: LRect):

PaintL Rect paints the specified rectangle with the current pen pattem and
mode. The rectangle on the bitmap Is filled with the pnPat, according to the
pattem transfer mode specified by pniMode. pen location is not changed
by this procedure. ; )
PROCEDURE Erasel_Rect (r: LRect}

EraselRect paints the specified rec e with the current GrafPort's back-
ground pattem bkPat (in patCopy mode). The GrafPort's pnPat and pnMode
are ignored; the pen location is not changed. :

PROCEDURE InwrtLRect (r: LRect} .

InvrtLRect inverts the pixels enclosed by the specified rectangle: every white
pixel becomes black and every black pixel becomes white. The GrafPort's
prPat, prMode, and bikPat are all ignored; the pen location is not changed.

PROCEDURE FillLRect (r: LRect; IPat: LPattem}
Fllt Rect fills the specified rectangle with the given pattemn (in patCopy
mode). The GrafPort's pnPat, pnMode, and bkPat are all ignored; the pen
location is not changed.

3.7A43 QGrephic Operations on Ovals
PROCEDURE FramelOval (r: LRect)
FramelLOval draws an outline just inside the oval that fits inside the specified
rectangle. The outline is as wide as the pen width and as tall as the pen
height. It is drawn with the pnPat, according to the pattem transfer mode
specified by pnMode. The pen location is not changed by this procedure.

PROCEDURE PaintLOval (r: LRect:

Painti Oval paints an oval just insice the specified rectangle. The oval is
filled with the pen pattern pnPat, according to the pattem transfer mode
specified by pnMode. The pen location is not changed by this procedure.

PROCEDURE Erasel.Oval (I: LRect);

Erasel.Oval paints an oval inside the specified rectangle with the current
background pattemn biPat (in patCopy mode). The pen pattem pnPat and the
pattem transfer mode pniMode are ignored; the pen location is not changed.

313



LIsa ToolKlt Reference Merual oraw

mmmal(nm

IrvrtLOval inverts the pixels enclosedvby an oval just inside the specified
rectangle: every white pixel becomes black and every black pixel becomes
white. The pnPat, pnMods, and bikPat are all ignored; the pen location is not

mmmwm’mwm

FilL Oval fills an oval just inside the specifiéd Tectangle with the given
rattem(inpatOupyrrme). The GrafPort's pnPat, pnivode, and bkPat are all
red; the pen location is not changed.

3.74A Graphic Operations on Rounded-Comer Rectangles
PRocEDugE mumgt(rmmmmmm

analﬂ?act draws an outline just inside the specified rounded-comer
le, using the current pen pattern, mode, and size. Ovalwidth and
gt specify the diameters of curvature for the comers. The outline is
aswideastnepenwldtna'uastanastnepenneig\t. The pen location is
not changed by this procedure. '

PROCEDURE PaintLRRect (r: LRect; ovalwidth, ovalHeight: INTEGERY

Painti RRect paints the specified rounded-comer rectangle with the current
GrafPort's pen pattem and mode. Ovalwidth and ovaliHeight specify the
diameters of curvature for the comers. The rounded-comer rectangle on the
bitmap is filled with the pnPat, according o the pattern transfer mode
specified by pnMode. The pen location is not changed by this procedure.

PROCEDURE Erasel RRect (r: LRect; ovalwidth, oval-Height: INTEGER)

Erasel RRect paints the specified rounded-comer rectangle with the current
GrafPort's back pattem bkPat (in patCopy mode). Ovalwiith and
ovaiHeight specify the diameters of curvature for the comers. The Graffort's
prPat and pnMode are ignored; the pen location is not changed.

IwrtLRRect inverts the pixsis enclosed by the specified rounded-comer
rectangle: every white pixel becomes black and every black pixel becomes
white. OvalWidth and ovalHeight specify the diameters of curvature for the
comers. The prPat, pniMode, and bikPat are all ignored; the pen location is
not changed.

PROCEDURE FlIILRRect (: LRect; ovalwidth, ovalHeight: INTEGER; WPat
FLUNL RRect fllls the specified rounded-comer rectangle with the given pattemn
(in patCopy mode). Ovalwidth and ovalHeight specify the diameters of
curvature for the comers. The pnPat, pnMode, and bkPat are all ignored; the
penlmtlmismtcta'geu.

3-14



Lisa ToolKit Reference Mareal LOrew

37A5 Graphic Operations on Arcs and Wedges
These procetures perform graphic operations on arcs and weage-shaped
sections of ovals.

PROCEDURE Framel Arc (r: LRect; startAngle, arcAngle: INTEGER)

FramelLAIc draws an arc of the oval that fits inside the specified rectangle,
using the current GrafPort's pen pattem, mode, and size. StartAngie indicates
where the arc begins and is treated mod 360, ArcAngie defines the extent of
the arc. T‘nea‘\glesareglvmlnposmveorregauvedegrees a positive
angle goes clockwise, while a negative e goes counterclockwise. Zero
degrees is at 12 o'clock high, 90° (or -270%) is at 3 o’clock, 180° (or -180°) is
at 6 o'clock, and 270° (or -90°) Is at 9 o'clock. Other angles are messured
relative to the enclosing rectangle: a line from the center of the rectangle
through its top right comer is at 45 degrees, even if the rectangle is not
square; a line through the bottom right comer is at 135 degrees, and SO On .

The arc is as wide as the pen width and as tall as the pen height. It is
drawn with the pnPat, according to the pattem transfer mode specified by
pnMode. The pen location is not changed by this procedure.

PROCEDURE PaintLArc (: LRect; startAngle, arcAngie: INTEGER)Y

PaimtLAIC paints a wedge of the oval just inside the specified rectangle with
the current GrafPort's pen pattern and mode. StartAngie and arcAngie define
the arc of the wedge as in FrameArc. The wedge on the bitmap is filled with
the pnPat, according to the pattemn transfer mode specified by pnMode. The
pen location is not changed by this procedure.

PROCEDURE Erasel AIc (r: LRect; startAngie, arcAngie: INTEGERY:
EraselArc paints a wedge of the oval just inside the specified rectangle with
mmmsmmmmmmmym;
StartAngle and arcAngie define the arc of the wedge as in FrameArc. The
GrafPort's pnPat and pnMode are ignored; the pen location is not changed.
PROCEDURE IwrtL AIc (I: LRect; startAngle, arcAngie: INTEGER)
FwrtLArC inverts the pixels enclosed by a wedge of the oval just inside the
specified rectangle: every white pixel becomes black and every black pixel
becomes white. and arcAngie define the arc of the wedge as in

FrameArc. The GrafPort's pnPat, pniviode, and bkPat are all ignored; the pen
location is not changed.

WM(X‘MW WNTE@,PGL
FIILATIC fills a wedge of the oval just inside the specified rectangle with

the
given pattemn (in patCopy mode). Statmpea'u arcAngie define the arc of
the wedge as In FrameArc. The GrafPort's pnPat, pniMode, and bikPat are all

ignored; the pen location is not changed.

3-15



L1s8 Toolklt Reference Marxisl : Apllcation Bese Classes

Chapter 4

The Apphcatlon Base Classes
4.1 What the ABC's Are - 2-2
42 wnich ABC's Comain what Functions 8-2
B.2.1 TVIBW..eiieereererenenisasessessssssassaasasssssssssasssssassasssssssssassassssssassessasanens 4-2
8.2.2 TWINAOW, TPENEL N0 TPENE ...ccceeeerenressessssasesssssessessasasssassssssesansssss 8-3
B.2.3 TPTOCESS..ccueesesrersesesssssasssrsssassassssssssssnsasessasssssseasassananssssssssasssnssnne 8-3
828 TDOCMEANAGET ceuurteratnassaaessssssssssssrsntssssasssassassssenssssssssssssssssannsssssssss 4-4
B.25 TSEIECHUON ..eeeertereersrssesanssessnessessassasassssssessessassassssssesasssssssassssnssanes 4-5
A-26 Toafm ------ 8900000000000 000800080008000062080300083808¢ sssessssscevsnsasee esssussnnene “"5
A3 Global vVariables a-7
4.4 Global Procedures and Functions....... ' 8-8

4-1



L1sa Toolkit Reference Hanuel | Agplication Bese Classes

The Application Base Classes

41 what the ABC‘s Are
The ?ppucauon Base Classes (ABC s) consist of predefined Clascal class-type
definitions.

The methods defined in UABC perform most of the automatic functions
“necessary for a Lisa application. They control screen display, scrolling,
window size and resizing, menu display, command input, keyboard input, and
mouse handling.

Aside from defining the objects necessary for the standard Lisa functions -
needed by applications, the ABC's structure the way an application is written.
when a ToolKit program Is running, the ToolKit calls certain application
methods. You must write your application so that the correct methods are in
the right places. This chapter contains descriptions of the important ABC's

anaalsoteusywmatywarereaneotoao and what you can do, with
each ABC.

Several of the most important classes in UABC are always subclassed foruse
in application programs. when you create a subclass of one of these classes,
you may add methods that add mpnmtlon-mcmc functions, and you may

add data fields for the program's use.

The following ABC classes are always or, in the case of TCommand, nearly
always subclassed for use in application programs.

* Tview

* TSelection
* TCommand

Each of these ABCs Is fully described In its reference sheet in Part II of this
manual.

4.2 which ABC’s Contaln whet Functions
This section describes the most important functions handled by the ABC's that
every ToolKit application uses.

821 TView i
Class TView is always subclassed at least once for use by your application.
You can have multiple view objects in a single program. The views you create
produce a complete visual representation of the entire set of objects that
make up the vlsiblei dgata of tne‘ program. Eaﬁne view object may n&‘tinotmt
of as producing a picture that is something like a sheet of paper, which often
is larger than the Lisa display, but which has definite boundaries. in some of

4-2



LIsa ToolKit Reference Mervesl Agolication Base Classes

the original Lisa applications, such as LisaDraw, and In all ToolKit

applications, you can scroll to a point where the white background stops, and

g gray background is visible. That border is the border of the picture created
y the view. |

what is visible on the display is normally only a pan (or possibly several
parts) of the view's entire picture. which part of the view's picture is
displayed is determined by the user, through the use of the scroll bars and
the window and panel size control boxes. The application does not need to be
concerned with what Is actually seen on the screen, since the Tooliit handles
the display once the view is defined. The application can, though, ask the
ToolKit what parts of the view's picture are visible on the display, a'n use
that information to speed display processing.

Because Lisa applications are visually oriented, the view often contains the
most important references to the data. In addition, all of the drawing is
always ordered through the view object.

422 Twindow, TPanel, and TPane
when writing an application, you always swclasstw and then defing
the window's BlankStationery method to initialize a new document.

The window object and panel objects control the automatic screen functions.
The porton of the display that they create is essentially the entire border of
the window that you see on the screen. The window object separates off a
section of the display screen surrounding the entire visible portion of an
application, including the title bar and the scroll bars. The window object
creates and controls the title bar and the window size control box.

The panel object creates the scroll bars, as well as the panel size control
box, if there is one. Each panel object has two scroll bars, one on the right
and one on the bottom. The scroll bars can be suppressed, unless the 11s
at the rignt or bottom of a window with a size control box, or has a size
control box itself.

A window can contain a number of panels.

Oifferent panel objects usually display portions of different views. The views
may be different representations of the same set of objects. For example,
LisaGraph has two panels, one that displays a chart of the values and one
that displays a graphical representation of the values. Panels in the same
window may also display views of different objects; the Calculator, when used
with its transaction tape, contains two panels. The calculator panel shows
the calculation going on at that moment; tnemepmetmamomafan
- the calculations performed.

Creating a panel object also creates one pane object.

Each time the user splits a panel, one or more pane objects are added and
one of the scroll bars is divided in two. The panes can each display a



L1sa Toolkit Reference Menual Aqolication Bese Cl8sses

different portion of the view looked on by that panel. The number of panes
in a window is equal to the number of divisions of the window.

‘The pane objects control the visible contents of the panel objects. It is the

423

panes that determine what parts of the view objects are actually displayeq,
although the user may change what can be seen in a pane by using the panel's
scroll bars or the window's size control box. Your application, however, never
deals directly with panes. The current pane is assigned to the global variable
thePad before your application is told to draw. You call routines defined in
UDraw, and the Toolit takes zooming factofs into account, converts your
long integers into simple integers, and calls QuickDraw to draw on the screen.

TPTOCESS
There Is always one and only one Instance of a descendant of TProcess In any
ToolKit appiication.

The methods of TProcess are the methods of an application that do not apply
to any one document. For example, the routines that initialize libraries and
communicate with the Desktop Manager are methods of TPTOCESS.

~ The most important function of the process object is in controlling the maln

824

event loop. ToolKIt programs operate primarily in response to user events,
such as menu commands, mouse clicks, and keyboard entry. Most of the time
in a Toolkit program Is usually spent walting for some event. when an event
is recelved, appropriate methods from UABC, UObject, building blocks, or the
application’s units are called. when the methods complete, the event 1oop
continues, unless the event caused a serious error (usually one that results In
a "technical aifficulties” display), or ended the session.

The process object also handles errors, wamings, and termination. It is the
process object that displays messages from the phrase flle.

Treptmobjectformwpnmmemsuueadstevmmmrelsm

view object, window object, docManager object, or selection object for that
application. In this case, the process is walting for the user to activate a

document. (You may notice that every Lisa application takes longer to start
up the first time it Is used after the Lisa office system is started. This Is
because the process for an application Is created the first time a document
that uses that application is opened after start up. when a document is put
away, every object except the process Is deallocatted. The process for that
mpucatla)\ is kept until the Lisa tums off, waiting for the user to open a

document.

TOocManager ' ~
There is one and only one instance of a descendant. of TDoGManager for every
document icon or window managed by a process. It is created when the user
first opens or displays the document.

The docManager object controls opening and closing the flles used to store
mswwofmmnwalsowmrywedforummt



L1s8 ToolkIt Reference Mol Aplication Bese Classes

Aside from creating a subclass and defining a CREATE method and a
NewWwindow method, you usually do not need to deal with the docManager.

425 Tselection
Many actions or commands In Lisa applications act on some particular object
within the set of objects used by the program. The object (or group of
objects) acted on in such a case is called the selected object.

The selection is the instance of TSelection or instance of a descendant of
TSelection that receives commands and has actess to any selected objects.

There Is always one selection for every panel object. One panel in each
window Is gesignated the selectPanel, which means that it contains the active
selection object. When a command Is given, that command is sent by the
ToolKit to the selection In the active window's selectPanel. Normally, the
descendant of TSelection that you create declares a fleld to reference the
selected object, or a list of the selected objects. Your command routines use
that field to act on the selected object.

Note that a selection is not the same as a selected object. The selection is
“an Instance of TSelection or a descendant of TSelection, at least one of which
always exists for each panel object. Selected objects are objects displayed in
the panel containing the selection. The selection may, however, be null,
meaning that there Is no selected object. TSelection defines a field that
indicates the king of selection. A null selection is designated nothing<ind

If an object s selected, it normally is highlighted In the view. Every
TSelection descendant class should implement a Highiight method to visibly
mark every selected object, and also to remove the mark when the object is
no longer selected. :

Because s0 many menu and key commands involve the selection object,
commands are always handled through the selection. The selection may,
however, delegate responsibility for a command to the window, the view, or to
some other object.

4.2.6 TCommand
when the user selects a command from a menu, or gives an Apple—key
equivalent, the command Is translated into a command number for use by the
ToolKit and the application. Some commands change the contents of the
document, and some just change the display, such as when a ruler is
displayed. when the command changes the document, uniess the user is
asking that a command be undone (that is, to have the effects of the last
command reversed), the command number is used to create an instance of a
descendant of TCommand or, occasionally, an instance of TCommeand itself.
The new command object is then told to Perform the command.

The commeand object is kept until another command is given. If that
command is an undo command, the command object is told to undo itself.
Some commends cannot be undone, in which case the ToolKit gives the user a
message to that effect, but most can be undone.

A-5



L1sa Toolkit Reference Marnisl Agplicatlon Base £18sses

If another undo command Is given, the commend cbject Is told to redo itself.
Tnis can continue indefinitely, with undo and redo altemating.

In order to make undoing @ command easier, commands are often implemented
sO that they do not change any data, but only change the view so that it
appears as if the data has been changed. This Is called applying a //¢erto
the data. After it Is too late to undo the command, a separate step,
performed by the method Commit, actually carries out the operation on the
gata, and makes the effect of the command permanent.

when a command Is implemented so that it uses a fllter, the way the view is
displayed Is changed. The original set of objects that make up the view Is

not altered. when the objects are displayed, however, a w/7aua/ image of the
objects iIs shown In place of the acial | . Figure 4-1 lllustrates this. A
command to recolor all the objects in the view was given by the user. when
the view is displayed, the objects are first filtered so that they appear in the
virtual view with the correct color. The actual view has not been changed.

flor (Dlepteyee in Parnsl)

Carmrnsmne]

Figure 4-1
Filtering

4-6



L1sa raalkjt marw Marual Agplication Base Classes

There is a method of TView called EachvirtualPart. EachvirtuaelPart is one of
a number of methods in the ToolKit that take a procedure as an argument.
These fterating methods apply the input procedure to a whole set of objects,
one at a time. Wwindow. and View.EachvirtualPart do not themselves apply the
input proceadure; they each call other iterating methods, which then apply the
procegure.

Twindow. or TViewEachvirtualPart tests the most recent command object to
see if it has been done. (Remember that command objects can in general be
done or undone. Undoing a command object Temoves its effects.) If the
command has been undone, EachActualPart is called. EachActualPart, which
exists in both TView and Twindow, applies the input proceaure to each object
in the document's data set.

If the command has been done, Twindow. or Tview.EachvirtualPart calls
commandEachvirtualPart for the most recent command object.
command.EachvirtualPart applies the method commandFliterAndDo to each
object. commandFilterandDo alterstheobjectlntmsanewaytnemm
would, calls the procedure that was passed in as an argument to
EachvirtualPart, and then changes the object back to its original state.

For example, if the last command was t0 recolor the object, and the
procedure given as an argument to EachvirualPart is a Draw method,
FliterAndDo first checks if the object was selected. (When commands like
this one are implemented, you must have some way of telling which objects
were selected when the last command object was created.) If the object was
not selecteq, it is simply told to Draw itself. If the object was selected, the
color is changed to what it should be after the command, and then the object
is told to Draw itself. The aobject's color is then changed back.

when a command that is not an undo command is given, the previous
commend object Is told to Commit itself (unless the command was undone and
not redone), which makes the new actual view match the old virtual view. In
the example given above, the object’s color Is changed as the old command
required. In Figure 4-1, the actual view would be changed to match the
virtual view shown. Note that it Is not necessary to invalidate any of the
thspomLmuaueadyreﬂectsmmsmeofm

t

The old command abject is then deallocated. A new command object is
created for the new command.

43 Global Vvariables
UABC defines a number of global variables. These variables hold important
values for the process. The global variables indicate the active window
object (currentwindow), identify the tool and the process, and hold a wide
range of other values. These variables are documented in Chapter 6.

4-7



L1s8 Toolkit Reference Mnal Agplicatlon Bese Cl8sses

AA Giobal Procedures and Functions
UABC defines a number of global procedures and functions. These provide
services and utility functions needed throughout the ToolKit, and by

application programs. The routines that might be used by applications are
documented in Chapter 6.

4-8



LIsa ToolKit Reference Marnsal ToolKit Debugger
Chapter 5
The ToolKit Debugger
S.1 The Debugging Facilites 5-2
52 The Pulidown Debug Menu 5-3
5.2.1 RePOItEVEIYEVENL .....ciiiiiiiinensmnnsesinsnsiiesetssssssssnsessssssssesssscssssnsanses S-4
522 Count HEAPS AfLET COMIMANGS ....cceeeereesraresssesssssssssssstssssssnssassssassnass 5-5
5.2.3 CNECKLISUINAICES ...ccveriiriennnnnissistnitintiiestsessessssssensesssnsassssssssssscsanns S-S5
5.2.8 Dump Process GIODaIS ......ccovevensene teterrsansaesessnisatsitentsetsesaasaasannsensarse 5-6
5.2.5 Dump ACtive DOCUMENT PTEIUGER ........cccemmemeetmrenssesessmasssinsessesssssssensess S5-6
5.2.6 Enable EXperimental FEAtUIBS .. .cccccsiiiesssennescsstnnssesssssasssssssssansssnsseses 5-6
5.2.7 Report Garbage in Document Heap.......ccuoeenes critaastetsessestsassessitatarariate 5-7 -
5.2.8 Free Gartage in Document Heap ........... assrssassnnsss seessesssessanas etsssessenes 5-7.
5.2.9 ECILDIAI00.ccuucaiistiiinenntnnstntssessssssasssasnnrasssssssessssssssasassasanssassassassans S-7
5.2.10 StopEditingDlalog ......ccveeenee aeesentsnsarvaseses sessensesaessanssarasansansinsase 5-7
5.3 The Interactive Debugger S-8
5.3.1 BreaKPOINT ....ivicisississiesssssssssssssssssssssssnssssssssssssnssssssassasssssssassassasss S5-10
5.3.2 ClearBreakpolnts .......cccceecececeectnstssenteeceatsestsntsssssssessssecssssensansanns 5-12
5.3.3 DEDUGSTAUS «eevueeeretiittinstennseressssstessssaserseassassassssssnssassssansasssasssenes 5-12
5.3.8 EnterLisaBug......cccceseennennee Weatsssersersarnatssussnaseisnnsesturtssssnssantasassansen 5-13
5.3.5 Fra'neDmp
5.3.6 B0 .ienirecnntnncantententestantsitassantansssssnstsstessntsnsansansassanssnsansassansansansasse
5.3.7 HEADDUIMD cceureeiissiiinertnnniaanssssssssisssssssssasssssssssesassasssassasssssssssnsanss
5.3.8 INSPECLODJECL .. euuuriiinnitirtrneittensstttsssestnsnsistassssssssssassassassnsssansssssass 5-13
5.3.9 LeVEISTOWALON ....uuiieiiticeteantanssssssssisssnssastssassssssssssssnsssasssnsassassense S-14
5.3.10 MEMOTYDUIMP....iiiiieerstterecssessssssssssssanssssssnesssssssssssssssassassssssaases S-14
53,11 OULPULTO .cuaiiireniesteenansntissesesssssssssassnsassessasssssssssssessssnssssssssnsasses S5-14
5.3.12 PTOMPL...coiueiuiersicinieisnesssssnsassssistostsesasssssssassssssssssssansnassassesasase 5-15
5.3.13 RefSTOODBJECL ....iiiiiiiiininnnntenssiissssssseseastasessssssssssssassnsssnsssensansess 5-15
5.3.18 StacKCTaWL....ccecceeeersacasassnnns ceassinesnenans seastartsansasanttestsstarastssasensia 5-15
S.3.15 Tally & TIME....ccciiiiiieinninmenenniiansenissnassssssssasssenssassassssssssssssssasense 5-15
S$.3.16 WAaLCN ...cceectniccncntntntctractanseessensee sesissserarsresssesusanasasesensestustansunse 5-16

S-1



Lisa Toalkit Reference Marual ToolKit Deougger

The ToolKit Debugger

5.1 The Debugging Facllites
The Lisa Applications ToolKit provides two basic debugging facilities. One Is
a set of pull-down menu options that can be turned on while the program is
running. Those options

* Produce information on the dynamic state of the program.

* Allow you to edit dialog boxes.

* Enable or disable experimental program features.

* Free objects left on the heap that have no remaining references.

In addition, there is a separate interactive debugging menu, displayed on the
altemate screen. The interactive debugger allows you to stop the application
and

* Examine the state of the process, document, objects, and object fields.
* Step through the program at any pace you desire.
* Dynamically trace the action of the program.

* Analyze your program's performance.

The ToolKit interactive debugging menu allows you to also use the basic Lisa
debugging facilites provided by Lisabug. However, although Lisabug has
some functions similar to those provided by the ToolKit interactive debugger,
Lisabug operates on the assembler level, while the interactive debugger
operates on the Clascal level. Lisabug Is not discussed In this chapter. See
trl\e oubugger chapter of the wWorkshop manual for more information on
Lisabug.

The ToolKit debugging facilites work on ToolKit programs that are running on
the desktop. You can also use the interactive menu to debug Clascal
programs running under the workshop. Note that you cannot access the
pull-down menu options from the workshop.

Another point to remember is that when any program has a fatal error on the
Lisa, you drop into L} not Into the ToolKIit interactive debugger. If you
want to find fatal bugs using the ToolKit debugger, you must do so by using
breakpoints or by stepping through the program to determine exactly where
the crash occurs. Lisabug will, however, allow you to find out some
information about the state of the program after the crash.

Some errors that are peculiar to ToolKit programs halt your program and
bring up the ToolKit interactive debugger. In those cases, an explanatory
message is given. You can try to analyze the bug by examining the stack,
the heap, registers, and so on. You can also try to ontinue: progrom
execution, by giving the Go command, although the process or document may
be damaged. It is generally better to halt your program and try to trace the

5-2



Llsa ToolKit Reference Maral Toolkdt Debugger

error with another process and document. You can halt the program by using
the Enter Lisabug command to reach Lisabug, and then giving a Go 0
command. That command causes a bus error. Typeeoinresponsetotnews
error, and the process is terminated.

You can also use the ToolKit debugger to reach Lisabug, if you want access
to the program on the assembler level. The ToolKit gebugger makes certain
that you enter Lisabug while in user code; you cannot debug system code with
either Lisabug or the ToolKKit debugger.

whether you are using Lisabug or either of the-Tooliit debuggers, the results
of your actions show on the aitemate screen. This display, maintained
separately from the desktop, can be reached by holding down the Option key
and pressing the Enter key in the numeric pad on the right side of the
keyboard. To stop a ToolKit program and see the interactive debugging menu,
press any key while the altemate screen is displayed. To retum to the
desktop, press Option/Enter again.

A fully debugged ToolKit program normally is linked with a version of the
T t that has no debugging facilites. In order to use the ToolKit
debuggers, you must link with the debugging version of the Toolkit. The
debugging version siows your application down by 20% to 20%.

Lisabug also is only avallable in development versions of the Lisa system.

52 The Pulldown Debug Mernu
‘The ToolKit pulldown debug menu allows you to check that your application is
running correctly in certain respects. It does not give you any information
about fatal errors, computational errors, or the state of fields and objects. It
does, however, let you enable range checking on list accesses. You can also
ermtemeoksmobjectsintnem to identify objects that have no
references and should be freed. Additionally, ﬂmtions in this menu print out
information about the process as a whole, about the document, and about
events as they Ocour.

In all cases, the information is printed on the altemate screen. You can
display the altemate screen at any time by holding down an Option key and
pressing the Enter key that appears on the numeric keypad on the right side
of the keyboard. Press Option/Enter again to retumn to the main screen.

Here is a list of the commands in the pulldown menu, with a brief
description of each. More detall about each command is glven In the -
subsections that follow. Four commands are flags that are tumed on when
you select them. They remain in effect until you select them again. when
they are in effect they are checked off in the menu. The other commands
print Information on the altemate screen each time the command s chosen.

* Report Every Event prints brief information about every event. It slows
your program slightly. Disable this function by choosing it a second time.

5-3



Lisa ToolKit Reference Margl Toai<it Detugger

* Count Heaps after Commands prints the number of objects In each heap
every time any command Is given. This also invokes the Report
in Document Heap menu command. It slows your program slightly.
Disable this function by choosing it a second time.

mmmala)lesragemmmllstMces. when an error
is found, the application is halted and a message is printed on the
altemate screen. It slows your program slightly. Disable this function by
choosing it a second time.

mumGmnalspnntstnevalueso!veﬂws important global
variables.

* Dump Active Document Prelude prints some information about the
currently active document. .

* Enable Experimental Features enables features of your application that you
‘have defined to be provisional, and do not want to appear in
demonstrations, or in intermediate versions of your application. Disable
this function by choosing it a second time.

°Rmtembaphmmmmsinfom\aummmpctsmm
document heap to which their are no references.

°Freeaamamhmummfreaanobjectsmmemtneqaw
which there are no references.

* Edit Dialog allows you to edit a dialog box, If one is currently displayed.
The changes you make are not saved at this time.

* Stop Editing Dialog stops dialog box editing.
S2.1 Report Every Evert
when this option is checked off, the debugger prints brief information about
every event. Like all information printed by the ToolKit debugger, this
printout appears on the altemate screen

Any keyboard or mouse button use triggers a printout by this function. For
example, when the application user presses the mouse button, that s
considered an event. Releasing the mouse button is another event. Clicking
the mouse button iIs two events: one when the button is pressed, and one when
it is released. Pressing a key Is also an event. Moving the mouse, however,
is not an event. Clf in a different window causes a deactivate event
and an activate event Instead of mouse events. Choosing a menu command is
mevunuuyhm&ltlmolmanusewtmmmrememe

Theeventtypelspdmedwt,almgwlmmetoolm,meprmlo the
“folder” identification (that is, whether the event occured in a clipboard,
dialog box, or window), and, if appropriate, the window title. Additional

5-4



LIsa ToolKIt Reference Marsgl Toakdt Detugger

information is printed for desktop events, including the kind of event, the
password, and the document prefix.

when this option is in effect, it is checked off in the debug menu Todisa)le
trusmumctmsemmulwnasewuﬁm

S22 Count Heaps after Commends
when this option is checked off, the debugger prints the number of objects in
each heap every time any command is given. Like all information printed out
by the ToolKit debugger, this printout a:pears on the altemnate screen.

Note that only commands trigger the printout; simple mouse button presses do
not. Key presses are considered commands. In addition, mouse actions
(such as click and drag) are considered commands. All menu items are
considered commands for the purposes of this function.

This function Is useful for checking that your program Is not leaving
unreferenced objects on the heap. The number of objects on the heap should

not grow unrestrictedly, unless objects are actually added to the program’s
data set. Ywemwemnepmtembajehmanmhwmumwﬂm
out if there actually are unreferenced objects on the heap. :

Msmumisalsoweﬂﬂforgmerallymmmimtofcmmusm'
the heap.
Mmtfﬁsopﬂmlslneffect,ltlscheckedoffmmedemgmTodlsaale
this function, choose the menu item a second time.

523 Check List Indices
when this option is checked off, the debugger performs a range check
whenever a list is accessed. when an error is found, the application is halted
and a message is printed on the altemate screen.

when this option is not checked off, the effect of an out-of-range list access
is unpredictable. Such an access attempt could store data outside the object
and damage other objects or heap structures.

Enabling range checking slows your application somewhat.

when this option Is in effect, it Is checked off in the debug menu. To disable
this function, choose the menu item a second time.

5-5



Lisa ToolKit Reference Manusl ToalKit Debugger

524 Dump Process Globels
when you choose this option, the debugger prints the values of various
important global variables on the altermnate screen. The variables whose
values are printed are:

active¥indowID currentbDocument menuBar
allowAbort current¥indos
boundC1ipboard cursorshape ayTool
boundDocument deferUpdate process
clickstate docList . too1Name

- clipboard . ﬁuppm toolPrefix
() Time toolvolume
closedDocument

The debugger only prints the first eight characters of each name.
These values are only printed once. To print the values again, choose the
option again.
See Chapter 6, Section 6.3.2, UABC Global Variables for more information on
tnesevarlables.

525 Dump Active Document Prelude | |
when you choose this option, the detugger prints some information about the
currently active document. The values and types of the following variables

are printed.
password -- A key number used to identify documents.
version -- The version sequence number of this q:plication
country -~ From the phrase file.

language -- From the phrase file. ,

preludeSize -- The size of the document prelude, in bytes.
docSize -- The size of the document, in bytes.
mmSegments -- The number of data segments in use.
docDirectory -- The docDirectory object for this document.

These values are only printed once. To print the values again, choose the
option again. Only the docSize and numSegments values should change.

52.6 Enable Experimental Features
when this option is checked off, features of your application that you have
defined to be provisional are enabled. The ToolKit toggles the global boolean
variable fExperimenting on the basis of this command. To implement
experimental features, simply surround code dealing with those features with
a test on fExperimenting when you check off this item In the menu, that
variable is TRUE, and your provisional code is executed. Because the debug

5-6



Lisa ToolKit Reference Manual ToalKit Detugger

menus do. not appear in non-gebug versions of ToolKit program, your
emeﬂnmtalcodeoanmverbeemtedlnmn—dewgverslonsofm

program.

when this option is in effect, it is checked off in the debug menu. To disable
this function, choose the menu item a second time.

5.2.7 Report Garbage In Document Heeap
when you choose this option, the debugger prints information about objects In
the document heap to which thelr are no references. The information printed
consists of the object’s handle and class-type. -To determine what command
caused the problem, free the garbage by using the Free Garbage in Document
Heap opton, and try out various application commands. Invoke the Report
Garbage in Document Heap option after each command.

528 Free Garbage in Document Heap
when you choose this option, the debugger frees all objects in the document
heap to which there are no references. The objects freed are the same ones
that would be indicated by Report Garbage in Document Heap.
~ This command only acts once. To free garbage later, choose the option again. -
529 Edit Dialog S
Tnis function is only enabled when one of your application's dialog boxes is
displayed and the current selection is in the dialog box. Wwhen you choose
this command, the dialog box is re-displayed so that each separate piece of
the dialog has a surrounding box and a title bar. You can use the mouse to
gra:an{ofthetluebars,a'umovetnepieceammmwntmmalogmx.

A size lcon for the whole dialog box is also displayed, and you can use that
to grow or shrink the box

You can change any of the text thet appears In the dialog box.

You cannot add elements to the dialog box. All elements must be defined
when you create the dialog box. See the documentation on dialog boxes (not
covered in this manual) for more information.

when you are done editing the dialog box, choose Stop Editing Dialog from
the debug menu. The changes you made to the dialog box are stored with
that document.

S2.10 Stop Editing Dialog ~
This function is only enabled when a dialog box is displayed, and you have

chosen Edit Dialog. It stops dialog box editing. See subsection 5.2.10 Edit
Dialog for more information.

S-7



Llss ToolKit Reference Marxsw/  ToolKit Detugger

The ToolKit interactive debugger allows you to stop your ToolKit program an
access a menu of interactive debug functions. You can use the interactive
debugger to find out

°Whatmetmosammlledwfm
* The values of vanables, objects, and flelds.
* The current sequence of routine calls, back to the main program.

In aadition, you can set breakpoints anywhere in the program or step through
the program at any pace.

You can reach the interactive debugger by keying Option/Enter to display the
altemate screen, and then pressing the space key. (You can actually press
any key, but a key other than the space key is taken as a command.) Your
application is halted, and the interactive debugger menu and prompt are
displayed. Figure 6-1 shows a sample of the debugger menu and prompt.

Ntemtely,ywommsenmmcaninmpmgmwwmmw
program and starts the interactive debugger. You can also call

ABCBreak tums off the debugger flags from the meru, while EntDebugger
does not.

Occasionally, an error in your program may cause the ToolKit to call
ABCBreak. In that case, a message describing the type of error is displayed
on the altemate screen along with the interactive debugger menu and prompt:
ABCBreak automatically switches the display to the alternate screen.

The interactive debugger Is also invoked when a breakpoint is reached. In
that case, the altemate screen is automatically displayed.

Switching to the altermnate screen does not affect the operation of a running
application, unless you purposely stop the program by typing a key. The

P does not recelve any events that occur when the altemate screen is
displayed; the single exception is when the mouse button is depressed when
you switch to the altemate screen. In that case, mouse move and mouse
release events are given to the running application. (If you halt the program
while the mouse button Is pressed, however, further mouse events are ignored.)

The debugger acts on the Clascal method, procedure, and function level. You
can find out information about objects and methods. In particular, assuming
you have used the BP and EP procedure calls to begin and end all your
methods, you can find out what method Is called when.

One t detall of using the BP and EP procedures concems the level
you assign to each of your methods. BP takes a level parameter. when you
trace the action of your program, you can give the watch command (the
“tracing command) a minimum level. Methods below that level are ignored by

5-8



Lisa ToolKit Reference Mol Taokit Dedugger

the trace. - Nothing in the ToolKit enforces level conventions. However, the
following conventions are observed by the ToolKit and the sample programs,
and are recommendec:

* 1,2, and 3 are low level ToolKit routines.

¢ 4,5, and 6 are somewhat higher level Toolit routines.
* 7 and 8 are major ToolKit routines.

* 9, 10, and 11 are bullding block routines.

* 12 and higher are application routines.

You can also set levels In and trace the action of procedures and functions
that are not methods. LJseE’anEPmmmwayywdowlmmm.
Note that, In general, procedures and function In the ToolKit that are not
methods do not call BP and EP, and, therefore, do not show up in traces, and
cannot be traced. However, there is nothing stopping you from using BP

EP in your non-method procedures and functions.

Here is a brief list of the functions in the menu. Theyareowcrloadinmore
detail in the subsections that follow. .

* Breakpoint allows you to set breakpoints on the entrance and exit of a
method, procedure, or function that has BP and EP calls. In addition, you
can set a breakpoint on any reference to an object of some class. Note
that Lisabug has a spearate breakpoint capmnlty that can set a
breakpoint at any instruction in memory.

* ClearBreakpoints removes breakpoints set with the ToolKit debugger.
(Lisabug breakpoints are not affected.)

* DebugStatus prints the current watch level and watch count and also lists
the current ToolKit debugger breakpoints.

* EnterLisabug brings you immediately into Lisabug, making certaln that the
application's code (and not system eoaa) is running.

* Go continues your program's execution

* Prompt tums the interactive menu display on or off. It does not otherwise
affect the operation of the debugger or your program.

* StackCrawl shows the call sequence currently in effect, all the way back
to your main program. It is similar to the SC command 1s Lisabug.

* FrameDump prints out information about one of the stack frames displayed
by StackCrawl.

* InspectObject prints information about any Clascal object currently used
by your program.

* HeapDump shows you the objects in the heaps.

