|eosed

Language
Part1o0f3

ABLO111

Pascal

Pascal
Reference Manual
for the Lisa™

029-0391-A

Licensing Requirements for Software Developers

Apple has a low-cost licensing program, which permits developers of software
for the Lisa to incorporate Apple-developed libraries and object code files
into their products. Both in-house and external distribution require a license.
Before distributing any products that incorporate Apple software, please
contact Software Licensing at the address below for both licensing and
technical information.

©1983 by Apple Computer, Inc.
20525 Mariani Avenue

Cupertino, California 95014
(408) 996-1010

Apple, Lisa, and the Apple logo are trademarks of Apple Computer, Inc.
Simultaneously published in the USA and Canada.

Reorder Apple Product #A6D0101 (Complete Pascal package)
#A6L0111 (Manuals only)

Customer Satisfaction

If you discover physical defects in the manuals distributed with a Lisa product
or in the media on which a software product is distributed, Apple will replace
the documentation or media at no charge to you during the 90-day period
after you purchased the product.

Product Revisions

Unless you have purchased the product update service available through your
authorized Lisa dealer, Apple cannot guarantee that you will receive notice of
a revision to the software described in this manual, even if you have returned
a registration card received with the product. ‘You should check periodicaily
with your authorized Lisa dealer.

Limitation on warranties and Liability
All implied warranties concemning this manual and media, including implied
warranties of merchantability and fitness for a particular purpose, are limited

in duration to ninety (90) days from the date of original retail purchase of this
product.

Even though Apple has tested the software described in this manual and
reviewed its contents, neither Apple nor its software suppliers make any
warranty or representation, either express or implied, with respect to this
manual or to the software described in this manual, their quality, performance,
merchantability, or fitness for any particular purpose. As a result, this
software and manual are sold "as is,” and you the purchaser are assuming the
entire risk as to their quality and performance.

In no event will Apple or its software suppliers be liable for direct, indirect,
special, incidental, or consequential damages resulting from any defect in the
software or manual, even if they have been advised of the possibility of such
damages. In particular, they shall have no liability for any programs or data
stored in or used with Apple products, including the costs of recovering or
reproducing these programs or data.

The warranty and remedies set forth above are exclusive and in lieu of all
others, oral or written, express or implied. No Apple dealer, agent or
employee is authorized to make any modification, extension or addition to this
warranty.

Some states do not allow the exclusion or limitation of implied warranties or
liability for incidental or consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives you specific legal rights,
and you may also have other rights that vary from state to state.

1i1

License and Copyright

This manual and the software (computer programs) described in it are copy-
righted by Apple or by Apple's software suppliers, with all rights reserved, and
they are covered by the Lisa Software License Agreement signed by each Lisa
owner. Under the copyright laws and the License Agreement, this manual or
the programs may not be copied, in whole or in part, without the written
consent of Apple, except in the normal use of the software or to make a
backup copy. This exception does not allow copies to be made for others,
whether or not sold, but all of the material purchased (with all backup copies)
may be sold, given, or loaned to other persons if they agree to be bound by
the provisions of the License Agreement. Copying includes translating into
another language or format.

You may use the software on any computer owned by you, but extra copies
cannot be made for this purpose. For some products, a muitiuse license may
be purchased to allow the software to be used on more than one computer
owned by the purchaser, including a shared-disk system. (Contact your
authorized Lisa dealer for more information on multiuse licenses.)

iv

Chapter 1

Tokens and Constants
1.1 Character Set and Special SYMBOLSccciiiiiiiiriiiin et 1-1
DI (s - 114 1T OO w12
B TN)3 =2 8 1 O 1-2
Tl NUIMDEIS .ot ee et et ceee e e e se e s omaenm et s e e mem e s ae e cmaneenans 1-2
15 LBDBIS ittt sttt e e s s s e e s s s e e 1-4
16 Quoted String Constantsccceviiiiiiiininirnt et e 1-4
1.7 Constant DeCIarationscc.coviicaiiinreierestteesirt et e cete e s e nees 1-5
1.8 Comments and Compiler COmMMAanGs.......ccccviiiiairirimmmsemescceeeeneseennansaseas 1-5

Chapter 2

Blocks, Locality, and Scope
2.1 Definition of @BIOCKceeveiieivimieiiietintenierennnnnssesssenne s sassssssssas 2-1
2.2 RUIESOf SCOPE ..oeiniiiimtiiireinseetenttrteeetsstn st s s e ssasss e nses s an s snnarassmaes 2-3

Chapter 3

Data Types
3.1 Simple-Types(and Ordinal-TYPES) -..cccociiiieieriaacarrrrcreterecece s e eeneneeenes 3-2
3.2 SLIUCTUTEO-TYPES iiviiiiiiiiiciiee e se i s s s s e s s s s s e cmcesm s s naaas 3-7
3.3 POINLEI=TYPES .o teer e ceoe et eerr e e e e e e re e e e e e en 3-13
34 Identical and Compatible TYPES... ..o ccre e rree e er e e enccaene 3-13
3.5 The Type-Declaration—Part..........ccoccoiimiimmiic e 3-16

Chapter 4

Variables
4.1 Variable-Declarationsc.ceveeveeiiiiiniiinitniciennee et s e 4-1
4.2 Variable-REfEYBNCESccivuviiiimiicececr e nesresctanmr s rere v memees e nenssnannse 4-1
B3 QUBLIFIEYS .cooceiiiiiiit ittt acnecn e s s s s e s s e s e e s re e e nenae 4-2

Chapter 5

Expressions
5.1 OPEIBLOTS..ccciiiiiutiiiicreietiaenie st tsrettensasserassasstesnassssassnsssnnnssssennanen 5-4
5.2 FUNCHON-CAllS ..ottt e s se s nenenees 5-10
5.3 Set-CONSLIUCLOISoviereiieeeneiietecerreensesansren e et et aane s e nannasasasassnanes 5-11

029-0292-A

Pascal Refererice Manual Contents

Chapter 6

Statemnents
6.1 SIMpPle StAtBMBNLS «oo ittt trccs ettt s se et senn e se s e e e e s e e s ananens 6-1
6.2 StrUCLUIEO-StateMENLS .. c.ce e ccccearreneeaceceeenrarnesantasseasasesanssesenssasasseane 6-4

Chapter 7

Procedures and Functions
7.1 Procedure~Declarationscccceiiccecrrreeiceetorcrncneeeasstessencescnnanescanssasannns 7-1
7.2 FUunCtion-Declarationsc.c.eeeeieeeieeeieietacccerereereerensererensasensesnsasasennes 7-4
7.3 PAIBIMBLETS ..o ceeeeeceereietereenseraeeeennsessnrassssaanssasssanssesnssenssesnsassnssensnns 7-5

Chapter 8

Programs
BL SYNLAX ittt ittt et ee ettt et s et ta s s s e e e s e s e e e s 8-1
8.2 Program-Parameters. . ..coiiirieeeaareaareemeaeaneeeanaeneee aaaananansaareenenanne 8-1
B3 SegmMEntationottt et ae e e e e n e 8-1

9

Units
9.1 ReQUIAT-UNILS .o ciiiiiiiiiccnetite e e see s et ttesannseanasnssnsseetannansessssssmnannns 9-1
IV 1418 910 n3 (ot) S 9-4
93 Unitsthat Use Bther UNits ... crreiieeeieneceersasnsesresecncannannnannnn 9-4

Chapter 10

Input/Output
10.1 INtroguetiontOI/0. ettt ce e s e ean e ansansannesn e nnennn 10-1
10.2 Record-0riented 170 ... e erertcncetecniaerereeenrensarsnesesensussansasnasann 10-8
10.3 Text—Oriented I/0. ... et cceresecscarsensnneanssensessnnnnsesnnnns 10-9
104 UNtyped FIIB I/D.. .o e receeetcc e s enemam e ee e mnen s eeeeeaeseas 10-18

Chapter 11

Standard Procedures and Functions
111 EXit an0 HAIt PIOCEOUIES ... ouieereeneeeeenennereenrseseeseesnsssssnsassssesssnsansansnns 11-1
11.2 DynamicC AlIOCELION PIOCEOUTES «..uvuieeereeeeierserenstennssssssenseessssensssensaces 11-1
113 Tran s Y FUNC I ONS oo ceeeeeieeeccaireenecreeaecenaeaarerssassesansmnsasenssssnsnnnsnsnses 11-4
11.4 ArithmetiCFUNCLIONSoe et eeccrecenecaneeceeneemeseennneneesnsennannns 11-5
115 Ordinal FUNCHIONS ..ccon i cecenceenetireneterenerencencannaransnesensanssnasanesnnns 11-8
11.6 String Procedures ant FUNCHIONS v riceenicence i ceenar s onseaanene 11-9
11.7 Byte-Oriented Procedures and FUnCtions.......cocoveievemieinenninnnnennnnncnen. 11-11
11.8 Packed Array of Char Procedures and FUunctions..........ccceeceeeernecccnnecens 11-12

vi

Pascal Rerferernce Maral Contents

Chapter 12

The Compller
12.1 Compller Commands ...cc.cevrveeriine. cvererensernaeens errrreeerae s s sseearenas 12-1
12.2 Conditional Compllation.....cieieemsisinininiereneree s 12-3
12.3 Optimization of If-StateMENLS ...cuvcericerrrrreterrennesiesiannsasasesenenes ceeneee 12-5
12.4 Optimization of While-Statements and Repeat-Statementscovveeeee. 12-7
12.5 Efficlency of Case-Statements ... veeeesermeriniiineninn Ceressnssinrerensanes 12-7

Appendixes
A Comparison to Apple 11 and Apple ITTPastalcorevieeerssesssserinisernnerensseenns A-1
B Known Anomalies inthe Compller.. ... B-1
C SyntaX of the LanQUAQE ..vuuieeieeemsssrecrimrussmantimiestsasmssmmsnmessssssssmvanssssssans Cc-1
D Floating-Polnt Arithmetic. ...cciiiinmncinc s s enene D-1
E QUICKDIBW . .oiiiiiuterrniiisinsisssnsssetsmenisissssessssssnssnmnnsseisssassnsansassanmsensernans
F Hardware Interface
G LISBChAraCter SBl.......cumrericrcresnrenmssessssssssssssersersrnssannes
H EYTOY MESSA0ES 1iieiernnssiensinmstnsnssseeesanssssssnnsesnsssssaanencesas
I Pascal workshop Flles

Index

Tables
S-1 Precedence of Operationsccccicccieseerierinessseressesssnesasnsssesensnesssensens 5-1
5-2 Binary Arithmetic Operations.....c.ceeciincinssenens Cresernterssse s eesesasenns 5-4
S-3 Unary Arithmetic Operations(SIgns) ... iiciienssnniinisssesissscereeereeensene 5-4
S-4 Boolean Operations e cescrnsenceisresnnencsnes Cesreennssresstenassrasernssranses w56
5-5 St OPEIAtIONS ciireereeremrerrirentserneareerarserseensserrresrasrsnsssersnssseasessrsnnerenns 5-6
5-6 Relational OpPeIatioNS ... cccceieiecrreeririrenerirteessenersesernasessrasieseannnee 5-7
5-7 PointerOperation........ceneee rereiarrsesiirensssttensetsiiasasraatrettearsstenasaanss 5-8
10-1 Combinations of File Variable Types withExternal File
Species and Categoriescoiivirirviiriiarmmiisestnmnmssisesmessirssssnrasensssssne 10-3

D-1 Results of Addition and Subtraction on INfINItieseeeeecrrnecerrnnicenennnes D-2
D-2 Results of Multiplication and Divislonon Infinities ...ceeecerciiienncininnnnen. D-3

vii

Syntax Diagrams

BCLUBI-DAYBMELEY ..ccvreeiieiiirceiereieriirinirirtrecineseiisssssnsaststseassssrsssasssssssssnnes
actual-parameter-list
E510 651 R 7 o N
assignment-statement

COMPOUNT-SLALBMEBNL ..ceeet i itcnicnesranne ot nmarssecnnasssnnrenssssamarnnnsns
conditional-Statementoeememeeeierrrercmeceirressccresa e nm e e e anancnees

Lo u g 7 g U
constant-declarationc...ceeeeeeeeemeiriieesccecet e nenrer et eeaee
constant-declaration-part

(o 10 €0) B c 4 E<) L=

OIGIt~SBOUBNCE ... rerecsrcressesecaesenee e e s snan e e n s asssnsssasssnsnsns
ENUMETALEO-LYPE ..oeeivreeciieenieirireeinirescsssesaeissrae e srsessasesssssasssasessnsasses
b0 0) €203 L0 RO
L2101) S PO SOt
L (52 Lot Lo = 1 O

FIEl—0SIONALON ..c.coeeeeeeiieeereiieiemeeeeecrinesstaermenucicnecsnneseesernacasessensesstomanseneones
L 153 (o p 15 PR RSPUPO OO SRR
FIle-DUFFEY—SYMDOL ..cconeeiieieeemeeecieceeiccieeiteiireiciiti s csnsesceseneseesssnesneessaenans
FILB=EYP ot eeceeeeerctee ettt et et e et st e r e e tasn s et st e aee s anas s anne

final-value.

fOrmal-paramMELer-1iSt........criiriiiicrene e ce ittt ettt csesseesan e
FUNCHIOND00Y .coeeeeeeeriremieteiccsnsctcsssss s cccnsesscnsensaecsenssaessosnensssssnosose
FUNCUION=CALL ... ettt es s ne e eeesesaa s

viii

Pascal Reference Mol Contents

G HI
QOLO-SEALBMENT ...t et e 6-3
NEX-0igit-SEQUBNCE ... e 1-2
1o = gL = P UPPRR
identifier-list
if-statement
implementation-part
INOBX ..ottt ettt sttt s s s eesess et s e s s e e st s s s nen e an s e
INOBXEYPE .. eeeeeeeere e tr ettt e e ce s s e e s et e e e e se e se s e e e s s mananes
initial-value
interface-part
TBIEL ..ottt ettt n e teeee e s as s s sassesnees
label-declaration-part
MEMDET=GIOUD «.ccevvrernenrecsnssrssonernesmesssinirensenssessssssssrmsnsasssssssssessrsasssasaans 5-11
OFOINAI-LYPR .eecrreerereenireieaeitiiniciretvstesisiiesrrssecasassessssasssusessrnssasssssasssansnns 3-2
OLNEIWISE-CIAUSEoierrerveiisiiernnerriveeiisisirrrrnsasaeiasssmssrassassassnasssasssssnssanssns 6-6
p
parameter—deClarationceeeeevimmiciimmenircirerese et e 7-6
POINLET-0DJECL=SYMIOL....ceeeeeeereiencceccerietreteenieeersecrastnacreernesaaesasnsnnnnannnss 4-4
POINEEI~LYPR .eiiciciriceerine s cerieernreesssesnenneeoretsacesasecatssssasmanssssnssossarsasssnes 3-13
procedure-and-function-geclaration=part...........ccoceveeeeiremmoreccrcetmmrsnnecnnns 2-2
) Cuwicio B (e Lo 7-1
Procedure-aeclaralionccoccciurireemeeiiiseneeemaceeeetitnie e ereerecncenereneeeeeannns 7-1
PrOCEOUIE-NEAOING ..cocccerirreieaieiiiiieecrteermrecaieaeteneeeansisnnnsseserssserssneennsesnessnss 7-1
ProceauIe-StatemMEBNt........cooouriiiieiiitcrtnt et cire sttt erinas bt e e rsaeeanas 6-2
() £ 3 S 8-1
Program-NeaOINGcocereeeeeisumirmiireecceimrsieierancasesesevemsamamscnesrsoesseneansaneanns 8-1
PrOGIAM-PAIAMELELS ...cieiereirnerereriiecrcrrenmminmenseessomsesssessnsessossssssosnssssmassnreans 8-1
QR
100§ [T 4-2
quoted-charaCter-constant ... e 1-4
QUOLEO-SEIING-CONSANT ..o e rcrereeaaieenrteetinnesereesesetrensassanansscnnssscanasseannnss 1-4
=] 8 o < TN 3-2
LU= 1) (0 4 3-9
regular-unit ... eteererusaeeseeeesatsnsteiteeteetten ar it e e tartaraate nansn b aaeerantrarees 9-1
1EPEAL-STALEMBNL ... ittt s e ee et e sttt b e e e e e e s e saena e e e e canenes 6-7
TEPEtItiVE-StAtEMEBNT .. oottt et nr e s e e e e anane 6-6
=0T 7-4

ix

Pascal Reference Manual Contents

f1a72) (T = T) N 1-3
RLC1al0en, 0138 (052 {0 GO 5-11
set-type tteesseesseeieseiessestnssasieanseanatentasetsntenatetsantetanasartssareeenrans 3-11
04 £ TSRO PUPRR 1-3
fes 10 g =0 T 1-3
SIMPIE-EXPYESSION -...oeiiiiiiiiiciicicriritinmnnctstteremeruen et eremaannessransssnsssesssnanannsss 5-3
SIMPLE-STAEMENL . ..ottt caieereneecerennsaeeceneesaresssasarsanmnnsssennsasasanasns 6-1
£ (1 0o Y o RSP PRON 3-2
BIZB-At IIBULE . ..ottt ae e e e e es 3-S5
STALEIMEBNT ..ttt e st a e e e st et e e e e s e s e 6-1
SEALEMENE-PAIT ...ttt ettt e e e st et e e e e s e 2-2
LR g108 Rl 172 €= 0 U= PR 1-4
LR 810 o e Y OO ESRURIONt 3-5
SEIUCTUTEd-StAtBMENL ...t e cer e e r e ccceenee s e et e ecn e se e e oma s e e e s e anceas 6-4
STTUCELITEO-LYPE . c.cciee e imci ettt ceet e et e et st e e s e n semn e s s amea s aansasssan 3-7
SUDTANGELYPE .. ceeiieniiiimciecr it aeaeemmerreeraruenase e aamnearaa s oaeesnramneseneaamneaannse 3-7
T
L2 v T (o N 3-10
£ 3 4 U 5-2
DY ittt ettt ettt st n et e s e e n s et e et e e e e m e s aa e e a e anen 3-1
LYPE-OECIATALION.con i reeetiiemceeeeireanoneerereeeeean e aeraranaee s aeannessnaeerennasnnns 3-1
type-declaration-part ...t s 2-2
U
UNIE-NBAOING .. eeoeeeiaiiireit e et et e s e e e e e ocanea e e e e cenene searenmean s s e e e nannenn 9-1
UNBIgNEd-CONSEANT ..ottt c et ettt e e e eecm e ae s e mena e e e e aemannas 5-2
Vgt (o 1o g 1110 - GRS ORISR SUORRUOPUREIRt 1-3
UNSIONEO-TINMDET ...oeniiiriieriacanserseaeeenenseensersraceeenmenssesesnessasasasnsenssnssssasascssas 1-3
UNSIGNEO-TEAL ..ceenerrniiiiinitiittrees ettt este st oo sses et s e m s e seansnssssetesanaanssns 1-3
USES—CLAUSEieniiiieiicciinnec i ste et istcman s aesaesssscaen st assarsanesnensssaansssseseasnsse 8-1
V, W
VariabDIE—dECIATALION ...ccoviiiiaiiiiiiriiicerene it s s s s e an s s e e s s e aansenns 4-1
variable-declaration-partcccvciiiiiiniiiiitnnisiii et saaaaane 2-2
(722 = e (=2 g1 T OO 4-1
V=1 ST 13 (T (oo OSSOSO 4-1
1751 £ E- o | P OO 3-10
(V221 T g o < & AR 3-10
WHILE-SEALEMENT ... ittt e st oo e e e e s e re s e 6-7
WHNSLAtEMENL <ottt ettt e e e st e e e s e e e r e e e sen e 6-10

Preface

This manual s Intended for Pascal programmers. It describes an implemen-
tation of Pascal for the Lisa computer. The compiler and code generator
translate Pascal source text to MC68000 object code.

The language is reasonably compatible with Apple II and Apple III Pascal. See
Appendix A for a discussion of the differences between these forms of Pascal.

In additlon to providing nearly all the features of standard Pascal, as described
in the Pascal User Marwal and Report (Jensen and wirth), this Pascal provides
a varlety of extensions. These are summarized in Appendix A. They include
32-bit integers, an otherwise clause in case statements, procedural and
functional parameters with type-checked parameter lists, and the @ operator
for obtaining a pointer to an object. The real arithmetic conforms to many
aspects of the proposed IEEE standard for single-precision arithmetic.

Operating Environment
The compliler will operate in any standard Lisa hardware configuration; this
manual assumes the Workshop software environment.

Related Documents
Pascal User Manual and Report Jensen and Wirth, Springer-Verlag 1975.

Workshop User’s Gulae for the Lisg Apple Computer, Inc. 1983,
Other Lisa documentation.

Definitions
For the purposes of this manual the following definitions are used:

* frror: Either a run—-time error or a compiler error.

» Seqpe: The body of text for which the declaration of an identifier or
label is valig.

* Lnoerfined: The value of a variable or function when the varlable does not
necessarlly have a meaningful value of its type assigned to it.

s nspecifled: A value or action or effect that, although possibly
well-defined, 1s not specifled and may not be the same In all cases or for
all versions or configurations of the system. Any programming construct
that leads to an unspecified result or effect is not supported.

Notation and Syntax Diagrams
All numbers in this manual are in decimal notation, except where hexadecimal
notation is specifically indicated.

Throughout this manual, bold-face type Is used to distinguish Pascal text from
English text. For example, sqr(n div 16} represents a fragment of a Pascal
program. Sometimes the same word appears both in plain text and in

X111
029-0393-A

Pascal Rererence Mamal Preface

bold-face; for example, "The declaration of a Pascal procedure begins with
the word procedure.”

lallcs are used when technical terms are introduced.

Pascal syntax Is specified by diagrams. For example, the following diagram
glves the syntax for an identifier:

igentifier @

>

Start at the left and follow the arrows through the diagram. Numerous paths
are possible. Every path that begins at the left and ends at the arrow-head on
the right is valid, and represents a valid way to construct an identifier. The
boxes traversed by a path through the diagram represent the elements that can
be used to construct an identifier. Thus the diagram embodies the following
rules:

* An ldentifler must begin with a Jetter since the first arrow goes directly to
a box containing the name “letter.”

* An ldentifier might consist of nothing but a single letter, since there is a
path from this box to the arrow-head on the right, without going through
any more boxes.

* The Initlal letter may be followed by another letter, a alg/{ or an
waerscore, since there are branches of the path that lead to these boxes.

* The Initlal letter may be followed by any number of letters, digits, or
underscores, since there is a loop in the path.

A word contained In a rectangular box may be a name for an atomic element
like "letter" or “digit,” or it may be a name for some other syntactic
construction that is specified by another diagram. The name in a rectangular
box is to be replaced by an actual instance of the atom or construction that it
represents, e.g. "3" for "digit” or “counter” for "variable-reference”.

Pascal symbols such as reserved words, operators, and punctuation, are
bold-face and are enclosed in circles or ovals, as in the following diagram for
the construction of a compound-statement:

compouna-statement
()

xiv

Pascal Reference Maial Preface

Text in a circle or oval represents itself, and is to be written as shown (except
that capitalization of letters is not significant). In the dlagram above, the
semicolon and the words begin and end are symbols. The word "statement”
refers to a construction that has its own syntax diagram.

A compound-statement consists of the reservea word begin, followed by any
number of statements separated by semicolons, followed by the reserved word
end. (As will be seen In Chapter 6, a statement may be null; thus begin end is
a valld compound-statement.)

XV

Manual
Chapter Release Note

workshop The character set in the Appendix should show the full

Appendix B Intemational Lisa Character Set, because this Is now supported
by the workshop screen and for printing to a dot-matrix printer.
(A new page B-1 Is attached; take a moment now to make the
supstitution.) Printing ASCII characters to a daisy wheel printer
is supported for the following print wheels:

* Gothic, 15 pitch
* Prestige Elite, 12 pitch
¢ Courier, 10 pitch
* Boldface/Executive, PS.

Printing ASCII characters to a daisy wheel printer is not
supported for the three print wheels with Modern type styles.

September 1983

Chapter Release Note

Pascal If a variable T Is defined as T:PACKED ARRAY][0..100] OF

Chapter 5 0..255, the statement T[1] := 255 Is not accepted by the compiler.
Use TEMP = 255; T[1] := TEMP; as a workaround. The same is
true for all subranges from 0..128 to 0..255 and for all constant
values from 128 to 255.

Pascal If a USES statement Including the $U compiler option is

Chapter 9 followed on the same line by a comment, the tralling comma of
the statement must be separated from the opening brace of the
statement by a blank; otherwise, the code will be incorrectly
parsed. Example:

USES {$U foo.obj} unitl fcomment} BAD
{$U bar.obj unitz;

USES {$U foo.obj} unitl, {comment} OK
{#) bar.obj} unit2;

Pascal The GXRef utility accepts a maximum of 4095 procedure names.
Chapter 11
Pascal You cannot exit the ChangeSeg utility by typing <CR> in

Chapter 11 response to the first prompt line, 'File to Change'. You must
type <ESC><CR>.

September 1983

029-0050-A

11

13

ELE

17

Chapter 1
Tokens and Constants

Character Set and Special Symbols

Identifiers
Directives

Numbers

Labels

Quoted String Constants

1.6.1 Quoted CharaCter CoNStaNtS. ... iceeecireeeeiieeeinraeraceanaessnnsesennsennnes
Constant Declarations

Cormments and Compiler Commands

Tokens and Constants

Tokens are the smallest meaningful units of text in a Pascal program;
structurally, they correspond to the words in an English sentence. The tokens
of Pascal are classified into special symbols ldentifiers numbers labels and
quotead string constants

The text of a Pascal program consists of tokens and separators:a separator is
either a t/ank or a comment Two adjacent tokens must be separated by one
or more separators, if both tokens are identifiers, numbers, or reserved words.

No separators can be embedded within tokens, except in gquoted string
constants.

1.1 Character Set and Special Symbols
The character set used by Pascal on the Lisa is 8-bit extended ASCII, with
characters represented by numeric codes in the range from 0 to 255.

Letters, digits, hex-digits, and blanks are subsets of the character set:
* The Jetters are those of the English alphabet, A through Z and a through z.

* The ofgits are the Arabic numerals 0 through 9; the /sex-digits are the
Arabic numerals 0 through 9, the letters A through F, and the letters a
through f.

* The blanks are the space character (ASCII 32), the horizontal tab character
{ASCII 9), and the CR character (ASCII 13).

Special symbols and reserveq words are tokens having one or more fixed
meanings. The following single characters are special symbols:

+ =% f = <> [1., () :; " a {}s
The following character pairs are special symbols:

<> <= >= = (* *)

The following are the reserved woros:
and end label program until
array file methods* record uses
begin for mod repeat var
case function nil set while
const goto not string with
creation* if of subclass*
div implementation or then
downto in otherwise to
do interface packed type
else intrinsic* procedure unit N

1-1

Pascal Reference Marnsl Tokens & Constants

The reserved words marked with asterisks are reserved for future use.
Corresponaing upper and lower case letters are equivalent in reserved words.
Only the first 8 characters of a reserved word are significant.

12 Identifiers
Identifiers serve to denote constants, types, variables, procedures, functions,
units and programs, and fields in records. Identifiers can be of any length, but
only the first 8 characters are significant. Corresponding upper and lower case
letters are equivalent in identifiers.

foentiter @

underscore

NOTE

The first 8 characters of an identifier must not mateh the first 8 char-
acters of a reserved word.

Examples or loentirlers:
X Rome ged SUM get_byte
1.3 Directives

Directives are worgs that have speclal meanings in particular contexts. They
are not reserved and can be used as identifiers in other contexts. For
example, the word forward Is Interpreted as a directlve if it ocours
immediately after a procedure-heading or function-heading, but in any other
position it s interpreted as an identifier.

1.4 Numbers
The usual decimal notation is used for numbers that are constants of the data
types integer, longint, and real (see Section 3.1.1). Also, a hexadecimal integer
constant uses the $ character as a prefix (1-4 digits for integer, 5-8 digits for

longint).
olqit-sequence

hex-gigit-seqence hex-digit

1-2

Pascal Reference Manual Tokens & Constarnts

={ digit-sequence [L >
Lb@—b{ hex-digit-sequence
~—»()—»

unsigriea-integer

wnsignea-real

digit-sequence ‘ digit-sequence | \ »
>{ soale—faotor]—/
LSy (F) »| digit-sequence |—
R@J “{sign -

Lrsigned uumber b{ unsigned-integer
unsigned-real
signea-rmber

’{ unsigned-number l————b

The letter £ or e preceding the scale in an unsigned-real means “times ten to
the power of".

Examples of mumoers:

1 +100 -0.1 SE-3 87 .35e+8 $A0SD
Note that 5E-3 means leﬂ'3, and 87.35e+8 means 87.35x108.

1-3

Pascal Rererernce Manua! Tokens & Constants

1.5 Labels
A label is a digit-sequence in the range from 0 through 9999.

16 Quoted String Constants
A guoted-string-constant is a sequence of zero or more characters, all on one
line of the program source text and enclosed by apostrophes. Currently, the
maximum number of characters is 255. A quoted-string-constant with nothing
between the apostrophes denotes the null string.

If the quoted-string-constant is to contain an apostrophe, this apostrophe must
be written twice.

quoted-stiing-constant

@ (-[string-character }4-)

string-character wlany char except O orCR N

Examples or quoted-string-constants:
‘Pascal’ "THIS IS A STRING' ‘Don’ 't worry!'

DAI 0;. I E N NI (X}

All string values have a Jengi/ attribute (see Section 3.1.1.6). In the case of a
string constant value the length is fixed; it is equal to the actual number of
characters in the string value.

1.6.1 Quoted Character Constants
Syntactically, a quoted-character-constant is simply a quoted-string-constant

whose length is exactly 1.

Quotedcnargcier-constant b@—bl string-character H@—b

A quoted-character-constant is compatible with any char-type or string-type;
that is, it can be used either as a character value or as a string value.

Pascal Rerference Marnual Tokens & Constants

1.7 Constant Declarations
A constant-declaration defines an identifier to denote a constant, within the
block that contains the declaration. The scope of a constant-identifier (see
Chapter 2) does not include its own declaration.

canstant-declaration (=) C>)

={ constant-identifier

signed-number

canstant

guoted-string
9

uoted-char |

NOTE

A constant-ldentifier is an identifier that has already been declared to
denote a constant.

A constant-identifier following a sign must denote a value of type integer,
longint, or real.

1.8 Comments and Compller Commands
The constructs:

{ any text not containing right-brace }
(» any text not containing star-right-paren %)

are called commenis

A compiler command is a comment that contains a $ character immediately
after the { or (» that begins the comment. The $ character is followed by the
mnemonic of the compiler command (see Chapter 12).

Apart from the effects of compller commands, the substitution of a blank for a
comment does not alter the meaning of a program.

A comment cannot be nested within another comment formed with the same
kind of delimiters. However, a comment formed with {..} delimiters can be
nested within a comment formed with (*...%) delimiters, and vice versa.

1-5

Chapter 2
Blocks, Locality, and Scope

2.1 Definitionof aBlock 2-1
22 Rulesof Scope 2-3
2.2.1 Scope of @DBCIAIALION.ccuiemui ittt er s 2-3
2.2.2 Redeclaration inan EnClosed BIOCKc.vveieiieniireeeeenerncacencnennes 2-3
2.2.3 Position of Declaration within Its BIOCK «.cenneneeeniiniiiecieeeeeeceneens 2-3
2.2.4 Redeclaration within@BlocKcevuieieeiiiiiiicieeiirieeeeneeeceennns 2-3
2.25 Identifiers of Standard OBJBOLSciviemicemniai i tarrcerec e cacrmnsaenas 2-4

029-0394-A

Blocks, Locality, and Scope

2.1 Definition of a Block
A block consists of declarations and a statement-part. Every block is part of
a procedure~declaration, a function-declaration, a program, or a unit. All
identifiers and labels that are declared in a particular block are Joca/ to that
block.

block

label-declaration-part h

constant-declaration-part]——7

type-declaration-part ’—>

variable-declaration-part ;—j

procedure-and-function-declaration-part h

IANANANANS

statement-part II >

The Jabel-declaration-part declares all labels that mark statements in the
corresponding statement-part. Each label must mark exactly one statement in
the statement-part.

label-geclaration-part

(el)izl |y
®

120/l Gigit-sequence |—

Pascal Reference Merua! Blocks, Locality, & Scope

The constant-declaration-part contains all constant-declarations local to the
block.

constant-ageclaration-part

constant-declaration }—j——b

The type-ceclaration-part contains all type-declarations jocal to the block.

Lype-oeclaration-part

'C’(type-declaration }—‘7_.’

The variable-oeclaration-part contains all variable~declarations local to the
block.

varisble-declaration-part

——b@—cbl variable-declaration]—7—-0

The procealre-ana-ruction-aeclaration-part contains all procedure and
function declarations local to the block.

procedure-and-fnction-oeclarstion-part
procedure-declaration
function-declaration

The statement-part specifies the algorithmic actions to be executed upon an
activation of the block.

Stotemen Pyl compound-statement |——

Pascal Reference Manial Blocks, Locallty, & Scope

NOTE

At run time, all variables declared within a particular block have
unspecified values each time the statement-part of the block Is entered.

22 Rules of Scope
This chapter discusses the scope of oblects w/tnin the program or wit In which
they are aefined See Chapter 9 for the scope of abjects defined in the
interface-part of a unit and referenced In a host program or unit.

221 Scope of a Declaration
The appearance of an identifier or label in a declaration defines the identifier
or label. All corresponding occurrences of the identifier or label must be
within the scgue of this declaration.

This scope is the block that contains the declaration, and all blocks enclosed
by that block except as explained in Section 2.2.2 below.

2.2.2 Redeclaration in an Enclosed Block
Suppose that outer is a block, and inner is another block that is enclosed
within outer. If an identifier declared in block outer has a further declaration
in block inner, then block inner and all blocks enclosed by inner are excluded
from the scope of the declaration in block outer. (See Appendix B for some
odd cases.)

223 Position of Declaration within Its Block
The declaration of an ldentifier or label must precede all corresponding
occurrences of that identifier or label in the program text--i.e., identifiers and
labels cannot be used untll after they are declared.

