
Pascal

Language
ParI 1 of 3

A6L0111

029-0391-A

Pascal
Reference Manual

for the Lisa 1M

Licensing Requirements for Software Developers

~le has a low-cost licensing program, which permits developers of software
for the Lisa to incorporate Apple-developed libraries and object code files
into their products. Both in-house and external distribution require a license.
Before distributing any products that incorporate Apple software, please
contact Software Licensing at the address· below for both licensing and
technical information.

~1983 by Apple Computer, Inc.
20525 MarIani Avenue
CUpertino, California 95014
(408) 996-1010

~ple, Lisa, and the Apple logo are trademarks of Apple Computer, Inc.

Simultaneously published in the USA and Canada

Reorder Apple Product #A6D0101 (Complete Pascal package)
4~A6L0111 (Manuals only)

OJstomer Satisfactim

If you discover physical defects in the manuals distributed with a lisa product
or in the media on which a software product is distributed, Apple will replace
the documentation or media at no charge to you during the 90-day period
after you purchased the product.

Prod..I:!t Revisions

Unless you have purchased the product update service available through your
authorized Lisa dealer, Apple cannot guarantee that you will receive notice of
a revision to the software described in this manual, even if you have returned
a registration card received with the product You should check periodically
with your authorized lisa dealer.

LimitaUm m WamJlties and Liability

All implied warranties concerning this manual and media, including implied
warranties of merchantability and fitness for a particular purpose, are limited
in duration to ninety (90) days from the date of original retail purchase of this
product.

Even though Apple has tested the software described in this manual and
reviewed its contents, neither Apple nor its software suppliers make any
warranty or representation, either express or implied, with respect to this
manual or to the software described in this manual, their quality, performance,
merchantability, or fitness for any particular purpose. Pos a result, this
software and manual are sold "as is," and you the purchaser are assuming the
entire risk as to their quality and performance.

In no event will Apple or its software suppliers be liable for direct, indirect,
special, incidental, or consequential damages resulting from any defect in the
software or manual, even if they have been advised of the possibility of such
damages. In particular, they shall have no liability for any programs or data
stored in or used with Apple products, including the costs of recovering or
reproducing these programs or data.

The warranty and remedIes set forth above are exclusIve and In l1eu of all
others, oral or written, express or implied. No Apple dealer, agent or
employee is authorized to make any modification" extension or addition to this
warranty_

Some states do not allow the exclusion or limitation of implied warranties or
liability for incidental or consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives you specific legal rights,
and you may also have other rights that vary from state to state.

111

license and Copyrig-at
This manual and the software (computer programs) described in it are copy­
righted by Apple or by Apple's software suppliers, with all rights reserved, and
they are covered by the Lisa Software License Agreement signed by each Lisa
owner. Under the copyright laws and the License Agreement, this manual or
the programs may not be copied, in whole or in part, without the written
consent of Apple, except in the normal use of the software or to make a
backup copy. This exception does not allow copies to be made for othen,
whether or not sold, but all of the material purchased (with all backup copies)
may be sold, given, or loaned to other persons if they agree to be bound by
the provisions of the License Agreement. Copying includes translating into
another language or format.

You may use the software on any computer owned by you, but extra copies
cannot be made for this purpose. For some products, a multiuse license may
be purchased to allow the software to be used on more than one computer
owned by the purchaser, including a shared-disk system. (Contact your
authorized Lisa dealer for more information on multiuse licenses.)

1v

Contents

Chapter 1
Tokens and consta"lts

1.1 Character Set and Special Symbols .. 1-1
1.2 Identifiers•... 1-2
1.3 Directives ... 1-2
1.4 Nun1bers .. 1-2
1.5 Labels ... 1-4
1.6 Quoted String Constants .. 1-4
1.7 Constant [)eclarations ... 1-5
1.8 Comments and Compiler CommancJs•.•...•..•....•...............•.................. 1-5

Olapter2
Blocks, Locality, and Scq:Je

2.1 Definition of a Block ... 2-1
2.2 Rules of Scope ..•.....•.•.•...•.....•...........•.......•.......•.•..•.......................... 2-3

Olapter 3
oata Types

3.1 Simple-Types (and Ordinal-Types) .. 3-2
3.2 Structured-Types ... 3-7
3.3 Pointer-Types .. 3-13
3.4 Identical and CorflJatible Types ... 3-13
3.5 The Type-Declaration-Part•.. 3-16

Olapter4
Yarimles

4.1 Variable-Declarations ... 4-1
4.2 Veriable-References .•.•...•......... 4-1
4.3 Qual1flers•....................................•............................ 4-2

ChapterS
Expresslms

5.1 ~rators•.•..........•.•.•..•.............•...... 5-4
5.2 FlI'lCtion-Calls ... 5-10
5.3 Set-Constructors .. 5-11

v
029-0392-A

Pascal Reference M8nIJBl

Cl'q)ter6
Statements

Contents

6.1 Simple Statements•.•.•............................•.•...............•..•..•........ 6-1
6.2 Structured-Statements•......................•...........•.............•.......•........ 6-4

Chapter 7
ProceWres and FLIlCtiCllS

7.1 Procedure-Declarations .. 7-1
7.2 Function-Declarations .. 7-4
7.3 Parameters•... 7-5

Cl'q)ter 8
Prognms

8.1 Syntax .. 8-1
8.2 Prograrn-Pararneters ..•........ 8-1
8.3 Segmentation ... 8-1

Cl'q)ter 9
UUts

9.1 Regular-Llnits .. 9-1
9.2 IntrInsic-Units ... 9-4
9.3 lJni ts that Use other Llni ts .. 9-4

Chapter 10
~

10.1 Introduction to 110 ••••.•••••.•.•••••••..•••••••.•••••••••.•••••••.••••••••••••••.•••••••••••• 10-1
10.2 Record-Oriented I/O ..•...•.•.•.•....•.....•.......•.......•.•...•...•............•.....•... 10-8
10.3 Text-Oriented I/O ...•..................•............. 10-9
10.4 Untyped File I/O•.•.•.•......•.....•...................•............................ 10-18

Cl'q)ter 11
SUI'OmS ProceWres ard FlI'Ctions

11.1 Exit and Halt Procedures .. 11-1
11.2 DynamIc Allocation Procedures .. 11-1
11.3 Transfer Functions•...............•...................................... 11-4
11.4 ArithmetIc Functions .. 11-5
11.5 Ordinal Functions•.............•...................................... 11-8
11.6 String Procedures and Functions .. 11-9
11.7 Byte-Oriented Procedures and Functions ... 11-11
11.8 Packed Array of Char Procedures and Functions 11-12

vi

Pascal Reference Mantlal

Chapter 12
The COO1lUer

contents

12.1 COfTlpller CorTllTlands .•... 12-1
12.2 Conditional compilation .. 12-3
12.3 Cl>timizatlon of If-Statements .. 12-5
12.4 Cl>timizatlon of While-Statements and Repeat-Statements 12-7
12.5 Efficiency Of Case-Statements ..•........ 0 0 •••••••• 0 ••••••••••••••••••• 0 ••••••••••••••• 12-7

~xes

A Comparison to Apple II and Apple III Pascal .. A-1
B Known Anomalies in the Compiler ... B-1
C Syntax of the Language ... C-1
o Floating-Point Arithmetic•..................................... 0-1
E QulckDraw .. E-1
F Hardware Interface .. F-1
G Lisa Character set .. G-1
H ErrorMessages .. H-1
I Pascal WOrkShOp FlIes 0 0 ... 1-1

Tables

5-1 Precedence of ~ratlons 0 5-1
5-2 Binary Arithmetic C\)erations .. 5-4
5-3 unary Arithmetic qleratlons (Signs) ... 5-4-
5-4 6001ean Cl>eratlons .. 5-6
5-5 set qlerations .. 0 5-6
5-6 Relational qleratlons .. 5-7
5-7 Pointer Cl>eration .. oo •• S-8

10-1 Combinations of FHe Variable Types with External File
SpecIes and CategorIes .. 10-3

0-1 Results of Addition and Subtraction on Infinities 0-2
0-2 Results of Multiplication and Division on Infinities 0-3

vii

Syntax Diagrams

A,B
actual-parameter .. 5-10
actual-parameter-list .. 5-10
array-type .. 3-8
assigntnent -statelllent .. 6-1
base-type ... 3-13
block .. 2-1

C
case ... 6-6
case-staten'lent ... 6-5
compound-statement .. 6-4
condi tIonal-statement .. 6-4
constant ... " 1-5
constant-declaration .. 1-5
constant-declaration-part .. 2-2
control-variable .. 6-8

D,E,F
digit-sequence .. 1-2
enumerated-type ... 3-6
expression , , 5-3
factor ... 5-1
field-declaration ... 3-10
fIeld-designator ... 4-4
field-list ... 3-9
file-buffer-syfTlbol ... 4-4
file-type ... 3-12
final-value .. 6-8
fixed-part ... 3-9
for-statement ... 6-8
foll'Tl8l-paratTleter-list .. 7-6
function-body ... 7-4
function-call ... 5-10
function-declaration .. 7-4
function-heading ... 7-4

viii

Cmtents

G, H, I
goto-stat.enlent ... 6-3
hex-digit-sequence .. 1-2
lderltl fler .. 1-2
lderltlfler-list .. 3-6
i f-staterTlent ... 6-5
il11pletrentatlon-part .. 9-2
Index ...•................................ 4-2
index-type .. 3-8
initial-value .. 6-8
Interface-part ... 9-2

L, M, 0
label 2-1,6-1
label-declaration-part ... 2-1
I1lefTlber-group ... 5-11
ordinal-type .. 3-2
otherwIse-clause ..•...... 6-6

p
parameter-declaration ... 7-6
pc>inter -Object -sylTlbol .. 4-4
pointer-type ... 3-13
procecture-and-function-declaratlon-part ... 2-2
procedure-body ... 7-1
procedure-declaratlon .. 7-1
procedure-heading ... 7-1
procedure-s taternent .. 6-2
program .. 8-1
program-headIng ... 8-1
program-parameters .. 8-1

Q,R
quallfler ... 4-2
quoted-character-constant ... 1-4
quoted-string-constant ... 1-4
real-type .. 3-2
record-type .. 3-9
regt!lar -lilt t .. 9-1
repeat-statement ... 6-7
repetitive-statelllent .. 6-6
result-type ... 7-4

1x

Pascal Refemnct!! Manual Contents

S
scale-factor .. 1-3
set-constructor ... 5-11
set-type ..•.. 3-11
siQll .. 1-3
sigrted-nurrtJer ... 1-3
sirTlple-expression = = ... = .. 5-3
simple-statement•... 6-1
simple-type .. 3-2
size-attribute .. 3-5
statement ... 6-1
statement-part .. 2-2
string-character .. 1-4
string-type ... 3-5
structured-statement ... 6-4
structured-type ... 3-7
subrange-type ... 3-7

T
tag-fieid-type ... 3-10
term ... 5-2
type ... 3-1
type-declaration .. 3-1
type-declaration-part .. 2-2

U
unit-heading ... 9-1
unsigned-constant .. 5-2
unsigned-integer , .. 1-3
unsigned-number ... 1-3
unsigned-real .. 1-3
uses-clause ... 8-1

V, W
variable-declaration .. 4-1
variable-declaration-part ... 2-2
variable-identifier ... 4-1
variable-reference ... 4-1
variant ... 3-10
variant-part .. 3-10
while-statement .. 6-7
with-statement ... 6-10

x

Preface

This manual Is Intended for Pascal programmers. It describes an implemen­
tation of Pascal for the Usa computer. The compHer and code generator
translate Pascal source text to MC68000 Object code.
The language is reasonably compatible with Apple II and Apple III Pascal. See
Appendix A for a discussion of the differences between these forms of Pascal.
In addition to providing nearly all the features of standard Pascal, as described
in the Pescel User Menuel 8I7d Report (Jensen and Wirth), this Pascal provides
a variety of extensions. These are summarized In Appendix A. They Include
32-bit integers, an otherWIse clause in case statements, procedural and
functional parameters wlth type-checKed parameter lists, and the • operator
for obtaining a pointer to an object. The real arithmetic conforms to many
aspects of the proposed IEEE standard for Single-precision arithmetic.

qleratlng Envlrorrnent
The complIer wUI operate in any standard Usa hardware configuration; thIs
manual assumes the Workshop software environment.

Related Docunents
Pascal USer Manual and Report. Jensen and Wirth, Springer-verlag 1975.
Workshop User's Guide for tile Lis8, Apple Computer, Inc. 1983.
other Usa documentation.

Definitlons
For the purposes of this manual the following definitions are used:

• Error: Either a run-time error or a compiler error.
• Scope: The body of text for whIch the declaration of an Identifier or

label Is valid.
• Undeflned: The value of a variable or function when the variable dOes not

necessarily have a meaningful value of its type aSSigned to it.
• unspecified: A value or action or effect that, althOUgh possibly

well-defined, Is not specIfied and may not be the same In all cases or for
all versions or configurations of the system. My programming construct
that leads to an unspecified result or effect is not supported.

I\k)tatlon ald Syntax Diagram

029-0393-A

All numbers in this manual are in decimal notation, except Where hexadecimal
notation is specifically indicated.
Throughout this manual, bold-face type Is used to distinguIsh Pascal text from
EnglISh text. F or example, sqI(n dlv 16) represents a fragment of a Pascal
program. Sometimes the same word appears both in plaIn text and in

xiii

Pascal Reference Manual Preface

bOld-face; for example, "me declaration of a Pascal procedUre begIns wIth
the word procedtre.'1

Italics are used when technical terms are intrOduced.
Pascal syntax Is specified by dIagrams. For example, the fOllowing diagram
gives the syntax for an Identifier:

identifier

Start at the left and follow the arrows through the diagram. Numerous pathS
are possible. Every path that begIns at the left and encls at the arrow-head on
the right Is valld, and represents a valld way to construct an identifier. The
boxes traversea by a path through the diagram represent the elements that can
be used to construct an identifier. ThUs the diagram embodies the following
rules:

• An identifier must begin with a letter, since the first arrow goes directly to
a box containing the name "letter."

• An IdentifIer mIght consIst of nothIng but a sIngle letter, sInce there Is a
path from this box to the arrow-head on the right, without going through
any more boxes.

• The Initial letter may be followed by another letter, a digil;, or an
tll7derscore, since there are branches of the path that lead to these boxes.

• The InitIal letter may be followed by any number of letters, dIgIts, or
underscores, since there is a loop In the path.

A word contained in a rectangular box may be a name for an atomic element
like "letter" or "digIt," or It may be a name for some other syntactic
construction that Is specified by another diagram. The name In a rectangular
box is to be replaCed by an actual instance of the atom or construction that it
represents, e.g. ""S" for "digit" or "COUlter" for "variable-reference".
Pascal S)IIJ1iJOls, SUCh as reserved wordS, operators, and punctuatIon, are
bold-face and are enclosed In cIrcles or ovals, as In the following diagram for
tlle construction of a compouna-statement:

compound-statement

~ ("I sta~h .. ~ -----.,o-~

xiv

Pascal Reference I'1anIIal Preface

Text in a circle or oval represents itself, and is to be written as shOYln (except
that capital1zation of letters is not slgnlflcant~ In the diagram abOve, the
semicolon and the words begin and et'l1 are symbolS. The word "statement"
refers to a construction that has its own syntax diagram.
A compound-statement consists Of the reserved word Deg1n, fOllowed by any
number of statements separated by semicOlons, followed by the reserved word
ern (As wIll be seen in Chapter 6, a statement may be null; thus begin end Is
a valid compound-statement)

xv

MenIal
~ter Release Note

WOrkShop The character set in the Appendix ShOUld show the full
Appendix B International Lisa Character set, because this Is now supported

by the WOrkShop screen and for printing to a dOt-matrix printer.
(A new page B-1 Is attached; take a moment now to make the
subSti tution.) Printing ASCII characters to a daisy wheel printer
is supported for the followIng print Wheels:

• Gothic, 15 pitch
• Prestige Elite, 12 pitch
• CourIer, 10 pitch
• BoldfacelExecutlve, PS.

Printlng ASCII characters to a daIsy wheel prlnter Is not
supported for the three print wheels with Modem type styles.

september 1983

M<nIal
~ter Release Note

Pascal If a variable T Is defined as T:PACKED ARRAY[0 .. 100] OF
Chapter 5 0 .. 255, the statement T[l] :- 255 Is not accepted by the compiler.

Use TEMP :- 255; T[1] :- TEMP; as a workaround. The same Is
true for all sUbranges from 0 .. 128 to 0 . .255 and for all constant
values from 128 to 255.

Pascal If a USES statement includIng the $U compHer option is
Chapter 9 followed on the same lIne by a comment, the trailing comma of

the statement must be separated from the openIng brace of the
statement by a blank; otherwIse, the code wIll be Incorrectly
parsed. Example:

USES {$U foo.Obj} unitl,{comment} BAD
{$U bar.Obj} unit2;

USES {$U foo.Obj} unit1, {comment} OK
{/J'l) oar.ooj} unlt2;

Pascal The GXRef utillty accepts a maXlmum of 4095 procedUre names.
Chapter 11

Pascal You cannot exit the ChangeSeg utility by typing <CR> in
Chapter 11 response to the first prompt line, 'File to Change', You must

type <ESC> <CR>,

september 1983

029-0050-A

Chapter 1
Tokens and Constants

1.1 O1aract.er Set iI1d Special Syrntlols •.........•.....•.•.•...•..•••.•.....•.•.••..•.•.....• 1-1

1.2 lderrtifiers .•••••....•.•••••.•••••.••••.•••••.•.•••.•••••...•.•••.•.•.•••••••.•••••.••••••.•.••••• 1-2

1.3 Direc:::tives •••••••••••••••.••••••••••••.•••••••••.••••••••••••••••••••••••••••••••.••••••••••••••• 1-2

1.4 ~n •..................•................................•...........................•..•...... 1-2

1.5 Labels ... 1-4

1.6 QJot.ecI Strir1g c:onsta1ts•.....••....•...•......•..•.•.•.........•......••...••.....• 1-4

1.6.1 Quoted Character COnstants ... 1-4

1.7 Corlst.81t [)e(:18I8tiorlS ••.•.•••••.•••••••••••••••••••••• 1-5

1.8 CorrI'nerlts arld ~iler QxrrnaI ads ... 1-5

Tokens and Constants

Tokens are the smallest meaningful units of text in a Pascal program;
structurally, they correspond to the words in an English sentence. The tokens
of Pascal are classified into special symbols; identifiers; numbers; labels; and
quoted string constants.

The text of a Pascal program consists of toKens and separato.rs.: a separator is
either a IJlanl< or a comment. Two adjacent tOKens must be separated by one
or more separators, if both toKens are ldentifiers, numbers, or reserved words.
No separators can be embedded within tokens, except in quoted string
constants.

1.1 CharaCter set cn1 Special SyrTtlolS
The character set used by Pascal on the Lisa Is 8-b1 t extended ASCII, w1 th
characters represented by numeric codes in the range from 0 to 255.
Letters, digits, hex-digits, and blanks are subsets of the character set:

• The letters are those of the Engl1sh alphabet, A through Z and a through z.
• The digits are the Arabic numerals 0 through 9; the !lex-digits are the

Arabic numerals 0 through 9, the letters A through F, and the letters a
through f.

• The blanks are the space character (ASCII 32), the horizontal tab character
(ASCll 9), and the CR character (ASCll 13~

Special symbols and reselVed words are tokens having one or more fixed
meanings. The following single characters are special symbols:

+ - • / = < > [] • , () : ; " ii {} $

The following character pairs are special symbols:
<> <= >= : = • . (* .)

The following are the IeselVed wonts:

and end label
array file methOds*
begin for mod
case flIlction nil
canst goto not
creation* If Of
div implementation or
doWnto In otherwise
do interface packed
else intrinsic- pIOCeWre

1-1

program
record
repeat
set
string
subclass­
then
to
type
1Il1t

lIltil
uses
var
While
wIth

Pascal Reference Hanual Tokens & Constants

The reserved words marked wIth asterIsks are reserved for future use.
corresponding upper and lower case letters are equIvalent In reserved words.
0'11 y the fIrst 8 characters of a reserved word are sIgnl flcant

1.2 Identifiers
Identifiers serve to denote constants, types, variables, procedures, functions,
units and programs, and fields In records. Identifiers can be of any length, but
only the first 8 characters are signIfIcant. corresponding upper and lower case
letters are equivalent in identifiers.

ide!71it1eJ"

The first 8 Characters Of an 1dentifler must not matCh the fIrst 8 Char­
acters of a reserved word.

Examples or idelllideJ"S:

X Rooo Qed stJ1

1.3 Directives
Dlrectlves are wordS that have special meanings In particular contexts. They
are not reserved and can be used as identifiers In other contexts. For
example, the word foI\\IaIU Is Interpreted as a directive if It occurs
immediately after a procedUre-heading or function-heading, but in any other
posltlon It Is Interpreted as an identlfier.

1.4 ~rs
The usual decimal notation Is used for numbers that are constants of the data
types Integer, looglnt, and real (see Section 3.1.1)' Also, a hexadecimal integer
constant uses the $ character as a prefix (1-4 digits for integer, 5-8 dIgIts for
Ifl'lQlnt).

dlqH-serpence :§!U ()

IJex-cJjq.it -SEq.tenee (:1 heX-digit I) •

1-2

Pascal Reference Manual TOkens & Constants

silT!

unsigned-real

digit-sequence digit-sequence ~--------...

'---------~ scale-factor

scale-factor ~ _I dIgIt-sequence I
~~

unsj 'l7ed-number
----------~~ unsigned-integer

unSigned-real 1----"'-----...

siqned-number .[unsigned-number I •
~

•

The letter E or e preceding the scale 1n an uns1gned-real means "Urnes ten to
the power Of",

Examples of numbers,:

1 +100 -0.1 SE-3 87.35e+8 $1\050

Note that SE-3 means 5Xl0-3, and 87.35e+8 means 87.35xl08.

1-3

Pascal Reference Manual Tokens & Constants

1.5 Lcmels
A label is a digit-sequence in the range from 0 through 9999.

1.6 Quoted String COOstCllu
A quoted-str1ng-constant Is a sequence of zero or more characters, all on one
line of the program source text and enclosed by apostrophes. Currently, the
maximum number of characters is 255. A quoted-strIng-constant with nothing
between the apostrophes denotes the null strIng.

If the quoted-string-constant is to contain an apostrophe, this apostrophe must
be written twice.

qtIOted-stfkg-constant

~~------~~~~
C-j string-character P

strjng-c!Jaract~/. 1 +;r1Y chiN· except 0 NCR I r
l~ _______ -..~~ ______ _

Examples of qtIOted-slflng-constants:

'Pascal' 'THIS IS A STRING'

'A' , . ' , , , , ,
'Don"t wrry!'

, .
All string values have a lengttJ attribute (see Section 3.1.1.6~ In the case of a
string constant value the length is fixed; it Is equal to the actual number of
characters in the string value.

1.6.1 Quoted Character constants
Syntactically, a quoted-character-constant is simply a quoted-string-constant
whose length is exactly 1.

quoted-cnaracter-constant II-~I string-character J--.~

A quoted-character-constant is compatible wIth any char-type or string-type;
that is, it can be used either as a character value or as a string value.

1-4

Pascal Reference Manual Tokens & Constants

1.7 consta'lt Declarations
A constant-declaration defines an identifier to denote a constant, within the
block that contains the declaration. The scope of a constant-identifier (see
Chapter 2) does not include its own declaration.

constant-declaration "'1 Identifier ~ constant ~

fo.='I7...:.:;tS'..;;.;ta.='f7.;.;;.t_~ ______ ----,-a.I constant-identifier

NOTE

A constant-identifier is an identifier that has already been declared to
denote a constant.

A constant-identifier following a sign must denote a value of type integer,
longint, or real.

1.8 COt'mlents a1d complIer ccmnanos
The constructs:

{ any text not containing right-brace}
(* any text not containing star-right-paren *)

are called comments
A compiler command 1s a comment that contains a $ character immediately
after the { or (* that begins the comment The $ character Is followed by the
mnemonic of the compiler command (see Chapter 12~
Apart from the effects of complIer commands, the sUbstltutlon Of a tllanK for a
comment does not a1 ter the meaning of a program.
A comment cannot be nested wi thin another comment formed with the same
kind of delimiters. However, a comment formed with { ... J del1ml ters can be
nested within a comment formed with (* ... *) delimiters, and vice versa.

1-5

029-0394-A

Chapter 2
Blocks, Locality, and Scope

2.1 I:lefirUtiorl of a BltJCl{ ••• 2-1

2.2 Rules of ~ .•••••.•••••••••••••••.••.•••••.•.•••••••••••.••..•••••••••••••••••••••••.•••••••• 2-3

2.2.1 SCope of a Declaration ... 2-3
2.2.2 Redeclaration in an Enclosed Block .. 2-3
2.2.3 Position of Declaration within Its Block .. 2-3
2.2.4 Redeclaration within a Block .. 2-3
2.25 Identifiers of Standard Cbjects .. 2-4

Blocks, Locality, and Scope

2.1 Definition of a BlOCk
A block consists of declarations and a statement-part. Every block is part of
a procedure-declaration, a function-declaration, a program, or a unit. All
identifiers and labels that are declared in a particular block are local to that
block.

block label-declaration-part

constant -declaration-part

type-declaration-part

variable-declaration-part

procedure-and-function-declaration-part

statement-part 1-------------.--.

The lalJel-declaratJon-part declares all labels that mark statements in the
corresponding statement-part. Each label must mark exactly one statement in
the statement-part.

label-dt?(}18J"8ti17n-palt

.@) ~""' ___ ~.QJ--____ •

label .. , digit-sequence I ..

2-1

Pascal Reference Manual Blocks;, Localf~ & Scope

The constant-declaration-part contains all constant-declarations local to the
block.

const.ant-declaratjm-part
~ (4· ' -co-n-s-ta-n-t--d-ec-l-ar-a-U-o-ib~

The lype-declaratJon-part contains all type-declarations local to the block.

type-declamUm-part

~ (.1 type-declaration f-y­,.

The varfable-c/eclaradon-part oontains all variable-declarations local to the
block.

IIBfiBIJle-det::laratk1n-part

~ (-., variable-declaration I) -,.
The procedure-and-flJnctJon-declaratfon-part contains all procedure and
function declarations local to the block.

p.rocedue-and-flnctjon-declaratjlYl-part

procedure-declaration

function-declaration

The statement-part specifies the algorithmic actions to be executed upon an
act! vatlon of the block.

s18l.etTJent-part .. , compound-statement I

2-2

Pascal Reference I'18nt.I8l BlOCks." Locality" & scope

At run time, all variables declared within a particular block have
unspecified values each time the statement-part Of the block Is entered.

2.2 Rules of SCOpe
This chapter discusses the scope of objects witllin tile program or unit in wllicll
tl7eyare defined See Chapter 9 for the scope of objects defined in the
lnterface-part of a unit and referenced In a host program or unit.

2.2.1 SCOpe of a Declaration
The appearance of an identifier or label in a declaration defines the identifier
or label. All corresponding occurrences of the identifier or label must be
within the scope of this declaration.

This scope Is the block that contains the declaration, and all blocks enclosed
by that block except as explained in Section 2.2.2 below.

22.2 Redeclaration in an Enclosed Block
Suppose that outer is a block, and imer is another block that is enclosed
within outer. If an identifier declared in block outer has a further declaration
in block lmer, then block imer and all blocks enclosed by imer are excluded
from the scope of the declaration in block outer. (See ,o.,ppendix B for some
odd cases.)

22.3 Position of Declaration within Its Block
The declaratlon of an identifier or label must precede all corresponding
occurrences of that identifier or label in the program text--i.e., identifiers and
labels cannot be used untll after they are deClared.
There is one exception to this rule: The base-type of a pointer-type (see
Section 3.3) can be an identifier that has not yet been declared. In this case,
the identifier must be declared somewhere in the same type-declaration-part
in which the pointer-type occurs. (See Appendix B for some odd cases.)

2.2.4 RedeClaration within a Block
An identifier or label cannot be declared more than once in the outer level of
a particular blOCk, except for record field identifiers.

A record field identifier (see Sections 3.2.2, 4.3, and 4.3.2) is declared within a
record-type. It is meaningful only in combination with a reference to a
variable of that record-type. Therefore a field identifier can be declared
again within the same blOCK, as long as it Is not declared again at the same
level within the same record-type. Also, an identifier that has been declared
to denote a constant, a type, or a variable can be declared again as a record
field identifier in the same block.