5-9



Lsa ToolKit Reference Manual . Too¥dt Debugger

* Memory ultp dlsplays a portion of memory. This function works like
Lisabug's OM commend. See the debugger chapter of the workshop
manual for more information.

* LeveisTowatch sets the minimum level routine that is printed when you
use the Watch command to trace your program.
* OutputTo directs a copy of the interactive debugger's output to a flle or

to a printer, in addition to the output on the altemate screen. Anyuung
you type on the altemate screen is also printed.

* watch displays the names of routines that contain BP and EP calls as they
begin and end. This command can also be used to step through the
program. ~

In all cases, you can invoke the command by giving the first letter of the
command name in response to the interactive debugger prompt. You can type
the whole command name if you want -- everything after the first letter is
ignored, until a space or a <RETURND is reached. Some commands take
optional command line parameters. lnaumthoseceses,theaewggerwm
prmptwaorawyparmtersltreedsﬂuatywdomtglve.

53.1 Breakpoint
Thiscmmmlwsywtosetommntsmmmmmemofa
method, procedure, or function. In addition, you can set a breakpoint on any
class, or to any method of a given class regardless of the method’s name,

Up to 10 breakpoints can be set in any one process at one time.

Breakpoints are attached to the process, not to the document. Therefore, if

you open a new document that uses the same process as one where you

previously set breakpoints, the breakpoints operate when that document is
rocessed.

P

nglvetr\ememmaubytyplngatleastaammalwmte

screen in response to the interactive debugger prompt. (You can type any
amount of the word breakpoint that you want -- as long as you give the B.)
Then type <(RETURND.

when you invoke this command, the debugger prompts you for two pieces of
information -- a class and a metrm name. You can give both, or either
alone.

You are first prompted with the message
CQlass?

You can supply a class—type (only the first eight characters are significant),
Or you can ignore the message and simply type <RETURND.

You are then prompted with the message
Method?

5-10



Lisa ToolKit Reference Merua! ToolKit Debugger

You can supply a method, procedure, or function name (only the first eignt
d&racters are significant), or you can ignore the message and simply type
<RETURND.

If you glve a period after the class name in response to the first prompt, you
are not asked for a method name.

Depending on the responses you gave to the prompts, there are four
possibilites to what kind of breakpoint is set. '

* If you gave a class-type and no method, procedure, or function name, the
breakpoint occurs on any call to a method defined by that class-type.
Breakpoints are not set on calls to methods defined by an ancestor or
descendant of that class-type, even if the call is made through a
class-reference of the given class-type.

* If you gave a method, procedure, or function name with no class-type, the
breakpolint occurs on the entry and exit to any routine with that name.
The breakpolnt occurs whether or not the routine is a method or a global
or local procedure or function, and regardiess of the level of the routine.

* If you gave a class-type and a method name, the breakpoint occurs only
~on the entry and exit of the given method of the specifies class type,
regardless of the class of the object referenced.

* If you gave neither, no breakpoint 1s set.

If you want, you can give the breakpoint on the command line, separated from
the Breakpoint command by one or more spaces. You Can give the class-type
and method name, in the form

class.Method

or you can give the class-type alone, in which case you are prompted for a
method name. Altermately, you can give the class-type and a period (), in
which case you are not prompted for the method name. You can also give
the method, procedure, or function name alone, but it must be preceded by a
period (), even if the routine is not a method, or the debugger will mistake it
for a class-type.

For a breakpoint to occur, the routine must call the BP and EP procedures.
- Note that the T does not check if a routine with the given name
exists, or if the calls BP and EP.

A breakpoint can be set on a routine that is swapped in or out. (In Lisabug, a
breakpoint can only be set on a routine that is swapped in)

Execution slows significantly when breakpoints are set.
To see what breakpoints are set, use the DebugStatus command.

S-11



Lisa ToolKit Referance Marus/ Toaldt Detugger

532

533

ClearBreakpoinms ‘
This commanda removes breakpoints set with the ToolKkit debugger. Lisabug
breakpoints can not be changed with this command.

You can remove one breakpoint at a time, or you can remove all breakpoints
at once. ,

To remove all breakpoints, type ALL, either on the command line, separated
from the ClearBreakpoints command by at least one space, or in response to
mpmmtumwpearsaﬂernglvemwusmu

To remove a single breakpoint, type the sequence number of the breakpoint,
either on the command line, separated from the ClearBreakpoints command by
at least one space, or In response to the prompt that appears after you give
the ClearBreakpoints command.

The breakpoint sequence numbers appear in the display produced by the
Debugstatus command.

DebugStatus

This command prints the current watch level and watch count and also lists
the current ToolKit debugger breakpoints. See the Level command for an
explanation of watch level; see the watch command for an explanation of
watch count. ' Lo

The breakpoints appear in the following format:

1: class .method
Z class Jmethod

re class  .method
n is the largest number of breakpoints set at any one time In that particular
process, up to a maximum of 10. If a breakpoint is set on a class-type (that
is, without a method name) the method space is blank, although the period (.)
still appears. If a breakpoint is set on a method, procedure, or function name
(that Is, without a class-type) the Class space is blank. Note that the period

always appears, even when the breakpoint is set on a procedure or function
that is not a method.

The sequence numbers that appear on the left are used in the
ClearBreakpoints command. when you delete a breakpoint, the sequence
numbers of the other breakpoints are not changed. The next breakpoint set
uses the lowest open sequence number.

5-12



Lisa ToalKft Reference Manugl Toaddt Detugger

534

535

536

S3.7

S3.8

EnterLisabug
when {ou give this command, the ToolKit debugger brings you immediately
into Lisabug. You can then use Lisabug in the normal way.

To get back to the ToolKit debugger, type G in Lisabug. Your program does
not start running. The interactive debugger menu is immediately displayed.

There are a few speclal features of Lisabug when used with ToolKit
#ucagons See the Lisabug documentation In the workshop manual for more
omation,

F

This command prints out infomation about one of the stack frames. It
prompts for a number. Give it the number appearing after the # sign in the
StackCraw! output.

The information given Includes the section of memory containing SELF, and a
range of memory containing local variables, and a range of memory containing
the parameters for the call

This command continues your program’s execution from where it entered the
debugger. The normal office system screen is automatically displayed.

HeapDump ;

This command shows you the contents of the process, document, and clipboard
heaps.

If you type H alone to invoke this command, you are prompted for several
options. Altemately, you can type H c/assype <(RETURND. In that case, only
objects on the document heap of the specified class and its descendant
classes are shown, and nNO prompts appear.

InspectObject
This command prints detailed information about any Clascal object that
currently exists on your document or process heaps. Give the hexadecimal
value for the object's handle, with or without the preceding $. Here is a
sample of output from this command.

TSAIVIEY [ extentiR: Mect = [(0.0),(631.555)] : view: TView = TSWIEW — $00DAOSEC

: panel: TPanel = TPANEL — $OODAOSD4 : clickiPt: LPeint = (212,118) ; printfian:
TPrintila = TSTOPRIN — $00DA0GS0 : Mhes: INTEGER = 98 : vies: INTECER = 60 :

winExten: Lhect = [(0,0),(50,50)] : isPrinta: BOOLEAN = TRE ; isfiainVi: BOOLEM =

TRUE ; bedist: TList = TLINKLIS — $000A069S )
Note that the exact format of the flelds display depends on how you
implement the Flelds method for this class. If you do not implement a Flelds

method for a subclass that you define, you will not be able to see the
contents of any fleld that your subclass added.

5-13



Lisa Toolit Reference Menusl | Toaiit Detugger

539 LevelsTowatch
msmnandsetsmenunlnunlevelrwummtlspﬂmeamenywme
the watch command to trace your program. The level refers to the number
glven in the BP procedure call at the beginning of every method, procegure,
and function that you wish to show up in the trace, or on which you wish to
set breakpoints.

when you execute this command, the debugger prompts you for a level
number. The number you give is the lowest level routine that appears in the
watch trace.

The can be set to any whole number from 1 to 9999, It Is 1 by default. Use
the DebugStatus command to find the currently set watch level.

53.10
This command works the same as the DM command in Lisabug. See the
workshop documentation for more information.

5311 OutputTo
This command Is used to direct a copy of the interactive debugger's output to
a file or to a printer, in addition to the cutput on the altermate screen. -

when you invoke this command, you are asked where you want to direct
output to. Give the destination by identifying the device and, if appropriate,
giving a file name. leethedevlceadﬂlermuespmeededbyadast\,)m
as you do in the Workshop.

For example, If you want to direct output to the printer, type -printer. If you
want to send output to a flle on a diskette in the upper drive, type
-upper-filename. If you direct output to an existing flle, you destroy the
current contents of the flle. If the file does not exist, the debugger creates
the flle. If you want to examine the file in the Workshop editor, It must have
8 name ending in .TEXT.

The debugger output always shows on the alternate screen; OutputTo merely
directs a duplicate to the given destination.

Output can only go to the console and one additional destination. Naming a
third destination closes the path to the second destination.

You should always cancel the new output direction before going on to do
something else. Otherwise, all other messages that go to the altemate screen
are sent to the named destination, untll you tum off the Lisa Other
altemate screen messages include the environments window display and the
Workshop command line. In addition, if you directed output to the printer, the
printer is not available for any other use.

Cancel the additional output direction by giving the QutputTo command 8
second time. You can type -Console, or simply type <(RETURN)>, as -Console
Is the default. Turning off the Lisa always cancels the output redirection,
and closes any open flles.

S-14



L/ss ToolKit Reference Maral ‘ ToolKit Devugger

5312
This command determines whether or not the interactive debugger menu is
displayed. It takes a Yes or No (Y or N) as a parameter. If you indicate Yes
(eimarmtneoorrmmanne sepamteufrornmPrmpteormbyatleest
one space, ortnre;fmse rompt that appears if you do not specify Y
or N) the menu is displayed. lfwamteNo the debugger prompt (-->) is
displayed without showing the menu.

The Prompt command does not otherwise affect the operation of the debugger
Or your program.

53.13 RefsToObject
The RefsToObject command displays the names of objects that refer to a
given object. RefsToObject prompts you for an object handle. It then
searches the document heap for all occurances of that handile.

53.14 StackCrawl
This command displayes the current calling sequence in terms of stack
frammes. Here is a sample of a stack crawl.

Fram?® 13 TPROCESS . CHANCECY+ :
Fram# 213 A010 TPROCESS . TRACKIUR :
Frame # 32 ¢ TVDBOY .IDLECONT+ 2
Fram # 423 TSELECTI . IBLECONT :
Fram # S 23 TPROCESS . GREYEVEN. :
Fram # 63 A078  TPROCESS .M . :
Frame # 7 2 SO0F7FAR2 RSAWLE * $01FE

53.15 Tally & Time
The Tally & Time command allows you to measure the performance of your

program.

when you first invoke the command, you are asked if you want to continue
execution and measure performance. If you answer no, the command is
cancelled. If you answer yes, your application begins running, and the ToolKit
records information on the methods and segments used. Every entry into a
rwuneumbeglmvdmaerllisrecomed,autheummmme
following EP is recorded.

when you next enter the debugger (In any manner except through ABCBreak),
you are asked if you want to see performace measurements. If you respond
no, you are asked if you want to zero the tallies and times. If you answer
yes, all tally and time records are removed, and you are ready to start with a
clean slate. If you answer no, eny further performance measurments are
added to the measurements up to that point.

Finally, you are asked if you want to continue performance measurement.
Once again, if you answer yes,ywrpmgramstartslmnedlately. The only
way to see the debugger menu s to answer no. In that case the menu is
displayed. Note that in order to continue measuring performance, you must

restart your program through the Tally & Time command.

S-15



Lisa TaolKit Reference Marval - Toolkdt Detugger

To see the performance data, answer yes when you are asked if you want to

- see performance measurements. when you have such measurements recorded
(that Is, as long as you ran your program through the Tally & Time command
and did not zero the tallies and times) you are asked If you want to see the
results whenever you invoke the Tally & Time command, or when you invoke
the debugger having run the program through Tally & Time.

when you ask to see the performance measurements, you are given some

ral information, and then a chart of segment usage. You are then asked
f you want to see the procedure statistics. Note that these statistics
actually show all routines containing BP and EP calls, whether they are
procedures or functions. Next, you are asked if you want to see a list of
procedures that were and those that weren‘t called in a particular segment.
The “procedures that weren‘t called” once incluge functions, and
actually show all rotuines that do not contaln BP and EP calls, in addition to
routines that were not called.

You can stop any listing at any time by hitting a key on the keyboard. In
that case, the previous question is repeated.

To skip a question and go to the next one, type a <RETURND,
5316 watch =~ Lo .
The watch command displays the names of routines that begin with BP, end

with EP, and have level numbers greater than or equal to the current watch

level as they begin and end. This command can also be used to step through
the program. ‘

5-16



Lilss TaolKIt Reference Manus/ : Rererence Infarmestion

: Chapter 6
Reference Information for ToolKit

Classes

6.1 About This Chapter 6-2
6.2 Data Types 6-2
6.2.1 UODJECE DAL TYPES .vvecerererscesenssestsmsestssssesessssasasssessssstssssessessassssssns 6-2
6.2.2 UABC DA TYPES vrrvrraceceessssesssesssssssesssssssssssasssssasssssesssasssssessasssesas 6-4
63 Global Varibies....... 6-5
6.3.1 UODJECt GIODAI VAITADIES ......eeeveeeceseeereesescsesasssssassssssesestssosassasarsssss 6-5
6.3.2 UABC GIODAI VAIIADIES ....eveeeeeresrnesiassesnsssssessasssssesssensasssssssosssnssas 6-6 -
64 Global Procedures and FURCtions .......... S 6-10-
6.8.1 UObJECt GI0bAl PTOCEOUTES AN FUNCHIONS «...vcececrsesessscanssasssassesesans 6-10
6.8.2 UABC Global PTOCEAUTES AN FUNCTIONS ...eeeeeereseseseasssssssssssssssssssssnss 6-14

6-1



LIsa ToolKit Reference Mearval | . Reference Infarmation

Reference Information for ToolKit
Classes

6.1 About this Chapter
The ToolKit uses a number of predefined data types and global variables,
procedures, and functions. Those that are of interest or use to programmers
using the ToolKit are documented in this chapter.

The ToolKit uses a number of llbraries that are not avallable to the general
programming public. A few of the items In this chapter depend on definitions
in these secret libraries. In addition, a few of the items depend on
definitions in SYSCALL, the unit that defines the operating system used on
the Lisa. You should never need to deal directly with either the secret
libraries or SYSCALL. SYSCALL is documented in the (perating System
Rererence Marwal ror the LIsa

62 Data Types . .
The ToolKit contains a large number of type definitions. The definitions of
class types are described in the class reference sheets in Part II of this
manual. This section describes data types used in those class definitions.
Refer to these pages when you encounter a data type that is not a class.
The types defined in UABC begin with the letter T.

621 UODbject Data Types
The data types In this subsection are defined in UObject.

The following five types are alfases for commonly used types.

Ptr = "LONGINT:

ProcPtr - Pir;

Handle = Ptr;

S8 - STRING[8}L

S§255 = STRING{255)

The following data types are used in many places throughout the ToolKit.

TFllePath - S255; This corresponds to Pathname in SYSCALL.

TFliePart - STRING(32} Tnis defines the length of each level in a
pathname; corresponds to e_name in SYSCALL.

TPassword - TFliePart;

THeap = PUI; A pointer to a heap. Given 10 NewObject when
| defining a new object.
TClass = Ptr; A pointer for a class. THISCLASS, given 2

parameter to NewObject when defining a new
object, has a value of this type.

Byte = -128..127; A signed, eight-bit value.

6-2



Liss TaaIKi_t Rererence Marwg! Rererence Information

TPString = “SZ55;

TPINTEGER = “INTEGER;

TPLONGINT = “LONGINT; ,
TAuthorName = STRING(32} An argument of UnitAuthor and ClassAuthor.
TClassName « STRING(8} A string for holding a class name.
TCollecHeader = RECORD An allas for TCollection™ ", which can be used

for faster access to collections.

ClassPtr: TClass;

size: LONGINT; The number of real elements, not counting
the hole.

dynStart: INTEGER; The number of bytes from the classPtr to
the dynamic data; MAXINT if none are
- allowed.

holeStart: INTEGER; 0 = at the beginning, size = at the end;
MAXINT = none allowed.

holeSize: INTEGER; Measured in MemberBytes units.

holeSt INTEGER; If the holeSize goes to 0, this is how much
to grow the collection by.

END;
TFastString = RECORD An alias for a TString™ ~, which can be used for
faster access to strings.
header: TCollecHeader:
B . ot PACKED ARRAY[1.32740] OF CHAR;

TPFAstString = ~TFaststring;
THFastString - ~ TPFastString;

TArrayHeader = RECORD An allas for TAmmay~ ~, which can be used for
faster access to arrays.
classPtr: TClass;
size: LONGINT; The number of real elements, not counting

END;

the hole.

dyrStart: INTEGER; The number of bytes from the classPtr to
the dynamic data; MAXINT if none are
allowed.

holeStart: INTEGER; 0 = at the beginning, size = at the end;
MAXINT = none allowed.

~ holeSize: INTEGER: Measured in MemberBytes units.

holeSt: INTEGER; This is how much to grow the collection by
if the holeSize goes to 0.
recordBytes: INTEGER;

TScanDirection = (scanForward, scanBackward)

6-3



Llsa TaolKIt Reference Marual Refezm Informetion

622 UABC Data Types
The following data types are defined in UABC.

TDIResponse = (diAccept, diDismissDialogBox, diGiveToMainwindow, diRefuse);
Defines the response given when the user clicks in the main window or in the
menu bar, or types when a dialog box is displayed.

TEnumADllitles = (aBar, aScroll, aSplity

TAbllitles = SET OF TEnumAbllities; Defines whether or not there is a scroll
barontnestaeofapaelmifmereis,memer or mtt.nereareicons for
scrolling and splitting.

TunitsFromEdge = (pixelsFromEdge, percenmtFromEdge) Used to define
parameters for some TPanel methods.

TAlertArg = 1.5; Used to define parameters for some TProcess methods.
TAlertCounter = 6.9; Used to define parameters for some TPTOCEss methods.
TAlignment = (aleft, aRight, aCenter, alustify)

TPageAlignment = (aTopLeft, aTopCenter, aTopRIigh, aBottomieft,
aBottomCenter, aBottomRight);

TClickState = Defines a record that contains information about the
most recent mouse click.
RECORD :

where: Polnt., The window-relative point where the poinner was
located.
where LONGINT; The time in hundredths of a second from last
boot when the mouse button was last clicked.
clickCount: INTEGER; The number of times the mouse button
waspresseﬂntheperlodsetbytne
user through preferences.
fshift, fOption, fApple: BOOLEAN; whether these buttons were
held down while the mouse
button was clicked.
END; ‘

TCmaNumber = INTEGER; Defines a command number.

W—(mummhmﬂmmwmm
ven to command.Perform.

TCursorNumber = INTEGER:

TEnumicons = (ISkewer, iScroliBack, WFlipBack, iGrayA, 1Thumb, 1GrayB,
IFlipFwd, iScrollFwd); Used internally to define scroll bar icons.

TMousePhase = (mPress, mMove, mRelease); Used intemally for mouse

6-4



LIsa ToolKit Reference Mara/ Reference Infarmation

TRevelation = (revealNone, revealSome, revealAll} Defines how much of the
selected objects should be scrolled into the view If the user tries to operate

on them.
TPIReserve = ARRAY [0.127] OF Byte; Defines an array of printer
information.
TPrelude - Defines a prelude stored at the beginning of every
gocument’s heap.
RECORD .
passworc: INTEGER; Presently unused.
versione INTEGER; Presently always 1.
COuMtry: INTEGER; From phrase flle.
language: INTECER; From phrase flle.
preludesize: INTEGER; Contains SIZEOF (TPrelude).
unusec: ARRAY [0.5] OF Byte;
printPref: 128} TPIReserve; Format for printer information
docSize: LONGINT; Number of bytes in document. -
numsSegments: INTEGER; Number of 128K flles in document. -
docDirectory: TOocDirectory; Root object in document
heap. ,
END;

TPPrelude = ~TPrelude;
TSBoXID = LONGINT; An allas for a secret library type.
TwindowlD = LONGINT; An alias for a secret library type.

63 Global Variables
The ToolKit defines a number of giobal variables. Unlike variables which
exist as flelds of classes, these variables can be accessed from any part of an
application that USES the ToolKit.

If an R appears before the variable name in the following lists, you might
sensibly want your to application read the value of the variable. If a W
appears before the variable name, you can alter the value of the variable.

63.1 UObject Global Variables
The following variables are defined in UObject.

R amDying BOOLEAN; If TRUE, this process is terminating.
fCheckindices: BOOLEAN; If TRUE, list indices are checked.

6-5



Lisa TmIKIt Reference Marnal Rerference infarmnetion

Rw fDeuxﬁewrslon: BOOLEAN; TRUE if you want want to inhibit tracing; you
must save and restore its value; normally this
Is needed only If you override the Debug
method. If you do that, save the old value of
this variable In your Debug method. Then set
the value to TRUE to Inhibit tracing. Finally,

before you method completes, restore the old
value.

R isinitialized: BOOLEAN; If TRUE, the application is initialized, and it
cannot tell the desktop manager that initFalled
any more.

W keyPresLimit: INTEGER: How often to call KeyPress from the debugger
to check for user interrupt.

mainDsRefrume INTEGER; The flle system reference number (refnum) of
. the process data segment.

R mainHeap: THeep; The heap of the process.

main_dsre INTEGER; 4 Tnelosnoftneprooessaatawgrent.

R onDesktop: BOOLEAN; If TRUE, the application Is installed in the

desktop. Nearly always true {f UABC Is used,
because programs using UABC usually run on
the desktop.

wmisinitialized: BOOLEAN; lfTRLE,mewinuwm:agerlsopen

632 UABC Global Variables
The following global varlables are defined in UPBC for use by the ToolKit.
They are set in TProcess.Commence, and can be considered fields of the
process. In particular, changes to these variables affect all documents using
that process.
You can examine the values of any of these variables, but only the variables
whose name is preceded by an R are expected to be meaningful to you.

You should not change the value of any of them, except for a few that are
preceded by a W.

activewindowiD: TwindowiD; The window manager ID of this process's active
document window, or D (zero), if there is no
active document.

allowAbort: BOOLEAN; If TRUE, aborts of the process are allowed. If
FALSE, process.Abort requests always retum
FALSE.

R amPrinting: BOOLEAN; TRUE if this process is presently printing
’ rather than drawing.

6-6



LIsa ToolKit Reference Marng/

wtonead’a_t PenState;
blinkOffCentiSecs: LONGINT;

blinkOnCentiSecs: LONGINT:

cancelString: STRING[20}
~ R clickstate: TClickState;

R clipboare: TClipboard;

R currentwindow: Twindow;

ommrsrme:’Tmmnw,

Reference Information

The pen state to use to draw automatic page
breaks.

The time in hundredths of a second that the
insertion point is off.

The time in hundredths of a second that the
insertion point is on.

The clipbodrg whose data segment is bound, or
NiL, if no clipboard is presently bound.

The document whose data segment Is bound, or
NAL. Usually the active document, if there Is

one, although applications can temporally bind

inactive documents.

The word “Cancel” for use in buttons, given in
the current language.

The place where the mouse was last cllokea
the number of times it was clicked, and o
whether the shift key was pressed, the option
key was pressed, and the Apple key was
pressed.

The clipboard document manager.
The print-preference for the clipboard.

If TRUE, closedDocument was just suspended,
and not saved.

If not NIL, this document was Just closed.

The type style used for page numbers in page
preview mode.

The actlve document If the process is running
in foreground. If the process Is running In
background, this contains the docManager that
is managing the background document.
Otherwise contains NI

The window for the current document

(currentDocument.window), or NIL, if there is no
current document or there is no window

because the process Is running in the
background.

The current cursor shape, as recorded by
TProcess.ChangeCursor.



Liss ToolKit Reference Manual

W(bfenmate:mﬁm.

. Reference lnfornmation

If TRUE, display update is deferred while the
user is typing until some non-typing event
OCCuTS.

docList: TList {OF TDocManager]; The open docManagers using this process.

R eventTime: LONGINT;

R eventType: INTEGER;

R fExperimenting: BOOLEAN;

fCountHeap: BOOLEAN;

R genClipPlc: BOOLEAN;

The time of the most recent event, in
hundredths of a second from system boot.

The type number of the most recent event.

The avallable types are:

nil event

mouse button down
mouse button up
key down

folder activate
folder deactivate
folder update
folder moved
desktop manager event
abort event

died event

private

12 = private

13 = private

If TRUE, enable experimental functions. This
value is changed by choosing ENABLE
EXPERIMENTAL FUNCTIONS from the debug
menu. You implement experimental functions
by testing this value to see if the experimental
sections should be executed.

If TRUE and IFC , count objects
once per command. This value is changed by
choosing Check and Count Heaps after
Commands from the debug menu.

If TRUE, this process is now drawing the
Universal Graph component of the clipboard.

HOONOOUNMEWNEHO

0

[y
[N
[}

R highievel: ARRAY [BOOLEAN] OF THighTransit;

If TRUE, the value Is the nlgmgmng transition
from not active to active (hOFffToOn); if FALSE,
the value is the highlighting transition from
active to not active (hOnToDIm).



LIsa TavlKit Reference Manea!

Rererence Infarmation

R mgwoggle ARRAY [BOOLEAN] OF THighTransit;

R idieTime: LONGINT;

RW inBackground: BOOLEAN;
limboPerc PenState:
manualBreakPerc PenState;
marginPattem: LPattem;

R menuBar: TMenuBar:
myProcessiD: LONGINT;
myTool: LONGINT;
normalPen: PenState;
okstring STRING(20}

phraseFlle: TFlleScanner;
R process: TProcess;

R screenRIgMEdge: INTEGER;
scroliRg: RgnHandle;
R stdMargins: LRect;

If TRUE, the value s the highlighting umsmon
from not selected to selected NOFToON). 1

* FALSE, the value Is the highlighting trarition

from selected to not selected TOOff).

The time since the application finished
prooesslngtnelastwerm in hundredths of
a second.

TRUE if the process is allowed to run In the
background. The program must set this value.

The pen state used to fill limbo area in
paginated view.

The pen state used to draw manual page
breaks.

meweowﬂnmgimm
The menuBar object for this document.

The OS process ID for this process object.
The tool number of this application.

The pen state resulting from PenNormal.
The word for “OK" for use in buttons, in the
current language.

The fllescanner for the main phrase file.

The process object presently being used by this
application.

“The horizontal size of the screen in plxels.

720 for Lisa 1.0 and 2.0 screen.

The region that needs to be refreshed because
of a scroll.

The standard page margin size, in pixels. One
inch on each side.

suspemmfﬂx: ARRAY [L.maxSegments] OF

theBodyPact TBodyPad;
theMarginPac: TMarginPad;

STRING(3}
A suffix string ($S1, $S2, ..) for each data
segment used by the document.

The bodyPad used for printing and paginated
views.

wmmmusedforpﬂnﬁngmpaglmteu
ews.

6-9



Lise ToolKit Reference Manual Reference Information

toolName: STRING(67L The name of this application as specified by
. the InstallTool program.
R toolPrefDx TFilePath; The Desktop Manager and OS flle prefix used
for this application. Has the form {Tnnnj.
R toolvolume: TFllePath; The name of the volume on which this

application resides. Has the form -volume-.

wordDelimiters: STRING(67} The delimiters of a word in the current
: language. These delimiters are defined in the
phrase flle, as are all language-specific values,
and Indicate what character sequences define
the beginning and end of a word.

6.8 Qlobal Procedures and Functions
The ToolKit defines a number of procedures and functions that are not
methods of any class, and can be called from any unit that USES the ToolKit.

6.4.1 UObject Global Procedures and Functions
The following are the global procedures and functions that can be used in
application programs and are defined in UObject.

PROCEDURE IntToStr (int: INTEGER; str: TPstring):

PROCEDURE LIntToStr (int: LONGINT; str: TPstring);
These functions retumn a string containing the integer int. IntToStr
takes an Integer operand; LINntToStr takes a long integer operand.

PROCEDURE SplitFilePath (fullPath, itsCatalog, itsFilePart: TFilePath)
Glven fullPath retums itsCatalog and itsFllePart. Levels in the
Lisa's tree-structures flle system are separated by dashes. This
pmesearmoackwmmwmofum Everything
after the last dash in AdlPath is placed in ItsFllePart. The rest of
the string iIs placed in itsCatalog.

FUNCTION MIn(l, } LONGINTY LONGINT;
Retums the smaller of the two numbers.

FUNCTION Max(l, } LONGINTY LONGINT;
Retumns the larger of the two numbers.

PROCEDURE Xferleft(source, dest: Ptr; nBytess INTEGER):
Moves bytes from memory from source to dest, starting with the
leftmost byte.

PROCEDURE XferRight(source, dest: Ptr; nBytess INTEGER);
Moves bytes from memory from source to dest, starting with the
rightmost byte.

FUNCTION EqualBytes(source, dest: Ptr; nBytes: INTEGERY BOOLEAN;
Retums TRUE if all the bytes in source and destination have the
same value.

6-10



LIsa ToolKit Reference Maa/ Reference Infanmnation

Fu~(mm LIntAndLInt(l, } LONGINTY LONGINT;
- Retumns the logical AND of the two numbers.

FUNCTION LIMOrLint{l, § LONGINTY LONGINT;
ReumstnelogicaIORofmetwommers

FUNCTION LBWL!M(L $ LONGINTY LONGINT;
Retumns the logical exclusive OR of the two numbers.

FUNCTION NewObject(heap: THeap; itsClasst TOlassy TObject;
f:reatesar\ewoojectoftypeltsc}ass,ofaslzedeﬁnedby
tsClass.

FUNCTION Wﬂ%ﬂm itsClass: TClass; dynBytes: INTEGER)

Creates a new dynamic object of type TClass, of a size defined by
ftsClass plus dynBytes. This is used to create dynamically
allocated objects, such as arrays.

PROCEDURE ResizeDynObject(object: TObject; newTotalBytes: INTEGER) -
. Changes the size of a given dynamic object to the new size.
newTotalBytes must include the class size plus the size of the
dynamic part.

FUNCTION myclmm Tl-Bq: ltsClass: TClass; VAR chalnHeatt:

Ctmkstneglvenmwseelftnerearemywjectsmne
recycled. If there are, this procedure reuses the object, so that
new space does not have to be allocated. If there are no objects
to be recycled, NewObject is called to get a new object. This is
used when many objects of a particular type are created and freed
quickly. chainHead must be of the same type as itsClass, and must
also be on the same heap.

mommmwgrc«mmmmvmmmmnm

Adds the given object to the group stored by chainHead. This

procedure is called in place of Free when you are creating and
freeing objects of a particular type quickly. In that case, use this
procedure in place of Free, and NewOrRecycledObject in place of
NewObject. chainHead must be of the same class as the recycled
objects, and must also be on the same heap.

PROCEDURE Free (object: TObject)
Deallocates the heap space used by the given object. All
references to the object become invalid. If the object is NiL
(indicating it has alreading been freed), this procedure does nothing.

FUNCTION Superclass{class: TClass} TClass;
Retums the class pointer for the superclass of the given class, or
NIL.

6-11



Lise ToalKit Reference Moruel Reference Infarmetion

FUNCTION ClassDescendsF rom(descendant, ancestor: TClassy BOOLEAN;
- Retumns TRUE if ancestor is an ancestor class for descendant.

PROCEDURE NameOfClass(class: TClass; VAR className: TClassName);
Gets the classname of the class using the given class pointer.

FUNCTION SizeOfClass(class: TClassy INTEGER;
Retumns the size, in bytes, of an object of type class.

The next 3 procedures can only be called fram -a-class-init block or a subroutine
of a class—-init block.

PROCEDURE UnitAuthor(companyAndAuthor: TAuthorName):
, Registers the company and author name for all classes defined in a
unit. This procedure must be called once in every unit.

PROCEDURE ClassAuthor(companyAndAuthor: TAuthorName; classAlias:
TClassName);
Overrides a registered company and author name, for use when you
declareia methodless dumnmy of someone else's class for version
conversion.

PROCEDURE Cl&svemaﬂtswmm oldestitCanReact: Bytel
Used in releases past first release of your application. This
procedure is aoded to every class that requires data conversion.

PROCEDURE ABCBreai(s: S255; errCode: LONGINTY;
Stops the application. If the application was linked with the
debugging version of the ToolKit, the debugger is invoked.
Otherwise, a technical difficulties dialog box is displayed or, if
called early in the application, the system may hang. This
procedure should generally be surrounded with IFC compiler
directives, so that non—debug versions of your program do not
contain breaks. You can use ABCBreak calls in non-debug versions
of your program. In that case, the program halts.

PROCEDURE LintToHex(decNumber: LONGINT; hextNumber: TPString:
Converts a LONGINT to a8 hexadecimal number.

PROCEDURE EntDebugger(inputstr, enterReasore S255%
Irvokes the ToolKit interactive debugger. The emterReason string is
displayed. inputStr is ignored.
PROCEDURE DumpVar(pvariable: Ptr; nameANdType: S255%
writes the value of a varlable on the altemate screen.
PROCEDL.RE WIStr(str: S255)
Like the required Pascal function WRITE, but performs word wrap
when necessary. (waming: This routine may have bugs.)

6-12



LIsg ToolKIt Reference Mo/ Rererence Informetion

PROCEDURE wiLny
" Like the required Pascal function WRITELN, but performs word
wrap when necessary. Every time this is called, the next line is
indented by the number of characters indicated by outputindent, an
INTEGER global variable of UObject.

PROCEDURE \\{rmlobjact: TObject; irv.ml.naw:lss: l;ﬂE(IR, member TypeStr: S255%
Like object.Debug, but it forma mngmeummmemglonal
variable to define the left mardgin.

FUNCTION NewHeap(VAR error: INTEGER; heepStart, numBytes: LONGINT;
numObjects: INTEGER} THeap;
Creates a new heap. The ToolKit calls this for you. You should
never call this function,

FUNCTION WWARW mmﬂmmm
thenTryVolume: TFilePathidsn, memBytes,
diskBytes: INTEGER) LONGINT;
Creates a new data segment. The ToolKit calls this for you. -
. ‘You should never call this function.

PROCEDURE SetHeap(hesp:

PROCEDURE GetHeap(VAR heap: THeap)
Thesemmmmmtremuwdbymd(mawfortegim
You can use these to but QuickDraw regions on other heaps.

PROCEDURE MarkHeap(heap: THeap; mpAddress: LONGINTY
PROCEDURE SweepHeap(heap: THeap; report: BOOLEANY
These routines implement garbage collection. They are called by

the functions in the debug menu that deal with garbage collection
If report is TRUE, the garbage is reported and not freed. If report
is FALSE, the is freed and not reported. You should never
call these rectly; they are called when you choose
commands from the debug men..

PROCEDURE BP(My Tracel_evelinteger):
Marks the beginning of a method or other routine for debugging
purposes. You should begin all your methods with a call to this
procedure, since the Tooliit debugger will otherwise ignor your
methods. Also, see PROCEDURE EP.

PROCEDURE EP; {Trace emtry from method and write SELF (unless CREATE,
Debug, FreeObject, or Free}
Marks the end of a method or other routine for debugging purposes.
See PROCEDURE BP.

PROCEDURE HexsStrToLint(hexstring: TPString: VAR decNumber: LONGINT; VAR
' result: TConviResult);
Converts a hexadecimal string to a long Integer. result tells
something about the result and can be: cvvalld, cviNoNumber (null
input), cvBadNumber (invalld character in input), or cvOverfiow.

6-13



Lise ToolKit Reference Mol , Rereyence Informetion

PROCEDURE SurToLInt{str: TPString; VAR decNumber: LONGINT; VAR result:
. TCowResul ‘

147
Converts a string to a long integer. resuit tells something about
the result and can be: cvvalid, cvNoNumber, cvBadNumber, or

PROCEDURE StrToImt(str: TPString: VAR dechumber: INTEGER; VAR result:
TCorvResul

Converts a string to an integer:’ result tells something about the
result and can be: cvvalid, cviNoNumber, cvBadNumber, or
cvOverflow.

Removes leading and tratling blanks from str.

FUNCTION CharUpperCasedich CHAR)Y CHAR;
Converts the character 1o its corresponding uppercase character.

PROCEDURE StrUpperCased(str: TPString:
Converts the characters in the string to their corresponding
- Jppercase characters.

PROCEDURE LatestErrorn(newError: INTEGER; VAR previousError: INTEGER)Y
This is used to handle error codes returned by multiple
operations, so that you end up with the first error number or
warning number (error code < 0) if there was no error.

You should pass in the latest error as newError and the
variable that is to be the final error code as previousError.
Here is the actual code of LatestError:

IF ((nevError > 0) AND (previousError <= 0) OR
(nevError < 0) AND (previousError = 0)) THEN
previousError := NewEIrTor;

6.4.2 UABC Global Procedures and Functions
The folliowing are the global procedures and ﬂ.muons that can be used in
- application programs and are defined in UABC.

FUNCTION ToolOfFlle (wholeName: S255% LONGINT;
Glven the name of the tool, this returns the tool number. when
given a string of the form {Txoodob), returmns xoc

FUNCTION ToolOfProcess (processict LONGINTY LONGINT;
Given an OS process ID, tnisrewrmmetoolmmberwingmat
process.

The following routines are used to insert comments into the Universal Graph of
the clipboard, so LisaDraw can understand it.

6-18



Lisa TaolKit Reference Marua! Reference Information

PROCEDURE PicTextBegin (alignment: TAlignment)

PROCEDURE PicTextEnd;
These two routines surround a sequence of text drawing calls that
should be considered one field in LisaDraw.