There is one exception to this rule: The base-type of a pointer-type (see
Section 3.3) can be an identifier that has not yet been declared. In this case,
the identifier must be declared somewhere in the same type-declaration-part
in which the pointer-type occurs. (See Appendix B for some odd cases.)

2.2.4 Regeclaration within a Block
An identifier or label cannot be declared more than once in the outer level of
a particular block, except for record fleld identifiers.

A record field identifier (see Sections 3.2.2, 4.3, and 4.3.2) is declared within a
record-type. It is meaningful only in combination with a reference to a
variable of that record-type. Therefore a fleld identifier can be declared
again within the same block, as long as it is not declared again at the same
level within the same record-type. Also, an identifier that has been declared
to denote a constant, a type, or a variable can be declared again as a record
field identifier in the same block.

Pascal Reference Manual Blocks, Locality, & Scope

2.25 ldentifiers of Standard Objects
Pascal on the Lisa provides a set of standard (predeclared) constants, types,
procedures, and functions. The identifiers of these objects behave as if they
were declared in an outermost block enclosing the entire program; thus their
scope includes the entire program.

029-0395-A

31

3.2

33
34

35

Chapter 3

Data Types

Simple-Types (and Ordinal- Types)
3.1.1 Standard Simple-Types and String-Types

3.1.1.1 Thelnteger Typecccceumeeenene. .

3.1.1.2 The Longint TYPE ..ot er e ereeans

3.1.1.3 The Real TYPE ..cciieiiirimnniieiineiencnsesenennnsan e sesesennnnneeas

3.1.1.4 The BOOIEaN TYPE ...cueriireneninireetnunnasraneeenaenusesanesnansennaennas

3.1.15 The Char TYPE c.coeieeerreeceeeeierien e ennne e s e e enae e enaanenee e

10 U0 T 1 1o Sl I o
3.1.2 ENUMETateOd-TYPLSreciriricreecrrresseseeneiesenrateseseees s e mananennannnnseas
3.1.3 SUDTBNOE-TYPES ...onoieeeeiiiieateennnaessnntransessenasnn s annsasansnnerasnsnes
Structured-Types 3-7
3.2.1 AITAY-TYPES covciiiriitietnnatsessiserir s siisrestsassessssnsss saasanssssanssnnnsssns 3-8
3.2.2 RECOTA-TYPES «.iieiiceerireiceriairtee e s ree e erenn s cras e e ns e s an s s naa e s snnnees 3-9
3.2.3 SBL-TYPES..ciitiiiinerriiritiuneisrertir e s ss e s e s v sse e s s e e s e runsnasan 3-11
328 FIlB-TYPBS..uuuiiirreeiecscastssiseseeese st e s ae e nt e e e se s e s e e e n s s anananasananen 3-12
Pointer-Types 313
Identical and Compatible Types 3-13
3L TyPE IOty ottt ee et e oo e s e e eaae 3-14
3.4.2 Compatibility Of TYPES ..oco it 3-15
3.4.3 Assignment-CompatiDilityo 3-15
The Type-Declaration—Part ...3-16

Data Types

A Hpe Is used In declaring variables; it determines the set of values which
those variables can assume, and the operations that can be performed upon
them. A Ype-odeclaration associates an identifier with a type.

type-geciaration ©)

simple-type

structured-type

The occurrence of an identifier on the left-hand side of a type-declaration

declares it as a type-lidentifier for the block in which the type-declaration

occurs. The scope of a type-identifier does not include its own declaration,
except for pointer-types (see Sections 2.2.3 and 3.3).

To help clarify the syntax description with some semantic hints, the following
terms are used to distinguish identifiers according to what they denote.
Syntactically, all of them mean simply an identifier:

simpie-type-identifier
structured-type-identifier
pointer-type-identifier
ordinal-type-ldentifier
real-type-identifier
string-type-identifier

In other words, a simple-type-identifier is any identifier that is declared to
denote a simple type, a structured-type-identifier is any identifier that is
declared to denote a structured type, and so forth. A simple-type-identifier
can be the predeclared identifier of a standard type such as integer, boolean,
ete.

Pascal Reference Marnual Data Tyes

3.1 Simple-Types (and Ordinal-Types)
All the simple-types define ordered sets of values.

ordinal-type

string-type

simple-type

LEALDE 3] real-type-identifier ————

#| subrange-type
enumerated-type
ordinal-type-identifier

The standard real-type-identifier is real.
String-types are discussed in Section 3.1.1.6 below.

aroinal-types are a subset of the simple-types, with the following special
characteristics:

* Within a given ordinai-type, the possible values are an ordered set and each
possible value is associated with an aralalfty, which is an integer value.
The first value of the ordinal-type has ordinality 0, the next has ordinality
1, etc. Each possible value except the first has a pregecessor based on
this ordering, and each possible value except the last has a swecessor based
on this ordering.

* The standard function ord (see Section 11.5.1) can be applied to any value
of ordinal~type, and returns the ordinality of the value.

* The standard function pred (see Section 11.5.4) can be applied to any value
of ordinal-type, and returns the predecessor of the value. (For the first
value In the ordinal-type, the result is unspecified.)

* The standard function succ (see Section 11.5.3) can be applied to any value
of ordinal-type, and retums the successor of the value. (For the first value
in the oradinal-type, the result is unspecified.)

aradinal-type

Pascal Reference Manual Data Types

All simple-types except real and the string-types are ordinal-types. The
standard ordinal-type-identifiers are:

integer
longint
char

boolean

Note that in addition to these standard types, the enumerated-types and
subrange-types are ordinal-types.

3.1.1 Standard Simple-Types and String-Types
A standard type is denoted by a predefined type-identifier. The simple-types
integer, longint, real, char, and boolean are standard. The string-types are
user-oefined simple-types.

3.111 The Integer Type
The values are a subset of the whole numbers. (As constants, these values can
be denoted as specified in Section 1.4) The predefined integer constant maxint
is defined to be 32767. Maxint defines the range of the type integer as the
set of values:

-maxint-1, -maxint, ... -1, 0, 1, ... maxint-1, maxint
These are 16-bit, 2's~-complement integers

3.1.1.2 The Longint Type
The values are a subset of the whole numbers. (As constants, these values can

be denoted as specified in Section 1.4) The range is the set of values from
~231-1) to 231-1, e, 2147483648 to 2147483647
These are 32-bit integers.

Arithmetic on integer and longint operands is done in both 16-bit and 32-bit
precision. An expression with mixed operand sizes is evaluated in a manner
similar to the FORTRAN single/double precision floating-point arithmetic rules:

* All "integer" constants In the range of type integer are considered to be of
type integer. All "integer" constants in the range of type longint, but not
in the range of type integer, are considered to be of type longint

* When both operands of an operator (or the single operand of a unary
gperator) are of type integer, 16-bit operations are always performed and
the result is of type integer (truncated to 16 bits if necessary).

* when one or both operands are of type longint, all operands are first
converted to type longint, 32-bit operations are performed, and the result is
of type longint. However, if this value is assigned to a variable of type
integer, it is truncated (see next rule).

Pascal Reference Manual Data Types

* The expression on the right of an assignment statement is evaluated
inokpendently or the size of the varlable on the left. If necessary, the
result of the expression is truncated or extended to match the size of the
variable on the left.

The org4 function (see Section 11.3.3) can be used to convert an integer value
to a longint value.

IMPLEMENTATION NOTE

There is a performance penalty for the use of longint values. The
penalty is essentlally a factor of 2 for operations other than division
and multiplication; for division and multiplication, the penalty is much
worse than a factor of 2.

3.1.1.3 The Real Type
For detalls of IEEE standard floating-point arithmetic, see Appendix D. The
possible real values are

* Finite values (a subset of the mathematical real numbers). As constants,
these values can be denoted as specified in Section 1.4.

The largest absolute numeric real value is approximately 3.402823466E38 in
Pascal notation.

The smallest absolute numeric non-zero real value is approximately
1.401298464E-45 in Pascal notation.

The real zero value has a sign, like other numbers. However, the sign of a
zero value is disregarded except in division of a finite number by zero and
in textual output.

* Infinite values, +~ and -, These arise either as the result of an operation
that overflows the maximum absolute finite value, or as the result of
dividing a finite value by zero. Appendix D gives the rules for arithmetic
operations using these values.

» NaNs (the word “NaN" stands for “Not a Number™). These are values of
type real that convey diagnostic Information. For example, the result of
multiplying « by 0 is a NaN.

3.1.1.4 The Boolean Type
The values are truth values denoted by the predefined constant identifiers false
and true. These values are ordered so that false is “less than" true. The
function-call ord(false) returns 0, and ora{true) retumns 1 (see Section 11.5.1).

3.1.15 The Char Type
The values are extended 8-bit ASCII, represented by numeric codes in the
range 0.255. The ordering of the char values is defined by the ordering of
these numeric codes. The function-call ordc), where ¢ Is a char value, returns
the numeric code of ¢ (see Section 11.5.1).

Pascal Reference Manual Data Types

3.1.16 String-Types
A string value is a sequence of characters that has a dynamic /engé? attri-
bute. The length is the actual number of characters in the sequence at any
time during program execution.

A string type has a static size attribute. The size iIs the maximum Himit on
the length of any value of this type. The current value of the length attribute
Is returned by the standard function length (see Section 11.6); the size attribute
of a string type is determined when the string type Is defined.

string-type
® 0

string-type-identifier J‘

size-altrioute y[ncioned-integer —

where the size attribute is an unsigned-integer.
IMPLEMENTATION NOTE

In the current implementation, the size-attribute must be in the range
from 1 to 255.

The ordering relationship between any two string values Is determined by
lexical comparison based on the ordering relationship between character values
in corresponding positions in the two strings. (wWhen the two strings are of
unequal lengths, each character in the longer string that does not correspond to
a character In the shorter one compares "higher”; thus the string ‘attribute’ is
ordered higher than ‘at')

Do not confuse the size with the length.

Pascal Reference Manual Data Types

NOTES

The size attribute of a string constant is equal to the length of the
string constant value, namely the number of characters actually in the
string.

Although string-types are simple-types by definition, they have some
characteristics of structured-types. As explained in Section 4.3.1,
individual characters in a string can be accessed as if they were
corponents of an array. Also, all string-types are implicitly packed
types and all restrictions on packed types apply to strings (see Sections
7.3.2,5.16.1, and 11.7).

Do not make any assumptions about the Internal storage format of strings, as
this format may not be the same in all implementations.

Operators applicable to strings are specified in Section 5.1.5. Standard
procedures and functions for manipulating strings are described in Section 11.6.

3.1.2 Enumerated-Types
An enumerated-type defines an ordered set of values by listing the identifiers
that denote these values. The ordering of these values is determined by the
sequence in which the identifiers are listed.

Enmerarea-tyoe identifier-list

loentifier-list (
(e

s

The occurrence of an identifier within the identifier-list of an
enumerated-type declares it as a constant for the block in which the
enumerated-type Is declared. The type of this constant Is the enumerated-type
being declared.

Examples of enmerateq-types:

color = (red, yellow, green, blue)
suit = (club, diamond, heart, spade)
maritalStatus = (married, divorced, wldowed, single)

Given these declarations, yellow Is a constant of type color, diamond is a
constant of type suit, and so forth.

when the ord function (see Section 11.5.1) is applied to a value of an
enumerated-type, it returns an integer representing the ordering of the value

Pascal Rerference Marual Data Types

with respect to the other values of the enumerated-type. For example, given
the declarations above, ord(red) retums 0, ord(yellow) returns 1, and ordblue)
returns 3.

3.1.3 Subrange-Types
A subrange-type provides for range-checking of values within some
ordinal-type. The syntax for a subrange-type is

subrange-tyoe . °

Both constants must be of ordinal-type. Both constants must either be of the
same ordinal-type, or one must be of type integer and the other of type
longint. If both are of the same ordinal-type, this type is called the /Zwost-type
If one is of type Integer and the other of type longint, the host-type is longint.
Note that no range-checking is done if the host-type is longint.

Examples of Subrange-types:

1..100
-10..+10
red. .green

A variable of subrange-type possesses all the properties of variables of the
host type, with the restriction that its run-time value must be In the specified
closed interval.

IMPLEMENTATION NOTE

Range-checkling 1s enabled and disabled by the compller commands $R+
and $R- (see Chapter 12). The default is $R+ (range-checking enabled).

3.2 Stuctured-Types
A structured-type is characterized by its structuring method and by the type(s)
of its components. 1f the component type is itself structured, the resulting
structured-type exhibits more than one level of structuring. There is no
specified 1imit on the number of levels to which data-types can be structured.

StruCreo-tye - array-type |
{1 —
record-type

structured-type-identifier }

>

Pascal Reference Manual Data Types

The use of the word packed in the declaration of a structured-type indicates
to the compiler that data storage should be economized, even if thls causes an
access to a component of a varlable of this type to be less efficient.

The word packed only affects the representation of one level of the
structured-type In which it occurs. If a component Is itself structured, the
component's representation is packed only if the word packed also occurs In
the declaration of its type.

For restrictions on the use of components of packed varlables, see Sections
7.3.2, 5.1.6.1, and 11.7.

The implementation of packing Is complex, and details of the allocation of
storage to components of a packed variable are wspecified

IMPLEMENTATION NOTE

In the current implementation, the word packed has no effect on types
other than array and record.

3.21 Array-Types
An array-type consists of a fixed number of components that are all of one
type, called the component-type The number of elements is determined by
one or more Joex-types one for each dimension of the array. There is no
specified limit on the number of dimensions. In each dimension, the array can
be indexed by every possible value of the corresponding index-type, so the
number of elements is the product of the cardinalities of all the index-types.

array-Yype

(amay)>(D (Dr-»(or)-+{oe |
(e

I0EX-LY0E [ordinal-type

The type following the word of is the component-type of the array.
IMPLEMENTATION NOTE

In the current implementation, the index-type should not be longint or a
subrange of longint, and arrays should not contain more than 32767 bytes.

3-8

Pascal Reference Manual Data Types

Examples of array-types:

arrayf1..100] of real
array[boolean] of color

If the component-type of an array-type is also an array-type, the result can be
regarded as a single muiti-dimensional array. The declaration of such an array
is equivalent to the declaration of a multi-dimensional array, as illustrated by
the following examples:

array[{boolean] of array{l..10] of array[size] of real
is equivalent to:

array[boolean, 1..10, size] of real
Likewise,

packed array[1..10] of packed array[1..8] of boolean
is equivalent to:

packed array[1..10,1..8] of boolean

"Equivalent” means that the compiler does the same thing with the two
constructions.

A component of an array can be accessed by referencing the array and
applying one or more indexes (see Section 4.3.1).

3.22 Record-Types
A record-type consists of a fixed number of components called /e/as possibly
of different types. For each component, the record-type declaration specifies
the type of the field and an identifier that denotes it.

record-t record

rleiq-list

fixed-part —
(3) variant-part \b@J
Axed-part (bi field-declaration l——j—————b

3-9

Pascal Reference Maral Data Types

dely-oeciarslion identifier-list °

The fixed-part of a record-type specifies a list of “fixed" flelds, giving an
ldentifier and a type for each field. Each of these flelds contains data that Is
always accessed in the same way (see Section 4.3.2).

Example of a recora-tywe:

record

year: integer;
month: 1..12;

day: 1..31

end

A variant-part allocates memory space with more than one list of fields, thus
permitting the data in this space to be accessed in more than one way. Each
list of flelds is called a var/ant The variants "overlay" each other in memory,
and all fields of all variants are accessible at all times.

variant-part

= i ity o (o) v |
G

centirer o)

varisnt

—rlem O+ (D>
Oe

taq-rield-type ®| ordinal-type-identifier [—#

IMPLEMENTATION NOTE

In the current implementation, the type longint should not be used as a
tag-type as it will not work correctly.

3-10

Faseal Reference Maral Lata Types

Each variant is introduced by one or more constants. All the constants must
be distinct and must be of an ordinal-type that is compatible with the
tag-type (see Section 3.4).

The variant-part allows for an optional identifier, called the tag-rfelq
loentiffer 1f a tag-field identifier is present, it is automatically declared as
the identifler of an additional fixed field of the record, called the lap-rlela

The value of the tag-field may be used by the program to indicate which
variant should be used at a given time. If there is no tag-field, then the
program must select a variant on some other criterion,

Examples of recorad-types with variants:

record
name, firstName: string(80];
age: 0..99;

case married: boolean of
true: (spousesName: string[80]);
false: ()

record
X y: real;
area: real;
case s: shape of
triangle: (side: real; inclination, anglel, angle2:

angle);
rectangle: (sidel, side2 : real; skew, angle3: angle);
circle: (diameter: real);

end
NOTE

The constants that introduce a variant are not used for referring to
fields of the variant; however, they can be used as optional arguments
of the new procedure (see Section 11.2). Vvariant fields are accessed in
exactly the same way as fixed fields (see Section 4.3.2).

323 Set-Types
A set-type defines a range of values that is the powerset of some ordinal-type,
called the sase-type In other words, each possible value of a set-type Is some
subset of the possible values of the base-type.

3-11

Pascal Rerference Marnal Data Types

IMPLEMENTATION NOTE

In the present implementation the base-type must not be longint. The
base-type must not have more than 4088 possible values. If the base-
type is a subrange of integer, it must be within the limits 0..4087.

Operators applicable to sets are specified in Section 5.1.4. Section 5.3 shows
how set values are denoted in Pascal.

Sets with less than 32 possible values in the base-type can be held in a
register and offer the best performance. For sets larger than this, there is a
performance penalty that is essentially a linear function of the size of the
base-type.

The empty set (see Section 5.1.4) is a possible value of every set-type.

324 File-Types
A file-type is a structured-type consisting of a sequence of components that
are all of one type, the component-type The component-type may be any
type.

The component data is not in program-addressable mernory but is accessed via
a peripheral device. The number of components (i.e. the length of the file) is
not fixed by the file-type declaration.

Hle-tyoe @ >

The type file (without the “of type" construct) represents a so-called "untyped
file“) type for use with the blockread and blockwrite functions (see Section
10.4).

NOTE

Although the symbol file can be used as if it were a type-identifier, it
cannot be redeclared since it is a reserved word.

The standard file-type text denotes a file of text organized into lines. The
file may be stored on a file-structured device, or it may be a stream of
characters from a character cevice such as the Lisa keyboard. Files of type
text are supported by the specialized 1/0 procedures discussed in Section 10.3.

In Pascal on the Lisa, the type text is distinct from the type file of char
(unlike standard Pascal). The type file of char is a file whose records are of

3-12

Pascal Reference Manual Data Types

type char, containing char values that are not interpreted or converted in any
way during 1/0 operations.

In a stored file of type text or flle of -128..127, the component values are
packed into bytes on the storage medium. However, this does not apply to the
type file of char; the component values of this type are stored in 16-bit words.

In Pascal on the Lisa, files can be passed to procedures and functions as
variable parameters, as explained in Section 7.3.2.

Sections 4.3.3, 10.2, 10.3, and 10.4 discuss methods of accessing file components
and data.

33 Pointer-Types
A pointer-type defines an unbounded set of values that point to variables of a
specified type called the base-¢type

Pointer values are created by the standard procedure new (see Section 11.2.1),
by the @ operator (see Sectlon 5.1.6), and by the standard procedure pointer
(see Section 11.3.4).

pamler-ime O

pointer-type-identifier

Lase-lpe gl 1ypeidentifier

NOTE

The base-type may be an identifier that has not yet been declared. In
this case, it must be declared somewhere in the same block as the
pointer-type.

The special symbol nil represents a standard pointer-valued constant that is a
possible value of every pointer type. Conceptually, nil is a pointer that does
not point to anything.

Section 4.3.4 discusses the syntax for referencing the object pointed to by a
pointer variable.

3.4 Identical and Compatible Types
As explained below, this Pascal has stronger typing than standard Pascal. In
Pascal on the Lisa, two types may or may not be Joentical and identity is
required in some contexts but nat in others.

3-13

Pascal Rererervce Marnial! Lata Types

Even if not identical, two types may still be compatible and this is sufficient
in contexts where identity is not required--except for assignment, where
assignment-compalibility is required.

3.4.1 Type Identity
Identical types are required a2/y in the following contexts:

* Variable parameters (see Section 7.3.2).
* Result types of functional parameters (see Section 7.3.4).

* Value and variable parameters within parameter-lists of procedural or
functional parameters (see Section 7.3.5).

* One~-dimensional packed arrays of char being compared via a relational
operator (see Section 5.1.5).

Two types, t1 and t2, are Joentical if either of the following Is true:
* The same e Joentiffer Is used to declare both t1 and t2, as in
foo = "integer;

t1 = foo;
t2 = foo;
* 11 is declared to be equivalent to t2 as in
t1 = t2;
Note that the declarations
t1 = t2;
t3 = tL;

do not make t3 and t2 identical, even though they make tl1 identical to t2 and
t3 identical to t1!

Also note that the declarations

t4 = integer;
t5 = integer;

ao make t4 and t5 identical, since both are defined by the same type
igentifier. In general, the declarations

t6 = 17;
t8 = t7;

oo make t6 and t8 identical if t7 is a type-identifier.
However, the declarations

t9 = "integer:
t10 = integer;

do ot make t9 and t10 identical since integer is not a type identifier but a
user-defined type consisting of the special symbol = and a type identifier.

o

3-14

Pascal Reference Marual Data Tyes

Finally, note that two varlables declared in the same declaration, as in
varl, var2: ~integer;

are of identical type. However, if the declarations are separate then the
gefinitions above apply.

The declarations

varl: "integer;
var2: "integer;
var3: integer;
vard: integer:

make var3 and vard identical in type, but not varl and varz.

3.4.2 Compatibility of Types
Compatibility is required in the majority of contexts where two or more
entities are used together, e.g. In expressions. Specific instances where type
compatibility is required are noted elsewhere in this manual.

Two types are compatlbie If any of the following are true:
* They are identical.
* One is a subrange of the other.
* Both are subranges of the same type.
* Both are string-types (the lengths and sizes may differ).
* Both are set-types, and their base-types are compatible.

3.4.3 Assignment-Compatibility
Assignment-compatibility Is required whenever a value is assigned to
something, either explicitly (as in an assignment-statement) or implicitly (as in
passing value parameters).

The value of an expression expval of type exptyp is assignment-compatible
with a variable, parameter, or function-identifier of type vtyp if any of the
following is true.

* vtyp and exptyp are identical and neither is a flle-type, or a structured-
type with a file component.

= vtyp is real and exptyp is integer or longint (expval is coerced to type
real).

* vtyp and exptyp are compatible ordinal-types, and expval is within the
range of possible values of vtyp.

* viyp and exptyp are compatible set-types, and all the members of expval
are within the range of possible values of the base-type of vtyp.

* vtyp and exptyp are string types, and the current length of expval is equal
to or less than the size-attribute of vtyp.

3-15

Fascal Reference Mamal Lata Types

* vtyp is a string type or a char type and expval is a quoted-character-
constant.

* vtyp is a packed array{l..,7] of char and expval is a string constant
containing exactly »~ characters.

If the index-type of the packed array of char is not 1.7, but the array
does have exactly /7 elements, no error will occur. However, the results
are unspecified.

whenever assignment-compatibility is required and none of the above is true,
either a compiler error or a run-time error occurs.

35 The Type-Declaration-Part
Any program, procedure, or function that declares types contains a type-
declaration-part, as shown in Chapter 2.

Example of a type-declaration-pert:

type count = integer:
range = integer;
color = (red, yellow, green, blue):
sex = (male, female);
year = 1900..1999;
shape = (triangle, rectangle, circle);
card = array[l..80] of char;
str = string[80];
polar = record r: real: theta: angle end;
person = ~personDetails;
personDetails = record
name, firstName: str;
age: integer;
married: boolean;

father, child, sibling: person;

case s: sex of
male: (enlisted, bearded: boolean);
female: (pregnant: boolean)

end;
people = file of personDetails;
intfile = file of integer:

In the above example count, range, and Integer denote identical types. The
type year is compatible with, but not identical to, the types range, count, and
integer.

3-16

Chapter 4

Variables
4.1 Variable-Declarations . 4-1
4.2 Variable-References...... 4-1
43 Qualifiers ..-4-2
4.3.1 Arrays,Strings, and INUEXESceeeereeeireciec e cee s enennneees 4-2
4.3.2 Records and Field-Designatorscoeoveeveieieeinniiiinii e, 4-4
B33 FIle-BUf OIS <o ciecciieiciecacaecacecceenereastnreransasnasaanesaanannans 4-4
4.3.4 Pointers and Their OBJEOLS ..o e 4-4

029-0396-A

Variables

4.1 Variable-Declarations

A variable-declaration consists of a list of identifiers denoting new variables,
followed by their type.

variaole-GRCIBalon o[genifier-list |-{:))

The occurrence of an identifier within the identifier-list of a variable-
declaration declares it as a variable-identifier for the block in which the
declaration occurs. The variable can then be referenced throughout the
remaining lexical extent of that block, except as specified in Section 2.2.2.

Examples of varigble-oeclarations:

X y,z: real;

i, }: integer;

K: 0..9

p,q T: boolean;

operator: (plus, minus, times);

a: array[0..63] of real;

¢: color;

f: file of char;

huel, huez: set of color;

pl,p2: person;

m ml,m2: array[1..10,1..10] of real;

coord: polar;

pooltape: array[l..4] of tape;

4.2 variable-References

A variable-reference denotes the value of a variable of simple-type or
pointer-type, or the collection of values represented by a variable of
structured-type.

variable-rererence

———»] variable-identifier | >
-

varisble-identifier

Pascal Rererence Manual variables

Syntax for the various kinds of qualifiers is given below.

43 Quallfiers

As shown above, a variable-reference is a variable-identifier followed by zero
or more qualiffers Each qualifier modifies the meaning of the varlable-
reference.

fleld-cesignator }—

file-buffer-symbol

pointer-object-symbol

An array ldentifier with no qualifier is a reference to the entire array:
xResults

If the array identifier is followed by an index, this denctes a specific
component of the array:

xResults[current+1]

If the array component is a record, the index may be followed by a fleld-
designator; in this case the variable-reference denotes a specific field within a
specific array component.

xResults[current+1].11ink

If the fleld is a pointer, the field-designator may be followed by the pointer-
object-symbol, to denote the object pointed to by the pointer:

XResults{current+1].1ink "

If the object of the pointer is an array, another index can be added to denote
a component of this array (and so forth):
XResults{current+1].11nkK " [1]

431 Arrays, Strings, and Indexes
A specific component of an array variable is denoted by a variable-reference
that refers to the array variable, followed by an index that specifies the
component.

A specific character within a string variable is denoted by a variable-reference
that refers to the string variable, followed by an index that specifies the
character position.

!miex@(

4-2

Pascal Rerference Marnugl variables

Examples of Indexed arrays:

mi,]
a[i+3]

Each expression in the index selects a component in the corresponding
dimension of the array. The number of expressions must not exceed the
number of index-types in the array declaration, and the type of each
expression must be assignment-compatible with the corresponding index-type.

In indexing a multi-dimensional array, you can use either multiple indexes or
multiple expressions within an index. The two forms are completely equivalent.
For example,

m{1][3]
Is equivalent to

m[i, j]

For array variables, each index expression must be assignment-compatible with
the corresponding index-type specified in the declaration of the array-type.

A string value can be indexed by only one index expression, whose value must
be in the range 1../7, where » is the current length of the string value. The
effect is to access one character of the string value.

WARNING

when a string value is manipulated by assigning values to individual
character positions, the dynamic length of the string is not maintained.
For example, suppose that strval is declared as follows:

strval: string[10];

The memory space allocated for strval includes space for 10 char values
and a number that will represent the current length of the string--i.e.,
the number of char values currently in the string. Initially, all of this
space contains unspecified values. The assignment

strval[1]:="F"'

may or may not work, depending on what the unspecified length happens
to be. If this assignment works, it stores the char value 'F' in character
position 1, but the length of strval remains unspecified. In other words,
the value of strval[1] is now F', but the value of strval is unspecified.
Therefore, the effect of a statement such as writeln(strval) is
unspecified.

Therefore, this kind of string manipulation is not recommended. Instead,
use the standard procedures described in Section 11.6. These procedures
properly maintain the lengths of the string values they modify.

Pascal Rererence Marnal Vvariables

4.3.2 Records and Field-Designators
A specific field of a record variable is denoted by a variable-reference that

refers to the record variable, followed by a field-designator that specifies the
field.

fiela-aeslqnator o identifier

Examples or riela-aesignators:

p2 .pregnant
coord.theta
433 File-Buffers

Although a file variable may have any number of components, only one
component is accessible at any time. The position of the current component in
the file is called the cwrrent Ale position See Sections 10.2 and 10.3 for
standard procedures that move the current file position. Program access to the
current component is via a special variable associated with the file, called a
Ale-burrer

The file-buffer Is implicitly declared when the flle variable is declared. If F
is a file variable with components of type T, the associated file-buffer is a
variable of type T.

The file-buffer associated with a file variable is denoted by a variable-

reference that refers to the file variable, followed by a qualifier called the
file-buffer-symbol.

file-tuffer-symbol .@ >

Thus the file-buffer of file F is referenced by F".

Sections 10.2 and 10.3 describe standard procedures that are used to move the
current file position within the file and to transfer data between the file-
buffer and the current file component.

434 Pointers and Their Objects
The value of a pointer variable is either nil, or a value that identifies some
other variable, called the obtject of the pointer

The object pointed to by a pointer variable is denoted by a variable-reference
that refers to the polnter variable, followed by a qualifier called the pointer-
object-symbol.

pointer-object-symbol » O‘ >

Pascal Rererence Manusl variables

NOTE

Pointer values are created by the standard procedure new (see Section
11.2.1), by the @ operator (see Section 5.1.6), and by the standard
procedure pointer (see Section 11.3.4).

The constant nil (see Section 3.3) does not point to a varlable. If you access
memory via a nll pointer reference, the results are unspecified; there may not
be any error indication.

Examples of references to aujects of pointers:

-

p1 .
p1 .sibling

Chapter 5

Expressions

5.1 Operators S-a4
5.1.1 Binary Operators: Order of Evaluation of Operandscccccecrececesecnnne. 5-4

5.1.2 ArithmetiC Operators.ccciii i ccreeerm e et et cersseasrtreeseosana 5-4
5.1.3 B00IEEN OPBIALOTS .ccueeniiniiieccntcmtansemcttacaansassesasenssancensensanssncssanss 5-6

5.1.8 SEtOPEIAtors ...cciiiieiiiiiiriersttnecratseeere e crssasaresaseses s ansssnseneasanne 5-6
5.1.4.1 Result Type inSet Operations........cocococvoeniiiiniinniniennneneees 5-7

5.1.5 Relational Operatorsccciiiiiiriiiiinnersr e 5-7
5.1.5.1 Comparing NUMDETScccciiiiiiniiiinniiitrnetr e ccreenaaaseannenee 5-7

5.1.5.2 Comparing BOOIEaANS.......eueeeeeeeeinrireeeene s e e eaaeaees 5-8

5.1.53 Comparing Strings ... nee et 5-8

5.1.5.4 Comparing Setscoeee vt 5-8

5.1.55 TestingSet Membership......voe e ccerenennene 5-8

5.1.5.6 ComparingPacked Arrays of Charccceeeeeeeeceneneneesnnnnee. S-8

5.1.6 @-0PEIALOT ..oouiiiiineenraiiieneannreasesieaanaassnnrisanaaasnsseasasannsnsassenanns 5-8
5.1.6.1 @-OperatorwithaVarablecociiiiimmnninniiiiciiinnns 5-9

5.1.6.2 @-Operator witha Value Parameter........cceceivevanienncvennnnennns 5-9

5.1.6.3 @-Operator witha Variable Parameter.........ccceevveeniiennnnnns 5-9

5.1.6.4 @-Operator withaProcedure or Functionccccovvnnenne 5-9

52 Function-Calls 5-10

5.3 Sel—CONSIIUCTOTSceeeeeeeceecceeecceeecte e ee e seenensmessaasaensesassanmansennns 5-11

029-0397-A

Expressions

Expressions consist of operators and operands, l.e. variables, constants, set-
constructors, and function calls. Table 5-1 shows the operator precedence:

Table 5-1
Precedence of Operators
Qerators Precegerce | Categories
@, not highest unary operators
», /, div “ “
e fo B, second rmultipl rators
mod, and plying” ope
+, -, 0r third “adding" operatars & signs
= > %>, lowest relational operators
<= >=_ in

The following rules specify the way in which operands are bound to operators:

* when an operand is written between two operators of different precedence,
it is bound to the operator with the higher precedence.

* When an operand is written between two operators of the same precedence,
it Is bound to the operator on the left.

Note that the order in which operations are performed is not specified.

These rules are implicit in the syntax for expressions, which are built up from
factors, terms, and simple-expressions.

The syntax for a factorallows the unary operators @ and not to be applied to
a value:

factor

A — > b{ variable-reference l————————\

\—{ unsigned-constant |
\—»{ set-constructor |
O
.

A B

Pascal Rererence Marnual Expressions

A Runction-call activates a function, and denotes the value returned by the
function (see Section 5.2). A set-constructordenotes a value of a set-type (see
Section 5.3). An wrsignea-constant has the following syntax:

unsignea-constant

bl unsigned-number

quoted-string-constant

constant-identifier

»>

Examples of factors:

X {variable-reference}

ax {pointer to a variable}

15 {unsigned-constant}

(x+y+2) {sub-expression}

sin(x/2) {function-call}

['A*.."F ", "a".."f"] {set-constructor}

not p {regation of a boolean}
The syntax for a fenm allows the "multiplying” operators to be applied to
factors:

=
A ®‘ A
. O‘ A

~

Examples or temms:

x»y

1/(1-1)

padq

(x <= y) and (y < 2)

Pascal Reference Manual Expressions

The syntax for a simple-expression allows the "adding” operators and signs to
be applied to terms:

simple-expression

Yoy

Examples of simple-expressions:

X+y

-X

nuel + huez
1%] + 1

The syntax for an expression allows the relational operators to be applied to
simple-expressions:

Expression

—={ simple-expression | >
sirmple-expression }—/

200005

Examples of expressions:
X =1.5
p<=q
P =qand
(1<))=
¢ in huel

r
(J<xk)

5..

N

Pascal Reference Marual

5.1 Operators

S.1.1 Binary Operators: Order of Evaluation of
The order of evaluation of the operands of a binary operator is unspecified.