2-3

Pascal ReFerence fVlanttaI BlOCks, Locality., & SCOpe

2.2.5 Identifiers of Sta1danl (])jects
Pascal on the Usa provides a set of standard (predeclared) constants .. types ..
procedures .. and functions. The identifiers of these objects behave as if they
were declared in an outermost block enclOSing the entire program; thus their
scope includes the entire program.

2-4

029-0195-A

Chapter 3
Data Types

3.1 Sin1Jle-Types (artel (lrdirtal-Types) .. 3-2

3.1.1 Standard Sirnple-Types and String-Types 3-3
3.1.1.1 The Integer Type ... 3-3
3.1.1.2 The Longint Type .. 3-3
3.1.1.3 The Real Type .. 3-4
3.1.1.4 The Boolean Type .. 3-4
3.1.1.5 The Char Type .. 3-4
3.1.1.6 String-Types ...•......... 3-5

3.1.2 Enumerated-Types ... 3-6
3.1.3 Subrange-Types ... 3-7

3.2 Str1Jctured-Types .•.....••..•.....••.••..••.••••....••.•••.•.•.•...•.••....•......•.•...••..•. 3-7

3.2.1 Array-Types .. 3-8
3.2.2 Record-Types .. 3-9
3.2.3 Set-Types .. 3-11
3.2.4 File-Types ... 3-12

3.3 Pointer-Types•.....••.............•..•........••....•........•...• 3-13

3.4 Identical at1d ~ble Types•.•............•.................•.....•...• 3-13

3.4.1 Type Identity ... 3-14
3.4.2 Compatibility of Types .. 3-15
3.4.3 Assignment-Compatibility ... 3-15

3.5 TIle TYJ)8-()eclaratioo-Part. •.......................•........•....•..•.•..•....•.•.••....• 3-16

Data Types

A type is used in deClaring variables; it determines the set of values whIch
those varIables can assume, and the operations that can be performed upon
them. A type-declaration associates an identifier wIth a type.

trpe-declaralim .. I identifier

"",t .&....-_~-..... simple-type t---......

painter-type t----""'--...

The occurrence of an identifier on the left-hand side of a type-declaration
declares 1t as a type-identifier for the blOCK 1n Wh1ch the type-aeClaratlon
occurs. The scope of a type-identifier does not include its own deClaration,
except for pointer-types (see Sectlons 2.2.3 and 3.3~
To help clarify the syntax description with some semantic hints, the following
terms are used to d1stinguish identifiers according to what they denote.
Syntactically, all of them mean simply an identifier:

slmple-type-identifier
structured-t ype-identi fier
pointer-type-identifier
ordinal-type-identlf1er
real-type-ldentlfler
strlng-type-ldentlfier

In other words, a simple-type-identifier is any identifier that is declared to
denote a simple type, a structured-type-identifier is any identifier that is
declared to denote a structured type, and so forth. A simple-type-identifier
can be the predeclared identifier of a standard type such as integer, boolea'l,
etc.

3-1

Pascal Refe.rence Mantlal

3.1 Si"1l1e-Types (Cfij Drdinal-Types)
All the simple-types define ordered sets of values .

.real-type .. I real-type-ldentifier I ...

subrange-type

enumerated-type 1-----__...1

The standard real-type-identifier is real.

String-types are discussed in Section 3.1.1.6 below.

Data TYpes

t1n1InaJ-types are a subset of the simple-types, with the following speCial
characteristics:

• Within a given ordinal-type, the possible values are an ordered set and each
possible value Is associated with an ordinelily, which is an integer value.
The first value of the ordinal-type has ordlnallty 0, the next has ordinal1ty
1, etc. Each possible value except the first has a predecessor based on
this ordering, and each possible value except the last has a sllCcessor based
on this ordering.

• The standard function oro (see Section 11.5.1) can be applied to any value
of ordinal-type, and returns the ordinal1ty of the value.

• The standard function pred (see Section 11.5.4) can be appl1ed to any value
of ordinal-type, and returns the predecessor of the value. (For the first
value in the Ordinal-type, the result is unspecified.)

• The standard function succ (see Section 11.5.3) can be applied to any value
of ordinal-type, and returns the successor of the value. (For the first value
in the ordinal-type, the result is unspecified.)

3-2

Pascal Reference M8niJ8l Data 7ypes

All simple-types except real and the string-types are ordinal-types. The
standard Ordlnal-type-ldentiflers are:

Integer
longlnt
char
bOOlea'l

Note that in addition to these standard types, the enumerated-types and
subrange-types are ordinal-types.

3.1.1 Stcmard Sif'T1)le-Types and StrIng-Types
A standard type is denoted by a predefined type-IdentIfier. The simple-types
Integer, longlnt, real, char, and boolea1 are standard. The string-types are
lIser-defined Simple-types.

3.1.1.1 The Integer Type
The values are a subset of the whole numbers. (As constants, these values can
be denoted as specified in Section 1.4.) The predefined integer constant maxint
is defined to be 32767. Maxint defines the range of the type integer as the
set of values:

-maxint-1, -maxint, ... -1, 0, 1, ... max1nt-1, maxint

These are 16-bit, 2's-complement integers.

3.1.1.2 The Longint Type
The values are a subset of the whole numbers. (As constants, these values can
be denoted as specified in Section 1.4.) The range is the set of values from
-(231_1) to 231_1, I.e., -2147483648 to 2147483647.

These are 32-bit integers.

Arithmetic on integer and l0r9nt operands is done in bOth 16-bit and 32-bit
precision. Nt expression with mixed operand sizes is evaluated in a manner
similar to the FCRTRAN single/double precision floating-pOint arithmetic rules:

• All "integer" constants 1n the range of type integer are considered to be of
type integer. All "integer" constants In the range of type longint, but not
in the range of type integer, are considered to be of type longint.

• When both operands of an operator (or the single operand of a unary
operator) are Of type integer, 16-bit operations are always performed and
the result is of type Integer (truncated to 16 bits if necessary~

• When one or both operands are of type longlnt, all operands are first
converted to type longlnt, 32-bit operations are performed, and the result is
of type longint. However, if this value is assIgned to a variable of type
Integer, It is truncated (see next rule~

3-3

Pascal Reference HanI./al Data 7)lpes

• The expressIon on the rIght of an assignment statement Is evaluated
independently Or tile size Or tile varl8IJ1e on tile 1ert. If necessary, the
resul t of the expreSSion is truncated or extended to match the size of the
variable on the left.

The ord4 function (see Section 11.3.3) can be used to convert an Integer value
to a longlnt value.

There is a performance penalty for me use of longlnt values. The
penalty is essentially a factor of 2 for operations other than division
and mUltipllcatlon; for division and multiplication, the penalty is much
worse than a factor of 2.

3.1.1.3 The Real Type
For detalls of IEEE standard floating-point arithmetic, see Appendix D. The
possible real values are

• FinIte values (a subset of the mathematical real numbers~ As constants,
these values can be denoted as specified in Section 1.4.
The largest absolute numeric real value Is approximately 3.402823466E38 in
Pascal notation.
The smallest absolute numeric non-zero real value is approxImately
1.401298464E -45 in Pascal notation.
The real zero value has a sign, like other numbers. However, the sIgn of a
zero value Is dIsregarded except in division of a finite number by zero and
in textual output.

• Infinite values, +00 and -00. These arise either as the result of an operation
that overflows the maximum absolute finite value, or as the result of
dividing a finite value by zero. Appendix 0 gives the rules for arithmetic
operations using these values.

• NaNs (the word "NaN" stands for "Not a Number"~ These are values of
type real that convey diagnostic information. For example, the result of
mUltiplying 00 by 0 is a NaN.

3.1.1.4 TIle Boolem Type
The values are truth values denoted by the predefined constant identifiers false
and true. These values are ordered so that false Is "less than" true. The
function-call orc(false) returns 0, and orc(true) returns 1 (see Section 11.5.1~

3.1.15 The am Type
The values are extended 8-bit ASCII, represented by numeric codes in the
range 0 •• 255. The ordering of the Char values is defined· by the ordering of
these numeric codes. The function-call on(c), where c is a Char value, returns
the numeric code of c (see Section 11.5.1~

3-4

Pescal ReFerence M8I1U8l Data rypes

3.1.1.6 Strlng-Types
A string value is a sequence of characters that has a dynamic length attri­
bute. The length Is the actual number of characters in the sequence at any
time during program execution.

A string type has a static size attribute. The size Is the maximum Umlt on
the length of any value of this type. The current value of the length attribute
Is returned by the standard function length (see Section 11.6); the size attribute
of a string type is determined when the strtng type Is defined.

size-attribute

s.='J.=rze::;...--=a:.:..ttI:.=1.='bu=te~~."'1 unSigned-integer t-I ---.....

where the size attribute is an unsigned-integer.

If'-PLEM:NTA TI{)\I I'IlTE

In the current Implementation~ the size-attribute must be In the range
from 1 to 255.

The orderIng relationshIp between any two string values is determined by
lexical comparIson based on the ordering relationship between character values
In corresponding positions In the two strtngs. (When the two strings are of
unequal lengths~ each character in the longer string that does not correspond to
a character In the shorter one compares "higher"; thus the string 'attribute' is
ordered higher than 'at'.)

Do not confuse the sIze with the length.

3-5

Pascal Reference Hanl/al Data TypeS

The size attribute of a string constant is equal to the length of the
string constant value .. namely the number of characters actually In the
string.
Although string-types are simple-types by definition .. they have some
characteristics of structured-types. As explaIned in Section 4.3.1,
individual characters In a string can be accessed as if they were
components of an array. AlSo, all string-types are implicitly packed
types and all restrictions on paCked types apply to strings (see sections
7.3.2, 5.1.6.1, and 11.7).

Do not make any assumptions about the internal storage format of strings .. as
this format may not be the same In all implementations.
~rators appliCable to strings are specifIed in Section 5.1.5. Standard
procedures and functions for manIpulating strings are described In Section 11.6.

3.12 Erunerated-Types
M enumerated-type defines an ordered set of values by listing the identifiers
that denote these values. The orderIng of these values is determlnea by tne
sequence in which the identifiers are listed.

entlmerated-trpe "C:D---i identifier-list ~

identifier-jist

~
The occurrence of an identifier within the identifier-Ust of an
enumerated-type declares it as a constant for the block in which the
enumerated-type Is declared. The type of this constant Is the enumerated-type
beIng declared.
Examples of enumerated-types:

color = (reo, yellOW, green, blue)
suit = (clltl, dianDld, heart, spade)
maritalstatus = (married, divorced, widowed, sirY;Jle)

Given these declarations, yellow is a constant of type color, dicmond is a
constant of type suit, and so forth.
When the ord function (see Section 11.5.1) is appl1ed to a value of an
enumerated-type, it returns an integer representing the orderIng of the value

3-6

Pascal Reference MantJal Data TYpes

wlth respect to the other values of the enumerated-type. For example, glven
the declarations above,on(red) returns 0, on(yellow) returns 1, and on(blue)
returns 3.

3.1.3 Sl&lrange-Types
A suorange-type provides for range-checking of values within some
ordinal-type. The syntax for a subrange-type is

slJb.ranqe-type ., constant ~ constant ~

Both constants must be of ordinal-type. Both constants must either be of the
same ordinal-type, or one must be of type integer and the other of type
long1nt If both are of the same ordinal-type, this type Is called the host-type
If one is of type Integer and the other of type Ia"glnt, the host-type is la1Qlnt
Note that no range-CheCking is done if the host-type Is longlnt

Examples of slIorange-types:
1..100
-10 10
red .. green

A variable of subrange-type possesses all the properties of variables of the
host type, with the restriction that its run-time value must be In the speclf1ed
closed interval.

II"'PlEI'w'ENT A TICI'I NOTE

Range-CheckIng is enabled and dlsaDled oy the complIer commandS :IR+
and $R- (see Chapter 12). The default is $R+ (range-checKing enabled).

3.2 StIooturea-Types
A structured-type is characterized by its structuring method and by the type(s)
of its components. If the component type is itself structured, the reSUlting
structured-type eXhibits more than one level of structuring. There is no
specIfied llmlt on the number Of levelS to Which data-types can oe structured.

structured-type-identi fier

3-7

Pascal Reference Manual Data ljpes

The use of the word pcd<ed in the declaration of a structured-type indicates
to the compller that data storage should be economized, even If this causes an
access to a component of a variable of this type to be less efficient
The word packed only affects the representation of one level of the
structured-type In whIch it occurs. If a component is itself structured, the
component's representation Is paCked only If the word packed also occurs In
the declaration of Its type.
For restrIctIons on the use of components of packed variables, see Sections
7.3.2, 5.1.6.1, and 11.7.
The implementation of paCkIng Is complex, and details of the allocation of
storage to components of a packed variable are tl/7specilJet.t

IfVPL.ErvENT A TICN f\IJTE

In the current Implementation, the word packed has no effect on types
other than array and record.

3.2.1 Array-Types
All array-type consists of a fixed number of components that are all of one
type, called the component-type. The number of elements Is determined by
one or more indeX-types, one for each dimension of the array. There is no
specified limit on the number of dimensions. In each dimension, the array can
be indexed by every poSSible value of the corresponding Index-type, so the
number of elements is the prOduct of the cardinallties of all the Index-types.

a08Y-type

index-tyPe ..,,1 ordinal-type ~

The type following the word Of Is the component-type of the array.
IrvPLErvENT A TI(]\I I'IJTE

In the current implementation, the Index-type should not be longlnt or a
subrange of longlnt, and arrays should not contaIn more than 32767 oytes.

3-8

Pascal Reference Manl/al

Examples of array-types:
array[1. .100] of real
array[bOOlea'l] Of color

Data Types

If the component-type of an array-type is also an array-type, the result can be
regarded as a single multi-dimensional array_ The declaration of such an array
is equivalent to the declaration of a multi-dimensional array, as illustrated by
the following examples:

array[bOOlea'l] of array[1. .10] of array[slze] of real

is equIValent to:

array [bOOlea'l,1 .. 10, size] of real

likewIse,
packed array[l. .10] Of packed array[l. .8] Of bOOlea'l

Is equIvalent to:

packed array[1. .10, 1. .8] Of boolecll

"Equivalent" means that the compHer does the same thing with the two
constructions.
A component of an array can be accessed by referencing the array and
applying one or more indexes (see Section 4.3.1~

3.22 Record-Types
A record-type consists of a fixed number of components called fields, possibly
of different types. For each component, the record-type declaration specifies
the type of the field and an identIfier that denotes It .

.recon:i-type .(rermti) 1. ~ .@--
'-t.I field-list t--'

fjeld-list

\.1 fixed-part , ~;
l ~f-I variant-part t-i \.01

fixed-pmt (.1,-_fi_el_d_-d_e_Cl_8_r8_ti_o_n ,)

~.-------~G)~.~-----.

3-9

Pascal Reference Manual Data TYpes

...;..;;~;.;;;.;'OJ.;;;..;;'d __ '-I:Iea=='l8J.;.;;..;a=I:J4='OI1~~., ... identifier-list ~

The fixed-part of a record-type specifIes a list of "fixed" fields, giving an
identifier and a type for each field. Each of these fields contains data that Is
always accessed in the same way (see Section 4.3.2).

Example of a record-type:

record
year: integer;
IOOI'lth : 1 •• 12;
day: 1. .31

En:J

A variant-part allocates memory space with more than one list of fields, thus
permitting the data in this space to be accessed in more than one way. Each
list of fields is called a variant. The variants "overlay" each other In memory,
and all fields of all variants are accessible at all times.

variant-part

~~ K)f.ltag-fle)d-tYpe~
identifier : ;

t/aliant

(~'---con-~ta---'nt I) .0+0 "\ I I{ .CD--+
---G)-e . '--tr; field-list r-'

tag-field-type .1 ordinal-type-identifier t---+

IM'LEMENT A TI(J\J NOTE

In the current Implementation, the type longlnt should not be used as a
tag-type as it will not work correctly.

3-10

Pascal Reference ManlIaI Data rypes

Each variant is introduced by one or more constants. All the constants must
be distinct and must be of an ordinal-type that is compatible with the
tag-type (see Section 3.4~

The variant-part allows for an optional identifier, called the tag-flell!
identifier. If a tag-field identifier is present, it is automatically declared as
the identifier of an additional fixed field of the record, called the tag-flelct

The value of the tag-field may be used by the program to indicate which
variant should be used at a given time. If there is no tag-field, then the
program must select a variant on some other cri tenon.

Examples of reCOrd-types wIth variants:

record
name, firstName: string[80];
age: O •• 99;
case married: boolem of

end

true: (spousesNaoo: string [80]);
false: ()

record
x,y: real;
area: real;
case s: shape of

triCllQle: (slde: real; inclination, CIlglel, crlgle2:
(DJle);

end

rectangle: (sidel, side2 : real; skew, argle3: argle);
clrele: (diameter: real);

The constants that introduce a variant are not used for referrIng to
fields of the variant; however, they can be used as optional arguments
of the new procedure (see Section 11.2~ Variant fields are accessed In
exactly the same way as fixed fields (see Section 4.3.2~

3.2.3 8et-Types .
A set-type defines a range of values that is the powerset of some ordinal-type,
called the base-type In other words, eaeh pOSSible value of a set-type is some
subset of the pOSSible values of the base-type.

set-tjfJJe .~ ordinal-type ~

3-11

Pascal Reference Manllal Data Types

II"'PlErvENT A TI(J\J NOTE

In the present implementation the base-type must not be longlnl The
base-type must not have more than 4088 possible values. If the base­
type Is a subrange of Integer" it must be within the limits 0 .. 4087.

QJerators applicable to sets are specified in Section 5.1.4. Section 5.3 shows
how set values are denoted in Pascal.

Sets with less than 32 possible values in the base-type can be held in a
register and offer the best performance. For sets larger than this" there is a
performance penalty that is essentially a linear function of the size of the
base-type.

The empty set (see Section 5.1.4) Is a pOSSible value of every set-type.

3.2.4 FUe-Types
A file-type is a structured-type consisting of a sequence of components that
are all of one type" the component-type The component-type may be any
type.

The component data is not in program-addressable memory but Is accessed via
a peripheral device. The number of components (1.e. the length of the file) is
not fixed by the file-type declaration.

flle-ttpe ~ ~.
Of type

The type file (without the "of type" construct) represents a so-called "untyped
file" type for use with the blockread and blockwrtte functions (see Section
10.4).

Although the symbol file can be used as if it were a type-identifier" it
cannot be redeclared since it is a reserved word.

The standard file-type text denotes a file of text organized into lines. The
file may be stored on a file-structured device, or it may be a stream of
characters from a character devjce such as the Lisa keyboard. Files of type
text are supported by the specialized I/O procedures discussed in Section 10.3.

In Pascal on the Lisa" the type text is distinct from the type file of Char
(unlike standard Pascal~ The type file of char is a fUe whose records are of

3-12

Pascal Reference Mantia} Data 7ypes

type char, containing Char values that are not interpreted or converted in any
way dUring 110 operations.

In a stored fUe of type text or file of -128..127, the component values are
packed into bytes on the storage medium. However, this does not apply to the
type file of Char; the component values of this type are stored In 16-blt words.

In Pascal on the Lisa, files can be passed to procedures and functions as
variable parameters, as explained in Section 7.3.2.

Sections 4.3.3, 10.2, 10.3, and 10.4 discuss methods of accessing file components
and data.

3.3 Pointer-Types
A pointer-type defines an unbounded set of values that point to variables of a
speCified type called the lJ8se-type

Pointer values are created by the standard procedure new (see Section 11.2.1),
by the " operator (see Section 5.1.6), and by the standard procedure pointer
(see Section 11.3.4~

base-type ~ type-identifier ~

I'IlTE

The base-type may be an identifier that has not yet been declared. In
this case, it must be declared somewhere in the same blOCk as the
pointer-type.

The special symbol nil represents a standard pointer-valued constant that is a
possible value of every pointer type. Conceptuall y, nil is a pointer that does
not point to anything.

Section 4.3.4 discusses the syntax for referenclng the Object pointed to by a
pointer variable.

3.4 Identical and COI"f1>atlble Types
As explained belOW, this Pascal has stronger typing than standard Pascal. In
Pascal on the Lisa, two types mayor may not be idendcal, and identity is
required 1n some contexts bUt not In others.

3-13

Data TypeS

Even if not identical, two types may still be cornpat.ibl~ and this 1s sufficient
in contexts where identity Is not required--except for assignment, where
assignment-compatibility is required.

3.4.1 Type Identity
Identical types are required only in the following contexts:

• Variable parameters (see Section 7 .3.2~
• Result types of functional parameters (see Section 7.3.4~
• Value and variable parameters within parameter-lists of procedural or

functional parameters (see Section 7.3.5~
• Ole-dimensional packed arrays of char being compared via a relational

operator (see Section 5.1.5~
Two types, tl and t2, are klentical if either of the following Is true:

• The same type ItlentJfler Is used to declare both t1 and t2 .. as in
foo = "integer;
t1 = foo;
t2 = foo;

• t1 is declared to be equivalent to t2 as in
t1 = t2;

Note that the declarations
t1 = t2;
t3 = tl;

do not make t3 and t2 identical, even though they make tl identical to t2 and
t3 Identical to tl!
Also note that the declarations

t4 = integer;
t5 = integer;

do make til and t5 identical, since both are defined by the same type
identi fler. In general, the declarations

t6 = t7;
t8 = t7;

do make t6 and t8 identical if t7 is a type-identifier.
However, the declarations

t9 = "integer;
t10 = "integer;

do not make t9 and tlD identical since "integer is not a type identifier but a
user-defined type consisting of the specIal symbol .. and a type identifier.

3-14

Pascal Reference Manual Data TYPes

Finally, note that two variables declared in the same declaration, as in
varl, var2: "integer;

are of identical type. However, if the declarations are separate then the
definitions above apply.
The declarations

varl: A integer;
var2 : "integer;
var3: integer;
var4: integer;

make var3 and var4 identical in type, but not van and var2.
3.4.2 compatibility of Types

Compatibility is required in the majority of contexts where two or more
entities are used together, e.g. in expressions. Specific instances where type
compatlb1lity is required are noted elsewhere in this manual.
Two types are compatible if any of the following are true:

• They are identical.
• O"le Is a subrange of the other.
• Both are subranges of the same type.
• Both are string-types (the lengths and sizes may differ~
• Both are set-types, and their base-types are compatible.

3.4.3 AssIgrment-compatlblllty
AssIgnment-compatibility Is required whenever a value is assigned to
somethIng, either explicl tl y (as in an assignment -statement) or impllci t1 y (as in
passing value parameters).
The value of an expression expval of type exptyp is aSSignment-compatible
with a variable, parameter, or function-identifier of type vtyp if any of the
following is true.

• vtyp and exptyp are identical and neither is a file-type, or a structured­
type with a file component.

• vtyp is real and exptyp is Integer or longint (expval is coerced to type
real~

• vtyp and exptyp are compatible ordinal-types, and expvaI is within the
range of possible values of vtyp.

• vtyp and exptyp are compatible set-types, and all the members of expval
are within the range of possible values of the base-type of vtyp.

• vtyp and exptyp are string types, and the current length of expval is equal
to or less than the size-attribute of vtyp.

3-15

Pascal Reference Mantl8l Data 7)pes

• vtyp is a string type or a Char type and expval is a quoted-character­
constant.

• vtyp is a packed arra}{l .. n] Of Char and expval Is a string constant
containing exactly n characters.
If the index-type of the packed array of char Is not 1 .. n, but the array
does have exactly n elements, no error w111 occur. However, the results
are unspecified.

Whenever assignment-compatibility is required and none of the above Is true,
either a compiler error or a run-time error occurs.

3.5 The Type-Declaration-Part
My program, procedure, or function that declares types contains a type­
declaration-part, as shown in Chapter 2.

Example of a type-declaradon-part-

type COlIlt = integer;
range = integer;
color = (red, yellOW, green, blue);
sex = (male, female);
year = 1900 •. 1999;
shape = (triangle, rectangle, circle);
card = array [1. .80] of char;
str = str1ng[80];
polar = record r: real; theta: crgle end;
person = .. personJetails;
personDetails = record

name, firstName: str;
age: integer;
married: boolean;
father, Child, sibling: person;
case s: sex of

end;

male: (enlisted, bearded: boolean);
female: (pregnant: boolean)

people = file of personDetails;
intfile = file of integer;

In the above example COlI1t, range, and Integer denote identical types. The
type year is compatible with, but not identical to, the types 1CI1ge, COlIlt, and
integer.

3-16

029-0J96-A

Chapter 4
Variables

4..1 Vm1atlle-()e(:laratiOllS .•.•..•.•...•••..••.••.•...•.••.....••........••••.•.•.•...........••.. 4-1

4..2 variaIJle-RefelerlCes ... 4-1

4..3 c;)Jalifiers•......•.......•..•.•...•••.•..•.............•......•......•...•.•................. 4-2

4.3.1 Arrays, Strings, and Indexes .. 4-2
4.3.2 Records and Field-Designators ... 4-4
4.3.3 File-Buffers .. 4-4
4.3.4 Pointers and Their ClJjects .. 4-4

Variables

4.1 Variable-Declarations
A variable-declaration consists of a list of identifiers denoting new variables,
followed by their type.

VOIJ8lJle-d:claraum.,1 identifier-list ~

The occurrence of an identifier within the identifier-list of a variable­
declaration declares it as a variable-identifier for the block in which the
declaration occurs. The variable can then be referenced throughout the
remaining lexical extent of that block, except as specIfied in Section 2.2.2.
Examples of' variable-declarations:

x,y, Z: real;
i, j: integer;
k: O •. 9;
p, q, r: boolecvl;
operator: (plUS, minus, times);
a: array[o .. 63] Of real;
c: color;
f: file Of Char;
hUel, hUe2: set of color;
pl, p2: person;
In, ml, ntl: array [1. .10, 1. .10] of real;
coord: polar;
JXlOI tape: array [1 •• 4] of tape;

4.2 VanwIe-References
A variable-reference denotes the value of a variable of simple-type or
painter-type, or the collection of values represented by a variable of
structured-type.

variable-ref'erence

~~_v_a_rl_ab_le_-_ld_e_n_tl_fl_er~~-~~---------~~-----'.
'-1 qualif1er ~

variable-idenuf'ier ... , identifier ~

4-1

Pascal Reference Manual Variables

Syntax for the various kinds of qualifiers is given below.
4.3 Qualifiers

As shown above, a variable-reference is a variable-identifier followed by zero
or more qualifiers Each qualifier modifies the meaning of the variable­
reference.

ifFier

An array identifier with no qualifier is a reference to the entire array:
xResults

If the array identifier is followed by an index .. this denotes a specific
component of the array:

xResults[current+1]
If the array component is a record, the index may be followed by a field­
designator; in this case the variable-reference denotes a specific field within a
specific array component.

xResults[current+1].11nk
If the field Is a pointer, the field-designator may be followed by the pointer­
Object-symbol, to denote the Object pointed to by the pointer:

XResults[current+1].11nk A

If the Object of the pointer is an array, another index can be added to denote
a component of this array (and so forth):

xResults[current+1] .l1nk A [1]
4.3.1 Arrays, Strings, f:I'ld Indexes

A specifIc component of an array variable is denoted by a variable-reference
that refers to the array variable, followed by an index that speCifies the
component.
A specifIc character within a string variable is denoted by a variable-reference
that refers to the string variable, followed by an index that specifies the
character poslt1on.

index -(Dt---P(--.-t"1 expressIon I) "CD--+
''-------fO------

4-2

Pascal Reference Mantlal

Examples Of indexed arrays:

m[l, J]
a[l+J]

Variables

Each expresslon in the index selects a component in the corresponding
dimension of the array. The number of expressions must not exceed the
number of index-types in the array declaration .. and the type of each
expression must be assignment-compatible with the corresponding index-type.
In indexing a multi-dimensional array, you can use either multiple indexes or
multiple expressions within an index. The two forms are completely equivalent
For example,

m[i][j]

is equivalent to

m[i, J]
For array variables, each index expression must be assignment-compatible with
the corresponding index-type specified in the declaration of the array-type.
A string value can be indexed by only one index expression, whose value must
be in the range 1 .. n , where n is the current length of the string value. The
effect is to access one character of the string value.

WARNING

When a string value is manipulated by assigning values to individual
character positions, the dynamic length of the string is not maintained.
For example .. suppose that strval is declared as follows:

strval: strlng[lO];
The memory space allocated for strval includes space for 10 char values
and a number that will represent the current length of the string--Le.,
the number of char values currently in the string. Initially, all of this
space contains unspecified values. The assignment

strval[l]:='F"
mayor may not work, depending on what the unspecified length happens
to be. If this assignment works, it stores the char value 'F" in character
position 1, but the length of strval remains unspecified. In other words,
the value of strvaJ[l] is now "F', but the value of strval is unspecified.
Therefore, the effect of a statement such as writelr(strval) is
unspeci fied.
Therefore, this kind of string manipulation is not recommended. Instead,
use the standard procedures described in Section 11.6. These procedures
properly maintain the lengthS of the string values they modify.