PROCEDURE PicGrpBegin;
PROCEDURE PicGrpEnd;
~ ﬂwsetwm:timssurm:ﬂaseq.emeofdrawlrgcallstratWG
begrm.peainusd:traw

6-15



L/sa Tool<dt Reference Manusl! Part Il Class Reference Sheets

Part I
Class Reference Sheets

1 About the Reference Sheets
This part contains reference sheets for the classes in UABC, UDraw, and
UObject. Not all classes are included, nor are all their methods; however,
you do not need to know about any that are not included here. The reference
sheets document methods, subclasses, superclasses, data flelds and other
relevant information for the classes.

All of the classes and all of their methods can be found in the interface
units, coples of which are given in the appendices.

There is one reference sheet for each class.

All reference sheets follow this format:

SUPERCLASS: TSuperclass :

DEFINED SUBCLASSEESy  TSubclass(es)

INHERITED DATA FIELDS: Data flelds inheriteg from T&pemlass and
: their significance.

DATA FIELDS: Data flelds defined by TThisClass, and their significance.

METHODS: Methods implemented by TThisClass or inherited from
TSuperClass, divided into @ number of explanatory catagories.

FAILURE CONDITIONS: Typical causes of fallure of methods of
TThisClass if any. (See Section 1.4)

NOTES: Pertinent notes on TThisClass and its use.
In these reference sheets, the following symbols are used:
w=»» to indicate classes that must be subclassed for use.

R Dbefore a data fleld to indicate that the contents of the data field
can be sensibly read.

W Dbefore adataﬂeldwirmmtnatthecmtmtsoftreomafield
may be modified by the application.

2 CREATE Methods )
Every class must have its own CREATE method. In every case, the flIst two
parameters of CREATE must be an object and a heap pointer. See Chapter 2,
UObject for an explanation of the use of these two parameters.

-1



Lisa ToolKit Reference Manual Part Il Class Reference Sheets
3 The Reference Sheets .
The remainder of thils chapter is an alphabetical listing of the reference sheets.

Each reference sheet begins on a new page. Please check the explanation of symbols
above before reading the reference sheets. The sheets are in alphabetical order.



LIsa ToolKdt Reference Manual Part IT Class Reference Sheels

CLASS: TATea_
SUPERCLASS: Tobject
DEFINED SUBCLASSES:  TBand
TBranchArea (not documented)

- TPad
- TPanel
Twindow
INHERITED DATA FIELDS: none
DATA FIELDS: R InnerRect: Rect; window-relative bounds excluding
; borders. ‘
R outerRect: Rect; window-relative bounds including
borders.

Rw parentBranch: TBranchArea; The branchArea that indicates the
parent of this area

IMPLEMENTED METHODOS:
CnllawithPt (pt: Point; chlid Ist: TLiIst; VAR nearestPt Point): TAres;

pt is a point in window-relative coordinates.

childList is a list of areas contained within this area
nearestPt is the point in the returned area closest to pt.
The return value is one of the areas from childList.

TAreaChilgwithPt first finds the point in areainnerRect closest to
pt It then the compares the new point to the outerRects of all the
areas in child ist. Wwhen it finds the area that contains the point, it
finds the point in that area’s innerRect that is closest to the point.
That value is retumed as nearestPt. Theamacmtainingneamsﬂ’tis
the retumn value.

Erase;
TAreaErase erases the interior. This assumes the focus was set by
calling Focus.

Frame; DEFALLT;

Overridden versions of Frame draw outlines, scroll bars outside the
inner rectangle. TAreaFrame draws a one-pixel wide box around the
area. Frame assumes the focus was set by calling Focus.

QetBorder (VAR border: Recty DEFALAT;
border is the width of the border.

GetBorder retums the widths of the border bars. Each of the flelds
of the Rect defines the width of the border on the corresponding
sige. The standard sizes returmed by overrioden versions of

-3



LIsa ToolKIt Reference Manua! ’ . Part Il Class Reference Sheets

GetBorder are: for windows, bands, panes: 1 all around; for panels: 1
on left/top, scrollBars on right/bottom. TArea.GetBorder returns a
border that is one-pixel wide on all siges.

SetknerRect(newhmRect.Ram: .
- newinnerRect is the area bounds excluding boroers.

TArea.SetinnerRect sets the inner rectangle of an area This method
alsoresetstneslzeoftnewtemctbaseoonmebomerslzegivm
by GetBorder.

SetOuterRect (newOuterRect: Rect) |
newOuterRect Is the bounding box.

TArea.SetOuterRect sets the outer rectangle to a new size. This
method also resets the size of the InnerRect based on the border size
given by GetBorder.

MSTRACTNETI-{IJS:
DownAt (mousePt: Pointk BOOLEAN; ABSTRACT;

mousePt is the place the mouse button was last pressed.
TAreaDownAt does nothing: subclasses should implement DownAt so

it retums TRUE if mousePt is in the area It is implemented for you
by 'Wit. , TPane, TPad, and TPanel, the subclasses of TArea that
need

Focus; ABSTRACT;

TAreaFocus focuses the grafPort on this area Focus is an abstract
method here, but is implemented by Twindow, TPane, and TPad,
subclasses of TArea

Refresh (rActions: TActions; highTransit: THighTransity ABSTRACT;
rActions is what t0 do in the area, from the set of TActions: rErase,
IFrame, rBackground, rDraw. :
highTransit is the change in highlighting in the area. The standard

choices are: hiNone, hOffToDim, hOffToOn, hDIMToOn, hOIMToOff,
hOnToOff, and hOnToDim.

TAreaRefresh does nothing: subclasses should implement Refresh so
it redraws any changed parts of the area It is implemented for you

r%y'rwmw TPane, mmmmmlassesof

Resizelnside (newlnnerRect: Recty ABSTRACT;
newinnerRect is the area bounds excluding borders.

Resizelnside is intended to change the size of areaimnerRect. It
should be implemented to do higher-level operations on the area,

Ii-4



L1s8 ToolKIt Reference Manual Part Il Class Reference Sheets

such as resizing areas contained within this area, and then call
SELF SetinnerRect. :

ResizeOutside (newOuterRect: Recty; ABSTRACT;
NewOuterRect is the bounding box.

ResizeOutside is intended to change the size of areaouterRect. It
should be implemented to do higher-level operations on the area,
such as resizing aress contained Within this area, and then call
SELF SetOwkerRect. ' -

NOTES:

1. TArea implements area objects that are used to define areas on the screen
in a general way. The areas may or may not have borders. Twindow,
TPanel, TPane, TPad, TBand, TBranchArea, and TDlalogBox are all
descendents of TArea

2. You never create a TATea object. You always use some descendant of
TArea | , -

3. You will not usually not subclass TArea
4. You will subclass one descendant of this class, Twindow.

5. The boundaries of an area are set with the methods SetOuterRect and
SetinmnerRect. Do not change innerRect or outerRect directly.

-5



LIsa ToolKit Reference Manval Part Il Class Reference Sheets

CLASS:

TArray
SUPERCLASS:

TCollection

DEFINED SUBCLASSES: none
INHERITED DATA FIELDS: R size: LONGINT; The number of real elements in

this array, not counting the

hole. This is a LONGINT for

Ythe benefit of huge collections,

such as remote data bases. It

is always In the INTEGER range

for instances of TAITay.
dynStart: INTEGER; The number of bytes from the class

pointer to the dynamic data area.
holeStart: INTEGER; 0 means hole at the beginning;

value of size means hole at the

end.
holeSize: INTEGER; The initial size of the hole,
. _ . mesasured in number of members.- -
holeStc: INTEGER; How much to grow the array by if
the holeSize goes to O.

DATA FILDS: R recordBytes INTEGER; Bytes per record.

METHODS:
CREATE (object: TObject; itsheap: THeap; mmalsxack. INTEGER);
bytesPerRecord

INTEGER} TAITay;

initialSlack is the size of the initial hole, iIn member-sized units.
is the number of bytes per record you wish the
array to bytesPerRecord must be an even number.
SIZECF(W) is often used.
TAITay.CREATE creates an empty alray on itsHeap that has
bytesPerRecord bytes per record (array.recordBytes:=
bytesPerRecord). initlalSlack is a hole for array members,
expressed as the number of members the hole could hold. If
initialSlack is greater than 0, the insert methods can be used to
initialize the list without allocating any aaditional space.

At (1t LONGINTY Ptr; DEFALLT;

llsmomlnalposmmintnemy
The return value is an address for the element.

At retumns the address of the element at the given position in the
array. Because the aodress is In relocatable storage, it is valld
only until the next time the heap Is compacted. For that reason,
QetAt is preferable.

-6



Lisa ToolKit Reference Manual Part Il Class Reference Sheets

This method Is used for a simple subscripted fetch. Instead of

using
x= ordArTafl}
as you would to fetch element 1 from the Pascal ARRAY
ordArray, you write
)c-TpReoormnyAmy.At@‘;. |
to fetch element 1 from the TAITay myArTay.
Debug (numLevels: INTEGER; memberTypeStr: S255); OVERRIDE;

numiLevels is the number of levels of detall printed.
memberTypeStr indicates how the array elements should be
treated. This value is a data type; the debugger prints out the
values of the elements as If they were of this type.

Debug is called by the ToolKit debugger to print detalls about
this array. numievels determines how many levels of detall are
printed. -when numLevels equals:

0 (zero), the debugger prints just the class of array;
1, the debugger also prints size of array;
2, the debugger also prints a compacted list of member classes

greater than or equal to 3, the debugger also prints class, size,
and calls Debuginumi_evels-1) on members of the array.

DelAll; DEFALT;

DelAll geletes all the elements of an array. The afray itself is
not celeted. a@Tay.size becomes 0. There Is a hole of size
array.nholeSize.

Each (PROCEDURE DoToObject(pRecore: PUl DEFALLT;
DoToObject is a PR(IED.RE that takes a pointer as its
argument.

Each applies the given PROCEDURE to each element in the array.
For example:

myArTay Each (Tally:
is equivalent to:

FOR i= 1 TO myAITay.size 0o
Tally (myArray At

-7



LIsa ToolKit Reference Marual Part II Class Reference Sheets

DelAt (1: LONGINTY DEFALLT;
i Is an ordinal position in the array.

DelAt deletes the element at position §; elements after | are
~renumbered to fill in the empty space.

- DelFirst;

DelFirst deletes the element at the. beginning of the array;
elements after the first are renumbered to fill in the empty
space. This is equivalent to array.DelAt(1)

Dellast;
DellLast deletes the element at the end of the array. This is
equivalent to DelAt(array.Size)

DelManyAt (I: LONGINT; howMany: LONGINTY DEFALLT;

1 is an ordinal position in the array.
howMany indicates the number of array elements to be aeleted.

DelManyAt deletes a number of elements from the array. The
first deleted element is at position i; elements after i+«howiMany
are renumbered to fill in the empty space.

First: Ptr;
The return value is a pointer to a record whose size is
array.recordBytes.

~First retums a polnter to the first element In the array. This is
equivalent to array.At(1)

GetAt (: LONGINT; pElement: Ptr}

1 is an ordinal position in the array.
pElement is an address for the element.

GetAt returns the address of the element at the given position in

:ne array. It is similar to At, except that the syntax of the call
s

MyAITY.GetAt (1, o
instead of
x=- myNtayN(l)

GetAt is safer, bemnempmgxandoesmtmlwltnapomr
0 relocatable storage.

InsAt (I: LONGINT; pRecort: Ptry DEFALLT;

1 is an ordinal position in the array.
pRecord is a3 pointer to a record whose size is array.recordBytes.

11-8



Llsa ToolKdt Reference Manval Part Il Class Reference Sheets

INsAL Inserts an element in the array. Tnenewlylmerteo
element occuplies position L

InsFirst (pRecord: P |
pRecord is a pointer to a record whose size is array.recoraBytes.

InsFirst inserts an element at the beginning of the array. The
new element occuples the first position in the array. This is
equivalent to array.InsAt(1, pRecdrd).

InsL_ast (pRecort: Ptr}
pRecord is a pointer to a record whose size is array.recordBytes.

InsLast inserts an element at the end of the array. The new
element occupies the last position in the array. Tnis is eq.nvalent
to array.nsAt(array.Size+1, pRecord)

Last: Ptr;

Thereunnvalueisapoint.ertoarecordmosesizeis
 array.recordBytes.

Last retums a pointer to the element at the end of the array.
This is equivalent to array.At(array.size).

ManyAt (1, howMany: LONGINT: TArTay;

i is an ordinal position in the array.
howMany is a number of elements.

ManyAl retums an array of size howMany containing coples of
the elements from the original array beginning at position § ang

continuing through howMany elements.
MemberBytes: INTEGER; OVERRIDE;

MemberBytes retums aiTay.recordBytes, the number of bytes in
each element oft.nemay,aswasspeclﬂeo in the bytesPerRecord
parameter of the TAITay.CREATE call.

Pos (after: LONGINT; pRecort: Ptry LONGINT;

after is a the position in the aray.

pRecord is a pointer to a record.
The retum value Is a position in the array.

Pos searches the array, beginning at position after+1. It retumns
the position of the first element found that is equivalent to the
record pointed to by pRecord. If no such record is found, Pos

returns after.

-9



LIsa ToalKit Reference Manual Part Il Class Rererence Sheets

PUtAL (1: LONGINT; pRecord: Ptry DEFAULT;
1 is an ordinal position in the array.
pRecord is a pointer to a record whose size is bytesPerRecord.

PUtAt deletes the element at position l, and replaces it with the
record pointed to by pRecord

This method is used for a simple subscripted fetch. Instead of

using |

- ordAmal}- x
asywwwlowreplaoeeletmntlinmePMMRAYomAnay,
youwme

myArray PUAYL, X
to replace element { in the TAITay myArray.
Scanner: TAITaySCanner;
.- The retum value is an arrayScanner for this array.

Scanner retumns an object of class TAITayScanner, allowing use of
aITayScarnner methods. This is equivalent to

array.ScannerFrom (1, scanForward:
ScannerFrom (firstToScan: LONGINT; scanDirectione TScanDirection)
TArTayScanner; DEFALLT;

firstToScan is a position in the array.
scanDirection scanForward or scanBackward.
The retum value is a new arrayScanner.

ScannerFrom retums an object of class TArrayScanner, with

Position equal to firstToScan minus one, so that the
first call to arrayScanner.Scan returns the address of the record
at firstToScan

Startedit (withSlack: INTEGER):
withSlack is the new value for holeStd

StartEdit changes thje value of holeStd to withSlack. The next edit
call creates a hole of size withSlack, so that subsequent edit calls
act more quickly.

StopEdit;
StopEdit removes the hole from the array and sets holeStd to 0 (zero)
Any subsequent edit call removes any hole it forms.

I1-10



Llsa ToolKIt Reference Manual Part Il Class Reference Sheels

FARLURE CONDITIONS:  Heap can't grow

NOTES:

1‘

2.

3.

9.

Array > 32K bytes.

Deleting from empty array (only checked if the debug
menu item CHECK LIST INDICES is on).

Subscript out of range (only checked if the debug menu
ftem CHECK LIST INDICES Is on).

An array Is a space-optimized list. It Is similar to a list object, but
where a list contains object handles, an array contains records.

while an object can have referrences to it in several lists, a record can be
in only one array at a time.

Use instances of TString when you need to store a string of characters or
one-byte values.

list operations are more convenient and often run faster than array
operations: TArray has a relatively limited interface.

Anayshavethreemodes ‘create mook, éealt mook, and statlc mooe

when you first create an array, it is in create mode. You define an
jnitialSlack value in the CREATE call. The array is given enough empty
space to hold injtalSlack records. That space is the hole. As you aod
members, the space in the hole is used for the new members. The amount
of space allocated to the array does not change until you fill up the hole
with array members. Ywemalsocallmy.swp‘idh,wwmvesm
hole from the array.

when the hole is filled, the array enters static mode. In static mode, no
hole is ever maintained. If you add a member, the afray is copled into a
space large enough to hold the additional member. If you delete a
member, the extra space is freed.

Enter edit mode by calling array.StartEdit(withSlack). In edit mocde, a hole
big enough for withSlack elements is initially created. As you aod
members, the size of the hole decreases. The hole Is always positioned
after the last element inserted or after the position occupied by the last
element deleted. when the hole is entirely filleq, the space allocated to
the array is increased, so there is a new hole big enough for withSlack
members. If you delete members, the extra space is added to the hole.
Call array.StopEdit to stop editing. Any space taken up by the hole is
then freed. .

array.size « array.recordBytes cannot exceed 32767.

10. You can access array elements faster by creating an allas for the array,

and then using double—indirect pointers. The array must have no hole, or -
a hole at the end of the atray, for this method to work.

I-11



LIsa ToolKit Reference Manual Part Il Class Reference Sheels

Assume you have created an array similar to this one, where
- TYPE T= RECORD
mem.si

END;
VAR myArTay: TAITayiOF T
Also, assume you have created your array in some way such as this:
myArray= TAIray.CREATE (NIL, hebp; initalSize, SIZEOF(T):

To access the array more quickly than you could with At and PutAt,
declare some variables like these:

TFastT= RECORD -
header: TArrayHeader; pre-gefined ToolKit t
records: ARRAY[L.602] OF T; F’reunberlnltaum is given

here as an example. It should
be 32000/SIZEOH(T}
END;
TPFastT= TFastT-
THFastT= “TPFastT;

Then you can access the atray like this:

THFastT(a)" .rwogqsﬂ}-

tRec= THFastT(a) .mcumsm:
where tRec Is a record of type T. The array bounds In TFastT should be
chosen to be large enough to avold range-check errors at run time, but

mstbelessmat&wtmolvﬂZE(fﬂ) :

I1-12



LIsa ToolKIt Reference Marug!

CLASS:
SUPERCLASS:

TArTayscanner
© TScanner

DEFINED SUBCLASSES: none
R oollection: TCollection; The array being scanned.

INHERITED DATA FIELDS

DATA FIELDS: none
METHOOS:

R position: LONGINT;

increment: INTEGER;

R atEnd: BOOLEAN;

Part Il Class Reference Sheels

The current position of
the scanner. The scanner
position is always
between, before, or after
members: 0=before first,
size+1=after last.

The change in position
for every scan: 1 if
scanning forwarg, -1 if
scanning backward.

when this is TRUE, the
next Scan call retums
FALSE, signalling the end -
of the scan. The VAR
parametsr of the Scan
method, which normally
contains the next record
in the array, is

 unchanged after that

Scan call.

TRUE if the end of the
array is imminent, so
that the next Scan call
will retum FALSE.

CREATE (object: TObject; itsArray: TArTay; itsinitialPositionrs LONGINT;
itsScanDirection: TScanDirection}

i

is an array object.

TAITayScanner;

itsinitialPosition is the initial ordinal position in itsArray.
itsScanDirection is scanForward or scanBackward

LCREATE creates an object of type TArrayScanner,
which Is used to access itsArray. You rever call this method

T

directly; instead, you use

array.Scanner or array.Scannerf-rom.

Those methods call TArrayScanner.CREATE.

1-13



L/sa ToolKit Reference Manua! Part Il Class Reference sheets

WWPU);[EFMT;
pRecard Is a pointer to a new member of the array.

Append adds a copy of the record pointed to by pRecord to the
amray immediately after the current position. position Is adjusted
byamingl,regardlesofmewrrmtmmt

Delete; DEFALLT;
Delete deletes the record at the current position. position Is
adjusted by adding Wm.hnwmm.

DeleteRest; DEFALLT;

Delete deletes all records after the current position, if

arrayScannerincrement is +1, or before the current position, if

arrayScannerincrement Is -1. position is unchanged. Any

- subsequence arrayScanner.Scan call returns FALSE.

Done; |
‘Done signals that you are finished using this anayswner. The
next call to arrayScanner.Scan retumns FALSE, as lneendofthe

array had been reached. Unllke when the end of the aray Is
reached, however,tnereunnearwomlnwmremamsmmged
Free; OVERRIDE;

Free deallocates this arrayScanner object.
Obtaire Ptr; DEFALLT; |
The return value is a pointer to a record in the array.

Obtain returns a pointer to the curremt record. For example,
where § Is an arrayScanner created with myArray.Scanner

x= s.0btain";
Is the same as
X= myAITay.At;
Replace (pRecort Ptr); DEFALLT;
pRecord is a pointer to a record.

Replace removes the current record from the array and replaces
it with a copy of the record pointed to by pRecord The new
‘record is now the current record.

-14



Lisa ToolKit Reference Manual ’ Part Il Class Reference Sheets

Scan (VAR pNextRecort: Ptry BOOLEAN; DEFALLT;

lsapolntertotnenextrecomfmnthemy
The return value is FALSE if the end of the array has been
reached or arrayScanner.Done has been called.

Scan begins at the beginning of the array and, eaehtimeitis
called, retumns a pointer to the next record. The record pointed
to by the retumed pointer is referfed to as the cwzan¢ record.
The value of Scan is TRUE untll Scan Is called after the last
record in the afray is reacheq, or untll arrayScanner.Done has
been called. If the end of the arTay was reached, and Done was
not called, the value of pNextRecord is NIL. If Done was called,
pNextRecord keeps the last value it had. when Scan retums
FALSE, the scanner is freed.

Seek (arrayPos: LONGINTY,

arm)Poslstnelomumtowmmywwlsnmemrtomove.
arrayPos - 0 is the beginning of the array.

Seek moves the current scan position to arrayPos. It transfers no
data.

Skip (deltaPos: LONGINTY

deltaPos is the number of elements you wish the scan position to
move within the array. A positive value moves the position
toward the end of the array; a negative value moves the position
toward the beginning of the array.

Skip moves the scan position deltaPos bytes forward or backward

within the array. arrayScannetr.increment is ignored. Sldp
transfers. no data.

NOTES:
1. An is used to access a stored data array, to scan it, and to
manjpulate its indgivicual elements. Use TArmayScanner and its subclasses
{0 scan arrays.

2. You may have more than one arrayScanner for the same array at the same

time. However, if you do, you cannot use Append, Delete, or DeleteRest.

II-15



LIsa ToolKdt Reference Marval Part II Class Rererence Sheets

CLASS: Teand

SUPERCLASS: TArea

DEFINED SUBCLASSES: none

INHERITED DATA FIELDS: None that are significant. See TArea for information.

DATA FEELDS:  window: TWindow: The window contalning this
+bend.
panes: TList {of TPanel; The panes contained in this
panel: TPanel; The panel containing this band.
scmllerTScmner The scroller for this band

scroliDir: VHSelect; The orientation of this band v If this Is a
row of panes with a vertical
scroll bar; h If this is a column
of panes with a horizontal scroll
bar.

METHOD YOUR APPLICATION MIGHT CALL:
mmmmmmmmvmmmtm
pt 1s a point iIn window-relative coordginates.
chiidist 1s a list of areas contained within this band.

nearestPt is the point in the returned area closest to pt
The return value is one of the areas from childi ist.

ChilawithPt first finds the point in bandinnerRect closest to pt. It
then the compares the new point to the outerRects of all the areas
in chlldList. when it finds the area that contains the point, it finds
the point in that area’s innerRect that is closest to the point. That
valuelsreﬂmedasnaatestpt. The area containing nearestPt is the
return value,

Resizeomm(rmmRect.Rect);
newOuterRect is the bounding box
ResizeOutside Is used to change the size of bandouterRect. It sets
the new value of bandOuterRect, invalidates as needed, adjusts the
size of the scoller, and resized all panes in the bend (by calling

band.ResizePanes). It can be re-implemented to do higher-level
operations on the band, such as resizing areas contained within this
band.

ScrollBy (deltal. Cc: LONGINTY
deltal Cd is the amount the band is scrolled, in view coordinates.

TBand.ScrollBy scrolls the band by the given amount. Bands only
scroll in one orientation, band.scrolliDir. The thumb is also moved. A
positive deital Cd scrolls towards the end of the view, while a
negative value scrolls towards the beginning. when deltal Cd is 0

1I-16



Lisa ToalKit Reference Manual Part Il Class Reference Sheets

(zero), the ScroliBy does not scroll, but, instead, invaligates the entire
band The next time Update Is called, the band is redrawn. This
feature is used for resizing bands.

ScrollTo (viewl.Cct LONGINT)Y;

viewlL.Cd Is the position in the view the band is scrolled to, in view
coordinates.

TBand.ScrollTo scrolls the band by the glven amount. viewLCd is
placed in the top left comer of the band. The thumb icon is also
moved.

ThumbTo (newThumbPos: INTEGERY

newThumbPos is the desired position of the thumb icon. 0 s the
position at the beginning of the gocument, and 1000 Is the position at
the end. .

TBand. ThumbTo moves the thumb to the given posmon, and scroils
‘the band by t.neresulmg amount.

NOTES:

1. TBand is never subclassed or instantiated by application programs, and you
almost never call it

2. You can call the methods listed above in order to implement scrolling in
your own way.

3. Methods of TBand are not normally used for scrolling. Instead, use
TPaneLReveall Rect to bring information in the panel into view.

I-17



LIsa ToolKIt Reference Marval Part Il Class Reference Sheets

CLASS: TBogyPad

SUPERCLASSt TPad
DEFINED SUBCLASSES:  none
INHERITED DATA FIELDS:  See TPad.

DATA FIELDS marginPat TMarginPad; The marginPad that defines the

~margins surrounding this
nonNullBody: Rect; The section of the view that

- appears in this bodyPad.
METHODS: None that are important for applications.

NOTES:

1. Tnis class defines a pad used in creating the printable picture of a section
of a view.

2. A bodyPad contains a printable picture of a section of a view. Each page
ofﬂxemdrepﬂnb&lehmelsnademofmebwwwmamm

Lisa ToolKit Reference .
marginPad

bodyPad

I1I-15

11-18



LIsa ToolKit Reference Manual

CLASS:

SUPERCLASS:

Téﬂppoam
TDocManager

DEFINED SUBCLASSES: none

INHERITED DATA FIELDS: None are important.

information.

DATA FEELDS: R tasView-Boa_EAN,

R hasPicture: BOOLEAN;

R hesUniversalText: BOOLEAN;

haslcor: BOOLEAN;
R outtingTool: LONGINT;

R cuttingProcessiD: LONGINT

clipCopy: TFileScanner;
METHODS:
None you need.
NOTES:
1L The

2. Every process has its own clipboard

3. Youmaywa\twmspecttrueclmu‘sdataﬂeldstoﬂmwmtreror
not you can copy information from the clipboard.

I1-19

Part I1 Class Reference Sheets

See TDocManager for more

FALSE indicates there is no
ToolKit representation of the data
in the clipboard .
FALSE Indicates there is no
universal graphics picture of the
data in the clipboard.

FALSE indicates there is no
unjversal text version of the data
in the clipboard. Note that you
need t0 use the Unlversal Text
Building Block to use universal
text.

TRUE if there is an icon reference
avaname.
Contalns the tool ru'rber of the
application that last 1cagded the

clipboard.

Contains the OS process ID of the
process that last loaded the
clipboard

A scanner on a flle containing a

copy of the clipboard before
corversion.

clipboard object acts as e directory to the clipboard, which stores the
last data cut or copied from any document on the desktop.



Lisa ToolKit Referm Maral Part Il Class Reference Sheets

CLAS  TCollection

SUPERCLASS:

TObject

DEFINED SUBCLASSES:  TArTay
TFlle

TList
TSuing

INHERITED DATA FIELDS:  none
DATA FIELDS: R size: LONGINT: The number of real elements in this

METHODS:

collection, not counting the hole.
This Is a LONGINT for the benefit
of huge collections, such as remote
data bases. It Is always in the
INTEGER range for instances of
TList, TArmay, and

' TString.
Rw dynStart: INTEGER; The number of bytes from the class

pointer to the dynamic data area.

holeStart: INTEGER; 0 means hole at the beginingvalue
of size means hole at the end.

holeSize: INTEGER; The initial size of the hole,
measured in number of collection
members.

holeSt INTEGER; How much to grow the collection
by if the holeSize goes to 0.

CREATE (object: TObject; ; inttaiStack: INTEGERX
"Mt,mm

object, in this case, must be an object that was allocated by the
subclass's CREATE method by cal

NewOynob,
initialSlack is the size of the initial hole, in members.

TCOlIectoNCREATE creates an object of type TCollection
initiaiSiack is a hole for colleotion members. If initialSlack Is
greater than 0, the insert methods can be used to initialize the
collection, without allocating any storage. This is never called
directly; it is called by CREATE methods of subclasses.

mmm)mmmm;

heap is an available heap.
The retum value is a8 new collection that has the same contents and
characteristics as the calling collection.

TCollection.Clone creates a copy of the collection

MemberBytes: INTEGER: ABSTRACT:

11-20



Llsa ToolKit Reference Manual Part Il Class Reference Sheets

The retum value is a size, In bytes.

TCollectionMemberBytes does nothing. In subclasses, MemberBytes
retums the number of bytes used to store a collection member.

Equals (otherCollectione TCollectiony BOOLEAN;

otherCollection is another collection.
The return value tells whether or not the two collections are equal.

TCollectionEquals tests whether this collection contains the same
elements as otherCollection.

StartEdit (withSlack: INTEGER);
withSlack is the new value for holeStd

TCollection.StartEdit changes the value of holeStd to withSlack,
The next edit call creates a hole of size withSlack, so that
subsequent edit calls act more quickly. Holes that form from edit
callsaremtclosedmﬂlmmxtcauwmnecumtqut ’

StopEait;
TCollection.StopEdit removes the hole from the collection and sets
holeStd to O (zero). Any subsequent edit call that has no hole
removes any hole it forms, until the next call to Startedit.

InsManyAt (I: LONGINT; mmﬂutmwﬁmmw
LONGINTY

1 Is an Index number for an element of the collection
otherCollection is a collection that contains the elements to be
inserted. ,

index is an index number for an element of the otherCollection
howtMany is the number of elements to be inserted.

TCollectioninaManyAt inserts elements from a oollection into this
collection.

InshNulisAt (I, howMany: LONGINT)

1 is an index number for an element of the collection
howMany is the number of null elements to be inserted.

~ TCollectioninsNullsAt inserts null elements into the collection after
the given point.

PRIVATENETI-mS(thyeHMDyW)
Checkindex (indexx LONGINT)Y
index is an index number for an element of the collection

TCollection.Checkindex tests to be sure that index Is greater than 1
and less than or equal to collectionsize, if the dubug menu CHECK
LIST INDICES command was chosen,

11-21



Liss Toalkit Rererence Merual Part I Class Reference Sheets

NOTES:

W(l: LONGINTY LONGINT;

i Is an index number for an element of the collection
The return value is the address of a member of the collection

TCollection.AgdrMember returns a value that can be interpreted as a
pointer to a given element of the collection. The aadress is valid
only momentarily, as collections (like all objects) are stored
dynamically, and can move at any time.

o::pmmers (astAadr, startindex, howMany: LONGINTY

astAOdr Is an address.

startindex {s the index number for the first element of this collection
to be copied.

howMany {s the number of elements to be copled.

Tcouecﬂammwscopieselmtsmmmw

EdltAt (atmnac LONGINT; deltaMembers: INTEGERY

aurmismeimexmnnerfortmplacelnmecouecnmwmrem
edit is to occur.
deltaMembers Is the number of members to insert or delete.

TCollectionEditAt adas or deletes members of the collection. If
deltaMembers Is greater than 0, the members are added. If
deltaMembers Is less than 0, members are deleted. This method does
all the work (resizing the collection, moving members around,
relocating the hole) except actually copying members into the
collection. It is called by other edit methods.

ResjzeColl (membersPlusHole: INTEGER)

membersPiusi-oie is the capacity of the oollection after this method
is called. Its value is equal to ocollectionsize plus the hole.

TCollectionResizeColl changes the amount of space allocated to this
collection to membersPiusi-ie"memberBytes.

ShiftColl (afterSroindex, aftetDstindex, howtMany: INTEGERY

afterSrcindex is a position in the collection
afterOstindex is a position in the collection
howMany is a number of elements.

TCollection.ShiftColl moves the hole by moving howMany elements
right afterSrcindex to be right afterDstindex

1 TOunecumueﬂnambaslcsuwuueforangmpsofobjectsmedm

the ToolKit. Mslmhnesﬂlesan'aysnsts and strings.

11-22



LIsa ToalKit Reference Marval Part Il Class Reference Sheets

2. TCollection is an abstract class; no objects of type TCollection are ever
created. Instead, you create objects of the subclasses of TCollection
TAITay, TList, TFlle, ana TString

3. collectionsize is the number of actual members, not counting the hole.

4. You can ignore the hole when using most methods. However, if you use
the private methods, you must take the hole into account. ‘

5. Since collections may be given more space’ than is needed to hold the data
in them, there may be an unused “nhole” somewhere in the sto block.
The flelds holeStart and holeSize specify (in member-sized units) the
starting index of the hole and the length of the hole. when holeSize is
zero, there Is no hole. If members are added when there is no hole, the
storage block is expanded to allow for at least another holeStd members.

6. collections have three modes: creale /mook, edit mook and static mooe

7. when you first create an collection, it Is in create mode. You define an
initlalSlack value in the CREATE call. The collection is given '
empty space to hold initialSlack elements. That space is the hole. As
you add members, the space in the hole is used for the new members.
The amount of space allocated to the collection does not change until you
fill up the hole with collection members. You can also call
collection.StopEdit, which removes the hole from the collection

8. when the hole is fllled, the collection enters static mode. In static mode,
no hole is ever maintained. If you add a member, the collection 1s copled
into a space large enough to hold the additional member. If you delete a
member, the extra space is freed.

9. Enter edit mode by calling collectionStartEditiwithSlack) In edit mode, a
hole big enough for withStack elements is initially created. As you aad
members, the size of the hole decreases. when the hole is entirely filleq,
the space allocated to the collection is increased, so there is a new hole
big enough for withSlack members. If you delete members, the extra
space is aaged to the hole. Call oollectionStopEdit to stop editing. Any
space taken up by the hole Is then freed. The hole is always positioned
after the last member inserted or after the position that was occuplied by
the last member deleted.

11-23



LIsa ToolKit Reference Marual | Part Il Class Reference Sheets

CLASS:  TCommand

Tobject

DEFINED SUBCLASSES:  TCutCopyCammend
TPasteCommand

cmadNumber: TCmdNumber; +The command number of the memnu
item that describes the command.

image: Timage; The image (usually a view) to which
the command applies, or NIL if the
data is stored in the window.

R undoable: BOOLEAN; TRUE means that this command
can be undone.

R doing: BOOLEAN; This value is TRUE if the last call
to Perform was in doPhase or
redoPhase. ; :

revelationt TRevelation; - Determines how much of the

selection should be automatically
scrolled into a pane when the
command is performed. Can be
none (no scrolling), some (scroll to
show some part of the selection), or
all (scroll to display the entire
selection, if possible).

W unHiliteBefore: ARRAY [TCmdPhase] OF

BOOLEAN;
TRUE tells the ToolKit to remove
the highlighting from all selections
before PerformicmdPhase) is called.
The defaults are TRUE.

w NHWWAY[TW]G‘

BOOLEAN:
mmmu te&:‘sg the a1l'oou<it ttio aad

gh to all selections after
Perfarr(crndPhase) is called. The
defaults are TRUE.

METHODS YOUR APPLICATION MUST OVERRIDE:
CREATE (object: TObject; itHeap: THeap; itsCmdNumber: TCmadNumber;

n.slmmw fsUndoable: BOOLEAN; itsRevelation: TRevelation)

lmlsmoonm\ammerofammn
itsimage is the image to which the command applies, usually a view,
or NIL. if the dgata is stored in the window.

isUndoable indicates whether or not the command can be reversed.
itsRevelation determines how much of the selection is scrolled into
view when Perform is called. The value can be revealNone (no
scrolling), revealSome (scroll to show some part of the selection), or
revealAll (scroll to display the entire selection, if possible) If the

I1-24



LIsa ToolKiIt Reference Marvgl Part Il Cigss Reference Sneelts

selection is already fully displayed, this fleld has no effect. See
TPaneLReveall Rect for more information.

TCommand.CREATE creates an object of type TCommand
Perform (cmdPhase: TCmdPhasel DEFALLT;

cmdPhase is either doPhase, undoPhase, or redoPhase. The first time
Perfarm is called, the cmdPhase is doPhase. After that, undoPhase
and redgoPhase altermnate. R

Perform Is called when the command is done, undone, or redone. If
the command is implemented using a fiiter, Perform often just
invalldates (see TPaneLlnvalRect) the changed aress of the view. If

the command Is not Implemented with a fliter, Perform should carry
out the action of the command '

METHOD YOUR APPLICATION WILL CALL:
CREATE (object: TObject; itHeap: THeap; 1tsCmaNumber: TCmdNumber;
~ itsimage: Timage; isUndoable: BOOLEAN; itsRevelation: TRevelation)

See above.

METHODS YOUR APPLICATION MIGHT OVERRIDE:
Commit; DEFALLT;

Commit is called when a command has been done and can not any
longer be undone. (Commit is usually called when another command
Is glven by the user.) See note 4. TCommand.Commit does nothing.

EachvirtualPart (PROCEDURE DoToObject (b} TObjecty:

PROCEDURE DoToObject is a procedure that takes an
object-reference of type TObject as an argument. DoToObject
cannot be a method. It is usually defined as a local procedure within
some method.

EachvirtualPart is used in implementing a filter. A virua/ partis a
selectable part of the set of objects. Every virtual part must be an
object. DoToObject is a procedure that acts on the virtual part.
when taking some action that depends on the action of undoable
commands, call image or viewEachvirtualPart, giving as the argument
the method you want to apply to the objects. If the last command
has been done (that is, if commandPerform was last called with

commeand.EachvirtualPart calls FliterAndDo, which alters the object
before calling DoToObject.

You do not have to reimplement TCommandEachvirtualPart except
for commands that act on more than one virtual object at a time,

11-25



LIsa ToolKit Reference Manual ; Part Il Class Reference Sheels

NOTES:

Free;

For example, if the command involves reordering the objects in your
data set, implement commandEachVirtualPart so that it does the
reordering.

when you do hot reimplement TCommandEachvirtualPart, implement
command.FilterAndDo for commands that act on one virtual object at
a time.