5.1.2 Arithmetic Operators

The types of operands and results for arithmetic binary and unary operations

are shown in Tables 5-2 and 5-3 respectively.

Expressions

Table 5-2
Binary Arithmetic Operations
Qperator | (peration {perard Types Type of Result
+ addition
- integer, real, or integer, real, or
subtraction " it
bl multiplication
/ alvision integer, real, or real
longint
div division with integer or longint | integer or longint
integer result ong! tege
mod modulo integer or longint integer
Apte: The symbols +, -, and * are also used as set operators (see
Section 5.1.4)
Table 5-3
Unary Arithmetic Operations (Signs)
Qoerator| Queration Qperana Types e of Result
+ identity
integer, real, or same as operand

Any operand whose type is subr, where subr is a subrange of some ordinal-type

ordtyp, is treated as if it were of type ordtyp. Consequently an expression
that consists of a single operand of type subr is itself of type ordtyp.

5-4

Pascal Reference Manual Expressions

If both the operands of the addition, subtraction, or multiplication operators
are of type integer or longint, the result is of type integer or longint as
described in Section 3.1.1.2; otherwise, the result is of type real

NOTE

See Appendix D for more information on all arithmetic operations with
operands or results of type real

The result of the identity or sign-negation operator is of the same type as the
operand.

The value of i div j is the mathematical quotient of i/}, rounded toward zero
to an integer or longint value. An error occurs if j=0.

The value of 1 mod j is equal to the value of
i-(idiv j)*j

The sign of the result of mod is always the same as the sign of 1. An error
occurs if §=0.

The predefined constant maxint is of type integer. Its value is 32767. This
value satisfies the following conaitions:

* All whole numbers in the closed interval from -maxint-1 to +maxint are
representable in the type integer.

* Any unary operation performed on a whole number in this interval will be
correctly performed according to the mathematical rules for whole-number
arithmetic.

* Any binary integer operation on two whole numbers in this same interval
will be correctly performed according to the mathematical rules for
whole-number arithmetic, provided that the result is also in this interval,
If the mathematical result is not in this interval, then the actual result is
the low-order 16 bits of the mathematical resuit.

* Any relational operation on two whole numbers in this same interval will be
correctly performed according to the mathematical rules for whole-number
arithmetic.

Pascal Rerference Marnual Expressions

5.1.3 Boolean Operators
The types of operands and results for Boolean operations are shown in Table

5-4.
Table 5-4
Boolean Operations
Qerator|) queration perang Tyoes Tvpe or rResult
or disjunction
and conjunction boolean boolean

not negation

whether a Boolean expression is completely or partially evaluated if its value
can be determined by partial evaluation Is unspecified. For example, consider
the expression

true or boolTst(x)

where boolTst is a function that returns a boolean value. This expression wili
always have the value true, regardless of the result of boolTst(x) The language
definition does not specify whether the boolTst function is called when this
expression is evaluated. This could be Important if boolTst has side-effects.

5.1.4 Set Operators
The types of operands and results for set operations are shown in Table 5-5.

Table 5-5
Set Operations
eratory Qoeration perand Types e or Result
+ union
co tible
- difference wmpes (see 5.1.4.1)
» intersection

Pascal Reference Marnial Expressions

5.1.4.1 Result Type in Set Operations
The following rules govern the type of the result of a set operation where one
(or both) of the operands is a set of subr, where ordtyp represents any
ordinal-type and subr represents a subrange of ordtyp:

 If ordtyp is not the type integer, then the type of the result is set of
oratyp.
« If oratyp is the type integer, then the type of the result is set of 0.4087 in

the current implementation (0..32767 in a future implementation). This rule
results from the limitations on set-types (see Section 3.2.3).

5.15 Relational Operators
The types of operands and results for relational operations are shown in Table
5-6, and discussed further below.

Table 5-6
Relational Operations

Operator | OQperation Querangd Types Tvoe of Result
- equal compatible set-,
simple-, or
<> not equal pointer-types
(& see below)
< less
> greater compatible
simple-types
<= less/equal (& see below) boolean
> greater/equal
<= subset of compatible
>= superset of set-types
lert guerana-
in member of any ordinal-type T
right goerand
setof T

5.15.1 Comparing Numbers
when the operands of <, >, >=, or <= are numeric, they need not be of
cornpatible type /7 one operand is real and the other is integer or longint.

NOTE

See Appendix D for more information on relational operations with
operands of type real.

Pascal Reference Manual Expressions

5.1.5.2 Comparing Booleans
If p and q are boolean operands, then p=g denotes their equivalence and p<=~q
denotes the implication of q by p (because false<true). Similarly, p<>q denotes
logical “exclusive-or.”

5.15.3 Strings

when the relational operators =, <>, <, >, <=, and > are used to compare
strings (see Section 2.1.1.6), they denote lexicographic ordering according to the
ordering of the ASCIHl character set. Note that any two string values can be
compared since all string values are compatible.

5.15.4 Comparing Sets
If u and v are set operands, then u<=v denotes the inclusion of u in v, and
w=v denotes the inclusion of v in w

5.155 Testing Set Membership
The in operator yields the value true if the value of the ordinal-type operand
is a member of the set-type operand; otherwise it yields the value false.

5.1.56 Comparing Packed Arrays of Char
In aadition to the operand types shown in the table, the = and <> operators can
also be used to compare a packed array{1.N] of char with a string constant
containing exactly N characters, or to compare two one-dimensional packed
arrays of char of Jaentical type.

5.1.6 @®-Operator
A pointer to a variable can be computed with the @-operator. The operand
and result types are shown in Table 5-7.

Table 5-7
Pointer Operation

Gperstor | peration Gperang Type of Result
inter variable, parameter,
e ?grmauon procedure, or same as nil
function

@ is a unary operator taking a single variable, parameter, procedure, or
function as its operand and computing the value of its pointer. The type of
the value Is equivalent to the type of nil, and consequently can be assigned to
any pointer variable.

Pascal Reference Manual Expressions

5.1.6.1 @-Operator With a Vvariable
For an ordinary variable (not a parameter), the use of @ is straightforward. For
example, if we have the declarations

type twochar = packed array[0..1] of char;
var int: integer;
twocharptr: twochar;

then the statement

twocharptr := aint

causes twocharptr to point to int. Now twocharptr” is a reinterpretation of
the bit value of int as though it were a packed array{0.1] of char.

The operand of @ cannot be a component of a packed variable.

5.1.6.2 @-Operator With a Value Parameter
When @ is applied to a formal value parameter, the result is a pointer to the
stack location containing the actual value. Suppose that foo is a formal value
parameter in a procedure and fooptr is a pointer variable. If the procedure
executes the statement

fooptr := afoo

then fooptr~ is a reference to the value of foo. Note that if the actual-
parameter is a variable-reference, fooptr = is not a reference to the variable
itself; it is a reference to the value taken from the variable and stored on the
stack.

5.1.6.3 @-Operator with a Variable Parameter
when @ is applied to a formal variable parameter, the result is a pointer to
the actual-parameter (the pointer is taken from the stack). Suppose that fum
is a formal variable parameter of a procedure, fie is a variable passed to the
procedure as the actual-parameter for fum, and fumptr is a pointer variable.

If the procedure executes the statement
fumptr := @fum
then fumptr is a pointer to fie. fumptr” is a reference to fie itself.

5.1.6.4 @-Operator With a Procedure or Function
It is possible to apply @ to a procedure or a function, yielding a pointer to the
entry-point. Note that Pascal provides no mechanism for using such a pointer.
Currently the only use for a procedure pointer is to pass it to an assembly-
language routine, which can then JSR to that address.

If the procedure pointed to is in the local segment, @ returns the current
address of the procedure's entry point. If the procedure is in some other
segment, however, @ returns the address of the jump table entry for the
procedure.

Pascal Reference Maral Expressions

In logical memory mapping (see Workshop User’s Guide for the L7sg), the
procedure pointer is always valid.

In physical memory mapping, code swapping may change a local-segment
procedure address without warning, and the procedure pointer can become
invalid. If the procedure is not in the local segment, the jump-table entry
address will remain valid despite swapping because the jump table is not
moved.

5.2 Function-Calls
A function—call specifies the activation of the function denoted by the
function-identifier. If the corresponding function-declaration contains a list of
formai-parameters, then the function-call must contain a corresponding list of
actual-parameters. Each actual-parameter is substituted for the corresponding
formal~parameter. The correspondence is established by the positions of the
parameters in the lists of actual and formal parameters respectively. The
number of actual-parameters must be equal to the number of formal
parameters.

The order of evaiuation and binding of the actual-parameters is unspecified.

Ractlonr-cali

~———->{ function-identifier } »
\bi actual-parameter-list }J

aclual-parameter-list NO, (»| actual-parameter }j——»®—+
(e

actual-parameter

expression

variable-reference

procedure-identifier

function-identifier

A function-identifier is any identifier that has been declared to denote a
function.

5-10

Pascal Reference Manual Expressions

Examples of fuction-calls:

sum(a, 63)
gcd(147,k)

5.3 Set-Constructors
A set-constructor denotes a value of a set-type, and is formed by writing
expressions within [brackets] Each expression denotes a value of the set.

set-construetor .@ .@__’
s}y
(e

’

member-group D{ expression ,! >
O

The notation [] denotes the empty set, which belongs to every set-type. Any
member-group X.y denotes as set members the range of all values of the base-
type in the closed interval x to y.

If x is greater than y, then x.y denotes no members and [x..y] denotes the
empty set.

All values designated in member-groups in a particular set-constructor must be
of the same ordinal-type. This ordinal-type Is the base-type of the resulting
set. If an integer value designated as a set member is outside the limits glven
in Sectlon 3.2.3 (0..4087 in the current implementation), the results are
unspecified.

£Examples of set-constructors:

[red, c, green]
[1, S, 10..k mod 12, 23]
['A*..*Z", *a'..'z", chr({xcode)]

5-11

029-0398-A

Chapter 6

Statements

6.1 Simple Statements 61
6.1.1 ASSignment-Statements ... e 6-1
6.1.2 Procegure-Statements ... ceeeee e eeee e e v e e e 6-2

O W I € a1 ST = 11110 = R U T 6-3

6.2 Structured-Statements 6-4
6.2.1 Compound=-StatemENts ... oo eae e e ne e e ae e eeeaanaas 6-4
6.2.2 Conditional-Statementscooe e e enanes 64
6.2.2.1 H-StalemMentS ..o cecececeeneereeaceernanceernnarennnnns 6~-5

6.2.2.2 Case-StalemMeNts. ot an e eaeeaae 6-5

6.2.3 Repetitive-Statements. .. oo cetre e e e et e e e oo annan 6-6
6.2.3.1 Repeat-Statementsccoviireiiriiiniinrercirte e rnaeee 6-7

6.2.3.2 WHIlE-StatBMBNLS ...ceeiieiieeicececertceeceeerereceraransennsenes 6-7

6.2.3.3 FOr-StatBmMEnt 5. e et ceeiiieseeceesesesnensasanansnsenes 6-8

6.2.4 With-StalBmMBNLS e eee e reeieccenireeeesereesnnasassmsenesnessnssnanann 6-10

Statements

Statements denote algorithmic actions, and are executable. They can be
prefixed by labels; a labeled statement can be referenced by a goto-statement.

statement

L
° t: simple-statement

structured-statement

%ﬁigit—sequence >

A digit-sequence used as a label must be in the range 0..9999, and must first
be declared as described in Section 2.1.

6.1 Simple Statements
A simple-statement is a statement that does not contaln any other statement.

simple-statement

4{ assignment-statement

procedure-statement

goto-statement | >

6.1.1 Assignment-Statements
The syntax for an assignment-statement is as follows:

assignment-statement

variable-reference

function-identifier °
The assignment-statement can be used in two ways:

* To replace the current value of a variable by a new value specified as an
expression

* To specify an expression whose value is t0 be retumned by a function.

Pascal Rerference Mamial Statements

The expression must be assignment-compatible with the type of the variable or
the result-type of the function.

NOTE

If the selection of the variable involves indexing an array or taking the
object of a pointer, it is not specified whether these actions precede or
follow the evaluation of the expression.

Examples of assignment-statements:
X = y+2;

p := (1<=1) and (i<100);

1 == sqr(k) - (i*j);

huel := [blue, succ(c)];
6.1.2 Procedure-Statements

A procedure-statement serves to execute the procedure denoted by the
procedure-identifier.

procegure-statement

——b[procedure-identifier } ~

>

actual-parameter-list }J

(A procedure-identifier is simply an identifier that has been used to declare a
procedure.)

If the procedure has formal-parameters (see Section 7.3), the procedure-
statement must contain a list of actual-parameters that are bound to the
corresponding formal-parameters. The number of actual-parameters must be
equal to the number of formal parameters. The correspondence is established
by the positions of the parameters in the lists of actual and formal parameters
respectively.

The rules for an actual-parameter AP depend on the corresponding formal-
parameter FP:

* If FP is a value parameter, AP must be an expression. The type of the
value of AP must be assignment-compatible with the type of FP.

* If FP is a variable parameter, AP must be a varlable-reference. The type
of AP must be identical to the type of FP.

s If FP 1s a procedural parameter, AP must be a procedure-identifier. The
type of each formal-parameter of AP must be identical to the type of the
corresponding formal-parameter of FP.

6-2

Pascal Reference Marnual Statements

* If FP is a functional parameter, AP must be a function-identifier. The type
of each formal-parameter of AP must be identical to the type of the
corresponding formal-parameter of FP, and the result-type of AP must be
identical to the result-type of FP.

NOTE

The order of evaluation and binding of the actual parameters is
unspecified.

Examples of procequre-statements:

printheading;
transpose(a, n, m);
bisect(fct, -1.0,+1.0,%);

6.1.3 Goto-Statements
A goto-statement causes a jump to another statement in the program, namely
the statement prefixed by the label that is referenced in the goto-statement.

Qot0-st2AMEN!_ g 3015w Tanel |

NOTE

The constants that Introduce cases within a case-statement (see Section
6.2.2.2) are not labels, and cannot be referenced In goto-statements.

The following restrictions apply to goto-statements:

* The effect of a jump into a structured statement from outside of the
structured statermnent is unspecified.

¢ The effect of a jump between the then part and the else part of an if-
statement is unspecified.

* The effect of a jump between two different cases within a case-statement
is unspecified.

Pascal Reference Manual Statements

6.2 Structured-Statements
Structured-statements are constructs composed of other statements that must
be executed either conditionally (conditional-statements), repeatedly
(repetitive-statements), or in sequence (compound-statement or with-statement).

structureg-sitatement

»! cormpound-statement

conditional-statement

repetitive-statement

with-statement } >

6.2.1 Compound-Statements
The compound-statement specifies that its component statements are to be
executed in the same sequence as they are written.

compolwnd-statement

(begin) (ena)
Example of compouna-statement:
begin

wun
NS &

§.‘<><N

An important use of the compound-statement is to group more than one
statement into a single statement, in contexts where Pascal syntax only allows
one statement. The symbaols begin and end act as “statement brackets.”
Examples of this will be seen in Section 6.2.3.2.

6.2.2 Conditional-Statements
A conditional-statement selects for execution a single one (or none) of its
component statements.

conitional-statement if-statement

case-statement

6-4

Pascal Reference Manual Statemernts

6.2.2.1 If-Statements
The syntax for if-statements is as follows:

(ﬂb(then}-bl statement | -

else statement

The expression must yield a result of type boolean. If the expression ylelds
the value true, the statement following the then is executed.

If the expression ylelds false and the else part is present, the statement
following the else is executed; If the else part is not present, nothing is
executed.

The syntactic ambiguity arising from the construct:

if el then
if e2 then si1
else s2

is resolved by interpreting the construct as being equivalent to:

if el then begin
if e2 then si
else s2

end
Examples of if-statements:

if x < 1.5 then z := x+y else z := 1.5;

if p1 <> nil then p1 := p1 .father;

6.222 Case-Statements

The case-statement contains an expression (the selecto) and a list of
statements. Each statement must be prefixed with one or more constants
(called case-canstantd), or with the reserved word otherwise. All the case-

constants rmust be distinct and must be of an ordinal-type that is compatible
with the type of the selector.

Cose- SNy case)] expression ‘—’@U

case »(end)—+
\-l otherwise-clause if \@j

6-5

Pascal Reference Maral Statements

T e

atherwise-clause »@—0(otherwise)—D{ statement }———"

The case-statement specifies execution of the statement prefixed by a case-
constant equal to the current value of the selector. If no such case-constant
exists and an otherwise part is present, the statement following the word
otherwise is executed; if no otherwise part is present, nothing is executed.

Examples of case-statements:
case operator of
plus: X := X+y;
minus: x := x-y;
times: x := xwy

end

case 1 of
1: X := sin(x);
2: X := cos(x);
3,4,5: x = exp(x);
otherwise x := In(x)

end

IMPLEMENTATION NOTE

In the current implementation, the case-statement will not work
correctly if any case-constant is of type longint or the value of the
selector Is of type longint.

6.2.3 Repetitive-Statements
Repetltive-statements specify that certain statements are to be executed
repeatedly.

Jepetitive-staterment

+{ repeat-statement

while-statement

for-statement, } »

Pascal Reference Marnugl Statements

6.2.3.1 Repeat-Statements
A repeat-statement contains an expression which controls the repeated
execution of a sequence of statements contained within the repeat-statement.

18DRAt-Statement

———b(repeat}C{ statement]-j—{mtia——b{ expression [—&

The expression must yield a result of type boolean. The statements between
the symbols repeat and untll are repeatedly executed until the expression
ylelds the value true on completion of the sequence of statements. The
sequence of statements is executed at least once, because the expression is
evaluated grter execution of the seguence.

Examples of repeat-statements:

repeat
mnd)

H II "
x%ah"

K :

i:

J:

until j=0

repeat R
process(f ");
get(f

until eof(f)

6.23.2 While-Statements
A while-statement contalns an expression which controls the repeated

execution of one statement (possibly a compound-statement) contained within
the while-statement.

while-statement

(i) —{ Sepresion (@)

The expression must yleld a result of type boolean. It is evaluated sefore the
contained statement is executed. The contained statement is repeatedly
executed as long as the expression yields the value true. If the expression
yields false at the beginning, the statement is not executed.

Pascal Reference Manual Statements

The while-statement:
while b do body
is equivalent to:

if b then repeat

body
until not b
Examples or while-statements:
while afi] < x do 1 := i+1

while i>0 do begin
if odd(i) then z := z»x;
i:=1div2;
X := sqr(x)

while not eof(f) do begin
process(f ");
get(f)
end
6.2.3.3 For-Statements
The for-statement causes one contained statement (possibly a compound-
statement) to be repeatedly executed while a progression of values is assigned
to a variable called the control-varigble

rar-statement

contror-varatie |(=)

(@ @)+ [t

CNOlVIITRNE _y[" ariabie-identifier |—

Initial-vaiue
et

6-8

Pascal Reference Manual Statements

The control-variable must be a variable-identifier (without any qualifier). It
must be local to the innermost block containing the for-statement, and must
not be a variable parameter of that block. The control-variable must be of
or?inal—type, and the initial and final values must be of a type compatible with
this type.

The first value assigned to the control-variable is the initial-value.

If the for-statement is constructed with the reserved word to, each successive
value of the control-variable is the successor (see Section 3.1) of the previous
value, using the inherent ordering of values according to the type of the
control-variable. When each value is assigned to the control-variable, it is
compared to the final-value; if it is less than or equal to the final value, the
contalned statement is then executed.

If the for-statement is constructed with the reserved word downto, each
successive value of the control-variable s the predecessor (see Section 3.1) of
the previous value. When each value is assigned to the control-variable, it is
compared to the final-value; If it Is greater than or equal to the final value,
the contained statement is then executed.

If the value of the control-variable is altered by execution of the repeated
statement, the effect Is unspecified. After a for-statement is executed, the
value of the control-variable is unspecified, unless the for-statement was
exited by a goto. Apart from these restrictions, the for-statement:

for v := el to e2 do body
is equivalent to:

begin
templ := el;
= @2;

temp2
if templ <= temp2 then begin
v := templ;
body;
while v <> temp2 do begin
v := succ{v);
body
end
end
end

Pascal Reference Mar&l! Statements

and the for-statement:
for v := el downto e2 do body
is equivalent to:

begin
templ := el;
temp2 := e2;
if templ >= temp2 then begin
v := templ;
body;
wvhile v <> temp2 do begin
v := pred(v);
body
end
end
end

where templ and temp2 are auxiliary variables of the host type of the variable
v that do not occur elsewhere in the program.

Examples of for-statements:
for 1 := 2 to 63 do if a[i] > max then max := a[i]
for i :=1tondo for }J :=1 tondo

begin
X = 0;
for K := 1 tondox :=x+m[ik]Pmlk, j);
m[i, j] := x

end

for ¢ := red to blue do g(c)

6.2.4 With-Statements
The syntax for a with-statement is

with-statement

——b(with record-variable-reference @

(A record-variable-reference is simply a reference to some record variable.)
The occurrence of a record-variable-reference in a with-statement affects the
way the compiler processes variable-references within the statement following
the word do. Fields of the record-variable can be referenced by their field-
identifiers, without explicit reference to the record-variable.

6-10

Pascal Reference Manual Statements

Example of with-statement:

vwith date do if month = 12 then begin
month := 1;

year := year + 1

end

else month := month + 1
This is equivalent to:

if date.month = 12 then begin
date.month := 1;
date.year := date.year + 1
end

else date.month := date.month + 1

within a with-statement, each variable-reference is checked to see if it can
be interpreted as a field of the record. Suppose that we have the following
declarations:

type recTyp = record
foo: integer;
bar: real
end;
var baz: recTyp;
foo: integer;

The identifier foo can refer both to a field of the record variable baz and to a
variable of type integer. Now consider the statement

with baz do begin
foo := 36; {which foo is this?)

end

The foo in this with-statement is a reference to the field baz.foo, not the
variable foo.

The statement:
with viv2, ... vndo s
is equivalent to the following "nested" with-statements:

with vl do
with v2 do

withvwn do s

6-11

Pascal Reference Manual Staternents

If vn in the above statements is a field of both vl and v2, it is interpreted to
mean v2.n, not vivn. The list of record-variable-references in the with-
staternent is checked from right to left.

If the selection of a variable in the record-variable-list involves the indexing
of an array or the de-referencing of a pointer, these actions are executed
before the component statement is executed.

WARNING

If a variable in the record-variable-list is a pointer-reference, the value
of the pointer must not be altered within the with-statement. If the
value of the pointer is altered, the results are unspecified.

Example of wnsare with-stalement using pointer-reference:
with ppp” do begin

new(ppp); {Don't do this ...}
;3{:{)::)00(; {... or this}

end

6-12

029-0399-A

Chapter 7
Procedures and Functions

7.1 Procedure-Declarations

7.2 Function-Declarations

7.3 Parameters

7.3.1 ValUE PArameLeISccceiuieiracaceaneracecacccnssnsnssesmnsnsasesnesasasasnsnases
7.3.2 VBTI8DIE ParaMBLEIS.ceee i ceiieeiainiencereeemneenaansesasnsessesansansnssenses
7.3.3 Procedural Parameters ..o ceceencnceeeeeeeacmensnaceressanrancennnn
7.3.4 Functional ParaimBlers v crmrct e e cacacensnacecnacnscannes
7.3.5 Parameter List Compatibilityc.cooooiiiiiiiiiinee.

Procedures and Functions

7.1 Procedure-Declarations
A procedure-declaration associates an ldentifier with part of a program so that
it can be activated by a procedure-statement.

proceaure-oeciaration

—b{ procedure-heading }-b@-bi procedure-body l—b@—b

orocedure-toay

The procedure-heading specifies the identifier for the procedure, and the
formal parameters (if any).

2100888 -hescing

———-b(proceduxe)——bl identifier } >
\~»{ formal-parameter-list }J

The syntax for a formal-parameter-list is given in Section 7.3.

A procedure is activated by a procedure-statement (see Section 6.1.2), which
gives the procedure's identifier and any actual-parameters required by the
procedure. The statements to be executed upon activation of the procedure
are specified by the statement-part of the procedure's block. If the
procedure's identifier is used in a procedure-statement within the procedure's
block, the procedure is executed recursively.

7-1

Pascal Reference Manual Proceaures & Functions

Example of a proceoure-declaration:

procegure readInteger (var f: text; var x: integer);
var value, digitvalue: integer;
begin .
shile (f° = " ') and not eof(f) do get(f);
value := 0;
while (f" in ['0"..°9']) and not eof(f) do begin
digitvalue := ord(f) - ord(‘0');
value := 10=value + digitvalue;
get(f)
end;

X = value

end;
A procedure-declaration that has forward instead of a block is called a
forward oeclaration Somewhere after the forward declaration (and in the
same block), the procedure is actually defined by a defining declaration-a
procedure-declaration that uses the same procedure-identifier, omits the
formal-parameter-list, and inciudes a block. The forward declaration and the
defining declaration must be local to the same block, but need not be
contiguous; that is, other procedures or functions can be declared between
them and can call the procedure that has been declared forward. This permits
mutual recursion.

The forward declaration and the defining declaration constitute a complete
declaration of the procedure. The procedure is considered to be declared at
the place of the forward declaration.

Example of forward declaration:
procedure walter(m n: integer); {forward declaration}
forward;
procedure clara(x, y: real);
begin
;léiter(lt, 5); {OK because walter is forward declared}
procedure walter; {defining declaration}
begin

clara(s.3, 2.4);

end;

A procedure-declaration that has extemal instead of a block defines the Pascal
interface to a separately assembled or compiled routine (a .PROC in the case
of assembly language). The external code must be linked with the compiled

7-2

Pascal Reference Manual Procedures & Functions

Pascal host program before execution; see the warkshigp Users Guide rfor the
Lisa for details.

Example of an extemal procedure-ageclaration:

procedure makescreen(index: integer);
external; :

This means that makescreen is an external procedure that will be linked to the
host program before execution.

IMPLEMENTATION NOTE

It is the programmer’s responsibility to ensure that the external
procedure is compatible with the extemnal declaration in the Pascal
program; the current linker does no checking.

NOTE

This Pascal {unlike Apple I and Apple 111 Pascal) does not allow a
variable parameter of an external procedure or function to be declared
without a type. To obtain a similar effect, use a formal-parameter of
pointer-type, as in the following example:

type bigpaoc = packed array[0..32767] of char;
bigpaocptr = bigpaoc;

proced\.lre whatever (bytearray: bigpaocptr);
external;

The actual-parameter can be any pointer value obtained via the @
operator (see Section 5.1.6). For example, if dots is a packed array of
boolean, it can be passed to whatever by writing

whatever(adots)

This description of external procedures also applies to external functions.

Pascal Rererence Mansl Proceoures & Functions

7.2 Function—-Declarations
A function-declaration serves to define a part of the program that computes
and returns a value of simple-type or pointer-type.

runction-aeclaration

——-—»(function-heading

function-boay

The function-heading specifies the identifier for the function, the formal
parameters (if any), and the type of the function result.

Anction-heading_y(sunction)-#{ identifier }—)

(
list l—j

\—[formal-parameter-

result-type

b{ orainal-type-lgentifier

real-type-identifier

pointer-type-identifier

The syntax for a formal-parameter-list is given in Section 7.3.

A function is activated by the evaluation of a function-call (see Section 5.2),
which gives the function's identifier and any actual-parameters required by the
function. The function-call appears as an operand in an expression. The
expression is evaluated by executing the function, and replacing the function-
call with the value returned by the function.

The statements to be executed upon activation of the function are specified by
the statement-part of the function's block. This block should normally contain
at least one assignment-statement (see Section 6.1.1) that assigns a value to
the function-identifier. The result of the function is the last value assigned.

If no such assignment-statement exists, or if it exists but is not executeqd, the
value returned by the function is unspecified.

7-4

Pascal Reference Manusl Proceoures & Functions

If the function's identifier is used in a function-call within the function's
block, the function is executed recursively.

Examples of function-declarations:

function max(a: vector; n: integer): real;
var x: real; i: integer;

begin
x := af1];
for i :=2 tondo if x < a[i] then x := a[i}
max := X

end;

function power(x: real; y: integer): real; { y >= 0}
var w,z: real; 1: integer;
begin
wi=xX z:=11:=
while i > 0 do begi
{z#(w=1) =
if odd(i) then z := z*w;
1 :=1div 2;
== sqr(w)
end
{z = xxny }
power := z
A function can be declared forward in the same manner as a procedure (see
Section 7.1 above). This permits mutual recursion.

A function-declaration that has external instead of a block defines the Pascal
interface to a separately compiled or assembled external routine (@ JFUNC In
the case of assembly language). See the explanation in Section 7.1 above.

7.3 Parameters
A formal-parameter-list may be part of a procedure-declaration or
function-declaration, or it may be part of the declaration of a procedural or
functional parameter.

If it is part of a procedure-declaration or function-declaration, it declares the
formal parameters of the procedure or function. Each parameter so declared
is local to the procedure or function being declared, and can be referenced by
its identifier in the block associated with the procedure or function.

If it is part of the declaration of a procedural or functional parameter, it
declares the formal parameters of the procedural or functional parameter. In

y-

Pascal Reference Marial Proceaures & Funetions
this case there is no associated block and the identifiers of parameters in the
formal-parameter-1ist are not significant (see Sections 7.3.3 and 7.3.4 below).

farmal-parameter-list
»(O »| parameter-declaration
procedure-heading

function-heading

fdentifier-list

Srameter -geclaration

type-identifier |-

There are four Kinds of parameters: value parameters varigble parameters
procedural parameters and Aunctionsl psrameters They are distinguished as
follows:

* A parameter-group preceded by var is a list of variable parameters.
* A parameter-group without a preceding var is a list of value parameters.

* A procedure-heading or function-heading denotes a procedural or functional
parameter; see Sections 7.3.3 and 7.3.4 below.

NAOTE

The types of formal-parameters are denoted by type-identifiers. In
other words, only a simple identifier can be used to denote a type In a
formal-parameter-list. To use a type such as array[D..255] of char as
the type of a parameter, you must declare a type-identifier for this
type: :

type charray = array[0..255] of char;

The identifier charray can then be used in a formal-parameter-list to
denote the type.

7-6

Pascal Reference Mamal Proceaures & Fuctions

NOTE

The word flle (for an “untyped” file) is not allowed as a type-identifier
in a parameter-declaration, since it is a reserved word, To use a
parameter of this type, declare some other identifier for the type flle
--for example,

type phyle = file;

The identifier phyle can then be used in a formal-parameter-list to
denote the type file.

7.3.1 Value Parameters
For a value-parameter, the corresponding actual-parameter in a procedure-
statement or function-call (see Sections 5.2 and 6.1.2) must be an expression,
and its value must not be of file-type or of any structured-type that contains
a flle-type. The formal value-parameter denotes a variable local to the
procedure or function. The current value of the expression is assigned to the
formal value-parameter upon activation of the procedure or function. The
actual-parameter must be assignment-compatible with the type of the formal
value-parameter.

7.3.2 Variable Parameters
For a variable-parameter, the corresponding actual-parameter in a procedure-
statement or function-call (see Sections 5.2 and 6.1.2) must be a variable-
reference. The formal variable-parameter denotes this actual variable during
the entire activation of the procedure or function.

within the procedure or function, any reference to the formal variable-
parameter is a reference to the actual-parameter itself. The type of the
actual-parameter must be Joentical to that of the formal variable-parameter.

NOTE

If the reference to an actual variable-parameter involves indexing an
array or finding the object of a polnter, these actions are executed
before the actlvation of the procedure or function.

Components of variables of any packed structured type (including string-types)
cannot be used as actual variable parameters.

7.33 Procedural Parameters
when the formal-parameter is a procedure-heading, the corresponding actual-
parameter in a procedure-statement or function-call (see Sections 5.2 and 6.1.2)
must be a procedure-identifier. The identifier in the formal procedure-heading
represents the actual procedure during execution of the procedure or function
receiving the procedural parameter.

Pascal Reference Marsl Procegures & Functions

Example of proceaural parameters:

program passProc;
var i: integer;

prowtiiure a(procedure x) {x is a formal procedural parameter.}
n

write('About to call x *):
x {call the procedure passed as parameter}
end;

procegure b;

begin
write('In procedure b")
end;

function c{procedure x): integer;
in

x; {call the procedure passed as parameter}
c:=2
end;
begin
a(b); {call a, passing b as parameter}
i:= c(b) {call c, passing b as parameter}
end

If the actual procedure and the formal procedure have formal-parameter-lists,
the formal-parameter-lists must be compatible (see Section 7.3.5). However,
only the identifier of the actual procedure is written as an actual parameter;
any formal-parameter-list -is omitted.

Example of proceaural parameters with thelr own fonmal-parameter-lists:
program test;
procecixn.nre xAsPar(y: integer);
writeln(‘y=*, y)
end;
procedure callProc(procedure xAgain(z: integer));
begin
xAgain(1)
end;
begin {body of program}
callProc(xAsPar)
end.

If the procedural parameter, upon activation, accesses any non-local entity (by
variable-reference, procedure-statement, function-call, or label), the entity

Pascal Reference Marual Procegures & Functions

accessed must be one that was accessible to the procedure when the procedure
was passed as an actual parameter.

To see what this means, consider a procedure pp which is known to another
procedure, firstPasser. Suppose that the following sequence takes place:

1. firstPasser is executing.

2. firstPasser calls a procedure named firstReceiver, passing pp as an
actual parameter.

3. firstReceiver calls secondReceiver, again passing pp as an actual
parameter.

4. secondReceiver calls pp (first execution of pp).

5. secondReceiver calls thirdReceiver, again passing pp as an actual
parameter.

6. thirdReceiver calls firstPasser (indirect recursion), and passes pp to
firstPasser as an actual parameter.

7. firstPasser (executing recursively) calls pp (second execution of pp).

Thus the procedure pp is called first from secondReceiver, and then from the
second (recursive) execution of firstPasser.

Suppose that pp accesses an entity named xxx, which is not local to pp; and
suppose that each of the other procedures has a local entity named xxx.

Each time pp is called, which xxx does it access? The answer is that in eac»
case, pp accesses the xxx that is local to the Arst execution of flrstPasser--

that is, the xxx that was accessible when pp was originally passed as an actual
parameter.