4-3

Pascal Reference Malval Variables

4.3.2 Records crld Fleld-Deslglators
A specifIc field of a record variable is denoted by a variable-reference that
refers to the record variable, followed by a field-designator that specifies the
field.

field-desiqnator "'0---4 identifier r--.
Examples of field-designators:

p2" ·PregB1t
coord. theta

4.3.3 File-Buffers
Although a file variable may have any number of components, only one
component is accessible at any time. The position of the current component in
the file is called the current file position See Sections 10.2 and 10.3 for
standard procedures that move the current file position. Program access to the
current component Is via a specIal variable associated with the file, called a
file-buffer.

The file-buffer is implicitly declared when the flIe variable is declared. If F
is a file variable with components of type T, the associated file-buffer is a
variable of type T.
The file-buffer associated with a file variable is denoted by a variable­
reference that refers to the file variable, followed by a qualifier called the
file-buffer-symbol.

I1le-buffer-sf1!i;Jol ... () ..

Thus the file-buffer of file F is referenced by F".
Sections 10.2 and 10.3 describe standard procedures that are used to move the
current file position within the file and to transfer data between the f11e­
buffer and the current fUe component.

4.3.4 Pointers crld Their (l)jects
The value of a painter variable is either nil, or a value that identifies some
other variable, called the object of the pointer.

The Object poInted to by a pointer variable is denoted by a variable-reference
that refers to the pointer variable, followed by a qualifier called the polnter­
Object-symbOl.

pOinter-obJect-SYmbOI .. () ..

4-4

Pascal Ref'erence Mantlal Variables

NJTE

Pointer values are created by the standard procedure new (see Section
11.2.1), by the (I operator (see Section 5.1.6), and by the standard
procedure pointer (see Section 11.3.4~

The constant nil (see Section 3.3) does not point to a variable. If you access
memory via a nil pointer reference, the results are unspecifIed; there may not
be any error indication.
Examples of'ref'erences to Objects of' pointers:

pI: ..
pi .sibling

4-5

029-0:597-A

Chapter 5
Expressions

5.1 ~Iaton .•••..•............•...•.•.....•.•.•.•...•....•••..•........•••.....•.•.•.•••••...•..••.. 5-4

5.1.1 Binary qJerators: Order of Evaluation of qJerands 5-4
5.1~2 Arithmetic ~raton ... ~ 5-4
5.1.3 Boolean ~rators ... 5-6
5.1.4 Set ~raton ... 5-6

5.1.4.1 Result Type in Set t:perations•........................ 5-7
5.1.5 Relational cperators ... 5-7

5.1.5.1 COITIp8ring ~rs ... 5-7
5.1.5.2 COmparing Booleans ... 5-8
5.1.5.3 Comparing Strings ... 5-8
5.1.5.4 Comparing Sets ... 5-8
5.1.5.5 Testing Set t-1ernbership .. 5-8
5.1.5.6 Comparing Packed Arrays of Char 5-8

5.1.6 t9-QJerator .. 5-8
5.1.6.1 .. ~rator with a variable ~ ... 5-9
5.1.6.2 '-~erator with a Value Parameter 5-9
5.1.6.3 CI)-{~erator with a Variable Parameter 5-9
5.1.6.4 I'-cperator with a Procedure or Function 5-9

5.2 Ft.I1Ct.i(l1-~ls ... 5-10

5.3 Set-cor.stI1Jcton .. _ _ .. _ 5-11

Expressions

Expressions consist of operators and operands, I.e. variables, constants, set­
constructors, and function calls. Table 5-1 shows the operator precedence:

t:pe.rBtors
., not

*, /, div,
mod, (ftj

+, -, or
., <>, <, >,

<=, >=, in

Table 5-1
Pr"""ecedeI~"'""""ICe"'" of qJeraton

PJ-ecedence Gal:e9Jdes
highest unary operators

second "multiplying" operators

third "adding" operators 8t signs

lowest relat10nal operators

The following rules specify the way in which operands are bound to operators:
• When an operand Is written between two operators of different precedence,

it is bound to the operator with the higher precedence.
• When an operand is written between two operators of the same precedence,

it is bound to the operator on the left.
Note that the order in which operations are performed is not specified.
These rules are implicit In the syntax for expressions, which are built up from
factors, terms, and simple-expressions.
The syntax for a factor allows the unary operators " and not to be applied to
a value:

factor
~~~----"r--""'---_~ variable-reference 1----_ 

5-1 



Pasc81 Refemnce Manual Expmssjons 

A ftlnclion-call activates a function .. and denotes the value returned by the 
function (see Section 5.2~ A set-const.ructordenotes a value of a set-type (see 
Section 5.3). An lIIlslgned-const8l7t has the fOllowing syntax: 

....;;1.Ii;,:..;.'f7s.;;.;;.i~~.;.;;;.~.;;;..'(j-....;;CQ;.;;.'f7,;..;.;;~;...;.;t8l7;;;;;..;..;;;.t_...---111ti unsigned-number 1----_ 

Examples of factol'S: 

x 
ax 
15 
(x+y+z) 
sin(Xl2) 
["A' .. 'F', "a" •• "f "] 
notp 

{variable-reference} 
{pointer to a variable} 
{unsigned-constant} 
{ sub-express1m} 
{fUlCtion-call} 
{set -constructor} 
{negat1on Of a bOoleal} 

The syntax for a teon allows the "multiplying" operators to be applied to 
factors: 

leml 

Examples of terms: 
x*y 
1/(1-1) 
p em q 
(x <= y) and (y < z) 

5-2 



Pascal Reference MantJaJ Expressions 

The syntax for a sinple-expression allows the "adding'· operators and sIgns to 
be appUed to terms: 

EXl1I11ples of'Simple-expressions: 

x+y 
-x 
tlJel + tlJe2 
1*j + 1 

The syntax for an expression allows the relational operators to be applied to 
simple-expressions: 

expression 

s1mple-expression J.-.-...~------------~~. 

Examples of expressions: 

x = 1.5 
P <= q 
p=qandr 
(1 < j) = (j < k) 
c in hue1 

I---.....-~ simple-expression 

5-3 



Pascal Reference Manual Expressions 

5.1 QJerators 
5.1.1 Binary (llerators: order of Evaluation of (llelll'lds 

The order of evaluation of the operands of a binary operator is unspecified. 
5.1.2 Arithmetic ~rators 

The types of operands and results for arithmetic binary and unary operatlons 
are shown in Tables 5-2 and 5-3 respectively. 

Table 5-2 
Binary Artttmetlc qleratlons 

lpemtor QJemlim QJerand Types Type of Result 

+ addItion 
................................. ..................................................... 

integer, real, or Integer, real, or - subtraction 
••••••••••••••••••• n ••••••••••••• ................ uu .................................. 

longint longint 

* mul tiplicatIon 

I divisIon integer, real, or real 
longint 

div division with integer or longint integer or longint 
integer result 

rood modulo integer or Imgint integer 

Note: The SymbOlS +, -, and * are also used as set operators (see 
Section 5.1.4~ 

Table 5-3 
Ulery Arlttmetlc qleratlons (SlglS) 

£Perato)'" QJeratJon QJeranc1 TYpes TYPe of Result 

+ identity 
....... , ......................... ...................................................... integer, real, or same as operand 

- Sign-negation lIDJint 

My operand whose type is SOOI, where SIilr is a subrange of some ordInal-type 
on:tt.yp, is treated as if it were of type Ordtyp. Consequently an expression 
that consists of a single operand of type SIilr is itself of type ordtyp. 

5-4 



Pascal Reference Manual Expressions 

If both the operands of the addl tlon .. subtraction .. or multiplication op~rators 
are of type integer or longlnt, the result Is of type integer or longlnt as 
described in Section 3.1.1.2; otherwise .. the result is of type real. 

I\IJTE 

See Appendix 0 for more information on all arithmetic operations with 
operands or results of type real. 

The result of the identity or sign-negation operator is of the same type as the 
operand. 
The value of t dlv 1 is the mathematical quotient of tlj, rounded toward zero 
to an Integer or longlnt value. An error occurs if j-O. 
The value of 1 mod 1 Is equal to the value of 

1 - (1 d1v j)*j 

The sign of the result of mod is always the same as the sIgn of 1. An error 
occurs if ,1-0. 

The predefined constant max1nt is of type Integer. Its value is 32767. This 
value satisfies the followIng condItions: 

• All whole numbers in the closed interval from -maxint-l to +maxlnt are 
representable in the type integer. 

• Any unary operation performed on a whole number in this interval will be 
correctly performed according to the mathematical rules for whole-number 
arithmetic. 

• My binary integer operation on two whole numbers in this same interval 
will be correctly performed according to the mathematical rules for 
whole-number arithmetic ... provided that the result is also in this interval. 
If the mathematical result is not in this interval.. then the actual result Is 
the low-order 16 bits of the mathematical result. 

• My relational operation on two whole numbers in this same interval will be 
correctl y performed according to the mathematical rules for whole-number 
arithmetic. 

5-5 



Pascal Reference MantJ8/ Expressions 

5.1.3 Boolesl q>erators 
The types of operands and results for Boolean operations are Shown in Table 
5-4. 

t:pe.rator cpe.ratJ0/7 

or disjunction 

(OJ conjunction 

Table 5-11 
Booleal ~ratlons 

bOOlean 
............................................................................... u ••••• 

rot negation 

rype Of'ReMt 

bOOlean 

Whether a Boolean expression Is completely or partially evaluated If its value 
can be determined by partial evaluation Is unspecified. For example, consIder 
the expression 

true or boolTst{x) 
where bOolTst is a function that returns a boolean value. ir,Is expression wiIi 
always have the value true, regardless of the result of bOolTst(x} The language 
definition does not specify whether the boOlTst function is called when this 
expression is evaluated. This could be important if bOolTst has side-effects. 

5.1.4 Set qJeraton 
The types of operands and results for set operations are shown In Table 5-5. 

t:pe.ratOl t:peratJon 

+ union 

dIfference 

* intersection 

Table 5-5 
Set ~rat1ons 

Q:Jerand Types 

compatible 
set-types 

5-6 

Type of Result 

(see 5.1.4.1) 



Pascal Reference Manual Expressions 

5.1.4.1 Result Type In set qleratlms 
The following rules govern the type of the result Of a set operation where one 
(or bOth) of the operands is a set of Slbr, where ordtyp represents any 
ordinal-type and Slbr represents a sUbrange of ordtyp: 

• If ordtyp Is not the type Integer, then the type of the result Is set of 
Ordtyp. 

• If ordtyp is the type integer, then the type of the result is set of 0..4087 In 
the current implementation (0 .. 32767 in a future implementation~ This rule 
results from the limitations on set-types (see Section 3.2.3~ 

5.1.5 Relational qJerators 
The types of operands and results for relational operations are shown in Table 
5-6, and discussed further below. 

Table 5-6 
Relational {llel8tions 

cperator t:peratJon 

equaI 

<:> not equal 

< less 

t:perand TYpes 
compatible set -, 
simple-, or 
pointer-types 
(& see below) 

:> greater compatible 
.............. ~: .............. · .. less/equai .. · .. · .. · ...... · .... · (!":~:io~) 
............... ;,: .............. · .. greateilequaf ........ · 

............... ~~ ................. ~~~~.~ ... 9.f ..................... . 
>- superset of 

in member of 

5.1.5.1 COf1l>aI1ng Nl.IrDers 

compatible 
set-types 
left operand: 

..... ~DJ. .. g!~J~!:::.t.y.~ .. ! ......... . 
rig/1t operand: 
set of T 

TYpe of Rest/It 

boolem 

When the operands of <, :>, :>-, or <- are numeric .. they need not be of 
compatible type if one operand Is real and the other is Integer or longlnl 

NJTE 

See Appendix 0 for more information on relational operations wIth 
operands of type real. 

5-7 



Pascal Reference Mantlal Expressions 

5.15.2 COf'r1latlng BoolealS 
If P and q are bOOlESl operands, then p-q denotes their equivalence and p<-q 
denotes the implication of q by P (because false<true). Similarly, p<>q denotes 
logical "exclusive-or." 

5.1.5.3 COf'r1latlng Strings 
When the relational operators -, <> , < , > , <- , and > are used to compare 
strings (see Section 3.1.1.6), they denote lexicographic ordering according to the 
ordering of the ASCll character set. Note that any two string values can be 
compared since all string values are compatible. 

5.15.4 COf'r1latlng Sets 
If u and v are set operands, then u<-v denotes the inclusion of u In v, and 
u>-v denotes the inclusion of v in u. 

5.15.5 Testing Set Membenhlp 
The in operator yields the value true if the value of the ordinal-type operand 
is a member of the set-type operand; otherwise it yIelds the value false. 

5.1.5.6 COf'r1latlng Packed Arrays of Char 
In addition to the operand types shown in the table, the ... and <> operators can 
also be used to compare a packed arra){LN] of char with a string constant 
containing exactly N characters, or to compare two one-dimensional pacKed 
arrays of char of identical type. 

5.1.6 ~rator 
A pOinter to a variable can be computed with the .... operator. The operand 
and result types are shown in Table 5-7. 

cperator cperation 

pointer .-
formation 

Talle 5-7 
Pointer ~ration 

Q:Jerand 
variable ... parameter ... 
procedure, or 
function 

Type of Result 

same as nil 

" is a unary operator taKing a Single variable, parameter, procedure, or 
function as its operand and computing the value of its poInter. The type of 
the value Is equivalent to the type of nil, and consequently can be aSSigned to 
any pOinter variable. 

5-8 



Pascal Reference Manual Exp.msslons 

5.1.6.1 IH4lerator With a Varlcmle 
For an ordinary variable (not a parameter), the use of .is straightforward. For 
example, if we have the declarations 

type t!lKJChar = packed array[o .. 1] of Char; 
var int: integer; 

tWCharptr: .. tWOChar; 

then the statement 
tWCharptr := aint 

causes twocharptr to point to tnt Now twocharptr" Is a reinterpretation Of 
the bit value of tnt as though it were a packed array[o..l] of Char. 

The operand of (I cannot be a component of a packed variable. 
5.1.6.2 ..... qJerator With a Value Parameter 

When • is applied to a formal value parameter, the result is a pOinter to the 
stack location containIng the actual value. Suppose that foo is a formal value 
parameter In a procedure and fooptr Is a pointer variable. If the procedure 
executes the statement 

fooptr : = itfoo 

then fooptr" is a reference to the value of foo. Note that if the actual­
parameter is a variable-reference, fooptr" is not a reference to the variable 
itself; it is a reference to the value taken from the variable and stored on the 
stack. 

5.1.6.3 .... qlerator With a Varlcmle Parameter 
When • Is applied to a formal variable parameter, the result Is a poInter to 
the actual-parameter (the pOinter is taken from the stack~ Suppose that flm 
is a formal variable parameter of a procedure, fie Is a variable passed to the 
procedure as the actual-parameter for flm, and flInptr is a poInter variable. 
If the procedure executes the statement 

f~tr : = iifll1l 

then flInptr is a pointer to fie. fUTlltr" is a reference to fIe Itself. 
5.1.6.4 IH4lerator With a ProceWre or Ft6lCtion 

It is possible to apply. to a procedure or a function, yielding a pointer to the 
entry-point Note that Pascal provides no mechanism for using such a pointer. 
Currently the only use for a procedure poInter is to pass it to an assembly­
language routine, which can then JSR to that address. 
If the procedure pointed to is in the local segment, .. returns the current 
address of the procedure's entry point If the procedure is In some other 
segment, however, • returns the address of the jump table entry for the 
procedure. 

5-9 



Pascal Reference MantlaJ ExpressIons 

In logIcal memory mapping (see WOI/(snop User's Guide for tile Lisa), the 
procedure pointer is always valid. 
In physical memory mapping, code swapping may change a local-segment 
procedure address without warning, and the procedure pointer can become 
invalid. If the procedure Is not In the local segment, the jump-table entry 
address will remain valid despite swapping because the jump table Is not 
moved. 

5.2 FlIlCtion-C811s 
A function-call specifies the activation of the function denoted by the 
function-identifier. If the corresponding function-declaration contains a list of 
formal-parameters, then the function-call must contain a corresponding list of 
actual-parameters. Each actual-parameter is substituted for the corresponding 
formal-parameter. The correspondence Is established by the positions of the 
parameters in the lists of actual and formal parameters respectively. The 
number of actual-parameters must be equal to the number of formal 
parameters. 
The order of evaluation and binding of the actual-parameters is unspecified. 

fi.1(Jcl1oll-call 

actual-parameter-list 

8(]1lJ8l-paramel.eI-Jis'/ ~ I hl'\'L---) - ~.J.- L ooWal-parameter· ) p~ 

actuai-parameter 

----10·---

expression 

procedure-identi fier 

function-ldenU fler 

A function-identifier is any identifier that has been declared to denote a 
function. 

5-10 



Pascal Reference Manual 

Examples of fUlCtion-caJls: 

SlI11(a, 63) 
QCd(147,k) 
sin(x+y) 
eof(f) 
Ord(f") 

5.3 set-Constructors 

ExpressJons 

A set-constructor denotes a value of a set-type, and Is formed by writing 
expressions w1thin [bracketsl Each expression denotes a value of the set 

set-constructor "{1) ... ([)-+ 
~m~r-gr~F? 

----iO-----' 

.. , expression I \+Q:i ~ 
.. expressIon 

The notation [ ] denotes the empty set, which belongs to every set-type. My 
member-group x..y denotes as set members the range of all values of the base­
type In the closed interval x to y. 
If x 1s greater than y, then x..y denotes no members and [x..y] denotes the 
empty set. 
All values deSignated in member-groups In a particular set-constructor must be 
of the same ordinal-type. This ordinal-type 1s the base-type of the reSUlting 
set. If an Integer value designated as a set member is outside the limits given 
In Section 3.2.3 (0 .. 4087 In the current implementation), the results are 
unspeci f1ed. 
Examples of set-constructors: 

[reo, c, green] 
[1, 5, 10 .. k I1Ild 12, 23] 
["A" •• 'Z', ·a· •• 'Z", Ctlr(XCOde)] 

5-11 





029-0}98-A 

Chapter 6 
Statements 

6..1 Sirr1l1e staternerlts ....... _ ........•.............................................. _ ............ 6-1 

6.1.1 Assignment-Statements ............................................................ 6-1 
6.1.2 Procedure-Statements .............................................................. 6-2 
6.1.3 Gato-Statements ...................................................................... 6-3 

6..2 StIuc:t1Jre(j-stat.ernerrt.s •••••••••.••••.••••••.•••..•••....•.••..•••.•••••••.•.••.•••••••.••••• 6-4 

6.2.1 Compound-Statements .............................................................. 6-4 
6.2.2 Conditional-Statements ............................................................ 6-4 

6.2.2.1 If-Statements ............................................................... 6-5 
6.2.2.2 Case-Statements .......................... 00.0.0.000 ••••• 0 ••••••••••••••••• 6-5 

6.2.3 Repetitive-Statements ......................................... 0 •••••••••••••••••••• 6-6 
6.2.3.1 Repeat-Statements ....................................................... 6-7 
6.2.3.2 WhIle-Statements ......................................................... 6-7 
6.2.3.3 F or-Statements ............................................................. 6-8 

6.2.4 With-Statements .................................................................... 6-10 





Statements 

Statements denote algorithmic actions, and are executable. They can be 
prefixed by lanels; a labeled statement can be referenced by a goto-statement. 

simple-statement 1---_-" 

JabeJ .1 digit-sequence I • 

A digit-sequence used as a label must be in the range 0 .. 9999, and must first 
be declared as described in Section 2.1. 

6..1 Sinllie Statements 
A simple-statement is a statement that does not contain any other statement. 

::."im rJe-statement assignment-statement 

goto-statement I-----~---l ... 

6.1.1 Asslgment-statements 
The syntax for an assignment-statement is as follows: 

asslglJlJ'Jt:?fJl-staten'Jt:?fJl 

variable-reference 

function-identifier I------.:~ expressIon 

The assignment-statement can be used in two ways: 
• To replace the current value of a variable by a new value specified as an 

expression 
• To specify an expreSSion WhOse value is to be returned by a function. 

6-1 



Pascal Ref'erence Manual Statements 

The expression must be assignment-compatible with the type of the variable or 
the result-type of the function. 

If the selection of the variable involves indexing an array or taking the 
object of a pOinter, it is not specified whether these actions precede or 
follow the evaluation of the expression. 

Examples of' assignment-statements: 

x := y+z; 
p := (1<=1) and (1<100); 
1 := sqr(k) - (1*j); 
rue1 := [blue, succ(c) J; 

6.1.2 ProceWre-Statements 
A procedure-statement serves to execute the procedure denoted by the 
procedure-identifier. 

p1"l7{1et.1lIJ-e-.... 1at.erllet7l 

procedure-identi fier 
actual-parameter-list 

(A procedure-identifier is simply an identifier that has been used to declare a 
procedure.) 
If the procedure has formal-parameters (see Section 7.3), the procedure­
statement must contain a list of actual-parameters that are bound to the 
correspondIng formal-parameters. The number of actual-parameters must be 
equal to the number of formal parameters. The correspondence Is established 
by the positions of the parameters In the llsts Of actual and formal parameters 
respect1 vel y. 
The rules for an actual-parameter IV> depend on the corresponding formal­
parameter FP: 

• If FP is a value parameter, IV> must be an expression. The type of the 
value Of IV> must be assIgnment-compatible wIth the type of FP. 

• If FP is a variable parameter, IV> must be a variable-reference. The type 
of IV> must be identical to the type of FP. 

• If FP Is a procedural parameter, IV> must be a procedure-identifier. The 
type of each formal-parameter of IV> must be identical to the type of the 
corresponding formal-parameter of FP. 

6-2 



Pascal Reference ManIJ8l Statements 

• If FP is a functional parameter, IV> must be a function-identifier. The type 
of each formal-parameter of IV> must be Identical to the type of the 
corresponding formal-parameter of FP, and the result-type of PP must be 
identical to the result-type of FP. 

f\IJTE 

The order of evaluation and binding of the actual parameters is 
unspecified. 

Examples of procedl.lre-statements: 

prlntheadlng; 
trCl1spose(a., n, m); 
blsect(fct, -1.0, +1.0, x); 

6.1.3 Goto-Statements 
A goto-statement causes a jump to another statement in the program, namely 
the statement prefixed by the label that is referenced in the go to-statement. 

(!Ow-statement .~ label t-+ 

NOTE 

The constants that Introduce cases within a case-statement (see Section 
6.2.2.2) are not labels, and cannot be referenced In gato-statements. 

The followIng restrictions apply to gata-statements: 

• The effect of a jump into a structured statement from outside of the 
structured statement is unspecified. 

• The effect of a jump between the then part and the else part of an tf­
statement Is unspecIfied. 

• The effect of a jump between two different cases withIn a case-statement 
is unspecified. 

6-3 



Pascal Reference Manl.l8J Statements 

62 structured-statements 
Structured-statements are constructs composed of other statements that must 
be executed either conditionally (conditional-statements), repeatedly 
(repetitive-statements), or in sequence (compound-statement or wlth-statement~ 

sUuctllnJd-statement 
~...;;.;.;;;...;;..:;.;;;;..;:~;;....;.;:;.;..;;..;;...;..;...;.;;..;...;."--~ ........ ~ compound-statement 

wIth-statement 1------lIo...-___ 

62.1 ~statements 
The compound-statement specifies that its component statements are to be 
executed in the same sequence as they are wrItten. 

compound-statement 

~ (.1 statement ) .~ 
-'--IO"'--~ 

Example of compound-statement-

begin 
Z := X; 
X := y; 
y := Z 

end 

An important use of the compound-statement Is to group more than one 
statement into a single statement, in contexts where Pascal syntax only allows 
one statement. The symbols llegln ana end act as "statement bracKets." 
Examples of this will be seen in Section 6.2.3.2. 

62.2 Condltional-Statements 
A conditional-statement selects for execution a single one (or none) of its 
component statements . 

..:;COIJf..=.:..:=1l.=tfona=;:..~-..=;s.:;.:ta:=ten~1t?n=, .:..:,f._.....:-----a.t if-statement 

6-4 



Pascal Refemnce Hant.I8l Statements 

6.2.2.1 If-statements 
The syntax for if-statements is as follows: 

if-statement 

The expression must yield a result of type boolean. If me expression yields 
the value true, the statement fOllowing the then is executed. 

If the expression yields false and the else part is present, the statement 
followIng the else Is executed; If the else part Is not present, nothIng 1s 
executed. 

The syntactic ambiguity arising from the construct: 

1f e1 tnen 
if e2 then s1 

else 52 
is resolved by interpreting the construct as being equivalent to: 

if e1 then begin 
if e2 then S1 

else s2 
end 

Examples of if-statements: 

if x < 1.5 then z := x+y else z := 1.5; 
if p1 <> nil then p1 : = p1 ... father; 

6.2.2.2 C8se-Statements 
The case-statement contains an expression (the selectolj and a l1st of 
statements. Each statement must be prefixed with one or more constants 
(Called case-cOl1J'tant~, or wIth the reserved word otherwise. All the case­
constants must be distinct and must be of an ordinal-type that Is compatible 
with the type of the selector. 

case-statenlt?flt 

otherwise-clause 

6-5 



Pascal Refemnce ManlJal Statements 

( .1 constant I) • a--.I statement 

"'------40---
..;;;;O..:.;;.tIJe..;.:;;;;;;..;~=q,=rse~. -..;;;cJ.::.;;'BlJ;;.;:tSe;;;;.;~_ .... 0-+C Otherwise)-+f statement 1..----.... 

The case-statement specifies execution of the statement prefixed by a case­
constant equal to the current value of the selector. If no such case-constant 
exists and an otherwise part is present, the statement following the word 
otherwise Is executed; If no otherwise part is present, nothing is executed. 
Examples of case-statements: 

case operator of 
plus: x:= x+y; 
mioos: x:= x-y; 
times: x:= X*Y 

end 

case i Of 
1: x := sin(x); 
2: x := cos(x); 
3,4,5: x:= exp(x); 
otherwise x := In(x) 

end 

IM>LEJVENT ATICN NOTE 

In the current implementatlon, the case-statement will not worl< 
correctly if any case-constant is of type long1nt or the value of the 
selector Is of type longlnt 

6.2.3 Repetitive-Statements 
Repetitive-statements specify that certain statements are to be executed 
repeatedly. 

rlJi I8tjtjve-statement repeat-statement 

while-statement 

for-statement 

6-6 



Pascal Reference MantIal Statements 

6.2.3.1 Repeat-statements 
A repeat-statement contains an expression which controls the repeated 
execution of a sequence of statements contained within the repeat-statement 

repeat-statement 

---+C repeat >r' sta~ .@-l expression ~ 

Tne expressIon must yield a result Of type ooolecn The statements oetween 
the symOols repeat and lIltll are repeatedly executed until the expression 
yieldS the value true on completion of the sequence Of statements. The 
sequence of statements is executed at least once, because the expression Is 
evaluated after execution of the sequence. 
Examples of repeat-statements: 

repeat 
k := 1 rod j; 
1 := j; 
j := k 

lIlt1l j = 0 

repeat 
process ( f .. ); 
get(f) 

lI'ltil eof(f) 

6.2.32 While-statements 
A while-statement contains an expression which controls the repeated 
execution of one statement (possibly a compound-statement) contained within 
the While-statement 

wlllle-statement 
~ expression ~ statement ~ 

The expression must yield a result of type boolecn It Is evaluated before the 
contained statement is executed. The contained statement is repeatedly 
executed as long as the expression yields the value true. If the expression 
yields false at the beginning, the statement Is not executed. 

6-7 



Pascal Ref'erence HaniJa.I 

The whUe-statement: 
-'lile b do body 

is equivalent to: 
if b then repeat 

body 
lIltil not b 

Examples of' WIIlle-statements: 

-'lile a[i] <> x do i := i+1 

-'lile i>O do begin 
if Odd(i) then z := Z*X; 
i := i div 2; 
x := sqr(x) 

end 

-'lile not eof(f) do begin 
procesS(f" ); 
get(f) 

end 

6.2.33 For-Statements 

Statements 

The for-statement causes one contained statement (possibly a compound­
statement) to be repeatedly executed while a progression of values is assigned 
to a variable called· the control-variable 

f'o[-staterl1f3'IJl 

control-variable initial-value 

I-----...-.t final-value 

conffl.1l-v8Jiable "I varlable-ldenti fler ~ 

initial-value .. I expression ~ 

final-value .. \ expressIon ~ 

6-8 



Pascal Reference Manual Statements 

The control-variable must be a variable-identifier (without any qual1fier~ It 
must be local to the innermost block containing the for-statement, and must 
not be a variable parameter of that block. The control-variable must be of 
ordinal-type, and the initial and final values must be of a type compatible with 
this type. 
The first value assigned to the control-variable is the initial-value. 
If the for-statement is constructed with the reserved word to, each successive 
value of the control-variable is the successor (see Section 3.1) of the previous 
value, using the inherent ordering of values according to the type of the 
control-variable. When each value is assigned to the control-variable, it is 
compared to the final-value; if It is less than or equal to the final value, the 
contained statement is then executed. 
If the for-statement is constructed with the reserved word doWnto, each 
successive value Of the control-varlable is the predecessor (see Section 3.1) of 
the prevlous value. When each value is assigned to the control-variable, it Is 
compared to the final-value; 1f It Is greater than or equal to the flnal Value, 
the contained statement is then executed. 
If the value of the control-variable is altered by execution of the repeated 
statement, the effect Is unspeCified. After a for-statement is executed, the 
value of the control-variable is unspecified, unless the for-statement was 
exited by a goto. Apart from these restrictions, the for-statement: 

for v := e1 to e2 do bOdy 
is equivalent to: 

begin 
~1 := e1; 
teql2 := e2; 
if tenpl <= tenp2 then begin 

v := tenp1; 
OOdy; 
..... i1e v <> ~ dO begin 

v := succ(v); 
bOdy 

end 
end 

end 

6-9 



Pascal ReFerence M8nt1al 

and the for-statement: 
for v : = e1 downto e2 do body 

Is equivalent to: 
begin 

tenp1 := e1; 
tenp2 := e2; 
if tenp1 >= tenp2 then begin 

v := tenp1; 
body; 
While v <> tenp2 do begin 

v := pred(v); 
body 

end 
end 

end 

Statements 

where t.ef11l1 and temp2 are auxiliary variables of the host type of the variable 
v that do not occur elsewhere in the program. 
Examples 01' For-statements: 

for i := 2 to 63 do if ali] > max then max := ali] 
for i := 1 to n do for j := 1 to n do 

begin 
x := 0; 
for k := 1 to n do x := X + m1[i,k]*m2[k,j]; 
m[i,j] := x 

end 

for c := red to blue do q(c) 
6.2.4 With-Statements 

The syntax for a with-statement is 

wHh-statement 

(A record-variable-reference is simply a reference to some record variable.) 
The occurrence of a record-variable-reference In a with-statement affects the 
way the compiler processes variable-references within the statement following 
the word do. Fields of the record-variable can be referenced by their field­
identifiers, without explicit reference to the record-variable. 

6-10 



Pascal Reference H8fIIJal 

Example of wltfJ-statement· 

~dth date do if nmth = 12 then begin 
RDlth := 1; 
year := year + 1 

end 
else RDlth : = RDlth + 1 

This 1s equivalent to: 

if date.nmth = 12 then begin 
date. nmth : = 1; 
date. year : = date. year + 1 

end 
else date.lID1th := date.fID1th + 1 

Statements 

Within a w1th-statement, each variable-reference is checked to see if it can 
be interpreted as a field of the record. Suppose that we have the following 
declarations: 

type recTyp = record 
foo: integer; 
bar: real 

end; 

var baZ: recTyp; 
foo: integer; 

The identifier foo can refer both to a field of the record variable baZ and to a 
variable of type integer. Now consider the statement 

"'ith baZ do begin 

foo := 36; {Wlich foo is this?} 

end 

The foo tn this with-statement is a reference to the field baZ.foo, not the 
variable foo. 

The statement: 

"'ith vi, v2, ••• vn do 5 

is equivalent to the followIng "nested" wIth-statements: 

"'ith vi do 
with v2 do 

",ith vn do 5 

6-11 



Pascal Refe.rence Manual Statements 

If vn in the above statements is a field of both vi and v2, it is interpreted to 
mean V2.vn, not vl.vn. The list of record-variable-references in the wlth­
statement Is checked from right to left. 

If the selection of a variable in the record-variable-Ust involves the indexing 
of an array or the de-referencIng of a poInter, these actions are executed 
before the component statement Is executed. 

WARNJt.G 

If a variable in the record-variable-list Is a pOinter-reference, the value 
of the poInter must not be altered within the wIth-statement. If the 
value of the pointer Is altered, the results are unspecIfIed. 

Example of lIfJS8fe wit/1-statement using pointer-reference: 
wI th ppp" do begin 

new(ppp); {Don't do this ... } 

ppp: =XXX; { • •• or this} 

end 

6-12 



029-0:J99-A 

Chapter 7 
Procedures and FlI1Ctions 

7.1 ~l8I8tiorlS ..................................................................... 7-1 

7.2. FtI1Cti~laratiCl1S ••.••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 7-4 

7.3 Paraneters •••••••••.••••••••.••.•••.•...•••••.••••••••••••.••.•••••••••.••••••.••••••••••••••••• 7-5 

7.3.1 Value Parameters .................................................................... 7-7 
7.3.2 Variable Parameters .................................................................. 7-7 
7.3.3 ProcedlJral Parameters .............................................................. 7-7 
7.3.4 Functional Pararreters .............................................................. 7-9 
7.3.5 Parameter List Compatibility ..................................................... 7-9 





Procedures and Functions 

7.1 ProceOJre-DeclaratiOl'lS 
A prOCedUre-declaration associates an identifier with part of a program SO that 
it can be activated by a procedure-statement. 

pJVcedtlm-declaratjon 

----1 procedure-heading ~ procedure-body ~ 

~ 8=B1--.-->oo..---... 
The procedure-heading specIfIes the identifier for the procedure, and the 
formal parameters (If any~ 

P.lvt::et.lt.01?-fJeattU-,g 

------(proceIiJre H identifier I \. ;r" 
'+i formal-parameter-list ,--

The syntax for a formal-parameter-list is given in Section 7.3. 

A procedure is activated by a procedure-statement (see Section 6.1.2), which 
gives the procedure's identifier and any actual-parameters required by the 
procedure. The statements to be executed upon activation of the procedure 
are specified by the statement-part of the procedure's block. If the 
procedure's identifier is used in a procedure-statement within the procedure's 
block, the procedure is executed recursively. 

7-1 



Pascal Reference M8nI.Ial ProcedlJres & FlII1Ctions 

Exarrple of a p.rocedi.Ue-declaration: 
procewre readlnteger (var f: text; var X: integer); 

var value,digitValue: integer; 
begin 

.,ile (f A = 1 ') a1d not eof(f) do get(f); 
value := 0; 
.,ile (fA in ['0' .. '9 1

]) tm not eof(f) do begin 
digitValue := Ord(fA) - ord(IOI); 
value : = lO*value + digi tValue; 
get{f) 

end; 
X := value 

end; 

A procedure-declaration that has forward instead of a block is called a 
forwa.n:1 declaration Somewhere after the forward declaration (and In the 
same bloCk), the procedure Is actually defined by a defining declaration--a 
procedure-declaration that uses the same procedure-identifier, omits the 
formal-parameter-list, and includes a block. The forward declaration and the 
defining declaration must be local to the same block .. bUt need not be 
contiguous; that is, other procedures or functions can be declared between 
them and can call the procedure that has been declared forward. This permits 
mutual recursion. 
The forward declaration and the defining declaration consU tute a complete 
declaration of the procedure. The procedUre is considered to be declared at 
the place of the forward declaration. 
Example of fOrward declaration: 

procewre walter(m,n: integer); {forward declaratioo} 
forward; 

proceclJre clara(x, y: real); 
begin 

walter(4, 5); {(J( becaUse walter 1s forward declared} 

end; 

proceclJre walter; {defining deClaratioo} 
begin 

clara(8.3, 2.4); 

end; 

A procedure-deClaration that has external instead of a block defines the Pascal 
interface to a separately assembled or compiled routine (a PRCC in the case 
of assembly language~ The external code must be linked wIth the compiled 

7-2 



Pascal Reference Manual ProcedtIres & Fl./IJCtJons 

Pascal hOst program before execution; see the WOJ1<sllOp USer's Guide for t/Je 
Lisa for details. 
Example of an extemal pmcedtlre-declaration: 

procerure makescreen( iroex: 1nteger); 
external; 

This means that makescreen is an external procedure that will be linked to the 
hOst program before execution. 

JM>I...EIVENT ATI(N NJTE 

It is the programmer's responslblUty to ensure that the external 
procedure is compatible with the external declaration in tne Pascal 
program; the current linker does no cheCking. 

This Pascal (unlike Apple II and Apple III Pascal) does not allow a 
variable parameter of an external procedure or function to be declared 
without a type. To obtain a similar effect, use a formal-parameter of 
painter-type, as in the following example: 

type bl~ = ~ed array[O .. 32767] of Char; 
bi{PllCPtr = A b1gpaoc; 

proceWre mtever (bytearray: bl~tr); 
external; 

The actUal-parameter can be any pointer value obtained via the .­
operator (see section 5.1.6~ For example, if dOts is a pooked array of 