TCommand.EachVirtualPart calls view or image.EachActualPart to get

the actual set of data. (You have to implement EachActualPart. See

the reference sheet for Tview or Timage.) EachActualPart must

returmn a list of objects that together make up the data set.

m‘rcuwmns‘ achvirtualPart calls FilterAndDo once for each object in
list.

Do not call commandEachvirwalPart directly. However, when you
are implementing your own version of command.EachvirtualPart, you
may call TCommandEachvirtualPart from your method.

FllterAndDo (actualObj TObject; PROCEDURE

" DoToObject(fllteredObyTObjectk
actualObj Is an actual part of the document.

DoToObject is a procedure that takes an object-reference of type
TObject as an argument. DoToObject cannot be a method.

FliterAndDo is used with flitered commands. It is intended to check
actualOb], and see if the command would have changed it. If so,
FliterAndDo should change the object according to the action of the
command, call DoToObject gt the filteredObj as an argument, and
then change the object back to its unaltered state.
TCommandFilterAndDo calls DoToObject, but does not filter the
object first. ‘

Free is called by the ToolKit when a command can no longer be done

or undone. TCommandFree deallocates the command object.

Subclasses should override TCommandFree if there is anything other

gmtnemnwwjactwmmmcbed&mocatedatmesane
me.

1. All commanas that make significant changes to the document should

return an instance of TCommand or a descendant of TCommand 1o the
ToolKit. See the Lisg (ser interface Standsards for standards.

The ToolKit tells the commend object to Perform with crdPhase equal to
doPhase. If the user chooses undo from the Edit menu, and the command
object can be undone, the ToolKit tells the command object to Perform

with omdPhase equal to undoPnase. If the user again requests undo, the

11-26



L/sa TooiKIt Reference Manual Part Il Class Reference Sheels

6.

ToolKit tells the command object to Perform with cmdPhase equal to
recoPhase. Subsequent undo requests altemnate between undoPhase and
redoPhase.

when another command 1s sent to the ToolKit, the ToolKit first tells the

last command object to Commit (unless the command has been undone) and

%wﬁe&. If the last Perform was with undoPhase, the Commit call is
tted.

The Commit method Is intended for use with commands that can not be
easily reversed, but that you want the user to be able to undo. You
implement such a command so that the action of the command Is not
actually carried out the when the command is given. Instead, you make
the display appear as if the command was carried out. This is referred to
as Altering the display. If the command Is then undone, you can simply
display the true state of the data. If another command Is given, call
Commit to actually change the data.

If the command is implemented using a filter, the action of the command

1s not carried out by Perform. Perform usually simply invalidates regions

of the view that would be changed by the commend.

All methods that would be affected by the action of flltered commeands
are implemented so that they call TViewEachvirtualPart. Give a
procedure that acts on a TObject-type reference as an argument to
TviewEachVirtualPart. If the command has been done (that s,
commandPerform was last called with cmdPhese = m\aseorremprme),
window FilterDispatch is called. windowFil
commend.EachvirtualPart. lfthecum\a'daltersmesetofobjects
displayed in the view, you should reimplement commandEachvirtualPart so
that It produces the correct set of virtual parts.
TCommand.EachvirtualPart simply passes each object from
view EachActualiPart to commandFilterAndDo.  If the command alters the
inaivicual parts of the view, you should implement commeandFliterAndDo
so that It checks whether or hot the command should have changed that
particular object and, if it should have, changes the object so that it
correctly. The procedure given to EachvirtualPart is then called,
with the altered object as its argument. when that procedure completes,
the object is changed back to its original state, and FliterAndDo is given
the next object.

Note that you or a bullding block must implement Perform, and often also
implement Commit, for all your application’s commands, except for

asCopyCommand and pasteCommand, whose Com it and Perform methods
are implemented in the ToolKit. For cutCopyCommand, you (or a bullding

block) implement DoCutCopy and for pasteCommand you (or a building
block) implement DoPaste. .

Some commands do not appear in a menu in the menu bar. An example of
this would be where, in a graphics program, the user selects a box and

11-27



LIs8 ToolKit Reference Manual Part Il Class Reference sheets

10.

11.

then arags it across the window. In that case, the user s essentially
giving a move command. According to the L&er Interface Standarnds

because such a command makes a significant change to the document, it

must be implemented using a command object. In addition, there must be
a name for the command, so that the Edit menu can tell the user what
command can be undone. See note 9 below.

To implement a command that does not appear in the menu bar, put the

command name in your phrase file with a‘menu number greater than 100.
This is referred t0 as a awzzwmenu. You put the name in the

flle so that you can use It later to display the name of the command In

the Undo menu item. when the action that is referred to by the buzzword
menu occurs, create a command object for the command from within your
application. Call window.PerformCommandicommand) where command was
created by selectionNewCommand or window.NewCommand.

If a command makes a significant change to the document, but you do not
want to, or cannot, implement undo, create an instance of TCommand .
(rather than an Instance of a gescendant of TCommand) with the unDoable
fleld set to FALSE and implement the command entirely within
NewCommand, after first calling wincow.Commitiast.

If commands are not yet clear to you, do not dispair. To fully understand
commands and command flow, you will probably need to study some
sample applications. Please refer to the ToolKit Segments on commands.
After you have studied that, examine the sample programs carefully.

11-28



LIsa ToalKit Referance Manual Part Il Class Reference Sheets
CLASS: TOWtCopyCommend
SUPERCLASS: TCommand

DEFINED SUBCLASSES: none

INHERITED DATA FIELDS: R ocmdNumber: TOmdNumber; The command number of
the menu item that
describes the command.

R view: TView; ) The view to which the
cormmand applies, or NIL.
if the aata is stored in

the window.
R undoable: BOOLEAN; TRUE means that this
~ command can be
reversed.
R doing BOOLEAN; This value is TRUE if the

last call to Perform.was
_ , . in doPhase or redoPhase.
revelationr TRevelation; Determines how much of
the selection should be
automatically scrolled
into a pane when the
command is performed.
Can be none (no ;
scrolling), some (scroll to
show some part of the
selection), or all (scroil
to display the entire
selection, if possible).

w unHlliteBefore: ARRAY [TCmadPhase] OF BOOLEAN;
TRUE tells the Toolkit
10 remove the
nighlignting from all
selections before Perform
is called.

w hiliteAfter: ARRAY [TCmdPhase] OF BOOLEAN;
TRUE tells the ToolKit
to add highlighting to all
selections after Pexfoxm
is called.

DATA FIELDS: R isCut: BOOLEAN; Tells whether the data is to be cut (TRUE) or
Just copied to the clipboard (FALSE)

11-29



L1sg ToolKit Reference Manual Part Il Class Refererce Sheets

METHODOS YOUR APPLICATION MUST OVERRIDE:

CREATE (object: TObject; itHeap: THeap; itsCmdNumber: TCmdNumber;
itsimage: Timage; isCutCmad: BOOLEAN): TCutCopyCommand;
itsCmdiNumber is the command number of a menu command.
itsimage the image to which the command applies (usually a view), or
NIL if the data is stored In the window.
isCutCmd indicates whether this Is a cut (TRUE) or copy (FALSE).

TCUtCopyCommend.CREATE creates an object of type
TCutCopyCommand.

DoCutCopy (clipSelection: TSelection; deleteOriginal: BOOLEAN; crndPhase:
TCmdPhase)l
cupSelecumw\enamm is a selection in the clipboard
that you can replace with a copy of the selectPanel's selection
when cmdPhase-undoPhase or redoPhase, clipSelection is the
mwﬂmmwmmmlmeneolnmcumm
oeleteonglrmimlcateswnetmrtneoopctsarewnemmme

document (TRUE) or just copied to the clipboard (FALSE). It is
equivalent to the value of SELF.JsCut.

cmaPhase Is either doPhase, undoPhase, or redoPhase.

DoCutCopy executes the cut or copy. The first time DoCutCopy 1s
used, the cmdPhase is doPhase. After that, undoPhase and redoPhase
altemate. This routine is called by Perform after Perform sets up

the clipboard data segment. Ywnmtln'plementmmsomat
it does the following:

s when cmdPhase is doPhase, clone selected objects and put them in

the clipboard ang, if deleteOriginal i1s TRUE, delete the selected
objects from the document.

* when cmdPhase is undoPhase, and deleteOriginal is TRUE, restore
the selected objects to the document. You do not have the change
- the clipboard; the ToolKit does that for you

« When cmdPhase Is TedoPhase, and deleteOriginal Is TRUE, delete
the original objects from the document. You do not have the change
the clipboard; the ToolKit does that for you.

When deleteOriginal is FALSE (that Is, this Is a copy command),
nothing is done by DoCutCopy on undoPhase or redoPhase.

- 1-30



L/s8 ToolKit Reference Marual Part Il Class Reference Sheels

METHOD YOUR APPLICATION MIGHT OVERRIDE:
Commit; ,
You can override Commit if you want to implement cut so that it
uses a fliter when Perform is called. In that case, cutCopy.Commit
removes the information from the document. If you override this
method, you should call TCutCopyCommand.Commit at the beginning
of your method.
METHOD YOUR APPLICATION WILL CALL:
CREATE (object: TObject; itHeap: THeap; 1tsCmadNumber: TCmaNuUmber;
itsView: TView; isCutCma BOOLEANE TCutCopyCommand;
| See above.
INTERNAL METHOD:
Perform (cmdPhase: TCmdPhasel
cmdPhase is elther doPhase, undoPhase, or redoPhase.

. TCutCopyCommand.Perform calls outCopyCommand.DoCutCopy to
execute the cutCopyCommand. The first time Perform is used, the’
cmdPhase s doPhase. After that, undoPhase and redoPhase alternate.
You will have to override Perform If you want it to put a fliter over
the data rather than performing the cut immediately. In that case,
use Commit to call DoCutCopy.

NOTES:
1. See TComwnand for general information on command implementation.

2. TCutCopyCommand is used to cut the selected abjects from the display
and copy them into the clipbocard. The objects are always copled into the
clipboard, no matter whether the operation was a cut or a copy.

3. Bullaing blocks often override and implement its action. Otherwise, you
must override this class to create cut/copy command objects. At a
minimum, you must implement DoClxtCopy In every subclass you define.

4. See the ToolKit Segments and sample programs for examples of use of the
cutCopyCommand.

I1-31



Llsa_ ToalKit Reference Manval : Part Il Class Referernce Sheets

CLASS  TDialogBox
SUPERCLASS: Twindow

- DEFINED SUBCLASSES: none

INHERITED DATA FIELDS: R panels: TList {OF TPanell; The panels in the dlalogBox.

parelTree: TArea;

dialogBox: TDlaloghox;
R selectPanel: TPanel;

mml:ml:
R clickPanel: TPanel;

undoClickPanel: TPanel;

undoSelwindow: Twindow;

wngriD: TwindowlD

11-32

There is always at least
one. See class TPanelL
when the window contains
no panels (which happens
momentarily during

) contains
NIL. when the window
contains one panel,
contains the panel. when
the window contains more
than one panel, contains a
TBranchArea that is the
root of a tree of panels.-
Always NIL, since this Is a
dialog box window.
Tnepaelwiththeaoﬂve
selection,
The selectPanel auring the
last command.
The panel where the mouse
button was last clicked.

The window with the
active selection. Either
SELF or its window.
The window with the

ORD of the pointer to the

window Manager's

grafPort. ,

Tells whether or not there

is a Resize Box

If TRUE, the Toolkit

should believe the window
‘s 1dea of the size

of the dialog box; this is

FALSE (for example) whan



Lisa ToolKiIt Reference Marnugl Part Il Class Rererence Sheels

the application creates the
dialogBox object before the
dialog box is put on the
screen.

maxinnersize: Point; The dlalogBox size the
user explicitly set by using
the grow icon.
changes: LONGINT; . . Not significant for
: dlalogBoxes.
R lastCmt: TCommend; Not significant for
printerMetrics: TPrinterMetrics;
, Not significant for
dlalogBoxes.
pgSz0OK: BOOLEAN; Not significant for
TR
POROOK: BOOLEAN; Not s cant for
) dialogBoxes.
panelToPrint: TPanel; Not significant for
dialogBoxes.
objectToFree: TObject; Not significant for

R innerRect: Rect;

R outerRect: Rect;

dialogBoxes. ,
Contains the size of the
dialog box, excluding the
entire frame. ,
Contains the size of the
dialog box, including the
frame,

R parentBrancix TBranchAres;

Not significant for
dlalogBoxes.

DATA FIELDS:  keyResponse: TDIResponse;  What to do with this alalogBox
when the user types a key while
the box is displayed. From the set

diDismissDialogBox,

diAccept,
diGiveToMainwindow, diRefuse.

menuResponse: TDIResponse;  what to do with this dialogBox
when the user presses the mouse

button in the menu bar while the
box is displayed. From the set

diGiveToMalnWindow, diRefuse.

11-33



L/sg ToolKit Rererence Manual Part Il Class Reference Sheets

. gowninMalnwindowResponse: ;
what to do with this dialogBox
when the user presses the mouse
button in main window while the
box 1s alsp&ag‘ed. From the set

diAccept, srissDialogBox,
diGiveToMainwindow, diRefuse.

freeOnDismissal: BOOLEAN;  “If TRUE, the dlalogBox object s
automatically freed by the ToolKit
_ when the dialogBax is taken down.
METHODS:
CREATE (object: TG)ject., heag: THeap; lt.sReslzmlmy- BOOLEAN;
t.sKeyRmpu'lse,

itsResizability indicates whether or not there is a size control box.
ltsl—bimt is the vertical size of the dialog box.

“itskeyResponse is the dialog's response to keystrokes, from the set:-
diAccept, diDismissDialogbBox, diGiveTaMainwindow, and diRefuse.
lwnespu\selstr\ea!alog‘srespawewtneuserpresmgme
mouse button in the menu bar, from the set: diAccept,
diDismissDialogBox, diGiveToMainwindow, and diRefuse,
itsDowninMainwindowResponse is the dialog's response to the user
pressing the mouse button in the main window, from the set:
diaccept, diDismissDialogBox, diGiveToMalnwindow, and diRefuse.

TD1alogBoX.CREATE creates an object of type TDlalogBox
Appear; |

TODlalogBox.Appear displays the dlalog box.
BeDismissed; '

TDialogBox.BeDismissed removes the dlalog box from the display In
the default manner, usually by the user pushing the default button.

Disappear;
TDialogBox.Disappear removes the dialog box from the display.

1. Although this class must be subclassed to be used, that is usually taken
care of by the Dialog Bullding Block, which defines class
TDlalogwindow.

2. Dialogmmsareuwdwgatrerommmmterseusemngsfmn
the user.

-34



Lisa ToolKit Reference Manual , Part Il Class Reference Sheets

3. Your application should never call methods of TDialogBox directly.

Call Twindow.PutpDialogBox and Twindow.TakeDownDialogBax when
you need to control a olalog box.

4. To arrange for a dlalogBox to be freed automatically when it is taken
down, set the fleld freeOnDismissal to TRUE after creating the

dialogBox object.

11-35



LIsa ToolKit Reference Manual , Part Il Class Reference Sheets

CLASS:  TDocDirectory

SUPERCLASS: TObject
DEFINED SUBCLASSES: none
INHERITED DATA FIELDS: none
DATA FIELDS: window: TWIndow; The window object of this
oocument.
classworle TClassworld; Contains information on all classes

used by this process.
METHOD YOUR APPLICATION MUST OVERRIDE:

CREATE (object: TObject; ItsHeap: THeap; itswindow: TWindow;
ftsClasswarle: TClasswonldy TDocDirectory;

itsHeap 1s the document’s heap.
itwindow is the window object of this document.

itsClassworld contains information on all classes used by this
process.

TDoCDirectory. CREATE creates an object of type TDocDirectory.
NOTES:

1. TDocDirectory is only used by the ToolKit. It is documented here for
your information.

2. TDocDirectory is used to create an object that lists all the classes used
by a process, and also points to the document's window object.

11-36



L/sa ToolKit Reference Marual Part Il Class Reference Sheets

weaCi ASS:  TDocManager
SUPERCLASS: TObject
DEFINED SUBCLASS: TClipboard
'INHERITED DATA FIELDS: none
DATA FIELDS: flles:

RECORD
R volumePrefix TFllePatly Desktop Manager volume
and prefix of OS flles.
For example, a possible
volumePrefix is
-PARAPORT-D101T135}.

R volume: TFilePath; Desktop Manager volume
of OS files.

R passwort TPassword; The password assigned
by the user to this

: : files.
saveExists: BOOLEAN; whether Save file is
known to exist and seem
readable.

w  shouldSuspendt: BOOLEAN; If TRUE (the default),

; the docManager should
Create and read suspend
files.

w  shouldToolSave: BOOLEAN;

If TRUE (default is
FALSE) and the tool is
opened (rather than a
document being opened),
it is allowed to create or
read flles.

END;

dataSegment:
RECORD
refrum: ARRAY (Lmaeegnems] OF INTEGER;

File System reference
numbers (refnums) of the
data segments used.

R preludePtr: TPPrelude; A pointer to the prelude
of the data segment,
where certain
information is kept, such
8s a handle that enables
the process to find the
window object and the

In-37



LIsg ToolKIt Reference Manual Part Il Class Reference sheets

formatting for printer
information.

R changes: LONGINT; Number of changes since
the last suspend or save.

R docHeap: THeap; _ The heap, which begins
after the prelude in the
| ~ ‘tata segment.
R window: Twindow; Trie window object for
: this
WR pendingNote: INTEGER; If()DN)TEalenthat
should be displayed when
the document contolled
by this docManager is
next activated.
R openedAsTool: BOOLEAN; TRUE {f the tool was
. opened instead of a
separate document.

METHOD YOUR APPLICATION MUST OVERRIDE:
CREATE (abject: TObject; itsHeap: THeap; itsPathPrefix: TFllePathy
TDocManager;

itsPathPrefix is the name of the volume containing the Desktop
Manager. Supplied by the ToolKit.

TDocManager.CREATE creates a docManager object.
Newwindow (heap: THeap; wMgric Twindowid} Twindow; DEFALLT;

heap is the document heap.
WM@D Is the lgentifier assigned to your window by the window
I.

Newwindow creates a window object for the document. You should
mvemlsnmeumaaummmrmmtofm

METHOD YOUR APPLICATION MIGHT OVERRIDE:
DfltHeapSize: LONGINT; DEFALT;
The return value is the default heap size.

DfitHeapSize retums the default heap slze. This value is docDsBytes,
a constant defined in UABC, currently 5120. You might want to
override this method to increase that value.

I1-38



L/sa TaoiKit Reference Marval Part Il CIass Reference Sheets

OTHER METHODS:
Complete (alliswell: BOOLEAN:

alllswell tells whether or not there is an error. TRUE indicates
there is no error.

Complete signals that the document controlled by this docManager is
finished processing.

Close (afterSuspend: BOOLEAN)Y:

tells whether or not this docManager was suspended.
TRUE indicates it was suspended.

Close closes the docManager's flles. aftersSuspend is TRUE If the
document was set aside by the user. TDocManager.Close calls

' CloseFiles.
Closefiles;

CloseFlles closes the flles controlled by this o
ager.  You can override this method if your application has its
own files that must be closed. In that case, end your method by
calling SUPERSELF .CloseFlies.

Open (VAR error: INTEGER; wmngriD: TwindowiD; VAR
OpenegSuspended:BOOLEAN);

error is an error number.
wMgrD is the identifier assigned to your window by the window

Manager.
OpenedSuspended is TRUE if the document was not closed, but only
suspended (set aside).

Open opens the flles controlled by this docManager. You should
never override this method.

OpenBlank (VAR error: INTEGER: wingriD: TwindowID)

error is an error number.
wMgrD is the identifier assigned to your window by the window

Manager.

OpenBlank opens new files for a new document. You might want to
override this method if you have non—standard flles to open.

I11-39



LIsa ToolKit Reference Manual Part Il Class Rerference Sheets

OpenSaved (VAR etror: INTEGER; wmgriD: TwindowID);
error is an error number.

wiMgrD Is the identifier assigned to your window by the window
Manager.

OpenSaved opens the saved flles managed by this docManager. You
might want to override this method if you have non-standgard flles to

open.
Opensuspended (VAR error: INTEGER; wingriD: TwindowID)

erTor 1S an error number.

wMgrID s the identifier assigned to your window by the window

Manager.

OpenSuspended opens suspended files managed by this docManager.

;?Jr{gmtwmttoovemdemismeumwyoumvemn-stamrd
es to open.

Revertversion (VAR error: INTEGER; wingriD: TWingowiD); -

erTor is an error number.
wMgriD is the igentifier assigned to your window by the window
Manager.

Revertversion reverts to the most recently saved versions of the flles
controlied by this docManager. Any changes made since the flles
were last saved are lost. You should never override this method.

- Saveversion (VAR error: INTEGER; volunePrefix: TFllePath; anaContinue:
BOOLEAN);

efTor is an error number.

:ﬁlunepteﬂx Is the ToolKit-assigned prefix for this docManager's
es.

anoContinue indicates whether or not the flles are closed after being

saved. TRUE leaves the flles open.

Saveversion saves the flles controlled by this cocManager. You
might want to override this method in order to save extra flles. If
you do, save your flles in two stages. First, write out your files
under temporary names. Then call SUPERSELF.Saveversion. The
ToolKit writes out its flles under temporary names and, when that
operation returns successfully, renames the temporary flles to the
permanent names, thus destroylng the old versions. Once
SUPERSELF SaveVersion retumns successfully, change the names of
your temporary files to their permanent names.

11-40



LIsa ToolKdt Reference Marval Part Il Class Reference sheels

Suspend (VAR error: INTEGERY
error Is an error number.

Suspend suspends the document controlled by this

- Suspension Is equivalent to setting aside a document. You mlgm
want to override this method to put your extra flles in some special
state,

Bind; DEFALLT;

Bind inserts the data segments controlled by this doctManager into
memory.

Unbind; DEFALLT;

Unbind removes the data segments controlied by this docManager
from memory.

NOTES:
1. The application must declare a subclass of TDocManager.

2. Thewwlageronjectkeepsmcksofﬂlesmdomaseg’nemsmedbythe
prmm E;reryTwMtpxmthvaanoreachopen
ndow or icon.

3. The docManager handles document suspension, save, and restore commands.
It saves the document by writing the contents of the heap to a flle. when
the document Is later reopened, the saved flle is read back into the heap.
If you want to save your files in another way, you will have to
reimplement SaveVersion, Suspend, OpenSaved, and OpenSuspend. See the
interface unit UABC for more information on these methods.

a. Generany, applications do not need to reimplement any routines except for
CREATE and NewWindow, and also do not need to deal with any of the

data flelds of TDocManager.

5. If you create additional flles that need to be managed, you might need to
reimplement OpenBlank, OpenSaved, and OpenSuspended.

6. By default, when your process is not active, and It receives a note, the
active process Is interrupted and the note Is displayed. If you want, you
can intercept the note, and set pendingNote to TRUE. The note is
displayed when your process is activated by the user.

7. You might need to change the default values of shouldSuspend and
shouldTooiSave, If the user can open the tool directly. Sometimes you do
not need to create a suspend flle because you do not need to save any
state information. In that case, you might want to set shouldSuspend to
FALSE. Wwnen that is done, the effect of setting aside the tool Is the
same as putting the tool away. Pstr\erearemownmtstos\spenu it

ywmlmtwmtto

tool Is put away, the

g
X
:
4
g6
g
3
8
&
:
i

11-41



L/s& TaaIKItRemW Part Il Class Reference Sheets

datasegr_\entsitusesaresavedwitnlt. when the user opens the tool
again, the data segments are re-lcaded, and the tool is in the state in
which it was left. See the following notes for more infomation.

8. Set shoulgSuspend and shouldToolSave to FALSE if you 0o not want to
save?nystateWorrnaimwrentneusersetsasidethetoolandtumsoff
the Lisa.

9. Set shouldSuspend and shouldToolSave 10 TRUE if you want to save state
information when user saves the tool. Note that in this case, the user will
not be able t0 go back t0 a blank document unless you provide a menu
command to 00 SO.

11-42



LIs& ToolKit Reference Marua! pPart Il Class Reference Sheels

CLASS TFlle.

SUPERCLASS: TCollection
DEFINED SUBCLASSES: hone
INHERITED DATA FEELD: size: LONGINT: ‘fl;nrlmrofbytesintnedlsk
‘ 1e.
Other flelds are inherited, but are irrelevant for flles.
DATA FIELDS:  patix TFllePath; The pathname of this flle.

passworc TPassword; The password for this flle.
scanners: TList {OF Scamner}; meme&:amfortmsme.

CREATE (object: TObject; | TFilePatry; 1
: ; THeep; itsPatrx ; itsPasswora:
TPassword) er?q:: '

itsPath is the flle system pathname for this file.
itsPassword Is the password for this file.

TFile.CREATE creates an object of type TFlle. If itsFllePath is in
the catalog, the ToolKit finds out the size of the file, and puts that
value in fllesize. If the disk flle does not exist, flle.size is set to 0.

Free; OVERRIDE;
Free closes the flle and releases the heap space used for this flle. It
also frees this file's flleScanners.

Clone (heap: THeap} TObject; OVERRIDE; ({illegal}

heap is the document's heap.
The return value is a flle.

You should never use this method. It is called by the ToolKit
occasionally. TFile overrides the TObject implementation of Clone so
that Clone checks file system errors.

MemberBytes: INTEGER; OVERRIDE;
TFlleMemberBytes always retums 1.
Scanner: TFlleScanner;
Scanner creates a flleScanner for this flle.
ScannerFrom (firstToScan: LONGINT; manipx TAccessesy TFileScanner;

firstToScan is the place in the flle where reading or writing
should begin, measured in bytes.
menip is fRead or fwrite.

ScannerFrom scans the flle from the given point.

11-43



LIsa ToolKit Reference Manual - Part Il Class Reference Sheets

W(VARWM‘E@,W&TPW

error is an error number.
newPassword is the new password for the file.

ChangePassword attempts to give the flle a new password. If the
operation is successful, fllepassword is changed to the new value
and error equals 0 (zero). If the operation is not successful, error
imleates the reason.

Delete (VAR ermor: INTEGERY
error is an error number.

Delete attempts to delete the file. If the operation Is successful,
error equals 0 (zero) If the operation is not successful, error
indicates the reason.

Exists (VAR error: INTEGER)Y BOOLEAN;

error is an error number.
" The return value indicates \metnerormtmefne exists.

Exists attempts to find out If the file exists. If the flle does
exist, the retumn value Is TRUE; otherwise the value is FALSE.
If flleExists cannot find out whether or not the flle exists, error
indicates the reason.

whenModified (VAR errar: INTEGER)Y LONGINT;

error is an error number.
The retumn value Indicates when the flle was last modifled.

whenModified attempts to find out when the file was last
modified. 1f the operation is successful, error equals 0 (zero). 1If
the operation is not successful, error indicates the reason.

Rename (VAR error: INTEGER; newflleName: TFilePath);

error is an error number.
newFlieName is a pathname.

Rename attempts to change the name of the flle. If the
operation Is successful, error equals 0 (zero). If the operation is
not successful, error indicates the reason.

verifyPassword (VAR error: INTEGER; password: TPasswordy BOOLEAN;
€ITor 1S an error number. '

password is a string of type TPassword
The retumn value indicates whether the password is correct.

verifyPassword finds out whether or not password is valid for the
flle. Thisig'oresSELF.passwgm



Lise ToolKit Reference Marug! Part [l Class Reference Sheets

NOTES: ]
1. This class Is used to manipulate the catalog entry for disk flles.

2. In order to read or write the flle, create a flleScanner. See the reference
sheet on TFileScanner for more information.

11-45



Liss ToolKit Reference Manual

CLASS: TFleScanner

SUPERCLASS: TStingScanner

DEFINED SUBCLASSES:  none

~ Part Il Class Reference Sheets

N'ERITEDDATAFIELEE R collection: TCollection; mmnemscmm

R position: LONGINT;

R Increment: INTEGER;

R atEnd: BOOLEAN;

R actual: LONGINT;

DATA FIELDS: aoesseses: TAccesses;

refnurne INTEGER;
emor: INTEGER;

11-46

The current position of
the scanner. The scamner
position is always
between, before, or after
members: O=before first,
size+1=after last
The change in position
for every scan: always +1
flleScanners.

“for

when this Is TRUE, the
next Scan call retumns .
FALSE, signalling the end
of the scan. The VAR
parameter of the Scan
method, which normally
contains the next object
in the flle, is unchanged
after the Scan call.
TRUE {f the end of the
list is imminent, so that
the next Scan call will
retum FALSE.

The number of bytes
transferred in the last
transfer operation.

The set of allowable accesses to
the file, from the set (fRead,
fwrite, fAppend, fPrivate)

The file system reference number
“for this flle.

The first error or waming
encountered.



L/sa Toolit Reference Manugl Part Il Class Reference Sheets

METHODS:
CREATE (object: TObject; itsFile: TFile; manip: TAcCcesses)
, TrileScanner;

itsFlle Is a flle object.

menip is a set of allowable accesses to the flle, from the set
(th;c"ag', fwrite, fAppend, fPrivate) More than one can be used at
a

TFlleScamner.CREATE creates an object of type TFileScanner,
which is used to access itsFile. itsFlle must exist before a
flleScanner can be created for it; however, you can use a
TFlle.Create call in your TFileScanner.Create call, which will

create the necessary flle object.

Allocate (slack: LONGINTY OVERRIDE;
slack Is the amount of space aadded to the OS flle, in bytes.
Allocate adds empty space to the OS flle, so that subsequence
write operations work more quickly.

Append (character: CHAR)Y OVERRIDE;
cheracter is a new member of the flle.

TFile.Append can only be called when the flleScanner is at the
end of the flle; that is, when flleScanner.position is equal to
fllesize. Append adds character to the end of the flle. position
isadj:stsog{aodlrglvsomatmeﬂmmmattm
end of the flle.

Close; OVERRIDE;
Close closes the OS flle scanned by this flleScanner object. The

file object and the flleScanner object are not deallocated; you can
use the flleScanner.Open method to reopen the OS file.

Compeact; OVERRIDE;
Compact rewrites the file so that it uses the minimum amount of
space necessary. Any unused disk pages are retumed.
Delete; OVERRIDE;
TFileDelete can only be called when the fileScanner is at the end
of the flle; that is, when flleScanner.position is equal to fllesize.
Delete deletes the last character in the file. position is adjusted
by subtracting 1. |
DeleteRest; OVERRIDE;
Delete deletes all characters after the current position. posl
is unchanged. ,

-47



Lisg raolKIt Rererence Mg/ Part Il Clsss Reference Sheets

Oone; DEFALLT;

Done signals that you are finished using this flleScanner. The
next call to flleScanner.Scan retumns FALSE, as if the end of the
flle had been reached. uuikewmtneeirnnofmemels

Free; OVERRIDE;
Free deallocates this flle&m'er object. If this is the last
flleScanner for the flle, flleFree is called.

FreeObject; OVERRIDE;

Free deallocates this flleScanner object and closes the OS file
accessed by this flleScanner. The disk flle is closed.

Obtaire CHAR; OVERRIDE;
Trereunnvaluelsaetma:terfmnuwﬂle.

~ Obtain retums the current character.

Open; OVERRIDE;
Open opens an OS flle previously closed by flleScanner.Close. The
file must have been closed by this flleScanner.

Replace (character: CHAR), OVERRIDE;
character is a character that replaces the current character.

Replace removes the current character from the flle and replaces
it with the given character. The new character is now the
current character.

Scan (VAR nextChar: CHAR) BOOLEAN; OVERRIDE:

nextChar is the next character from the flle.
- The retum value is FALSE if the end of the file has been reached
or flieScanner.Done has been called.

Scan begins at the beginning of the file and, each time it Is
called, retums the next character. The retumed character Is
referred to as the cwrent character. The value of Scan Is TRUE
untll Scan is called after the last character in the file Is reached,
or until flleScanner.Done has been called. If the end of the file
was reached, and Done was not called, the value of nextCher Is
NI If Done was called, nextChar keeps the last value it had.
when method Done is called or when the scanner reaches the end
of the flle, the scanner Is freed at the next call to scanner.Scan.

Seek (newPosition: LONGINTY OVERRIDE;
newPosition is the location to which you wish the scanner to



L/sa Toolit Reference Manue! Part Il Class Rererence heets

move. fllePos = 0 is the beginning of the flle.

Seek moves the current scan position to newPosition. It transfers
no data.

Skip (deltaPos: LONGINTY OVERRIDE:

deltaPos is the number of bytes you wish the scan position to
move within the flle. A positive value moves the position toward
the end of the flie; 3 negative valué moves the position toward

the beginning of the flle.

Skip moves the scan position deitaPos bytes forward or backward
within the file. It transfers no data.

XferRandom (wrdmway' xReadwrite; pFirst: Ptr; numBytess LONGINT;
mode: TIOMode; MLWO\ERRII,

whichway is elther xRead, xwrite or xSkip.

pFirst points at the first byte to read data into or write data out
. of. ltlsl?meawlmasdp.

numBytes Is tnewmerofbytesreau,wmtenorsklppea.
mode is mAbsolute, mRelative or

offset is a byte position from the beginning of the file when mode
is mAbsolute, or from the current flleposition if mRelative.

XferRandom reads, writes or skips numBytes bytes of the flle,
starting at the Indicated position. All the other 1/0 methods call
this method, XferRandom calls the Lisa OS directly. Reading
and writing are always done left to right (from the beginning
towards the end) regardiess of the scanDirection

XMW(MWB{MHWWMPU - numBytes:

is either xRead, xwrite or xSkip.
pFirst points at the first byte to read data into or write data out
of. ltlsl red when whichway equals xSkip.
s the number of bytes read, written or skipped.

xmmm,mwsormmmmymomof

the file. Reading and writing are always done left to right (from

the beginning towards the end) regardiess of the scanDirection
XferPString (whichway: xReadwrite; pStr: TPString)

whichway Is either xRead, xwrite or xSkip.

pStr is & pointer to a string to read or write.

XferFile reads a string pStr™ from a flle or writes it to a flle. If

Mm ve 1smgul§?esunaumsumgmn$t be long enough.
entire or s transferred, ess of tne current
ﬂmﬂ&n

I1-49



Lisa ToolKit Reference Manugl Part Il Class Reference Sheets

FALURE CONDITIONS: Reported as Lisa OS error codes in the fleld
‘ . fies

NOTES:

1

2.

3.

L1701,

A flleScanner is used to access a stored data flle, to scan it, and to
manipulate its individual elements.

Before you can use a fileScamner o access a flle, the file must be opened
by TFlle.CREATE.

The Refnum variable is used by the ToolKit and the Lisa OS and should
not be altered.

The Actual variable contains the number of bytes of data most recently
transferred to or from the flle. It is the same as the number requested
Z.mes)s: there is an error. In that cass, fileScanner.error is greater than 0
Zero

flleScanner.error contains the code of the first error (or the first waming,
if there was no error) encountered since the error variable was set 10 0.

" waming codes are negative; error codes are positive.

The Xfer methods are designed so that the same procedure may transfer
data to or from a file.

Ywmaymvemretlmanemopmmmemﬂleatme
same time.

WARNING: No checking is done that sufficient space has been allotted for
data reads at pFirst” or pstr”.

meappuoetimaoesmtmatousewm\ermreedmwme
ToolKit document files; the application's docManager does that for you.

11-50



LIsa ToolKit Reference Marug/ Part Il Class Reference Sheets

CLASS: THeading
SUPERCLASS: Timage
DEFINED SUBCLASSES:  hone
INHERITED DATA FIEELDS R extentLRect: LRect; The size of the entire
R view: TView; The view to which this header

+ . or footer is attached
allowMouseOutside: BOOLEAN;
Not significant for headings.

DATA FIELDS: printManager: TPrintManager; The printManager for the view with
which this heeding is associated.

pageAlignment: TPageAlignment.
From the set: aToplLeft,

aTopCenter, aTopRight,
aBottomieft, aBottomCenter,

cBottomRight.
offsetFromAlignment: LPoint; The vertical and horizontal offset
' : from the headings home edge Or

comer. See the notes below.
oddOnly: BOOLEAN; If TRUE, this header or footer is

printed only on odd numbered

pages.
evenOnly: BOOLEAN; If TRUE, this header or footer is
| printed only on even numbered

peges.

minPage: LONGINT; The first page to have this header
or footer.

mexPage: LONGINT: ‘melastpagetonavetmsneader
or footer.

METHODS:

ChangePageAlignment (newPageAlignment: TPageAlignment)
newPageAlignment is a new value for heading.pageAlignment.
THeading.ChangePageAlignment installs newPageAlignment as the new
page alignment for the heading.

AdjustForPage (pagelNumber: LONGINT; editing: BOOLEAN) DEFAILT;

WIsU\emroHMpagewmmmmwm
p

editing indicates whether or not this method is being called from the
Headings and Margins dialog, or a similar application-defined dialog.

THeading. AdjustForPage does nothing. You can relmplement it so
matltmatesmymessarynmlﬂuuomtotnereanmumsmnd

II-51



Lisa ToolKit Reference Marnual  Part Il Clsss Reference Sheets

be made before printing it on the given page. AdjustForPage is
called just before the heading is printed on the page.
Draw;

THeading.Draw draws the heading in the pageview.
LaunchLayoutBox (view: TViewk Timage;

view is a view in which layout will-take place.
The return value is an image, usually a layout box.