73.4 Functional Parameters
when the formal parameter is a function-heading, the actual-parameter must
be a function-identifier. The identifier in the formal function-heading
represents the actual function during the execution of the procedure or
function receiving the functional parameter.

Functional parameters are exactly like procedural parameters, with the
adoitional rule that corresponding formal and actual functions must have
Ioentical result-types.

7.35 Parameter List Compatibility
Parameter list compatibility is required of the parameter lists of corresponding
formal and actual procedural or functional parameters.

Pascal Reference Maral Proceaures & Functions

Two formal-parameter-lists are compatible if they contain the same number of
parameters and if the parameters in corresponding positions match. Two
parameters match if one of the following is true:

» They are both value parameters of Joenlical type.
* They are both variable parameters of Joentical type.
* They are both procedural parameters with compatible parameter lists.

* They are both functional parameters with compatible parameter lists and
laentical result-types.

7-10

029-0400-A

Chapter 8

Programs
81 Syntax 8-1
82 Program-Parameters... 8-1
83 Segmentation 8-1

Programs

8.1 Syntax
A Pascal program has the form of a procedure declaration except for its
heading and an optional wses-clause

program
—+{ program-heading }-+(;)
orogram-heaaing

—{program}-»| identifier | A >
\—@-»l program-parameters }—D@J

LIOYEIN PAINCLELS [1qontifler-1ist
uses-clause identifier-list

The occurrence of an identifier immediately after the word program declares it
as the program's ldentifter.

The uses-clause identifies all units required by the program, including units
that it uses directly and other units that are used by those units.

8.2 Program—Parameters
Currently, any program-parameters are purely decorative and are totally
ignored by the compller.

8.3 Segmentation
The code of a program's main body is always placed in a run-time segment
whose name is a string of blanks (the "blank segment”). Any other block can
be placed in a different segment by using the $S complier command (see
Chapter 12 and Appendix A). If no $S command is used in the program, all
code is placed in the blank segment. Code from a program can be placed in
the same segment with code from a regular-unit, but it cannot be mixed with
code from an iIntrinsic-unit (see Chapter 9).

029-0401-A

92
93

Regular-Units

9.1.1 writing Regular-Units

Intrinsic-Units

..

9.1.2 Using Regular—Unitscccoooicciariimnrosranmnnneennenenns

...................

Units that Use Other Units

Units

A unit is a separately complled, non-executable object file that can be linked
with other object files to produce complete programs. There are two Kinds of
units, called reguiar-unlts and intrinsic-units In the current implementation of
the workshop, you can use Intrinsic-units that are provided, but you cannot
write new ones.

Each unit used by a program (or another unit) must be compiled, and its object
file must be accessible to the compiler, before the host program (or unit) can
be compiled.

9.1 Regular-Units
Regular-units can be used as a means of modularizing large programs, or of

making code available for incorporation in various programs, without making
the source avallable.

when a program or unit (called the sost) uses a regular-unit, the linker inserts
a copy of the compiled code from the regular-unit into the host's object file.

By default, the code copled from the regular-unit is placed In the blank
segment (see Chapter 8). The code of the entire unit, or of blocks within the
unit, can be placed in one or more different segments by using the $S compiler
command (see Chapter 12).

9.1.1 Wrlting Regular-Units
The syntax for a regular-unit is:

requiar-unit unit~heading ;)
(b[interrace-part_|#{ implementation-part_}(end (.)—»

lt-heang oy uepe)—wf icentifier —»

Pascal Reference Manual hits

nterface-pe interface N

constant-declaration-part h

jl

type-declaration-part |—)

IARANS

variable-declaration-part h

P
“#{ procedure-and-function-declaration-part |———»

inwlementatian-paft’(implementation)) ™

-
\DI constant-declaration-part }—)

(
#{ type-declaration-part }—)

»
\b[variable-declaration-part l—)

P
\#| procedure-and-function-declaration-part |——=#

The Interface-part declares constants, types, variables, procedures, and
functions tThat are "public," i.e. available to the host.

-
The host can access these entities just as if they had been declared in the
host. Procedures and functions declared in the interface-part are abbreviated
to nothing but the procedure or function name, parameter specifications, and
“function result-type.

NOTE

Since the interface-part may contain a uses-clause, a unit can use
another unit (see Section 9.3).

9-2

Pascal Reference Manual Lnits

The (ir_!_\p_lier_ngbrltgion;pg& which follows the last declaration in the interface-
part, begins by declaring any constants, types, variables, procedures, or
functions that are "private,” l.e. not available to the host.

i The public procedures and functions are re-declared in the implementation-

' part. The parameters and function result types are omitted from these

' geclarations, since they were declared in the interface-part, and the procedure
and function blocks, omitted in the interface-part, are included in the
implementation-part.

In effect, the procedure and function declarations in the interface are like
forward declarations, although the forward directive is not used. Therefore,
these procedures and functions can be defined and referenced in any sequence
in the implementation.

NOTES

There is no “initialization” section in Pascal units on the Lisa (unlike
Apple 11 and Apple Il Pascal). If a unit requires initialization of its
data, it should define a public procedure that performs the initialization,
and the host should call this procedure.

Also note that global labels cannot be declared in a unit.

A short example of a unit is:

unit Simple;
INTERFACE {public objects declared}
const Firstvalue=1;
procedure AddOne(var Incr:integer);
function Addi(Incr:integer):integer;
IMPLEMENTATION
procedure AddOne; {note lack of parameters...}
begin
Incr:=Incr+1
end;
function Addl; {...and lack of function result type}
begin
Addl:=Incr+1
end
end.

9.1.2 Using Regular-Units
The syntax for a uses-clause is given in Section 8.1. Note that in a host
program, the uses-clause (if any) must immediately follow the program-
heading. In a host unit, the uses-clause (if any) immediately follows the
symbol interface. Only one uses-clause may appear in any host program or
unit; it declares all units used by the host program or unit.

See Section 9.3 for the case where a host uses a unit that uses another unit.

Pascal Reference Maral Lnits

It is necessary to specify the file to be searched for regular units. The $U
compiler command specifies this file. See Chapter 12 for more details.

Assume that the example unit Simple (see above) is compiled to an object file
named APPL:SIMPLE.OBJ. The following is a short program that uses Simple.
It also uses another unit named Other, which is in file APPL:0THER.OBJ.

program CallSimple;
uses {$U APPL:SIMPLE.OBJ} {file to search for units}

Simple, {use unit Simple}
{$U APPL:0THER.0BJ} {file to search for units}
Other; {use unit Other}
var i:integer;
begin
1:=Firstvalue; {Firstvalue is from Simple}
write('i+1 is ', Add1(i)); {Addl is defined in Simple}
write(xyz(i)) {xyz is defined in Other}
end.

9.2 Intrinsic-Units

The only intrinsic-units you can use are the ones provided with the Workshop
software.

Intrinsic-units provide a mechanism for Pascal programs to share common code,
with only one copy of the code in the system. The code is kept on disk, and
when loaded into memory it can be executed by any program that declares the
intrinsic-unit (via a uses-clause, the same as for regular-units).

By default, the system looks up all intrinsic-units in the system intrinsics
library file, INTRINSIC.LIB. All intrinsic-units are referenced in this library,
so the $U filenarne compiler command is not needed with intrinsic-units.

9.3 Units that Use Other Units
As explained above, the uses-clause in the host must name ail units that are
used by the host. Here "used" means that the host directly references
something in the interface of the unit. Consider the following diagram:

unitA
interface
uses unitC;

Host Program implementation \q
uses unitA, unitB;

unitC

interface

unitB - .
implementation

interface

implementation

Pascal Reference Manugl nits

The host program directly references the interfaces of unitA and unitB; the
uses—clause names both of these units. The implementation-part of unitA also
references the interface of unitC, but it is not necessary to name unitC in the
host-program’s uses-clause.

In some cases, the uses—clause must also name a unit that is not directly
referenced by the host. The following diagram is exactly like the previous one
except that this time the /nferrace of unitA references the interface of unitcC,
and unitC must be named in the host-program’s uses-clause. Note that unitC
must be named berore unitA

unitA
interface
uses unitcC; n
\ unitC
imy en
Host Program plermnentation Interface

uses unitC, unita,

unitB; unitB
implementation

interface

implementation

In a case like this, the documentation for unitA should state that unitC must
be named In the uses-clause before unitA.

029-0402-A

10.1

10.2

103

Chapter 10

Input/Output
Introduction to 1/0
10.1.1 DEVICE TYPES couuieenciriineiirneerintanssrnensseeansaassstnsssestennressessanns
10.1.2 External File SPetieso irieiiiimiccciircret st ee e eeanaas
10.1.3 The Reset Procedure
10.1.4 The Rewrite Procedure
10.15 The ClOSE PTOCEBOUTE.......cciecreecucanattansccnsstiensesrnssanresassasnseanens
10.1.6 The Ioresult FUNCHION.....c.ccoiiiiiiiiiiinissnstneen st
10.1.7 TheEof FUNCHION ...t enenens
Record-Oriented 1/0 .. 10-8
10.2.1 The GELPYOCEOUIEc.cooomecreerrremeanenreeercncanannncesereancnnaseeranannns 10-8
10.2.2 The PULPTOCEOUTE.civuuiiiiiiienrernnceenseet e e s sscannsssannnnnn 10-8
10.2.3 The SEEK PYOCEOUIEccuceumeneeerieanannesateeeenmnrennnssseresennsaseesaasnnnn 10-9
Text-Oriented 1/0 . -10-9
10.3.1 TheRea0PTOCEOUTEccimiiieneiencnnitenentetenaneetenansseensassanann 10-11
10.3.1.1 Read withaChar Varablecccoiiconeiciiiiininncannne. 10-12
10.3.1.2 Read with an Integer or Longint Variable..................... 10-12
10.3.1.3 Read withaReal Variable........cccooooaiiiinnincannennnans 10-12
10.3.1.4 ReadwithaStringVariable.......cccccoooiiiiiiiiinnciicnnas 10-13
10.3.1.5 Read with aPacked Array of Char Variable................. 10-13
10.3.2 The Readln PIOCEOUTE..... i criaereacrencreasecnnnnerasmmeseee e mnnan 10-14
1033 The WIIte PIOCEOUTE.....ccium e aecreeeentemtacsseeecas e neessanen 10-14
10.3.3.1 OUEPUL=SPEES . oo iiiciiinacctccceer e ce et et e mn et e e e aaee 10-15
10.3.3.2 WritewithaChar Value.......c.ccccveiiiniiiiinaacnaceannnne ip-15
10.3.3.3 write withanIntegerorlLongint Value 10-15
10.3.3.48 write withaReal Valugccoviiacainiiicnniiiinnnanas 10-16
10.3.3.5 Write withaString ValLgcoviieiiiinnmnniiiiciinninnesn. 10-16
10.3.3.6 Write with a Packed Array of Char Valueveeeeennee. 1D-17
10.3.3.7 Write withaBoolean Valuecccccccveeccacnncennannanes 10-17
1034 The WHLEIN PIOCEOUTE ... ieeiiiiieciiriciinreeiecnneensssaeaesennnesee 1017
10.35 TheEoINFUnCion ...ttt ceceanaee 10-17
10.3.6 ThePage PTOCEOUTEcveucciiraeecnecrrsstirtesnsensnssssssansesseasennse 10-18
10.3.7 Keyboard Testing and Screen Cursor Controloeee. 10-18
10.3.7.1 The Keypress Functionooooooiircaaincanncacaarnaaas 10-18
10.3.7.2 The GotoxXyPTOCBOUIE eeeceeenaes 10-18

Pascal Rerference Marsl
10.4 UntypedFile 1/0 10-18
10.4.1 TheBlockread FUNCLIONc.cceevieieiieeneerncncaneeesnasnsansreesnsenanes 10-19
.. 10-20

10.4.2 The Blockwrite Function

Input/Output

This chapter describes the standard (“built-in") 1/0 procedures and functions of
Pascal on the Lisa

Standard procedures and functions are predeclared. Since all predeclared
entities act as if they were declared in a “block” surrounding the program, no
conflict arises from a declaration that redefines the same identifier within the
program.,

NOTE

Standard procedures and functions cannot be used as actual procedural
and functional parameters.

This chapter and Chapter 11 use a modified BNF notation, Instead of syntax
diagrams, to indicate the syntax of actual-parameter-lists for standard
procedures and functions.

Example:
Parameter List: new(p [, t1, ... tn])

This represents the syntax of the actual-parameter-list of the standard
procedure new, as follows:

*p, t1, and t7~ stand for actual-parameters. Notes on the types and
interpretations of the parameters accompany the syntax description.

* The notation t1, ... t7 means that any number of actual-parameters can
appear here, separated by commas.

* Square brackets [] indicate parts of the syntax that can be omitted.

Thus the syntax shown here means that the p parameter is required. Any
number of t parameters may appear, with separating commas, or there may be
no t parameters.

10.1 Introduction to 1/0
This section covers the 1/0 concepts and procedures that apply to all file types.
This includes the types text (see Section 10.3) and “untyped” flles (see Section
10.4). ,

To use a Pascal file variable (any variable whose type is a file-type), it must
be associated with an external flle. The external file may be a named
collection of informatlon stored on a peripheral device, or (for certain file-
types) it may be the peripheral device itself.

The association of a file variable with an extemal file is made by goening the
file. An existing file is opened via the reset procedure, and a new flle is
created and opened via the rewrite procedure.

10-1

Pma] Reference Manal nout/anput

NOTE

Pascal on the Lisa does not provide automatic 170 checking. To check
the result of any particular 1/0 operation, use the loresult function
described in Section 10.1.6.

10.1.1 Device Types
For purposes of Pascal 1/0, there are two types of peripheral devices:

* A fle-structured device Is one that stores files of data, such as a diskette.

* A charscter device is one whose input and output are streams of individual
bytes, such as the Lisa screen and keyboard or a printer.

10.1.2 Extemal File Species
There are three “species” of external files that can be used in Pascal 1/0
operatlons:

* A dataffle is any file that is stored on a file-structured device and was
not originally created in association with a file variable of type text.

* A textflle is a file that is stored on a file-structured device and was
originally created in association with a file variable of type text. Textfiles
are stored in a specialized format (see Section 10.3).

* A character aevice tan be treated as a file.

Table 10-1 summarizes the effects of all possible combinations of different file
variable types and external file species. The “ordinary cases” in the table
reflect the basic intent of the various file-types. Other combinations, such as
block-orlented access to a textfile via a variable of type file, are legal but
may require cautious programming.

10-2

Pascal Rerference Marval Input/uipent
Table 10-1
Combinations of File Variable Types with Extemal File Species
and Categorles
var f: flle of .
sorne"rype; var f: text; var f: file;
Ordinary case. (Textflle format { COrdinary case.
datafile | After reset, asmmed!l After]Block access.
f" = 1st record | reset~, f" is
file. unspecified.
(Textfile format | Qrdinary case. (Textflle format
not assumed!) Textfile format |} not assumed!)
. After reset», assumed. After [Block access.
textfile |¢- - 15t record {reset, £ is
of file (as unspecifieq,
declared).
After reset, Ordinary case. Block access,
f = 1st char. After reset, if allowed by
character | from device f" is unspeci- device.
device |(system walts for | fied (no wait
it!). 1/0 error if for input char).
file record type
not byte-sized.
= In these cases, the loresult function will retum & “waming”
(ie, a negative rumber) immediately after the reset gperation.

10.1.3 The Reset Procedure
Opens an existing file.

Parameter List: reset(f, title)

1. f Is a variable-reference that refers to a variable of file-type. The file
must not be open.

2. title is an expression with a string value. The string should be a valid
pathname for a file on a file-structured device, or a pathname for a
character device.

10-3

Pascal Reference Maral Input/Quiput

NOTE

Both parameters are required (unlike Apple Il and Apple III Pascal,
where the second parameter is optional).

Reset(f, title) finds an existing external file with the pathname title, and
associates f with this external file. (If there is no existing external file with
the pathname title, an 1/0 error occurs; see Section 10.1.6.

If title is the pathname of a character device, then
* Eof(f) becomes false.

* If f is of type text, the value of f" is unspecified. The next read or readin
on f will walt until a character is available for input, and begin reading
with that character.

* If f Is of type flle and the device Is one that allows block access, there is
no file buffer variable £~ and the "current file position” is set to the first
block {block D) of the file. If the device does not allow block access, an
1/0 error occurs (see Section 10.1.6).

* If f is not of type text or file, its component-type must be a "byte-size™
type such as the type -128..127. Note that char is not a byte-size type! If
the cimponent—type of f is not byte-size, an 1/0 error occurs (see Section
10.1.6

If no 1/0 error occurs, the system waits until a character is available from
the device and then assigns the character's 8-bit code to f".

If title is the pathname for an existing file on a file—structured device, then

* Eof(f) becomes false if the external file is not empty. If the external file
is empty, eof(f) becomes true.

 If £ is not of type text or file, reset sets the "current file position" to the
first record in the external file, and assigns the value of this record to the
file buffer variable f. If the external file is a textfile, the ioresult
function will retumn a negative number as a warning (see Section 10.1.6).

* If f is of type text, the value of £~ is unspecified. If the file is a textfile,
the next read or readin on f will begin at the first character of f. If the
file is a datafile, it will be treated as if it were a textfile (see Section
10.3) and the ioresult function will return a negative number as a waming
(see Section 10.1.6).

* If f is of type file, there is no file buffer variable f~ and the “current file
position” is set to the first block (block 0) of the file.

10-4

Pascal Reference Manua! Input/Qutput

10.1.4 The Rewrite Procedure
Creates and opens a new file.

Parameter List: rewrite(f, title)
1. f is a variable-reference that refers to a variable of file-type.

2. title Is an expression with a string value. The string should be a valid
pathname for a file on a flle-structured device, or a pathname for a
character device.

If f Is already open, an 1/0 error occurs (see Section 10.1.6).
If title is the pathname of a character device, then
* Eof(f) becomes false. |
* Rewrlte(f, title) simply associates f with the device and opens f.
* The status of the device is not affected. :
* The value of f~ becomes unspecified.
If title is the pathname for a new file on a flie-structured device, then
* Eof{f) becomes true.

= Rewrite(f, title) creates a new external file with the pathname title, and
associates f with the external file. This is the only way to create a new
external file.

* The species of the new external file is set according to the type of f--
“textfile" for type text, or “datafile” for any other type.

* The value of £~ becomes unspecified.

* If fis not of type file, the "current file position” is set to just before the
first record or character position of the new external file.

= If f is of type file, the “current file position" is set to block O (the first
block in the file)

= If f is subsequently closed with any option other than lock or crunch (see
Section 10.1.5), the new external file is discarded at that time. Closing f
with lock or crunch is the only way to make the new extemal file
permanent.

¢ If title is the pathname of an existing external file, the existing file will be
discarded only when f is subsequently closed with the lock or crunch option
(see Section 10.1.5).

Unspecified effects are caused if the current file position of a file f is altered
while the file-buffer £~ is an actual variable parameter, or an element of the
record-varlable-reference list of a with-statement, or both.

10-5

Pascal Rererence Manual Input/utout

10.15 The Close Procedure
Closes a file.

Parameter List: close(f [, option])
1. f is a variable-reference that refers to a variable of file-type.

2. optlon (may be omitted) is an identifier from the list given below. If
omitted, the effect is the same as using the identifier normal.

Close(f, option) closes f, if f is open. The association between f and its
external file is broken and the flle system marks the external file “closed”. 1If
f is not open, the close procedure has no effect.

The option parameter controls the disposition of the extemnal file, iIf it is not a
character device. If it is a character device, f is closed and the status of the
device is unchanged.

The identifiers that can be used as actual-parameters for option are as follows:

* nommal - If f was opened using rewrite, it is deleted from the oirectory.
If f was opened with reset, it remains in the directory. This is the default
option, in the case where the option parameter is omitted,

* lock -- If the external file was opened with rewrite, it is made permanent
in the directory.

If £ was opened with rewrite and a title that matches an existing file, the
old file is deleted (unless the safety switch is "on™). If the old file has the
safety switch “on,” it remains in the directory and the new file is deleted.

If f was opened with reset, a normal close is done.

* purge -- The extemal file is deleted from the directory (unless the safety
switch is "on"). In the special case of a file that already exists and is
opened with rewrlte, the original file remains in the directory, unchanged.

* crunch —- This Is like lock except that it locks the end-of-file to the point
of last access; i.e., everything after the last record or character accessed is
thrown away.

All closes regardless of the option will cause the file system to mark the
external file “closed" and will make the value of £ unspecified.

If a program terminates with a file open (i.e., if close is omitted), the system
automatically closes the file with the normal option.

NOTE

If you open an existing file with reset and modify the file with any
write operation, the contents are immediately changed no matter what
close option you specify.

10-6

Pascal Rererence Marvial Input/uipet

10.16 The Ioresult Function
Pascal on the Lisa does not provide automatic 1/0 checking. To check the
result of any particular 170 operation, you must use the ioresult function.

Result type: integer
Parameter List: no parameters

loresult returns an integer value which reflects the status of the last com-
pleted 1/0 operation. The codes are given in the workshgp Users Gulde for the
L/sa. Note that the code 0 indicates successful completion, positive codes
indicate errors, and negative codes are “warnings” (see Table 10-1).

Note that the codes returned by loresult are not the same as the codes used in
Apple I and Apple 111 Pascal.

NOTES

The read, readin, write, and writeln procedures described in Section 10.3
may actually perform multiple 1/0 operations on each call. After one of
these procedures has executed, loresult will return a code for the status
of the Jast of the multiple operations.

Also, beware of the following common error in diagnostic code:

read(foo);
writeln('ioresult=', ioresult)
The intention is to write out the status of the read operation, but

instead the status written out will be that of the write operation on the
string ‘joresult=",

10.1.7 The Eof Function
Detects the end of a file.

Result Type: boolean
Parameter List: eof [(f)]
1. f is a variable-reference that refers to a variable of file-type.

If the parameter-list is omitted, the function is applied to the standard file
input (see Section 10.3).

After a get or put operation, eof(f) retumns true if the current file position is
beyond the last external flle record, or the external file contains no records;
otherwise, eof{f) returns false. Specifically, this means the following:

* After a get, eof(f) returns true if the get attempted to read beyond the last
file record (or the file is empty).

* After a put, eof(f) returns true if the record written by the put is now the
last flle record.

10-7

Pascal Reference Marnal Input/utput

If £ is a character device, eof{(f) will always return false.
See Section 103 for the behavior of eof{f) after a read or readin operation.
NOTE

whenever eof(f) is true, the value of the file buffer varlable f~ s un-
specified.

10.2 Record-Oriented 1/0
This section covers the get, put, and seek procedures, which perform record-
oriented 1/0; that is, they consider a file to be a sequence of variables of the
type specified In the file-type. These procedures are not allowed with files of
type file.
The effects of get and put are unspecified with files of type text, and seek has
no effect with files of type text. The text type Is supported by specialized
procedures described in Section 10.3.

10.21 The Get Procedure
Reads the next record in a file.

Parameter List: get(f)

1. fis a varlable-reference that refers to a variable of file-type. The file
must be open.

If eof(f) is false, get(f) advances the current file position to the next file
record, and assigns the value of this record to f . If no next component
exists, then eof{f) becomes true, and the value of f" becomes unspecified.

If eoff) Is true when get(f) is called, then eof(f) remains true, and the value of
f" becomes unspecified.

If the external file is a character device, eof{f) is always false and there is no
“current file position. In this case, get(f) waits until a value is ready for input
and then assigns the value to .

10.2.2 The Put Procedure
writes the current record in a file.

Parameter List: put(f)

1. f Is a variable-reference that refers to a variable of file-type. The file
must be open.

If eof(f) is false, pul(f) advances the current file position to the next file
record and then writes the value of f~ to f at the new file position. If the
new file position is beyond the end of the file, eof(f) becomes true, and the
value of f~ becomes unspecified.

If eof(f) is true, put(f) appends the value of f~ to the end of f and eof(f)
remains true.

10-8

Pascal Reference Menual InputQutput

If the external file is a character device, eof(f) is always false, there is no
“current file position,” and the value of f is sent to the device.

NOTE

If put is called immediately after a file is opened with reset, the put
will write the secono record of the file (since the reset sets the
current position to the first record and put advances the position before
writing). To get around this and write the first record, use the seek
procedure (see Section 10.2.3).

10.2.3 The Seek Procedure
Allows access to an arbitrary record in a file,

Parameter List: seek(f, n)

1. f is a variable-reference that refers to a variable of flle-type. The file
must be open.

2. nis an expression with an integer value that specifies a record number in
the file. Note that records in files are numbered from O.

If the flle is a character device or is of type text, seek does nothing.
Otherwise, seek(f, n) affects the action of the next get or put from the file,
forcing it to access file record n instead of the "next” record. Seek(f, n) does
not affect the flle-buffer f~.

A get or put must be executed between seek calls. The result of two con-
secutive seeks with no intervening get or put is unspecified. Immeoiately after
a seek(f, n), eof(f) will return false; a following get or put will cause eof to
return the appropriate value.

NOTE

The record number specified in a seek call Is not checked for validity.
If the number is not the number of a record in the file and the program
tries to get the specified record, the value of the file-buffer becomes
unspecified and eof becomes true.

10.3 Text-Oriented 1/0
This section describes input and output using file variables of the standard type
text. Note that in Pascal on the Lisa, the type text is distinct from file of
char (see Section 3.2.4).

when a text file is opened, the external file is interpreted in a special way. It
is considered to represent a sequence of characters, usually formatted into
Jines by CR characters (ASCH 13).

The Lisa keyboard and the Workshop screen appear to a Pascal program to be
built-in files of type text named input and output respectively. These flles

10-9

Pascal Reference Manual Inout/utoet

need not be declared and need not be opened with reset or rewrite, since they
are always open.

when a program is taking input from input, typed characters are echoed on the
workshop screen. In addition to the Input file, the Lisa keyboard is also
represented as the character device -KEYBOARD. To get keyboard input
without echoing on the screen, you can open a file variable of type text with
-KEYBOARD as the external file pathname.

Other interactive devices can also be represented in Pascal programs as files of
type text.

when a text file is created on a file-structured device, the external file is a
textfile. It contains information other than the actual sequence of characters
represented, as follows:

* The stored file Is a sequence of 1024-byte pages

* Each page contalns some number of complete lines of text and is padded
with null characters (ASCII 0) after the last line.

* Two 512-byte feader blocks are also present at the beginning of the file.

* A sequence of spaces in the text may be compressed Into a two-byte code,
namely a ZL£ character(ASCII 16) followed by a byte containing 32 plus
the number of spaces represented.

All of this special formatting is invisible to a Pascal program if the file is
accessed via a file variable of type text (but visible via a file variable of any
other file-type).

Certain things that can be done with a record-structured file are impossible
with a file variable of type text:

* The seek procedure does nothing with a file variable of type text
* The effects of get and put are unspecified with a file variable of type text.

* The contents of the file buffer variable are unspecified with a file variable
of type text.

* A file variable of type text that is opened with reset cannot be used for
output, and one opened with rewrite cannot be used for input. Results are
unspecified if either of these operations is attempted.

In place of these capabilities, text-oriented 1/0 provides the following:
* Automatlc conversion of each input CR character into a space.

* The eoln function to detect when the end of an input line has been
reached.

* The read procedure, which can read char values, string values, packed array
of char values, and numeric values (from textual representations).

10-10

Pascal Rerference Manual InputQutout

* The write procedure, which can write char values, string values, packed
array of char values, numeric values, and boolean values (as textual
representations).

* Line-oriented reading and writing via the readin and writeln procedures.

= The page procedure, which outputs a form-feed character to the external
file.

* Automatic conversion of input DLE-codes to the sequences of spaces that
they represent. Note that output sequences of spaces are not converted to
DLE-codes.

= Automatic skipping of header blocks and null characters during input.

* Automatic generation of textfile header blocks, and automatic padding of
textfile pages with null characters on output.

10.3.1 The Read Procedure
Reads one or more values from a text file into one or more program variables.

Parameter LIst: read([f,] vi [, v2, ... vn])

The syntax of the parameter-list of read allows an indefinite number of
actual-parameters. Consecutive actual-parameters are separated by commas,
just as in a normal parameter-list.

1. f (may be omitted) is a variable-reference that refers to a variable of
type text. The flle must be open. If f Is omitted, the procedure reads
from the standard text file input, which represents the Lisa keyboard.

2. vl .. vn are Input variables Each is a variable parameter, used as a
destination for data read from the file. Each input variable must be a
variable-reference that refers to a variable of one of the following types:

* char, integer, or longint (or a subrange of one of these)
* real
* a string-type or a packed array of char type.

These are the types of data that can be read (as textual representations)
from a file. At least one input variable must be present.

Read(f,vl...v7) is equivalent to:

begin
read(f,v1);

fééd(f, vn)
end

10-11

Pascal Reference Marugl Input/Qutout

NOTE

Read can also be used to read from a file fil that Is not a text file. In
this case read(fil,x) is equivalent to:

begin .
== il ;
get(fil)
end

10.3.1.1 Read with a Char Variable
If £ is of type text and v is of type char, the following things are true
immediately after read(f,v)

* Eof{f) will return true if the read attempted to read beyond the last
character in the external file.

* Eoln(f) will return true, and the value of v will be a space, if the character
read was the CR character. Eoln{f) will also retumn true if eof(f) is true.

10.3.1.2 Read with an Integer or Longint Variable
If f is of type text and v is of type Integer, subrange of integer, or longint,
then read(f,v) implies the reading from f of a sequence of characters that form
a signed whole number according to the syntax of Section 1.4 (except that
hexadecimal notation is not allowed). If the value read is assignment-
compatible with the type of v, it is assigned to v; otherwise an error occurs.

In reading the sequence of characters, preceding blanks and CRs are skipped.
Reading ceases as soon as a character Is reached that, together with the
characters already read, does not form part of a signed whole number.

An error occurs If a signed whole number is not found after skipping any
preceding blanks and CRs.

If f is of type text, the following things are true immediately after read(f v}

* Eof(f) will return true if the last character in the numeric string was the
last character in the external file.

* Eoln{f) will retum true if the last character in the numeric string was the
last character on the line (not counting the CR character). Eoln(f) will also
returmn true if eof(f) is true.

10.3.1.3 Read with a Real Varlable
If f is of type text and v is of type real, then read(f,v) implies the reading
from f of a sequence of characters that represents a real value. The real
value is assigned to the variable v.

In reading the sequence of characters, preceding blanks and CRs are skipped.
Reading ceases as soon as a character is reached that, together with the

10-12

Pascal Reference Marual Input/Qutput

characters already read, does not form a valid representation. A “valid
representation” is either of the following:

* A finite real, integer, or longint value represented according to the
signed-number syntax of Section 1.4 (except that hexadecimal notation is
not allowed). An integer or longint value is converted to type real

* An infinite value or Nan represented as described in Appendix D.

An error ocecurs if a valld representation is not found after skipping any
preceding blanks and CRS.

Immediately after read(f,v) where v is a real variable, the status of eof(f) and
eoln(f) are the same as for an integer variable (see Section 10.3.1.2 above).

10.3.1.4 Read with a String variable
If f is of type text and v is of string-type, then read(fv) implies the reading
from f of a sequence of characters up to &t not including the next CR or
the end of the file. The resulting character-string iIs assigned to v. An error
occurs if the number of characters read exceeds the size attribute of v.

NOTE

Read with a string variable does not skip to the next line after reading,
and the CR s left waiting in the input buffer. For this reason, you
cannot use successive read calls to read a sequence of strings, as they
will never get past the first CR -- after the first read, each subsequent
read will see the CR and will read a zero-length string.

Instead, use readin to read string values (see Section 10.3.2). Readin
skips to the beginning of the next line after reading.

The following things are true immediately after read(f,v}
» Eof(f) will return true if the line read was the last line in the flle.
* Eoln(f) will always return true.

10.3.1.5 Read with a Packed Array of Char Variable
If £ is of type text and v is a packed array of char, then read(f,v) implies the
reading from f of a sequence of characters. Characters are read into
successive character positions in v until all positions have been filled, or until
a CR or the end of the file is encountered. If a CR or the end-of-file is

encountered, it is not read into v; the remaining positions in v are filled with
spaces.

10-13

Pascal Reference Maral Input/Quiput

10.3.2 The Readin Procedure
The readin procedure is an extension of read. Essentially it does the same
thing as read, and then skips to the next line in the input file.

Parameter LIst: The syntax of the parameter list of readin is the same as that
of read, except as follows:

* A readin call with no input variables is allowed. Example:
readln(sourcefile)
* The parameter-list can be omitted altogether.

If the first parameter does not specify a file, or if the parameter-list is
omitted, the procedure reads from the standard file Input, which represents the
Lisa keyboard.

ReadIn(f), with no input-variables, causes a skip to the beginning of the next
line (If there is one, else to the end-of-file).

Readin can an/ybe used on a text file. Except for this restriction,
readin(f v1...,v/?) is equivalent to:
begin
read(f,vi, ...,vn)
readln(f)
end

The following things are true immediately after readln(f,v) regardless of the
type of v

» Eof(f) will retumn true if the line read was the last line in the external file.
* Eoln(f) will always return false.

1033 The Write Procedure
writes one or more values to a text file.

Parameter List: write([f,] p1 [, p2, ... pr])

The syntax of the parameter list of write allows an indefinite number of
actual-parameters.

1. f(may be omitted) is a variable-reference that refers to a variable of
type text. The file must be open. If f is omitted, the procedure writes to
the standard file output, which represents the Workshop screen.

2. pl .. prare oulput-specs Each output-spec includes an owiowt
expression, whose value is to be written to the file. As explained below,
an output-spec may also contain specifications of field-width and number
of decimal places. Each output expression must have a result of type
integer, longint, real, boolean, char, a string-type, or a packed array of
char type. These are the types of data that can be written (as textual
representations) to a file. At least one output-spec must be present.

10-14

Pascal Reference Manual Inputaunput

write{f p1...p»n) is equivalent to:
begin
write(f,p1);

l'n.'ite(f, pn)
end

Immediately after write(f), both eof(f) and eoln(f) will return true.
NOTE

write can also be used to write onto a file fil that is not a text file.
In this case write(filX) is equivalent to:

begin
fl :=x
put(fil)
end

10.3.3.1 Output-Specs
Each output-spec has the form

outExpr [: Minwidth [: DecPlaces]]

where QutEXpr is an output expression. Minwidth and DecPlaces are
expressions with integer or longint values.