bOoleal, it can be passed to Whatever by writing 

ntever(iIdots) 

This description of external procedures also appUes to external functions. 

7-3 



Pascal Reference Hanu81 P.rocedtIres & FU7Ctlons 

7.2 FlI'lCtioo-Declarations 
A function-declaration serves to define a part of the program that computes 
and returns a value of simple-type or pOinter-type. 

function-declaration 

----..t function-heading ~ function-body ~ 

function-boct 

The function-heading specifies the identifier for the function, the formal 
parameters (if any), and the type of the function result. 

function-l1eadlnq .( ftI1ctIon ).j identifier ~ 

result-type 

formal-pafameter-list 

ordlnal-type-identlfler 

real- t ype-identi fier 

pointer-type-identifler 

The syntax for a formal-parameter-list is given in Section 7.3. 

A function is activated by the evaluation of a function-call (see Section 5.2), 
which gives the function's identifier and any actual-parameters required by the 
function. The function-call appears as an operand in an expression. The 
expression is evaluated by executing the function, and replacing the function­
call with the value returned by the function. 

The statements to be executed upon activation of the function are speCified by 
the statement-part of the function's block. This block should normally contain 
at least one aSSignment-statement (see Section 6.1.1) that assigns a value to 
the function-identifier. The result of the function is the last value assigned. 
If no such assignment-statement exists, or If it exists but Is not executed, the 
value returned by the function is unspecified. 

7-4 



Pascal Reference Manual ProcedUres & Fl/I7CtJons 

If the function's IdentifIer Is used in a function-call wi thin the function's 
blocK, the function is executed recursively. 
Examples of fu?Ctfon-declaratJons: 

function max(a: vector; n: integer): real; 
var x: real; i: integer; 
begin 

x := a[l]; 
for i := 2 to n dO if x < a[l] then x := a[l] 
max := X 

end; 

functlon power(x: real; y: integer): real; { y >= O} 
var ., Z: real; i: integer; 
begin 

• : = X; Z : = 1; i : = y; 
while i > 0 do begin 

{z-(W**i) = x ** y } 
if Odd(i) then Z := z*w; 
i := i div 2; 
• := sqr(w) 

end; 
{z = X**y } 
power := Z 

end; 

A function can be declared forward in the same manner as a procedure (see 
Section 7.1 above). This permits mutual recursion. 
A function-declaration that has external instead of a blocK defines the Pascal 
interface to a separately complled or assembled external routine (a .FLtC In 
the case of assembly language~ See the explanation In Section 7.1 above. 

7.3 Pararreters 
A formal-parameter-llst may be part of a procedure-declaration or 
function-declaration, or it may be part of the declaration of a procedural or 
functional parameter. 
If it is part of a procedure-declaration or function-declaration, it declares the 
formal parameters of the procedure or function. Each parameter so declared 
is local to the procedure or function being declared, and can be referenced by 
its identifier in the block associated with the procedure or function. 
If it Is part of the declaration of a procedural or functional parameter, it 
declares the formal parameters of the procedural or functional parameter. In 

7-5 



Pascal Reference M8ntJ81 ProcedUres & FtnCtions 

this case there is no associated block and the identifIers of parameters in the 
formal-parameter-l1st are not signifIcant (see Sections 7.3.3 and 7.3.4 belOw). 

fonnal-p8lameter-list 
~-----------------~ 

..c::.:::::..::::.:.~::::...-:===~-.t identifier-list type-identifier 

There are four kinds of parameters: value parameters, variable parameters, 
procedural parameters, and flInCtional parameters. They are distinguished as 
follows: 

• A parameter-group preceded by var is a list of variable parameters. 
• A parameter-group without a preceding var is a list of value parameters. 
• A procedure-heading or function-heading denotes a procedural or functional 

parameter; see Sections 7.3.3 and 7.3.4 below. 
I'IJTE 

The types of formal-parameters are denoted by type-IdentIfIers. In 
other words, only a simple identifier can be used to denote a type in a 
formal-parameter-list. To use a type such as arra}{0..255] of char as 
the type of a parameter, you must declare a type-identifier for thIs 
type: 

type charray = array [ o . . 255] of char; 

The identifier chalTay can then be used in a formal-parameter-Ust to 
denote the type. 

7-6 



Pascal Reference Manual P.rocedtI.nJs & rU7Ctions 

The word flle (for an "untyped" file) is not allowed as a type-identifier 
in a parameter-declaration, since it is a reserved word. To use a 
parameter of this type, declare some other identifier for the type flle 
--for example, 

type phyle = f1le; 

The identifier phyle can then be used In a formal-parameter-l1st to 
denote the type flle. 

7.3.1 Value Parameters 
For a value-parameter, the corresponding actUal-parameter in a proceclUre­
statement or function-call (see Sections 5.2 and 6.1.2) must be an expression, 
and its value must not be of fUe-type or of any structured-type that contains 
a flIe-type. The formal value-parameter denotes a variable local to the 
procedUre or function. The current value of the expression is assigned to the 
formal value-parameter upon activation of the procedure or function. The 
actual-parameter must be aSSignment-compatible with the type of the formal 
value-parameter. 

73.2 variable Parameters 
F or a variable-parameter, the corresponding actual-parameter In a procedure­
statement or function-call (see Sections 5.2 and 6.1.2) must be a variable­
reference. The formal variable-parameter denotes thIs actual variable during 
the entire activation of the procedure or function. 
Within the procedure or function, any reference to the formal variable­
parameter is a reference to the actual-parameter itself. The type of the 
actual-parameter must be identical to that of the formal variable-parameter. 

"lITE 

If the reference to an actual varIable-parameter involves indexing an 
array or finding the Object of a pointer, these actions are executed 
before the activation of the procedure or function. 

Components of variables of any packed structured type (inclUding string-types) 
cannot be used as actual variable parameters. 

73.3 Procedural Parameters 
When the formal-parameter is a procedUre-heading, the corresponding actual­
parameter in a procedure-statement or function-call (see Sections 5.2 and 6.1.2) 
must be a procedure-identifier. The identifier In the formal procedure-heading 
represents the actual procedure during execution of the procedure or function 
receiving the procedural parameter. 

7-7 



Pascal Reference Manual 

Example of proCedural pa.rameters: 

program passProc; 
var i: integer; 

ProcedUres & Fl.II7CtJons 

procecl.lre a(procewre x) {x is a formal proceOJral paraleter.} 
begin 

write( 'About to call x '); 
x {call the proceciJre passed as parareter} 

end; 

proceciJre b; 
begin 

write('In procedure b') 
end; 

function c(procedure x): integer; 
begin 

X; {call the procedUre passed as paraaooter} 
c:=2 

end; 

begin 
a(b); {call a, passing b as paraneter} 
i:= c(b) {call c, passing b as parameter} 

end. 

If the actual procedure and the formal procedure have formal-parameter-lists, 
the formal-parameter-lists must be compatible (see Section 7.3.5). However, 
only the identifier of the actual procedure is written as an actual parameter; 
any formal-parameter-list ·is omitted. 
Example of procedtlral paramete.rs with ttJelr own fOrmaJ-parameter-lists: 

program test; 
procedure xAsPar(y: integer); 

begin 
wri teln(, y=', y) 

end; 

proceclJre callProc(procec:l.a'e xAgain(z: integer»; 
begin 

XAgain(l) 
end; 

begin {bOdy of program} 
callProo( xAsPar) 

end. 

If the procedural parameter, upon activation, accesses any non-local entity (by 
variable-reference, procedure-statement, function-call, or label), the entity 

7-8 



Pascal Reference Manual Procecltlres & FlII1Ctions 

accessed must be one that was accessible to the procedure when the procedUre 
was passed as an actual parameter. 
To see what this means, consider a procedure pp which is known to another 
procedure, firsU>asser. Suppose that the fOllowing sequence takes place: 

1. firstpasser is executing. 
2. f1IstPasser calls a procedure named firstReceiver, passing pp as an 

actual parameter. 
3. flrstReceiver calls secor.Receiver, again passIng pp as an actual 

parameter. 
4. ~eceiver calls pp (first execution of pp). 

5. secorxReceiver calls thlllReceiver, again passing pp as an actual 
parameter. 

6. thinReceiver calls firstpasser (indirect recursion), and passes pp to 
fintPasser as an actual parameter. 

7. firstPasser (executing recursively) calls pp (second execution of pp). 
Thus the procedure pp is called first from secontReceiver, and then from the 
second (recursive) execution of firstPasser. 
Suppose that pp accesses an entity named xxx, which Is not local to pp; and 
suppose that each of the other procedures has a local entity named xxx. 
Each time pp Is called, which xxx does it access? The answer Is that in eacIJ 
case, pp accesses the xxx that is local to the IJrst execution of firstpasser-­
that is, the xxx that was accessible when pp was originally passed as an actual 
parameter. 

7.3.4 Fl6lCtional Parcmeters 
When the formal parameter is a function-heading, the actual-parameter must 
be a function-identifier. The identifier in the formal function-heading 
represents the actual function during the execution of the procedure or 
function receiving the functional parameter. 
Functional parameters are exactly Ilke procedural parameters, with the 
addi tional rule that correspondIng formal and actual functions must have 
identical result-types. 

7.3.5 Parameter List COOlJatibillty 
Parameter list compatibility is required of the parameter lists of corresponding 
formal and actual procedural or functional parameters. 

7-9 



Pascal Refemnce H8I7tI8l ProcedtIms & FlI/JCtions 

Two fOrmal-parameter-lists are compatible if they contain the same number of 
parameters and if the parameters in correspondIng positions match. Two 
parameters match if one of the following Is true: 

• They are both value parameters of Jdentical type. 
• They are both variable parameters of Jdentical type. 
• They are both procedUral parameters wIth compatible parameter lists. 
• They are both functional parameters with compatible parameter lists and 

identical result-types. 

7-10 



029-0«l0-A 

Chapter 8 
Programs 

8..1 S}'Iltax ............................................................................................ 8-1 

8.2 ProgralTl-Pa:rarnet.ers.n n .................................................................... 8-1 

8..3 Seg11er1tatiOfl •••••••.•••••••••.••••••••••••••.•••••••••••••••.•••••••.•••••••••••••••••••••••••• 8-1 





Programs 

8.1 Syntax 
A Pascal program has the form of a procedure declaration except for its 
heading and an optional uses-clatlSe. 

ptl.ymnJ 

--I program-headirg f-+O ~ 07 .[biiiCi<}--+ 
. uses-clause . ; 

pn:Jgf..7m-he811fng 

--<progrcm )+tr-~d-e-ntl-f1-er-"1 \ L '-" r .. 
~ program-parameters ~ 

lISeS-C}BlIse ... ~ identifier-list \---+-

The occurrence of an identifier immediately after the word program declares it 
as the program's identifier. 
The uses-clause identifies all units required by the program, including units 
that It uses directly and other units that are used by thOse units. 

8.2 Progrcm-Parameters 
Currently, any program-parameters are purely decorative and are totally 
ignored by the compHer. 

8.3 8egnentatlon 
The code of a program's main body Is always placed in a run-time segment 
whose name Is a string of blanks (the "blank segment"~ MY other block can 
be placed in a different segment by using the $S compller command (see 
Chapter 12 and Appendix A~ If no $S command Is used in the program, all 
code is placed in the blank segment. Code from a program can be placed in 
the same segment with code from a regular-unit, but it cannot be mixed with 
code from an intrinsic-unit (see Chapter 9~ 

8-1 





029-0401-A 

Chapter 9 
Units 

9.1 RegIJlar-lilits ••..••.•.......•••..•.•.•.•••.•.•...•••.••.•.•.....•...•••.....•.•...•••.•.•...•.. 9-1 

9.1.1 WritiflQ Regular-lJnits ............•..•........•...................................... 9-1 
9.1.2 UsiflQ Regular-lJnits ...•.•...•.•.•.....•........•.....•.....•..•...•....•...•.•.•.... 9-3 

9.2 Irltrirlsic-l.tlits •....•..•....•.•...•••••.•.•••.•••..•••.•.•.••..•.•...•••..••••••.•••..••••.••••. 9-4 

93 lilits toot lJse OOler lilits .................................................................. 9-4 





Units 

A unit is a separately complled, non-executable object file that can be linked 
with other object fUes to produce complete programs. There are two kinds of 
units, called regular-units and intrinsic-units: In the current implementation of 
the Workshop, you can use intrinsic-units that are provided, but you cannot 
write new ones. 
Each unit used by a program (or another unit) must be compiled, and its object 
fUe must be accessIble to the compHer., before the host program (or unit) can 
be compiled. 

9.1 Regular-U11ts 
Regular-units can be used as a means of modularlzing large programs, or of 
making code avallable for incorporation In various programs, without making 
the source avallaOle. 
When a program or unit (called the /Jost) uses a regular-unit, the linker inserts 
a copy of the complled code from the regular-unIt tnto the nost's Object f11e. 
By default, the code copied from the regular-unit Is placed in the blank 
segment (see Chapter 8~ The code of the enUre unit, or of blocks within the 
unit, can be placed in one or more different segments by using the~?ompl1er 
command (see Chapter 12~ , .-.-

9.1.1 writing REgJlar-lkllts 
The syntax for a regular-unit is: 

m uler-unit 
';;";:;;":==-=~----1-.t unit-heading 

interface-part implementation-part 

..:::;lII;..,:,:M:...:;..t..:..-IJe;.:.WiJ=' ='1..:.::;?(J'---_ ... ~ identifier 

9-1 



P8SC8I Reference Manual 

intelface . t 

uses-clause 

constant -declaration-part 

type-deClaration-part 

variable-declaration-part 

procedure-and-functlon-declaratlon-part 

lr11l1ementation 

constant-declaration-part 

type-declaration-part 

variable-declaration-part 

procedure-and-function-declaration-part 

Tne interface-part declares constants, types, variables, procedures, and 
functions that are "public;' i.e. available to the host 

Lhlts 

The host can access the~e entities just as if they had been declared in the 
host ProcedUres and functions declared in the interface-part are abbreviated 
to nothing but the procedure or function name, parameter speCifications, and 
function result-type. 

Since the interface-part may contain a uses-clause, a unit can use 
another unit (see Section 9.3~ 

9-2 



P8SC8l ReFerence I'1anlJ8l Lhlts 

The implement§tlon-part, which follows the last declaration in the interface­
part, begins by declaring any constants, types, variables, procedures, or 
functions that are "private," I.e. not available to the host , 
The public procedures and functions are re-declared in the implementation­
part The parameters and function result types are omitted from these 
declarations, since they were declared In the interface-part, and the procedure 
and function blocks, omitted in the interface-part, are included in the 
implementation-part. 
In effect, the procedure and function declarations in the interface are like 
forward declarations, although the forward directive Is not used. Therefore, 
these procedures and functions can be defined and referenced in any sequence 
in the Implementation. 

There is no "initialization" section in Pascal units on the Lisa (unlike 
Apple II and Apple III Pascal~ If a unit requires initialization of its 
data, it should define a pUblic procedure that performs the initialization, 
and the hOst shOuld call this procedure. 
Also note that global labels cannot be declared in a unit 

A short example of a unit Is: 
tIli t Sinple; 
INTERFAa: {plblic objects deClared} 

const FirstValue=l; 
procec1lre Add01e(var Incr:integer); 
function Addl(Incr:integer):integer; 

ltA..Et£NTATICIf 
procedlre AdcD1e; {note lack of paraEters .•• } 

begin 
Incr:=Incr+l 

end; 
function Add1; 

begin 
Addl:=Incr+l 

end 
ern. 

9.1.2 USlng Regular-ulJ.ts 

{ ••• cnJ lack of function result type} 

The syntax for a uses-clause is given In Section 8.1. Note that in a hOst 
program, the uses-clause (if any) must immediately follow the program­
heading. In a host unit, the uses-clause (if any) immediately follows the 
symbol Interface. 011 Y one uses-clause may appear in any host program or 
unit; it declares all units used by the host program or unit. 
See Section 9.3 for the case where a hOst uses a unit that uses another unit 

9-3 



P8sc8l Reference Manual U1lts 

It is necessary to specify the file to be searched for regular units. The $U 
compiler command specifies this file. See Chapter 12 for more details. 
Assume that the example unit Sil11l1e (see above) is compiled to an object fUe 
named APPL:SIMPLE.CBJ. The following Is a short program that uses Sifll)le. 
It also uses another unit named Other" which is in file APPL:OTHER.CBJ. 

program C8llSimple; 
uses {SU APPL:SltA..E.(IJJ} 

SiIqlle, 
{file to search for units} 
{use unit Simple} 

{SU APPL :Ol1:£R .OOJ} 
Other; 

{file to search for units} 
{use unit other} 

var i: integer; 
begin 

i:=firstValue; {FirstValue is from Simple} 
write("i+l is ",Addl(i»; {Addl is defined in Simple} 
write(xyz(i» {xyz is defined in Other} 

end. 

9.2 Intrlnslc-lkllts 
The only intrinsic-units you can use are the ones provided with the Workshop 
software. 
Intrinsic-uni ts provide a mechanism for Pascal programs to share common code, 
with only one copy of the code in the system. The cOde is kept on disk, and 
when loaded into memory it can be executed by any program that declares the 
intrinsic-unit (via a uses-clause, the same as for regular-units~ 
By default, the system looks up all intrinsic-units in the system intrinsics 
library file, INTRINSIC.LIB. All intrinsic-units are referenced in this library, 
so the $U fllenane compHer command is not needed with intrinsic-units. 

93 Ullts that Use Other Ullts 
As explained above, the uses-clause in the host must name all units that are 
used by the host. Here "used" means that the host directly references 
something In the interface of the unit Consider the following diagram: 

unitA 
interface ,. uses tritC; 

unite 

/ Host Program implementation ----. interface 
uses unlU\ unitB; 

~ unitB 
implementation 

interface 

implementation 

9-4 



Pascal Reference M8I7lI8l units 

The host program directly references the interfaces of LIlitA and lI1ltB; the 
uses-clause names both of these units. The implementation-part of lIlitA also 
references the interface of lI1ltc, but it Is not necessary to name lIlitC in the 
host-program's uses-clause. 
In some cases, the uses-clause must also name a unit that Is not direcuy 
referenced by the hOst. The following diagram is exactly llke the previous one 
except that this time the interface Of lI1ltA references the interface of lIlitC, 
and lIlitC must be named in the host-program's uses-clause. Note that tnltC 
must be named before lI1ltA 

unitA 
interface 

/ 
uses lIlitc; 

~ unite 
Host Program implementation 

interface uses l.JlltC, l.JlltA, 

~ lJ1ltB; unltB 
Implementation 

interface 

implementation 

In a case like this, the dOCumentation for lIlitA should state that lI1ltc must 
be named in the uses-clause before tnltA 

9-5 





029-0402-A 

Chapter 10 
Input/Output 

10.1 Introcl.l:tion to JI() ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 10-1 

10.1.1 Device Types ....................................................................... 10-2 
10.1.2 External File Species ............................................................. 10-2 
10.1.3 The Reset Procedure ............................................................. 10-3 
10.1.4 The Rewrite Procedure .......................................................... 10-5 
10.1.5 The Close Procedure .............................................................. 10-6 
10.1.6 The Ioresult Function ............................................................. 10-7 
10.1.7 The Eof function .................................................................. 10-7 

10.2 Record-()rierrt.ed JI() •. ~._._ •••• _ •••• _ ••••••••• _ •••••••• _ ••••••••••••••••••••••••••••••••••••• 10-8 

10.2.1 The Get Procedure ................................................................ 10-8 
10.2.2 The Put Procedure ................................................................. 10-8 
10.2.3 The Seek Procedure ............................................................... 10-9 

10.3 Text-()riet1ted 110 ••••••••••••••••••••••••••••••••••••••••••••••••.•••.•.••••••••.•.•.•••••.•• 10-9 

10.3.1 The Read Procedure ............................................................ 10-11 
10.3.1.1 Read with a Char Variable .........................•............. 10-12 
10.3.1.2 Read with an Integer or Longint Variable .................... 10-12 
10.3.1.3 Read with a Real Variable ........................................ 10-12 
10.3.1.4 Read with a String Variable ...................................... 10-13 
10.3.1.5 Read with a Packed Array of Char Variable ..........•.•...• 10-13 

10.32 The Readln Procedure.......................................................... 10-14 
10.3.3 The Write Procedure ....•.•••.•.••.•.••.•..•••..•.•.......•••.....•.....••.•.... 10-14 

10.3.3.1 IlJtput-Specs ......................................................... 10-15 
10.3.3.2 Write wi th a Char Value................ .........•................. 10-15 
10.3.3.3 Write wi th an Integer or Longint Value ....................... 10-15 
10.3.3.4 Wri te wi th a Real Value ..•...•..•..•........••...............•.... 10-16 
10.3.3.5 Write with a String Value ......................................... 10-16 
10.3.3.6 Write with a Packeo Array Of GnaT value .................... 10-17 
10.3.3.7 Write wIth a Boolean Value ...................................... 10-17 

10.3.4 The Writeln Procedure ...................................................... ~ .• 10-17 
10.3.5 The Eoln FlI1Ction .•.....••..•...•................................••..•.... , ..•.• 10-17 
10.3.6 The Page Procedure ...•...•.•.•.•.•.•••.•.....•...•......•......•••......•..•••• 10-18 
10.3.7 Keyboard Testing and Screen Cursor Control ........................... 10-18 

10.3.7.1 The Keypress Function ............................................ 10-18 
10.3.72 The Gotoxy Procedure ................... ......... ........ ......... 10-18 



Pascal Reference Manll8l /nput/O.Jtput 

10.4 lkltypec:i File I./(). ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 10-18 

10.4.1 The Blockread FlI1Ction •.......•....................•.....•................... 10-19 
10.4.2 The Blockwrite Function ...... ..•. ..... ....•.. ..... ......••.... ............... 10-20 



Input/Output 

This chapter describes the standard C'buUt-intt
) lID procedures and functions of 

Pascal on the Lisa 

Standard procedures and functions are predeclared. Since all predeclared 
entities act as if they were declared in a "block" surrounding the program, no 
conflict arises from a declaration that redefines the same identifier within the 
program. 

Standard procedures and functions cannot be used as actual procedural 
and functional parameters. 

This chapter and Chapter 11 use a modIfied BNF notation .. Instead of syntax 
diagrams, to indicate the syntax of actual-parameter-l1sts for standard 
procedures and functions. 
Example.: 

Parameter List, new(p [, t1, ... tn]) 

This represents the syntax of the actual-parameter-list of the standard 
procedure new, as follows: 

• p, tl, and tn stand for actual-parameters. Notes on the types and 
interpretations of the parameters accompany the syntax description. 

• The notation tl, ... tn means that any number of actual-parameters can 
appear here, separated by commas. 

• Square brackets [ ] indicate parts of the syntax that can be omitted. 
Thus the syntax shown here means that the p parameter is required. Any 
number of t parameters may appear, with separating commas, or there may be 
no t parameters, 

10.1 Introcilctlon to 110 
This section covers the I/O concepts and procedures that apply to all file types. 
This includes the types text (see Section 10.3) and "untyped" fUes (see Section 
10.4~ 

To use a Pascal file variable (any variable whose type is a file-type) .. it must 
be associated with an external file. The external file may be a named 
collection of information stored on a peripheral device .. or (for certain f11e­
types) it may be the peripheral device itself. 
The association of a file variable with an external file is made by cpening the 
f11e. An existing file is opened via the reset procedure, and a new flIe Is 
created and opened via the rewrite procedure. 

10-1 



/rput/lUtput 

Pascal on the Lisa does not provide automatic 110 check1ng. To check 
the result of any partiCUlar 110 operation, use the loresult function 
described in Section 10.1.6. 

10.1.1 DeVIce Types 
For purposes of Pascal 110, there are two types of peripheral devices: 

• A file-structured device is one that stores fUes of data, such as a diskette. 
• A character device is one whose input and output are streams of individual 

bytes, suCh as the Lisa screen and keyboard or a printer. 
10.1.2 External File Species 

There are three "species" of external fUes that can be used in Pascal 110 
operations: 

• A dstafile is any fUe that is stored on a file-structured device and was 
not originally created in association with a file variable Of type text. 

• A textfile Is a fUe that is stored on .a file-structured device and was 
originally created in association with a fUe variable of type text. Textfiles 
are stored in a specialized format (see Section 10.3~ 

• A ctJa.racter device can be treated as a f11e. 
Table 10-1 summarizes the effects of all possible combinations of different fUe 
variable types and external fUe species. The "ordinary cases" in the table 
reflect the basic intent of the various fUe-types. Other combinations, such as 
block-oriented access to a textfile via a variable of type fUe, are legal but 
may require cautious programming. 

10-2 



P8SC8.1 Reference ~ JrpuMUtput 

Table 10-1 
CorTtllnatlons of File varIcmle Types with External FUe SpecIes 

am C8t.f9lr1es 

var f: file Of 
var f: text; var f: file; some Type; 

ordinary' case. (Textflle format ordinary' case. 

datafile After reset, assumed!) After Block access. 
f" - 1st record reset*, f" Is 
file. unspecified. 

(TextfUe format ordInary' case. (Textflle format 
not assumed!) TextfUe format not assumed!) 

textfile 
After reset*, assumed. After Block access. 
f - = 1st record reset, f'" is 
Of fUe (as unspecl fled. 
declared~ 

After reset, ordinary' case. Block access, 
f" = 1st char. After reset, if allowed by 

character from device f" Is unspeci- device. 
device (system walts for fied (no wait 

It!~ 110 error If for input char~ 
fUe record type 
not byte-sized. 

* In tI7ese cases., the JaresuJt fU1Ctim will nJtu.m iI "wamlng" 
(i.e., a negative runber) immediately after the.l71Set operation. 

10.1.3 The Reset ProceWre 
q>ens an existing f11e. 

Parameter List: reset(f, title) 
1. f Is a variable-reference that refers to a variable of flle-type. The fUe 

must not be open. 

2. tltle is an expression with a string value. The string should be a valld 
pathname for a fUe on a file-structured device, ora pathname for a 
character devIce. 

10-3 



Pascal Reference Manusl /npl.lt/altput 

Both parameters are required (unlike Apple II and Apple III Pascal, 
where the second parameter Is opt1onal~ 

Reset(f, title) finds an existing external fUe with the pathname title, and 
associates f with this external f11e. (If there is no existing external file with 
the pathname title, an 110 error occurs; see Section 10.1.6.) 
If title is the pathname of a character device, then 

• Eof{f) becomes false. 

• If f is of type text, the value of fA is unspecified. The next read or readln 
on f will wait until a character Is available for input, and begin reading 
wi th that character. 

• If f Is of type file and the device Is one that allows blocK access, there Is 
no file buffer variable f" and the "current fUe position" Is set to the first 
blocK (blocK 0) of the f11e. If the device dOes not allow blocK access, an 
110 error occurs (see Section 10.1.6~ 

• If f is not of type text or f1le, its component-type must be a "byte-slze" 
type suCh as the type -128..127. Note that Char is not a byte-size type! If 
the component-type of f is not byte-size, an I/O error occurs (see Section 
10.1.6~ 

If no 110 error occurs, the system waits until a character is available from 
the device and then assigns the character's 8-blt code to f .... 

If title Is the pathname for an existing fUe on a file-structured device, then ---.•. ...-.'-'"' ............ -.""'., ..... , •.. ~ .. "., 

• Eof{f) becomes false if the external fUe is not empty. If the(extemal fUe 
Is empty, eof{f) becomes true. 

• If f is not of type text or file, reset sets the "current fUe position" to the 
first record in the external file, and assigns the value of this record to the 
fUe buffer variable f". If the external fUe is a textflle, the ioresult 
function will return a negative number as a warning (see Section 10.1.6~ 

• If f is of type text, the value of f" is unspecified. If the file is a textfile, 
the next read or readln on f will begin at the first character of f. If the 
file is a dalafile, it will be treated as if it were a textfile (see Section 
10.3) and the ioresult function will return a negative rn.rnber as a warning 
(see section 10.1.6~ 

• If f Is of type file, there Is no fUe buffer variable f" and the "current file 
position" is set to the first blocK (blOCK 0) of the fUe. 

10-4 



Pascal ReFerence M8I7tI8l /nptlt/altpllt 

lD.L4 The Rewrite Procedae 
Creates and opens a new flle. 
Parameter LIst: revi te( f , title) 

1. f is a variable-reference that refers to a variable of fUe-type. 
2. title Is an expression with a string value. The string shoUld be a valid 

pathname for a fUe on a fUe-structured device ... or a pathname for a 
Character deVice. 

If f is already open, an I/O error occurs (see Section 10.1.6~ 
If title is the pathname of a character device ... then 

• Eof(t) becomes false. 
• Rewrlte(f, title) simply associates f with the device and opens f. 

• The status of the device is not affected. 
• The value of fA becomes unspecified. 

If title Is the pathname for a new file on a file-structured device, then 
• Eof(t) becomes true. 
• Rewrlte(f, title) creates a new external file with the pathname title, and 

associates f with the external file. This is the only way to create a new 
external file. 

• The specIes of the new external fUe Is set according to the type of f-­
"textflle" for type text, or "dataflle" for any other type. 

• The value of fA becomes unspecified. 
• If f Is not of type rue ... the "current file position" Is set to just before the 

first record or character position of the new external file. 
• If f is of type fl1e ... the "current fUe position" Is set to block 0 (the fIrst 

block in the fne~ 
• If f is subsequently closed with any option other than lock or clUlCh (see 

Section 10.1.5) ... the new external fUe is discarded at that time. Closing f 
with lock or cltrlCh Is the only way to make the new external file 
permanent. 

• If title is the pathname of an existing external fUe, the existing file will be 
discarded only when f is subsequently closed with the lock or cn.nch option 
(see Sect10n 10.1.5~ 

Unspecified effects are caused if the current file pOSition of a file f is altered 
while the fUe-bUffer f" is an actual variable parameter, or an element of the 
record-variable-reference list of a wIth-statement ... or both. 

10-5 



Pascal Reference Mantlal 

10.1.5 The Close ProcetiJre 
Closes a file. 
Pa.rameter List: close ( f [, opt1oo]) 

1. f Is a variable-reference that refers to a variable of file-type. 

/nplIt/altput 

2. optloo (may be omItted) Is an identifier from the list given below. If 
omitted, the effect is the same as using the identifier mnnaJ.. 

Close(f, opt.J.m) closes f, If f is open. The association between f and its 
external file is broken and the file system marks the external fUe "closed". If 
f is not open, the close procedure has no effect 
The optloo parameter controls the disposition of the external fUe, if it Is not a 
character device. If it is a character device, f Is closed and the status of the 
device is unchanged. 
The identifiers that can be used as actual-parameters for optloo are as follows: 

• oonnaJ. -- If f was opened using rewrite, it Is deleted from the directory. 
If f was opened with reset, it remains in the directory. This Is the default 
option, in the case where the optloo parameter Is omitted. 

• lOCk -- If the external flIe was opened with rewrite, it Is made permanent 
In the directory. 
If f was opened with rewrite and a title that matches an existing f11e, the 
old fUe Is deleted (unless the safety switch Is "on"~ If the old fUe has the 
safety switch "on," it remains In the directory and the new fUe Is deleted. 
If f was opened with reset, a normal close is done. 

• purge -- The external fIle is deleted from the directory (unless the safety 
switch Is "on")' In the speCial case of a fUe that already exists and is 
opened wIth rewrite, the orIgInal file remaIns In the directory, unchanged. 

• CItl'lCh -- This is like lOCk except that it locks the end-of-fIle to the point 
of last access; i.e., everythIng after the last record or character accessed is 