THeading.L aunchi_ayoutBox does nothing. If you want the user to be
able to manipulate the headings of the printed version of your view
using the Headings and Margins dialog, you must redefine this
method. The simplest way of doing so iIs to retum
mmﬁ (see the interface of UDialog for
culars). lfyouwmtemungwneposime,ywmeawdeﬂm
your own subclass of TPagelayoutBox, and have LaunchiayoutBox
retum and instance of that class. ,
LocateOnPage (editing: BOOLEANE
editing indicates whether or not this method is being called from the
Headings and Margins dialog, or a similar application-defined dialog.
You should never need to override this method
THeading.l ocateOnPage places the heading properly on the page.
OffsSetBy (deltal Pt: LPoint)
deltal Pt a vertical and horizontal change, expressed as a point
relative to (0,0}

OffSetBy shifts the heading's extertLRect by the values given in
deltal Pt If your subclass of THeading has data structures in it that
use view-relative locations, you should redefine OffSetBy so that
those locations get adjusted. Call SUPERSELF.OffSetBy after you do
your application-specific offsets.

1. THeading defines header, footer, and margin images for use in printing.
2. Applications rarely need to subclass or to refer directly to instances of

4. The value in heading.pageAlignment determines, in general, where on the
the heading is located. A heading can have a pageAlignment that
the base point for the heading at the top center, top left, top rignt,
bottom center, bottom left, or bottom right of the page. The values

1-52



Lisa ToolKdt Reference Manuel Part I Class Reference Sheets

contained in offsetFromAlignment are used to offset the base point of the
heading from the given pageAlignment point.

S. where the base point of the heading is located depends on the
pageAlignment polnt.. The base poirg.oli: al\;ays the polntiflnmtne heading
coresponding to the pageAlignment L. For example,
Mwmtsava?mmlntmwmlg:l?utgpleﬂ
comer. If the pageAlignment Is aTopCenter, the base point o
is Its top center. In effect, the pageAligment defines a justification. A
WMaTmormdeﬂmaMmmus
always centered around the point defined by
offsetFromAlignment. ApamAllgMofaTqmguormerlgn
defines a heading that has its right edge fixed, regardiess of the length of
the heading

6. Because pageAlignment deflnes a point on the edge of a page, and many

printers cannot print on the edges of pages, a heading generally has a
non-zero value in offsetFromAlighment. :

- 7. headings can be determined dynamically, so their size can change from
page to page. AGjustF is used to get the heading's extent correct
(and its contents as desi Locateapgeoffsetswmlgwme

posltlmmtrnepagem:atea by its pageAlignment, offsetF romAlignment,
and extentl Rect.

8. ToolKit applications generally use TLegendHeading, defined in the Dialog
Bullding Block to produce headings. If you use that, the user can use a
menu command to call up a dialog box that allows definition of headers.
TLegendHeading headings can only be one line long. See the
documentation on the Dialog Bullding Block for more information.

I1-53



Lisa TaoilKit Reference Marual ' Part IT C‘I&%‘ Reference Sheets

QASS  Timege

SUPERCLASS: TObject
DEFENED SUBCLASSES: TView
THeading
INHERITED DATA FIELDS none
DATA FIELDS: R extentLRect: LRect; *The box of the entire
image, in view coordinates.
R view: TView; The view in which this image
appears.

allowMouseOutside: BOOLEAN; FALSE by default. when FALSE,
and the mouse point is outsige the
image, the point is converted to the
closest point within the image. If
TRUE, the point is not converted.
In that case, mause points can be
outside extentiRect and,
particulany, can be negative. This
feature exists primarily for use
with sidebands. Note that your

program must be prepared to handle
mousepoints outside extentli Rect.

METHODS YOUR APPLICATION MUST OVERRIDE: |
CREATE (object: TObject; heap: THeap; itsExtentd Rect; itsView: TView}

itsExtent is the size of the image.
itsvView is the view in which this image appears.

Timage.CREATE creates an object of type Timage. Normally, your
application does not deal directly with Timage or its methods; you
needlto subclass TView, and implement a CREATE method for your
subclass. ;

Draw;

You should implement a Draw method in each descendant of Timage
to draw the image. Your Draw method should assume that thePad is
set up to draw in one pane. (See TPad in Chapter 3 for an
explanation of thePad) : ,

I1-54



LIs8 Toolkit Reference Marusl Part II Class Reference Sheets

MouseRelease; DEFALLT;

You may write a MouseRelease routine that takes some
application-dependent action when the mouse button is released.
Timage.MouseRelease calls selectionMouseReleass.

MouseTrack (mPhase: TMousePhase; mouseLPt LPointy DEFALLT;

mphase is the mouse state: , MMove, or mRelease,
mouselPt is the view-relative po! t where the pointer is located.

TimageMouseTrack dispatches mouse events to MousePress,
MouseMove, or MouseRelease.

React ToPrinterChange; DEFALLT;

ReactToPrinterChange is meant to allow an imege to react to a
change in the choice of properties of the printer for which the -
document is formatted. Timage.ReactToPrinterChange does nothing.
(This method is implemented for you by Tview.)

RecaicExtent; DEFALLT;
RecalcExtent 1s intended to instruct an image to recompute its
extentRect. Timage.RecalcExtert does nothing.
Resize (newExtent: LRecty DEFALAT;
newExtent is the new image size.
Resize sets the extentLRect of the image to newExtent.
SeesSameAs (iImage: Timage} BOOLEAN; DEFALLT;

image is an object of type Timege or a descendant of Thmage.
The return value indicates whether or not image is the same as SELF.

Timage.SeesSameAs compares image with SELF. If they are the same
object, SeesSameAs retums TRUE. You can re-implement

SeesSameAs to retum TRUE whenever you think that is sensible. For
example, you might want to retumn TRUE |f the two images are
derived from the same set of objects.

FAILURE CONDITIONS: none
NOTES:

1. You do not usually deal directly with Timage. You normally subclass
Tview and then use the subclass to create the application's view, or one
of the application's views.

2. An image defines a portion of a view.

3. The image's extentl Rect describes, in 32-bit view coordinates, the
bounding box of the portion of the view occupied by the image.

[1-57



Lisa ToolKit Reference Marws/ Part Il Class Reference Sheets |

8. Aside from the subclasses of Timage listed above, subclasses of Timage
are used extensively in the text and dialog bullding blocks. Those
subclasses include: TTextimage and TParalmage from the text bullding
block, and TDialogimage, TDialog, and a number of other dialog
components from the dialog building block. See the documentation of
those bullding blocks for more information.

11-58



L/sa ToolKit Refererce Morval Part Il Class Reference Sheels

Tulst

CLASS

SUPERCLASS: TCollection

DEFINED SUBCLASSES: hone

INHERITED DATA FEELDS R size: LONGINT; The number of real elements in

this list, not counting the hole.
.This is a LONGINT for the
“bénefit of huge collections, such
gmlt:g:tam Itis
ways INTEGER range
for instances of TList
gynStart: INTEGER; The number of bytes from the class
pointer to the dynamic data area
holeStart: INTEGER; 0 means hole at the beginningvalue
of size means hole at the end.
holeSize: INTEGER; The initial size of the hole, 4
measured in a number of members.
holeStd INTEGER; How much to grow the collection
bylftnemlwzegoeswo.

DATA FIELDS: none

METHODS:

CREATE (object: TObject; itsheap: THeap; InitlalSlack: INTEGER} TList;
tnitialSlack Is the size of the initlal hole, In member-sized units.

TList.CREATE creates a new object of type TList initialSlack is a
hole for list members. Because the list is created with a hole, the
insert methods can be used to initialize the list, without allocating

any extra space.
At (: LONGINTY TObject; DEFALLT;

i iIs an ordinal position in the list.
The retumn value Is an element from the list

At retums the element at the given position in the list
Subclasses generally override At

Detug (numievels: INTEGER; memberTypeStr: S255; OVERRIDE;

numi_evels is the number of levels of detall printed.
memberTypeStr is only relevent for arays.

DalﬂsiseaneuwamNtdemggerw print detalls about
this numLevels determines how many levels of detall are

printed. when numi_evels is:
0 (zero), the debugger prints just the class of list;
1, the debugger also prints size of list;



Llsa ToolKiIt Reference Maral Part Il Class Reference Seels

2, the debugger also prints a compacted list of member classes

greater than or equal to 3, the debugger also prints class, size,
and calls Debuginumi_evels—1) on members of the Hst

Debughernbers;
DebugMembers is present in debugging version only; it prints
elements on the altemate screen,, .

DelAll (freeOCic BOOLEANY DEFALLT;
freeOld indicates whether or not the objects in the list are to

DelAll deletes all the elements of a list. If freeOld is TRUE, the
objects to which the list element point are also deallocated by
calling Free. The list itself is not deleted.

DelAt (1: LONGINT; freeOlc BOOLEAN) DEFALLT;

i is an ordinal position in the list.
freeOld indicates whether or not the original object is to be
deleted.

DelAt deletes the element at position L. If freeOld is TRUE, the
object to which the list element points is also deallocated by
calling Free. ‘

DelFirst (freeOlc: BOOLEAN)Y

freeOld indicates whether or not the object in the list is to be
freed.

DelFirst deletes the element at the beginning of the list. If
freeOld is TRUE, the object to which the list element points is
also deallocated by calling Free.

Dellast (freeOld: BOOLEAN);

freeOld indicates whether or not the object in the list is to be

DellLast deletes the element at the end of the list. If freeOid is
TRUE, the object to which the list element points is also
deallocated by calling Free.

DeiManyAt (It INTEGER; howMany: INTEGER; freeOict BOOLEANY
DEFAILT; .
1 is an ordinal position in the list.
howMany indicates the number of list elements to be deleted.

freeOld indicates whether or not the objects in the list are to be
freed.

DeiMenyAL deletes a number of elements from the list. The first

I1-60



Lisa ToolKit Reference Marugl pPart Il Class Reference Sheels

deleted element Is at position L If freeOld is TRUE, the objects
t'i_o which the list elements polnt are also deallocated by calling
ree.

DelObject (object: TObject; freeOlc: BOOLEAN):

object is an object.
freeOld indicates whether ar not the object in the Iist is to be
freed.

DelObject deletes all occurrences of object in the list. If fFree
is TRUE, the object is deallocated by calling Free.

Each (PROCEDURE DoToObject{object: TObject)l DEFAULT;

DoToObject is @ PROCEDURE that takes an object as its
argument.

Each applies the given PROCEDURE to each element in the lst
First: TObject; DEFALLT;

First retums the first element in the list
InsAt (: INTEGER; abject: TObject) ABSTRACT:

i is an orainal position In the list
object is an object.

InsAt inserts an element in the list. The newly inserted element
occupies position L

InsFirst (object: TObjecty DEFALLT;
object is an object.

InsFirst inserts an element at the beginning of the list. The
newly inserted element occupies the first posmon in the list

InsLast (object: TObject)
object is an object.

InsLast inserts an element at the end of the list. The
inserted element oocwiestnelastposi tnt.nenst.

Last: TObject; DEFALLT;
Last returns the element at the end of the list.
ManyAt (I, howMany: LONGINTY TList '

i is an ordinal position in the list.
howMany is a number of elements.

ManyAt retums a list with the elements from the original list
beginning at position 1 and continuing through howiMany elements.

newl

~<

nn-61



L/sa ToolKIt Reference Marual - pPart ll Class Rererence Sheets

MemberBytes: INTEGER;

MemberBytes returns the amount of space, in bytes, taken up by
each element in the list. As lMsts contain only handles, this
method always returns 4. (This method is more

types of collections.)

PopLast: TObject;

Pop retumns the element at the end of the list, and then deletes

tt,gat element from the list. element:=SELF.PoplLast is equivalent

poplLast== SELF Last;
SELF.DellastFALSEY
Pos (after: LONGINT; object: TObjecty LONGINT;
after is an index number in the list
object is an object that might be in the list

'meretumval\.leismeiruexmmeroprct,or,ifm)ectismt.
found, after. :

Pos searches the Hst from after to the end. If object Is found, the

index number of abject is returned. Toseachtneenmeust,use
after of 0 (zero)

PutAt (I: LONGINT; object: TObject; freeOlc aou_sm); OEFALLT;

i is an ordinal position in the st

object is an object handie.

freeoml old indicates whether or not the original object is to be
dele

PutAt deletes the element at position 1 and replaces it with
object. If freeOid is TRUE, the object to which the original list
element points is deleted. Subclasses generally override PUtAL

Scanner: TListScanner;
The retum value Is a listScanner for this list

Scanner retums an object of class TListScanner, allowing use of
listScanner methods. This is equivalent to

list.ScannerFrom (1, scanForward);

Wrom (rirstToScan: LONGINT; scanDirection: TScanDirectionk
TListScanner; DEFALT;

~ firstToScan is a position in the list
scanDirection scanForward or scanBackward
The return value is a new arrayScanner.

ScannerFrom retums an object of class TListScanner, with
listScanner.Pusition equal to firstToScan minus one (or plus one, if

11-62



Liss TaolKIt Refererce Marxa/ Part Il C/ass Rererence Sheets

the scanDirection is scanBackward), so that the first call to
HistScanner.Scen retums the address of the record at firstToScan.

StartEdit (withSlack: INTEGER}
withSlack Is the new value for holeStd

StartEdit changes the value of holeStd to withSlack so the next edit
call creates a hole of size withSlack, so that subsequent edit calls
act more quickly.

StopEdit;
sm;fmtmmvesmmleﬂunmustausetsmmwwo(zero).
Any subsequent edit call removes any hole it forms.

FAILURE CONDITIONS: Heap can't grow.
Object size > 32K bytes.
Deleting from an empty list.
Subscript out of range.

1. This gefines all lists of objects used in the ToolKit.

2. It is faster to traverse a list using Each than it is to use a listScanner.
However, insertion and deletion are not possible auring traverses using
Each. An example of proper use of Each to traverse a list is:

FUNCTION PeelGoodBananasiuncie TList:
FUNCTION Guotna'a'dobj: TObjecty .
VAR banana TBanang;
BEGIN
banana- TBanana(obj:
Bg) banana.good THEN banana.Peel;

BEGIN
bunch.Each(GoodBanana);
END;
3. lists have three modes: creste mookg edit mook and statlc mooe

4, wnhen you first create a list, it is in creste mode. You define an
initialSlack value in the CREATE call. The list is given enough empty
space to hold indtialSlack object-references. That space is the hole. As
you add members, the space in the hole is used for the new
object-references. The amount of space allocated to the list does not
change until you flll up the hole with object-references. You can also
call list.StopEdit, which removes the hole from the list.

S. When the hole is filled, the list enters static mode. In static mode, no
hole is ever maintained. If you add a member, the list is copied into a
space large enough to hold the object-reference for the additional

I1-63



Lisa ToolKit Reference Manal Part Il Class Reference Sheets

member._ If you delete a member, the extra space Is freed.

6. Enter edit mode by calling list.StartEdit{withSlack) In edit mode, a hole
big enough for withSlack object-references is initially created. As you
add members, the size of the hole decreases. When the hole is entirely
filled, the space allocated to the list is increased, so there Is a new hole
big enough for withSlack object-references. If you delete members, the

extra space is added to the hole. Call li§t.StopEdit to stop editing. Any
space taken up by the hole is then freed.



Llsa TookIt Reference Mgl

CLASS:  TListScaner

SUPERCLASS:

TScanner

DEFINED SUBCLASSES: none , .
INFHERITED DATA FIELDS R collectionr TCollection; The list being scanned.

METHODS:

R position: LONGINT;

R increment: INTEGER;

scanDone: BOOLEAN;

R atEnt BOOLEAN;

Part Il Class Reference Sheets

The current position of
the scanner. The scanner
position is always

between, before, or after

members: O=before first,
size+1=after last.

The change in position

CREATE (object: TObject; itsList: TList; itsinitialPositiore LONGINT;
itsScanDirection: TScanDirectiony TListScanner;

itsList is a list object.

itsinitialPosition is the initial ordinal position in the list
itsScanDirection is scanForward or scanBackward

TListScanner.CREATE creates an object of type TListScanner,
which is used to access itsList. itsList must exist before a
listScanner can be created for it; however, you can use a

TLISLCREATE call in

11-65

TListScanner.CREATE call, which will
create the necessary object.



Lisa TaolKit Reference Manual Part Il Class Reference Sheets

Append (object: TObjecty DEFALLT;
object is a new member of the list.

adds object to the list immediately after the current
position. position is adjusted by adding 1, so that the next Scan
retums the object after the new object.

Delete (freeClct BOOLEANY DEFALLT;

freeOld indicates whether or not the object deleted from the list
is to be freed.

Delete deletes the object at the current position. position is
adjusted by subtracting 1.

DeleteRest (freeOl: BOOLEAN): DEFALLT;

, frea)ldimImteswretnerormtmeoojectSOeleteomnuenst
~are to be freed.

Delete deletes all objects after the current position. position is
unchanged.

Done; DEFALALT;

Done signals that you are finished using this listScanner. The
next call to listScanner.Scan retums FALSE, as if the end of the
list had been reached. Unlike when the end of the list is reached,
mever,mrewnmobjectmmmmnsm\ameo.

Free; OVERRIDE;

Free deallocates t.nis listScanner object.
Obtaire TObject; DEFALLT;

The retum value Is a object from the list.

Obtain retumns the current object without advancing position.
Replace (object: TObject; freeOlcc BOOLEAN); DEFALLT;

abject is a object that replaces the current object.
freeOld indicates whether or not the object deleted from the list
is to be freed.

Rqﬂwemvesmeammtmpctfrmmensta’ureplaceslt
with the given object. The new object is now the current object.

Scan (VAR nextObf TObject BOOLEAN; DEFALLT;

nextObj is the next object from the list.
The return value is FALSE if the end of the list has been reached
or listScanner.Done has been called.

Scan begins at the beginning of the list (or the end, if
scanDirection is scanBackward) and, each time it is called, retums

1-66



Liss ToolKit Referernce Marsl Part IT Class Reference Sheets

the next object. The retumed object is referred to as the cwzrent
object. The value of Scan Is TRUE until Scan Is called after the
last object in the list is reached, or until listScanner.Done has
been called. If the end of the list was reached, and Done was not
called, the value of nextObj is NIL. If Done was called, nextObj
keeps the last value it had. when method Done is called or when
the scanner reaches the end of the list, the scanner is freed the
next time listScanner.Scan Is called: -

Seek (listPos: LONGINT);
nstPosisthelomtlmtowmmywwlsntnemtomve.
listPos - 0 is the beginning of the list.

Seek moves the current scan position to lstPos. It transfers no
data.
Skip (celtaPos: LONGINTY

deltaPos is the number of bytes you wish the scan position to .
move within the list.- Apositivevaluemtneposmontoward
the end of the list; a negative value moves the position toward

the beginning of the list

Skip moves the scan position deltaPos elements forward or
backward within the list. It transfers no data

- FAILURE CONDITIONS: Attempt to insert, delete or replace after a delete has
occurred at the same position.

NOTES:

1. A listScanner is for moving through a list and manipulating the individual
elements. list objects are created through class TList.

2. You never allocate a scanner directly; one is allocated when you call
list.Scanner.

11-67



Lisa Toolkit Reference Marnusl Part II Class Reference Sheets

CLASS: TMarginPad
SUPERCLASS: TPad
DEFINED SUBCLASSES: none
INHERITED DATA FIELDS:  See TPad

DATAFIELDS: R view: TView; The view to which this marginPad
‘relawe.
R pageNumber: LONGINT; pﬁeoftnevlevumpﬂms
wltn
R bodyPat TBodyPad; The bodyPad talnlngthe
printable version of the body of the
page.
NOTES:

1. A marginPad is the output port for page headings and other page
adormments that are printed on a page on the printer or displayed in the

. image of a page in page preview mode.
2. Application programs usually do not need to subclass or otherwise deal
with T™MarginPad. d

I1-68



LIsa ToolKit Reference Marl Part Il Class Reference .9'th$

CLASS: = TMenuBar

SUPERCLASS: TObject
DEFINED SUBCLASSES:  hone
INHERITED DATA FIELDS: none

DATA FELDS: u_omAmAY[an]Cme
+Each element is TRUE if the

corresponding menu has been
inserted into the menu bar.
mapping TAITay; Relates command numbers to menu
and item Indices.
numiMenus: INTEGER; The number of menus used by this

application.
numCommands: INTEGER; Total number of commands in all
the application’s menus.

mYO.RAPPLICATlQ’JWG-ﬂCPLL.

ammmmwmmmm WUI':TPSW

destCmd is the number of a command In one of the menus. If
destCmd does not exist, this method has no effect. ’
templateCmd is the command number associated with a command
name template. If templateCmd does not exist, this method has no
effect.

param is a pointer to a string, or NiL.

BulldCmdName replaces the string assoclated with destCmd with a
new command name built with the string pointed to by param and the

template associated with templateCmd. templateCmd corresponds to
a string in a menu of the farm:

text " tempstring” moretext
where text and moretext are optional. (If moretext does not exist,
you do not have to give the second carat) tempstring Is replaced
with the param string. The carats (") are removed, and the resulting
string Is placed in the position in a menu corresponding with

destCmd.  If param is NIL, the carats are removed, tempstring is left
alone, and the resulting string is put in the menu.

Check (crndNumber: TCmdNumber; checket: BOOLEAN);

cmaNumber 1s the number of a8 command In one of the menus.
cnenkeoismemercmi.E)ormt(FN_SE)tnecammumnabe
checked oOff.

Check puts a check in a menu next to the command corresponding to
cmaNumber.  According to the (ser Jnterface Standards the check

11-69



LIsa ToolKit Reference Manual Part Il Class Reference Sheels

indicates that the item Is presently in force. The ToolKIit does not
verify that the command should be checked.

Delete (menulD: INTEGER);

menulD is the identification number for one of the application's
menus. - ~

Delete removes the menu from the menu bar.
Draw;

Oraw draws the menu. You should call this method after you call
meruBar.Insert or menubar.Delete.

Enable (crmdNumber: TCMANUMber; canBeChosere BOOLEAN):

cmdNumber is the number of a command in one of the menus.
canBeChosen is whether the command should be enabled (TRUE) or
disabled (FALSE)

Enable determines whether or not the user is allowed to choose the
command corresponding to omdNumber. when a command s
disabled, it appears in dim type in the menu, and the user cannot
choose it. when a command is enabled, the command appears in
normal type, and the user can choose it. The ToolKit does not make
certain that the command should be enabled or disabled.

EndCmd;
EndCrmd removes highlighting from the menu bar. See
TMenuBar HighlightMenu. :

GetCmdName (cmdNumber: TCmadNumber; pName: TPStringk BOOLEAN;

omdNumber is the number of a command In one of the menus.

piName is a pointer to a string location for the command name, or
NIL, if you do not want to find out the command name.
The retumn value indicates whether or not the command was found.

GetCmdName checks to see if craNumber corresponds to an existing
command. If it does, the return value is TRUE. In aodition, if
pName is not NEL, GetCmadName puts the command name that
corresponds to the command number in the location pointed to by
pName.

For example:
VAR x8255; {efines a variable for the command nameJ}

menuBar GetCindName (Cmadhumber, Oxt

11-70



LIsa ToolKdt Referance Maebl Part Il Class Reference Sheets

mmmmmmm
withCmd Is the command number of the menu command you are
about to process.

hightights the title of the menu containing the glven
command. The ToolKit does this for you when the user chooses a
command from a menu, uses an Apple key command, Or uses a clear
key command. You only need to call this method when the command
was from somewhere else. First call menuBarHighiightMenk Then
call Twindow.DoCommand to do your command, rather than creating
the command object and calling commend.Perform yourself.,
Twindow.DoCommand tums off highlighting when the command is
finished processing. If you do not call Twindow.DoCommand, call
menuBarEndCmd when you are finished processing the command; that
tums off highlighting.

Insert (menulD, beforelD: INTEGER):

menulD is the identification number for one of the application’s
menus that Is not presen tglntnemnar.
beforelD s the identification number for one of the menus in the
application’s menu bar.

Insert inserts the menu in the menu bar so that it appears
immediately to the left of the menu indicated by beforelD. If
beforelD is 0, the menu is placed at the end, to the right of all other
menus in the menu bar.

PutCmaName (cmadNumber: TCmaNumber; pName: TPString:

cmaNumber is the number of a command in one of the menus.
piName is a pointer to a string location holding the command name.

PutCmdName replaces whatever Is in the menu that corresponds with
cmadNumber with the string pointed to by pName.

Unload; :
Unload removes the application’s entire menu bar.

NOTES:

1. There is only one instance of TMenuBar for any document, and that
instance, accessed by the global variable menuBar, is created by the
ToolKit.

2. You never subclass TMenuBar.
3. The menuBar controls the application's menus.

I1-71



L1Isa ToolKit Referance Menugal | Part Il Class Reference Sheets

4.

S.

The methods given here are sometimes called from window.SetUpMenus,
window.CanDoCommand and selectionCanDoCommand.  Otherwise, you
probably will not deal with this class.

These methods change the menu or menu bar until either another menuBar
method effects another change, or a new process is created for the
application. Remember that, unless you define your application to manage
only one document, all documents belonging to a single application share
the same process. Since every process has only one menuBar object, these
methods change the menu bar for all documents using this process. In
andition, since the process generally remalns untll the Lisa is powered off,
even if there are no active documents using the process, you should be
careful that the menu bar 1s in the correct condition when it is displayed.

I1-72



LIsa ToolKit Reference Manual Part Il Class Reference Sheets.

CLASS  TObject

SUPERCLASS: NI
DEFINED SUBCLASSES:  All other classes are descendants.
INHERITED DATA FIEELDS none |

DATA FIELDS: none

METHODS:

CREATE (object: TObject; heap: THeap) TObject; ABSTRACT;

TOLJECt.CREATE is an ABSTRACT method, and does nothing.
Each subclass of TObject has its own CREATE method.

Become (ob} TObject)
obj s an object-reference.

Become frees the calling object, by calling objectFree, and reuses
the object’s handle by making it to refer to ob} For example,

JecCLCREATE(object, heap)) frees the object
pointed to by refl and makes refl point at the new object. All
references t0 refi now refer to the new object.

Class: TClass;

Class retums the class pointer for this object’s class.
Clone (heap: THeap} TObject; ,

heap is the heap for the new object.

Clone should create a copy of the object, and all its subordinate
objects, on and retums a handle on the new object.
TObject.Clone just calls CloneObject, which coples only the object
itself. Override Clone to copy subordinate objects.

CloneObject (heap: THeapk TObject:
heap Is the heap for the new object.

CloneObject allocates a copy of the object on heap and retumns a
handle on the new object. Overriding is rarely necessary.

Convert (fromversior: Byte) ABSTRACT;
fromVersion is the old object's version number.

Convert is intended to update an abject to the current version of
the object.

I-73



/s ToolKiIt Refanence Manual

oeujg (rumLevels: INTEGER; memberTypestring: S2551 DEFALLT;

rumLevels Is the depth of detall printed.

Debug, present only in the debugging version of the ToolKit, prints
detalls about the object on the aitemate screen. It is called by
the debugger In conjunction with the Flelds method. When
numievels is equal to 0 (zero), Debug prints only the object's
class. wnen numievels is equal tq 1, Debug prints the object's
class, and the name, class(ifmy)mvalwofeachﬂem. when
numievels Is 2, Debug prints all the information printea for
numi_evels=1, and also prints the same Information about objects
referred to by the fields of the original object. As the value of
numievels increases, aoditional levels of class reference fields are
detalled. Overriding of Debug is rarely necessary.

Flelds (PROCEDURE FleldnameAndType: Sz55) DEFALLT;

F

Flelds is present in the debugging version of the ToolKit only. At
mepmntum(‘rKae),ifywwmtmeToolKndﬁgertobe

~ able to display the flelds of your objects, you must define this

method for every class you create. See crmter 2 for information
on writing Flelds methods.

ree; DEFALLT;

objectFree should free object and all objects subordinate to
object. TObjectFree simply calls FreeObject, which frees abject
and nothing else. If you create a descendant of TObject that has
subordiate objects, you should override Free to free the
subordinate objects. End your routine by calling

SUPERSELF FREE.

FreeObject; DEFALLT;

FreeObject removes the associated abject ana geallocates the
heap space used by that object. Ovemalngisrarelyneoessary

Heap: THeap

Heap returns the heap this on which this object is stored. Never
override this method.

HeapBytes: INTEGER;

The return value is a number of bytes.
l-eqﬂytesreumstnemnnerofbytesweunymeoojectinme
heap.

I1-74

Part Il Class Reference sneets



L/sa TaolKit Reference Manual Part Il Class Referance Sheets

Reed (s: TStringScanner:
$ Is a stringScanner.

Reads the data in the object, without the object's class pointer or

thedynanlcpart.lfmy,byusingmemmmwgettne
object’s data.

write (s TStringScanner}
s Is a stringScanner.
writes the data in the object, without the object’s class pointer
and any dynamic part.
JoinClass (newClass: TClass} TObject:
newClass is the object's new class pointer.

JoinClass converts the object to a new class. It is called for
you when version conversion is required.

FAILURE CONDITIONS: Heap can't grow.
: - Object freed twice.
Tried to do xBecomsa(y) when x and y were not on the
same heap.
Tried to do x.JoinClass(newClass) when the class of X and
newClass are unrelated.

NOTES:
1. Class TObject is the ancestor of all other classes.
2. Instances of TObject are never created.
3. All objects are instances of descendants of TObject.

I-75



Lisa ToolKit Reference Manug/ Part Il Class Reference Sheets
CLASS: TPad
SUPERCLASS: TArea
DEFINED SUBCLASSES: TPane
. TBodyPad
TMarginPad
N—ERITED DATA FIELDS: imnerRect: Rect; GrafPort-relative bounds

DATA FIELDS:

excluding borders.

outerRect: Rect; GrafPort—relauve bounds including
paremBrmt TBmmAma,

port: GrafPtr;
viewed_Rect: LRect;

visi Rect: LRect;
scrollOffset: LPoint;
origin: Point;
cdOffset: LPoint;
padRes: Polnt;

viewedRes: Poirt;

scalec BOOLEAN;

scaleFactor: TScaler:

11-76

Not relevant for pads.

The grafPort used by this pad.
The portion of view that Is
displayed in innerRect.
viewedLRect sect visRgn while
focused.

The larger part of view that fits-in -
a grafPort coordinate Rect

The distance scrolled from the view
topLeft.

what to set the grafPort origin to
when focused. _
what to subtract from coordinates
to get grafPort coordinates.
Adaditional clipping to apply when
focusing.

The pad's resolution, expressed as
spots/inch in the pad coordinate

space.
The view's resolution, expressed as
spots/inch in the view coordinate

space.

TRUE Indicates that the
scaleFactor is not 1, which means
that coordinate scaling must be
used.

The net scale factor, combining the
effects of zooming and the
different coordinate systems of the
pad and its view.



L/sa ToalKlt Reference Marual Part Il Class Reference Sheets

200mFactor: TScaler; The zoom factors; The two zoom

- factors, one for vertical zoom and
one for horizontal zoom, are stored
as two Points, one of which holds
the numerators, and the other the
denominators of the zoom factors.

METHOD YOUR APPLICATION MUST OVERRRIDE:

CREATE (object. TObject; 1tsHeap: Tmm ItsinnerRect: Rect;
itsViewed Rect: LRect; itsPadRes, ltsVIewRa:Polnt.ltsPort.
GrafPtx TPad;

itsinnerRect is the window-relative bounds exciuding the border.
itsviewed Rect is the portion of the view visible in the pad
itsPadiRes is the resolution of this ped

itsviewedRes is the resolution of the view, or other 32-bit space,
looked on by this ped

itsPort is the grafPort.

- TPalCREATE creates an object of type TPad
METHODS YOUR APPLICATION WILL CALL:
M.Rect(rLRect);
r is the rectangle to be redrawn.

TPad.lrwall Rect forces a redraw of r at next call to window.Update.
r is In view coordinates.

rlstherectangletooerearam

TPad.invalRect forces a redraw Of I at next call to window.Update. 1
is in grafPort coordinates.

SetPen (perc PenState)

pen is a pen state. See the QuickDraw documentation for the
avallable pen states.

TPad.SetPen sets the pen state.
SetPenToHighlight (highTransit: THighTransity

mmmusmecrmgeinmmumﬁngofmemsmayeaoojecn The
standard choices are: hNone, hOFFToDim; hOffToOn, hDImToOn,
hDImMToOff, hOnToOFf, and hONToDIM.

TPad SetPenToHIghIIg sets the pen to the state appropriate for
applying the indicated highlighting.

11-77



LIsa ToolKit Reference Manual Part Il Class Reference Sheets

The following methods mep coordinates from grafPort to view.
DistToLDist (distinPort: Point; VAR IDIstinView: LPoint)

distinPort is a distance In grafPort coordinates.
IDistinView Is the oistance converted to view coordinates

TPad.DistTol Dist converts a distance in grafPort coordinates to view
coordinates.

PatToLPat (patinPort: Pattem; VAR IPatinView: LPattem);

patinPort 1s a pattemn in grafPort coordinates
IPatinview Is the same pattem converted to view coordinates

TPadPatTol Pat converts a pattem from grafPort to view coordinates.
PtToLPt (ptinPort: Paint; VAR 1Ptinview: LPoint)

ptinPort is a point in grafPort coordinates.
IPtinview Is the point converted to view coordinates.

. TPadPtTOLPt converts a point from grafPort to view cooralnates.
RectToLReot (rectinPort: Rect; VAR 1Rectinview: LReot:

rectinPort Is a rectangle in grafPort coordinates.
IRectinView is the same rectangle converted to view ooomlnates.

TPadRectToLRect converts a rectangie from grafPort to view
coordinates.

The following methods do coordinate mapping from view to grafPort
LDistToDist (iDistinview: LPoint; VAR distinPort: Point);

IDistinview is a distance in view coordinates.
distinPart is the distance converted to grafPort coordinates.

TPadLDistTaDist converts a distance in view coordinates to grafPort
coordinates.

LPatToPat (IPatinview: LPattermn; VAR petinPort: Pattem)

IPatinView Is a pattem.
patinPort is the pattermn converted to grafPort coordinates.

TPadl PatToPat converts a pattem from view to grafPort coordinates.
LPtToPt (PtinView: LPoint; VAR ptinPort: Point) ~

IPtinview is a point in view coordinates.
ptinPort is the point converted to grafPort coordinates.

TPadl PtToPt converts a point from view to grafPort coordinates.

11-78



LIse ToolKit Reference Manual Part Il Class Reference Seets

LRectToRect (Rectinview: LRect; VAR rectinPort: Rect)

Rectinview is a rectangle in view coordinates.
rectinPort is the same rectangle converted to grafPort. coordinates

TPadlLRectToRect converts a rectangle from view to grafPort
coordinates.

;IATE following method is used by the ToolKit to move the pad within the
ew.

OffsetBy (deltal Pt: LPoint);
deltal Pt is this
TPadOffsetBy offsets viewedLRect -- no effect on display.
The following method Is used for display.

Focus; OVERRIDE;

TPadFocus sets the grafPort so that subsequenct QuickDraw calls are
. correctly sent to this pad.

The following methods perform drawing, and allow eoomlnates to be
expressed in view coordinates. They function, for the most part, by

converting the coordinates to grafPort coordinates, then invoking the
corresponding QuickDraw call.

MMM:RMM&W&W&R}:
ﬁlnuleet.es what to do with the arc (frame, paint, erase, invert,
1l ;

r is the bounding box of the arc.

startAngie is the angle of the start of the arc.

arcAngie is the angle of the arc.

TPadDrawlLAIC draws an arc in the view.

DrawlLBits (VAR srcBits: BitMap; VAR srocRect: Rect; VAR astLRect:
LRect; moge: INTEGER; maskRgre RgnHandie)

sTeBlits is a bitmap, part of which is copied to this pad
srcRect is the area in sroBits copled to this ped
dstiRect is the part of this pad that receives the copy from srcBits.
mode is the transfer mode used to draw in dstiLRect See the
QuickDraw documentation for a discussion of transfer modes.
maskRgn is a region in this pad (presun@lypartofdstl.nect)tnatls
tobeu'crmgedbytmsarawirg
TPadDrawi_Bits cmvensdstLRacttografPort coordinates, and then
calls QuickDraw's StdBit procedure. See the QuickDraw
documentation for more information,

11-79



L/sa ToolKdt Reference Manugal ' Part Il Cless Reference Sneets

 newLPt Is the point to draw a line to.
TPadDrawi.Line draws a line.
Drawi.Oval (vestx Grafverd; r: LRect)

fvrrfindlmt&swnatwoowmmwal(m paint, erase, invert,
1
r is the bounding box of the ovaL

TPad.Drawl.Oval draws an oval in the view.
Drawi_Picture (pic: PicHandie; ri Rect);

pic is a pointer to a QuickDraw picture.
I is the desired bouding box, In view coorainates.

Drawi_Picture draws the picture pointed to by plc in 1. See the
QuickDraw documentation for a discussion of pictures. _

‘DrawiRect (vert: Grafverb; r- LRect):

verb indicates what to do with the rectangle (frame, paint, erase,
invert, fill).
I is the rectangle to draw.

TPadDrawi.Rect draws a rectangle.
Drawi.RRect (vertx Grafverd; r: LRect; ovalwidth, ovaiHelght: INTEGER});

verb indicates what to do with the roundrect (frame, paint, erase,
invert,ﬂn)

I {s the bounding box of the round rectangie.
ovalwidth is the wiath of the oval.
ovalHeight is the height of the oval.

TPadDrawlLRRect draws a roundrect in the view.
Orawl_Text (textBuf: Ptr; startBytes, numBytes: INTEGERY:

textBuf 1s a pointer to text
startBytes the starting location in textBuf .
numBytes the number of bytes.

TPmmMTextmtext.scaungawomlngtnemememm
factor, if necessary.

11-80



Lisa ToalKit Reference Marual Part Il Clsss Reference Sheels

OTHER METHODS:
ChildawithPt (pt: Point; child ist: TLIst; VAR nearestPt: Point} TAres;
pt is a point In window-relative coordinates.
childList is a list of areas contained within this pad

nearestPt is the point in the returned area closest to pt
The retumn value is one of the areas from childList

CnllawithPt first findgs the point in pedinnerRect closest to pt. It
then compares the new point to the outerRects of all the areas in
chlid ist. when it finas the area that contains the point, it finds the
point in that area's innerRect that is closest to the point. That value
is retumed as nearestPt. The area containing nearestPt is the retumn
value.