Minwldth specifies the minimun fleld width, with a default value that
depends on the type of the value of OUtEXpr (see below). Minwidth should be
greater than zero; otherwise, the results are unspecified. Exactly Minwidth
characters are written (using leading spaces if necessary), except when OUtExpr
has a nwnerfc value that requires more than Minwldth characters; In this
case, enough characters are written to represent the value of OUEXpT.

DecPlaces specifies the number of decimal places in a fixed-point repre-
sentation of a real value. It can be specified only if OutExpr has a real value,
and if Minwidth is also specified. If DecPlaces Is not specified, a floating-
point representation is written.

10.33.2 write with a Char Value
If OUtExpr has a char value, the character is written on the file f. The default
value for Minwidth is one.

10.33.3 write with an Integer or Longint Value
If QUEXPr has an integer or longint value, its decimal representation is written
on the flle f. The default value for Minwidth is 8. The representation consists
of the digits representing the value, prefixed by a minus sign if the value Is
negative, and any leading spaces that may be required to satisfy Minwidth. If
}he representation requires more than Minwidth characters, Minwidth is
gnored.

10-15

Pascal Reference Manual Inoututput

10334 write with a Real Value
If OUtExpr has a real value, the default value for Minwidth is 12,

If QUtExpr has an Infinite value, it Is output as a string of at least two "+"
characters or at least two “-" characters. If OUtEXpr is a NaN, it is output as
the character string “NaN", possibly followed by a string of characters enclosed
by single-quotes. See Section 10.3.3.5 for details on string output.

If QULEXpr has a zero value, it Is represented as 0" or “-0"

If OUtExpr has a finite value, its decimal representation Is written on the file
f. This representation Is the nearest possible decimal representation, depending
on Minwidth and DecPlaces. If the unrounded value Is exactly halfway
between two possible representations, the representation whose least significant
digit is even is written out.

If DecPlaces Is not specified, a Aoating-point representation is written as
follows:

* If Minwidth is less than &, then its value is set to 6 (Internally). This is the
minimum usable width for writing a floating-point representation.

= If the sign of the value of OUtExpr is negative, a minus sign Is written;
otherwise, a space is written.

 If Minwidth 2 8, the significant digits are written with one digit to the left
of the decimal point and (Minwidth - 7) digits to the right of the decimal

point.

= If Minwidth < 8, the most significant digit is written and the decimal point
is omitted.

* The exponent is written as the letter "E", an explicit “+" or "-" sign, and
two digits.

If DecPlaces is specified, a Axeg-point representation is written as follows:
* Enough leading spaces are written to satisfy Minwidth.

= If the value is negative, the minus sign “~" is written; if it is not negative,
a space s written.

« If DecPlaces > 0, the significant digits are written with the integer part of
the value to the left of the decimal point. The next DecPlaces digits are
written to the right of the decimal point.

* If DecPlaces < 0, only the integer part of the vaiue is written and no
decimal point is written.

10.3.3.5 write with a String Value
If the value of DUtEXpr is of string type with length L, the default value for
Minwidth is L. If Minwidth>~L, the value is written on the file f preceded by
(Minwidth-L) spaces. If Minwldth<L, the first Minwidth characters of the
string are written.

10-16

Pascal Reference Marual Inpututput

10336 Write with a Packed Array of Char Value
If E Is of type packed array of char, the effect is the same as writing a string
whose length is the number of elements in the array.

103.3.7 Wwrite with a Boolean Value ,
If the value of OUtExpr is of type boolean, the string * TRUE" (with a leading
space) or the string "FALSE" is written on the file f. The default value of
Minwidth is 5. If Minwldth>5, leading spaces are added; if MinwWidth<5, the
first Minwidth characters of the string are written. This is equivalent to:

write(f,' TRUE':Minwidth)
or
write(f, ‘FALSE' :Minwidth)

10.3.4 The writeln Procedure
The writeln procedure is an extension of write. Essentially it does the same
t{\in)? as write, and then writes a CR character to the output file (ending the
line

Parameter List: The syntax of the parameter list of writeln is the same as
that of write, except as follows:

s A writeln call with no output-specs is allowed. Example:
writeln(outputfile)
* The parameter-list can be omitted altogether.

If the first parameter does not specify a flle, or if the parameter-list is
omitted, the procedure writes to the standard flle output, which represents the
workshop screen.

writeln{f) writes a CR character to the file f.

writeln can or/ybe used on a text flle. Except for this restriction,
writeln(f p1....p») is equivalent to:

begin
vrite(f,pl,...,pn)
writeln(f)

end

Immediately after writeln(f), both eof(f) and eoln(f) will return true.

10.35 The Eoln Function
Result Type: boolean

Parameter List: eoln[(f)]

1. f is a variable-reference that refers to a varlable of type text. The file
must be open.

The actual-parameter-list can be omitted entirely. In this case, the function is
applied to the standard file input (the Lisa keyboard).

10-17

Pascal Reference Marial Inputautput

Eoln(f) returns true "if the end of a line has been reached in £." The meaning
of this depends on whether the external flle Is a character device, on which 1/0
procedure was executed last, and on what type of variable was used to receive
an Input value. For detalls, see Sections 10.3.1 through 10.3.4.

The end of the file Is considered to be the end of a line; therefore eolr(f) will
return true whenever eof{f) is true.

103.6 The Page Procedure
Parameter List: page(f)

1. f is a variable-reference that refers to a variable of type text. The file
must be open.

The actual-parameter f cannot be omitted. Page(f) outputs a form-feed
character to the file £. This will cause a skip to the top of a new page when
f is printed.

Note that page{output) sends a form-feed to the Workshop screen, but in
general this will not clear the screen. For methods of clearing the screen, see
the Wwarkshop Users Guiae for the Lisa .

10.3.7 Keyboard Testing and Screen Cursor Control
103.7.1 The Keypress Function
Tests the Lisa keyboard to see if it has a character awaiting input.

Parameter LIst: no parameters.
Result Type: boolean.

Keypress returns true if a character has been typed on the Lisa keyboard but
has not yet been read, or false otherwise. This is done by testing the
typeahead queue; if the queue is empty, keypress is false, otherwise it is true.

10.3.7.2 The Gotoxy Procedure
Moves the Workshop screen cursor to a specified location on the screen.

Parameter List: gotoxy(x, ¥y)

1. x is an expression with an integer value. If x < 0, the value D will be
used; if x > 79, the value 79 will be used.

2. y is an expression with an integer value. If y < 0, the value D will be
used; if y > 31, the value 31 will be used.

Gotoxy(x, y) moves the cursor to the point (Xy) on the screen. Note that the
point (0,0) is the upper left comer of the screen.

10.4 Untyped File 110
Untyped file 1/0 operates on an “untyped file," i.e., a variable of type flle (no
component type). An untyped flle is treated as a segquence of 512-byte S/ocks:
the bytes are not type-checked but considered as raw data. This can be useful
for applications where the data need not be interpreted at all during I/0
operations.

10-18

Pascal Referernce Manual Input/output

The blocks in an untyped file are considered to be numbered sequentially
starting with 0. The system keeps track of the cwrrent block number:this is
block 0 immediately after the file is opened. Each time a block is read, the
current block number is incremented. By default, each 1/0 operation begins at
the current block number; however, an arbitrary block number can be specified.

An untyped file has no file-buffer, and it cannot be used with get, put, or any
of the text-oriented 1/0 procedures. It can only be used with reset, rewrite,
close, eof, and the blockread and blockwrite functions described below.

To use untyped file 1/0, an untyped file is opened with reset or rewrite, and
the blockread and blockwrite functions are used for input and output.

10.4.1 The Blockread Function
Reads one or more 512-byte blocks of data from an untyped file to a program
variable, and returns the number of blocks read.

Result Type: integer
Parameter LIst: blockread(f, databuf, count [, blocknum])

1. f is a variable-reference that refers to a variable of type file. The file
must be open.

2. databuf is a varlable-reference that refers to the variable into which the
blocks of data will be read. The size and type of this variable are not
checked; if it is not large enough to hold the data, other program data
may be overwritten and the resuits are unpredictable.

3. count is an expression with an integer value. 1t specifies the maximum
number of blocks to be transferred. Blockread will read as many blocks
as it can, up to this limit.

4, blocknum (may be omitted) is an expression with an integer value. It
specifies the starting block number for the transfer. If it is omitted, the
transfer begins with the current block. Thus the transfers are sequential
if the blocknumber parameter is never used; if a blocknumber parameter
is used, it provides random access to blocks.

Blockread(f, databuf, count, blocknum) reads blocks from f into databuf, starting
at block blocknum. Count is the maximum number of blocks read; if the
end-of-file is encountered before count blocks are read, the transfer ends at
that point. The value returned is the number of blocks actually read.

If the last block in the file was read, the current block number is unspecified
and eof{f) is true. Otherwise, eof(f) is false and the current block number is
advanced to the block after the last block that was read.

10-19

Pascal Reference Merusal Inout ot

104.2 The Blockwrite Function
writes one or more 512-byte blocks of data from a program variable to an
untyped file, and returns the number of blocks written.

Result Type: Ineger
Parameter List: blockerite(f, databuf, count [, blocknum])

1. f is a variable-reference that refers to a variable of type flle. The flle
must be open.

2. databuf is a variable-reference that refers to the variable from which the
_ blocks of data will be written. The size and type of this variable are not
checked.

3. count s an expression with an integer value. It specifies the maximum
number of blocks to be transferred. Blockwrite will write as many blocks
as it can, up to this limit.

4. blocknum (may be omitted) is an expression with an integer value. It
specifies the starting block number for the transfer. If it is omitted, the
transfer begins with the current block. Thus the transfers are seguential
if the blocknumber parameter is never used; if a blocknumber parameter
is used, it provides random access to blocks.

Blockwrlte(f, databuf, count, blocknum) writes blocks into f from databuf,
starting at block blocknum. Court is the maximum number of blocks written;
if disk space runs out before count blocks are written, the transfer ends at
that point. The value returned is the number of blocks actually written,

If disk space ran out, the current block number is unspecified. Otherwise, the
current block number is advanced to the block after the last block that was
written.

NOTE

Unlike Apple 11 and Apple 1l Pascal, this Pascal does not allow
blockwrite to write a block at a position beyond the first position after
the current end of the file. In other words, you cannot create a block
file with gaps in it.

10-20

029-0403-A

111

11.2

113

114

Chapter 11
Standard Procedures and

Functions

Exit and Halt Procedures - 11-1
11.1.1 TRe EXIt PTOCEOUTE..... . i ceeeeeeieeeeemeeaenaneraneaaecmsanensansesannnen 11-1
11.1.2 ThEHBILPTOCEBOUTEcccceeeieeeieeieeeennreecarecanennsensanssnsesnsnsnns 11-1
Dynamic Allocation Procedures 11-1
1121 TheNEW PTOCEOUTEceeieieeecrccenceanaeenenaanannannsnnsnsnasnnnnn 11-2
11.2.2 The HeapResult Function erteeemieretaseeeeaaaanaeeaaaanas 11-3
11.2.3 The MArK PTOCEOUTEceuveiieeiecaenaeccacaececmnennsaesansasmnsnnsnsnnennnnn 11-3
1124 The Releast PIOCEOUTEccccceviieeeeiecetucesanantessasassssasasasasasssanans 11-3
11.25 The Memavall FuNCLION....c.cciceiirciecerenecteieanecnseasecnsaenansonnes 11-3
Transfer Functions 11-4
11.3.1 The TIUNC FUNCLION ... eeieeeeereeneaeeseeereansnennsennnnnns 11-4
1132 The ROUNAFUNCION ... cne e rvec e eacnas s amacasnanannen 11-4
1133 The Orol FUNCHION ... ce e crec e vare e ceecaenesesasvesseannnns 11-4
1134 The PoIMter FUunCEION ..ot creecreneaeesaee e se s anasanenn 11-5
Arithmetic Functions

11.4.1 TRE OO FUNCLION ..cieeieieeeeereitirecreieeseeresasernsaanesesansassesnssansans
11.4.2 ThEe ADSFUNCHION ..o e ecceceenceee e sesaecesnesennsessannnennas
1143 TheSgrFunCHIoN. ..ttt e et e nn e ce e ceenanne
1144 The SINFUNCLION .o eecceetcencemecenneneennaennsensasnsnnssnsanssannns

11.45 The CosFunction
11.46 The ExpFunction ..

1147 TheLRFUNCHION ceae e ceee et e se e e e e e e anennannnes
11.4.8 The Sgrt FUNCHIoN ...t areressessasene
1189 The ATCLaN FUNCTION. ... iiirereeiincncrereesaseersessssasaesasassesnsnnnns
11.48.10 The PWIoften FUNCLIONoe ettt e e s ceesa e eanaes

115 Ordinal Functions 11-8
1151 The Ord FUNCE O . i teeeetereracnreseeesesnsesasesassennanssane 11-8
1152 The ChrFUNCLION ... eee e eme e reeanan 11-8
1153 The SUCC FUNMCHION ...ttt ceae e e e annseennnan 11-8
1154 ThePred FUNCLION cecceeceecere e seenreaeenranenenanen 11-9

Pascal Reference Manusal Standsard FProceaures & Furnctions

116

117

118

String Procedures and Functions 11-9
11.6.1 ThelLength FUnCION......cccciiiiiiniiinnieretire st e enssenens 11-9
11.6.2 ThePOSFUNCLION ..ottt ccte e tenete e e e emnenes 11-9
11.6.3 The Concat FUNCLIONcociiiirrmmeicriiiinerennn s ceste e e e eacenas 11-10
11.6.4 The Copy FUNCLION «.cooe e ctre e e enes 11-10
11.6.5 TheDelete PTOCEOUTEcccceuiiremmcinimmnnisernnenttmessrionessansanes 11-10
1166 TheINSert PrOCEAUTEc.civvivminieeniiriennrieenecseeanestenassseenns 11-10
Byte-Oriented Procedures and Functions 11-11
11.7.1 The Moveleft PTOCEOUTEccueeureeeiiieininiiennceseeneietnsacsenennes 11-11
11.7.2 The Moveright PIOCEOUIEccovteeecraraeetetcnnnerceereeeasesaesaemnne 11-12
11.7.3 The Sizeof FUNCHION ..o cmeet e ee e ee e e e e onae 11-12
Packed Array of Char Procedures and Functions 11-12
11.8.1 TheScaneqFunctionottt rer e csemcaneeenann 11-12
11.8.2 TheScanne FURCLIONccoiiiiiiiciiiiiiirtrce e cee e e e caes 11-13

11.8.3 The Fillchar PTOCEOUTEccceveeveceancenccensenerasceseerenssnsanssasasnses 11-13

Standard Procedures and
Functions

This chapter describes all the standard ("built-in") procedures and functions in
Pascal on the Lisa, except for the 1/0 procedures and functions described in
Chapter 10.

Standard procedures and functions are predeclared. Since all predeclared
entities act as if they were declared in a block surrounding the program, no
conflict arises from a declaration that redefines the same identifier within the
program.

NOTE

Standard procedures and functions cannot be used as actual procedural
and functional parameters.

This chapter uses a modified BNF notation, instead of syntax dlagrams, to
indicate the syntax of actual-parameter-lists for standard procedures and
functions. The notation is explained at the beginning of Chapter 10.

11.1 Exit and Halt Procedures
11.1.1 The Exit Procedure
Exits immediately from a specified procedure or function, or from the main
program.
Parameter List: exit(id)

1. id is the identifier of a procedure or function, or of the main program. If
id is an identifier defined in the program, it must be in the scope of the
exit call. Note that this is more restricted than UCSD Pascal.

Exit(id) causes an immediate exit from id. Essentially, it causes a jump to the
end of id.

NOTE

The halt procedure (see below) can be used to exit the main program
from a unit without knowing the main program's identifier.

11.1.2 The Halt Procedure
Exits immediately from the main program.

Parameter List: no parameters
Halt causes an immediate exit from the main program.

11.2 Dynamic Allocation Procedures
These procedures are used to manage the /egg a memory area that is
unallocated when the program starts running. The procedure new is used for

11-1

Pascal Reference Marnal Standard Proceaures & Functions

all allocation of heap space by the program. The mark and release procedures
are used together to deallocate heap space, and the heapresult function is used
to return the status of the last preceding dynamic allocation operation..

11.2.1 The New Procedure
Allocates a new dynamic variable and sets a pointer variable to point to it.

Parameter List: new(p [, t1, ... tn])

1. p is a variable-reference that refers to a variable of any pointer-type.
This is a varlable parameter.

2. 11, .. tnare constants, used only when allocating a variable of
record-type with variants (see below).

New(p) allocates a new variable of the base-type of p, and makes p point to it.
The variable can be referenced as p . Successive calls to new allocate
contiguous areas.

If the heap does not contain enough free space to allocate the new variable, p
is set to nil and a subsequent call to the heapresult function will retum a
non-zero result.

If the base-type of p is a record-type with variants, new{p) allocates enough
space to allow for the largest variant. The form

new(p, t1, ...tn)

allocates a variable with space for the variants specified by the tag values ti,
.. tnn (instead of enough space for the largest variants). The tag values must
be constants. They must be listed contiguously and in the order of their
declaration. The tag values are not assigned to the tag-fields by this
procedure.

Trailing tag values can be omitted. The space allocated allows for the largest
variants for all tag-values that are not specified.

WARNING

when a record variable is dynamically allocated with explicit tag values
as shown above, you should not make assignments to any fields of
variants that are not selected by the tag values. Also, you should not
assign an entire record to this record. If you do either of these things,
other data can be overwritten without any error being detected at
compile time.

11-2

Pascal Reference Marual Standarad Proceaures & Functions

11.2.2 The Heapresult Function
Returns the status of the most recent dynamic allocation operation.

Result Type: integer
Parameter List: no parameters

Heapresult returns an integer code that reflects the status of the most recent
call on new, mark, release, or memavail. The codes are given in the works/igo
Users Guiges note that the code for a successful operation is 0.

1123 The Mark Procedure
Sets a pointer to a heap area.

Parameter List: mark(p)

1. p Is a variable-reference that refers to a variable of any pointer-type.
This is a variable parameter.

Mark(p) causes the pointer p to point to the lowest free area in the heap. The
next call to new will allocate space beginning at the bottom of this area, and
then p will be a pointer to this space. The pointer p is also placed on a
stack-like list for subsequent use with the release procedure (see below).

1124 The Release Procedure
Deallocates all variables in a marked heap area.

Parameter List: release(p)

1. p is a variable-reference that refers to a pointer variable. It must be a
pointer that was previously set with the mark procedure. The pointer p
must be on the list created by the mark procedure; otherwise an error
OCCurs.

Release(p) removes pointers from the list, back to and including the pointer p.
The heap areas pointed to by these pointers are deallocated. In other words,
release(p) deallocates all areas allocated since the the pointer p was passed to

the mark procedure.
11.25 The Memavail Function
Returns the maximum possible amount of available memory.

Result Type: longint
Parameter List: no parameters

Memavall returns the maximum number of words (not bytes) of heap and stack
space that could ever be avallable to the program, allowing for possible
automatic expansion of the program's data segment. Note that the result of
memavalil can change over time even if the program does not allocate any

heap space, because of activities by the operating system or other processes in
the system.

11-3

Pascal Reference Marnal Stanaara Proceaures & Functions

113 Transfer Functions
The procedures pack and unpack, described by Jensen and wirth, are not
supported.

11.3.1 The Trunc Function
Converts a real value to a longint value.

Resuit Type: longint
Parameter List: trunc(x)
1. x is an expression with a value of type real.

Trunc(x) returns a longint result that is the value of x rounded to the largest
whole number that Is between 0 and x (inclusive)

11.3.2 The Round Function
Converts a real value to a longint value.

Resuit Type: longint
Parameter List: Tound(x)
1. x Is an expression with a value of type real

Round(x) returns a longint resull that is the value of X rounded to the nearest
whole number. If x is exactly halfway between two whole numbers, the result
is the whole number with the greatest absolute magnitude.

1133 The Ordd Function
Converts an ordinal-type or pointer-type value to type longint.
Result Type: longint
Parameter List: orda(x)

1. x is an expression with a value of ordinal-type or pointer-type.

Ord4(x) returns the value of X, converted to type longint. If x Is of type
longint, the result is the same as x.

If x Is of pointer-type, the result is the corresponding physical address, of type
longint.

If x is of type integer, the result is the same numerical value represented by X,
but of type longint. This is useful in arithmetic expressions. For example,
consider the expression

abcrxyz
where both abc and xyz are of type integer. By the rules given in Section
3.1.1.2, the result of this multipiication is of type Integer (16 bits). If the
mathematical product of abc and xyz cannot be represented in 16 bits, the
result is the low-order 16 bits. To avoid this, the expression can be written as

orda(abc)+xyz

11-4

Pascal Reference Msral Stanagra Proceoures & Functions

This expression causes 32-bit arithmetic to be used, and the result is a 32-bit
longint value.

If x is of an ordinal-type other than integer or longint, the numerical value of
the result is the ordinal number determined by mapping the values of the type
onto consecutive non-negative integers starting at zero.

113.4 The Pointer Function
Converts an integer or longint value to pointer-type.

Result Type: polinter
Parameter List: pointer(x)
1. xis an expression with a value of type Integer or longint.

Pointer(x) returns a pointer value that corresponds to the physical address x
This pointer is of the same type as nil and is assignment-compatible with any
pointer-type.

114 Arithmetic Functions
In general, any real result returned by an arithmetic function is an approx-
imation. There are two exceptions to this: the resuit of the abs function is
exact, and the result of the pwroften function is exact when the parameter n
isinthe range 0 < n < 10.

11.4.1 The Odd Function
Tests whether a whole-number value is odd.

Result Type: boolean
Parameter Lisl: odd(x)

1. x Is an expression with a value of type integer or longint.
Odd(X) returns true if x Is odd; otherwise it ylelds false.

11.4.2 The Abs Function
Returns the absolute value of a numeric vaiue.

Result Type: same as parameter
Parameter List: abs(x)

1. X 1s an expression with a value of type real, integer, or longint.
Abs(X) returns the absolute value of x.

11-5

Fascal Rerference Manaal Standarg Procedtues & Functions

11.43 The Sqr Function
Returns the square of a numeric value.

Result Tywe: depends on parameter (see below)
Parameter List: sqr(x)
1. x is an expression with a value of type real, integer, or longint.

Sqr(x) returns the square of x. If x is of type real, the result is real; if x is of
type longint, the result is longint; and if x is of type integer, the result may be

either integer or longint
If x is of type real and floating-point overflow occurs, the result is +e,

11.44 The Sin Function
Retums the sine of a numeric value.

Result Type: real
Parameter List: sin(x)

1. x is an expression with a value of type real, integer, or longint. This
value is assurmned to represent an angle in radians.

Sin(x} returns the sine of x. If x is infinite, a diagnostic NaN is produced and
the invalid operation signal is set (see Appendix D).

1145 The Cos Function
Returns the cosine of a numeric value.

Result Type: real
Parameter LIst: cos(X)

1. x is an expression with a value of type real, integer, or longint. This
value is assumed to represent an angle in radians.

Caos{x) returns the cosine of x. If x is infinite, a diagnostic NaN is produced
and the invalid operation signal is set (see Appendix D).

1146 The Exp Function
Returns the exponential of a numeric value.

Result Type: real
Parameter LIst: exp(x)

1. x is an expression with a value of type real, integer, or longint. All
possible values are valid.

Exp(X) returns the value of &%, where e is the base of the natural logarithms.
If floating-point overflow occurs, the result is +e.

11-6

Pascal Reference Maral Stanoard Proceaures & Functlons

11.4.7 The Ln Function
Retumns the natural logarithm of a numeric value.

Result Type: real

Parameter List: 1n(x)

1. x Is an expression with a value of type real, integer, or longint. All
non-negative values are valid; negative values are invalid.

If x is non-negative, IN(xX) returns the natural logarithm (loge) of x.

If x Is negative, a diagnostic NaN is produced and the Invalid Operation signal
is set (see Appendix D).

1148 The Sqrt Function
Returns the square root of a numeric value.

Result Type: real
Parameter List: sqrt(x)

1. x is an expression with a value of type real, integer, or longint. All
non-negative values are valid; negative values are invalid.

If x is non-negative, sqrt{X) returns the positive square root of x

If x is negative, a diagnostic NaN is produced and the Invalid Operation signal
is set (see Appendix D).

1149 The Arctan Function
Returns the arctangent of a numeric value.

Result Type: real
Parameter List: arctan(x)

1. x is an expression with a value of type real, integer, or longint. All
numeric values are valld, including +e.

Arctan(x) returns the principal value, in radians, of the arctangent of x

11410 The Pwroften Function
Returns a specified power of 10.

Resuit Type: real
Parameter List: pwroften(n)
1. nis an expression with a value of type integer.

If -45 < n < 38, then pwroften(n) returns 10™. The result is mathematically
exact for 0 < n < 10. If n < -46, the result is 0; if n 2 39, the result is +oo,

11-7

Pascal Reference Meamel Standerd Proceoures & Functions

115 QOrdinal Functions
115.1 The Ord Function
Returns the ordinal number of an ordinal-type or pointer-type value.

Result Type: Integer or longint
Parameter List: ord(x)

1. x Is an expression with a value of ordinal-type or pointer-type.
If x is of type integer or longint, the result is the same as X

If x is of pointer-type, the result is the corresponding physical address, of type
longint.
If x is of another ordinal-type, the result is the ordinal number determined by

mapping the values of the type onto consecutive non-negative whole numbers
starting at zero.

For a parameter of type char, the result is the corresponding ASCH code. For
a parameter of type boolean,

ord(false) returns 0
ord(true) returns 1

1152 The Chr Function
Returns the char value corresponding to a whole-number value.

Resuit Type: char (but see below)
Parameter LIst: chr(x)
1. x is an expression with an integer or longint value.

Chr(X) returns the char value whose ordinal number (i.e., its ASCII code) is x, if
X is in the range 0.255. If x Is not in the range 0..255, the value returned is
not within the range of the type char, and any attempt to assign it to a
variable of type char will cause an error.

For any char value ch, the following is true:
chr({ord(ch)) = ch

1153 The Succ Function
Returns the successor of a value of ordinal-type.

Resuit Type: same as parameter (but see below)
Parameter List: succ(x)
1. x is an expression with a value of ordinal-type.

Succ(x) returns the successor of X, If such a value exists according to the
inherent ordering of values in the type of x

11-8

Pascal Reference Manual Stardard Proceaures & Functions

If x is the last value in the type of X, it has no successor. In this case the
value returned is not within the range of the type of x, and any attempt to
assign it to a variable of this type will cause unspecified results.

11.5.4 The Pred Function
Returns the predecessor of a value of ordinal-type.

Result Type: same as parameter (but see below)
Parameter List: pred(x)
1. x is an expression with a value of ordinal-type.

Pred(X) returns the predecessor of X, if such a value exists according to the
inherent ordering of values in the type of x.

If x is the first value in the type of X, it has no predecessor. In this case the
value returned is not within the range of the type of x, and any attempt to
assign it to a variable of this type will cause unspecified results.

116 String Procedures and Functions
The string procedures and functions do not accept packed array of char
parameters, and they do not accept indexed string parameters.

1161 The Length Function
Returns the current length of a value of string-type.

Result Type: integer
Parameter List: length(str)

1. str is an expression with a value of string-type.
Length(str) returns the current length of str.

11.6.2 The Pos Function
Searches a string for the first occurrence of a specified substring.

result Tyoe: integer

Parameter List: pos(substr, str)
1. substr is an expression with a value of string-type.
2. str is an expression with a value of string-type.

Pos(substr, str) searches for substr within str, and returns an integer value that
is the index of the first character of substr within str.

If substr is not found, pos(substr, str) returns zero.

11-9

Pascal Rerference Marnial Standard Proceaures & Functions

11.6.3 The Concat Function
Takes a sequence of strings and concatenates them.

Resuit Type: string-type
Parameter List: concat(strl [, str2, ... strn])

* Each parameter is an expression with a value of string-type. Any practical
number of parameters may be passed.

Concat(strl, ..., str/7) concatenates all the parameters in the order in which
they are written, and returns the concatenated string. Note that the number
of characters in the result cannot exceed 255.

11.64 The Copy Function

Retuims a substring of specified length, taken from a specified position within
a string.

Result Type: string-type

Parameter List: copy(source, index, count)
1. source is an expression with a value of string-type.
2. Index is an expression with an Integer value.
3. count is an expression with an integer value.

Copy(source, index, count) returns a string containing count characters from
source, beginning at sourcefindex].
1165 The Delete Procedure

Deletes a substring of specified length from a specified position within the
value of a string variable.

Parameter List: delete(dest, index, count)

1. dest is a variable-reference that refers to a variable of string-type. This
is a variable parameter.

2. index is an expression with an Integer value.
3. count is an expression with an integer value.

Delete(dest, index, count) removes count characters from the value of dest,
beginning at dest[index]

1166 The Insert Procedure
Inserts a substring into the value of a string variable, at a specified position.

Parameter List: insert(source, dest, index)
1. source is an expression with a value of string-type.

2. dest Is a varlable-reference that refers to a varlable of string-type. This
{s a varlable parameter.

3. index is an expression with an integer value.

11-10

Pascal Reference Marwal Stanaerd Proceadures & Functions

Insert(source, dest, index) inserts source into dest. The first character of
source becomes dest{index}

117 Byte-Oriented Procedures and Functions
These features allow a program to treat a program variable as a sequence of
bytes, without regard to data types.

NOTE

The sizeof function (described in Section 11.7.3, below) can be used to
determine the number of bytes in a varlable.

These procedures do no type-checking on their source or dest actual-
parameters. However, since these are variable parameters they camwot be
Indexeq if they are packed or if they are of string-type. If an unpacked
“byte array” is desired, then a variable of the type

array [lo..hi] of -128..127

should be used for source or dest. The elements in an array of this type are
stored in contiguous bytes, and, since it is unpacked, an array of this type can
be used with an index as an actual-parameter for these routines.

IMPLEMENTATION NOTE

Currently, an array with elements of the type 0..255 or the type char
has its elements stored in words, not bytes.

1171 The Moveleft Procedure
Coples a specified number of contiguous bytes from a sowee range o a
aestination range (starting at the lowest address).

Parameter List: moveleft(source, dest, count)

1. source is a variable-reference that refers to a varlable of any type
except a file-type or a structured-type that contains a file-type. This is
a variable parameter. The first byte allocated to source (lowest address
within source) Is the first byte of the source range.

2. dest is a variable-reference that refers to a variable of any type except
a file-type or a structured-type that contains a file-type. This is a
variable parameter. The first byte allocated to dest (lowest address
within dest) is the first byte of the destination range.

3. count is an expression with an integer value. The source range and the
destination range are each count bytes long.

Moveleft(source, dest, count) copies count bytes from the source range to the
destination range.

11-11

Pascal Referernce Marnual Stanaarg Proceaures & Functions

Moveleft starts from the "left” end of the source range (lowest address). It
proceeds to the “right" (higher addresses), copying bytes into the destination
range, starting at the lowest address of the destination range.

The count parameter Is not range—-checked.

11.7.2 The Moveright Procedure
Moveright is exactly like moveleft (see above), except that it starts from the
"right” end of the source range (highest address). It proceeds to the “left"
(lower addresses), copying bytes into the destination range, starting at the
highest address of the destination range.

The reason for having both moveleft and moveright is that the source and
destination ranges may overlap. If they overlap, the order in which bytes are
moved is critical: each byte must be moved before it gets overwritten by
another byte.

11.7.3 The Sizeof Function
Returns the number of bytes occupied by a specified variable, or by any
variable of a specified type.
Result Type: integer
Parameter [ist: sizeof(id)
1. id is either a variable-identifier or a type-identifier. It must not refer to

a file-type or a structured-type that contains a file-type, or to a
variable of such a type.

Sizeof{id) returns the number of bytes occupied by id, if id is a variable-
identifier; if id is a type-identifier, it returns the number of bytes occupied by
any variable of type id.

11.8 Packed Array of Char Procedures and Functions
NAOTE

These routines operate only on packed arrays of char. The packed
arrays of char cannot be subscripted; the operations always begin at the
first character in a packed array of char.

11.8.1 The Scaneq Function
Searches a packed array of char for the first occurrence of a specified
character.

Result Type: integer
Parameter L ist: scaneq(limit, ch, paoc)

1. limit is an expression with a value of type integer or longint. It is
truncated to 16 bits, and is not range-checked.

2. ch is an expression with a value of type char.

11-12

Pascal Reference Marvial Standard Proceoures & Functions

3. paoc is an expression with a value of type packed array of char. This is
a variable parameter.

Scaneq(limit, ch, paoc) scans paoc, looking for the first occurrence of ch. The
scan begins with the first character in paoc. If the character is not found
within limit characters from the beginning of paoc, the value returned is equal
to limit. Otherwise, the value returned is the number of characters scanned
before ch was found.

1182 The Scanne Function
This function is exactly like scaneq, except that it searches for a character
that does »nof match the ch parameter.

1183 The Filichar Procedure
Fills a specified number of characters in a packed array of char with a
specified character.

Parameter List: fillchar(paoc, count, ch)

1. paoc is an expression with a value of type packed array of char. This is
a variable parameter.

2. count is an expression with a value of type integer or longint. It is
truncated to 16 bits, and s not range-checked.

3. ch Is an expression with a value of type char.

Filichar(paoc, count, ch) writes the value of ch into count contiguous bytes of
memory, starting at the first byte of paoc.

Since the count parameter is not range-checked, it is possible to write into
memory outside of paoc, with unspecified resuits.