thrown away. 

All closes regardless of the optlm w111 cause the fUe system to mark toe 
external file "closed" and will make the value of fA unspecified. 
If a program terminates with a file open (i.e., if close is omitted), the system 
automatically closes the fUe with the mnnaJ. option. 

NJTE 

If you open an existing file wIth reset and modify the file wIth any 
write operation, the contents are immediately Changed no matter what 
close option you specify. 

10-6 



Pascal ReFerence I-1antJal 

10.1.6 1he Ioresult FlIlCtim 
Pascal on the Lisa dOes not provide automatic liD checking. To check the 
result of any particular 110 operation, you must use the ioresult function. 
Result type: lnteger 

Parameter List· no parameters 

Ioresult retums an Integer value whiCh reflects the status of the last com­
pleted 110 operation. The COdes are given In the WoJ1<sI1op user's Guide for tI1e 
Lisa. Note that the code 0 indicates successful completIon, positive codes 
indicate errors, and negative codes are "warnings" (see Table 10-1~ 

Note that the codes returned by loresult are not the same as the codes used In 
Apple II and .Apple III Pascal. 

I'IlTES 

The read, readln, write, and writeln procedures described in Section 10.3 
may actually perform multiple liD operations on each call. After one of 
these procedures has executed, ioresult wIll return a code for the status 
of the Jast of the multiple operations. 
Also, beware of the followIng common error In dIagnostic code: 

read(foo); 
writeln('loresult=', 10result) 

The intention is to write out the status of the read operation, but 
instead the status written out wlll be that of the write operation on the 
string 'loresult-'. 

10.1.7 TIle Eof FU'lCtion 
Detects the end of a f11e. 

Result Type: boole8l 

Pa.rl:JlTleter List· eof [(f)] 

1. f is a variable-reference that refers to a variable of fUe-type. 
If the parameter-llst Is omitted, the function is applied to the standard file 
lJllUf. (see Section 10.3~ 

After a get or put operation, eof(t) returns true if the current file position is 
beyond the last external fUe record, or the external fUe contains no records; 
otherwise, eof{t) returns false. Specifically, this means the following: 

• After a get, eof(f) returns true if the get attempted to read beyond the last 
fHe record (or the fUe Is empty~ 

• After a (:lJt, eof(t) returns true if the record written by the (:lJt is now the 
last fUe record. 

10-7 



Pascal Reference Manual Input/altpllt 

If f is a character device, eof(f) '11111 always return false. 
see Section 10.3 for the behavior of eof(f) after a read or readln operation. 

I\IJTE 

Whenever eof(f) is true, the value of the fUe buffer var1able f" Is un­
specified. 

102 Recon1-Orlentecl I/O 
This section covers the get, put, and seek procedures, which perform record­
oriented 110; that Is, they cons1der a fUe to be a sequence Of var1ables of the 
type specified In the fUe-type. These procedures are not allowed with fUes of 
type file. 
The effects of get and put are unspecified with files of type text, and seek has 
no effeot with fUes of type text The text type Is supported by speolallzed 
procedures described in Seotion 10.3. 

10.2.1 The Get ProoeOJre 
Reads the next record in a fUe. 
Parameter List: get ( f) 

1. f Is a variable-reference that refers to a variable of fUe-type. The fUe 
must be open. 

If eot(f) is false, get(f) advanoes the current fUe position to the next file 
reoord, and assigns the value of this record to f . If no next oomponent 
exists, then eof(f) becomes true, and the value of f A becomes unspecified. 
If eof{f) is true when get(f) is called, then eof(f) remains true, and the value of 
f" becomes unspecified. 
If the external file is a character device, eof(f) is always false and there is no 
"current fUe position." In this case, get(f) walts until a value Is ready for Input 
and then assigns the value to f". 

102.2 The Put ProceciIJe 
Writes the current record In a f11e. 
Parameter List: put ( f) 

1. f is a variable-reference that refen to a variable of fUe-type. The file 
must be open. 

If eof(f) Is false, put(f) advances the ourrent file position to the next fUe 
record and then writes the value of f" to f at the new fUe position. If the 
new flIe PQsitlon is beyond the end of the flIe, eof(f) becomes true, and the 
value of f" beoomes l.I'lspeolfled. 
If eof(f) Is true, put(f) appendS the value of fA to the end of f and eof(t) 
remains true. 

10-8 



Pascal Reference M8nt18l /nptJt/tlItput 

If the external file is a character device, eof(t) is always false, there Is no 
"current file position," and the value of f" Is sent to the device. 

f'IJTE 

If pJt is called immediately after a fUe is opened with reset, the pJt 
will write the sectYJd record of the file (since the reset sets the 
current position to the first record and pJt advances the pOSition before 
wrlting~ To get around this and write the first record, use the seek 
procedure (see Section 10.2.3~ 

102.3 The seek ProceWre 
Allows access to an arbitrary record In a file. 
Parameter List: seek (f, n) 

1. f Is a variable-reference that refers to a variable of fUe-type. The fUe 
must be open. 

2. n is an expression with an Integer value that specifies a record number in 
the fUe. Note that records in fUes are numbered from O. 

If the fUe is a character device or is of type text, seek does nothlng. 
otherwise, seek(f, n) affects the action of the next get or pJt from the fUe, 
forcIng It to access file record n instead of the "next" record. 5eek(f, n) dOes 
not affect the file-buffer f". 

A get or put must be executed between seek calls. The result of two con­
secutive seeks wIth no Intervening get or pJt is unspecified. Immediately after 
a seek(f, n), eof(f) will return false; a followIng get or p,lt will cause eof to 
return the appropriate value. 

The record number speCified in a seek call is not checked for validity. 
I f the number is not the number of a record in the file and the program 
tries to get the specified record, the value of the fUe-buffer becomes 
unspecified and eof becomes true. 

10.3 Text-ortented I/O 
This section describes input and output using fUe variables of the standard type 
text. Note that In Pascal on the Usa, the type text is distinct from file Of 
char (see Section 3.2.4~ 
When a text file is opened, the external file is interpreted In a special way. It 
is considered to represent a sequence of characters, usually formatted into 
lines by CR characters (ASCII 13~ 

The Usa keyboard and the WorkshOp screen appear to a Pascal program to be 
built-in files of type text named Ifl)Ut and output respectively. These files 

10-9 



Pascal Reference Manual /npvt/a.Jtptlt 

need not be declared and need not be opened with reset or rewrite, since they 
are always open. 
When a program is taking input from 1rpJt., typed characters are echoed on the 
WOrkShOP screen. In addition to the If1)Ut f11e, the Usa keyboard is also 
represented as the character device -KEYBOAAD. To get keyboard Input 
without echoing on the screen, you can open a file variable of type text wIth 
-KEYBOAAD as the external file pathname. 
Other interactive devices can also be represented In Pascal programs as fUes of 
type text 
When a text fUe Is created on a fUe-structured device, the external fUe is a 
textfile. It contains information other than the actual sequence of characters 
represented, as follows: 

• The stored fHe is a sequence of 1024-byte pages 
• Each page contaIns some number of conplete lines of text and Is padded 

with null characters (ASCII 0) after the last 11ne. 
• Two 512-byte header blOCks are also present at the beginnIng of the file. 
• A sequence of spaces in the text may be compressed into a two-byte Code, 

namely a OLE Character(ASCII 16) followed by a byte containIng 32 plus 
the number of spaces represented. 

All of thIs special formatting is invisible to a Pascal program if the fUe is 
accessed via a flIe variable of type text (but visible via a flIe variable of any 
other flle-type~ 
Certain things that can be done with a record-structured fUe are ImpossIble 
with a file varIable of type text: 

• The seek proCedure does nothing with a file variable of type text 
• The effects of get and put are unspecIfied with a fUe variable of type text 
• The contents of the fUe buffer variable are unspecified wIth a file variable 

of type text 
• A file variable of type text that Is opened with reset cannot be used for 

output, and one opened with rewrite cannot be used for Input. Results are 
unspecified if either of these operations is attempted. 

In place of these capabilities, text -oriented I/O provides the following: 
• Automatic conversion of each input CR character into a space. 
• The eoln function to detect When the end of an input llnehos been 

reached. 
• The read proCedure, which can read char values, string values, paO(edanay 

of char values, and numeric values (from textual representat1ons~ 

10-10 



Pascal Refe./7!Jnce MantJaJ Input/(htput 

• The wrtte procedure, which can write Char values, string values, pooked 
array Of Char values, numeric values, and booleal values (as textual 
representations~ 

• Une-oriented reading and writing via the readln and wrtteln procedures. 
• The page procedUre, which outputs a form-feed character to the external 

fUe. 

• Automatic conversion of input DLE -cOdes to the sequences of spaces that 
they represent. Note that output sequences of spaces are not converted to 
OLE-cOdes. 

• Automatic skipping of header blocks and null characters during input. 

• Automatic generation of textflle header blocks, and automatic padding of 
textflle pages with null characters on output 

10.3.1 The Read ProceWre 
Reads one or more values from a text file into one or more program variables. 
Parameter List: read( [f,] v1 [, V2, ... v n] ) 

The syntax of the parameter-list of read allows an indefinite number of 
actual-parameters. Consecutive actual-parameters are separated by commas, 
just as in a normal parameter-list 

1. f (may be omitted) Is a varIable-reference that refers to a variable of 
type text. The file must be open. If f is omitted, the procedure readS 
from the standard text fIle If1lUt, which represents the Usa KeybOard. 

2. vi ... v n are input variablex Each is a variable parameter, used as a 
destination for data read from the f11e. Each input variable must be a 
variable-reference that refers to a variable of one of the following types: 

• char, Integer, or longlnt (or a sUbrange of one of these) 

• real 
• a string-type or a packed array Of Char type. 

These are the types of data that can be read (as textual representations) 
from a f11e. At least one input variable must be present. 

Re8«f,Vl,. .. ,V n) Is equivalent to: 
begin 

read(f, Vi); 

read(f, vn) 
end 

10-11 



Pascal Reference Mtintll:11 Inpl/t/altput 

Read can also be used to read from a fne fll that Is not a text fne. In 
thIs case ~f1I,x) Is equIvalent to: 

begin 
x := fil"; 
get(fil) 

end 

103.1.1 Read with a Char Variable 
If f is of type text and v is of type char, the following things are true 
immediately after reac(f.,v~ 

• Eof(f) will return true If the read attempted to read beyond the last 
character In the external flle. 

• EOlr(f) will return true, and the value of v wlll be a space, if the Character 
read was the CR character. Eolr(f) will also return true If eof(f) Is true. 

10.3.1.2 Read with CIl Integer or UXlglnt variable 
If f is of type text and v Is of type Integer, subrange of integer, or longlnt, 
then reac(f,v) impl1es the reading from f of a sequence of characters that form 
a Signed whole number according to the syntax of Section 1.4 (except that 
hexadecimal notation Is not allowed~ If the value read Is assignment­
compatible with the type of v, it Is assigned to v; otherwise an error occurs. 
In reading the sequence of Characters, preceding blanks and CRs are skipped. 
ReadIng ceases as soon as a character is reached that, together with the 
characters already read, does not form part of a signed whole number. 
An error occurs If a signed whOle number Is not found after Skipping any 
precedIng blankS and CRs. 
If f is of type text, the following things are true immediately after reac(f,v~ 

• Eof(f) will return true if the last character in the numeriC string was the 
last character in the external fUe. 

• Eolr(f) will return true if the last character in the numeric string was the 
last character on the line (not counting the CR character~ Eolr(f) w111 also 
return true if eof(f) is tn.e. 

10.3.1.3 Read with a Real variable 
If f Is of type text and V is of type real, then reac(f,V) impUes the reading 
from f of a sequence of characters that represents a real value. The real 
value is assigned to the variable v. 
In reading the sequence of characters, preceding blanks and eRs are Skipped. 
Reading ceases as soon as a character is reached that, together with the 

10-12 



Pascal Reference Manual 

Characters already read, dOeS not form a valid representation. A "valid 
representation" is either of the following: 

• A finite real, Integer, or longlnt value represented according to the 
sIgned-number syntax of Section 1.4 (except that hexadecimal notation Is 
not aliOWed~ M Integer or longlnt value is converted to type real 

• M infinite value or Nan represented as described in Appendix D. 

AA error occurs if a valid representation Is not found after skipping any 
preceding blanks and CRs. 
Immediately after reac(f,v) where v is a real variable, the status of eof{t) and 
eolr(f) are the same as for an Integer variable (see Section 10.3.1.2 above~ 

103.1.4 Read with a string variable 
If f is of type text and v is of strIng-type, then reac(f,V) implies the readIng 
from f of a sequence of characters up to but not inc/tiding the next CR or 
the end of the f11e. The resulting character-string is assIgned to v. An error 
occurs if the number of characters read exceeds the size attribute of v. 

f\IlTE 

Read with a string variable does not skip to the next Une after reading, 
and the CR is left waiting in the input buffer. For this reason, you 
cannot use successive read calls to read a sequence of strings, as they 
wIll never get past the first CR -- after the first read, each subsequent 
read w111 see the CR and wUl read a zerO-length string. 
Instead, use readln to read string values (see Section 10.3.2~ Readln 
Skips to the begiming of the next line after reading. 

The following things are true immediately after reac(f,V} 

• Eof(f) wUI return true if the Une read was the last Une in the f11e. 
• Eolr(t) will always return true. 

1D.3.L5 Read with a Packed Array of Char varimle 
If f is of type text and v is a packed array of CI1ar, then rea«f,V) implles the 
reading from f of a sequence of characters. Characters are read into 
successive character posit1ons in v until all positions have been filled, or until 
a CR or the end of the file is encountered. If a CR or the end-of-file is 
encountered, it Is not read Into v; the remaInIng posit1ons In v are filled with 
spaces. 

10-13 



Pascal RefeJ'8l1Ce HaI?ll8l 

10..3.2 The Readln ProceWre 
The readln procedure is an extension of read. Essentially it does the same 
thing as read, and then skips to the next line in the input fUe. 
Parameter List: The syntax of the parameter l1st of readln is the same as that 
of read, except as follows: 

• A readln call with no input variables Is allowed. Example: 

readln(souroefl1e) 
• The parameter-list can be omitted altogether. 

If the first parameter does not specify a f11e, or if the parameter-list Is 
omitted, the procedure reads from the standard fUe l~, which represents the 
Lisa keyboard. 
Readlr(f), wIth no input-varIables, causes a SkIp to the beginnIng of the next 
line (If there is one, else to the end-Of-fUe~ 

Reootn can only be used on a text file. Except for this restrIction, 
reacJ1r(f,Vl". •• ,vn) Is equivalent to: 

begin 
read(f, vi, ... , vn); 
readln(f) 

end 

The following things are true immediately after readlr(f,v1 regardless of the 
type of v: 

• Eoftt) will return true If the line read was the last line in the external file. 
• Eolr(t) will always return false. 

103.3 TIle write ProceWre 
Writes one or more values to a text f11e. 
Parameter List· write( [f,] pi [, p2, ... pn]) 

The syntax of the parameter list of write allows an indefinite number of 
actual-parameters. 

1. f (may be omitted) is a variable-reference that refers to a variable of 
type text. The fUe must be open. If f is omitted, the procedure writes to 
the standard file output, which represents the Workshop screen. 

2. pi ... pn are output-specs Each output-spec inclUdes an outptJ( 
expresslO/7, whOse value Is to be written to the file. As explained below, 
an output-spec may also contain specifications of field-width and number 
of decimal places. Each output expression must have a result of type 
Integer, longlnt, real, boolecll, Char, a string-type, or a packed array Of 
Char type. These are the types of data that can be written (as textual 
representations) to a fUe. At least one output-spec must be present. 

10-14 



Pascal Reference Manual 

wrtte(tp1-Aln) is equivalent to: 
begin 

write(f,p1); 

write(f,pn) 
end 

Immediately after 'WIite(f), both eof(f) and eolr(f) will return tn.e. 

I'IJTE 

/nput/aJtpl/t 

wrIte can also be used to write onto a fHe f1l that is not a text f11e. 
In th1s case 'WIite(fll,x) Is equivalent to: 

beQ1rl 
f1l := X; 
p.It(fll) 

end 

103.3.1 rutput-Specs 
Each output -spec has the form 

rutExpr [: MlnWldth [: DecPIaces] ] 

where OJtE>epr is an output expression. MlnWldth and OecPlaces are 
expressions wIth Integer or longlnt values. 
MlnWldth specifies the mlnJI71U71 field width, with a default value that 
depends on the type of the value of OJtExpr (see beIOW~ MlnWldth should be 
greater than zero; otherwise, the results are unspecified. Exactly MlnWldth 
Characters are written (using leading spaces If necessary), except when OJtE>epr 
has a /1I/I71erlc value that requires more than MlnWldth Characters; In this 
case, enough characters are written to represent the value of OJtE>epr. 
DecPlaces specifies the number of decimal places in a fixed-point repre­
sentation of a real value. It can be specified only if OJtE>epr has a real value, 
and if MlnWldt:h is also specified. If DecPlaces is not specified, a floating­
point representation is written. 

10.3.3.2 wrIte with a Char value 
If rutE>epr has a char value, the character Is written on the fUe f. The default 
value for MlnWldth is one. 

10.333 wrIte with Sl Integer or Longlnt value 
If OJtE>epr has an Integer or laYJlnt value, its decimal representation is written 
on the fUe f. The default value for MlnWldth is 8. The representation consists 
of the dIgits representing the value, prefixed by a minus sIgn if the value Is 
negative, and any leading spaces that may be required to satisfy MlnWldth. If 
the representation requires more than MlnWldth characters, MlnWldth is 
ignored. 

10-15 



Pascal ReFerence M8f1l/81 

1D.3.3.4 WItte with a Real V8lue 
If rutExpr has a real value, the default value for MlnWldth Is 12. 

If rutExpr has an InfInIte value, It Is output as a string of at least two "+It 

characters or at least two "_It characters. If rutExpr Is a NaN, it Is output as 
the character strIng ItNaN", possibly followed by a strIng of Characters enclosed 
by sIngle-quotes. see Section 10.3.3.5 for details on strIng output 

If DJtExpr has a zero value, it is represented as "0" or "-0". 

If rutExpr has a finite value, Its decImal representation is written on the fUe 
f. this representation Is the nearest possIble decimal representation, depending 
on MlnWldth and DecPlooes. If the unrounded value Is exactly halfway 
between two possible representations, the representation whose least sIgnificant 
digit is even is written out. 

If DecPlooes Is not specIfied, a floating-point representation Is wrItten as 
follows: 

• If MlnWlttth Is less than 6, then Its value is set to 6 (intemally~ This is the 
minimum usable width for wri tlng a floating-point representation. 

• If the sign of the value of flJtExpr is negative, a minus sign Is written; 
otherwise, a space is written. 

• If MlnWlttth 2: 8, the significant digits are written with one digit to the left 
of the decimal point and (MlnWldth - 7) digits to the right of the decimal 
pOint. 

• If MlnWldth < 8, the most Significant digit is written and the decimal point 
is omitted. 

• The exponent is written as the letter "E", an explicit n+ .. or "_It sign, and 
two digits. 

If DecPlooes is specified, a I1xed-point representation is written as follows: 

• Enough leading spaces are written to satisfy MlnWldth. 

• If the value is negative, the minus sign "-" is written; if it is not negative, 
a space Is written. 

• If DecPlaces > 0, the significant digits are written with the integer part of 
the value to the left of the decimal point. The next DecPlooes digits are 
written to the right of the decimal point 

• If DecPlooes ~ 0, only the integer part of the value is written and no 
decimal point is written. 

10.3.35 WItte wiUl a StrIng vaJ.ue 
If the value of llJtExpr Is of string type with length L, the default value for 
MlnWldth is L If MinWldUl>-l, the value Is written on the file f preceded by 
(MlnWldth-l) spaces. If MlnWldth<l, the first MlnWldth characters of the 
string are written. 

10-16 



Pascal Reference Mat1I.I8l /nput/altpllt 

103.3.6 wrtte with a PcD<ed Array Of Char value 
If E Is of type packed array Of Char, the effect Is the same as writing a string 
whose length Is the number of elements In the array. 

10.3.3.7 write with a Booleal value 
If the value of rutExpr is of type boOlEB'l, the string II TRUE" (wIth a leading 
space) or the string "FAlSE" Is written on the file f. The default value of 
MlnWldth Is 5. If MlnWldth>5, lead1ng spaces are added; if MlnWlt1th<5, the 
first MlnWldth characters of the str1ng are written. ThIs 1s equ1valent to: 

wrIte(f,' TRlE' :M1nWldth) 
or 

write(f, 'FALSE' :M1nWldth) 

10.3.4 The Wrlteln ProceaJre 
The wrlteln procedure is an extens10n of write. Essentially it does the same 
thing as write, and then writes a CR character to the output file (ending the 
l1ne~ 

Parameter List- The syntax of the parameter Ust of writeln is the same as 
that of write, except as follows: 

• A wrlteln call with no output-specs is allowed. Example: 

writeln(outputfile) 
• The parameter-list can be omItted altogether. 

If the first parameter does not specify a f11e, or if the parameter-list is 
omi tted, the procedure wrl tes to the standard fne outpJt, whIch represents the 
WOrkShOP screen. 

writelr(f) writes a CR character to the file f. 

writeln can onlybe used on a text fUe. Except for this restrIction, 
wrltelr(fp1_pn) is equivalent to: 

begIn 
wrIte(f, p1, ... , pn); 
writeln(f) 

end 

Immediately after wrltelr(t), both eof(f) and eolr(f) will return true. 

10.3.5 The Eoln FU'lCtion 
Result TYpe: boolean 

PaJal'TJeter List- eo1n[ (f) ) 

1. f is a variable-reference that refers to a varIable of type text The fUe 
must be open. 

The actual-parameter-l1st can be omitted entirely. In this case, the function is 
applled to the standard fUe ltlltrt (the Usa keyboard~ 

10-17 



Pascal Reference MantI81 

EOlr(f) returns true "If the end of a line has been reached in f." The meaning 
of this depends on whether the external fUe is a character devIce, on which 110 
procedUre was executed last, and on what type of variable was used to receIve 
an input value. For details, see Sections 10.3.1 through 10.3.4. 

The end of the file is considered to be the end of a Une; therefore eolr(f) will 
return true whenever eof{f) Is true. 

10.3.6 The Page ProceB.a'e 
Parameter List- page ( f) 

1. f is a variable-reference that refers to a variable of type text The fne 
must be open. 

The actual-parameter f cannot be omitted. Page(t) outputs a form-feed 
character to the file f. This w111 cause a Skip to the top of a new page when 
f is printed. 
Note that page(output) sends a form-feed to the Workshop screen, but In 
general this will not clear the screen. For methods of clearIng the screen, see 
the WOl1<sI1op User's Guide for tile Lisa. 

103.7 Keyboard Testing cnj SCreen CUrsor control 
1D.3.7.1 11le Keypress FtIlCtion 

Tests the Usa keyboard to see if it has a character awaiting input. 
Parameter List- no parameters. 
Result Type: boolecn 

Keypress returns true if a character has been typed on the Lisa keyboard but 
has not yet been read, or false otherwise. This Is done by testing the 
typeahead queue; if the queue Is empty, keypress Is false, otherwise 1t is true. 

10..3.7.2 The Gotoxy ProceWre 
Moves the Workshop screen cursor to a specified location on the screen. 
Parameter List- gotoxy(x" y) 

1. x is an expression with an Integer value. If x < 0, the value 0 w111 be 
used; If x > 79, the value 79 will be used. 

2. y 1s an expressIon with an Integer value. If y < 0, the value 0 w111 be 
used; If y > 31, the value 31 w111 be used. 

Gotoxy(x" y) moves the cursor to the point (x,y) on the screen. Note that the 
poInt (0,0) Is the upper left comer of the screen. 

10.4 Ultyped FHe I/O 
Untyped file I/O operates on an "untyped fUe," I.e., a variable of type file (no 
component type~ All untyped file Is treated as a sequence of 512-byte blOCkS.: 
the bytes are not type-checked bUt considered as raw data This can be useful 
for applications where the data need not be interpreted at all during 110 
operations. 

10-18 



Pascal Reference Mantlal /nplIt/altptlt 

me blocKs in an untyped f1le are considered to be numbered sequentially 
starUng with O. The system Keeps tracK of the current block ntmIJer," this is 
blocK 0 immediately after the file is opened. Each time a blocK is read, the 
current blocK number Is incremented. By default, each 110 operation begins at 
the current block number; however, an arbitrary blocK number can be specified. 
Nt untyped file has no file-buffer, and it cannot be used with get, put, or any 
of the text-oriented I/O procedUres. It can only be used with reset, rewrite, 
close, eof, and the blOCkread and blockwr1te functions described below. 
To use untyped fUe I/O, an untyped fUe is opened with reset or rewrite, and 
the blOCkread and blockwr1te functions are used for input and output 

10.4.1 The BIOCkread FlrICtion 
Reads one or more 512-byte blocKs of data from an untyped fUe to a program 
variable, and returns the number of blocKs read. 
ReStllt rype: Integer 
Parameter List: blockread(f, datcD.lf, cot.Ilt [, blockrUll]) 

1. f is a variable-reference that refers to a variable of type file. The fUe 
must be open. 

2. databuf Is a variable-reference that refers to the variable into Which the 
blocKs of data will be read. The size and type of this variable are not 
cheCKed; if it is not large enough to hold the data, other program data 
may be overwritten and the results are unpredictable. 

3. COlIlt is an expression with an Integer value. It specifies the maximum 
number of blocKs to be transferred. BIOCkread w11l read as many blocKs 
as it can, up to this limit. 

4. blockrun (may be omitted) is an expression with an Integer value. It 
specifies the starting block number for the transfer. If it Is omitted, the 
transfer begins with the current block. ThUs the transfers are sequential 
if the blockrunber parameter is never used; if a blockrunber parameter 
is used, it provides random access to blocKs. 

BIOCkrea:(f, databUf, COlIlt, blockrUn) reads blocKs from f into databUf, starting 
at block blockrUn. Ctult is the maximum number of blocks read; if the 
end-of-file Is encountered before cot.Ilt blocKs are read, the transfer ends at 
that point The value returned is the number of blocks actually read. 
If the last block in the flIe was read, the current blocK number is unspecified 
and eof(f) is true. otherwise, eof(f) is false and the current block number is 
advanced to the block after the last blocK that was read. 

10-19 



Pascal Reference Manual /nptlt/altptlt 

10.4.2 The BIOCkwrlte FU'lCtlon 
Writes one or more S12-byte blocks of data from a program variable to an 
untyped file, and returns the number of blocks written. 
RestlJt JYpe: Integer 
Parameter LIst- blOCkwrlte(f, databUf, CWlt [, blOCkrUn]) 

1. f Is a variable-reference that refers to a variable of type file. The fUe 
must be open. 

2. databUf is a variable-reference that refers to the variable from which the 
blocks of data will be written. The size and type of this variable are not 
checked. 

3. CCUlt is an expression with an Integer value. It specifies the maximum 
number of blocks to be transferred. BIOCkwI1te will write as many blocks 
as it can, up to this limit. 

4. blOCkrUn (may be omitted) is an expression with an Integer value. It 
specifies the starting block number for the transfer. If it is omitted, the 
transfer begins with the current block. Thus the transfers are sequential 
if the blOCl<rUTtJer parameter is never used; if a blOCl<rUTtJer parameter 
Is used, it provides random access to blocks. 

BIOCkwrlte(f, databuf, CWlt, blockrun) writes blocks into f from databuf, 
starting at block blockrUn. CCUlt Is the maximum number of blocks written; 
if disk space runs out before COlIlt blocks are written, the transfer ends at 
that point. The value returned Is the number of blocks actually written. 
If disk space ran out, the current block number is unspecified. otherwise, the 
current block number is advanced to the block after the last block that was 
written. 

Unlike Apple II and Apple III Pascal, this Pascal does not allow 
blockwrite to write a block at a position beyond the first position after 
the current end of the file. In other WOrdS, you cannot create a bloCk 
file with gaps In it. 

10-20 



Chapter 11 
Standard Procedures and 

Functions 

11.1 Exit and I-4alt ~ .......................................................•.....•.•.. 11-1 

ll.l.l The Exit Procedure ................................................................ 11-1 
11.1.2 The Halt ProcedUre ............................................................... 11-1 

lL2 D,yrar1ic Allocation ProcetlJres ........................................................ 11-1 

11.2.1 The New Procedure ............................................................... 11-2 
11.2.2 The HeapResult Function ....................................................... 11-3 
11.2.3 The Mark Procedure .............................................................. 11-3 
112.4 The Release Procedure .......................................................... 11-3 
11.2.5 The Memavail Function .......................................................... 11-3 

11.3 TI8lSfer F~tltJ1S ........................•......................•.....•...•...........•.•.• 11-4 

11.3.1 The Trunc Function ............................................................... 11-4 
11.3.2 The Round Function ....................... , ...................................... 11-4 
11.3.3 The OrdLI. Function ................................................................. 11-4 
11.3.4 The Pointer function ............................................................. 11-5 

11.4 Arithn1etic FlXCtions ......•..•..........•.........•........•.•.....•.•.........•.•.....•.. 11-5 

11.4.1 The Cktd Function .................................................................. 11-5 
11.4.2 The .AbsFunction .................................................................. 11-5 
11.4.3 The Sqr Function ................................................................... 11-6 
11.4.4 The Sin Function ................................................................... 11-6 
11.4.5 The Cos Function .................................................................. 11-6 
11.4.6 The Exp Function .................................................................. 11-6 
11.4.7 The Ln function .................................................................... 11-7 
11.4.8 The Sqrt Function .•.. " .. "."""".""."""""""" ...• " .... ".".""."".".""" ","." ..... " ..... " 11-7 
11.4.9 The Arctan FunctIon ............................. " ................................ 11-7 
11.4.10 The Pwroften Function .......................................................... 11-7 

11.5 Ordinal F..-.::tiOl'lS •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 11-8 

11.5.1 TheOrdFunction ..........................................................•........ 11-8 
11.5.2 The Chr FlIlCtion .................................................................. 11-8 
11.5.3 The SUcc Function.................................. ...... ..... ..... .. . ............ 11-8 
11.5.4 The Pred Function ................................................................. 11-9 



Pascsi Reference Manl/8J Standard Procedt.lms & Functions 

11..6 strirlg PIl:Jce(lJres fIld FLIlCtions ........................................................ 11-9 

11.6.1 The Length Function .............................................................. 11-9 
11.6.2 The Pos Function .................................................................. 11-9 
11.6.3 The Concat Function ........................................................... 11-10 
11.6.ll The Copy Function .............................................................. 11-10 
11.6.5 The Delete Procedure .......................................................... 11-10 
11.6.6 The Insert Procedure ................ ........................................... 11-10 

11_7 Byte-Oriented PIl:Jce(lJres and FUlCtions ......•.••.......•...•.....•.•.•.•...•••... 11-11 

11.7.1 The Moveleft Procedure... .................. ........ ....... ............ ....... 11-11 
11.7.2 The Moveright Procedure..................................................... 11-12 