ClipFurtherTo (1Bantt: Rect)
18and Is a rectangle, in grafPort coordinates.

cumemﬂonarmwsowntnecupareeatthenextcentoFm
This method Is used intemally by the ToolKit.

‘Redefine (itsinnerRect: Rect; itsViewed Rect: LRect; itsPadRes,

itsViewRes: Point; 1tsZoomFactor: TScaler; itsPort: GrafPuy

itsinnerRect is the window relative bounds excluding the border.

itsviewed Rect is the portion of the view seen through this pad

itsPadRes is the resolution of this pad

itsViewRes is the resolution of the view looked on by this ped

itsZoomFactor is a zoom factor for the pad.

itsPort is the grafPort.

TPad.Redefine is used to change the properties of a pad without
having to free the old one and create a new one. In effect, this
allows re-use of an allocated pad, with any or all of its parameters

changed.

Resizeinsige (newinnerRect: Rect)
newinnerRkect is the pad bounds excluding borders.
Resizelnside changes the size of padinnerRect. It performs
higher-level operations on the pad, such as resizing areas contained
within this pad, and then calls SELF.SetinnerRect.

ResizeOutside (newOuterRect: Rect);
newOuterRect is the bounding box.

ResizeOutside changes the size of padouterRect. It performs
higher-level operations on the pad, such as resizing areas contained
within this pad, and then calls SElLF.SetOuterRect

1-81



Lisa ToolKdt Refererce Maal , Part Il Class Reference Sheets

SetScrollOffset (VAR newOffset: LPoint);

newOffset is a new offset factor, with a vertical and horizontal
component. Although this is a VAR argument, its value is not

TPar.SetScrollOffset recalculates padorigin and pad.cdOffset.
-~ SetZoomFactor (zoomiNumerator, zoomDenaminator: Point)

mmmisasetoftwomrsmatfommemrawrof
the zoom factors.

zoomDenominator is a set of two numbers that form the denominator
of the zoom factors.

TPad.SetZoomFactor changes the zoom factors of the pad.
NOTES:

1. Methoas of TPad fall into two categories:
a) Those that convert coordinates between view and grafPort systems.
b) Those that draw either to the screen or to a printer.

2. You never create instances of TPad, and you rarely create instances of
descendants of TPad

3. In general, the ToolKit creates instances of descendants of TPad in order
to draw on the screen and print for you :

a. mmwmmmmwmmmtsofm

I1-82



LIsa ToolKIt Reference Manual Part Il Class Reference Sheets

CLASS: TPageview

SUPERCLASR: TView

DEFINED SUBCLASSES: nhone

INHERITED DATA FIELDS:  See TView.

DATA FIELDS: none

METHODS: None that are important for applications. -
NOTES: '

1. TPageView is used for the view assoclated with a marginPad when printing
or previewing pages. (The application's view Is associated with the

corresponging bodyPad)
2. TPageview.Draw s expected to draw the headings on a page.

11-83



Lisa ToolKIt Reference Maval Part Il Class Referance Sheelts

- CLASS: TPaginatedview
SUPERCLASS: ’ TView
DEFINED SUBCLASSES: none
INHERITED DATA FIELDS:  See Tview.

DATA FEELDS: R unpaginatedview: TView; The view of which this is the

paginated version.

R pageSize: ARRAY[VHSelect] OF ‘LONGINT;
The size of one page in the
paginated view, in view coordinates.

R workinginMargins: BOOLEAN; 1If TRUE, the application (in its own
subclass of TPaginatedview) is
currently flelding events in the
margins of the page, rather than in

the body.
METHODS: None that are lrrportmt to applications.
NOTES: :

1. Appllcadons normally do not need to subclass or otherwise directly
concem themselves with TPaginatedview.

2. There may be a different object of type TPaginatedview for every view
used In the application.

3. A TPaginatedview object Is created when the user asks to preview pages.
when that happens, the view's printManager's NewPaginatedview method is
called to launch the paginatedview. Because NewPaginatedview is called
to create the paginatedview object, you can subclass TPaginatedview.
Onere&onywmywisntodosoisifyouwmttoanwmrem
editing of headers, footers and main views, as is done In Lisawrite's
Preview Pages mode.

-84



Lisa ToolKit Reference Manual Part Il Class Reference Sheets

CLASS: TPane

SUPERCLASS: -  TPad

DEFINED SUBCLASSES:  TMarginPad
TBodyPad

INHERITED DATA FELDS:  See TPad.

DATA FIELDS: R currentView: TView; The view displayed in this pane.
R panel: TPanel; The panel contalning this pane.
METHODS YOUR APPLICATION MAY CALL:
ChildwithPt (pt: Point; child ist: TLIst; VAR nearestPt: Poimt} TAres;
pt is a point in pene-relative coordinates.
ondid ist is a list of areas contained within this pane.

nearestPt is the point in the retumed area closest to pt
The retumn value is one of the areas from ohilcd st

ChllawithPt first finds the point in pane.nnerRect closest to pt. It
then the compares the new point to the outerRects of all the arees

in ohdidList. When it finds the area that contains the point, it finds
the point in that area's innerRect that is closest to the point. That
value s returned as nearestPt. The area containing nearestPt is the
retumn value.

ScrollBy (VAR deltal Pt: LPoint) ,
deltal Pt is the amount of vertical (deital.Pt.v) and horizontal
(celtal_PtN) scroliing adesireq, in view coordinate units,

ScrollBy scrolls the pane by the distance given in deltal Pt The
scroll thumbs are moved accordingly.

ScroliToReveal (VAR anLRect: LRect; iMinToSee, vMinToSee: INTEGER)

anLRect an rectangle in the view.
nMinToSee a horizontal distance, in view units.
wMinToSee a vertical distance, in view units.

ScrollToReveal scrolls the pane so that some part of anLRect shows
in the pane. hMinToSee and viMinToSee define the minimum part of
anLRect that is displayed after the scroll.

NOTES: |
1. TPane oefines reglons of the screen that display application data.

2. Applications never need to subclass TPane, and they also never create
panes themselves.

3. The ToolKit creates at least one pane whenever a new panel is created, or
when the user splits existing panes with a split control.

11-85



LIsa ToolKIt Reference Manual Part Il Class Reference Sheets

8. Panes ocoupy the region insice the borders of panels. Any part of an
application view that is displayed is displayed In a pane.

5. Several panes may 100k on a single view. Every pane that looks on a
particular view Is normally contained in the same panel. Every pane in a
particular panel l1ooks on the same view.

11-86



Llsa ToolKit Reference Manual Part Il Class Reference Sheels

CLASS: TPanel

SUPERCLASS: i TArea

DEFINED SUBCLASSES: none

INHERITED DATA FEELDS: R InmnerRect: Rect; window-relative bounds, excluding
boroers. but incluging rulers (if

any).
R  outerRect: Rect; + Bm.mlngnoxinwinoow

coordinates.
DATA FELDS: R window: TwWindow; window in which this panel appears.

R panes: TLIst {OF TPane}; Thep;\esofvﬁspmel,uswd
row-wise.

R ourrentView: Tview; The paginated (page preview) or
unpaginated view on which this
panel 100Kks.

R view: TView; The unpaginated view on which this -

panel 1o0ks when not in page
preview mode. This Is the view-
installed by your application.

R pa;lmtedVlevTPa;matetMew The paginated view, including

margins, if the panel is currently In
page preview mode. If not,

contains NiL.
selection TSelection; The current selection
undoSelection: TSelection; The selection to be restored if the
last command Is undone.
bands: ARRAY[VHSelect] OF TList;
The bands in this panel
scroilBars: ARRAY[VHSelect] OF TScroliBar;
The scrolibars of the panel
( vh)] -- the (verthoriz)
scroll bars
R abilitless ARRAY[VHSelect] OF TAbilites;
The abilites of the panel. See the

p o)

CREATE method.
mininnerDiagonal: Point; The minimum size for innerRect.
redzmm Used for resizing the panelL

R  zoomedt BOOLEAN; TRUE means that this panel is
zoomed.
R zoorertwREcG!Dunm denominator: POINT END;

The proportional zooming factor.
plevlewmamm Preview page breaks and page

margins.

11-87



L/sa Tool<dt Rererence Manval

1astClick: RECORD
CASE

Part Il Class Rererence Sheets

Describes the 1ast mouse click.

BOOLEAN OF

TRUE: (clickPane: TPanel The pane of the last click.
FN.E.(OW’ILPD!M);TM innerRect.topLeft of

l

METHODS YOUR APPLICATION WILL CALL:

lastClick.pane, for use
when lastClickpane was
deleted.

The part of innerRect excluding
side bands (such as rulers).

The size of the horizontal side
band (usually a ruler), which is
displayed at the top of the panel.
The size of the vertical side band
(usually a ruler), which is displayed
on the right side.

If a TAITay with recordBytes 2, the
ToolKit stores the splits created by
the user in the panel whenever the
panel Is shrunk so that it is too
small to show the splits.- Then,
when the panel is enlarged so that
it is large enough for the splits, the
splits are realsplayed. 14 NlL, the
ToolKit does not store splits, and

they are lost. This is Initialized
to NIL in TPanel.CREATE; you can
allocate an array and change the
fleld if you desire.

CREATE : TOb itsHeap: THeap; itswindow: Twindow;
= g‘EL@R, itsvADiiities, itsHADiItes TADﬂlt.let).

TPanel;

ftswindow is the wingow containing

this panel

minHeight is the minimum height of this panel.

minwidth is the minimum width of this panel.

itsvAbilities indicates the vertical abilities of the panel from this
set: aBar, ascroll, asplit. See note 8 for more information.
m&mnuammmmnzmmanmuaofmemmw

same set as itsvAbilities.

TPanel.CREATE crestes an object of type TPanel

11-88



LIsa ToolKilt Reference Margl Part Il Clgss Reference Sheets

Highiigt (selection: TSelection; MghTransit: THighTransit;
$election is a selection object.

highTransit is the change in highlighting of tne displayed object. The
standard choices are: hiNone, hOffToDim, hOffToOn, hDWmToOn,
hOImToOff, NOnToOff, md hOnToDim.

calls selectionHighlight once for each object
e e o ST L R R
OnAllPadsDo.)

NewView (object: 'Kmpct. itsExtent: LRect; itsPrintManager:
TPrintManager; itsDfitMargins: LRect; ItsFitPerfectlyOnPages:
BOOLEANYX TView;

itsExtent is the size of the view, in view coordinates.

itsPrintManager is the print manager for the view.
lwﬂwmmﬁmsmdefaﬂtmrginsmenmvlewlspnnwo
(can be changed by the user)

ItsFitPerrectiyOnPages tells whether or not the view should always ,
divide into who'a pages for printing. If TRUE, when the view size is
changed, the ToolKit automatically increases its slze (if necessary)

NewView creates the view object for the panel. This method or
NewStatusview is called once and only once for every panel. Use
NewView for printable views.

NewsStatusview (object: TObject; itsExtent: LRecty TView;
itsExtent is the size of the view, in view coordinates.

NewStatusView creates the view object for the panel. mlsmetrm
or NewView s called once and only once for every panel. Use
NewStatusview for views that cannot be printed.

OnAliPadsDo (PROCEDURE DoOnThePad)
PROCEDURE DoOnThePad is a procedure of no arguments.

TPanel.OnAllPadsDo applies the given method to every pad object
(which includes panes and pages) of the panel. It focuses the

on each pad before applying the method to that pad (The
global variable thePad is the presently focused pad) DoOnThePad is
called once for every pene and page in the panel. In "Preview Page
Margins® mode, DoOnThePad is called once for every page in each
pane. DoOnThePad cannot be a method.

OnAllPadsDo should not be called from TView.Draw or
TSelectionHighlight methods, but must be used to call those methods.
On the other hand, you should use panel.OnAllPadsDo in command,
Mousepress, MouseMove, and MouseRelease methods.

11-89



LIsa TaolKit Reference Manual Part Il Class Reference Sheets

METHODS YOUR APPLICATION MAY CALL:
BeginSelection;
BeginSelection sets selectPanel, and calls DeSelect for selections in

all panels. In some cases, this method does the same for any current
dialogBoxes.

BeSelectPanel (InSelectwindow: m.EANj;
inSelectwindow Indicates whether panel is In the selectwindow.

mmmmesmmmofmm If
inSelectwindow is TRUE, BeSelectPanel also makes that window,
wnimnﬂg\tbeamalognox,oetr\esalectwwvofmacuve

mmmmmmmu.m TLISC VAR nearestPt: Poim) TATea:
pt is a point in window-relative coordinates.
childList is a list of areas contained within this panel.

nearestPt is the point in the retumed area closest to pt.
The return value is one of the areas from childList

ChilawithPt first finds the point in panelLinnetRect closest to pt. It
then the compares the new point to the outerRects of all the areas
in child ist Wwhen it finds the area that contains the point, it finds
the point in that area's innerRect that is closest to the point. That
value Is returmned as nearestPt Theareaomtamlngmtmlstm
retum value.

Divide (vhs: ViHSelect; fromEdgeOfPanel: INTEGER; units: TUnitsFromEdge;
whoCanResizelt: TResizabllity; minSize: INTEGER; itsVAbilitles,
itsHAbilities: TAbllities)

vihs indicates the orientation of the new panel. v divides the panels
soorl:e'lsmwpoftheomer:hmv!mmemlssomeyareslae
Dy s

fromEdageOfPanel, if positive, is the distance of the split from the top
left comer; if negative, is the distance from the bottom right comer.

units ingicates whether the mmvalue is a percentage
(percertFromEdge) or is in plxels age)
whoCanResizelt determines whether the size of the panel varies with

the size of the window, whether the panel has a resize icon so that
the user can change its size, auwnemermeeppucaUmmmmge
the panel's size.

minSize defines the minimum size of the panel.

itsvAbilities indicates the vertical abilities of the panel from this
set: aBar, aScroll, aSplit. See note 8 for more information.
m—wnnuesmmtramnzmtalabumesofmmmm
same set as itsvAbilities.

TPanelDivide creates a new panel, after the first panel in the

I11-90



LIsa ToolKIt Reference Marual Part Il Class Reference Sheets

* window has already been created with TPaneLCREATE. Divide
automatically calls TPanellnsert.

Freme;
~ Frame draws the frame of the panel, including the scroll bars.
HaveView (view: TView);
view Is a view object.
Haveview installs the given view in the panel

Insert (panel: TPanel; vhs: VHSelect; fromEdgeOfPanel: INTEGER; units:
TunitsFromEdge; whoCanReslizelt: TResizability)
panel is the panel that is inserted.
vhs Indicates the orientation of the new panel. v divides the panels
soo?eismtq)ofmeotner,ndlvmesmepmelssotneyareslae
by side. -
fromEageOfPanel, if positive, is the distance of the split from the top
left comer; if negative, is the distance from the bottom right comer. .
units indicates whether the WW value s a percentage
(percentFromEdge) or is in pixels romEdge).
whoCanResizelt determines whether the size of the panel varies with
the size of the window, whether the panel has a resize icon so that
the user can change its size, mawnetnertneq:pncaumcmona'\ge
the panel's size.

TPanelinsert inserts a previously created pmel into the window,
using the space occupled by SELF (the panel through which Insert is
calledl You normally do not call Insert directly; it is called for you
when you use Divide to create a new panel. YOu can, however, use
TPanel.Create to create your own penels, and then call Insert
yourself.

Irwalioate;

Irvalidate invalidates the entire panel, sotnatltlswurawntnenext
time Twindow.Update is called.

 InvallLRect (IRectinView: LRect);
IRectinview is a part of the view.

TPanellrwall Rect tells all pad objects (which includes panes and
pages) in the panel object to perform thePad.lnwall Rect on
themselves. (Uses OnAllPads00.)

1-91



LIsa ToalKit Reference Manugl Part Il Class Reference Sheets

~ OKToDrawin (RectinView: LRect} BOOLEAN;
[Rectinview is a view-relative rectangie.

A retumn value of TRUE indicates that the application can safely call
Draw methods or QuickDraw and UDraw routines, directly (rather
than calling panelinvalRect to cause drawing in the next Update)
within the rectangle iIRectinview. An appiication or bullding block
should always call OkToDrawin before attempting to draw or erase
directly when giving feedback (extept for XOR feedback) in

to a user action or command. If permission is denleq, the application
should call TPanelLirwall Rect (which may display more slowly), rather
than a Draw method. TPanel.OKToDrawin checks to see If
IRectinView includes a page break, which will only occur when the
gocument is in “Preview Page Breaks" moce. If it does, it is not safe
to Draw, and the retumn value is FALSE. Otherwise,
TPaneL.OkToDrawin calls view.OKToDrawin. You can reimplement
view.OkToDrawin so that it actually checks to see if it is safe to
draw in lRectinView. TView.OkToDrawin always returns FALSE.

PaneShowing (anLRect: LRect} TPane;
aLRectlsrectmgleinmevmwlookeambyuuspam.
The return value is one of the panel’s panes.

wumnmmmtmmmmmm
part of anl. Rect

PaneToScroll (VAR anlLRect: LRect; hMinToSee, vMinToSee: INTEGER)
anLRect is rectangle in the view looked on by this panel
MT&Sae is the minumim horizontal portion of anl.Rect that you
want to see.
vMinToSee is the minumim vertical portion of anLRect that you want
to see.
The return value is one of the panel's panes.

PaneToScroll is called by TPaneLReveall Rect to obtain the pane that
should be scrolled to reveal the indicated minimum portions of
anLRect. Your application might call this method directly.

Preview (newMode: TPreviewMode);
newMode s the new preview mode from the Page Layout menu.
Preview displays the pageView version of the view looked on by this
penel.

PrimtvView (printPref: TPIReserve);

printPref are the printer preferences.
PrimtView prints the view looked on by this penel.

11-92



Lisa ToolKit Reference Manual Part Il Class Reference Sheets

Refresh (rActions: TActions; highTransit: THighTransit}

TActions Is from the set (rErase, rFrame, rBackground, rOraw).

highTransit is the change in highlighting of the displayed object. The
standard cholces are: hNone, hOffToDIim, hOffToOn, hDimToOn,
hDimToOff, hOnToOff, and hOnToDIm.

Refresh refreshes the panel's display. Update sets up the grafPort
for the invalldated portion of the panel's view, and then calls
Refresh. If there is no invalid pértion, Refresh is not called.

Remove;

TPanelLRemove takes the SELF panel out of the window. The panel

that was divided to create space for this panel is expanded to fill the
space. TPanel.Remove does not free the panel

Replace (panel: TPanel);
panel is the panel that iIs to be inserted.

TPaneLReplace replaces the SELF panel with the given panel. The

panel that was removed is not freed. The new panel is resized to fill

the space occupied by the old panel. ,
Resizelnside (newlnnerRect: Recty

newinnerRkect is the panel bounds excluding borders.

Resizelnside changes the size of panelLinnerRect. It performs
higher-level operations on the panel, such as resizing areas contained

within this panel, including bands, and then calls SELF.SetinnerRect.
ResizeOutside (newOuterRect: Rect); ’
newOuterRect is the bounding box.

ResizeOutside changes the size of panel, and Invalidates the changed
areas. It performs higher-level operations on the panel, such as
resizing areas contained within this panel, and then calls
SELF.SetOuterRect. ResizeOwutside calls Resizelnside.

Rescroll;
Rescroll is called when the view changes drastically. It fixes the

elevators so that they are positioned correctly. The entire panel is
invalidated. :

Reveall Rect (VAR anLRect: LRect; hMinToSee, vMinToSee: INTEGERY

anLRect an rectangle In the view.
hMinToSee a horizontal distance, in view units.
vMinToSee a vertical distance, in view units.

ReveallLRect scrolls the panel so that some part of anLRect shows in
a pane. hMinToSee and vMinToSee define the minimum part of

11-93



LIsa ToalKit Reference Manual Part Il Class Reference Sheets

" anLRect that Is displayed after the scroll. This method calls
TPaneLPaneToScroll to obtain the pane that should be scrolled to
reveal anlRect

SetZoomFactor (zoomiNumerator, zoomDenominator: point);

200miNumeratar is a point cmt.aining the vertical (zoomNumerator.v)
and horizontakzoomNumerator.)) numerators of the zoom factor.
zoomDenominator is a point containing the vertical
(zoomDenominator.v) and horizontal{zcomDenominatar.y) denominators
of the zoom factor.

SetZoomFactor sets a zoom factor that translates sizes between the
view and the panel. The factor is a set of two fractions, one for the
horizontal zoom factor and one for the vertical zoom factor. Each
fraction is broken up into two numbers, 8 numerator and a
genominator. The set of numerators is stored in the point
zoomiNumerator and the set of genominators in the point
zoomDenominator. (waming: this feature has not been debugged.)

 ShowsigeBand (vhs: VHSelect; topOrLeft: BOOLEAN; size: INTEGER;
viewLC: LONGINT)Y,

vhs indicates the orientation of the side band: vertical or horizontal.
A vertical sice band appears at the top or bottom of the panel; a
horizontal sideband appears on the left or right side.

indicates whether the side band is on the top or the left
side of the panel. For example, ifTRLE,mdvmlsv the side band
appears on the top of the panel.
is the size of the side band, in vhs direction.
viewl.Cd is a view~-coordinate number that indicates the part of the
view that shows in the sideband. msisusuauymnegauve
number. The number does not change the appearance of the side
band except that if the number is positive, it is part of the view, can
be scrolled, and can be printed.

ShowSideBand displays a side band. The side band is always

displayed with a 20 pixel gap between it and the panel
SideBandRect (vhs: ViHSelect; topOrLeft: BOOLEAN; VAR bandRect: Rect)

vhs indicates the orientation of the side bana: vertical or horizontal.

A vertical side band appears at the top or bottom of the penel: a

horizontal sigeband appears on the left or right side.

indicates whether the side band Is on the top or the left
side of the panel. For example, if TRUE, and vhs is v, the side band

appears on the top of the panel
pendRect is the innerRect of the side band.

SideBandRect retums the innerRect of the side band, given
SELF.contentRect. You probably will never call this method.

§

1-93



LIsa ToalKit Referance Manual Part Il Class Reference Sheets
FALLURE CONDITIONS: None

1. TPanel is never subclassed.
2. A panel is the part of a window that looks onto a particular view.

3. There may be several panels in a single window. Each one normally
displays the contents of a different “pbje‘ct.

4. panel.CREATE Is normally called once for each window. To create more
panels, call panelDivide once for each additional panel. Divide calls

S. If you want to add a panel as quickly as possible, you can call CREATE
when you initialize your window, and store the panel away. when you
- want the panel to appear on the display, call paneLinsert.

6. The pane objects that control the panes within the panel are what actually
display the visible portion of the view object. The pa\el object controls
the scromng of those panes.

7. Every panel initially gets one pane. The user may create additional panes
if one of the TAmﬁues given ls asplit. It Is not necessary for your
application to mention pane objects.

8. The TADllitles are:
aBar, which gives a gray bar with no scrolling ability.

ascroll, which gives a scroll bar (a gray bar with flippers,
scrollers, and elevators), and allows autoscroll.

asplit, which gives a pane splitter.
~ These abllities are ingepenadent; give a list of the ones that you want.

I1-95



LIsa ToolKIt Reference Marval

CLASS: TPasteCommand
SUPERCLASS: : TCommand

INHERITED DATA FIELDS: R omdNumber: TCmdNumber;

R view: TView;

R undoable: BOOLEAN;

R doing: BOOLEAN;

- ghow some part

pPart Il Class Reference Sheels

The cornmand number of
the menu item that
describes the command.
The view to which the
command applies, or NiL
if the data Is stored in
the window.

TRUE means that this
cormmand can be
reversed.

This value is TRUE if the
last call to Performn was
in doPhase or regophase.
Determines how much of
the selection should be
autornatically scrolled
into a pane when the
command is performed.
Can be none (no
scrolling), some (scroll to
of the
selection), or all (scroll
to display the entire
selection, it possible)

W unHiliteBefore: ARRAY [TCmdPhase] OF BOOLEAN;

TRUE tells the ToolKit
to remove the
highlighting from all
selections before Perform
is called.

W hiliteAfter: ARRAY [TCmdPhase] OF BOOLEAN;

DATA FIELDS none

11-96

TRLUE tells the ToolKit
to aad highlighting to all
selections after Perfarm
is called.



Lfsa Toolkdt Reference Marwsal Part Il Class Reference Sheets

METHOD YOUR APPLICATION MUST OVERRIDE:

CREATE(object: TObject; itHeap: THeap; ItsCmaNumMber: TCMANuUmMber;
itsvView: TView) TPasteCommeand;

ftsCmaNumber is the command number of a menu command.
itsview the view to which the command applies, or NI if the data s
stored in the window.

TPasteCommand.CREATE creates:an object of type TPasteCommand.

DoPaste(cupSelecﬁa:TSelecmpiGpld-ﬂ'me cmdPhase: TCmdPhase):
DEFALLT;

is, when cmdPhase-doPhase or redoPhase, tneselectlm
ob tt.natlnuiwteswlatwbctsaretobeinserted. when
cmdPhase~-undoPhase clipSelection is NIL.
pic is the handle of a QuickDraw-picture representation of the data
in the clipboard, or NI
cmdPhase is either doPhase, undoPhase, or redoPhase.

- DoPaste executes the paste. Either clipSelection or pic is used to
indicate what is to be pasted into the document. If clipSelection is
not NAL, it indicates a set of Toolit objects in the clipboard. If

is NiL, pic references a QuickDraw picture that is to be
pasted into the document. The first time DoPaste Is called, the
cmdPhase Is doPhase. After that, undoPhase and redoPhase altemate.
Do not call this routine directly; it is called by Perform.

when cmdPhase is doPhase or redoPhase, DoPaste must clone the
contents of the clipboard, and put the copies into the document.
when cmdPhase is undoPhase, DoPaste must delete the added
information from the document. On doPhase and redoPhase, the
clipSelection might be NIL if there Is no view to paste or if the
sejection is a generic TSelection. In that case, information for the
paste must be obtalned from pic.

METHOD YOUR APPLICATION WILL CALL:

CREATE (object: TObject; itHeap: THeap; fsCmaNumber: TCMANUTDET;
itsView: TView) TPasteCammand;

See above. |
METHODS YOUR APPLICATION MIGHT OVERRIDE:
’ Commit;

You can override Commit if you want to implement the paste so that
it uses a fllter when Perfarm is called. In that case, Commit
changes the document, while DoPaste simply coples the contents of
the clipboard into -someplace Commit and EachvirtualPart can reach.
TPasteCommand.Commit does nothing.

11-97



Lisa TaolKit Reference Manual | Part Il Class Rererence Sheets

INTERNAL METHOD:

EachVirtualPart (PROCEDURE DoToC0ject (fllteredObl: TODROLE:

PROCEDURE DoToObject (filteredOb} TObject) is a procedure that
;ieluers ﬂtl:mm’ before fliteredOb] Is displayed. DoToObject cannot
ame

EachvirtualPart is used in implementing a fllter. A virtwal partis a
selectable part of the set of objects. Every virtual part must be an
object. DoToObject acts on the object it is given. when you
Perform the paste command with tmdPhase equal to doPhase copy
the contents of the clipboard into a temporary list. when

the view, use EachvirtualPart to draw the original document as well
&8s your copy of the just pasted list. when you Commit the
pasteCommand, copy your copy of the clipboard contents into your
application’s set of objects.

Perfarm (cmdPhase: TCmdPhasel
.omdPhase is either doPhase, undoPhase, or redoPhase. -

TPasteCommand.Perform calls pastecommand.DoPaste to execute the
paswm The first time Perform 1s used, the cmdPhase should

FAILURE CONDITIONS: none

NOTES:
1.
2

3.

See TCommand for general information on command implementation.

TPasteCommand s used to paste the contents of the clipboard into the
document. The clipboard contents are inserted at the place indicated by
the selection.

You must override this class to use it. At a minimum, youkwln have to
implement DoPaste. Note that bullding blocks often implement this for

you.

The clipboard can be 1oaded by a cut or copy operation by your own
application or by another ToolKit application. If the clipboard is loaded
by another application, the ToolKit converts the data to a better form for
your application before pasting the data into your document. (The
conversion is done by TCutCopyCommendPerform) Every object that was
of a class your application does not have is converted to an object of an
ancestor class that exists in your application. This transformation process
can lose information.

Before you copy the data, you can use InClass to test the class of
clipSelection. As you copy the data, it is a good idea to examine each
component that might have been an object of another class in another



L/ss Taalfdtm Manual pPart Il Class Reference Sheels

application. You can sometimes use InClass to help transform objects
from the- clipboard into objects of classes that your application is prepared
to process. This Is demonstrated in the examples in the ToolKit
Segments.

6. See the ToolKit Segments for examples of using TPasteCommand and
further explanations.

11-99



- LIsa Taolkdt Rerference Manual

SUPERCLASS “TObject

Part IT Class Rererence Seets

DEFINED SUBCLASS: TStdPrintManager (defined in the Dialog Building Block)

INHERITED DATA FIEELDS:  none
DATA FIELDS: view: TView:

pageView: TView;

¥

The view whose printing is managed
by this printManager.

The view that draws the headings
in the margins of the page. The .
size of this view s the size of one

breaks: ARRAY[WSelect] OF Tmmype{c?fei.mamt

headings: TList fof THeadingl
canEditPages: BOOLEAN;

11-100

The vertical and horizontal
pagebreaks that divide the view
into pleces that fit onto individual
pages. breakgv] holds information
for page breaks that, when drawn
on the screen, are represented by
vertical lines; ] holds
information for page breaks that,
when drawn on the screen, are
represented by horizontal lines.
The absolute value of each array
element gives the location of the
break in the view; the sign tells
whether the break is an automatic
one (nonnegative) or a manual
(user-set) one (negative).

The page margins to use when
fitting view pleces onto pages: top
and left are positive and bottom
and right are negative. These
numbers are in view coordinates,
which is why the values are LRects
even though the actual numbers
involved are small. ~
The headings to be printed on the

pages.

FALSE by default; the
stdPrintManager sets this TRUE, as
headings and margins can be edited
with the page.

NiL by default; the stdPrintManager
places a reference to a dialog box
it creates here.



Lisa ToolKit Reference Manual

printablel Rect: LRect;

contentLRect: LRect;

printerMetrics: TPrinterMetrics;

pageRiseDirection: vhSelect;

METHODS YOUR APPLICATION MAY OVERRIDE:

Part Il Class Reference Sheels

FALSE by default; you can set it to
TRUE, in which case the page body
is separated from the page margins
on the printed page by a box.
Mostly for debugging purposes.

The physical bounds of a single
page on the current printer, In view
coordinates.

“The printable area of a single page

on the current printer, in view
coordinates.

The area on a page into which the
body (that Is, sections of the main
view) will be placed, obtained by
taking the paperLRect and allowing
roomm for the margins specified in
The data characterizing the
physical properties of the printer- -
currently formatted for; this Is a
RECORD whose flelds are:
paperRect, printableRect (the
counterparts of and
but in grafPort

coordinates), and res (the
resolutions of the device, packaged
into a Paint).

whether page numbers should be
assigned left-to-right (h) or
top-to-bottom (v).

CREATE (object: TObject; heap: THeap) TPrintManager;
TPrintManager.CREATE creates an object of type TPrintManager.

DrawPage;

Draw the page with the page-number indicated by
theMarginPad.pageNumber. |

EnterPageEditing;

Enter into whatever method the printManeger has of allowing the

user to edit page headings and margins.
TPrintManager EnterPagetditing does nothing.

11-101



Lisa ToolKit Reference Moanual Part Il Class Reference Sheets

WNRWLW;VMWM
pageNumber is the number of one of this application’s pages.

viewLRect s the part of the application's view that makes up the
body of the given page.

Given the page number, retums the bounds of the part of the view

that makes up the body of that page. Your application can call this
method.

NewPaginatedview (object: TObject TPaginatedview;
- The retum value is a paginatedView.

TPrintManager.NewPaginatedview creates a new paginatedview. By
default, the ToolKit's standard Page-preview mode Is invoked.

NewPageView (object: TObjecty TView;
The retum value is a pageVview.
TPrintManager.NewPageView creates a new pageView. By default, an
object of the ToolKit's standard TPageView class is launched.
Pagewith (VAR IPtinView: LPaint; VAR strip: Pointll ONGINT;

IPtinView is a point in the application's view.
strip is the vertical and horizontal strip of pages that contain

mrewrhvalueistnemnberofme'pagemtomtalmw.

Glven a point in the view, Pagewith retumns the page number into
which that point falls, as well as returning the vertical and horizontal
gtﬁﬂpofmscmtalnlngmm. Your application can call

s method. ,

PrinC
TerintManager Print orders the actual printing. You might override
Print in order to do something special before or after printing. In
that case, call SUPERSELF.PTIMt for the actual printing. You can
override Print entirely and handle printing yourself, but you must
then have direct access to the underlying Lisa Printing software.

ReactToPrinterChange;
TPrintManager.React ToPrinterChange reacts to a change in printer
specification JReactToPriterChange gets fresh printer
paperLRect, and

metrics, recomputes the _
contenti Rect, resizes the view if necessary, recomputes the bounds
of the pageView, and calls RedoBreaks. This method is called by
TViewReactToPrinterChange. Your application can call this method.

I1-102



LIsa ToolKit Reference Marval Part Il Class Reference Sheels

RedoBreeks;
TPrintManager.RedoBreaks recomputes page-breaks. Your application
can call this method.

SetDf1tHeadings; ~
SetDfltHeadings in intended to set the default headings. It is called
by TPrintManager.nit so that the printManager can create desired
default headings and install them'in its list of naungs.
TPrintManager.SetDfltHeadings does nothing.

SkipPage (pageNumber: LONGINTY

TPrintManager.SkipPage does nothing. You can override this routine
wmmteverywwmtwmwmmmlndicatedpapWL
at printing time, is not going to be printed, but larger page-numbers
will be. This allows an application to cycle through its data
structures to the start of the next page, If it needs to.

METHOD YOUR APPLICATION MAY CALL:
ChangeMargins (newMargins: LRect)

Install a new set of margins into the printManager.
NOTES:

1. A pﬂntMmapr must be associated with every printable view.

2. You assoclate a printManager with a view by handing a reference to a
printManager to the method that creates the view. The
printManager-reference Is then placed in the view.printManager fleld. If
the view s not printable, hand NiL. to the method that creates your view

(usually panel.NewView).

3. You can use an instance of TPrintManager for your printManager. In that
case, simply call TPrintManager.CREATE, and install the resulting object
in view . The view will be printable, but you will not be able
to specify headings or margins.

84, Altemately, you can use the Dialog Building Block class TStdPrintManager.
Call LCREATE, and install the resulting object in
viewprintManager. The view will be printable, and you will be able to
interactively create and edit headings and margins through the use of the
Headings and Margins dialog. In this case, you must USE the Dialog

Builaing Block.

5. As a third altemative, you can create your own subclass of TPrintManager
or TstdPrintMangager, and give an instance of that to the method that
creates your view.

I1-103



LIsa ToolKit Reference Manual Part Il Class Reference Sheels

6. Once a printManger is installed In your view, the same drawing methods
that draw in your application's window on the screen can draw on the
printed page. The ToolKit takes care of converting the output so that it
appears correctly on the printer.

11-104



Lisa ToolKit Reference Marnal 7 Part Il Class Reference Sheets

«neCLASS:  TPTOCESS

SUPERCLASS: TObject
' DEFINED SUBCLASSES:  hone
INHERITED DATA FIELDS: none |
DATA FIELDS: None. However, the global variables are important to the

process. See Chapter 6.
METHODS YOUR APPLICATION MUST OVERRIDE:

CREATE (object: TObject; heap: THeapk Tprocess;
TProcess.CREATE creates a process object.

NewDocManager (volumePrefix TFilePath; openAsTool: BOOLEAN)
TDocManager:

volumePrefix, a name of the form -VOLUME-{documentnumber], is set
by the Toolkit. Your application simply passes the value along. All
files that comprise the document begin with the string contained in
volumePrefix

openAsTool defines whether or not the Tool icon was opened by the
us;ar.1 The calculator and clock are examples of applications where
this is true.

NewDocManager creates a docManager object for the process. The
method you write should call the CREATE method for your

descendant of TDocManager. If you do not want your application to
create a docManager, return NIL.. You can do that when the user
tries to open the tool and the tool cannot be opened, or when the
application cannot handle another document. See the ToolKit
1Selgrneni 1 ts for detalled descnptions of how your application is
nitialized.

METHODS YOUR APPLICATION WILL CALL:

Commence (phraseversiore INTEGER);

phraseversion is a version number used to check that the proper
phrase file is on the disk. No version check is done if

on<0. A mismatched phraseversion is only a waming. The
ToolKit does nothing.

TProcess.Commence |nitializes a process.

I1-105



LIsg ToolKit Reference Marxia! Part Il Class Reference Sheets

Coru_)lete (alllswell: BOOLEAN):

alliswell ingicates whether or not the process completed successfully.
The application program normally passes TRUE. The ToolKit passes
FALSE when there has been an error.

TProcess.Complete signals that the process has finished. It
terminates the OS process., and never returns to its caller.
Run; ; ;
TProcess.Run starts the main event 100p running.
METHODS YOUR APPLICATION MIGHT OVERRIDE:
Commence (phraseversiore INTEGER);

See above. You might override this method in order to initialize
some of your own global variables. In all cases, you should call
TProcess.Commence before initializing your own variables.

Complete (alliswell: BOOLEANE

See above. You might overrige this method in order to clean-up
after your process. Call TPmcess.Omplete after finishing your own

cleanup.
OTHER METHODS:

ChangeCursor (cursorNumber: TCursorNumber);

cursorNumber is the reference number for an application or Toolkit
defined cursor.