11-13

029-0404-A

Chapter 12
The Compiler

12,1 COMPIIEY COMIMANGS ..ovirereeereesssesteressneasesensessenssssasmmensnnssnssssaneensenase 12-1
12.2 Conditional Compilationcceueeveieermereneeenisisisiiine s seenessesseesessnnene 12-3
12.2.1 Compile-Time Variables and the $SDECL COMMaNG......coeeeeesrrerans 12-3
12.2.2 The $SETC COMMANG .ecuurirrcecimniieansaerenerssssenssssssnseesnnseeannnes 12-4
12.2.3 Compile~TIMe EXPIESSIONS ..cvveeseemrirererersnsismeneeesseersesnsesisnsnenans 12-4
12.2.4 The $IFC, $SELSEC, and $ENDC COMMANGDS .cveerreeeremnsrereersneeaeerens 12-4
12.3 Optimization of If—StatemMentseececeececcasireeanaensssssssssssscasersansnnnans 12-5
12.4 Optimization of While-Statements and Repeat-Statementsccccceuee... 12-7
125 Efficlency Of Case—StalemMentsueeeeeeeeeeemssirssssrssisessannrensserssssensrsases 12-7

The Compiler

The Pascal compiler translates Pascal source text to an intermediate code, and
the code generator translates the intermediate code to MC68000 object code.
Instructions for operating the compliler and code generator are given in the
workstip Lsers Guide ror the Lisa

12.1 Compiler Cormands
A compller command is a text construction, embedded in source text, that
controls compiler operation. Every compiler command is written within
comment delimiters, {..} or (=..*). Every compiler command begins with the $
character, which must be the first character inside the comment delimiters.

In this manual, compller commands are shown in upper case to help distinguish
themn from Pascal program text; however, upper and lower case are inter-
changeable in compiler commands just as they are In Pascai program text.

The following compiler commands are avallable:
INPUT FILE CONTRAL

$I fllename Start taking source code from flle filename. When the end
of this file is reached, revert to the previous source file.
If the filename begins with + or -, there must be a space
between $I and the filename (the space is not necessary
otherwise).

$U fllename Search the file filename for any units subsequently
specified in the uses-clause. Does not apply to intrinsic-

units.
CONTRA. OF CODE GENERATION
$C+ or $C- Turn code generation on (+) or off (-). This iIs done on a

procedure-by-procedure basis. These commands should be
written between procedures; results are unspecified if they
are written inside procedures. The default is $C+.

$0V+ or $0v- Tum integer overflow checking on (+) or off (-). Overflow
checking 1s done after all Integer add, subtract, 16-bit
multiply, divide, negate, abs, and 16-bit square operations,
and after 32 to 16 bit conversions. The default is $OV-.

$R+ or $R- Turn range checking on (+) or off (-). At present, range
checking is done in assignment statements and array
indexes and for string value parameters. No range
checking is done for type longint. The default is $R+.

12-1

Pascal Reference Mana&l The Compller

$S segname Start putting code modules Into segment segname. The
default segment name Is a string of blanks to designate the
"blank segment,” In which the main program and all bulit-in
support code are always linked. All other code can be
placed into any segment.

$X+ or $X- Tum automatic run-time stack expansion on (+) or off (-}
The default is $Xr.

NOTE

Compiler directives that affect code generation take effect when the
end of the Pascal statement in which they are embedded is reached. If
the same directive is specified more than once in a statement, the last
setting is used. A tricky case of this is:

Since the second assignment does not end with a semicolon, and
actually ends when the end is encountered, range checking will not be
turned off for that statement.

LEBUGGING

$0+ or $D- Tum the generation of procedure names in object code on
(+) or off (-). These commands should be written between
procedures; results are unspecified if they are written
inside procedures. The default is $D-.

CONDHTIONAL._ COMPILATION

$DECL 1ist (see Section 12.2 below).

$ELSEC (see Section 12.2 below).
$ENDG (see Section 12.Z2 below).
$IFC (see Sectlon 12.2 below).
$SETC (see Section 12.2 below).

12-2

Pascal Reference Marnal The Compiler
LISTING CONTRA
$E filename Start making a listing of compller errors as they are

$. filename

$L+or $L-

encountered. Analogous to $L fllename (see below). The
default is no error listing.

Start listing the compilation on file filename. 1f a listing
is being made already, that flle is closed and saved prlor to
opening the new file. The default is no listing. If the
filename begins with + or -, there must be a space between
$L and the filename (the space s not necessary otherwise).

The first + or ~ following the $L turns the source listing on
(+) or off (-} without changing the list file. You must
specify the listing file before using $L.+. The defaull is
$+, but no listing Is produced if no listing file has been
specified.

12.2 Conditional Compilation
Conditional compilation is controlled by the $IFC, $ELSEC, and $ENDC
commands, which are used to bracket sections of source text. whether a
particular bracketed section of a program is compiled depends on the boolean
value of a comuplle-time expression which can contaln complie-time variabies

1221 Complle-Time Vvarlables and the $DECL Command
Compile-time variables are completely independent of program variables; even
if a compile~tlme variable and a program variable have the same identifier,
they can never be confused by the compiler.

A complle-time varlable Is declared when it appears in the identifier-list of a

$DECL command.

Example of compile-time variable declaration:
{$DECL LIBVERSION, PROGVERSION}

This declares LIBVERSION and PROGVERSION as compile-time variables.
Notice that no types are specified.

Note the following

points about complle-time varlables:

* Compile-time variables have no types, although thelr values do. The only
possible types are integer and boolean.

* All complle-time varlables should be declared before the end of the
variable-declaration-part of the main program. In other words a $DECL
command that declares a new compile-time variable must precede the
main program's procedure and function declarations (if any). The new
compile-time variable is then known throughout the remainder of the

compilation.

* At any point in the program, a compile-time variable can have a new

value assigned

to it by a $SETC command.

12-3

Pascal Reference Manual The Compller

12.2.2 The $SETC Command
The $SETC command has the form

{$SETC ID := EXPR}
or
{$SETC ID = EXPR}

where ID is the identifier of a compile-time varlable and EXPR is a complie-
time expression. EXPR is evaluated immediately. The value of EXPR Is
assigned to ID.

Example of assignment to complle-time variabie:
{$SETC LIBVERSION := S}
This assigns the value 5 to the complle-time variable LIBVERSION.

1223 Compile-Time Expressions
Compile-time expressions appear in the $SETC command and in the $IFC
command. A complle-time expression Is evaluated by the compller as soon as
it Is encountered in the text.

The only operands allowed in a complle-time expression are:
* Compile-time variables

* Constants of the types integer and boolean. (These are also the only
possible types for results of compile-time expressions.)

All Pascal operators are allowed except as follows:
* The in operator is not allowed.
* The @ operator is not allowed.
* The / operator Is automatically replaced by div.

1224 The $IFC, $ELSEC, and $ENDC Cornmands
The $ELSEC and $ENDC commands take no arguments. The $IFC command has
the form

{$IFC EXPR}
where EXPR 1s a compile-time expression with a boolean value,

These three commands form constructions similar to the Pascal if-statement,
except that the $ENDC command is always needed at the end of the $IFC
construction. $ELSEC is optional.

12-4

Pascal Reference Marnual The Compiler

Example of conditionally comolied code:

{$IFC PROGVERSION >= LIBVERSION}
k := kvall(data+indat);
{$ELSEC)
Kk := kval2(data+cpindat ");
SENDC

writeln(k)

If the value of PROGVERSION is greater than or equal to the value of
LIBVERSION, then the statement k:-kvall{data+indat) is compiled, and the
statement k:=kval2(data+cpindat ") is skipped.

But if the value of PROGVERSION Is less than the value of LIBVERSION, then
the first statement is skipped and the second statement is compiled.

In elther case, the writeln(k) statement is complled because the conditional
construction ends with the $ENDC command.

$IFC constructions can be nested within each other to 10 levels. Every $IFC
must have a matching $ENDC.

when the complier is skipping, all commands in the skipped text are ignored
except the following:

$ELSEC
$ENDC
$IFC (so that $ENDC's can be matched properly)

All program text is ignored during skipping. If a listing is produced, each
source line that is skipped is marked with the letter S as its “lex level.”

123 gptimization of If-Statements
when the compiler finds an if-statement controlled by a boolean constant, it
may be unnecessary to compile the then part or the else part. For example,
given the declarations

const always = true;
never = false;

then the statement
if never then statement
will not be complled at all. In the statement

if never then statementl
else statement2

“statement1” is not compileq; only "statement2" is complled.

12-5

Pascal Reference Marual The Compiler

Simllarly, in the statement

if always then statementl
else statement2

only “statement1” is compiled.

The interaction between this optimization and conditional compilation can be
seen from the following program:

program Foo;
{$SETC FLAG := FALSE}
const pi = 3.1415926;

size = 512;
{$IFC FLAG}

debug = false; {a boolean constant, if FLAG=true}
{$ENDC}

var i, L.k, 1L, mn: integer;
{$IFC NOT FLAG}

debug: boolean; {a boolean variable, if FLAG=false}
{$ENDC}

PR Y

{$IFC NOT FLAG}
procedure whatmode;
in
interactive procegure to set global boclean variable, debug}

end;
{senoc}

begin {main}
{$IFC NOT FLAG)

whatmode;
{$ENDC}

if odebug then begin
statementl
end
else begin
statement2
end

end.

The way this is compiled depends on the compile-time variable FLAG. If
FLAG is false, then debug is a boolean variable and the whatmode procedure
is compiled and called at the beginning of the main program. The if debug

12-6

Pascal Reference Manual The Compiler

statement is controlled by a boolean variable and all of it is compiled, in the
usual manner.

But if the value of FLAG is changed to true, then debug is a constant with
the value false, and whatmode is neither compiled nor called. The if debug

statement is controlled by a constant, so only its else part, “statement2”, is
compiled.

124 Optimization of while-Statements and Repeat-Statements
A while-statement or repeat-statement controlled by a boolean constant does
not generate any conditional branches.

125 Efficiency of Case-Statements

A sparse or small case-statement will generate smaller and faster code than
the corresponding sequence of if-statements.

12-7

029-0405-A

=~ IGTMQOQD>

Appendixes

Comparison to Apple If and Apple III Pascal .. A-1
Known Anomalles in the Compiler. B-1
Syntax Of the LANQUAGE ...c.oeeeeaeenmrrsarenaserasesasssns cC-1
Floating—Puoint Arithmetlc........cccccccicicrnnincnne D-1
QUICKDTAW .eccceeerarrcrinsrressnserssssnsnnsssansssssansssnnsssssassnssmnnsnssssanssssasssssasens E-1
Hardware INerfaceccccececsearnanane F-1
Lisa Character Set G-1
Error Messages eeateesEierissSeseRsSaSRERRLINSSeRSRRESERERSRORISORRRR ST LRSSE H-1
PasCal WOTKSNOP FIIESceccereereememncnseuimmrmmmmssmscsmermsssssssasaessesnrasnnsassasse I-1

Appendix A
Comparison to Apple II and Apple III
Pascal

This appendix contalns lists of the major differences between the Pascal
language on the Lisa and the Pascal implemented on the Apple 11 and Apple 1IL.
Please note that these lists are not exhaustive.

Al Extensions
The following features have been added on the Lisa:

* @ Operator--returns the pointer to its operand (see Section 5.1.6).

* Heapresult, pointer, and ord4 functions (see Sections 11.2.2, 11.3.3, and
11.3.4).

* Keypress function bullt into the language, with same effect as the keypress
functio:; in the applestuff unit of Apple 11 and Apple 1lI Pascal (see Section
10.3.7.1

* Hexadecimal constants (see Section 1.4).

. Otner\)r.lse-clause in case-statement (same as Apple 111 Pascal; see Section
6.2.2.2

= Global goto-statement (see Section 6.1.3)

* A file 0{ char type that is distinct from the text type (see Sections 3.2.4
and 103

= Numerous compiler commands (see Section 12.1)
* Procedural and functional parameters (see Sections 7.3.3 and 7.3.4).
* Stronger type-checking (see Sections 3.4 and 7.3.5).

* QuickDraw graphics and hardware interface, including mouse control (see
Appendixes E and F).

A.2 Deletlons
The following features are not included on the Lisa:

* Turtlegraphics, applestuff, and other standard units of Apple 11 and Apple
111 Pascal.

* Interactive type (not needed, as the 1/0 procedures will do the right thing
with a file of type text if it is opened on a character device).

* Keyboard file--same effect can be obtained by opening a file of type text
on the device -KEYBOARD (see Section 10.3).

Pascal Reference Manual Comparison to Agple I & Il Pascal

* Unit (device-oriented) 1/0 procedures, such as UNITBUSY.

* Recognition of the ETX character (control-C) to mean “"end of flie" in input
from a character device.

* "Long integer” data type, with length attribute in declaration. Replaced by
the longint type (see Section 3.1.1.2).

* “Injtialization” code in a unit (see Chapter 9).

* The abllity to create new Intrinsic-units and Install them in the system
(see Chapter 9).

* Reset procedure without an external file title, for use on a file that is
already open (see Section 10.1.1). To obtain the same effect, close the flle

and reopen it.
* Treesearch.
* Bytestream, wordstream (data types in Apple III Pascal).

* Exit{program)--The exit{identifier) form works, and the identifler can be the
program-identifier. Halt can also be used for orderly exit from a program
(see Section11.1).

* Extended comparisons (see Sectlon 5.1.5).

* Scan function. Replaced by scaneq and scanne (see Section 11.8).
s Str function.

* Bit-wise boolean operations

* Segment keyword for procedures and functions. Use the $S command
Instead (see Section 12.1),

* The following compliler commands (see Section 12.1)

* $1+ and $1- (no automatic 1/0 checking; program must use loresult
function)

* $G ($G+ {5 the assumption on the Lisa)
* $N and $R (for resident code segments)
°$P

* $Q

* $S+ and $S++ for swapping

* $U+ and $U- (for User Program)

3V

In general, do not assume that a compiler command used in Apple 11 or
Apple 1l Pascal is valid on the Lisa. Furthermore, do not assume that an

Pascal Rererernce Maruigl Comparison to Agole I & Il Pascal

Apple 11 or Apple III Pascal compiler command is "harmless” on the Lisa, as
it may be implemented with a different meaning.

A3 Other Differences
The following features of Pascal on the Lisa are different from the
corresponding features of Apple Il and Apple 111 Pascal:

* Size of all strings must be explicitly declared (see Sectlon 3.1.1.6).
* Mod and div--Pascal on the Lisa truncates toward O (see Section 5.1.2).

* Apple 11 and Apple Il Pascal ignore underscores; Pascal on the Lisa does
not. They are legal characters in identifiers (see Section 1.2).

* A goto-statement cannot refer to a case-constant in Pascal on the Lisa
(see Section 6.1.3).

* A program must begin with the word program in Pascal on the Lisa (see
Chapter 8).

* Trunc is different (see Section 11.3.1).

* write(b) where b is a boolean will write elther * TRUE® or ‘FALSE' In Pascal
on the Lisa (see Section 10.3.3).

* whether a file is a textfile does not depend on whether its name ends with
“TEXT" when it is created. Instead, any external file opened with a file
variable of type text Is treated as a textfile, while a flle opened with a
file variable of type flle of char Is not; it Is treated as a “dataflle,” l.e. a
straight file of records which are of type char (See Sections 3.2.4 and 10.2).

* Get, put, and the contents of the flle buffer varlable are not supported on
files of type text. Use only the text-oriented 1/0 procedures with textfiles.

* Eoln and eof functions on files of type text work as they do on interactive
files In Apple 11 and Apple III Pascal.

* Pascal on the Lisa does not let you pass an element of a packed variable as
a varlable parameter (see Sections 7.3.2, 11.7, and 11.8).

¢ Limits on sets are different (see Section 3.2.3).

* The control variable of a for-statement must be a local variable (see
Section 6.2.3.3).

* In a write or writeln call, the default field lengths for Integer and real
values are 8 and 12 respectively (see Section 10.3.3)

Appendix B
Known Anomalies in the Compiler

This appendix describes the known anomalies in the current implementation of
the compiler.
B.1 Scope of Declared Constants
Consider the following program:
program cscopel;
const ten=10;
procedure p;
const ten=ten; {THIS SHOULD BE AN ERROR}

begin
writeln(ten)

The constant declaration in procedure p should cause a compiler error, because
it is illegal to use an identifier within its own declaration (except for pointer
identifiers). However, the error is not detected by the compiler. The effect is
that the value of the global constant ten is used in defining the local constant
ten, and the writeln statement writes "107.

A more serigus anomaly of the same kind is illustrated by the following
prograny:

program cscope2;
const red=1; violet=2;

q
type arrayType=array{red..violet] of integer;
color=(violet, blue, green, yellow, orange, red);
var arrayvar:arrayType; c:color;
begin
arrayVar([1]:=1;
c:=red;
vriteln(ord(c))
end;

begin
q
end.

B-1

Pascal Reference Marusl Compiler Anomalies

within the procedure q, the global constants red and violet are used to define
an array index type; the effect of arrayfred.violet] is equivalent to array{1..2]}
In the declaration of the type color, the constants red and violet are locally
redefined; they are no longer equal to 1 and 2 respectively--instead they are
constants of type color with ordinalities 5 and 0 respectively. The writeln
statement writes 5"

The use of red in the declaration of the type color should cause a compiler
error but does not.

Consider the statement
arrayVar{1]:=1;

If this statement is replaced by
arrayvar[red]:=1;

a compiler error will result, as red is now an illegal index value for
--even though arrayVar is of type arrayType and arrayType is defined by
array{red.violet]

To avoid this kind of situation, avoid redefinition of constant-identifiers in
enumnerated scalar types.

8.2 Scope of Base-Types for Pointers
Consider the following program:

program pscopel;
type s=0..7;

procedure mekecurrent;
type sptr= s;
s=record
ch:char;
bool :boolean
end;
var current:s;
ptrs:sptr;
n

new(ptrs);
ptrs :=current
end;
begin
makecurrent
end.

Here we have a global type s, which is a subrange of integer; we also have a
local type s, which is a record-type. Within the procedure makecurrent, the
type sptr is defined as a pointer to a variable of type s. The intention is that
this should refer to the local type s, defined on the next line of the program;
unfortunately, however, the compiler does not yet know about the local type s

B-2

Pascal Reference Marusl Cornpiler Anormeélies

and uses the global type s. Thus ptrs becomes a pointer to a variable of type
0.7 instead of a pointer to a record. Consequently the statement

ptrs” := current
causes a compiler error since ptrs” and current are of incompatible types.

To avoid this kind of situation, re-declare the type s locally before declaring
the pointer-type sptr based on s. Alternately, avoid re-declaration of
identifiers that are used as base-types for pointer-types.

gERE

C5
Cé
Cc.7
Cc.8
c9

Appendix C

Syntax of the Language
Tokens and Constants C-1
Blocks C-4
Data Types C-5
Variables c-9
Expressions C-10
Statements C-12
Procedures and Functions C-15
Programs C-16
Units C-17

Syntax of the Language

This appendix collects the syntax diagrams found in the main sections of this
manual. See the Preface for an introduction to syntax diagrams.

C.1 Tokens and Constants (see Chapter 1)

jEtMI'l@mw@,@W@ >

2 @ rmp O—

%@ j,
® vroawn (F)

loentifler @

diqit-senernce

o=p

hex-digit-sequernce hex-digit

Pascal Rerference Manal Syntax

wnsignea-integer

bl digit-sequence 'r >
1—@-’{ hex-digit-sequence }—J
o

wnsignea-real

digit-sequence ' digit-sequence | \ >
ol .___JJ

scale-factor

Soale-ractor =

»(E) o] digit-sequence ——»
Lsigned-rmoer | unsigned-integer |

Slgnea-number

bl unsigned-number }————-b

Qquoted-string-constant

O

l.)’@—*

string-character

Cc-2

Pascal Reference Manual Symiax

i

Quoteq-characler-constant b@—b[string-character }—DO—"

string-character

constant-declaration

igentifier [—#{(=)—{ constant |—(;)

constant

» constant-identifier

signed-number

quoted-string

quoted-char

c-3

Pascal Reference Maral Smtax
C.2 Blocks (see Chapter 2)

%—q label-declaration-part }'—j

-

! constant-declaration-part '_j
-
“*I type-declaration-part]——)
-
\-bl variable-declaration-part]——j

P
| procedure-and-function-declaration-part H

-
“${ statement-part | >

label-geclaration-part

Tabel label > —>
(D

M—-b[digit-sequence }———b

constant-aeclaration-part

constant-declaration l——j——b

bye-declaration-part

type-declaration }——j——b

Pascal Reference Manial

variable-ceclaration-part

———@—@ variable-declaration 17_.

procegure-ana-runction-aeclaration-part
procedure-declaration
function-declaration

statement 2yl compound-statement ——

C3 Data Types (see Chapter 3)

type-geciaration o)

simple-type
pointer-type

simple-type

Leal-1¢ [real-type-identifier |——o

Fascal Rererence Markal

arainal-t

subrange-type

enumerated-type

ordinal-type-identifier

string-type

—>(string)—(D)

size-attribute

string-type-identifier }

1

Sze-SULIONE o[rsigned-integer |——

enameratea-type

identifier-list

0

loentifler-list C

’

e e

(O—+{eamtant

Pascal Reference Maral Syntax

snctes e o[
.q

record-type

structured-type-identifier }

array-type

(amay)-»(D) D>+

IEx-P8 [o rdinal-type

flela-iist
fixed-part

»
Orlmmmi}) @)

QXM—(—D[field-declaration |—-j——————b

felg-geclaration identifier-list |—{:)

Fascal Reference Marmal e

variant-part
(o) tag-field-type F»(of .'
® @)

tag-Aeld-UPe [ordinal-type-identifier |—»

varfant
constant

O uOn
O

ﬂ.!z;w@ >

pointer-type ®

base-type

pointer-type-identifier

L3l ol 1yne_identifier |—

Pascal Reference Manual

C.a Vvariables (see Chapter)

variale-oec/aralion o gentifier-list |-)

variable-reference

——»{ varlable-identifier |

variable-identifier

qualifier index

fielo-designator
file-buffer-symbol
pointer-object-symbol

O

”,

Aela-aesignator Q identifier

ﬁ'}e-wfmr—smml__,o____,

pointer-object-symbol .O >

C-9

Syntax

Pascal Reference Marual

C.5 Expressions (see Chapter 5)

wnsignea-constant

bf unsigned-number

quoted-string-constant

constant-identifier

nil

factor

—! unsigneo-constant |

~ > b{ variable-reference }———-———-—\

\——’l function-call }

—»! set-constructor |

(O] opresion [5()

4 I 4

em
. 6' w
. @¢ M

sinple-expression

term

C-10

PP

Syntax

Pascal Reference Manal Syntax

expression

—+{ simple-expression | >
simple-emressiorﬂ——f

200

fnctlon-call

——b{ function-identifier } *r

»

actual-parameter-list }J

detual-parameter ISt ’® (®{ actual-parameter f—j—’@—'
(e

gctual-parameter

expression

variable-reference

procedure-identifier

function-identifier

set-constructor
(D) »(1)+

(e

C-11

Pascal Reference Manual Syntax

Memoer-grouy »{ expresslon} >
()

C.6 Statements (see Chapter 6)

Statement

h pr——

structured-statement

ﬁﬂfj——bl digit-sequence]———-—b

Simple-statement

b[assignment-statement '

procedure-statement

goto-statement | >

assigrment -statement

variable-reference
function-identifier S

procesae-statement

——-0{ procedure-identifier } >
\b[actual-parameter-list]-j

qolo-stalement > (goto) .! label l—"

C-12

Pascal Reference Manval riax

Structurea-statement

#| compound-statement
conditional-statement

repetitive-statement
with-statement | >

compouna-statement
()
Oe—

conditional-statement.

if-statement

case-statement

(b(then)—brstatement 1] >

else statement

case-statement .(meHexpression }"’@7

case
\{ otherwise-clause]—/ \@/

e ()] statement |

otherwise-clause .@_.(ijseH statement }—-——-—b

C-13

Pascal Reference Manal

repetitive-statement ,‘ repeat_statement

while-statement

for-statement | >

18088t -~statement

-——b(repeat)(ﬂ statement]-j—-b(mtil)—hl expression &

while-statement

——o(whiie)+ pression |-+(@)

ror-statement

for control-variable e

@[imrvae}-+(w)+{satemen

IO vaIIIE o[ariapie-identifier |—

e
Anal-value

with-statement

—b(with record-variable-reference @
(O

C-14

Smtax

Pascal Rererence Mansal Symiax

C.7 Procedures and Functlons (see Chapter 7)
proceaure-aeclaration

——->| procedure-heading]—»@-’{ procedure-pody I-b@—b

proceaure-body

e
extemal

procesre-headlng

—=(procedure)—»| identifier | \.{

>
formal-parameter-list IJ

runction-qeciaration

~—~—b| function-heading }«b@—bl function-body }-b@——b

runction-bogy

Anction-heading b(ﬂ.nct.lm)—b{identifier l—)

(O]

\-| formal-parameter-list

Pl ordinal-type-identifier
real-type-identifier
pointer-type-identifier - : '

C-15

result-tyoe

Pascal Reference Manual Sntax

formal-parameler-list

parameter-declaration
procedure-heading
functlon—heading

AN LRr-0eCIA 3o type-identifier
\s G- . i

C.8 Programs (see Chapter 8)

program
—»{ program-heading }—5@
orerEm-hesiing

——»(pmgra@-bl identifier } >
L@»{ program-parameters }b@/

identifier-list

uses-clause identifier-list

C-16

Pascal Reference Manual Syntax

C9 Units (see Chapter 9)

3
(’l interface-part |{ implementation-part

it eading __y("unit)—w{ identifier |—»

Interrace-part Interface N

(
| constant-declaration-part }—)

L~

‘- type-declaration-part }—)

P
\-{ variable-declaration-part [—)

g
\-»{ procedure-ang-function-declaration-part |——

iﬂwlementatian—part’(izmlementatim}) N
~

\{ constant-declaration-part]—3

’

! type-declaration-part }—)

-

\\»! variable-declaration-part]—-)

r
“Lprocedure-md—fumﬁon—declaration-part }——&—'b

C-17

Appendix D
Floating-Point Arithmetic

D.1 Introduction . - .. D-1
D.2 Rounding of Real Results Ceeeseresetsesresstssasannsnsnannsannnraaaaaeeaarnan 01
D.3 Accuracy of Arithmetic Operations................ e D2
DA Overflow and Division by Zero: InfInite Valuesceeeeereecersrensaenassneses D-2
DS Invalid Operations: NalN Values D-3
D.6 Integer CONVersion OVEITIOWccccccreccrssnsessenessasasnsssnssennsesenseasnnnnssans D-4
D.7 Text-Oriented I/DCONVETSIONScccccoecacriorsacsmmrmareresssisenensennsvensansse D-a
0.8 FPLIB INEITACE ..c.ovucreereertenmnnssanssnsssnsnsssssssassennnsssonnussnssssanns D-4

D9 Bibliography .. D-20

Floating-Point Arithmetic

D.1 Introduction

D2

Floating-point arithmetic in Pascal on the Lisa (all arithmetic involving real
values) conforms to most of the single-precision aspects of the IEEE's 2.
Standard for Binary Floating-Foint Arithmetic (Draft 10.0 of 1EEE Task P754).

IEEE Standard arithmetic provides better accuracy than many other floating-
point implementations. It also reduces the problems of overflow, underflow,
limited precision, and invalid operations by providing useful ways of dealing
with them.

The FPLIB library unit (in the file 10SFPLIB) contains the routines that perform
floating-point arithmetic (including all the transcendental functions and the
sqrt function). FPLIB must be linked into any program that uses floating-point
arithmetic; however, it is not necessary to explicitly refer to FPLIB in a uses
clause unless the program calls the specialized support procedures and
functions declared in the interface of FPLIB.

This manual assumes that you do not explicitly use the FPLIB unit, and that
therefore only the default options of IEEE arithmetic are applicable.

As a general rule, you can write Lisa Pascal programs that use floating-point
arithmetic without worrying about the differences between IEEE Standard
arithmetic and other floating-point implementations.

The following points apply if your program writes out floating-point numbers as
textual representations (via write or writeln)

* Anything in the output that looks like a number will be carrect (and
possibly more accurate than under other implementations).

* If your output contains a string of two or more pluses or minuses, this
indicates a value of «, resulting from division by zero or some other
operation that caused a floating-point overflow.

* If your output contains the string “NaN" (meaning Not a Number), this
ingdicates the result of some invalid operation that would probably have
caused a program halt or a wrong output under other implementations.
Note that any real value in text output that does not include the string
“NalN" is guaranteed not to have been affected by any invalid operation.

of Real Results
when a real result must be rounded, it is always rounded to the nearest
representable real value. If the unrounded result is exactly halfway between
two representable real values, it is rounded to the value that has a zero in the
least significant digit of its binary frection (the “even” value)

Pascal Reference Marigl

D.3 Accuracy of Arithmetic Operations
-, % /, round, trunc, and sqrt are accurate to

The arithmetic operations +,
within half a unit in the last bit. Remainders are computed without rounding

erTor.

D.a Overflow and Division by Zero: Infinite Values
The result of floating-point overflow is either = or -». These are values of
type real that can be used in further calculations and follow the mathematical
conventions: for example, a finite number divided by = yields zero.

Dividing a finite non-zero value by zero also yields « or - (in floating-point

arithmetic).

Infinite values have textual representations that can be read by read or readin

or written out by write or writeln.
Tables D-1 and D-2 below show the results of arithmetic operations on

infinities. Note that any operation involving a NaN as an operand produces a

NaN as the result.

Flosting-Point Arithmetic

Table D-1
Results of Aadition and Subtraction on Infinities
Right

Lert perant
(persngd 00 finite 00

~co -o0 ~co NaN
finite + -0 finitet +00

+00 NaN +00 +oo

-0 Na\J -00 00
finite - +10 finitef]

+00 +c0 +00 NaN

¥ Result is an infinity if the operation overflows.

D-2

Pascal Reference Mol Floating-Point Arithmetic

Table D-2
Results of Multiplication and Division on Infinities

Right
tperard
Lert -
Qerand +0 finite #00
20 +0 0 NaN
finite »* +0 finitet 400
200 NaN 200 20
=0 NaN 20 +0
finite / 400 finitet <0
+00 200 A0 Na'\’
Result is an infinity if the operation overflows.
Mote: Sign of result Is determined by the usual mathematical rules.

D5 Invalid Operations: NaN Values
An invalid operation (such as dividing zero by zero) does not cause a halt.
Instead it returns a special diagnostic value, and execution continues. The
result of an invalid operation is called a AN which stands for "Not a
Number.”

A NaN resulting from an invalid operation is a prgosagating NN This means
that if the NaN is used as an operand in another operation, the result of the
operation will be the same NaN. NaNs can be written out via write or writeln
and read via read or readln; the textual representation is “NaN" (optionally
followed by a quoted string).

The following operations are invalid and return a NaN value:
® co-oa OF co-;(—m)
- 0 * +o0
* 0/0

® +o00/400

* The sin, cos, In, and sqrt functions, when the arguments are inappropriate.
(See the function descriptions in Sections 11.4.4, 1145, 11.4.7, and 11.4.8,
respectively.)

Pascal Reference Manugl Floating-Point Arfthmetic

D6 Integer Conversion Overflow
Integer conversion overflow can occur in trunc or round (see Chapter 11) if the
actual-parameter exceeds the bounds of the predeclared type integer. The
result returned is unspecified.

D.7 Text-Griented 1/0 Conversions
The read, readin, write, and writeln procedures require the conversion of
numbers from decimal to binary on input and from binary to decimal on output.
The error In these conversions Is less than 1 unit of the result's least
significant digit. (In the past, base conversions have rarely been done
accurately in a way that permits simple error bounds to be put on the results.)

Real values appear as character strings In two different contexts: as source
code processed by the compiler (real constants), and in text flles written and
read by Pascal programs. The signed-number syntax of Chapter 1 applles in
both cases. However, the Compiler does not accept Infinities and NaNs.

For read and wrlte, +o s represented by a string of at least two plus signs,
and - by a string of at least two minus signs. NaNs are represented by the
characters “NaN", with an optional leading sign, and an optional tralling quoted
string of characters; an example is

-NaN"12:34°
The character string is sometimes used to provide diagnostic data.
D.8 FPLIB Interface
IMPLEMENTATION NOTE

The IEEE numerics are a proposed standard, and this implementation
may be redesigned for future releases.