11.7.3 TheSizeofFunction ............................................................ 11-12 

11..8 Packed Array of am PIl:Jce(lJres fIld FUlCtions ...•......•......•.•...•...•.•..• 11-12 

11.8.1 The Scaneq Function ........................................................... 11-12 
11.8.2 The Scanne Function ........................................................... 11-13 
11.8.3 The Fillchar Procedure .............................. .......................... 11-13 



Standard Procedures and 
Functions 

This Chapter describes all the standard C'bullt-lnt, procedures and functions in 
Pascal on the Usa, except for the I/O procedUres and functions described in 
Chapter 10. 

Standard procedUres and functions are predeclared. Since all predeclared 
entitles act as if they were declared 1n a block surrounding the program, no 
conflict arises from a declaration that redefines the same identifier within the 
program. 

Standard procedUres and functions cannot be used as actual procedural 
and functional parameters. 

This chapter uses a modified BNF notation, instead of syntax diagrams, to 
indicate the syntax of actual-parameter-Usts for standard procedures and 
functions. The notation Is explained at the beginnIng of Chapter 10. 

11.1 Exit cnj Halt ProceWres 
11.1.1 The Exit ProcEUJre 

Exits immediately from a specified procedure or function, or from the main 
program. 
Parameter List: exlt(ld) 

1. Id Is the Identifier of a procedure or function, or of the main program. If 
Id Is an identifier defined In the program, it must be in the scope of the 
exit call. Note that this is more restricted than UCSD Pascal. 

Exlt(1d) causes an ImmedIate exit from 1(1 Essentially, it causes a jump to the 
end of Id. 

The halt procedure (see below) can be used to exit the main program 
from a U1lt without knowing the maln programts identifier. 

11.1.2 The Halt ProcEUJre 
Exits immediately from the main program. 
Pa.lCll77eter List- no parameters 
Halt causes an immediate exit from the main program. 

11.2 Dynamic Allocatioo P:rocedUres 
These procedures are used to manage the heap, a memory area that is 
unallocated when the program starts running. The procedure new is used for 

11-1 



PascaJ Reference Ma7tl8J St8l1d8Jr1 P.rocedtIres & FU7CtJons 

all allocation of heap space by the program. The mark and release procedures 
are used together to deallocate heap space, and the heapresult function is used 
to return the status of the last preceding dynamic allocation operation .. 

11.2.1 The New ProcEWre 
Allocates a new dynamic variable and sets a pointer variable to point to it 
Parameter List: new(p [, tl., ... tn) 

1. p Is a variable-reference that refers to a variable of any poInter-type. 
ThIs Is a varIable parameter. 

2. tl, ... tnare constants, used only when allocating a variable of 
record-type with variants (see below~ 

Ne\v(p) allocates a new variable of the base-type of p, and makes p point to it. 
The variable can be referenced as p". SuccessIve calls to new allocate 
contiguous areas. 
If the heap does not contain enough free space to allocate the new variable, p 
Is set to nil and a SUbsequent call to the heapresult function will return a 
non-zero result. 
If the base-type of p Is a record-type with variants, new(p) allocates enough 
space to allow for the largest variant. The form 

new(p, tl, ... tn ) 
allocates a variable with space for the varIants specified by the tag values tl, 
... tn (instead of enough space for the largest variants~ The tag values must 
be constants. They must be listed contiguously and in the order of their 
declaration. The tag values are not· assigned to the tag-fields by this 
procedure. 

Trailing tag values can be omitted. The space allocated allows for the largest 
variants for all tag-values that are not specified. 

WAANlJIG 

When a record variable is dynamically allocated with expUcit tag values 
as shown above, you should not make assignments to any fields of 
variants that are not selected by the tag values. Also, you should not 
assign an entire record to this record. If you do either of these things, 
other data can be overwritten without any error being detected at 
compile time. 

11-2 



P8SC8l Refe.rence /VIanua1 Standard ProcedJres & FlIlCtions 

112.2 The ~result FlIlCtlon 
Returns the status of the most recent dynamic allocation operation. 
Result Type: integer 

Parameter LIst: no parameters 
Heapresult returns an integer code that reflects the status of the most recent 
call on new, mark, release, or merna vall. The codes are given in the WorkstJop 
User's GuIde.; note that the code for a successful operatton is O. 

11.2.3 The Mark ProcetiJre 
sets a pOinter to a heap area 
Pa.rameter LIst: mark (p) 

1. P is a variable-reference that refers to a variable Of any pointer-type. 
This is a variable parameter. 

MaJ1«p) causes the pointer p to point to the lowest free area in the heap. The 
next call to new will allocate space beginning at the bOttom of this area, and 
then p will be a painter to this space. The pointer p Is also placed on a 
stack-like llst for subsequent use with the release procedure (see below~ 

11.2.4 The Release ProcetiJre 
Deallocates all variables in a marked heap area 
Parameter LIst- release(p) 

1. p is a variable-reference that refers to a pointer variable. It must be a 
pointer that was previously set with the mark procedUre. The pointer p 
must be on the list created by the mark procedure; otherwise an error 
occurs. 

Release(p) removes pointers from the llst, back to and Including the pointer p. 
The heap areas pointed to by these pointers are deallocated. In other words, 
release(p) deallocates all areas allocated since the the pointer p was passed to 
the mark procedure. 

1125 The 1VIemavai1 FlIlCtlon 
Returns the maximum possible amount of available memory. 
Result Type: looglnt 

Parameter List: no parameters 
Memavall returns the maximum number of words (not bytes) of heap and stack 
space that could ever be avallable to the program, allowing for possible 
automatic expansion of the program's data segment. Note that the result of 
mernavaH can change over time even if the program does not allocate any 
heap space, because of activities by the operatlng system or other processes in 
the system. 

11-3 



Pascal Refe.rence M8I7I.I8l St8l1d8rd Procedllres & Fvnctlons 

113 TIlJlSfer FU1CUons 
The procedures pad< and lfll8Ck, described by Jensen and Wirth, are not 
supported. 

11.3.1 The Tnnc FlIlCtlon 
Converts a real value to a longlnt value. 
ReStl.lt Type: longlnt 
PanJITlIJter List: tlUlC(X) 

1. X is an expression with a value of type real. 

T~x) returns a longlnt result that Is the value of x rounded to the largest 
whole number that Is between 0 and x (Incluslve~ 

11.3.2 The ROlI'ld FU1Ctlon 
Converts a real value to a longlnt value. 
ReStl.lt Type: longint 
Parameter List: rOlI'ld(x) 

1. x is an expression with a value of type real. 

ROJ'X(x) returns a longlnt result that is the value of x rounded to the nearest 
Whole number. If x is exactly halfway between two whole numbers, the result 
is the whole number with the greatest absolute magnItude. 

11.3.3 The Grd4 FU1CUon 
Converts an ordInal-type or pOinter-type value to type longlnt 
Rem]t Type: longlnt 
Parameter List: ord4(x) 

1. x is an expression wIth a value of ordinal-type or pointer-type. 
Drd4(x) returns the value of X, converted to type longlnt If x Is of type 
longlnt, the result is the same as x. 
If x Is of p01nter-type, the result is the corresponding physical address, of type 
longlnt 
If x is of type Integer, the result is the same numerical value represented by X, 
but of type longlnt This is useful In arithmetic expressions. For example, 
consider the expression 

SJc*x.yz 

where both SJc and xyz are of type Integer. By the rules gIven in section 
3.1.1.2, the result of this multlpl1cation is of type integer (16 b1ts~ If the 
mathematical product of SJc and xyz cannot be represented In 16 bits, the 
result is the low-order 16 bits. To avoid this, the expression can be written as 

ord4( SJc)-xyz 

11-4 



Pascal Reference H8niJ8J Stend8rd ProcedlIres & Functions 

This expressIon causes 32-bit arIthmetic to De used, and the result is a 32-bit 
longint value. 
If x is of an ordinal-type other than integer or looglnt, the numerical value of 
the result Is the ordinal number determined by mapping the values of the type 
onto consecutive non-negative integers starting at zero. 

11.3.4 The Pointer FU'lCtion 
Converts an integer or longint value to pointer-type. 
ReSlllt 7)pe: pointer 
Paratneter List: pointer(x) 

1. x is an expression with a value of type Integer or longlnt. 
Polnter(x) returns a pointer value that corresponds to the physical address x. 
This pointer is of the same type as nil and is assignment-compatible with any 
pointer-type. 

11.4 Arlt.tmet1c FU'lCtlons 
In general, any real result returned by an arithmetic fUnCtion is an approx­
imation. There are t'Wo exceptions to this: the result of the abs function Is 
exact, and the result of the pwroften function is exact when the parameter n 
is in the range 0 ~ n ~ 10. 

11.4..1 The (w FU'lCtlon 
Tests whether a 'Whole-number value is odd. 
ReSlJJt 7)pe: bOOlem 

Parameter List: odd(x) 

1. x is an expression 'With a value of type Integer or longlnt. 
~x) returns true if x is odd; other'Wise it yIelds false. 

11.4.2 The NJs FU'lCtion 
Returns the absolute value of a numeric value. 
Result 7ype: same as parameter 
Parameter List: cms(x) 

1. x Is an expressIon with a value of type real, Integer, or longlnl 
Ab(x) returns the absolute value of x. 

11-5 



P8SC8l ReFemnce fv18nI.I81 

11.43 The Sqr FtrlCtion 
Returns the square of a numeric value. 
ReSUlt Type: depends on parameter (see belOW) 
Parameter List- sqr(x) 

Standard Proced,tms & FUlCtions 

1. X is an expression with a value of type real, Integer, or longlnt. 
sqr(x) returns the square of x. If X Is of type real, the result Is real; if x is of 
type longlnt, the result is longlnt; and if x is of type integer, the result may be 
el ther Integer or longlnt 
If x Is of type real and floating-point overflow occurs, the result Is +00. 

11.4.4 The Sin FlIlCtion 
Returns the sine of a numeric value. 
Rest/It Type: real 

Pal8lTJeter List- s1n(x) 

1. x is an expression with a value of type real, Integer, or longint. This 
value is assumed to represent an angle in radians. 

Sir(x) returns the sine of x. If x Is infinite, a diagnostic NaN is produced and 
the invalid operation Signal is set (see Appendix D~ 

11.4.5 The COS FtrlCtion 
Returns the cosine of a numeric value. 
Rest/It 7ype: real 

Parameter List: cos(x) 

1. x is an expression with a value of type real, Integer, or longlnt This 
value is assumed to represent an angle in radians. 

COS(x) returns the cosine of x. If x is infinite, a diagnostic NaN is produced 
and the invalid operation signal is set (see Appendix D~ 

11.4.6 The Exp FtrlCtion 
Returns the exponential of a numeric value. 
ReStllt Type: real 

Parameter List· exp(x) 

1. x Is an expression with a value of type real, Integer, or lCllQlnt. All 
pOSSible values are valid. 

EXJ(x) returns the value of e x, where e is the base of the natural logarithms. 
If floating-point overflow occurs, the result is +00. 

11-6 



Pasc8l RefeImCe Manu8l St8lld8rd PJVCedlIres & Functions 

11.4.7 The Ln FlIlCtion 
Returns the natural logarIthm of a numeric value. 
ReSUlt Type: real 

Parameter List: In(x) 

1. x Is an expression wIth a value of type real, Integer, or longlnt All 
non-negative values are valid; negative values are Invalid. 

If x Is non-negative, lr(x) returns the natural logarithm (loge) of x. 
If x is negative, a diagnostic NaN Is produced and the Invalid qleraUon signal 
Is set (see Appendix D~ 

11.4.8 The Sqrt FlIlCtion 
Returns the square root of a numeric value. 
Result Type: real 

Parameter List: sqrt(x) 
1. x Is an expression with a value of type real, integer, or longlnt All 

non-negative values are valid; negative values are inval1d. 
If x is non-negative, sqrt(x) returns the positive square root of x. 
If x is negative, a diagnostic NaN is produced and the Invalid qleratlon signal 
is set (see AppendIx D~ 

11.4.9 The Arctan FlIlCtion 
Returns the arctangent of a numeric value. 
ReSUlt Type: real 

Parameter List: arctal(x) 

1. x Is an expression with a value of type real, integer, or longlnt All 
numeric values are valid, including :too. 

Arctar(x) returns the prInclpal value, in radlans, of the arctangent of x. 
11.4.10 The Pwroften FlIlCtion 

Returns a spec1 fied power of 10. 

ReSUlt Type: real 

Parameter List: pfi'Often(n) 
1. n is an expression with a value of type Integer. 

If -45 ~ n ~ 38, then pwrofter(n) returns 1 on. The result is mathematically 
exact for 0 ~ n ~ 10. If n ~ -46, the result is 0; if n ~ 39, the result is +00. 

11-7 



Pascal RefellJl7Ce H817t18l Standa.ld Procedures & Fl/I?CtJons 

115 llrdlnal FlIlCtions 
115.1 The Old FlIlCtion 

Returns the ordInal number of an ordInal-type or poInter-type value. 
Result Type.: Integer or looglnt 
Parameter List- oro(x) 

1. x is an expressIon with a value of ordinal-type or poInter-type. 
If x is of type integer or longlnt, the result Is the same as x. 
If x is of pointer-type, the result Is the corresponding physical address, of type 
longlnt 

If x Is of another ordinal-type, the result is the ordinal number determined by 
mapping the values of the type onto consecutive non-negative whole numbers 
starting at zero. 
For a parameter of type Char, the result Is the corresponding ASCII code. For 
a parameter of type ooalecn, 

orn( false) returns 0 
oro ( true) returns 1 

11.5.2 The Olr FlIlCtion 
Returns the Char value corresponding to a whole-number value. 
Result Type: char (but see below) 
Parameter List- eIlr(x) 

1. x is an expression with an integer or longlnt value. 
Chr(x) returns the Char value whOse ordinal number (1.e., its ASCII COde) is X, If 
x is In the range 0..255. If x is not In the range 0..255, the value returned is 
not within the range of the type Char, and any attempt to assign it to a 
variable of type Char will cause an error. 
For any char value ell, the following Is true: 

Chr( orn( Ch» = Ch 

11.5.3 The SUcc FlIlCtion 
Returns the successor of a value of ordinal-type. 
ReSUlt Type: same as parameter (but see beloW) 
Parameter List- succ(x) 

1. x is an expression with a value of ordinal-type. 
SUCC(x) returns the successor of X, if such a value exists accord1ng to the 
inherent ordering of values In the type of x. 

11-8 



Pascal Reference /VIant/al Stand8.rd P.rocett.ues & FlIJCtions 

If x is the last value in the type of x., it has no successor. In this case the 
value returned is not within the range of the type of x., and any attempt to 
assign it to a variable of this type will cause unspecified results. 

11.5.4 The Pled Ft.rlCtlon 
Returns the predecessor of a value of ordinal-type. 
Result TYPe: same as parameter (bUt see below) 
PaJ1ilIT1eter List: pred(x) 

1. x is an expression with a value of ordinal-type. 
Pret:(x) returns the predecessor of x., if such a value exists aCCOrding to the 
inherent ordering of values in the type of x. 
If x is the first value In the type of X, it has no predecessor. In this case the 
value returned is not within the range of the type of x., and any attempt to 
assign it to a variable of this type will cause unspecified results. 

11.6 StriBJ ProceclJreS CI1d Ft.rlCtions 
The string procedures and functions do not accept packed array Of Char 
parameters, and they do not. accept indexed string parameters. 

11.6.1 The Length FlJ'lCtlon 
Returns the current length of a value of string-type. 
Result 7jpe: integer 
Parameter List: lengtt(str) 

1. str is an expression with a value of string-type. 
Lengtt(str) returns the current length of str. 

1L62 The Pes Ft.rlCtion 
Searches a string for the first occurrence of a specified SUbstring. 
Result TYpe: integer 
PSJ1!JI718ter List: pos(Sltlstr, str) 

1. SUbStr is an expressIon wIth a value of string-type. 
2. str is an expression with a value of strIng-type. 

Pos(SUbStr, str) searches for SUbStr within str, and returns an integer value that 
is the index of the first character of SUbStr wi thin str. 
If SUbStr is not found, pos(Sltlstr, str) returns zero. 

11-9 



P8SC8I ReFerence I'18ntI8J 

11.6.3 The C01cat Ft.retion 
Takes a sequence of strings and concatenates them. 

Result Type: string-type 
Parameter List: caacat( strl [, str2, ... str n ]) 

• Each parameter Is an expression with a value of strIng-type. MY practical 
number of parameters may be passed. 

COI'lcat(strl, _, str n) concatenates all the parameters In the order In which 
they are written, and returns the concatenated string. Note that the number 
of characters In the result cannot exceed 255. 

11.6.4 The COpy Ft.rlCtlon 
Returns a Substring of specIfIed length, taken from a specified posItion within 
a string. 
Result Type: string-type 
Parameter List: copy{ source, index, COU'lt) 

1. source is an expression with a value of string-type. 
2. Index Is an expression with an Integer value. 
3. COlIlt Is an expressIon with an Integer value. 

COpy(srurce, Index, COUlt) returns a strIng conta1ning COUlt characters from 
srurce, beginning at source[lndexJ 

11.65 The Delete ProceOJre 
Deletes a sUbstring of specified length from a specified positlon within the 
value of a string variable. 
Parameter List: delete( dest, index, COU'lt) 

1. dest is a variable-reference that refers to a variable of strIng-type. This 
is a variable parameter. 

2. Index Is an expression wIth an Integer value. 
3. CCUlt is an expression with an Integer value. 

Delete(dest, index, COl.I1t) removes COUlt characters from the value of dest" 
beginning at dest[lndexJ 

11.6.6 The Insert ProceWre 
Inserts a substring into the value of a string variable, at a specified position. 
Parameter List: insert ( source, dest, index) 

1. source is an expression with a value of string-type. 
2. dest is a variable-reference that refers to a variable of strIng-type. This 

Is a varIable parameter. 
3. Index is an expression with an integer value. 

11-10 



Pascal Reference Hanl/al Standard Procedures & Functions 

Insert(source, den, Index) inserts source into dest. The first character of 
source becomes deSt{index} 

11.7 Byte-Orlented Procedures and FtflCtioos 
These features allow a program to treat a program variable as a sequence of 
bytes, without regard to data types. 

NnE 

The slzeof function (described in section 11.7.3, below) can be used to 
determine the number of bytes in a variable. 

These procedures do no type-CheCking on their source or dest actual­
parameters. However, since these are variable parameters they comot be 
indexed if they are paCked or if they are of string-type. If an unpacked 
''byte array" Is desired, then a varIable of the type 

array [10 .. hi] of -128 •• 127 

should be used for source or deSt The elements in an array of this type are 
stored in contiguous bytes, and, since it is unpacked, an array of this type can 
be used with an index as an actual-parameter for these routines. 

IfVPLe-ENT AllCN ~ 

Currently, an array with elements of the type 0..255 or the type char 
has its elements stored in words, not bytes. 

11.7.1 The Moveleft PIOCe(lJre 
Copies a specified number of contiguous bytes from a SOl/rce range to a 
destination range (starting at the lowest address~ 
Paratneter List- nove1eft(source, dest, COU'lt) 

1. source is a variable-reference that refers to a variable of any type 
except a fUe-type or a structured-type that contains a file-type. This is 
a variable parameter. The first byte allocated to source (lowest address 
within source) is the first byte of the source range. 

2. dest is a variable-reference that refers to a variable of any type except 
a fUe-type or a structured-type that contains a fHe-type. This Is a 
variable parameter. The first byte allocated to dest (lowest address 
within dest) is the first byte of the destination range. 

3. COlIlt Is an expressIon with an integer value. The source range and the 
destination range are each COlIlt bytes long. 

rvIoveleft.(source, dest, COlIlt) caples COlIlt bytes from the source range to the 
destination range. 

11-11 



Pascal ReFerence Mantia} Standard Procedtlres & Functions 

Moveleft starts from the "left" end of the source range (lowest address~ It 
proceeds to the "right" (higher addresses), copying bytes into the destination 
range, starting at the lowest address of the destlnation range. 

The COlIlt parameter Is not range-cheeked. 

11.7.2 lhe Mover1~t ProcedUre 
Mover1~t is exactly like fOOVeleft (see above), except that It starts from the 
"right" end of the source range (highest address~ It proceeds to the "left" 
(lower addresses), copying bytes into the destination range, starting at the 
highest address of the destination range. 

The reason for having both moveleft and mover1~t is that the source and 
destination ranges may overlap. If they overlap, the order in which bytes are 
moved Is critical: each byte must be moved before It gets overwritten by 
another byte. 

11.7.3 llle Slzeof FlflCtion 
Returns the number of bytes occupied by a specified variable, or by any 
variable of a specified type. 

Result Type: Integer 

Parameter Li.rt: sizeof(id) 

1. Id Is either a variable-identifier or a type-identifier. It must not refer to 
a fUe-type or a structured-type that contains a file-type, or to a 
variable of such a type. 

Slzeof(id) returns the number of bytes occupied by Id, if id Is a variable­
identifier; if id is a type-Identifier, it returns the number of bytes occupied by 
any variable of type id. 

11.8 Packed Array Of am ProceWres and FlflCtions 

l'IlTE 

These routines operate only on packed arrays Of Char. The packed 
arrays Of Char cannot be subscripted; the operations always begIn at the 
first character In a packed array Of Char. 

11.8.1 llle SCCI1eq FlIlCtion 
Searches a packed array Of char for the first occurrence of a specified 
character. 

Result Type: Integer 

Parameter List.; sccmq(limit, Ch, paoc) 

1. llmlt is an expression with a value of type Integer or longint It is 
truncated to 16 bits, and is not range-checked. 

2. Ch is an expression with a value of type char. 

11-12 



Pascal ReFerence /t1anuaJ StandaJ11 Pnx:et1Ures & FUlCtions 

3. pace is an expression with a value of type packed array Of char. This is 
a variable parameter. 

scaneqIlmlt, Ch, pace) scans pace, looking for the first occurrence of Ch. The 
scan begins with the first character In paoo. If the character Is not found 
within limit characters from the beginning of pace, the value returned is equal 
to limit Otherwise, the value returned is the number of characters scanned 
before ch was found. 

11.8.2 TIle SCcn1e FtrlCtloo 
This function is exactly like scaleq, except that it searches for a character 
that does not match the 00 parameter. 

11.8.3 The FlllChar Procecl.Ire 
Fills a specified number of characters In a packed array Of char with a 
specified Character. 
P8I'l1IT1eter List: fl11char(paoc, C€Ult, 00) 

1. pace is an expression with a value of type pooked array Of char. This is 
a variable parameter. 

2. COl.flt is an expresSion with a value of type Integer or longlnt It is 
truncated to 16 bits, and is not range-checked. 

3. ch Is an expression with a value of type char. 

FlllchaI(paoc, COU1t, 00) writes the value of 00 into COtIlt contiguous bytes of 
memory, starting at the first byte of paoc. 
Since the cot.rlt parameter is not range-checked, it Is possIble to write into 
memory outside of pace, with unspecified results. 

11-13 





029-0404-A 

Chapter 12 
The Compiler 

12.1 COIll>11er COfTVTlands ....................................................................... 12-1 

12.2 conct1tional CClrr1Jilation .................................................................. 12-3 

12.2.1 CompIle-TIme VarIables and the IDECL Command •••.•••••.....•...•.. 12-3 
12.2.2 The $SETC Command ............................................................ 12-4 
12.2.3 CompIle-TIme Expressions ..................................................... 12-4 
12.2.4 The $IFC, $ELSEC, and $ENDC Commands ................................ 12-4 

12.3 ~tlmlzation of If-Statements .0 ••••••••• 0 •••••••••••••••••••••••••••••••••••••••••••• 0. 12-5 

12.4 ~tlmlzat1on Of While-Statements CIld Repeat-Statements ................... 12-7 

12.5 EffIcIency Of case-staterTlents ......................................................... 12-7 





The Compiler 

The Pascal compHer translates Pascal source text to an intermediate code, and 
the code generator translates the intermediate code to MC68000 object code. 
Instructions for operating the comp1ler and code generator are given in the 
Wo.fkS!lCp USer's Gl./Jde lOr the Lisa 

12.1 COf'J1)ller OJ I rnauds 
A compUer command is a text construction, embedded In source text, that 
controls compHer operation. Every compHer command Is written within 
comment delimiters, { ... } or (* ... *~ Every compiler command begins with the $ 
character, whIch must be the first character InsIde the comment del1mlters. 
In this manual, compiler commands are stlOwn in upper case to help distinguiSh 
them from Pascal program text; however, upper and lower case are inter­
changeable in compiler commandS just as they are in Pascal program text. 
The following compHer commands are available: 
INPUT FILE cavTRa 

$1 fl1era1l! Start taking source COde from flIe tllenane. When the end 
of this file is reached" revert to the previous source f11e. 
If the fllename begins with + or -, there must be a space 
between $1 and the filename (the space is not necessary 
otherwIse~ 

$U filet'lC111! Search the fUe filename for any units subsequently 
speCified in the uses-clause. Does not apply to intrinsic­
units. 

cavTRa CF CtrJE GENERA TIOV 

$C+ or $C- Tum code generation on (+) or off (-). This is dOne on a 
procedure-by-procedUre basis. These commands stlOuld be 
written oetween procedures; results are unspecified if they 
are written inside procedures. The default Is $C+. 

$OV+ or fJI:N- Tum integer overflow CheCking on (+) or off (-~ OVerflow 
CheckIng Is done after all Integer add, subtract, 16-bl t 
mUltiply, divide, negate, 80S, and 16-bit square operations, 
and after 32 to 16 bit conversions. The default is SOV-. 

SR+ or SR- Tum range cheCking on (+) or Off (-~ At present, range 
CheCking is done In assignment statements and array 
Indexes and for strIng value parameters. No range 
CheckIng is done for type l€nJlnl The default Is $R+. 

12-1 



Pascal Reference Manual Tfle compIler 

SS S8(J8Re Start putting code modUles Into segment sagone. The 
defaul t segment name Is a string of blanks to designate the 
"OlanK segment," In WhIch the maIn program and all ouIlt-in 
support code are always llnked. All other code can Oe 
placed Into any segment 

$X+ or $X- Tum automatic run-time stack expansIon on (+) or off (-~ 
The default is $)(+. 

~ 

Compiler directives that affect COde generation take effect when the 
end of the Pascal statement In which they are embedded Is reached. If 
the same directive Is specIfIed more than once In a statement, the last 
setting is used. A tricky case of this Is: 

beg1n 
j := foo; 
{$R-} 
1 := 1*2 
{$R+} 

end 

Since the second assignment does not end with a semicolon, and 
actuaU y ends when the end is encountered, range checking will not be 
turned off for that statement. 

$'0+ or $'0- Tum the generation of procedUre names In Object code on 
(+) or off (-~ These commanOs shOUld be written between 
procedures; results are unspecIfied If they are wrItten 
inside procedUres. The default 1s $0+. 

C(1\OITllNAL CUvPILATIIN 

$(ECl l1st 
$ELSEC 

$fNlC 

SIFC 
$SETC 

(see Section 12.2 below~ 
(see Section 12.2 belOW~ 
(see secUon 12.2 IJelOW). 

(see section 12.2 below~ 
(see Section 12.2 below~ 

12-2 



Pascal Reference Manual Tfle COmpBer 

LISTING CCNTRa 

Sf filenane Start makIng a llstlng of compUer errors as they are 
encountered. Analogous to $L fUencme (see below~ The 
defaul t Is no error listing. 

$L filenane Start listlng the compllatlon on fUe fUerane. If a listlng 
Is beIng made already, that fHe Is closed and saved prIor to 
openIng the new f11e. The default Is no listing. If the 
fllename begIns with + or -, there must be a space between 
$L and the filename (the space is not necessary otherwise~ 

SL + or SL - The first + or - follow1ng the SL turns the source llsting on 
(+) or Off (-) withOut changing the l1st file. You must 
speci fy the listing file before using SL +. The default is 
$L +, but no listing Is produced if no listing fUe has been 
spec1fiect 

122 COOllUonaI COt'T1l11aUro 
CondItional compilation Is controlled by the $IFC, $ELSEC, and $ENJC 
commandS, whiCh are used to bracket sections of source text. Whether a 
particular bracketed section of a program Is compiled dependS on the boolecrl 
value of a compile-time expression, whIch can contaIn complle-time varlalJle~ 

122.1 COt'T1l11e-Time varicmles ald the $DECL.. COO'V1la1d 
compUe-time variables are completely independent of program variables; even 
if a compUe-time variable and a program variable have the same identifier, 
they can never be confused by the compUer. 
A compUe-Ume varIable Is declared when It appears In the Identifier-list of a 
$CECL.. command. 
Example of compile-time variable declaration: 

{na.. LIBVERSI(Jt PROOVERSI~} 

This declares LIBVERSICN and PROOVERSICN as compile-time variables. 
Notice that no types are specified. 
Note the fOllowIng poInts aoout compUe-Ume varIables: 

• Compile-time variables have no types, although their values do. The only 
pOSSible types are Integer and boolecn 

• All compUe-tIme varIables should be declared before the end of the 
variable-declaration-part of the main program. In other words a $OECL.. 
command that declares a new complle-Ume variable must precede the 
main program's procedure and function declarations (if any). The new 
compUe-tIme variable Is then known throughout the remainder of the 
compilation. 

• At any point in the program, a compile-time variable can have a new 
value assigned to it by a SSETC command. 

12-3 



Pascal Reference Manual The Corrpller 

12.22 The SSETC COllltold 
The $SETC command has the form 

{$SETe ID := EXPR} 

01" 

{$SETC ID = EXPR} 

'Where ID Is the identifier of a compUe-time varIable and EXPR is a complle­
time expression. EXPR Is evaluateCl ImmeCllately. The value of EXPR Is 
assigned to 10. 
example of assIgnment to compIle-time varIable: 

{$SETe LIBVERSIlW : = 5} 

This assigns the value 5 to the complle-time variable LIBVERSICN. 
12.2.3 COI1l>lle-Time Expressia'lS 

complle-tlme expressIons appear In the SSETC command and in the SIFC 
command. A complle-tlme expression Is evaluated by the compHer as soon as 
1 t Is encountered in the text. 
The only operands allowed In a compUe-tlme expression are: 

• complle-tlme variables 
• Constants of the types Integer and boolean. (These are also the only 

possible types for results of compile-time expressIons.) 
All Pascal operators are allowed except as follo'Ws: 

• The in operator is not allowed. 
• The it operator Is not allowed. 
• The I operator is automatically replaced by dlv. 

12.2.4 The SIFC, SELSEC, cnj $ENJC COrmlcJlds 
The SELSEC and SE~ commands take no arguments. The IIFC command has 
the form 

{lIFe EXPR} 
Where EXPR Is a compIle-time expressIon wIth a IlOOIecIl value. 
These three commands form constructions similar to the Pascal if-statement, 
except that the $E~ command Is always needed at the end of the $IFC 
construction. SELSEC Is optional. 

12-4 



Pascal Reference Manual 

Example Of condltll¥18lly conplled COde: 

{$IFC PRCliVERSI£W >= lIBVERSI£W} 
k := kvall(data+1ndat); 

{SELSEC} 
k : = kva12( data+cpindat .. ); 

{ENlC} 
.riteln(k) 

TIle compiler 

If the value of PROO\IERSI(J\.Ils greater than or equal to the value of 
LIBVERSI(J\.I" then the statement k:-kvall(data+lndat) 1s compiled" and the 
statement k:-kvaI2(data+eplndat") Is SkIpped. 
But If the value of PRCEVERSI(J\.I 1s less than the value of LIBVERSICN" then 
the first statement is skipped and the second statement is complIed. 
In either case" the wrltelr(k) statement Is complIed because the conditional 
construction ends with the SEI'DC command. 
$JFC constructions can be nested within each other to 10 levels. Every $IFC 
must have a matchIng SEf\IJC. 

When the compHer Is skIppIng, all commands in the skipped text are Ignored 
except the fOllowIng: 

SElSEC 
SENJC 
$IFC (so that SEI'DC's can be matched properly) 

All program text Is ignored during skipping. If a listing is produced" each 
source line that Is skipped is marked with the letter S as its "lex level." 

12.3 qltlmlzatlon of If-statements 
When the compiler finds an if-statement controlled by a lXXlleCl1 constant" it 
may be unnecessary to compile the then part or the else part. For example" 
gi ven the declarations 

const always = true; 
never = false; 

then the statement 
if never then statement 

",ill not be compiled at all. In the statement 
if never then statement! 

else statement2 
"statementl" Is not compiled; only "statement2" Is compiled. 

12-5 



Pascal Reference Manual Tile Compiler 

Slmllarly, In the statement 
if always then statement1 

else statement2 
only "statementltt Is complleo. 
The interaction between this optimization and conditional compilation can be 
seen from the following program: 

progran foo; 
{$SETC fLAG : = fAlSE} 

oonst pi = 3.1415926; 
size = 512; 

{SIfC fLAG} 
debug = false; {a boolem constCflt, if fLAG=true} 

{$Eta} 

var i, j, k, 1, IQ, n: integer; 
{SIfC NlT FLAG} 

debug: boolean; {a boolean varictJle, if fLAG=false} 
{SEta} 

{$IfC NOT fLAG} 
procecilre mtlOOde; 

begin 
{interactive procewre to set global boolean variable, debug} 