ChangeCursor changes the cursor to the given cursor shape.
Applications may call this routine. ChangeCursor calls
DoCursorChange.

DoCursorChange (cursorNumber: TCursorNumber);

cursorNumber 1s the reference number for an application or Toolkit
defined cursor.

TProcess.DoCursorChange handles standard cursor numbers.
Applications can reimplement DoCursorChange in order to test
cursorNumber for one of the application's special cursor shapes. If
the cursorNumber is defined as one of your application’s special
cursors, DoCursorChange should call QuickDraw's SetCursor routine.
If the cursorNumber is not one of your special cursors, your
DoCursorChange should call SUPERSELF.DoCursorchange.
Application cursor numbers start at 100.

II-106



Lisa ToolKit Rerference Manual Part Il Class Reference Sheets

TrackCursar;

“TrackCursor tracks the cursor while the process is in its idie loop. It
eventually calls view.CursorAt where you get a chance to set up your
Own Cursor.

ArgAlert (whichArg: TAlertArg: argText: S2ss5);

whichArg iIs a number from 1 t0 5, corresponding to the ~ 1to 'S
placeholders in the phrase file. £ 0, in the phrase file, is replaced by
the tool name given when you run the Install program.)

argText is the text you want to replace the given placeholder.

ArgAlert replaces the whichArg placeholider with argText. The text
is Included the next time an alert with that placehcider is displayed.

AsK (phraseNumber: INTEGER} INTEGER;

phraseNumber s the phrase flle reference number for an ask alert.
The retum value is the number of the button the user pressed.

~ Ask displays an ask alert, which is an alert that presents the user
- with cholces.

Beginwait (phraseNumber: INTEGER);
phraseNumber Is the phrase flle reference number for a dialog.
Beginwalt displays a walt alert. '

Caution (phraseNumber: INTEGERY BOOLEAN;
phraselNumber is the phrase file reference number for a dialog.
Caution displays a caution alert using the text referred to by
phrasetNumber.

CountAlert (whichCtr: TAlertCounter; counter: INTEGER)

whichCtr is 7 to 9.
counter is the number you want displayed in whichCtr.

CountAlert changes the number displayed in a wait alert.
DrawAlert (phraseNumber: INTEGER; margini Rect: LRect);
phraselNumber s the identification number of the alert in the phrase
is the size of the text area of an alert box. Only the

top, left, ahd right values matter. The -ToolKit extends the bottom of
the alert to allow room for the text associated with phraseiNumber.

DrawAlert draws an alert box.
Endwait;
Endwalt ends a walt alert.

1-107



Lisa ToolKit Reference Marxial Part l1 Class Reference Sheets

GetAlert (phraseNumber: INTEGER; VAR theText: $255);

I is the phrase flle reference number for a dialog.
theText is the text of the alert referred to by phraseiNumber.

, GetAlert obtains the text string of a given alert from the phrase file.
Note (phraseNumber: INTEGER);
, phraseNumber is the phrase file :eference number for a dialog.
Note displays a note alert.
RememberCommand (cmdNumber: TCmdNumber);
cmdNumber is the number of an application or ToolKit command.

RememberCommand remembers the last command given for use in an
alert. The command is used to replace the "C and "K placeholders
in the phraseflle. "K displays the command exactly as it appears In
the menu. “C converts the command to all lower case. This method
also resets the counter for stagegalerts. A staged alert is one ‘

~ where the alert response changes if the user repeats the action. For
example, when you type on the Lisa when that is not allowed, the
Lisa beeps on the first two keystrokes. An alert is displayed after
the third keystroke, to point the error out. RememberCommand
resets that counter, on the assumption that, since the user executed a
command, the errors were not continuous.

Phrase (error: INTEGER) INTEGER;
error is an error number.

Phrase should return a phrase number for a given error. If the retum
value Is phUnknown, refer to SULI(OSERRS.ERR) in the Intemals
document to get the text of the error message.

Stop (phraseNurmber: INTEGER);
phraseNumber is the phrase file reference number for a dialog.

TProcess.Stop usually displays a stop altert using the text referred to
by r. If there is no active document, it halts the
process and initiates a dialog with the user.

AbortRequest: BOOLEAN;

If aborts are allowed, the return value indicates whether or not the
apple/period command was typed. TRUE indicates that command was
typed.

AbortRequest indicates whether the user has requested a command
abort. You can call this periodically during a long command to tell
If the user is trying to abort the command.

11-108



LIsa ToolKit Reference Marwis! Part Il Class Rerferernce Sheets

AbortXferSequential (whichway: xReadWwrite; pFirst: Ptr; numBytes,
chunkSize: LONGINT; fs: TFileScanner);

whichway defines whether the operation is a read or write.

pFirst is a pointer to the first byte to transfer.

numBytes defines how many bytes are transferred

chunkSize is the number of bytes to transfor before testing for an
- abort command.

fs Is an active flle scanner.

AbortXferSequential acts the same as XferSéquendal, except that |t
checks AbortRequest after each chunkSize bytes of data are
transferred.

ObeyEvents (FUNCTION StopCondition: BOOLEAN);

StopCondition is a Toolkit function that retums TRUE if some
condition requires suspension of the process.

ObeyEvents is the main event loop for the process. It normally -
- returns only if amDying is TRUE, which indicates: that the application.

Is terminated or StopCondition retums TRUE. Stm()antﬁtlm is
checked only when no events are avallable.

OveyFilerEvent;

OvbeyFilerEvent is called by the ToolKit when a filer event 1s
received for a document owned by this process.
TProcess.ObeyfilerEvent calls an appropriate routine, usually a
method of TDocManager, to handle the particular event.

ObeyTheEvent;

ObeyTheEvent is called by the ToolKit when an event is received for
the process. TProcess.ObeyTheEvent then calls an appropriate event
handling routine, which may be a ToolKit or an application routine.

HandlePrivateEvent (typeOfEvent: INTEGER; fromProcess: LONGINT; wherc
LONGINT; otherData: LONGINTY DEFALLT;

typeOfEvent is an event type number. This is generally 100, but
other numbers may be defined in bullding blocks.
fromProcess is the OS process ID for the process that sent the event.
You can pass in the process ID by using the OS procecure
Info_Process.

- when is the clock time when the message was sent.
otherData is some data sent by the process.

HandlePrivateEvent is called by the ToolKit when an event is
recejved from another process. If you want your application to
process such events, you must implement this method.
TProcess.HandlePrivateEvent does nothing.

11-109



LIsa ToolKIt Reference Maral

Part Il Class Reference Sheels

SencEvent (typeOfEvent: INTEGER; targetProcess: LONGINT; otherData
LONGINT);

typeOfEvent is an event type number. The possible numbers are 100
and above.

targetProcess is the OS process ID for the process that is to receive

the event. You can pass in the process ID by using the OS
procedure Info_Process.
otherData is any information you'want.

SendEvent sends a message (an event) to another process.
BiroctmentDmment.

BinaCurrentDocument puts the data segments for the document’
currently being used by this process into memory. You should not
need to call this method; the ToolKKit binds your data segments for
you.

FAILURE CONDITIONS: = none

NOTES:
1

5.

TProcess is the default process class. You always create a subclass so
that your application's type of process object is created. In the subclass
you must define a Newwindow method that creates your kind of window
object.

A ToolKit process is not the same as an OS process. An OS process is a
particular instance of a program that may be executing. A ToolKit
process, the only kind discussed in this manual, is the control object in a
ToolKit program. There is, at most, one ToolKit process in an OS process.

A program must create an Instance of a descendant of TProcess In order
to run under the ToolKit.

No program may use more than one instance of TProcess or a descendant
of TProcess. (Note, however, that a second OS process can be started by

a ToolKit process.)

Normally, a main program creates an instance of its TProcess descendant,
and then initializes, commences, and runs the process. when the
process.Run method call is given, the process waits for events from the
program user. The application‘s implementation unit and the ToolKit
contain methods that respond to events, and carry out the actual work of
the application. If the process completes successfully, process.Run
completes, and the main program uses process.Complete(TRUE) to signal
successful completion. If the process falls with an error,
process.Complete(FALSE) is called by the Toolkit. Normally, a ToolKit
process does not complete until the offlce system is shut down.

1I-110



LIs8 ToolKIt Reference Marnal / Part Il Class Reference Sheels

6. TProcess is normally the only class mentioned in a main program. It is
not normally mentioned in any unit, except for in its own gdefinition.

7. For more information on alerts, and how to set them up, see the Phrase
File document.

EXAMPLE:
The fouowing is a sample main program. After that is the section from the
application's Interface unit showing the definition for the class TSamProcess.
The third program fragment is a section of the application's implementation
unit showing the implementation of TSamProcess. Note that, other than

CREATE and NewDocManager, all methods of TSamProcess are inherited from
TProcess without being overridden.

PROGRAM Sample; {This is an example of a main program}

USES

§NOTE: Do not omit any unit that defines classes. These units are

always glven in this order.}

- {SU UObject J UObject,

{$U QuickDraw } QuickDraw,

{$U UDraw } UDraw,

{$U uABC } UABC,

{$U Usample } USample; {This is the application's unit.

: Appli}cat.ions can have several units

here.

process = TSamProcess.CREATE: INOTE: You
must define your own subclass of
TProcess.}
process.Commence(phraseversion);
process.Run;
process.Complete({TRUE);

END.

The following subclass definition appears In unit Usample:

TSamProcess = SUBCLASS OF TProcess
FUNCTION TSamProcess.CREATE: TSamProcess;

FUNCTION T&rﬁmmm:(volumnx TFllePath)
END;

II-111



Lisa ToolKit Reference Marual Part Il Class Referernce Sheets

The following method definitions appears in file Usample2, the implementation part of
Usample. E

FUNCTION {TSamProcess.JCREATE;

BEGIN . ,
SELF = TSamProcess(TProcess.CREATE(object, heap);
END;

FUNCTION {TSamProcess} NewDocManager (volumePrefix TFilePath)
TDocManager;

BEGIN ;
- CREATE ,
NewDocManager T\?:lroocMmapx (mainheap

END;

[1-112



Lisa ToolKIt Reference Marnual

CLASS

TScanner

SUPERCLASS: TObject
DEFINED SUBCLASSES:  TArTayScanner
TFileScannerP (subclass of TStringScanner)

TListScanner
TStringScanner

INHERITED DATA FIELDS: none
DATA FIELDS: R collection: TCollection;

METHODS:

R position: LONGINT;

R Increment: INTEGER;

scanDone: BOOLEAN; |

R atEntt BOOLEAN;

Part Il Class Reference Sheets

The collection being scanneq.

The current position of the scanner.
The scanner position is always
between, before, or after members:
O=before first, size+1-after last.

The change In position for every
scan: 1 if scanning forward, -1 if
scanmning backward. _ ,
when this Is TRUE, the next Scan
call retumns FALSE, signalling the
end of the scan. The VAR parameter
of the Scan method, which normally
contains the next object in the
collection, is unchanged after the
Scan call. ‘

TRUE If the end of the collection is
eminent, so that the next Scan call
will retum FALSE.

CREATE (object: TObject; itsCollection: TCollection; itsinitialPosition:
LONGINT; itsScanDirection: TScanDirectiony TScanner;

itsCollection is a collection object.
itsinitialPosition is the initial ordinal position in the collection
itsScanDirection is scanForward or scanBackward.

TScanner.CREATE creates an object of type TScanner, which is
used to access itsCollection. itsCollection must exist before a
scanner can be created for it; however, you can use a

TCollection.CREATE call In your TScahner.CREATE call, which
will create the necessary collection object. You never call this

method directly.

II-113



Lisa ToolKit Reference Maruial Part Il Class Reference Sheets

Adgvance (PROCEDURE DoToCurrect(anotherMember: BOOLEAN):
BOOLEAN;

DoToCurrent is a procedure that takes a member of the collection

an an argument.
The retum value tells whether or not the end of the collection
has been reached.

Aagvance begins at the beginning of the collection and, each time
it is called, returmns the next mermber. The retumed member is
referred to as the cwrent member. The value of Advance is
TRUE until Agvance is called after the last member in the
collection is reached, or until scanner.Done has been called.
when Done is called or the scanner reaches the end of the
guecﬁm, the scanner is freed. You never call this method
rectly.

Allocate (slack: LONGINT)Y DEFALLT;
slackismea'runtofspaceaadedtotnecouecﬂmtnbytes.

Allocate adds empty space to the collection, so that subsequence
write operations work more quickly. It acts similarly to
SELF collection.StartEdit(slack).

Append (member: “TMember™); CONCEPTUAL ;
member {s a new member of the collection

Append adds member to the collection immediately after the
current position. position is adjusted by adding 1, so that the
next Scan retums the member after the new memober.

Close; DEFALLT;

Close is intended for use with disk-based files. It closes the
collection scanned by this scanner object. The collection object
and the scanner object are not deallocated: you can use the
scanner.Open method to reopen the collection

Compact; DEFALLT;

Compact rewrites the collection so that it uses the minlmm
amount of space necessary.

Delete; CONCEPTUAL;

Delete deletes the member at the current position. position is
adjusted by adding the scanner.increment.

11-114



LIsa ToolKit Reference Manual ’ Part Il Class Reference Sheets

mlet@est, CONCEPTUAL.;

DeleteRest deletes all members after the current position, if
scanner.increment is +1, or after the current position, if
scannerincrement is -1. position is unchanged. The next call to
scanner.Scan retums FALSE.

Done; DEFALLT:

Done signals that you are finishet! using this scanner. The next
call to scahner.Scan retumns FALSE, as if the end of the collection
had been reached. Unlike when the end of the collection is
reached, however, the returmned collection member in Scan remains
unchanged.

Obtaln: "TMember”; CONCEPTUAL ;
The return value is a member of the collection
Obtain retums the current character.

Open; DEFALLT;

Open is intended mainly for use with disk-based files. It opens a
collection previously closed by scanner.Close. The collection must
have been closed by this scanner.

Replace (member: "TMember™y; CONCEPTUAL;
member is a member that replaces the current collection member.

Replace removes the current character from the collection and
replaces it with the glven character. The new cnaracter is now
the current character.

Reverse; DEFALLT;
Reverse changes the direction of the scan.
Scan (VAR member: “TMember“x BOOLEAN; CONCEPTUAL;

member is the next member of the collection.
The retum value is FALSE If the end of the collection has been
reached or scanner.Done has been called.

Scan begins at the beginning of the collection and, each time it is
called, retums the next member. The retumed member is referred
to as the awzent member. The value of Scan s TRUE untll Scan
Is called after the last member in the collection is reached, or
until scanner.Done has been called. If the end of the collection
was reached, and Done was not called, the value of member Is
NIL. If Done was called, member keeps the last value it had.
when method Done is called or when the scanner reaches the end
of the collection, the scanner is freed.

11-115



Lisa ToolKit Reference Manual ; Part Il Class Reference Sheels

Seek (newPositione LONGINT); DEFALLT;

newPosition is the location to which you wish the scanner to
move. newPosition = 0 is the beginning of the collection

Seek moves the current scan position to newPosition. It transfers
no data.

Skip (geltaPos: LONGINTY DEFALLT;

deltaPos is the number of bytes you wish the scan position to
move within the collection. A positive value moves the position
toward the end of the collection; a negative value moves the
position toward the beginning of the collection

Skip moves the scan position deltaPos bytes forward or backward
within the collection. It transfers no data.

NOTES:
1. A scamner Is used to access the various types of couections.

2. The ToolKit-defined collection types are files, strings, lists, a'hd arrays.
There is a subclass of TScanner for scanning each of those classes. See
TFileScanner, TStringScanner, TAIrayScanner, and TListScanner for more
information.

3. In general, before you can use a scanner to access a collection, you must
create a collection object of the right type. See TArray, TList, TFile, and
Tstring for more information.

4. CONCEPTUAL methods are not implemented, or even defined in the
interface. They are here as models only; every subclass can define its
interface to these methods in its own way. ‘

11-116



Lisa ToolKit Reference Maug) Part Il Class Reference Sheets

CLASS: TScrollBar
SUPERCLASS: Tobject
DEFINED SUBCLASSES:  none
INHERITED DATA FIELDS:  none

DATA FIELDS: R firstBox TScroller; The first scroller for this scroll
; bar. Other scrollers are found
through a fleld of this scroller.

R isvisible: BOOLEAN; TRUE {f this scroll bar should be
drawn.
METHODS: None that are important for applications.

NOTES:
1. Applications never subclass or otherwise deal directly with this class.

1-117



Lisa ToolKit Reference Manual Part Il Class Reference Sheets

CLASS: TScroller
SUPERCLASS: TObject
DEFINED SUBCLASSES:  none
INHERITED DATA FIELDS:  none

DATA FIELDS: R scrollBar: TScrollBar; The scroll bar that contains this
¥ mer-
R bant TBand: " The band affected by this scroller.
R sBoxID: TSBoxXID; The scroll bar llbrary

representation of the entire scroll
bar. If there is more than one
scroller in the scroll bar containing
this scroller, the ToolKit finds the
others through this fleld.

METHODS: None that are important for applications.

NOTES: | 4 .
1. Applications never subclass or otherwise deal directly with this class.
2. Tnis call defines and controls the mechanisms that scroll bands.

- 11-118



L/sa ToolKit Refersnce Mol

»aCLASS: TSelection

SUPERCLASS: Tobject
DEFINED SUBCLASSES:  none
INHERITED DATA FIELDS: none

DATA FIELDS: R window: Twindow;
R panel: TPanel
R view: TView;
RW kint: INTEGER:

Rw anchorLPt: LPoint;
RW currLPt: LPoint;

R  boundLRect: LRect;
RW coSelection: TSelection;

R canCrossPanels: BOOLEAN;

METHODS YOUR APPLICATION WILL CALL:

Peart Il Class Reference Sheets

The window object in which the

. Selection was made.

* The panel object in which the
selection was made.,

The view object of panel object in
which the selection was made.
The kind of selection. 0 means no
selected object (nothingkind). The
rest of the codes are defined by
the view object.

The place the mouse went down
(view-relative). .

The place the fmouse was last
tracked.

The bounding box of the selction.
If this selection does not implement
certain commands, the ToolKit
sends the commands on to
coSelection, unless coSelection is
NIL.

TRUE if the selection can be in
two panels. Used for cross-panel

dragging.

CREATE (object: TObject; heap: THeap; itsView: TView; itsKind INTEGER;
itsAnchorLPt: LPointx TSelection;

heap Is the heap used for this document.

itsView references the view that displays the selected object.
itsind is the type of the selection. 0 indicates there is no selected
object. Other values are defined by the application.

itsAnchorLPoint is the mouse-down point. Used solely by the

application.

TSelectlon.CREATE creates an object of type TSelection

CantDolt;

TSelection.CantDoit is called by other routines when a command
cannot be done. A waming message from the phrase file is

displayed.

1-119



LIsa ToolKit Reference Marnial ~ Part Il Class Reference Sheets

FreedAndReplacedBy (selection: TSelection) TSelection;

selection is the new selection (usually a CREATE method call to
TSelection or some descendant of TSelection)
The returmn value is the new selection

TSelectionFreedAndReplacedBy replaces the old selection object with
a new selection, keeping the same handle for the new selection as
the.old one had. You should always use this method when changing
selections. This makes certain that handles in your application that
pointed to the old selection to point to the new selection.

METHOOS YOUR APPLICATION OFTEN OVERRIDES:
NewCommand (crndNumber: TCmaNumbery TCommand; DEFAULT;

cmdhNumber indicates the menu command chosen.
The return value is a command object, or NIL.

TSelectionNewCommand calls window.NewCommand if there is no .
coSelection. You must write your own selectionNewCommand

" method in order to do selection-specific command processing. If you
g0 so, construct the NewCommand procedure around a CASE
statement with a case for each of your commands. End it with
OTHERWISE NewCommand:-TSelectionNewCommand. Retum NIL or
a new command object. NIL means the document was not changed
signficantly. In that case, NewCommand must carry out the action of
the command itself. Retum an instance of TCommand when the
command cannot be undone. In that case, first call
window.CommitLast to Commit the last command object, then carry
out the action of the command, and then retum an instance of
TCommand. In all other cases, retum NIL or an instance of a
descendant of TCommand. The descendant of TCommand has
methods that perform the action of the command. See the ToolKit
Segments for more information.

Highlight (hghTransit: THighTransity DEFALLT;

nighTransit is the change in highlighting of the displayed object. The
choices are: hiNone, hOffToDim, hOffToOn, hDimToOn, hDIMToOff,
hOnToOff, and hOnToDim. Dim highlighting is normally used when
the window is inactive.

Highlight changes the appearance of an object when it is selected
and deselected, and when the window is activated or deactivated.

Your Hignlight method should not try to keep track of the state of
' mgnlignting The ToolKit always calls this method with the proper
t value. Highlighting is normally done using XOR. Call
SetPer\Tnglmmg\Tra\sit) and then FramelLRect, Paintl Rect, or
some other appropriate drawing routine.

11-120



Lisa ToolKit Referernce Marwas! Part Il Class Reference Sheets

MouseMove (mousel Pt: LPointy DEFALLT:
mouseLPt is the view-Telative point where the pointer is located.

You may write a MouseMove routine that takes some
application-dependent action, such as drawing something, when the
mouse button is still down. TSelectionMouseMove does nothing.

MouseRelease; DEFALLT;

You may write 8 MouseRelease foutine that takes some
application-dependent action, such as creating a command object,
wheni the mouse button is released. TSelectionMouseRelease does
nothing.

METHODS YOUR APPLICATION MIGHT OVERRIDE:
MousePress (mouseLPt: LPointy DEFALAT;

mousel Pt is the view-relative point where the pointer was located
when mouse was pressed.

‘You may write a MousePress routine that takes some
application-dependent action when the mouse is pressed.
TSelectionMousePress does nothing.

INTERNAL METHODS:
Dokkey (ascil: CHAR; keyCap: BYTE; shiftikey, applei<ey, optioni<ey:
BOOLEAN);

ascii is the character typed at the keyboard.

keyCap defines the actual key pressed on the keyboard. See the
HWINT documentation in the Internals document.

shiftkey tells whether or not the shift key was pressed along with the
character.

applei<ey tells whether or not the Apple key was pressed along with
the character.

optioni<ey tells whether or not the option key was pressed along with
the character.

TSelectionDoiKey determines what action is to be taken when a key
is pressed. If applei<ey is TRUE, the key combination is checked to
see if it is one of the menu commands. If so, window.DoCommand is
called. Otherwise, the method checks if there is a selected object.
If not, process.Stop is called and a warning message is displayed. If
there is a selected object, selectionDoikey checks which editing or
character key was pressed. Depending on the key, one of the key
methods listed under the following section, INTERNAL NO-OP
METHODS, is invoked. when the ToolKit is used without those
overridden (often by a bullding block), all produce an alert to the

1I-121



Lisa ToolKit Refererce Manual Part Il Class Reference Sheets

user. All of these routines are implemented in one or several
building blocks. You can implement these routines yourself, If you
wish. You would probably override DolKey if you were writing a
terminal emulator.

INTERNAL NO-OP METHODS:

All of these routines are implemented (or will be implemented) in a
number of building blocks. In particular, the Text Bullding Block
implements these in a way appropriate for text. You can override any of
these routines.

KeyBack(fwort: BOOLEAN); DEFALLT;
KeyChar(chc CHAR); DEFAULT;

KeyClear; DEFALLT;

KeyEnter(dh, dv: INTEGER); DEFALLT;
KeyForward(fword BOOLEANE DEFALLT;
KeyPause; DEFALLT; -

KeyReturn; DEFAULT;

KeyTab({fBackward: BOOLEAN) DEFALLT;
SelectedParagraphs; DEFALLT;

This group of methods handle keyboard entry. They are usually
called by the Toolkit.

OTHER METHOOS:
Clone (heap: THeap}x TObject.
heap is the document heap.

TSelection.Clone creates a copy of the coSelection, as well as of the
selection. You can override this method.

GetHysteresis (VAR hysterPt: Pointy DEFALLT;

hysterPt Is the current hysteresis, expressed with a vertical
(hysterPtv) and horizontal (hysterPth) component.

GetHysteresis gets the current mouse nyst.eresis You can override
this method.

HaveView (view: Tview)
view is the view in which the selection is seen.

This method 1s called to change the view pointed to by the selection
Do not call this method. You might want to call TPmeu-lave\new
however.

11-122



LIlsa ToolKit Reference Marual ~ Part Il Class Reference Sheets

MarkChanged; DEFALLT;
‘MarkChanged marks the document as having been changed.

CanDoCommand (crndNumber: TCmdNumber; VAR checkit: BOOLEANY
BOOLEAN; DEFALLT;

cmadNumber s the reference number for an mpncatlon or ToolKit
command.

checkit tells whether or not the correspoding menu item should have
a checkmark next to it

The retumn value indicates whether or not the command can be done.

CanDoCommand reports whether the command referred to by
cmdhNumber can be done. You often need to override this method.
when you do so, if the command is not one of your application's
commands, call CanDoCommand:=SELF.window.CanDoCommand. See
the ToolKit segments for a more complete description.

ldleaegin (centiSeconds: LONGINTY; DEFAULT;

centiSeconds the amount of time, in hundredths of a second, since
iole time started.

TSelectionidleBegin calls coSelectionidieBegin, if there is a
coSelection, or Twindow.IdleBegin, if there is not. Twindow.IdleBegin
lets other processes run. You may want to override this method to
do idle time tasks that are very time critical.

IdleContinue (centiSeconds: LONGINTL DEFALLT;

centiSeconds the amount of time, in hundredths of a second, since
idle time started.

TSelection.IdleContinue calls coSelectionldleContinue, if there is a
coSelection, or window.IdleContinue, if there is not.
Twindow.IdleContinue calls process.TrackCursor, if the process is
active. If this process is not active, Twindow.ldleContinue lets other
processes run.  You may want to override this method to do idle time
tasks that should be repeated and can be put off until this time.

IdieEnd (centiSeconds: LONGINTY DEFALLT;

centiSeconds the amount of time, in hundredths of a second, since
idle time started.

TselectionIdleEnd calls coSelectionidleEnd, if there is a coSelection,

or window.IdleEnd, if there is not. Twindow.IdleEnd does nothing.

You may want ot override this method to stop processing of your idle
~ time tasks.

I-123



- Lisa ToolKit Reference Merwgl " Part Il Class Reference Sheets

Deselect; DEFALLT;

TSelectionDeselect turns off highlighting of the selection and replace
it with noSelection. :

MoveBack ToANchor; DEFALLT;

MoveBack ToAnchor is called by the ToolKit when a cross-panel drag
is attempted, and it is not successful for some reason. In that case,
MoveBack ToAnchor should restoré the selected object to its position
before the drag attempt was begun. If you want that to happen, you
rnust1 implement this method. TSelectionMoveBack ToAnchor does
nothing.

- Restore; DEFALLT:

Restore replaces the current selection with the last selection saved
with selectionSave, which is normally the selection before the last
command. You may want to overridge this method.

Save; DEFAULT; |
Save stores the current selection so that it can be restored if the

user requests an undo of the last command. You may want to
override this method.

Reveal (asMuchAsPossible: BOOLEAN: DEFAULT;

asMuchAsPossible indicates whether or not the selection should be
shown to the greatest extent possible.

Reveal controls the displaying of the selection. If asMuchAsPossible
is TRUE, the panel is scrolled whenever the user does anything that
affects the selection so that the largest part of the selected objects
are displayed as can be shown. If asMuchAsPossible Is FALSE, the
display iIs not changed to show more of the selection

DrawGhost; |
DrawGhost can be implemented to draw an XORed ghost image
ouring cross panel dragging. It is called by the ToolKit, between
each call to MousePress and the first call to MouseMove. If you

imlement this method, you should also implement MouseMove so that
it moves the ghost image. TSelectionMouseMove does nothing.

FAILURE CONDITIONS:  none
NOTES:

1. Tnis class is usually subclassed for use. However, when no object is
selected, the null selection object can be an instance of TSelection itself
with the kind field set to nothingind.

2. The descendant of TSelection usually contains a handle on the selected
object, or a list of handles on the selected objects.

1128



LIsa ToolKIt Reference Manua! Part Il Class Reference Sheets

3. The selected object Is one of the objects displayed by the view object
associated with the panel object containing this selection. Commands
often apply only to a selected object. There can be many selected objects
in each panel, or no selected objects. Each panel object, however, always
has a selection (an Instance of TSelection or a descendant of TSelection),
even when there are no selected objects.

4. Successive selection objects In a particular panel object use the same ‘
object handle. Use the method selectionFreedAndReplacedBy to free the
old selection and give its handle to the new selection

S. If there is more than one selection, the one in the active window's
selectPanel is active and receives commands.

6. If there is a selected object in the selectPanel, it is always hignlighted in
some way, while selections in other panels may or may not be highlighted.

7. coSelection is used when you want to take advantage of a building block
other other pre-defined unit's action on most edit key events, while
implementing dif_ferent action on some edit key events.

8. To use the coSelection feature, create your own descendant of TSelection
and put the building block's selection in the coSelection field of your
application's selection object. The ToolKit's default edit key routines,
which are inherited by your descendant of TSelection, all check to see if
there is a coSelection, and, if there is one, send the key event to the
coSelection

9. For the key events that you want handled differently from the way the
bullding block handles them, reimpiement that edit key routine in your
descendant of TSelection. Since your routine presumably would not check
for a coSelection, the coSelection is ignored. You can always send some
keys to the coSelection and handle others yourself.

10. Successive coSelections of a particular selection object may use the same
object handle. Use FreedAndReplacedBy to change coSelections. See note
q,

11. See the ToolKit Segments for examples and more details of use of
selections.

1-125



Lisa ToolKit Reference Menual Part Il Class Reference Sheets

CLASS: TString |
SUPERCLASS: TCollection
DEFINED SUBCLASSES:  none

INHERITED DATA FIELDS:  slze: LONGINT; The number of real elements in
' this list, not counting the hole.
This Is a LONGINT for the
benefit of huge collections, such
as remote data bases. It is
always in the INTEGER range
- for instances of
dynStart: INTEGER: The number of bytes from the class
X pointer to the dynamic data area.
holeStart: INTEGER; 0 means hole at the beginning:
value of size means hole at the
end.
holeSize: INTEGER; The initial size of the hole,
. measured in the number of
members that can fit in the hole.
holeSte INTEGER; How much to grow the collection
- by iIf the holeSize goes to 0.
DATA FIELDS: none
METHODS:

CREATE (object: TObject; itsheap: THeap; initialSlack: INTEGER)

initialSlack is the size of the initial hole, in member-sized units.

CREATE creates an empty string on itsHeap. initialSlack
is a hole for string members. Because the string is created with
a hole, the insert methods can be used to initialize the list,
without allocating any space.

AL (I: LONGINTY CHAR; DEFALLT;

1 is an ordinal position in the string.
The retum value is the character at the given position.

At returns the character at the given position in the string.
DelAll; '

DelAll deletes all the characters of a string The string itself is

not geleted.

II-126



Lisa ToolKit Reference Manual Part Il Class Reference Sheets

DelAt (1: LONGINTY DEFALLT; ;
1 1s an ordinal position in the string.

DelAt celetes the character at position 1; characters after | are
tnenmovedtoﬂlltntneermtyspaoe.

DelFirst;

DelFirst deletes the character at,the beginning of the string.
DelLast;

Dell_ast deletes the character at the end of the string
DelManyAt (1, howMany: LONGINT);

i is an orginal position in the
howMany indicates the number of string characters to be deleted.

DelManyAt deletes a number of characters from the string. The
first deleted character is at posmon L

Draw (1: LONGINT; howMany: INTEGER);

1 1s an ordinal position in the string
howMany indicates the number of string characters to be drawn.

Draw calls QuickDraw to write the given part of the string at the
current pen position. ‘

Each (PROCEDURE DoToCharacter(character: CHAR);

DoToObject 1s PROCEDURE that takes a character as its
argument.

Each applies the given PROCEDURE to each character in the
string.

First CHAR;

The return value is a character.

First retums the first character in the string
InsAt (I: LONGINT; character: CHAR);

1 iIs an ordinal position in the string
character is a character.

InsAt inserts an character in the string. The newly inserted
character occupies position L

InsFirst (character: CHAR);
character is a cha;acter.

InsFirst inserts an character at the beginning of the string The
newly Inserted character occuples the first position in the string

11-127



LIsa ToolKIt Rerference Manugl Part ]l Cilass Reference Sheets

InsPSUAL (I: LONGINT; pStr: TPString);
1 Is an ordinal position in the string.
pStr is a pointer to a string

InsPStrAt inserts a string into this string at position L
Insi_ast (character: CHAR);
character Is a character.

InsLast Inserts an character at the end of the string The newly
inserted character occuples the last position in the string.

Last: CHAR;

The return value is a character.

Last retums the character at the end of the string
ManyAt (I, howMany: LONGINT)} TString;

1 is an oroinal position in the string
howMany 1s a number of characters.

ManyAt retumns a string with the characters from the original

string beginning at position 1 and continuing through howMany
characters.

MemberBytes: INTEGER; OVERRIDE;

MemberBytes retumns the size of a member of the string, which is
always 1. (This method is more useful for other types of
coliections.)

Pos (after: LONGINT; character: CHAR)E LONGINT;

after is the index number of a character in the string
character is a character.

Pos finds the positions of the first instance of character after
position after.

PutAt (I: LONGINT; character: CHAR);

i is an ordinal position in the string.
character is a character.

PutAt deletes the character at position 1, ana replaces it with
character.

11-128



LIs8 ToolKit Referernce Marnis! Part Il Class Reference Sheets

Scanner: TStringScanner;
The retum value Is a stringScanner for this string.

Scanner retums an object of class TStringScanner, allowing use of
stringScanner methods. This Is equivalent to

string.ScannerfFrom (1, scanForward);
ScannerfFrom (firstToScan: LONGINT; scanDirection: TScanDirectionk
TstringScanner; DEFAULT:
firstToScan is a position In the string

scanDirection scanForward or scanBackward.
The retum value is a new stringScanner.

ScannerFrom retums an object of class TSuingScanner, with
stringScanner Position equal to firstToScan minus one (or plus one,
if scanDirection is scanBackward), so that the first call to
stringScanner.Scan retums the character at firstToScan

StartEdit (withSlack: INTEGER);
withSlack is the new value for holeStd

StartEdit changes the value of holeStd to withSlack, so the next edit
call creates a hole of size withSlack, so that subsequent edit calls
act more quickly.

StopEdit.

StopEdit removes the hole from the array and sets holeStd to 0 (zero)
Any subsequent edit call removes any hole it forms.

ToPStr (pStr: TPString::

pStr is a pointer to a string.

ToPStr transfers this string into the string at pstr.
ToPStrAt (i, howMany: LONGINT; pStr: TPString);

i Is an ordinal position in the string.
is a number of characters.

pStr Is a pointer to a string.
TOPStrAt transfers part of this string into the string at pstr.
width (I: LONGINT; howMany: INTEGER);

1 1s an ordinal position In the string.
howMany is a number of characters.

width calls the QuickDraw routine, Textwidth

11-129



Lisa ToolKit Reference Manval | Part Il Class Reference Sheets

FAILURE CONDITIONS: Heap can't grow.
Array > 32K bytes.
Deleting from empty string.
Subscript out of range.
NOTES:

1. A string is a space-optimized list of characters, similar to an array, except
that TArray requires even memberBytes, gnd TString has a memberByte
value of 1.

2. strings have three modes: create moadk edit modg and statlc mooe

3. when you first create a string, it is In create mode. You define an
initialSlack value in the CREATE call. The string is given enough empty
space to hold initialSlack characters. That space is the hole. As you add
characters, the space in the hole is used for the new characters. The
amount of space allocated to the string does not change until you fill up
the hole with characters. You can also call st.rlng.StopEdlL which removes
the hole from the string.

4. When the hole is filled, the string enters static mode. In stauc mode, No
hole is ever maintained. If you add a characters, the string is copied into

a space large enough to hold the aaditional characters. If you delete a
character, the extra space is freed.

S. Enter edit mode by calling stringStartEdit(withSlack). In edit mode, a hole
big enough for withSlack characters is initially created. As you add
characters, the size of the hole decreases. when the hole is entirely
filled, the space allocated to the string is increased, so there is a new
hole big enough for withSlack characters. If you delete characters, the
extra space is added to the hole. Call string.StopEdit to stop editing.

Any space taken up by the hole is then freed.

11-130



LIlsa ToolKit Reference Mearng!

CLASS.TSt.nrgScaner

SUPERCLASS:

TScanner

DEFINED SUBCLASS: TFlieScanner

INHERITED DATA FIELDS:

R increment: INTEGER:

scanDone: BOOLEAN;

R atEnt: BOOLEAN;

DATA FIELDS: R actual: LONGINT:

METHODS:

Part I7 Class Rererernce Sheets

R collection: TCollection; The string being scanned.
R positionr LONGINT;

The current position of
the scanner. The scanner
position s always

between, before, or after

members: O=before first,
size+1=after last

The change in position

for every scan: 1 if
scanning forwargd, -1 if
scanning backward.

when this Is TRUE, the
next Scan call retums- -
FALSE, signalling the end.
of the scan. The VAR
parameter of the Scan
method, which normally
contains the next object

in the string, is
unchanged after the Scan
cal

1
TRUE if the end of the
1ist is eminent, so that
the next Scan call will
retum FALSE.

The number of bytes transferred
in the last transfer operation.

CREATE (object: TObject; itsString: TString: itsinitialPosition:
LONGINT; itsScanDirection: TScanDirection} TStringScanner;

itsinitialPosition is the initial ordinal position In the string
itsScanDirection s scanForward or scanBackward.

LCREATE creates an object of type TStringScanner,

TStringScanner.
which Is used to access itsString.

itsString must exist before a

stringScanner can be created for it; however, you can use a :
TString.CREATE call in your TStringScanner.CREATE call, which

will create the necessary string object.