D-4

Pascal Reference Mamal Floating-Point Arithmetic

UNIT fplib ; INTRINSIC ; { Use this header for intrinsic
library. }

{ FPLIB floating point library version A53, 29 March 1983 }

{ Copyrignt 1983, Apple Computer Inc. }
{$setc fp_foros

true } { True to compile for OS, false for
Monitor. }

false } { True if special test library. }

false } { True to compile special subset
library for Pascal compiler,
false to compile full library. }

{$setc fp_testversion
{$setc fp_compilersubset :

INTERFACE

{ }
CONST

{ CONSTANTS to parameterize floating point types }

maxfpstring = 80 ; { Declared length of floating point string type. 1}
maxfpreg = 1 ; { Floating point registers are numbered 0..maxfpreg }

{ CONSTANTS for random number generation }
randmodulus = 2147483647 ; { Prime modulus for random number generator. }
{ CONSTANTS for NaN Error Codes }

nansqrt = 1 ; { Invalld Square Root such as sqrt(-1). }

nanadd = 2 ; { Invalid Addgition such as +INF - +INF. }

nanint = 3 ; { Invalid Conversion to Integer. }

nandiv = 4 ; { Invalid division such as 0/0. }

nantrap = 5, { Trapping NaN encountered.

nanunord = 6 ; { Ordered compare of unordered guantities. }
nanproj = 7 ; { Invalid use of Infinity in Projective Mode. }
nanmul = 8 ; { Invalid Multiply such as 0 * INF. }

nanrem = 9 ; { Invalid Remainder or Modulo such as x REM 0. }
nanascout = 10 ; { Invalid binary to ascil conversion parameter. }
nanpromote = 11 ; { Attempt to promote single denorm to double.
nanresult = 12 ; { Attempt to convert nonnormal to single or double. }
nanascbin = 17 ; { Attempt to convert invalid ASCII string. }
nanascnan = 18 ; { Attempt to convert NaN'invalid string’. }

nanascin = 19 ; { Attempt to convert unrepresentable ASCII string. }
naninteger = 20 ; { Attempt to convert NaN valued integer to floating }

D-5

Pascal Reference Manual Floating-Point Arfthmeltic

nanzero = 21 ; { Attempt to create a NaN with zero significand. }
nantrig = 33 ; { Invalld argument to trig routine. }

naninvtrig = 34 ; { Invalid argument to inverse trig routine. }
nanexp = 35 ; { Invalid argument to b"x for constant b.

nanlog = 36 ; { Invalld argument to 1og routine. 1}

nanpower = 37 ; { Invalid argument to x*1 or x“y routine. }
nanfinan = 38 ; { Invalld argument to financial function. }
naninit = 255 ; { uninitlalized storage. }
(e memmmmemmmsssssssseeeo }
TYPE

{ TYPES that are subranges }

fp_regindex = 0..maxfpreqg ; { Index in floating point register array. }
nibble = 0..15 ; { Hex “gigit”. }

fp_bedindex = 0..27 ; { Index in bedstring type. }

fp_ébit = 0..63 ; { For six bit fields. }

byt = 0..255 ; { Unsigned byte. }

bite = -128..+127 ; { Signed byte. }

{ TYPES that are packed arrays }

fourbite = packed array [0..3] of bite ;
eightbite = packed array [0..7] of bite ;
tenbite = packed array {0..9] of bite ;
{ TYPES that represent numbers, infinities, and NaNs }
fp_bite = bite ;
fp_intés = eightbite ; { 64 bit integer with -2°63 as NaN. }
fp_double = eightbite ; { IEEE double precision floating point. }
fp_extended = tenbite ; { 1EEE double extended floating point. }

fp_register = packed record { Floating point register. }
sign : bite ; { 0 for positive, -128 for negatlive }
tag : bite ; { 1i=normal, 2=zero, 4=1inf, 8=NaN, 16=nonnormal }
exponent : integer .
;;gction : eightbite ; { actually significand }

fp_becdstring = packed array [fp_bcdindex] of nibble ; { packed bed string }
fp_string = string[maxfpstring] ; { String parameter. }

D-6

Pascal Reference Marvial Floating-Point Arithmetic

fp_type = (tfp_bite, tfp_integer, tfp_longint, tfp_intes4,
tfp_real, tfp_double, tfp_extended, tfp_register,
tfp_bcdstring, tfp_string) . { Names for number types }

{ TYPES that point }

pfp_bite = fp_blte ;
pfp_integer = integer ;
pfp_longint = longint .
pfp_inte4 = fp_intes ;

pfp_real = " real ;

pfp_double = ~ fp_double ;
pfp_extended = “~ fp_extended ;
pfp_register = ° fp_register ;

pfp_becdstring = © fp_beodstring
pfp_string = fp_string ;
fp_pointer = ~ integer ; { Free pointer to any type. }

fp_procaddress= fp_pointer ; { Actually * procedure with no arguments. }
{ TYPES that provide non-numeric types for floating point use }

xcpn = (invop, overfl, underfl, div0, inxact, cvtovfl, fp_xcpné, fp_xcpn?);
{ Floating point exceptions:
invop..inxact are the IEEE exceptions
ctvovfl is for floating to integer conversion overflow
fp_xcpné and 7 are for future expansion }

excepset = set of xcpn ; { For handling all exceptions at once. }
roundtype = (rnear, rzero, rpos, rneg, rout) ; { Rounding modes. }
fp_cc = (equal, lesser, greater, unord) ; { Results of comparisons. }
fp_kindtype = (zero, nonnormal, norml, inf, NaN) ; { Floating operands. }
fp_format =

(fp_lisa, fp_free. fp_iround, fp_i. fp_f. fp_el. fp_e2, fp_e3.

fpes, fpe).

{ Output formats for binary to ascii routines. }

{ TYPES that provide IEEE arithmetic modes }
rmode rhear .. rneg { 1EEE rounding modes. }
closure = (proj, affine) ; IEEE infinity modes. }

{
denorm = (warning, normalizing) { IEEE denormalized modes. }
extprec = (xprec, sprec, dprec) ; { IEEE rounding precision modes. }

Pascal Reference Marigl Floating-Point Arfttynetlc

{ TYPES that define floating point trapping }

fp_traprecord = record { of information for composite floating point trap }
header : integer ;
{ <0 for atomic floating point operation from F-1ine op code

=0 for composite floating point operation

>0 for atomic Pascal Real arithmetic operation }
es : excepset ; { Exceptions that occurred in this operation. }
procname : pfp_string ; { procname” contains name of procedure }
optypel, optypeZ, resulttype : fp_type ; { Operand and Result types }
opl, op2, result : fp_pointer ; { Operand and Result pointers }
em .

pfp_traprecord = * fp_traprecord ;
{ TYPES that define the FLOATING POINT CONTROL BLOCK, FPCB_ }

fp_statustype = packed record { Non-numeric floating point status }
congition : bite ; { Contains invalld code and fp_cc }
excep : bite ; { Sticky exception-occurred bits for each xcpn }
tmode : bite ; { Scratch }
texcep : bite ; { Last-operation exception-occurred bits }
mode : bite ; { Bit for each IEEE mode }
trap : bite ; { Trap-enabled bits for each xcpn. }
instad : pfp_traprecord ; { fp_traprecord or last F-1ine op code }
end ;

fp_regarray = array [fp_regindex] of fp_register ;

fp_blocktype = record { Floating point status and numeric registers }
status : fp_statustype .
f: fp_regarray ; { FPCB_.BLOCK.F[1] is "FPi" in comments. }

.
’

fpch_type = packed record { Floating point control block. }
case boolean of
false : ({ current definition }
ptrapvector : array [xcpn] of fp_procaddress ;
{ Pascal language floating point trap vector. }
block : fp_blocktype ;

)

true : ({ obsolete definition for compatibility }
trapvector : array [0..7] of ~ longint .
condition : bite ;

excep : bite ;
tmode : bite ;
texcep : bite ;

D-8

Pascal Reference Marual Floating-Foint Arfthmetic

mode : bite ;

trap : bite ;

instad : longint H

f : fp_regarray ;

unused : array [xcpn] of fp_procaddress ;

end ;
p_fpcb_type = © fpcb_t

{$ifc not fp_testversion }

{ TYPES for compatibility with previous releases }
int16 = packed array [0..1] of bite ; int32 = fourbite ; inté4 = fp_intes4 ;
single = fourbite ; double = fp_double ; extended = fp_extended ;
fpregister = fp_ register > fpstring = fp_string ; conoitioncode = fp_cC ;
fpebit = fp_ebit ; fpregarray = fp_regarray ; fpkindtype = fp_kindtype ;
;pcbtyp? a fpcb.type pfpcbtype = p_fpcb_ type :

{-- }
VAR { FLOATING POINT CONTROL BLOCK }

FPCB_ : fpcb_type

{#ifc not fp_compilersubset }

{- memmmmmmnnnee }
{ MICROSEGMENT fpmsub } { Internal assembly language procedures only. }
{ }
{ MICROSEGMENT f32sub }

function £32_minus (x :real) : boolean ; { Sign(x) }

function f£32_integral (x : real) : boolean ; { Is x integral? }
function 32 _fraction (x : real) : real ; { Fraction part(x) }
function f32_ilogb (x : real) : 1nteger s { Exponent(x) }
function f32_scale (x:real ; integer) : real ; { x * 2%1i}
function 32 kind (X : real) fp kindtype .

{ Returns Zero, Norml Inf or NaN; NorNormal classifies as Norml }

{$endc }
function f32_fpcb : p_fpch type ; { Returns aFPCB_ }
{$¢ifc not fp_compilersubset }

Pascal Reference Manial Floating-Point Arithmelic

{ - -=-= }
{ MICROSEGMENT ux80sub }

{ EXTENDED PRECISION ARITHMETIC }

{ PROCEDURES for monadic zero address arithmetic }

procedure fpneg ; { FPO := -FPO.

procedure fpabs ; { FPO := abs(FP0). }

procegure fpint ; { FPO := integral part of FPO }
procedure fpsqrt ; { FPO := sqrt(FPO) }

{ PROCEDURES for dyadic zero address arithmetic }

procedure fpadd ; { FPO := FPO + FP1 }
procedure fpsub ; { FPO := FPO - FP1 }
procedure fpmul ; { FPO := FPQ * FP1 }
procedure fpolv » { FPO := FPO / FP1 }
procedure fprem ; { FPO := FPO rem FP1 }

function fpcom : fp_cc ; { Returns result of FPO compare FP1. }
{ PROCEDURES for two address arithmetic }

function fpints (X : real) : real { integral part of X }
function fpsorts(X : real) : real ; { sqrt(x) }
procedure fpnegd (var x, z : fp_cdouble), {z:=x}
procedure fpabsd (var x, z : fp_double) ; {z := abs(x) }
procedure fpintd (var X, z : fp_double) { z := integral part of X }
procedure fpsqrta(var x, z : fp_double) ; { z := sqrt(x) }
procedure fpnegx (var x, z : fp_extended) ; { z := -x }
procedure fpabsx (var x, z : fp_extended) ; { z := abs(x) }
procedure fpintx (var X, z : fp_extended) ; { z := integral part of X }
procedure fpsqrtx(var x, z : fp_extended) ; { z := sqrt(x) }
{ PROCEDURES for three address arlthmetic }
function fpadds (X y :real) :real; {2z :=x~+y}
functionfpsubs(X, y:real):real; {z:=x~-y}
function fpmuls (X, y :real) :real ; { Z :=x*y }
functionfpdivs(X, y:real):real; {Z:=X/Yy}
function fprems (X y :real) :real; {Z:=Xxremy }
function fpcoms (X y : real) : fp.cc
procedure fpaddd (var X, y, 2z : fpdounle) {Z2:=x+y}
procedure fpsubd (var X, y, z : fp double) ; {z:=x-y}
procedure fpmuld (var X, y, 2 : fpdouble) ; {z :=x*y }

D-10

Pascal Reference Manual Floating-Point Arithmetic

procedure fpoivd (var x, y, 2z : fpdouble) ; {2 :=x/y}
procedure fpremd (var X, y, 2 : fp double) ; {Z:=xremy }
function fpcomd (var x, y fp_double) : fp_CC
procedure fpaddx (var x, y, 2 : fp extended) {zZ :=x+Yy }
procedure fpsubx (var X, y, 2 : fpextended) ; {Z :=x -y }
procedure fpmulx (var x, y, 2 : fpextended) ; {2 :=x*y}
procedure fpdivx (var x, y, 2 : fpextended) ; {z:=Xx/y}
procedure fpremx (var X, y, 2 : fpextended) {z:=XxTremy }
function fpcomx (var x, y fp_extended) : fp cc ;

{ PROCEDURES for type conversion }

{ PROCEDURES for FPO := X }
procedure wmovefp (x : integer)
procedure lmovefp (X : longint)
procedure smovefp (X : real)
procedure dmovefp (var x : fp_double) ;
procedure xmovefp (var X : fp_extended) ;

{ PROCEDURES for FP1 := X }
procedure wmovefpl { X : integer)
procedure 1movefpl (X : longint)
procedure smovefpl (X : real)
procedure omovefpl (var x : fp_double) :
procedure xmovefpl (var x : fp_extended) ;

{ PROCEDURES for Z := FPO }
function fpmovew : integer ;
function fpmovel : longint ;
function fpmoves : real ;
procedure fpmoved (var z : fp_double) :
procedure fpmovex (var z : fp_extended) ;

{ PROCEDURES for Z := X }
function xmovew (var x : fp_extended) : integer ;
function dmovew (var x : fp_double) : integer :
function xmovel (var x : fp_extended) : longint ;
function dmovel (var x : fp_double) : longint ;
function xmoves (var x : fp_extended) : real ;
function omoves (var x : fp_double) : real ;
procedure wmoved (X : integer ; var z : fp_double) ;
procedure lmoved (x : longint ; var z : fp_double) :

D-11

Pascal Reference Manal Floating-Point Arithmetic

procedure smoved (X :real var z : fp_double) :
procedure xmoved (var x : fp_extended ; var z : fp_double) ;
procedure wmovex (X : integer ; wvar z : fp_extended) :
procedure lmovex (X : longint ; var z : fp_extended) ;
procedure smovex (X : real : var z : fp_extended) ;
procedure dmovex (var X : fp_double ; var z : fp_extended) ;

procedure cmovefp (var b : fp_bedstring) ;

procedure i64neg (var x, z : fp_inte4) ; { z := -x }

function x80_integral(var x : fp_extended) : boolean ;

procedure x80_break (var X, intx, fracx : fp_extended ;
var izero, fzero : boolean) ;

{$endc }

function x80_fpcb : p_fpcb_type ; { Returns aFPCB_ }

{ i -}
{ MICROSEGHENT ufpm }

{ PROCEDURES for binary to ascil conversion }

procedure fp_zero_ascil
(sign : boolean ; before, after : integer ; format : fp_format ;
var s : fp_string ; vaer error : boolean) ;

procedure fp_inf_ascili (sign : boolean ; width : integer .
var s : fp_string ; var error : boolean) ;

{ PROCEDURES for exceptions }

function getxcpn (e : xcpn) : boolean ;
procedure setxcpn (e : xcpn ; b : boolean) ;
procedure getexcepset (var es : excepset) ;
procedure setexcepset (es : excepset) ;
procedure gettexcepset (var es : excepset) :
procedure settexcepset (es : excepset) .
procedure clrexcepset ;

{ PROCEDURES for trap-enabled bits in FPCB_.BLOCK.STATUS.TRAP }

procedure gettrapset (var es : excepset) ;
procedure clrtrapset ; { Disables all traps. }

{ PROCEDURES for floating point trapping }
procedure fp_postoperation (r : fp_traprecord) ;

{ Imitates effect of atomic floating point operation by using r.es
as the set of exceptions generated by a composite operation }

D-12

Pascal Reference Marvial Floating-Point Arlithmetle
Rsire not 1 comraersioser o0)7
{ - - ~--emmeec)
{ MICROSEGMENT ux80 }
{ PROCEDURES that tell about FPO }

function fpminus : boolean ; { FPO has sign bit on? }
function fpkind : fp_kindtype ; { Returns type of argument in FPO. 1}

{ PROCEDURES that tell about extended X }

function fpmlnusx (var x : fp_extended) : boolean ; { sign bit? }
function fpkindx (var x : fp_extended) : fp kinatype ; { king? }

procedure copysign (var %, y, z : fp_extended) ;
{ z gets y with sign of x.
procedure infinity (var z : fpextended) ; { z := <INF. }

procedure errornan (error : byt ; var z : fp_extended) .
{ Creates a NaN in z with error code set, other fields
zero, and signals Invop xcpn. }
procedure createnan (trap : boolean ; extension : fp_6bit ;
error, index : byt ; var z : fp_extended) ;
{ Creates a NaN in z with 23 significant bits defined. }
procedure checknan (var x, z : fp_extended) ;
{ z := x but 1f x 1s a trapping NaN, the trapping bit of z is
turned off and the Invalid flag is set. }
procedure NaN_parts (var x : fp_extended ;
var trap : boolean ; var extension : fp _ebit
var error, index, indexz : byt ; var lowpart : fp_procaddress)
{ Splits up x into its component parts. lowpart gets the four
least significant bytes. }
procedure choosenan (var x, y, z : fp_extended) :
{ xor y mst be aNaN. 2z is set to whichever has the greater
Error field. 2z is non trapping. If either x or y is trapping.
the Invalid flag is set. }

{ PROCEDURES that act on numbers but do not use arithmetic }
procedure fpswap ; { Exchange FPO and FP1 }

procedure blockprelude (var fpb : fp_blocktype) ;
procedure blockpostlude (var fpb : fp_blocktype ; var trapcoming : boolean):

{ }

D-13

Pascal Reference Manal Floating-Foint Arfthmetic

{ MICROSEGMENT uxB0elem }
{ PROCEDURES that tell about extended X }

function ilogb (var x : fp_extended) : integer ; { exponent of x }
{ PROCEDURES that produce extended Z }

procedure fpscalex {2z :=x+*2"1}
(var x : fp_extended ; 1 : integer ; var z : fp_extended) ;
procedure scalb {2z :=x=2" for integral y }

(var x, y, 2 : fp_extended) ;
{ elementary functlion PROCEDURES that require initelem }

procedure exp2 (var X, z : fp_extended) ; {2z :=2"%x }

procedure expe (var x, z : fp_extended) ; { z := e"X

procedure exp21 (var X, z : fpextended) ; {z :=2"x -1}
procedure log2 (var x, z : fp_extended) ; { 2z := log(x)/1log(2) }
procedure loge (var X, z : fp_extended) ; { z := log(x)/log(e) }
procedure 10g10 (var x, z : fp_extended) ; { z := 1log(X)/100(10) }
procedure 1ogiz2 (var X, Z @ Tp_extended) ; { z := 10g2(1+x) }

procedure xtoy (var X, y, z : fp extended) ; { z := X"y }

procedure compound (var r, p, z : fp_extended) ; { z := (1+r)p }
procedure annuity (var r, p, z : fpextended) ; {z := (1 - (i*+r)"-p)/r }

procedure postdyadic(name : fp_string ; var X y.z : fp_extended) .
procedure xpwry (var x : fp_extended ; y : integer ; var z : fp_extended);
procedure xexpy (var x, y , z : fp_extended) ;

{ MICROSEGMENT ux80trig }

procedure pivalue (var z : fp extended) ;- { 2z :=pl }

procedure sinx (var x, z : fp extended) ; { z := sin(x) }

procedure cosx (var x, z : fp_extended)

procedure tanx (var x, z : fp_extended) ;

procedure asin (var x, z : fp_extended) ; { z := arcsin(x) }

procedure acos (var x, z : fp_extended) ;

procedure atan (var x, z : fp_extended) ;

{$endc}

{rmmm e - -}

D-14

Pascal Reference Marwal Floating-Point Arithmetic

{ MICROSEGMENT uf32 }

function f32_pwrten(n :integer): real ; { Does pwrten(n). }

function f32 exp (X : real) : real ;

function f32_In (X : real) : real ;

function f32_sin (x : real) : real ;

function f32 cos (X : real) : real ;

function f32_atan (X : real) : real :

procedure f32_trap ; { Floating Point Trapping for Pascal Real Arithmetic }

{ }
{ MICROSEGMENT f32in }
{ simple PROCEDURES to convert ascil to binary }

function p_f32 (var s : fp_string) : real ;
function f32_r r (var f : text) : real ; { Does read(f, real) }

{ general PROCEDURES to convert ascli to binary }

procedure read f32 (var Infile : text ; var Readchars : fp_string ;
var Z : real ; var Error : noolean) o { Z. Readchars get input }
procedure asciireal
(Filelo : boolean ; var Infile : text ;
var S :fp_string ; First Last : 1nteger ; var Next : integer ;
var Z : real ; var Error : boolean)

O oo }
{ MICROSEGMENT f32out }

{ simple PROCEDURES to convert binary to ascii }

procedure f32_w e (var f : text ; x : real ; width : integer) ;
{ Does write(f,x:width) }
procedure f32_w f (var f : text ; x : real ; width, after : integer) ;
{ Does write(f, x:width:after) }
{$ifc not fp_compilersubset }

{ general PROCEDURES to convert binmary to ascii }
procedure f32_nan_ascii (x : real ; width : integer ;
var s : fp_string ; var error : boolean) ;

procedure f32_f_ascii (x : real ; beforepoint : boolean ; after : integer;
var s : fp_string ; var error : boolean) :

D-15

Fascal Rererence NMaral Floating-Foint Arithmellc

procedure f32_e_ascii (x : real ; before, after, ew : integer ;
var s : fp_string ; var error : boolean) ;

{ MICROSEGMENT x80in }
{ general PROCEDURES to convert ascii to binary }

procedure pmovefp (var S : fp_string ; First, Last : integer ;
var Next : integer ; var Error : boolean) ; { FP0 := S }

procedure ascilmovex (Fileio : boolean ; var Infile : text ;
var S : fp_string ; First, Last : integer ; var Next : integer :
var x : fp_extended ; var Error : boolean) ;

{ MICROSEGMENT x80out }
{ general PROCEDURES to convert binary to ascii }

procedure x80_nan_ascii (var x : fp_extended : width : integer :
var s : fp_string ; var error : boolean) ;
procedure x80_1_ascii (var x : fp_extended ;
var s : fp_string ; var error : boolean) ;
procedure x80_ir _ascil (var x : fp_extended :
var s : fp_string ; var error : boolean) ;
procedure x80_f_ascil (var x : fp_extended ; beforepoint : boolean
after : integer ;
var s : fp_string ; var error : boolean) ;
procedure x80_e_ascii (var x : fp_extended ; before, after, ew : integer ;
var s : fp_string ; var error : boolean) :
procedure x80_free_ascii (var x : fp_extended ;
width, maxsig : integer ; format : fp_format ;
var s : fp_string ; var error : boolean) ;
procedure x80_ascil (var x : fp_extended ;
width, Before, After : integer ; Format : fp_Format ;
var S : fp_string ; var Error : boolean) ;

procedure x_eform (var x : fp_extended ; n : integer ;

var sigma : integer ; var s : fp_string ; var e : integer) ;
procedure x_iform (var x : fp_extended :

var sigma : integer ; var s : fp_string ; var e : integer) ;

D-16

Pascal Rererence Maal Floating-Point Arfthmetlc

{ MICROSEGHMENT fplib2 }
{ PROCEDURES that act on numbers but do not use arithmetic }

procedure movefp (var x : fp_register) ; { FPO := x }
procedure movefpi(var x : fp_register) ; { FP1 := x }
procedure fpmove (var z : fp_register) ; { z := FPO }
procedure fpimove(var z : fp_register) ; { z := FP1 }

{ PROCEDURES for 64 bit integers }

procedure i64abs (var x, z : fp_inté4) {2z :=abs(x) }
procedure lesmfp (var x : fp_intes4),
procedure ieamfpl (var x : fp_inté4)
procedure fpmovelé4 { var z : fp inte4)

{ PROCEDURES that produce extended Z }
procedure logb (var x, z : fp_extended) ; { 2 := exponent(x). 1}
procedure nextafter (var x, y, z : fp_extended) ;
{ z gets the next number from X in the direction y,
observing current rounding precision mode. }
{ elementary function PROCEDURES that require initelem }

procedure evalue(var z:fpextended) ; {z :=e}

procedure xtol {z2:=x"1 1}

(var x : fp_ extended i: 1nteger ; var z : fp_extended) ;
procedure expel (var x, 2 fp extended Y {z :=expe(X)-1}
procedure logle (var x, z : fp_extended) ; { z := loge(i+x) }
procedure sinhx (var x, 2 : fp_extended) ; { z := sinh(x) }
procedure coshx (var X, 2 : fp extended) ; { z := cosh(x) }
procedure tanhx (v r X, Z : fpextended) ; { z := tanh(x) }
procedure abs2x (var X, y, z : fp_extended) ; { z := abs(x+1ly) }
procedure atan2x(var x, y, z : fp_extended) ; { z := atan(x/y) }

{ simple PROCEDURES to convert ascii to binary }

procedure pmoved (var s : fp_string . var x : fp_double) :
procedure pmovex (var s : fp_string ; var x : fp_extenced) ;

{ simple PROCEDURES to convert binary X to ascii § in fp_lisa format }
{ Comments indicate logical length of S. }

procedure dmovep (var x : fp double ; wvar s : fp string). { 24}
procedure xmovep (var x : fp_extended ; var s : fp string) ; { 27 }

D-17

Pascal Reference Mangi Floating-Foint Arfthmetic

{ PROCEDURES for use by Basic and other language processors }

function nextrandom (lastrandom : longint) : longint ;

(* Returns random longint with 1 <= nextrandom <= ranomodulus *)
procedure x80_maxform (var x : fp_extended ;

var slgma : integer ; var s : fp_string ; var e : integer) ;
procedure x80_eform (var x : fp_extended

var sigma : integer ; var s : fp_string ; var e : integer) ;

{ PROCEDURES for exceptions }

procedure excepname (e : xcpn ; var name : fp_string) ;
{ Returns exception name: after excepname(invop, name),

name = 'Invop’ }
{$enac }

{ PROCEDURES to get and set IEEE arithmetic modes }

function getround : rmode ;
procedure setround (X : rmode) ;
{sifc not fp_compilersubset }
function getclos : closure ;
nrocedure setelns (x : olosure)
function getdnorm : denorm ;
procegure setdnorm (X : denorm)
function getprec : extprec ;
procedure setprec (X : extprec) .

{ PROCEDURES for trap-enabled bits in FPCB_.BLOCK.STATUS.TRAP }
function gethalt (e : xcph) : boolean ;
procedure sethalt (e : xocpn ; b : boolean) ;
procedure settrapset (es : excepset) :

{ PROCEDURES for Pascal trap handlers in FPCB_.PTRAPVECTOR }
function gettrap (e : xcpn) : fp_procaddress ; { FPCB_.ptrapvector[e] }
procedure settrap (e : xcpn ; f : fp_procaddress)

{ FPCB_.ptrapvectorie] := f }

{$endc }

{- }

D-18

Pascal Reference Marnual Floating-Point Arithmetlc

{ MICROSEGMENT uinitfp }
{ FLOATING POINT INITIALIZATION }

procedure initfp ; { Initialize the floating point control block FPCB_. }
{$ifc not fp_compllersubset }

procegure initfptrap ; { Initialize maximal floating point trapping. }
procedure initelem ; { Initialize FPCB_ and elementary functions. }

{ PROCEDURES that are noops, used to load segments }

procedure ldfpmodes ; { in segment fpmodes }
procedure 1df32 ; { in segment 1df3z }
procedure 10x80 ; { in segment x80 }
procedure ldxsoelem ; { in segment x80elem }

- et o s o o 2 o o S B o R . P e A S A S O S A S i S £ 2 S S 0 i O _}

{$endc }

D-19

Pascal Reference Manual Floating-Point Arlthmetic

D.9 Bibllography
The following articles contain detalled information and discussion of the

proposed IEEE floating-point standard. (Articles are listed in order of
importance.)

* “A Proposed Standard for Binary Floating-Point Arithmetic”, ££F
Comouwter; Vol 14, No. 3, March 1981,

s Coonen, J.: “An Implementation Guide to a Proposed Standard for
Floating-Point Arithmetic, /£££ Computer, Vol. 13, No. 1, January 1980.

* ACM SIGNUM Newsletter, speclal issue devoted to the proposed IEEE
floating-point standard, October 1979,

D-20

El

E3

E6
E7

ES8

E9

Appendix E

QuickDraw
About This Appendix E-1
About QuickDraw - E-2
E.2.1 How ToUSE QUICKDIAW ..covemeeniiiiiiitacrrerroracrataneercreasasnestenannsnes E-3
E.2.2 QUICKDIaw Data TYPES ...ttt crrecenecnnn e cnenenes E-4
The Mathematical Foundation of QuickDraw E-4
E3.1 TheCoordinNate Plamneccciiiriiiiinintrieciieseanee e reseeeeecanees E-4
3.2 POINES coioeiieierrecrtttrer e e et e cn e s e rs et a e e ettt s s e e ennae
E.3.3 Rectangles
[SR = T [U
Graphic Entities
E41 TREBILIMA0E ..ccouiiieiiiimitiiiieer st s sessesa s s aanaes
E.4.2 TheBitmap
LI N T o< 17 3 SO
EBA CUISOTS ..ooeeneaeeemetnacntssereceaneisisenssaensssssesntneassessasssssssssnnsnras
The Drawing Environment: GrafPort E-15
ES51 PenCharacteristiCs. ..o eeiiiniciiieiiec et neees E-18
E.5.2 TextCharaCteristiCscoviiiimiiieinniiiricietnncneenrer e cceeneaee E-20
Coordinates in GrafPorts E-22
General Discussion of Drawing . E-24
E7.1 TransferMOgES ...cuuieeeeeeiiieeiicercrirrennee e ssenne s sscss e e s e nasenaee E-26
E.7.2 DrawinginColor....cccuuiiiiiiiiimiieintiiinerese st cennssenessene s E-28
Pictures and Polygons...... E-28
E.8.1 PICIUIES ..ciiiiiiciieiiiiintninccreenreeneenentereeessnnne s s e s s esssesene E-29
EB.2 POLYQONS.cueene i iiirinciiriancereunineranriereeeneesssanasrennnensssssesnnnanns E-30
QuickDraw Routines E-31
E91 GrafPort ROULINES.....cooiviiiimiiiiiireiecninenire st snsr e snseenanas E-32
£.9.2 Cursor-HandlingROUtINESooiiiiiiiiiniiiterine e E-36
E.S3 PenandLine-DrawingROULINESccooiiiimiiiiiniiiiiiiinicciecaaae E-37
ES.l Text-DrawingROULINGESccccivrmiieiireeiiniectnirnneencrseeeenneens E-40

£.95 DrawinginColor....ccuueeueeireeeeeeeeeeeeeeeeeceaes eeseneatetananas E-43

Pascal Reference Meanus! GrickOraw

E.9.6 Calculations withRectanglescccccecrmcreeeemceenerrenennrerenenenans E-43
E.8.7 Graphic Operations onRECLANGIes.....c.u.ieeeiiimiiiimiierccnerieaaneees E-46
E.9.8 Graphic Operations BnOValScccciiiviimciencerecieereeerneneeeeraeenans E-47
£.9.9 Graphic Operations on Rounded-Corner Rectanglesccouveeneeeees E-a7
E.9.10 Graphic Operations on Arcs and WEAgESccevvrmererminvemneneecenns E-49
E.9.11 Calculations WithRegIONScccovrivireiiiiiicc s E-51
E.9.12 Graphic Operations onREGIONScccveemeiirreemrrareereemnnaeeeeesnaanae E-55
£.9.13 Bit Transfer Operations ... reirircrirerr e ese e ee e e e eeeeaas E-56
E.9.14 PICLUTES ..o ccececreeer et ceecm e s e se s s e sesen s enen e e E-58
£.9.15 Calculations with POlygONS.....c.ccuiiineiiimcimnniresenssreessercsenenes E£-59
£.9.16 Graphic Operations onPOLYGOMSeeeeeeeeacemnceraraeecreeerrerreeeenennens E-61
£.9.17 Calculations WithPOINtscoivviiriimiiiineiiiiieeren e E-62
E.9.18 Miscellaneous ULHHLIES . .o iree et E-64
E.10 Customizing QuickDraw Operations E-67
E.11 Using QuickDraw from Assembly L anguage E-71
E11T Constants ..o E-71
E.11.2 DA TYPES coeeecieienneerserretommreereceacnnaesaranssssseemmmmsseenesseseansen E-71
E.11.3 Global Variablescee et E-73
E.11.4 Procedures and FunCtions ... E-73
E.12 Graf3D: Three-Dimensional Graphics E-75
E.12.1 HowGraf3DisRelated to QUICKDIAWccvveiemeearireeeaercannennes E-75
E.12.2 Features of GIaf3Dcveciviiiiiniimmnnnirniniesnernessse e esennses E-75
E.12.3 Graf30Data TYPES .ccucrerierernnmresrrirtanesssesesesssareensessrsrssssnsanss E-76
E.12.4 Graf3D Procedures and Functionsooiiiiiinninnnneee E-77
E.13 QuickDraw Interface E-80
(I Q€1 ¢ 1 I (0175 § i o -2 E-89
E.14 QuickDraw Sample Programsc.ccccveeemeenneeees E-91
E.14.1 QDSAMPLE coivvitiiiiiiiieiiitiiiiietticieiite et e ee s s essesaeennsesesasses E-91
L LT =16 - E-101
E.15 QDSupport E-106

£.16 Glossary . E-108

QuickDraw

E.1 About This Appendix

Tnis appendix describes QuickDraw, a set of graphics procedures, functlons,
and data types that allows a Pascal or assembly-language programmer of Lisa
to perform highly complex graphic operations very easlly and very quickly. It
covers the graphic concepts behind QuickDraw, as well as the technical
detalls of the data types, procedures, and functions you will use in your
programs.

we assume that you are familiar with the Lisa Workshop Manager, Lisa Pascal,
and the Lisa Operating System's memory management. This graphics package
is for programmers, not end users. Although QuickDraw may be used from
elther Pascal or assembly language, all examples are given in thelr Pascal
form, to be clear, conclse, and more intuitive; Section E.11 describes the
detalls of the assembly-language Interface to QuickDraw.

The appendix begins with an introduction to QuickDraw and what you can do
with it (Section E.2). It then steps back a little and looks at the mathemat-
ical concepts that form the foundation for QuickDraw: coordinate planes,
points, and rectangles (Section E.3). Once you understand these concepts, read
on to Section E.4, which describes the graphic entities based on them--how
the mathematical world of planes and rectangles Is translated into the

physical phenomena of light and shadow.

Then comes some discussion of how to use several graphics ports (Section E.6),
a summary of the basic drawing process (Section E.7), and a discussion of two
more parts of QuickDraw, pictures and polygons (Section E.8)

Next, in Sectlon E.9, there's a detailed description of all QuickDraw proce-
dures and functions, thelr parameters, calling protocol, effects, side effects,
and so on--all the technical information you'll need each time you wrlte a
program for the Lisa.

Following these descriptions are sections that will not be of interest to all
reaciers. Speclal information is given in Section E.10 for programmers who
want to customize QuickDraw operations by overriding the standard drawing
procedures, in Section E.11 for those who will be using QuickDraw from
assernbly language, and in Section E.12 for those interested in creating
three-dimensional graphics using the Graf3D unit.

Finally, there are listings of the QuickDraw Interface (Section E.13), two
sample programs (Section E.14), and the QDSupport unit (E.15); and a glossary
that explains terms that may be unfamiliar to you (Section E.16).

Pascal Rererence Maral GQuUickDraw

E.2 About QuickDraw
QuickDraw allows you to organize the Lisa screen into a number of indlvidual

areas. within each area you can draw many things, as llustrated in Figure

E-1.
Text Rectangles Ovals
Boid
OO0
Underline
Builine Y
RoundRects Paolygons Redgions
Figure E-1
Samples of QuickDraw's Abllities
You can draw:

* Text characters In a number of proportionally-spaced fonts, with varlations
that include boldfacing, italicizing, underlining, and outlining.

* Straight lines of any length and width.

* A varlety of shapes, either solid or hollow, including: rectangles, with or
without rounded corners; full circles and ovals or wedge-shaped sections;
and polygons.

¢ Any other arbitrary shape or collectlon of snapes, agaln either solid or
hollow.

* A picture consisting of any combination of the above ltems, with just a
single procedure call.

In addition, QuickDraw has some other abilities that you won't find in many
other graphics packages. These abllitles take care of most of the “house-

Pascal Reference Manual QuickDraw

keeping”--the trivial but time-consuming and bothersome overhead that's
necessary to keep things in order.

* The ability to define many distinct @ores on the screen, each with its own
complete drawing environment--its own coordinate system, drawing
location, character set, location on the screen, and SO on. You can easily
switch from one such port to another.

* Full and complete cljgoing to arbitrary areas, so that drawing will occur
only where you want. It's like a super-duper coloring book that won't let
you color outside the lines. You don‘t have to worry about accidentally
drawing over something else on the screen, or drawing off the screen and
destroying memory.

* Off-screen drawing. Anything you can draw on the screen, you can draw
into an off-screen buffer, so you can prepare an image for an output
device without disturbing the screen, or you can prepare a picture and
move it onto the screen very quickly.

And QuickDraw lives up to its name! It's very fast. The speed and
responsiveness of the Lisa user Interface are due primarily to the speed of the
QuickDraw package. You can do good-quality animation, fast interactive
graphics, and complex yet speedy text displays using the full features of
QuickDraw. This means you don't have to bypass the general-purpose
QuickDraw routines by writing a lot of special routines to improve speed.

E.2.1 How To Use QuickDraw
QuickDraw can be used from either Pascal or MC68000 machine language. It
has no user Interface of its own.

If you're using Pascal, you must write a Pascal program that includes the
proper QuickDraw calls, compile it against the files QD/AQuickDraw.0BJ and

QD , link it with the flles listed in QD/QDSWff.TEXT, and

execute the linked object file.

If you're using machine langUage, lyour program should include the proper g
QuickDraw calls, and JINCUUDE the flle QD/GRAFTYPES.TEXT. Assemble the | |
program, link it with the flles listed in QD/QDSWUFE.TEXT, and execute the] \
linked object file.

A programming model, QDSample, Is included with the Workshop software in
the file QD/QDSample. TEXT (listed in Section E.14.1); it shows the structure of
a properly organized QuickDraw program. what's best for beginners 1s to read
through the text, and, using the superstructure of the program as a “"shell”,
modify It to sult your own purposes. Once you get the hang of writing
programs inside the presupplied shell, you can work on changing the shell
itself.

Note that all flles related to QuickDraw are prefixed by “"QOD/".

QuickDraw includes only the graphics and utility procedures and functions
you'll need to create graphics on the screen. Procedures for dealing with the

E-3

Pascal Reference Marval QuickDraw

p

“7mouse, cursors, keyboard, and screen settings, as well as those allowing you to

} generate sounds and read and set clocks and dates, are described iIn Appendix
F., Hardware Interface.

QuickDraw defines three general data types, QDByte, QDPU, and QDHandle:

type QDByte = -128..127
QoPtr = “QDByte
QDHandle = “QDPtr

Other data types are described throughout this appendix In the sections in
which they're relevant. For a summary of all QuickDraw data types, see
Section E.13.2.

E.3 The Mathematical Foundation of QuickDraw
To create graphics that are both precise and pretty requires not super-charged
features but a firm mathematical foundation for the features you have. If the
mathematics that underlie a graphics package are irprecise or fuzzy, the
graphics will be, too. QuickDraw defines some clear matheratical constructs
that are widely used in its procedures, functions, and data types: the coordl-
nate plane the polny, the rectangle and the region

E3.1 The Coordinate Plane
All Information about locatlon, placement, or movement that you give to
QuickDraw Is in terms of coordinates on a plane. The coordinate plane is a
two-dimensional grid, as Iustrated in Figure E-2.

-32768
Ar

-32768 ¢ -+ 32767 -/

H

¥ G
32T

Figure E-2
The Coordinate Plane

Pascal Reference Marial QuickDraw

There are two distinctive features of the QuickDraw coordinate plane:
* All grid coordinates are integers.
* All grid lines are Infinitely thin.

These concepts are important! First, they mean that the QuickDraw plane is
finite, not Infinite (although it's very large). Horizontal coordinates range
from -32768 o +32767, and vertical coordinates have the same range.

Second, they mean that all elements represented on the coordinate plane are
matheratically pure. Mathematical calculations using integer arithmetic will
produce intuitively correct results. If you keep In mind that grid lines are
infinitely thin, you'll never have “endpoint paranola”--the confusion that
results from not knowing whether that last dot is included In the lne.

E.3.2 Polnts
On the coordinate plane are 4,294,967,296 unique points. Each point is at the
intersection of a horizontal grid line and a vertical grid line. As the grid lines
are infinitely thin, a point is infinitely small. Of course there are more points
on this grid than there are dots on the Lisa screen: when using QuickDraw you
associate small parts of the grid with areas on the screen, so that you aren't
bound into an arbitrary, limited coordinate system.

The coordinate origin (0,0) is In the middle of the grid. Horlzontal coordinates
increase as you move from left to right, and vertical coordinates increase as
you move from top to bottom. This Is the way both a TV screen and a page
of English text are scanned: from the top left to the bottom right.

You can store the coordinates of a point in a Pascal variable whose type Is
defined by QuickDraw. The type Point is a record of two integers, and has
the following structure:

type VHSelect = (V,H);
Point = record case integer of

0: (v: 1integer:
h: integer);

1: (vh: array [VHSelect] of integer)

end;

The varlant part allows you to access the vertical and horizontal components
of a point either individually or as an array. For example, if the variable
goodPt were declared 1o be of type Point, the following would all refer to the
coordinate parts of the point:

goodPt.v goodPt.h
goodPt.vhiV] goodPt .vhiH]

E-5

Pascal Reference Manal QuickDraw

E.3.3 Rectangles
Any two points can define the top left and bottom right corners of a
rectangle. As these points are infinitely small, the borders of the rectangle
are infinitely thin (see Figure E-3).

Left
1
Top »
Bottom
]
Right
Figure E-3
A Rectangie

Rectangles are used to define active areas on the screen, to assign coordinate
systems to graphic entities, and to specify the locations and sizes for various
drawing commands. QuickDraw also allows you to perform many
mathematical calculations on rectangles--changing their sizes, shifting them
around, and so on.

NOTE

Remember that rectangles, like polnts, are mathematical concepts that
have no direct representation on the screen. The assoclation between
these conceptual elements and thelr physical representations is made by
a bitmap, described below.

E-6

Pascal Refererce Marxal QuickDraw

Tnia data type for rectangles Is Rect, and consists of four integers or two
points:

type Rect = record case integer of

0: (top: integer;

left: integer;
] bottom: integer;
F _ right: integer).

U 1: (topLeft: Point;
botRight: Point)

eno;
Again, the record variant allows you to access a variable of type Rect either
as four boundary coordinates or as two diagonally opposing comer points.

Combined with the record variant for points, all of the following references to
the rectangle named bRect are legal:

bRect {type Rect}

bRect . topLeft bRect .botRight {type Point}

bRect.top bRect .1eft {type integer}
bRect . toplLeft.v bRect.toplLeft.h {type integer
bRect.topLeft.vh[V] DRect.topLeft.vh[H] {type integer}
bRect.bottom bRect.right 1type integer}
bRect .botRight.v bRect .botRight.h type integer}

bRect.botRight.vh[V] DRect.botRight.vh[H] {type integer}
WARNING

If the bottom coordinate of a rectangle is equal to or less than the top,
or the right coordinate is equal to or less than the left, the rectangle
is an empty rectangle (i.e., one that contains no bitsh

E.3.4 Regions
Unlike most graphics packages that can manipulate only simple geometric
structures (usually rectilinear, at that), QuickDraw can gather an arbitrary set
of spatially conerent points into a structure called a reglon, and perform
complex yet rapid manipulations and calculations on such structures. This
remarkable feature not only will make your standard programs simpler and
faster, but will let you perform operations that would otherwise be nearly
impossible; it Is fundamental to the Lisa user interface.

Pascal Reference Marug! QUlckDraw

You define a region by drawing lines, shapes such as rectangles and ovals, or
even other reglons. The outline of a reglon should be one or more closed
loops. A region can be concave Or convex, can consist of one area or many
disjoint areas, and can even have "holes” in the middle. In Figure E-4, the
region on the left has a hole in the middle, and the region on the right
consists of two disjoint areas.

. 4
T
Tt
it

o
Tt

[w
w2

Figure E-4
Reglons
Because a region can be any arbitrary area or set of areas on the coordinate
plane, It takes a variable amount of information to store the outline of a
region. The data structure for a region, therefore, Is a variable-length entity
with two fixed flelds at the beginning, followed by a variable-length data

fiela:
type Reglon = record
N rgnSize: integer;
rgnBBox: Rect;
[J— {optional region definition data)
e end;
/’ The rgnSize fleld contalns the size, In bytes, of the region variable. The

rgnBBox field is a rectangle which completely encloses the region.

The simplest region is a rectangle. In this case, the rgnBBox field defines the
entire region, and there is no optional region data. For rectangular regions (or
empty regions), the rgnSize field contains 10 (two bytes for rgnsize, plus
eight for rgnBBox).

The region definition data for nonrectangular regions is stored in a compact
way which allows for highly efficient access by QuickDraw procedures.

Pascal Reference Maral QulckOraw

As reglons are of varlable size, they are stored dynamically on the heap, and
the Operating System's memory management moves them around as their sizes
change. Being dynamic, a reglon can be accessed only through a_pointer: but
when a region Is moved, all pointers referring to it must be updated. For this
reason, all regions are accessed through sanes which polnt to one master
pointer which in turn points to the reglon.

type RgnPtr “Reglon;
RgnHandle = “RgnPtr;
when the memory management relocates a region's data in memory, it updates
only the RgnPtr master pointer to that region. The references through the
master pointer can find the region’s new home, but any references pointing
directly to the region's previous position In memory would now point at dead
bits. To access indiviaual fields of a region, use the region handle and double

indirection:
myRgn*“.rgnSize ze of reglon whose handle is myRgn}
myRgn"* . rgnBBoX rectangle enclosing the same region}
myRgn" " . TgnNBBOX. top nimum vertical coordinate of all points
in the reglon}
myRoN* . rgnBBox {semantically incorrect; will not compile if
myRgn s a rgnHandle}

Regions are created by a QuickDraw function which allocates space for the
region, creates a master pointer, and returns a region handie. When you're
done with a region, you dispose of it with another QuickDraw routine which
frees up the space used by the region, Only these calls allocate or deallocate
regions; do no¢ use the Pascal procedure new to create a new region!

You specify the outline of a region with procedures that draw lines and
shapes, as described in Section E.9, QuickDraw Routines. An example is given
in the discussion of CloseRgn in Section E.9.11, Calculations with Regions.

Many calculations can be performed on reglons. A reglon can be “expanded”
or "shrunk™ and, given any two regions, QuickDraw can find their union,
intersection, difference, and exclusive-0OR; it can also determine whether a
given point or rectangle intersects a given region, and so on. There is of
course a set of graphic operations on regions to draw them on the screen.

E.4 Graphic Entities
Coordinate planes, points, rectangles, and reglons are all good mathematical
models, but they aren't really graphic elements--they don't have a direct
physical appearance. Some graphic entltles that do have a direct graphle
interpretation are the o/t Image bitmag pattern and cursor This section
describes the data structure of these graphic entities and how they relate to
the mathematical constructs described above.

E4.1 The Bit Image
A bit image Is a collection of bits in memory which have a rectilinear
representation. Take a collection of words in memory and lay them end to

E-9

Pascal Reference Marvial QuickOraw

end so that bit 15 of the lowest-numbered word is on the left and bit 0 of
the highest-numbered word Is on the far right. Then take this array of bits
and divide It, on word boundaries, Into a number of equal-size rows. Stack
these rows vertically so that the first row is on the top and the last row Is on
the bottom. The result Is a matrix like the one shown In Figure E-5-~rows
and columns of bits, with each row containing the same number of bytes. The
?umber of bytes In each row of the bit image Is called the /ow wioth of that
mage.

First e
Byte g g H g E
#
4 i Row width
% H is 8 bytes
“ E
g 1k ;;
g g
1 Last
i gyie
Figure E-5
A Bit Image

A bit image can be stored in any static or dynamic variable, and can be of
any length that is a multiple of the row widtn.

The Lisa screen itself is one large visible bit image. There are 32,760 bytes of
memory that are displayed as a matrix of 262,080 pixe/s on the screen, each
bit corresponding to one pixel. If a bit's value is 0, its pixel Is white; If the
bit’s value Is 1, the pixel is black.

The screen is 364 pixels tall and 720 pixels wide, and the row width of its bit
image is 90 bytes. Each pixel on the screen is one and a half times taller
_than it is wide, meaning a rectangle 30 pixels wide by 20 tall looks square,
and a 30 by 20 oval looks circular. There are 90 pixels per inch horizontally,
and 60 per inch vertically. T

E-10

Pascal Rerference Manal QuickDraw

NOTE

Since each pixel on the screen represents one bit in a bit image,
wherever this appendix says “bit", you can substitute “"pixel” if the bit
image s the Lisa screen. Likewise, this appendix often refers to pixels
on the screen where the discussion applies equally to bits in an
off-screen bit image.

E.42 The Bitmap
when you combine the physical entity of a bit image with the conceptual
entities of the coordinate plane and rectangle, you get a bitmap. A bitmap
has three parts: a polnter to a bit image, the row width (in bytes) of that
image, and a boundary rectangle which gives the bitmap both its dimensions
and a coordinate system. Notice that a bltmap does not actually include the
bits themselves: it points to them.

There can be several bitmaps pointing to the same bit image, each Imposing a
different coordinate system on {t. This Important feature is explained more
fully in Section E.6, Coordinates in GrafPorts.

As shown in Figure E-6, the data structure of a bitmap Is as follows:

type BitMap = record
basepadr: QDPtr;
rowBytes: integer;

bounds : Rect
end;
Base o
Address
E::::

baseAddr HHH
rowByles i
bounds i

a dsieie HH

—— Row width —————

Figure E-6
A Bitmap

E-11

Pascal Rererence Manual GQIckOraw

The baseAddr fleld is a pointer to the beginning of the bit image In memory,
and the rowBytes fleld is the number of bytes in each row of the image. Both
of these should always be even: a bitmap should always begin on a word
boundary and contain an integral number of words in each row.

The bounds fleld is a boundary rectangle that both encloses the active area of
the bit image and Imposes a coordinate system on it. The relationship
between the boundary rectangle and the bit image in a bitmap Is simple yet
very Important. Flrst, a few general rules:

* Bits In a bit image fall between points on the coordinate plane.

* A rectangle divides a bit image into two sets of bits: those bits inside the
rectangle and those outside the rectangle.

* A rectangle that is H points wide and V points tall encloses exactly
(H-1) * (v-1) bits.

The top left corner of the boundary rectangle Is allgned around the first bit in
the bit image. The width of the rectangle determines how many bits of one
row are logically owned by the bitmap; the relationship

8 * map.rowBytes >= map.bounds.right-map.bounds.left

must always be true. The height of the rectangle determines how many rows
of the image are logically owned by the bitmap., To ensure that the number

of bits in the logical bitmap is not larger than the number of bits in the bit

image, the bit Image must be at least as big as

(map . bounds .bot tom-map . bounds . top) *map . rowBytes

Normally, the boundary rectangle completely encloses the bit image: the width
of the boundary rectangle Is equal to the number of bits in one row of the
image, and the height of the rectangle is equal to the number of rows in the
image. If the rectangle Is smaller than the dimensions of the image, the least
significant bits in each row, as well as the last rows in the image, are not
affected by any operations on the bitmap.

The bitmap also imposes a coordinate system on the image. Because bits fall
between coordinate points, the coordinate system assigns integer values to the
lines that border and separate bits, not to the bit positions themselves. For
example, If a bitmap Is assigned the boundary rectangle with corners (10,-8)
and (34.8), the bottom rignt bit in the image will be between horizontal
cooidinates 33 and 34, and between vertical coordinates 7 and 8 (see Figure
E-7

E-12

Pascal Rerference Manual QuickDraw

{10,-8) (34,-8)

{(10,8) (34,8}

Figure E-7
Coordinates and Bitmaps

E4.3 Patterns
A pattern Is a 64-bit image, organized as an 8-by-8-bit rectangle, which is
used to define a repeating design (such as stripes) or tone (such as gray).
Patterns can be used to draw lines and shapes or to fill areas on the screen.

when a pattem is drawn, it is aligned such that adjacent areas of the same
pattern in the same graphics port will blend with each other Into a contin-
uous, coordinated pattern. QuickDraw provides the predefined patterns white,
black, gray, 1tGray, and dkGray. Any other 64-bit varlable or constant can be
used as a pattern, too. The data type definition for a pattern is as follows:

type Pattern = packed array [0..7] of 0..255;
The row width of a pattern s 1 byte.

EA.4 Cursors
A cursor Is a small Image that appears on the screen and Is controlled by the
mouse. (It appears only on the screen, and never in an off-screen bit image.)

A cursor Is defined as a 256-bit image, a 16-by-16-bit rectangle. The row
width of a cursor is 2 bytes. Figure E-8 Illustrates four cursors.

E-13

Pascal Rererence Marxial : QuickOraw

o
—0
— Q0

=2

T
TI
Tt
o
T
T

» 8
T

Figure E-8
Cursors

A cursor has three flelds: a 16-word data fleld that contains the image itself,
a 16-word mask field that contains information about the screen appearance
of each bit of the cursor, and a Aotspol point that aligns the cursor with the
position of the mouse.

type Cursor = record .
data: array [0..15] of 1nteger;
mask: array [0..15] of integer;
hotspot: Polnt
end;
The data for the cursor must begin on a word boundary.
The cursor appears on the screen as a 16-by-16-bit rectangle. The appear-
ance of each bit of the rectangle is determined by the corresponding bits in

the data and mask and, If the mask bit is 0, by the pixel “under” the cursor
(the one already on the screen in the same position as this bit of the cursor

Data Mask Resulting pixel on screen
] 1 white
1 1 Black
0 0 Same as pixel under cursor
1 0 Inverse of pixel under cursor

Notlce that if all mask bits are 0, the cursor Is completely transparent, In
that the image under the cursor can still be viewed: pixels under the white
part of the cursor appear unchanged, while under the black part of the cursor,
black pixels show through as white.

The hotspot aligns a point in the image (hot a bit, a polnt!) with the mouse
position. Imagine the rectangle with corners (0,0) and (16,16) framing the
image, as in each of the examples in Figure E-8; the hotspot is defined in this
coordinate system. A hotspot of (0.0) is at the top left of the image. For the
arrow in Figure E-8 to point to the mouse position, (0,0) would be its hotspot.
A hotspot of (8,8) Is in the exact center of the image; the center of the plus

i

E-14

Pascal Reference Manal QuickDraw

sign or oval in Figure E-8 would coincide with the mouse position if (8,8) were
the hotspot for that cursor. Similarly, the hotspot for the pointing hand would
be (16,9).

whenever you move the mouse, the low-level interrupt-driven mouse routines
move the cursor's hotspot to be aligned with the new mouse position.

QuickDraw supplies a predefined arrow CUrsor, an arrow pointing north-
northwest.

Refer to Appendix F, Hardware Interface, for more information on the mouse
and cursor control.

ES The Drawing Environment: GrafPort
A grarfort s a complete drawing environment that defines how and where
graphic operations will have their effect. It contains all the information
about one instance of graphic output that is kept separate from all other
instances. You can have many grafPorts open at once, and each one will have
its own coordinate system, drawing pattern, background pattern, pen size and
location, character font and style, and bitmap in which drawing takes place.
You can instantly switch from one port to another. GrafPorts are the
structures on which a program builds windows, which are fundamental to the
Lisa's "overlapping windows” user interface.

A grafPort Is a dynamic data structure, defined as follows:

type GrafPtr = “GrafPort;
GrafPort = record
device: integer;

portBits: BitMap.
portRect: Rect;
visRgn: RgnHandle;
clipRon: RgnHandle;

bkPat: pattern;
fillPat: Pattern;
pnLoc: Point;
pnSize: Point;
pnioge : integer;
pnPat: Pattern;
pnvis: integer:
txFont: integer;
txrace: Style;

txtiode: integer;
txs1ze: integer:
spExtra: longint;
fgColor: longint;
bkColor: longint;
colrBit: integer:
patStretch: integer;
picsave: QDHandle;

E-15

Pascal Referernce Mamnial QuilckOraw

rgnSave: QDHandle;

polySave: QDHandle;

grafProcs: QDProcsPtr
end;

All QuickDraw operations refer to grafPorts via grafPtrs. You create a
grafPort with the Pascal procedure new and use the resulting pointer in calls
to QuickDraw. You could, of course, declare a static variable of type
GrafPort, and obtain a polnter to that static structure (with the @ operator),
but as most grafPorts will be used dynamically, their data structures should be
dynamic aiso.

NOTE

You can access all fields and subflelds of a grafPort normally, but you
should not store new values directly into them. QuickDraw has
procedures for altering all flelds of a grafPort, and using these
procedures ensures that changing a grafPort produces no unusual side
effects.

The device fleld of a grafPort Is the number of the logical output device that
the grafPort will be using. QuickDraw uses this Information, since there are
physical differences in the same logical font for different output devices. The
default device number is 0, for the Lisa screen.

The portBits field is the bitmap that points to the bit image to be used by the
grafPort. All drawing that is done in this grafPort will take place in this bit
image. The default bitmap uses the entire Lisa screen as its bit image, with
TowBytes of 90 and a boundary rectangle of (0,0,720,364). The bitmap may be
changed to Indicate a different structure in memory: all graphics procedures
work in exactly the same way regardless of whether their effects are visible
on the screen. A program can, for example, prepare an image to be printed
on a printer without ever displaying the image on the screen, or develop a
picture in an off-screen bitmap before transferring it to the screen. By
altering the coordinates of the portBits.bounds rectangle, you can change the
coordinate system of the grafPort; with a QuickDraw procedure call, you can
set an arbitrary coordinate system for each grafPort, even If the different
grafPorts all use the same bit image (e.g., the full screen).

The portRect field Is a rectangle that defines a subset of the bitmap for use
by the grafPort. Its coordinates are In the system defined by the
portBits.bounds rectangle. All drawing done by the application occurs Inside
this rectangle. The portRect usually defines the "writable” interior area of a
wiandow, document, or other object on the screen. The default portRect is the
entire screen.

The visRgn field Indicates the reglon that is actually visible on the screen, It
is reserved for use by future software, and should be treated as read-only.

E-16

Pascal Reference Manal QuUickDraw

The default visRgn Is set to the portRect.

The clipRgn Is an arbitrary region that the application can use to limit
drawing to any region within the portRect. If, for example, you want to draw
a half circle on the screen, you can set the clipRgn to half the square that
would enclose the whole circle, and go ahead and draw the whole circle. Only
the half within the clipRgn will actually be drawn in the grafPort. The
default clipRgn s set arbitrarily large, and you have full control over its
setting. Notice that unlike the visRgn, the clipRgn affects the Image even If
it is not displayed on the screen.

Figure E-9 illustrates a typical bitmap (as defined by portBits), portRect,
visRgn, and clipRgn.

PortRect

(Grafhort] POFtBifSY

Figure E-9
GrafPort Reglons

The bkPat and fillPat flelds of a grafPort contain patterns used by certain
QuickDraw routines. BkPat Is the “packground” pattern that Is used when an
area s erased or when bits are scrolled out of it. when asked to fill an area
with a specified pattern, QuickDraw stores the glven pattern in the flllPat
field and then calls a low-level drawing routine which gets the pattemn from
that fleld. The varlous graphic operations are discussed in detall later In the
descriptions of individual QuickDraw routines.

Of the next ten flelds, the first five determine characteristics of the graphics
pen, described in Section E.5.1, and the last five determine characteristics of
any text that may be drawn, described in Section E.5.2.

The fgColor, bkColor, and coliBlt fields contaln values related to drawing in
color, a capabllity that will be available in the future when Apple supports

E-17

Pascal Reference Mantial QulckDraw

color output devices for the Lisa. FgColor is the grafPort’s foreground color
and bkColor is its background color. ColiBit tells the color imaging software
which plane of the color picture to draw into. For more information, see
Section E.7.2, Drawing in Color.

The patStretch field is used during output to a printer to expand pattems if
necessary. The appiication should not change its value.

The plcSave, rgnSave, and polySave flelds reflect the state of picture, region,
and polygon definition, respectively. To define a reglon, for example, you
“open™ it, call routines that draw it, and then "close" it. If no region is open,
rgnSave contains nil; otherwise, it contains a handie to information reiated to
the region definition. The application should not be concerned about exactly
what information the handle leads to; you may, however, save the current
value of rgnSave, set the fleld to nil to disable the region definition, and later
restore it to the saved value to resume the region definition. The plcSave
and polySave flelds work similarly for pictures and polygons.

Finally, the grafProcs fleld may point to a special data structure that the
application stores Into if it wants to customize QuickDraw drawing procedures
or use QuickDraw in other advanced, highly specialized ways. (For more
information. see Section E.10, Customizing QuickDraw Operations.) If
gxafPrt;m is nil, QuickDraw responds in the standard ways described in this
appendix.

ES.1 Pen Characteristics
The pniLoc, pnSize, pnMode, pnPat, and pnVIs fields of a grafPort deal with the
graphics pen. Each grafPort has one and only one graphics pen, which is used
for drawing lines, shapes, and text. As Hlustrated In Flgure E-10, the pen has
four characteristics: a Jocation a size a drawing mode and a arawing pattem

E-18

Pascal Reference Mol QuickDraw

Javay, Height
"Y‘\\- “Pattern
Width

Location

Flgure E-10
A Graphics Pen
The pen location (pnLoc) is a point in the coordinate system of the grafPort,
and is where QuickDraw will begin drawing the next line, shape, or character.
It can be anywhere on the coordinate plane: there are no restrictions on the
movement or placement of the pen. Remember that the pen location is a
point on the coordinate plane, not a pixel in a bit image!

The pen is rectangular in shape, and has a user-definable width and height
(pnSize). The default size Is a 1-by-1-bit rectangle; the width and height can
range from (0.,0) to (32767,32767). If either the pen width or the pen height is
less than 1, the pen will not draw on the screen.

* The pen appears as a rectangle with its top left comer at the pen
location; it hangs below and to the right of the pen location.

The pniMode and pnPat flelds of a grafPort determine how the bits under the
pen are affected when lines or shapes are drawn. The pnPat iIs a pattern that
is used as the "ink" In the pen. This pattern, like all other patterns drawn in
the grafPort, is always aligned with the port's coordinate system: the top left
comer Of the pattemn is allgneg with the top left comer of the portRect, so
that adjacent areas of the same pattern will blend into a continuous,
coordinated pattern. Flve patterns are predefined (white, black, and three
shades of gray); you can also create your own pattern and use it as the pnPat.
(A utliity procedure, called StuffHex, allows you to flli patterns easily.)

E~19

Pascal Reference Manal QuickOraw

The pnMode fleld determines how the pen pattern Is to affect what's already
on the bitmap when lines or shapes are drawn. Wwhen the pen draws,
QuickDraw first determines what bits of the bitmap will be affected and finds
thelr corresponding bits in the pattern. It then does a bit-by-bit evaluation
based on the pen mode, which specifies one of elght boolean operations to
perform. The resulting bit is placed into its proper place In the bitmap. The
pen modes are described in Section E.7.1, Transfer Modes.

The pnVis fleld determines the pen's visibility, that is, whether it draws on the
screen. For more information, see the descriptions of HidePen and ShowPen
In Section E.9.3, Pen and Line-Drawing Routines.

E5.2 Text Characteristics
The txFont, txFace, txdMode, txSize, and spExtra flelds of a grafPort determine
how text will be drawn--the font, style, and size of characters and how they
will be placed on the bitmap.

QuickDraw can draw characters as quickly and easily as it draws lines and
shapes, and in many prepared fonts. Figure E-11 shows two QuickDraw
characters and some terms you should become familiar with,

; ascent line
ascent
O
cheracter base line
descent width
descent line
Figure E-11

QuickDraw Characters

QuickDraw can display characters In any size, as well as boldfaced, italicized,
outlined, or shadowed, all without changing fonts. It can also underline the
characters, or draw them closer together or farther apart.

The txrFont fleld is a font number that identifles the character font to be used
in the grafPort. The font number D represents the system font, and Is the
default established by OpenPort. The unit QDSupport (tsted in Sectlon E.15)
includes definitions of other available font numbers.

A character font is defined as a collection of bit Images: these images make
up the ingividual characters of the font. The characters can be of unequal
widths, and they're not restricted to their “cells": the lower curl of a
lowercase j, for example, can stretch back under the previous character
(typographers call this ceming). A font can consist of up to 256 distinct
characters, yet not all characters need be defined in a single font. Each font

E-20

Pascal Reference Manual QuickOraw

contalns a /missing symbol 1o be drawn In case of a request to draw a
character that is missing from the font.

The tFace field controls the appearance of the font with values from the set
defined by the Style data type:

type StyleItem = (bold, italic, underline, outline, shadow,
condense, extend);

Style = set of StyleItem;

You can apply these either alone or in combination (see Figure E-12). Most
combinations usually 1ook good only for large fonts.

Normal Characters

Bold Characters

Al Characlers
Underhned Characters xyz

Baﬁma’mmm

Figure £-12
Character Styles

If you specify bold, each character Is repeatedly drawn one bit to the right an
appropriate number of times for extra thickness.

Itallc adds an italic slant to the characters. Character dbits above the base
line are skewed right; bits below the base line are skewed left.

Undertine draws a line below the base line of the characters. If part of a
character descends below the base lne (as “y" in Figure £-12), the underline is
not drawn through the pixel on either side of the descending part.

You may specify either outline or shadow. Outline maies a holiow, outlined
character rather than a solid one. With shadow, not only is the character
hollow and outlined, but the outline is thickened below and to the right of the
character to achieve the effect of a shadow. If you specify bold along with
outline or shadow, the hollow part of the character is widened.

E-21

Pascal Rererence Manal QuickDraw

Condense and extend affect the horizontal distance between all characters,
including spaces. Condense decreases the distance between characters and
extend increases it, by an amount which QuickDraw determines is appropriate.

The txMode fleld controls the way characters are placed on a bit image. It
functions much like a pnMode: when a character Is drawn, QuickDraw
determines which bits of the bit Image will be affected, does a bit-by-bit
comparison based on the mode, and stores the resulting bits into the bit
Image. These modes are described in Section E.7.1, Transfer Modes. Only
three of them--srcOr, sreXor, and sreBic--should be used for drawing text.

The txSize field specifies the type size for the font, in points (where “point™
here is a typographical term meaning approximately 1/72 inch). Any size may
be specified. If QuickDraw does not have the font in a specified size, it will
scale a size it does have as necessary to produce the size desired. A value of
0 in this fleld directs QuickDraw to choose the size from among those it has
for the font; it will choose whichever size is closest to the system font size.

Finally, the spExtra field is useful when a line of characters is to be drawn
justified such that It Is aligned with both a left and a right margin (sometimes
called "full justification™). SpExtra is the number of pixels by which each
space character should be widened to fill out the line.

£.6 Coordinates In GrafPorts
Each grafPort has its own Joca/ coordipate system. All flelds In the grafPort
are expressed in these coordinates, and all calculations and actions performed
In QuickDraw use the local coordinate system of the currently selected port.

Two things are Important to remember:

* Each grafPort maps a portion of the coordinate plane into a similarly-
sized portion of a bit image.

* The portBits.bounds rectangle defines the local coordinates for a grafPort.

The top left corner of portBlts.bounds is always aligned around the first bit in
the bit image; the coordinates of that corner "anchor™ a point on the grid to
that bit in the bit image. This forms a common reference point for multiple
grafPorts using the same bit image (such as the screen). Given a
po;rtB}ts.w\ds rectangle for each port, you know that their top left corners
coincide.

The interrelationship between the portBits.bounds and portRect rectangles is
very important. As the portBits.bounds rectangle establishes a coordinate
systemn for the port, the portRect rectangle indicates the section of the
coordinate plane (and thus the bit image) that will be used for drawing. The
portRect usually falls inside the portBits.bounds rectangle, but it's not required
to do so.

when a new grafPort Is created, its bitmap is set to point to the entire Lisa
screen, and both the portBits.bounds and the portRect rectangles are set to

E-22

Pascal Reference Marxsal QulckOraw

720-by-364-bit rectangies, with the polnt (0,0) at the top left corner of the
screen,

You can redefine the local coordinates of the top left comer of the grafPort's
portRect, using the SetOrigin procedure. This changes the local coordinate
systemn of the grafPort, recalculating the coordinates of all points in the
grafPort to be relative to the new corner coordinates. For example, consider
these procedure calls:

SetPort(gamePort);
SetOrigin(40, 80);

The call to SetPort sets the current grafPort to gamePort; the call to
SetOrigin changes the local coordinates of the top left corner of that port's
portRect to (40,80) (see Figure E-13).

0 95 300 912 -55 40 245 457

120-

275~
342 —
visFign (85,120(300,275) visRgn (40,80)(245,235)
clipRgn (85,120)(300,275) clipFign (95,120)(300,275)

Betore SetOrigin After SetOrigin{40,80)

Flgure E-13
Changing Local Coordinates

This recalculates the coordinate components of the following elements:
gamePort” . portBlts.bounds gamePort” .portRect
gamePort” .visRgn

These elements are always Kept "In sync”, so that all calculations, compari-
sons, or operations that seem right, work rignt.

Notice that when the local coordinates of a grafPort are offset, the visRgn of
that port is offset also, but the clipRgn is not. A good way to think of it is
that if a document is being shown inside a grafPort, the document "sticks” to
the coordinate system, and the port’s structure "sticks" to the screen.

Suppose, for example, that the visRgn and clipRgn in Figure E-13 before

E-23

Pascal Referernce Mamual QuickDraw

SetOrigin are the same as the portRect, and a document Is being shown. After
the SetOrigin call, the top left comer of the clipRgn Is still (95,120), but this
location has moved down and to the right, and the location of the pen within
the document has similarly moved. The locations of portBits.bounds, portRect,
and visRgn did not change; thelr coordinates were offset. As always, the top
left comer of portBits.bounds remalns aligned around the first bit in the bit
image (the first pixel on the screen)

If you are moving, comparing, or otherwise dealing with mathematical items in
different grafPorts (for example, finding the intersection of two reglons in two
aifferent grafPorts), you must adjust to a common coorainate system before
you perform the operation. A QuickDraw procedure, LocalToGlobal, leis you
convert a point's local coordinates to a g/abal/ system where the top left
corner of the bit image Is (0,0); by converting the various local coordinates to
global coordinates, you can compare and mix them with confidence. For more
information, see the description of