I1-131



LIsa ToolKit Reference Marval Part Il Class Reference Sheets

Append (character: CHAR), DEFAILLT;
‘character Is a new member of the string.

Append adds character to the string immediately after the current
position. position is adjusted by adding 1, so that the next Scan
retums the character after the new character.

Delete; DEFAILT; |
Delete deletes the character at the current position. position is
adjusted by subtracting 1.

DeleteRest; DEFALT;

Delete deletes all characters after the current posmon. position
{s unchanged. The next call to stringScanner.Scan retums FALSE.
Done; DEFAULT;
Done signals that you are finished using this stringScanner. The
next call to stringScanner.Scan retums FALSE, as if the end of
-the string had been reached. Unlike when the end of the string is
reached, however, the retumed character in Scan remains
unchanged. ;
Free; OVERRIDE;
Free deallocates this stringScanner object.
Obtaln: CHAR; DEFALLT;
The returmn value is a character from the string.
Obtain returns the current character.

ReadArray (heap: THeap; bytesPerRecord INTEGER): TArTay;

heap is a heap on which to allocate a new TAITay.
bytesPerRecord is the number of bytes per record in the desired
TArTay.
The returmn value is an array containing data from the string
readArray first reads a 2-byte count of the records in the array
and then transfers that number of records times bytesPerRecord
bytes from the string into the array that it allocates.
ReadNumber (numBytes: SizeOftNumbery LONGINT;

numBytes is between 1 and 4.
The retum value i{s a8 LONGINT read from the current position in
the string.

ReadNumber reads a number of length numBytes. If numBytes is
even, the number is signed. stringScanner.Position is increased by
numBytes. The number is not read as ASCIL

[1-132



Lisa ToolKit Reference Marua/ Part Il Class Reference Sheets

Rempct (heap: THeapt TObject;

heap is a heap.
The return value is a new object.

ReadObject reads the next four bytes from the string and takes
that as a class pointer. It then creates a new object on heap
using that class pointer.

Replace (character: CHAR); DEFALL Ty
character is a character that replaces the current character.

Replace removes the current character from the string and
replaces it with the given character. The new character is now
the current character.

Scan (VAR nextChar: CHAR)Y BOOLEAN; DEFALLT;

nextChar is the next character from the string.
The retumn value is FALSE If the end of the string has been
reached or stringScanner.Done has been called.

Scan begins at the beginning of the string and, each time it is
called, retums the next character. The retumed character is

~ referred to as the cwzend character. The value of Scan is TRUE
until Scan s called after the last character in the string is
reached, or until stringScanner.Done has been called. If the end
of the string was reached, and Done was not called, the value of
nextChar is NIL. If Done was called, nextChar keeps the last
value it had. When method Done s called or when the scanner
reaches the end of the string the scanner is freed.

Seek (stringPos: LONGINT);
stringPos iIs the location to which you wish the scanner to move,
stringPos ~ 0 is the beginning of the string.
Seek moves the current scan position to stringPos. It transfers no
data

Skip (deltaPos: LONGINTY;

deltaPos {s the number of bytes you wish the scan position to
move within the string. A positive value moves the position
toward the end of the string; a negative value moves the position
toward the beginning of the string.

Skip moves the scan position deltaPos bytes forward or backward
within the string. It transfers no data.

I-133



Lisa ToolKit Reference Marval - Part II Class Reference Sheets

WwriteArray (= TAITay)
a is the TArray you wish copled into the string.

writeArray copies a into the string, preceded by a 2-byte count
of the number of records.

WriteNumber (value: LONGINT; numBytes: SizeOftNumber):

value is the number you want written.
numBytes is the number of bytes you want the number to ocCupy
“in the string (1 to 4).

writeNumber writes value into numBytes bytes of the string,
dropping high-order bits if numBytes < 4.

writeObject (heap: THeap) TObject;

heap is a heap.
The return value {s an object.

writeObject is the inverse of ReadObject.
XferCmt.igan (whichway: xReadwrite; collection: TOollectim),

whichway Is either xRead, xwrite, or xSkip.
collection is the TCollection you are reading or writing.

XferContiguous reads or writes collection; when whichway =
xRead, it resizes collection and appends the contents of the string
to the end of collection.

- XferFields (whichway: xReadwrite; object: TObject);

whichway is either xRead, xwrite or xSkip.

object is the object from which you are reading or to which you
are writing.

XferFields reads or writes the contents of the flelds of object
The class pointer is not read or written.

XferRandom (whichway: xReadwrite; pFirst: Ptr; numBytes: LONGINT;
mode: TIOMode; offset: LONGINTY DEFAILT;

whichway Is either xRead, xwrite or xskip.

pFirst points at the first byte to read data into or write data out
of. It is ignored with xSkip.

numBytes Is the number of bytes read, written or skipped.

mode Is mAbsolute, mRelative or mSequentlal

offset Is a byte position from the beginning of the string when
mode 13 mADbsolute, or from the current string position if
mRelative,

XferRandom reads, writes or skips numBytes bytes of the string,
starting at the indicated position. All the other /0 methods call
this method. XferRandom calls the Lisa OS directly. Reading

II-134



Lisa Toolkit Reference Manugl Part If Class Reference Sheets

NOTES:

and writing are always done left to right (from the beginning
towards the end) regardless of the scanDirection

XferSequential (whichway: xReadwrite; pFirst: Pur; numBytes:
INTE DEFALLT;

whichway Is either xRead, xwrite or xSkip.

pFirst points at the first byte to read data into or write data out
of. It Is ignored when whichway, equals XSkip.

numBytes is the number of bytes read, written or skipped.

XferSequential reads, writes or skips the next numBytes bytes of
the string. Reading and writing are always done left to rignt
(from the beginning towards the end) regardless of the
scanDirection.

XferPstring (whichway: xReadwrite; pStr: TPString:

whichway is either xRead, xwrite or xSkip.
pStr is a pointer to a string to read or write.

Xferstring reads a string pStr” fromasumgorwriteslttoa
string. If whichway 1Is xRead, the destination string must be long
enough. The amount transferred depends on the length of pStr”.

A stringScanner is used to access a stored data string, to scan it, and to
mmipltlnate its individual elements. Use TListScanner and its subclasses to
scan lists.

Before you can use a stringScanner to access a string, the string must be
opened by TStringScanner.CREATE. stringScannerFree closes the string

The Actual variable contains the number of bytes of data most recently

transferred to or from the string. It is the same as the number requested
unless error > 0.

The Xfer methods are preferred, because the same procedure may then be
able to transfer data to or from a string.

You may have more than one stringScanner open on the same string at the
same time.

WARNING: No checking is done that sufficient space has been allotted for
data reads at pFirst” or pstr’.

-135



Lisg& ToolKit Reference Marnsg! | Part Il Class Referernce Sheets

=noCLASS: Me\_v

SUPERCLASS: Timage

DEFINED SUBCLASSES:  TPaginatedview
TPagevView

INHERITED DATA FIELDS: R extent Rect: LRect; '5?8 size of the entire
ew.
R view: TView; Always contains SELF.

allowMouseOQutside: BOOLEAN;

FALSE by default. when
FALSE, and the mouse
point is outsige the view,
the point Is converted to
the closest point within
the view. If TRUE, the
point is not converted. -

~ In that case, mouse
points can be outside
extenti_Rect and,
particularly, can be
negative. This feature
exists primarily for use
with sidebands. Note
that your program must
be prepared to handle
mousepoints outside

extentLRect
DATA FIELDS: R panel: TPanel; “The panel that looks on this view.
R clickLPt LPoint; The last place the user clicked the
mouse button.
R printManager: TPrintManager; The printManager for this view.
R res: Point; The resolution of this view, in

terms of spots per inch. A spot is
the smallest unit that can be
displayed, equivalent 10 a pixel.
The resolution has two dimensions:
a vertical (res.v) and a horizontal
(res.n) resolution.

R fltPagesPerfectly: BOOLEAN: wnhether or not the ToolKit should
alter the view size automatically so
that there Is always a whole

‘ number of pages.

R isPrintable: BOOLEAN; wr?ether or not this view can be

printed.

11-136



L/sa ToolKIt Reference Marva! Part Il Class Reference Sheets

R isMainview: BOOLEAN; whether or not this is a main view.
If FALSE, this is an auxliary view
\snuch as a page view or paginated

ew.

R staScroll: LPoint; The standard amount of scrolling
from one click on the scroll arrow.
There is 3 standard scroll value for
two dimensions: a vertical

~ (stascrollv) and a horizontal
(stascrolLh) scroll distance.
RW scrollPastEntt Point; How much the ToolKit should scroll

past the end of the view.

METHOD YOUR APPLICATION MUST OVERRIDE:

CREATE (onject. TObject; heap: THeap; itsPanel: TPa\el, itsExtent: LRect;
tsPrintManager: TPrintManager; itsDfltMargins: LRect;
ltsFltPangerfectlyﬁoa_Em itsRes: Point; lsMain\dew-
- BOOLEANk TView;
itsPanel is the panel looking on this view.
ftsExtent is the size of the view.
itsPrintManager s the printManager to be used for printing this view,
or NIL, if this view cannot be printed.
itsDfitMargins is a rectangle which specifies, in view coordinates, the
page margins used when printing.
itsFitPagesPerfectly indicates whether or not the ToolKit should
format the view so that, when it s printed, it occupies a whole
number of pages.
itsRes is the resolution of this view, in dots per inch.
isMainView is TRUE If this is the primary representation of the data,

and not a paginatedview or a pageView.

TVIew.CREATE creates an object of type Tview. Normally, your
application does not call this method directly; instead, you call

paneL.NewView or panel.NewStatusview. Those methods call CREATE.
Draw;
You should implement a Draw method in each descendant of Tview to
draw the part of the view visible in the pane or on the page. Your
Draw method should assume that thePad is set up to draw in one
pane. (See TPad in Chapter 3 for an explanation of thePad)

PETI-{DSY&RAPPUCATICNG:TENOVERRHIS:
MousePress (mouselPt: LPoint);

mouseLPt is the view-relative point where the pointer was located
when the mouse button was pressed.

You normally write a MousePress routine In each descendant of

n-137



LIsa ToolKit Reference Marugl Part Il Class Reference Sheets

TView that takes some application-dependent action when the mouse
s pressed. Tview.MousePress calls TSelectionMousePress.

EachActualPart (PROCEDURE DoToObject (ob} TObject)y

PROCEDURE DoToObject is any procedure that takes a TObject
object-reference varlable as an argument. DoToObject cannot be a
method,

EachActualPart is intended to apply DoToObject to each object in the
view's set of objects. If you store your application's objects in the
window, you should implement window.EachActualPart rather than
viewEachActalPart Tview.EachActualPart actually calls
Twindow.EachActualPart, which retumns an error message indicating
that EachActualPart was not implemented.

MouseMove (mouselPt: LPoint)
mouseLPt is the window-relative point where the pointer is located.

Tview.MouseMove calls TSelectionMouseMove. You may write a
routine that takes some application-dependent action when the mouse
button is still down. More often, your MousePress method creates a
selection that handles the mouse move itself. View.MouseMove is
always called at least once before view.MouseRelease is called.

MouseRelease;

TViewMouseRelease calls TSelectionMouseRelease. You may write a
routine that takes some application-dependent action when the mouse
button is released. More often, your MousePress method creates a
selection that handles the mouse release itself. when the mouse
button is released, the ToolKit calls view.MouseMove one last time
with the final pointer position, and then calls view.MouseRelease.

OkToDrawin (IRectinview: LRectr BOOLEAN;
IRectinView is a view-relative rectangle.

TView.OkToDrawin always returmns FALSE. You may reimplement it
to improve the performance of your application. It is called when
the application or a bullding block wants t0 draw or erase from
command or mouse code. PaneLlnvallRect is normally called to
cause the ToolKit to tell the view to draw the next time

- window.Update is called. If, for speed, you want the application or
bullding block to draw directly, you must call panel.OkToDrawin to
ask for permission. The panel object may deny permission if page
breaks are in the way, or may call the view.OkToDrawin method to
ask the view object for permission. If the application is certain that
only one object's image is in IRectinvView (as opposed to several
layered images), it can return TRUE. Note that it is permissible to

11-138



LIsa ToolKit Reference Marnial Part Il Class Reference Sheets

~ draw In the view using XOR, as Is sometimes done in Highlight
methods, without asking permission.:

SetMinviewsize (VAR minLRect: IRect);
minLRect is the minimum view size acceptable to the application.

SetMinviewsize is called by the ToolKkit to obtain the minimum view
size. It retumns the views current extemtLRect by default. You can
reimplement this method if you want. to retum some other value.
The actual size of the view set by the ToolKit can be larger than the
value given by SetMinViewSize, depending on the value of
view.fltPagesPerfectly.
OTHER METHODS: '
’ AGaStripOfPages (vhs: VHSelecty DEFALLT;
vhs tells whether a vertical or horizontal strip is to be adced.
increases the view size by one vertical or horizontal
. strip of pages. : . L o :
BelnPanel (panel: TPanel):
panel is one of the application’s panels.
BelnPanel Installs this view in the given panel
CursorAt (mousel Pt: LPoint TCursorNumber; DEFALLT;

mousel Pt {s the view-relative point where the pointer is located.
The retum value Is the type of cursor to be set, or noCursor.

CursorAt retums the position of the mouse pointer. The retumn value
indicates the kind of cursor that is to be displayed. If you do not
care, you can set the value to noCursor. In that case, the ToolKit
displays the default cursor, usually the arrow cursor. Applications
often overricge this method.

DoRecefve (selection: TSelection; IPtinview: LPointt BOOLEAN;

felmect.m is the selection object that points to objects that the user
$ ng.

IPtinvView is the point where the objects were left by the user.

The retum value is whether or not this operation can be done.

DoRecelve is used to implement cross-panel dragging.
TView.DoRecelve always retums FALSE. If you want to implement
cross-panel dragging, your view should pick up the selection and do
something appropriate with it, and retum TRUE if the operation is
successful. Applications might override this method.

I1-139



Lisg ToolKIt Reference Marnia! Part IT Class Reference Sheets

ForceBreakAt (vhs: VHSelect; precedingl.ocatior: LONGINT;
proposed_ocation: LONGINTE LONGINT;

vhs indicates either or vertical or a horizontal page break.
“preceding_ocation is the location of the preceding page break.

- proposedLocation is the proposed page break location.
The retum value is where the page break Is actually placed.

The ToolKit calls ForceBreakAt hefore setting each page break. You
can override the default implementation to examine the location of
the page break and decide where you want the break to actually be.
Retum that value. The retum value must be greater than

precedingl ocation and less than or equal to proposedLocation.
Getstascroll (VAR deltal_Sta: LPoint);
deltal_Std is the preset standard scroll. deltal Stdv is the vertical

scroll; deltalStdh is the horizontal scroll. Both are expressed in
dots, which are the units of the view's resolution.

. GetStascroll finds out the standard scroll values.. The values indicate.
the distance scrolled for each click on a scroll arrow.

MaxPageToPTint: LONGINT;
The retum value is a page number.

MaxPageToPrint retums the last page that will print when this view
is printed. By default, that page number is derived by multiplying
the number of columns of pages times the number of rows of pages.
You can override this method If you want so that some of the
highest-numbered pages are not printed. For example, you might
want to do that If your application is a spreadsheet, and only the
first few cells have data in them.

NoSelection: TSelection; |
The return value is a null selection.

TView.NoSelection retums a null selection for use when the view has
no selected object. You can override this routine so that it returns a
selection object of your own selection class.

RedoBreaks; DEFALLT;

RedoBreaks orders the ToolKit to recalculate page breaks. You can
override this method, if you wish.

- 11-140



Lisa ToolKit Referernce m'wl Part Il Class Rerference Sheets

RemmMaualBrﬂs (FUNCTION NewBreakLocation(vhs: VHSelect;
oldBreak: L@GINT} LONGINTY

NewBreakLocation is a function that calculates new page breaks.
vhs indicates whether the page breaks are vertical or horzontal.
oldBreak is the old page break location.

RemapManualBreaks the locations of all page breaks You
never override it, but you might call It. Call this method if the
locations of manual page breaks 1n your view are dependent on
printer metrics. If that Is the case, when printer metrics change, you
need to recompute the locations of the manual breaks. Call
RemapManualBreaks from your view.ReactToPrinterChange method.
To do so, you must first create a FUNCTION that takes the old
manual break location and retums the corresponding new location.

when Tview.RemapManualBreaks is calleg, it first clears all
automatic page breaks. RemapManualBreaks then hands your
NewBreakl_ocation function each manual page break, one at a ume
RemapManualBreaks replaces each old manual page break with the.
corresponding new page break retumed by NewBreakl_ocation
Finally, after all the manual page breaks have been processed,
RemapManualBreaks calls RedoBreaks, which recomputes the
automatic page breaks.

Resize (newExtent: LRect); DEFALAT;
newExtent is the new view size.

Resize sets the size of the view to the indicated new size, and
removes any superfluous page breaks.

SetFunctionvalue (keywore: S255; VAR itsvalue: S255)

keyword is the name of a variable whose value you want.
itsvalue Is the value of the variable.

SetFunctionvalue finds the value of the given variable, and retums it
as a text string. Tview.SetFunctionvalue works only for fPAGE} and
{TITLEL If you want to use this to get the values of other variables,
you must re-implement it.

FAILURE CONDITIONS: none
NOTES:

1. You normally subclass Tview and then use the subclass to create the
application’s view, or one of the application's views. The subclass often
contains data flelds for the information being viewed. For example, if the
information displayed in a view is stored as a list of objects, then the
subclass of Tview adds one fleld of class TLIst. As another example, the

window object could contain fields referencing document objects, and the
view could access them through the view.panelL.window field.

11-141



Llsa ToolKit Reference Manugl ' Part Il Class Reference Sheets

2. Uifnugly only a portion of the view is displayed on the screen at any one
t -

3. The parts of the view that are displayed are displayed by pme and
bodyPad objects.

4. Every panel contains one or more panes, each of which may cﬁsplay a.
different portion of the view object.

S. A window may contain a number of panelt, each of which looks on a
different view object.

6. Invalidated screen areas are updated between events, and when the
application requests. Also, automatic scrolling may occur while the mouse
button is down, depending on the position of the mouse pointer.

[1-142



L/sa ToolKit Reference Marual

»eaCLASS:  TWINGOW

SUPERCLASS:

TArea

DEFINED SUBCLASS: TDlalogBox

INHERITED DATA FIELDS: R InnerRect: Rect;

DATA FIELDS: R

X0

R  outerRect: Rect;

parentBranchc
panels: TList {OF TPanell;

panelTree: TArea;

dialogBox: TDialogBox;

selectPanel: TPanel;
undcSelPanel: TPanel;

clickPanel: TPanel;
undoClickPanel: TPanel;
selectwindow: Twindow;

undoSelwindow: Twindow:
wmgriD: TwindowID
isResizable: BOOLEAN;

11-143

Part II Class Reference Sheets

Contalns the size of the window,
excluding the entire frame.
Contains the size of the window,
including the frame.

Not used in Twindow.

The panels in the window. There is
always at least one. See class
TPanel

when the window contains no
panels (when It s first created)
contalns NIL. when the window
contains one panel, contains the
panel. when the window contains
more than one panel, contains a
TBranchArea that points to the

panels.
References the dlalogbox for this
window. NIL {f SELF s a dlalog
box window, or if there is no dialog
box for this window.
The panel with the active selection
The selectPanel during the last
command.
The panel where the mouse button
was last clicked.
The clickPanel during the last
command.
The window with the active
‘s:lectlon. Either SELF or its

al
The window with the active
selection guring the last commanad.
ORD of the pointer to the window
Manager’s grafPort.
Tells whether or not there Is a
Resize Box



 LIsa ToolKit Reference Marl | * Part I Class Reference Sheels

believewmngr: BOOLEAN; If TRUE, the Toolkit should believe
the window manager's idea of the
size of the window; this is FALSE
(for example) when the application
creates the window object before
the window is put on the screen.

maxinnersSize: Point; The window size the user explicitly
-set by using the grow icon.
changes: LONGINT; Shows the number of changes since
the last save.
R lastCma: TCommand; The last command object that can
be undone.

printerMetrics: TPrinterMetrics;
~ Properties of the printer.

pgSZOK: BOOLEAN; whether to allow user-gefined

, page-sizes in Format For Printer
dialog. .

POROOK: BOOLEAN; whether page-range dialog should

be enabled in the dialog that

appears in response to the Print...
menu command. This is normally

TRUE.

panelToPrint: TPanel; The panel 10 print when the user
asks for printing. Note: If there is
more than one printable panel in
the window, choice should be made
by providing separate menu items.

objectToFree: TObject; This field is used to hold a
‘~ reference t0 an object that should
: be freed at end of the event loop.
METHOD YOUR APPLICATION MUST OVERRIDE:

BlankStationery:; DEFAULT:

BlankStationery creates a panel, a view, and an initial selection. It is
called when the user tears off a piece of stationery. The application
is completely responsible for implementing this method. See the
ToolKit Segments for a complete discussion of this method.

CREATE (object: TObject: itsHeap: THeap; ItswmgriD: TwindowID;
itsResizability: BOOLEAN)Y Twindow;
itsHeap Is the heap used for this document.
ftswmngriD is the intemal identification number for the window

manager.
itsResizability tells whether or not the window should have a size
control box.

Twindow.CREATE creates an object of type Twindow. You need to

11-144



Lisa ToalKilt Reference Manugl Part I Class Reference Sheets

implement CREATE so that 1t creates a window of your application’s
subclass of Twindow. See the ToolKit Segments for a complete
discussion of this method.

METHOD YOUR APPLICATION WILL CALL:
CREATE (object: TObject; itsHeap: THeap; itswngriD: TwindowID;
itsResizabllity: BOOLEANY Twindow;
itswmgriD is the internal identification number for the window

manager.
itsResizability tells whether or not the window should have a size
control box.

TwWindow.CREATE creates an object of type Twindow.
METHOOS YOUR APPLICATION MIGHT CALL:
CommitLast; DEFALLT;
Commits the last command object, and sets window.1astCmd to NIL.
ChildwithPt (pt: Point; chlldList: TLIst VAR nearestPt: Point): TArea:

pt is a point in window-relative coordinates.

childList is a list of areas contained within this window.
nearestPt is the point in the retumed area closest to pt
The retum value is one of the areas from child ist

ChilagwithPt first finds the point in window.nnerRect closest to pt

It then the compares the new point to the outerRects of all the areas
in childList. when it finds the area that contains the point, it finds
the point in that area‘s innerRect that is closest to the point. That
value lzaxiewmed as nearestPt. The area contalning nearestPt is the
retum value.

DoCommand (cmdNumber: TCmaNumber); DEFALLT;

Twindow.DoCommand handles command dispatch. If you override this
method for some reason, you should end your routine by calling
Twindow.DoCommand. In general, however, you should override
Twindow.NewCommand rather than this method. You might call this
method if there is an action that acts like a menu command, such as
a button in the main window.

EachActualPart (PROCEDURE DoToObject (mtexeoooj: TObject);
See below.

11-1485



LIsg ToolKit Reference Merwa! Part Il Class Refererce Sheets

EthlIwalPaIt (PROCEDURE DoToObject (fliteredObf TObject):

PROCEDURE DoToObject is any proceaure that takes a TObject
object-reference variable as an argument. DoToObject cannot be a
method.

Twindow.EachVirtualPart calls Twindow.FilterDispatch which checks
the last command and, if command.Doing = TRUE, calls
command.EachvirtualPart to apply DoToObject to each object in the
window's set of objects. If commandDoing = FALSE,

Twindow EachvirtualPart calls image.EachActualPart. If you store
your application’s objects in the view, you should call
view.EachVirtualPart rather than window.EachvirtualPart.

ResizeTo (newSize: Point):
point is the new lower right comer of the InnerRect

ResizeTo changes the size of window.innerRect. It performs
higher-level operations on the window, such as resizing areas
. contalned within this window, and then calls SELF.REsize.
ToggleFlag (VAR flag BOOLEAN); DEFALLT;
flag Is any boolean variable.
ToggleFlag switches the value of flag from TRUE to FALSE, or from
FALSE to TRUE.
Update (coHilite: BOOLEAN) DEFALLT;
doHilite tells whether or not selections should be highlighted.
Twindow.Update updates the display within the window to fill in
newly uncovered areas or areas changed by the application. Only
invalldated areas are redrawn. The ToolKit calls this after every

event, which includs commands, keystrokes, and calls on MousePress,
MouseMove, and MouseRelease. See note 4.

METHOD YOUR APPLICATION MIGHT OVERRIDE:
EachActualPart (PROCEDURE DoToObject (fllteredOb} TObject));

PROCEDURE DoToObject is any procegure that takes a TObject
object-reference variable as an argument.

EachActualPart is intended to apply DoToObject to each object in the
window's set of objects. If you store your application's objects in the
view, you should implement. view.EachActualPart rather than

window EachActualPart. Twindow.EachActualPart actually returmns an
error message ingicating that EachActualPart was not implemented.

II-146



LIsa ToolKit Reference Marval , Part Il Class Reference Sheets

The following methods are listed in groups according to function.
WINDOW ATTRIBUTES METHODS:
GetTitle (VAR title: S255); DEFALLT;
title is the string in the window's title bar.
GetTitle obtains the string in the window's title bar.
IsActive: BOOLEAN; DEFALLT;
The retum value indicates whether or not the window is action.
IsActive retumns TRUE If this window Is presently the active window.
Setwmgrld (Itswmngrid TwindowID); DEFALLT:
itswmgrid is a window manager ID.

Setwmgrld sets the ID for this window. It also sets the port flelds
of the panes In this window. Your application should not call this
method.

- MOUSE BUTTON METHODS:
DownEventAt (tmmePt. Point); DEFALLT;
mousePt is the point where the mouse button was last pressed.

DownEventAt {s called when the mouse button s pressed. This
method computes double and triple mouse clicks. It also calls
window.DownAL

DownAt (mousePt: Pointk BOOLEAN]
mousePt is the point where the mouse button was last pressed.

DownAt figures out where the mouse was located when the button
was pressed by checking the resize box and calling panelL.DownAt
until it finds the right paneL

DIALOG BOX HANDLING METHODS:
PutUpDialogBox (dialogBox: TDlalogBox); DEFALLT;
dialogBox s a dialogBox-reference.
PutipDialogBox displays the given dialog box.
TakeDownDialogBox; DEFALLT;
TakeDownDialogBox removes the displayed dialog box.
DISPLAY HANDLING METHODS:
Focus;
Focus focuses t.he'grafPort on the window.

I1-147



Lisa ToolKit Reference Marual Part I Class Reference Sheets

Frame;
Frame draws the frame of the window, including the grow box. The

title bar is drawn by the window manager; the scroil bars are drawn
by TPanelFrame.

Highlight (highTransit: THighTransity DEFAULT;

highTransit is the change in highlighting of the displayed object. The
choices are: hiNone, hOffToDIm, ROFfToOn, hDIMToOn, hDIMToOff,
hOnToOff, and hOnToDIm.

Hignlight changes the state of highlighting within the window.
Twindow. Hignhlight calls panelHighlight for every panel in the

Refresh (rActlons: TActions; highTransit: THighTransit);

rActions is one of the set (rErase, rFrame, sBackground, 1Draw).

 highTransit is the change in highlighting of the displayed object. The -
choices are: hNone, hOff ToDIm, hOffToOn, hDImToOn, hDImToOff,
hOnToOff, and hOnToDim.

Refresh refreshes the window's display. It calls panel.Refresh for
each panel in the window.

RESIZING METHODS:
DowniInSizeBox (mousePt: Point; DEFALLT; ,
mousePt is the point where the mouse button was pressed.

DowninSizeBoxP is called by the ToolKit when the user presses the
mouse button is the resize box.

Resize (moving: BOOLEAN): DEFALLT;

indicates whether the window is being moved (TRUE) or
resized (FALSE).

Resize resets size from portRect size (with adjustments). |
ResizeTo (newSize: Pointy DEFALLT;
newslize sets the new lower right comer of the window.

ResizeTo changes the size of the window. Your application can call
this method.

11-148



L/sa ToolKilt Referernce Marna! Part Il Class Rererence Sheets

COMMAND AND MENUS METHODS:
CanDoCommand (crdNumber: TCrmadNumber; VAR checkit: BOOLEANE
BOOLEAN: DEFALLT:

cmdhumber Is the reference number for an application command.
checkit tells whether or not a check mark should appear next to the
command in the menu.

CanDoCommand tells whether orsnot .the command can be done at
this time. You can override this method to handle your commands;
call SUPERSELF.CanDoCommand in your method.

CanDoStaCommand (cmdNumber: TCmadNumber; VAR checkit: BOOLEAN}
BOOLEAN: DEFALLT:
cmdNumber is the reference number for a standard command.

checkit tells whether or not a check mark should appear next to the
command In the menu.

CanDoStoCommand tells whether or not the command can be done at
- this time. You should not need to overrice this method.

CommitLast; DEFALLT;

CommitLast commits the last command.
LoadMenuBar; DEFALLT;

LoadMenuBar inserts the application's menus into the menu bar.
MenuEventAt (mousePt: Paint); DEFALLT;

mousePt {s the point where the mouse button was pressed.

MenuEventAt gives the point where the mouse button was last
pressed when the pointer was in @ menu. You should not call or
override this method.

NewCommand (cmdNumber: TCmdNumbery TCommand; DEFALLT;

cmdNumber indicates the menu command chosen.
The retumn value Is a TCommand object, or NIL.

You must write your own window.NewCommand method in order to
process commands that apply to the entire window. If you do so,
construct the NewCommand procedure around a CASE statement with
a case for each of the commands you implement. End it with
OTHERWISE newCommanc:=Twindow.NewCommand. Returmn NIL or a
new TCommend object. NIL means the document was not changed
signficantly. In that case, NewCommand must carry out the action of
the command itself. Return an instance of TCommand when the
command cannot be undone. In that case, first call
window.CommitLast to Commit the last command object, then carry
out the action of the command, and then return an instance of

II-149



LIsa ToolKit Referernce Marnia! Part Il Class Referernce Sheets

TCommand. In all other cases, retum an instance of a descendant of
TCommand. The descendant of TCommand has methods that perform
the action of the command.

NewStdCommand (cmdNumber: TCmdNumbery TCommand;

cmdNumber s the reference number for a standard command.
The retum value is a command object.

NewStdCommand returns a command object for the given standard
command. This method is used for standard commands that affect
the entire window. You should not need to override this method.

PerformCommand (hewCommand: TCommand);
newCommand {s a command object.

PerformCommand performs the given command. It first calls
lastCmd.Commit and then calls SELF.SaveCommand. Finally, it calls
SELF Performi_ast.

PerformLast (cmdPhase: TCmdPhase);
cmdPhase is either doPhase, undoPhase, Or TedoPhase.

Performiast calls Perform for the 1ast command. The first time the
command is performed, the crdPhase is doPhase. After that,
undoPhase and redoPhase alternate.

SaveCommand (newCommanc: TCommand)
newCommand Is a command object.

SaveCommand saves the given command as lastCommand. when
referring to the command after using this method, use
window.lastCmd instead of newCommand.

Setupivenus;
SetUpMenus is called when the user clicks in the menu bar or types
an apple key combination. The method initiates the process of
checking If the command can be done. In general, you do not

overrige this method. Instead, implement CanDoCommand for each of
you descendants of TSelecton

UndoL ast;

Undolast calls windowlastCmdPerform. If window.lastCmd.Perform
was last called with cdPhase=doPhase-or redoPhase,
window.lastCmd.Perform is now called with crnoPhase=undoPhase. If
window.lastCmd.Perform was last called with crdPhase=undoPhase,
window.lastCmdPerform is now called with crdPhase~redoPhase.

[1-150



L/s& ToolKit Reference Marna! Part Il Class Reference Sheets

wantMenu (menulD: INTEGER: inClipboard: BOOLEAN) BOOLEAN;

‘menulD is a menu ID number.

inClipboard tells whether or not the clipboard is the active docurnent.
The retumn value indicates whether or not this menu should be
displayed in the menu bar.

wantMenu {s called by the ToolKit each time the menu bar is
displayed, which happens r the window Is activated.

LoadMenu calls wantMenu once for each menu in the phrase file with
numbers from 1-89 in non-debug versions of the ToolKit, and with
numbers from 1-99 for debug versions of the ToolKit. when
inClipboard Is TRUE, however, this is only called for menu 1000.
wantMenu always retums TRUE by default. You can override it so
that it retums FALSE for certain menus.

SELECTIONS DURING COMMANDS METHODS:
RestoreSelection;
RestoreSelection is called when undoing a command.
RevealSelection (asMuchAsPossible, doHilite: BOOLEAN);

asMuchAsPuossible tells whether or not the document should be
scrolled to reveal as much as possible of the selection.

doHilite tells whether or not the selection should be highlighted if it
is displayed. This value is passed on to Lmate.

RevealSelection determines how the selection is displayed when a
command is given.

SaveSelection;

SaveSelection saves the current selection in all panels. This is the
reverse of RestoreSelection

DESKTOP METHODS:
Activate;

Twindow.Activate activates the window. This method assumes that
the grafPort is focused on this window. Be very careful if you
override this method.

Deactivate;

Twindow.Deactivate deactivates the window. This method assumes
that the grafPort is focused on this window. Be very careful if you
overrice this method.

I1-151



Liss ToolKit Reference Manual Part Il Class Reference Sheets

StashPicture (highTransit: THighTransity

‘NghTransit is the change in highlighting of the displayed object. The
standard choices are: hiNone, hOffToDim, hOffToOn, hDimToOn,
hDImToOff, hONToOff, and hOnToDim.

StashPicture saves a QuickDraw picture of the window when tne
window in inactive.

CURSOR METHODS:
CursorFeedgback: TCursoriNumber;
The return value is the current cursor type number.

CursorFeedback retums the cursor type number for the cursor that is
currently displayed. Do not override this method; you can override
Tvl‘lew.cwsorAt instead. TView.CursorAt gets calleg as a result of
this method.

PlckStdCursor;

-P1ckStdCursor displays the standard arrow cursor. Do not override”
this method; you can override Tview.CursorAt instead.

PRINTING METHODS:
AcceptNewPTintinginfo (document: TDocManager; prReserve: TPTReservel

document the docManager for the affected document.
prReserve holds the printer information.

This method Is called when the printer formatting information
changes.
ChkPrMismatch;

This method checks to see If the printer information has changed, and
if 1t is valla.

GetPrinterMetrics;

This method finds out the characteristics of the printer for which
this document is formatted.

Print (panel: TPanel; nbxPgRange: BOOLEAN; nixwholeDialog: BOOLEAN);

panel is a panel in the window.

indicates whether or not all pages should be printed. If
TRlE.rl ti the user is not given a dialog to choose a page range for
printing.
nixwholeDialog, If TRUE, suppresses the entire dialog with the user.

Print prints the contents of the view displayed in the glven panel.
FAILURE CONDITIONS: none

I-152



LIsa ToolKit Reference Marnial Part Il Class Reference .Sheets

NOTES:
1. Twindow is always subclassed for use.

2. The methods of Twindow Create and manage the window seen on the
display. The default window object provides resizing, and activation and
deactivation capabilities.

3. To use Twindow, subclass it and define your own window.BlankStationery
routine. Other functions, except for application commands, are taken care
of automatically.

4, when an area of the screen Is changed, either by a window resize or
scroll, or by a command, that area is invallidated using panelinvall Rect or
thePadllnvall Rect. window.Update {s automatically called in the
process.Run control 1oop. All invalidated areas are then redrawn. (You
can call Draw methods directly to redraw the display, but first you must
seek permission from panel.OkToDrawin) If you want the program to
redraw the display before retumning to the control loop, which is rarely .
necessary, call window.Update after invalidating the reglons to be redrawn.

~ The easiest way to invalidate an area is with panellnvall Rect
thePad.Invall Rect must be called through paneL.OnAllPadsDo.
panelLinvall Rect does that for you.

11-153



	00-00
	00-01
	00-02
	00-03
	00-04
	00-05
	00-06
	00-07
	00-08
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	A-001
	A-002
	A-003
	A-004
	A-005
	A-006
	A-007
	A-008
	A-009
	A-010
	A-011
	A-012
	A-013
	A-014
	A-015
	A-016
	A-017
	A-018
	A-019
	A-020
	A-021
	A-022
	A-023
	A-024
	A-025
	A-026
	A-027
	A-028
	A-029
	A-030
	A-031
	A-032
	A-033
	A-034
	A-035
	A-036
	A-037
	A-038
	A-039
	A-040
	A-041
	A-042
	A-043
	A-044
	A-045
	A-046
	A-047
	A-048
	A-049
	A-050
	A-051
	A-052
	A-053
	A-054
	A-057
	A-058
	A-059
	A-060
	A-061
	A-062
	A-063
	A-064
	A-065
	A-066
	A-067
	A-068
	A-069
	A-070
	A-071
	A-072
	A-073
	A-074
	A-075
	A-076
	A-077
	A-078
	A-079
	A-080
	A-081
	A-082
	A-083
	A-084
	A-085
	A-086
	A-087
	A-088
	A-089
	A-090
	A-091
	A-092
	A-093
	A-094
	A-095
	A-096
	A-097
	A-098
	A-099
	A-100
	A-101
	A-102
	A-103
	A-104
	A-105
	A-106
	A-107
	A-108
	A-109
	A-110
	A-111
	A-112
	A-113
	A-114
	A-115
	A-116
	A-117
	A-118
	A-119
	A-120
	A-121
	A-122
	A-123
	A-124
	A-125
	A-126
	A-127
	A-128
	A-129
	A-130
	A-131
	A-132
	A-133
	A-134
	A-135
	A-136
	A-137
	A-138
	A-139
	A-140
	A-141
	A-142
	A-143
	A-144
	A-145
	A-146
	A-147
	A-148
	A-149
	A-150
	A-151
	A-152
	A-153