end; 
{$Et«)C} 

begin {main} 
{$IFC NlT FLAG} 

1hatnIXJe; 
{SENJC} 

1 f debug then beg1n 
statement1 

end 

end. 

else begin 
statement2 

end 

The way this is compiled depends on the compile-time variable FLAG. If 
FLAG is false, then debug is a boolean vada/Jle and the Whatmode procedure 
is compiled and called at the beginning of the main program. The if debug 

12-6 



Pascal Reference Manual Tfle Compjler 

statement Is controlled by a booleal variable and all of it is compiled, in the 
usual mamer. 

But if the value of FLAG is changed to true, then debUg is a constant with 
the value false, and whatmode Is neither compiled nor called. The If debUg 
statement Is controlled by a constant, so only its else part, "statemenU", 1s 
complled. 

12.4 qltlmlzation of Whlle-statements em Repeat-statements 
A while-statement or repeat -statement controlled by a boolea-. constant does 
not generate any conditional branches. 

12.5 Efficiency of case-Statements 
A sparse or small case-statement will generate smaller and faster code than 
the corresponding sequence of if-statements. 

12-7 





029-0405-A 

Appendixes 

A COOlmIsoo to Apple II md AWle In Pascal ••••••••••••••••••••••••••••••••••••••• A-1 

B t<rlOWI1 PIlOrnalles In Ute COITlpller.......... .............. •.•• .••.•••• ••••••. • .......... B-1 

o Sytltax Of Ule L~ ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 0-1 

D Floating-PoInt Arlttlnetlc •••••••.•••••.•••••.•••••••••••••••.••••••••••••••••••••••.••••••• 0-1 

E QJICI<DraW • •••••••..••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••• E-1 

F I-IardWare Interface •••••••••• ••••••••••••••••••••• ••••••••••• ••• ••••••••••••••••••••• ••••••••• F-l 

G Lisa Olaraoter set ............................................................................ G-l 

H Error t-1esSCJgeS .................................................................................. H-1 

I Pascal WOrkShop FlIes .•••••••.•••••..•••••••..••••••••••••••.••.•••••..•••••••••••••••••.•••• 1-1 





Appendix A 
Comparison to Apple II and Apple III 

Pascal 

This appendix contains lists of the major differences between the Pascal 
language on the Usa and the Pascal implemented on the Apple II and Apple Ill. 
Please note that these lists are not exhaUstive. 

A.l Extensions 
The followIng features have been added on the Usa: 

• @ qlerator--retums the pointer to its operand (see section S.1.6~ 

• Heapresult, pointer, and ofdll. functions (see Sections 11.2.2, 11.3.3, and 
11.3.4~ 

• Keypress function bUilt into the language, with same effect as the keypress 
function In the applestuff unit of Apple II and Apple III Pascal (see Section 
10.3.7.1~ 

• Hexadecimal constants (see Section 1.4~ 

• Dtt1e'NIse-clause in case-statement (same as Apple III Pascal; see Section 
6.2.2.2~ 

• Global goto-statement (see Section 6.1.3~ 

• A file of Char type that Is distinct from the text type (see Sections 3.2.4 
and 10.3~ 

• Numerous compiler commands (see Section 12.1~ 

• ProcedUral and functional parameters (see Sections 7.3.3 and 7.3.4~ 

• Stronger type-cheCKing (see Sections 3.4 and 7.3.s~ 

• QuicKDraw graphics and hardware interface, inclUding mouse control (see 
Appendixes E and F~ 

A.2 DeleUcns 
The following features are not inclUded on the Usa: 

• Turtl~cs, awlestuff, and other standard units of Apple II and Apple 
III Pascal. 

• Interactive type (not needed, as the I/O procedures will dO the right thing 
with a fHe of type text if It Is opened on a character devlce~ 

• Keyboard fl1e--same effect can be Obtained by openIng a file of type text 
on the device -KEYBOARD (see Section 10.3~ 

A-1 



Pascal Reference Manual COrnpadson to I¥Jple II & III Pascal 

• Unit (devIce-oriented) 110 proceauresl such as UNITBUSY. 
• Recognition of the ETX Character (control-C) to mean "end Of fUe" in input 

from a Character device. 
• "Long Integer" data type, wIth length attrlbute In deClaration. Replaced by 

the longlnt type {see Section 3.1.1.2~ 
• "InItialIzation" COde In a unIt (see Chapter 9~ 
• The abIl1ty to create new IntrInsIc-unIts and InstalJ them In the system 

(see Chapter 9~ 
• Reset procedure without an external fUe title, for use on a file that Is 

already open (see section 10.1.1~ To Obtain the same effect, close the fUe 
and reopen It. 

• TTeesearoh. 
• Bytestrean, woIdstrean (data types In Apple III Pascal~ 
• Exlt(progran)--The exlt(ldentlfier) form works, and the identifier can be the 

program-Identifier. Halt can also be used for orderly exit from a program 
(see Sectionll.1~ 

• Extended comparisons (see section 5.1.5~ 
• SCCIl function. Replaced by SCCJ1eQ and sccn1e (see Section 11.8~ 
• str fl6'lCtion. 
• BIt-wIse boolean operations 
• 8egI11elit keyword for prOCedUres and functions. USe the $S command 

instead (see section 12.1~ 
• The fOllowIng comp1ler commands (see section 12.1): 

• $1+ and $1- (no automatic I/O checkIng; program must use loresult 
fl6'lCtion) 

- $G ($G+ Is the assumption on the Usa) 
• $N and $R (for resident code segments) 
-SP 
e$Q 

• $8+ and $8++ for swapping 
• $U+ and $U- (for User Program) 
·W 

In general, do not assume that a compiler command used In Apple II or 
Apple III Pascal is valid on the Lisa Furthermore, do not assume that an 

A-2 



Pascal Reference ManiJ8l Comparison to ,Apple II & /II Pascal 

Apple II or Apple III Pascal compller command Is "harmless" on the Usa, as 
It may be Implemented with a different meaning. 

A3 Other Dlfferellces 
The followlng features of Pascal on the Lisa are different from the 
corresponding features of Apple II and Apple III Pascal: 

• Size Of all strings must be expl1cltly declared (see Section 3.1.1.6~ 
• ~ and dlv--Pascal on the Usa truncates toward 0 (see Section S.1.2~ 
• Apple II and Apple III Pascal ignore underscores; Pascal on the Usa dOes 

not They are legal characters In Identifiers (see Section 1.2~ 
• A goto-statement cannot refer to a case-constant in Pascal on the Usa 

(see Section 6.1.3~ 
• A program must begin with the word progran In Pascal on the Usa (see 

Chapter 8~ 
• TIU'lC is different (see Section 11.3.1~ 
• Wllt.E(b) where b Is a bOOlem will write either' TRUE' or 'FALSE' In Pascal 

on the Usa (see section 10.3.3~ 
• Whether a fUe Is a textfUe dOes not depend on \tIhether its name ends with 

".TEXT" when it is created. Instead, any external file opened with a fUe 
variable of type text Is treated as a textfUe, whlle a fHe opened with a 
file variable of type flle Of char Is not; it is treated as a "datafUe," 1.e. a 
straight fHe of records whiCh are of type char (see Sections 3.2.4 and 10.2~ 

• Get, Jd, and the contents of the flIe bUffer variable are not supported on 
fUes of type text USe only the text -oriented I/O procedUres wIth textflles. 

• Eoln and eof functions on flIes of type text work as they do on lnteractive 
fUes In Apple II and Apple III Pascal. 

• Pascal on the Usa does not let you pass an element of a pacKed varIable as 
a variable parameter (see sections 7.3.2, 11.7, and 11.8~ 

• LImits on sets are dIfferent (see section 3.2.3~ 
• The control varIable of a for-statement must be a local variable (see 

section 6.2.3.3~ 
• In a write or wrlteln call, the default fIeld lengths for Integer and real 

values are 8 and 12 respectively (see section 10.3.3~ 

A-3 





Appendix B 
Known Anomalies in the Compiler 

This appendix describes the known anomaUes in the current implementation of 
the compiler. 

8..1 Scope of Declared Constalts 
Consider the following program: 

progma c~l; 
ca1st ten=10; 

p.roceOJre p; 
ca1st ten=ten; {llIIS SIO.l..D BE AN E~} 
begin 

writeln(ten) 
erO; 

begin 
P em. 

The constant declaration in procedure p should cause a compiler error, because 
it is illegal to use an identifier within its own declaration (except for pointer 
identifiers). However, the error is not detected by the compiler. The effect is 
that the value of the global constant ten is used in defining the local constant 
ten, and the wrtteln statement writes "11r'. 
A more serious anomaly of the same kind is illustrated by the following 
program: 

program csc0pe2; 
cmst red=1; violet =2; 

p.roceOJre q; 
type arrayT~=array[red .. violet] of integer; 

color=(violet,blue,green,yellow,onllQ8,red); 
var arrayVar:arrayType; c:color; 
begin 

arrayVar[ 1 ] : =1; 
c:=red; 
writeln(ord(c» 

end; 

begin 
q 

end. 

B-1 



Pascal Reference M8nuaJ Conpiler Anomalies 

Wi thin the procedure q,. the global constants red and violet are used to define 
an array index type; the effect of arra}{red...vlolet] is equIvalent to arra}{1..2} 
In the declaration of the type color .. the constants red and violet are locally 
redefined; they are no longer equal to 1 and 2 respectively--instead they are 
constants of type color wIth ordinalltIes 5 and 0 respectively. The writeln 
statement writes ""5". 

The use of red in the declaration of the type color should cause a compiler 
error but does not 
Consider the statement 

arrayVar[ 1 ] : =1; 

If this statement is replaced by 
arrayVar[red]:=l; 

a compiler error will result, as red is now an illegal index value for arrayVar 
--even though arrayV8r is of type arrayType and arrayType is defined by 
ana){red....vloletJ 
To avoid this kind of situation, avoid redefinition of comtant-identifiers in 
erunerated scalar types. 

B.2 S<qle of Base-Types for Pointers 
Consider the following program: 

progran pscqJel; 

type s=O •• 7; 

prooeciJre lli<ecurrent; 
type sptr='" s; 

s=record 
ch:char; 
IDol : boolean 

end; 
var current: s; 

ptrs:sptr; 
begin 

netf(~trs); 
ptrs .. :::wrrent 

em; 
begin 

Ekecurrent 
end. 

Here we have a global type $, which is asubrange of integer; we also have a 
local type I, which is a record-type. Within the procedure makecunent, the 
type sptr is defined as a pointer to a variable of type s. The intention is that 
this should refer to the local type s, defined on the next line of the program; 
unfortunately, however, the compiler does not yet know about the local type $ 

8-2 



Pascal Reference Mantlal Compiler Anom8iies 

and uses the global type s. Tte ptrs becomes a poInter to a variable of type 
0..7 instead of a poInter to a record. Consequently the statement 

ptrs A : = current 
causes a compiler error sInce ptrs A and current are of Incompatible types. 
To avoid this kind of situation, re-declare the type s locally before declaring 
the pointer-type sptr based 00 So Alternately, avoid re-declaration of 
identifiers that are used as base-types for pointer-types. 

B-3 





Appendix C 
Syntax of the Language 

0.1 TokerlS arld tnlstanb ..............•..•..................................................... C-1 

c.2 Blocks ............................................................................................ C-4 

C3 [)ata T}IIleS •••••••••••••••••.•••••••••••.••••••••••••••••••••••••••••••••••••••••.•.•••••••••••• C-5 

CA V8riaIJles •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• C-9 

0.5 E>CJlressiCllS ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• C-10 

0.6 staterT1er1ts ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• C-12 

C.7 ProceciJres arld FLrlCtiCllS ................................................................ C-15 

0.8 ~ ...................................................................................... C-16 

C.9 UUts ........................................................................................... C-17 





Syntax of the Language 

This appendix collects the syntax diagrams fOllld In the maln sections of this 
manual. see the Preface for an introwction to syntax diagrams. 

e.l TOkens cn:J COOStants (see ~ter 1) 

digit I I ~--.... ® /JJnx¢ 0t----..... 

identifier 

dIq/t-seq:mce ~ ( ) 

hex-diqit-setpenee (:1 hex-digit 1 ) • 

C-l 



Pascal Reference fYlantIaJ Synta..%'· 

siqn 

lnsigned-real 

digl t -sequence digit-sequence ~--------r--' 
---------.......-t scale-factor 

scale-lac/Dr $)-----,.-\@f~-s-ig-n-----a.c.lcJi91t-S~quence 11-----

(Jns14 .'(j-n(JmlJe.r 
---""-.....;...;..-........:....;.;..;.-.-~-.. unsigned-integer 

unsigned-real 1---"":""---__' 

siqned-n(JfT)lJe.r _/ unsigned-number I .. 
\@f 

tpJted-stJing-cmst.ant 

~~------~~.~ C-i string-character j:) 

C-2 



Syntax 

..::s~trh'f1g:z..--=Q::..:.:'I7a.rac:::...=.::..:..te.;..;;.'l" __ "'l_"4".,1 any dw e>apt 0 arCR I f 
l~ _________ -..~ ______ __ 

quoted-ctJaracler-canstant .. ()--+-I string-character I-+()--+-

constant-declaration "'1 Identifier ~ constant ~ 

J:.c,~a~'ns~ta~'n!.!:.t:......-....--_""'\' ___ ~""" constant-icJentifler 

C-3 



PascaJ Reference ~ 

C2 BlOCkS (see ~ter 2) 

bJac/(° 
....;;:;;::.;;=..;..-...----.. label-declaration-part 

constant-declaration-part 

type-declaration-part 

variable-declaration-part 

procedure-and-flflCtion-declaration-part 

statement-part 1--------------. 

lalJel-declaratJon-part 

.~ ~I-_--.-c.() .... - ____ • 

18IJe1 ., digit-sequence I • 

CtX1SlEnt-declamllm-part 

~ ( •• r-I c-on-s-tan-t--dec-l-ar-a-Uon------' ) 

lj'pe-decleration-p8lt 

~ (--I type-declaration I ) 
• 

C-4 

Syntax 



syntaX" 

variable-declarallon-part 

(;-, varialJle-CIeclaratlon I ) 

pmcedllre-and-ftlncllon-declarallon-pert 

--_ .............. procedure-declaration ~-~-.. 

function-deClaration 

statement-pB!l ., compound-statement I .. 

C.3 Data Types (see ~ter 3) 

tJll]t!-d!!claraUm .1 identifier 

~=--....---.~ simple-type 1---...... 

poInter-type I---~'" 

real-type ., real-type-identifier I • 

C-5 



Pascal Reference /Y1inJaJ 

ordinaJ-t suorange-type 

enumerated-type i------....J 

ordinal-type-identifler 

size-attribute 

~sJ.~'Ze.!::::.-...:::8:.::..:ttr:.:;:.:~=1fJtI;:;;..;t;.;;..e __ ".,1 unsigned-integer J .... ---..... 

enumerated-type .. C:D-----t identifier-list ~ 

identifier-list 

SlIbranqe-type ., constant ~ constant l--

C-6 



Pascal Reference I'1IrUal syntax 

stnctuJ-ed-t 

structured-t ype-identi fier 

array-type 

index-type "I ordinal-type r----... 

.reco.rd-lrpe .. ( record) .. ~ 

'l:i field-list ~ 
fjeld-list 

.. r-I f-ix-e-d--pa-rt--'I .. 1 \.or ~Iant-part ~ \.oJ 

n.)(ed-part ( .1 field-deClaration I ) 
-·---~G)~4~-----

..::.:h,::.=e=~l1=-~==~m:::..1J.::.:fJj::.:'l¥l=-=--_ .... 1 identifier-list ~ 

C-7 



Pascal Reference Manual Syntax 

variant-part 

~l1 K)J"lt8J-field-type~ 
identifier : ; 

UIg-fleJd-type ., ordinal-type-identifler f-+. 

varIant 

( __ "Ir--_c=o-ns-tan~_t~~_ : (\:j field-list ~ "CD-0- ., 

set-type "@--+0-+I ordInal-type J-----. 

file-type ~ .. 

~ 
pointer-type ... CJ--t1 base-type I .. 

~ polnter-type-ldentlfler j-1" 

JJase-ttpe ~ type-IdentifIer I----+-

C-8 



Pascal Reference /'1anUa1 syntax 

CA variables (see ~ 4) 

l18.Ti8lJle-deClaratlon., identifier-list ~ 

variable-reference 

---.J varlable-ldentl f1er q qualifier P 
variable-identifier "I identifier ~ 

'iDeE 

index .. (01---.... 1 expression I ) "CD-
('-----fO~---" 

field-deslqnator .. Q---11dentlfler ~ 

pOinter-otJtect-syrnpOI .. C) .. 

C-9 



Pascal Reference MarN.Ial 

C.5 E>epressloos (see ~ter 5) 

lIflS/. ed-constant 

_fc_ac.....;t.....;'Q_'T __ ~_...:--__ ---::.,..--.c variable-reference 1----_ 

--l~ 
l.eon 

C-IO 

Syntax 



Pascal Reference Manual 

expression 

simple-expression ......... ~--------------,---'I .. 
J--___ ---.t sImple-expressIon 

h.ncIJon-c.aJ} 

-..f function-identifier ~-ac-tua-I---pa-r-ame--te-r--l-is-t--~ • 

actu8l-pargmelsr-1Jst .~ actual-parameter I .CV--
-- L~ ) 

actual- 'ammeter 

-------iO~---"" 

expression 

procedure-identifier 

function-iClenti fier 

set-constructor .(j) .~ 

~~r-~sY 
------IQIiII4~--

C-ll 

Syntax 



Pascal Reference Manual 

"I expression I ~ ~ 
_ expressIon 

C.6 statements (see ~ter 6) 

simple-statement 1-----,.-

J8iJeJ .1 digit-sequence 1.....---.. 

si tie-statement . t t t t "';";;';";'~~'=";';;'~~or---eot aS$lgrmen -$ a emen 

goto-statement 1--------. 
assigYJ7elJt-stal.et1Jent \:l variable-reference p 

function-identifier II' G:)---.J expressIon ~ 

procetiIJ'e-statement 

----tti procedure-identifier \:j actual-parameter-llst ~ to 

goto-statement .@-+Ilabel ~ 

C-12 

syntax 



Pascal Reference fv1a7UaJ Syntax 

wIth-statement 1-------..... 

ctJl77fJOlll7d-statement 

---4{ begin ) (~I statement I ) ~~ 
-. ---.0..---

iF-statement 

caS8-sl.atement 

otherwise-clause 

..:::a:.::.IJJe..=:..::.::.~1..=~~-d=.;;.;'8tISe __ --r.O--< Otherwise)-+f statement I 

C-13 



Pascal Reference fYlInJa/ 

re. I£Jtitive-statement 

J-ep8al-staternenl 

whlle-statement 

for-statement 

-+C repeat >c sta~ expressIon ~ 

wnlle-statement 

~ expression ~ statement ~ 

far=statement 

control-variable ini tial-value 

)------'l ..... final-value 

Cl.YJtJvl-v8Ji8ble .. I variable-identifier ~ 

Initial-vallie "I expression ~ 

final-vallie -I expressIon ~ 

wil/J-statement 

C-14 

syntat( 



Pascal ReFerence f\1afUJl 

C.7 ProceOJres CIld Ft.retlms (see Chapter 7) 

p.n.1cetl.ue-tlet..~aJ;gtJlYJ 

--.f procedure-heading ~ procedure-body ~ 

pJ"l1Cet1l.0-e-lJealting 

-+(pmcerure H identifier I \. or. 
'+t formal-parameter-llst t-' 

function-declaration 

--.f function-heading ~ function-bOdy ~ 

funcUon-boc; 

result-type 

formal-parameter-list 

resuJt-( ordlnal-type-identifler 

real-type-identifier 1---..... 1 

polnter-type-ldentifler 1----------.. 

C-15 



Pascal Ref'e.rence "'1aVaJ 

Fom18l-pa.rameter-}ist 
--------~ 

l-...-___ ..... parameter-(leClaratlon 1--..."..._.....,.... ..... 

procedure-heading 

function-heading 1----

..c:::::::..::::.:.:~:......::::=::.=.::::.:;;.::---.. Identifier-Ust 

C.8 Progrcms (see ~ter 8) 

p.mgn:1I11 

type-IdentifIer 

--I prognm-heading f-+G) ~ k5f .. ~ 
uses-clause ; 

Plvgram-lJeadlng 

-t{prognm)+t-ld-e-nU-fl-er-, ~ L r.:..... r II-

~ program-parameters ~ 

proq.ran-J)8I"8I!Jete.rs "I IdentifIer-lIst r---+ 

uses-c/81.1Se .~ identifier-list r---+ 

0-16 



Pascal Reference Manual syntax 

c..9 Ullts (see ~ter 9) 

~:z.::.;l}ar=--lJI7.='i=-t -~ unit-heading 

interface-part implementation-part 

inteffBCe-

uses-clause 

constant-declaration-part 

type-declaration-part 

varIable-declaratlon-part 

procedUre-and-function-deClaration-part 

Iqllementatim 

constant -declaration-part 

type-declaration-part 

variable-declaration-part 

procedUre-and-functlon-deClaratlon-part 

C-17 





Appendix D 
Floating-Point Arithmetic 

0.1 Introduction ••••••••••••••••••••••••••••••.•••••••••••••••••••••••••••••••.•••••••••.••••••••••• 0-1 

D.2 RWldlrlg of Real Rest.dts .................................................................. 0-1 

0.3 ~y Of Arlttl1leUc ~raUot'lS ••••••••••••••••••••••••.•••••••••••••••••••••••••••• 0-2 

DA llJerflow ald DIvision by zero: Inflnlte values ....................................... 0-2 

0.5 1rlVal1d ~ratlons: ~ Yalues ........................................................... 0-3 

0.6 In~r c:ot'1Verslm ()Ierflow .............................................................. 0-4 

0.7 Text-{)J1erl1:e(j I/oCOI1Verstot'lS ........................................................... 0-4 

0.8 FRIB InteIfCiCe •••••••••••••••••••••.••••••••••••••••••••.•••••••••••••.••••.•••••••••.•••••.• 0-4 

0.9 Bibliography ............................................................................ 00... ••• 0-20 





Floating-Point Arithnetic 

nl IntnxlJction 
Floating-point arithmetic in Pascal on the lisa (aU arittmetic involving real 
values) conforms to most of the single-precision aspects of the IEEE's Proposed 
St8l7da.rd for Bil78FY Floating-Point Arithmetic (Draft 10.0 of IEEE Task P754~ 

IEEE Standard arithmetic provides better accuracy than many other floaUng­
point implementations. It also reduces the problems of overflow, ISlderflow, 
Uml ted precision, and Invalid operations by providing useful ways of dealing 
with them. 

The FPUB library unit (in the file IOSFPlIB) contains the routines that perform 
floating-point arithmetic (including all the transcendental functions and the 
sqrt fl.llCtion~ FPlIB must be linked into any program that uses floating-point 
arithmetic; however, it is not necessary to explicitly refer to FPLIB in a uses 
clause unless the program calls the specialized Sl4JPOrt procedures and 
functions declared in the interface of FPLla 

This manual assumes that you do not explicitly use the FPLIB lI1it, and that 
therefore only the default options of IEEE arithmetic are applicable. 

~ a general rule, you can write Lisa Pascal programs that use floating-point 
arittmetic without worrying about the differences between IEEE StC:l1dard 
arithmetic and other floating-point implementations.. 

The following points apply if your program writes out floating-point numbers as 
textual representations (via write or writeln~ 

• Anything in the output that looks like a I"U1'lber will be correct (and 
possibly more accurate than under other implementations~ 

• If your output contains a string of two or more pluses or minuses, this 
indicates a value of 110, resulting from division by zero or some other 
operation that caused a floating-point overflow. 

• If your output contains the string "NaN" (meSling Not a ~r), this 
indicates the result of some invalid operation that would probably have 
caused a program halt or a wrong output l.I1der other implementations. 
Note that any real value in text output that does not include the string 
"NaI\r is guarSlteed not to have been affected by any invalid operation. 

0..2 ROU'lding of Real Results 
When a real result roost be fOlJ1ded, It Is always rounded to the nearest 
representable real value. If the lI'lrOtl1ded result is exactly halfway between 
two representable real values, it is rOtl1ded to the value that has a zero in the 
least siglificant digit of its binary fraction (the "even" value~ 

D-1 



Floating-Point Ari/lmetic 

0.3 Accuracy of Arlttmetic qJerations 
The arithmetic operations +, -, *, I, ro.n1, tn.Ilc, and sqrt are accurate to 
within half a tnit in the last bit. Remainders are computed without roundIng 
error. 

0.4 fNerflow B'1d Divisioo by zero: InfinIte values 
The result of floating-point overflow is either m or -00. These are values of 
type real that can be used in further calculations and follow the mathematical 
conventions: for example, a finite number divided by 00 yields zero. 
Dividing a finite non-zero value by zero also yields m or -00 (in floating-point 
arithmetic~ 

Infinite values have textual representations that can be read by read or readln 
or written out by write or writeln 

Tables 0-1 and 0-2 below shOw the results of arIthmetic operatlons on 
infinities. Note that any operation involving a NaN as an operand produces a 
Naf\J as the resull 

Table 0-1 
Results Of Palltloo CIld SlOtractim m infinities 

Left 
t:per8l1d -00 

-co -co 

finite + -m 

+m NaJ-..J 
-00 NaN 

finite - +1:10 

+00 +co 

t Result is an 10flol ty If the operation overflows. 

0-2 

Right 
t:peJ-.:¥Jt.1 

fInite 
-co 

finitet 
+m 

-00 

finitet 
+co 

+00 

NaN 
+m 

+m 

-00 

-CD 

NaN 



Pascal Reference f18nu8l Floating-Point Arithmetic 

Table 0-2 
Results of M.IlUpllcaUon ald Division on Inftnltles 

LeFt 
t:per8l7d 

:to 
flntte !If 

:tGO 

:to 
finite I 

:tGO 

:to 

:to 
:to 

Na\J 

NaN 
:too 
;tOO 

Rigl7t 
t:pera7d 

finite 

:to 
finitef 

;tGO 

:to 
finitef 

:too 

t Result Is an Inflnit y 1 f the operation overflows. 

:too 

NaN 
:too 
;tGO 

:to 
:to 

NaN 

NJte: Sign of result is determined by the usual mathematical rules. 

05 Invalid qEratiOlS: NaN Values 
An invalid operation (such as dividing zero by zero) does not cause a halt. 
Instead it returns a special diagnostic value, and execution continues. The 
result of an invalid operation is called a NaN which stands for "Not a 
f'JurrtJer . ,. 

A NaN resulting from an invalid operation is a propagating NaIV This means 
that if the NaN is used as an operand in another operation, the result of the 
operation wlll be the same NaI\I. NaNs can be written out via wrlte or wrlteln 
and read via read or readIn; the textual representation is "NaN" (optionally 
followed by a quoted string). 
The follOwing operations are invalid and return a NaN value: 

• ClO-CIQ or CIQ+(-ClQ) 

• 0 .. :too 

• OlD 

• The sin, cos, In, and sqrt functions, when the arguments are inappropriate. 
(see the function descriptions in secUons 11.4.4, 11.4.5, 11.4.7, and 11.4.8, 
respectively.) 

0-3 



Pascal Reference f<1anu81 Floating-Point Arltl1metic 

D.6 Integer conversion OIeIflow 
Integer conversion overflow can occur in t.n.nl or IlUld (see Chapter 11) if the 
actual-parameter exceedS the bOlJn(1s of the predeClared type Integer. The 
result returned Is unspecified. 

0.7 Text-otented 110 C'a1VerSltllS 
The read, readln, write, and writeln procedUres require the conversion of 
numbers from deCimal to binary on input and from binary to decimal on output. 
The error in these convenlons Is less than 1 unit of the result's least 
significant Olglt. (In the past, base conversions have rarely been oone 
accurately In a way that permits Simple error boUl'lOs to be put on the results.) 
Real values appear as oharacter strings In two different contexts: as source 
cOde processed by the compUer (real constants), and In text flies written aoo 
read by Pascal programs. The Signed-number syntax of Chapter 1 applies In 
both cases. HOwever, the compiler does not accept Infinities and NaNs. 
For read and write, +00 is represented by a string of at least two plus signs, 
and -00 by a string of at least two minus sIgns. NaNs are representeO by the 
Characters "NaN", with an optional leading sign, and an optional trall1ng quoted 
strIng of characters; an example is 

-NaN'12:34 ' 

The Character string is sometimes used to provide diagnostic data 
0.8 FPLIB interfaCe 

II'1'LEt'ENT A 11CN t'«JTE 

The IEEE numerics are a proposed standard, and this Implementation 
may be redesigned for future releases. 

0-4 



Pascal Reference Manual Floating-PoInt Arlttmetlc 

UNIT fplib ; INTRINSIC ; { Use this header for intrinsic 
library. } 

{ FPlIB floating point library version AS3, 29 March 1983 }. 

{ COpyright 1983, Apple computer Inc. } 

:= true } { True to compile for OS, false for 
Monitor. } 

{$setc fp_testversion := false } 
{$setc fp_compilerSUbset := false } 

{ True if special test library. } 
{ True to compile special SUbset 

INTERFACE 

library for Pascal compiler, 
false to compile full library. } 

{---------------------------------------------------------------------} 
CONST 

{ CONSTANTS to parameterize floating point types } 

maxfpstring = 80; { Declared length of floating point string type. } 
maxfpreg ... 1 ; { Floating point registers are nuntlered O •• maxfpreg } 

{ CONSTANTS for random nunber generation } 

randrOOdulus = 2147483647 ; { Prime roodUlus for random nunDar generator. } 

{ CONSTANTS for NaN Error COdes } 

nansqrt 
nanadd 
nanint 
nandiv 
nantrap 
nanunord 
nanproj 
nannul 
nanrem 
nanascout 
nanprotOOte 
nanresult 
nanascbin 
nanascnan 
nanascin 
nan integer 

1; { Invalid Square Root such as sqrt(-1). } 
= 2; { Invalid Addition such as +INF - +INF. } 
= 3; { Invalid conversion to Integer. } 
= 4; { Invalid divisIon sUCh as 0/0. } 
... S; { Trapping NaN encountered. } 
= 6; { Ordered COlJl)are of unordered quanti tIes. } 
- 7; { Invalid use of Infinity in Projective Mode. } 
= 8; { Invalid MultIply such as 0 * INF. } 
= 9; { Invalid Remainder or ModUlo such as x REM O. } 
= 10; { Invalid binary to ascii conversion parameter. } 
'" 11; { Atteq:>t to prOIOOte single denorm to doUble. } 
= 12; { Atte~t to convert nonnormal to single or double. } 
.. 17 ; { Atteq:>t to convert invalid ASCII string. } 
= 18; { AttelJl)t to convert NaN'invalid string'. } 
... 19; { Atteq:>t to oonvert unrepresentable ASCII string. } 
= 20; { AttelJl)t to convert NaN valued integer to floating } 

D-S 



Pascal Reference H8/7lI8J FloatIng-PoInt ArltlJmet/c 

nanzero 
nantrig 
nanlnvtrlg 
nanexp 
nanlog 
nanpower 
nanf 1 nan 
naninit 

= 21 ; { Attempt to create a NaN w1th zero significand. } 
= 33; { Invalid argument to trig routine. } 
= 34; { Invalid argument to inverse trig routine. } 
= 3S; { Invalid argument to bAx for constant b. } 
= 36; { Invalid argument to log routine. } 
= 37 ; { Invalid argument to xAi or xAy routine. } 
= 38; { Invalid argument to financial function. } 
• 2SS ; { uninitialized storage. } 

{---------------------------------------------------------------------} 
TYPE 

{ TYPES that are sUbranges } 

fp_regindex = 
nibble = 
fp_bedindex = 
fp_6bit = 
byt = 
bite = 

O •• maxfpreg ; 
O •• 15 ; 
O •• 27 ; 
O •• 63 ; 
O •• 2SS ; 
-128 .. +127 ; 

{ Index in floating pOint register array. } 
{ Hex "digit". } 
{ Index in bedstring type. } 
{ For six bit fields. } 
{ unsigned byte. } 
{ Signed byte. } 

{ TYPES that are packed arrays } 

fourbite = 
eightbite = 
tenbite = 

paCked array [0 .. 3] of b1te ; 
packed array [0 .. 7J of bite; 
packed array [0 .. 9] of b1te ; 

{ TYPES that represent numbers, inf1n1t1es, and NaNs } 

fp_b1te = 
fp_int64 = 
fp_double = 
fp_extended = 

b1te; 
eightbite ; 
eightbite ; 
tenbite ; 

{ 64 bit integer with -2A63 as NaN. } 
{ IEEE doUble precision floating point. } 
{ IEEE doUble extended floating point. } 

fp_register • packed record { Floating point register. } 
sign : b1te ; { 0 for posIt1ve, -128 for negative } 
tag: bite; { l=normal, 2=zero, 4=inf, 8=NaN, 16=nonnormal } 
exponent : integer ; 
fraction: eightbite; {actually significand } 
end ; 

fpJlCdstr1ng = packed array [fp_bed1ndex] of n1bble; { pacKed bed str1ng } 
fp_string = string[maxfpstringJ ; { String parameter. } 

0-6 



Pascal Reference Manual Floating-Point Arltl1metic 

fp_type = ( tfp_bite, tfp_integer, tfp_longint, tfp_int64, 
tfp_real, tfp_doUble, tfp_extended, tfp_register, 
tfp_bCdstring, tfp_strlng ); { Names for number types } 

{ TYPES that point } 

pfp_blte = ~ fp_blte ; 
pfp_integer = ... integer; 
pfp_longint = ~ longlnt ; 
pfp_int64 .. ... fp_int64 ; 
pfp_real = ~ real ; 
pfp_doUble = ... fp_dOUble ; 
pfp_extended = ~ fp_extended ; 
pfp_register.. ... fp_register ; 
pfPJIDdstrlng = ~ fp_bCdstrlng ; 
pfp_string = ~ fp_string ; 
fPJPolnter = ~ integer; { Free poInter to any type. } 
fp-procaddress= fpJlOinter; { Aotually ... procedUre with no argunents. } 

{ TYPES that provide non-numeric types for floating point use } 

xcpn = ( invop, overfl, underfl, divO, inxaot, ovtovfl, fp_xcpn6, fp_XDpn7); 
{ Floating point exceptions: 

invop .• inxact are the IEEE exceptions 
ctvovfl is for floating to integer conversion overflow 
fp_xopn6 and 7 are for future expansion } 

excepset = set of xcpn; { For handling all exceptions at once. } 

roundt ype = (rnear, rzero, rpos, rneg, rout) ; { Rounding rodes. } 

fp_cc = (equal, lesser, greater, unord) ; { Results of comparisons. } 

fp_kindtype = ( zero, nonnormal, norml, inf, NaN) ; { Floating operands. } 

fp_format = 
( fp_lisa fp_free.. fp_iroUnd.. fp_L fP_f.. fp_eL fp_e2.. fp_e3 .. 
fp_e4, fp_e ) ; 
{ Output formats for binary to ascii routines. } 

{ TVPES that provide IEEE arithmetic modes } 

rrode = rnear.. rneg ; 
closure = ( proj, affine ) ; 
denorm = (warning, normalizing) ; 
extprec = ( xprec, sprec, dprec ) ; 

0-7 

{ IEEE rounding modes. } 
{ IEEE infinity modes. } 
{ IEEE denormalized rodes. } 
{ IEEE rounding precision modes. } 



Pascal RefellJflCe Manual Floating-point Arlttmetlc 

{ TYPES that define floating point trapping } 

fp_traprecord = record { of informat1on for compos1te float1ng point trap } 
header : integer ; 

{ <0 for atomic float1ng point operation from F-line op cOde 
=0 for composite floating point operation 
>0 for atomic Pascal Real arithmetic operation } 

es : excepset; { Exceptions that occurred in this operation. } 
procname: pfp_str1ng; { procname" contains nane of procedUre} 
opt ypei, opt ype2, resul t type : fp _type; { Operand and Resul t types } 
opi, op2, result : fp.J)01nter; { Operand and Result po1nters } 
end ; 

pfp_traprecord • " fp_traprecord ; 

{ TVPES that define the FLOATING POINT CONTROL BLOCK~ FPCB_ } 

fp_statustype = packed record { Non-numeric floating point status } 
Cond1t100 : bite; { contains inva11d COde and fp_cc } 
excep: bi te; { Sticky exception-occurred bits for each xcpn } 
tlOOt1e: b1 te; { SCratch } 
texcep : bite; { Last-operation exception-occurred bits} 
fOOde: bl te; { B1 t for each IEEE IOOOe } 
trap: bite; { Trap-enabled bits for each xcpn. } 
lnstad : pfp_traprecord; { fp_traprecord or last F-11ne op code} 
end ; 

fp_regarray • array [fp_regindex) of fp_register ; 

fp_blocktype = record {Floating point status and numeric registers } 
status : fp_statustype ; 
f : fp_regarray; { FPCB_.BLOCK.F(iJ is "FPi" in cOI1I1lents. } 
end ; 

fpcb_type = packed record { Floatlng polnt control block. } 
case boolean of 
false : ( { current def1nlt1on } 

ptrapvector : array [xcpn] of fp ..,procaddress ; 
{ Pascal language floating polnt trap vector. } 

blOCk : fp_blOCktype ; 
) ; 

true: ({ obsolete definition for c~atlbility } 
trapvector : array [0 .. 7] of A long1nt; 
condition : bite ; 
excep : b1 te ; 
tnooe : bite; 
texcep : b1 te ; 

0-8 



Pascal Reference Manual 

mode : bite; 
trap : bite; 
instao : longint ; 
f : fp_regarray ; 

Floating-Point Adttmetlc 

urused : array [xcpn] of fp J)rocaadress ; 
) ; 

end ; 

p_fpcb_type = " fpcb_type ; 

{SifC not fp_testversion } 
{ TVPES for compatibility with previous releases } 

int16 = pacKed array [0 .. 1] of bite; int32 = fourblte ; Int64 = fp_lnt64 ; 
single • fourbite ; dOuble = fp_doUb1e ; extended = fp_extended ; 
fpregister = fp_register ; fpstring = fp_string ; condltloncOde = fp_cc ; 
fp6bit = fp_6bit ; fpregarray = fp_regarray ; fpKindtype = fp_Kindtype ; 
fpcbtype = fpcb_type ; pfpcbtype = P_fPCb_type ; 
{$endc } 

{---------------------------------------------------------------------} 
VAA { FLOATING POINT COOTRCl. BLOCK } 

FPCB_ : fpcb_type ; 

{$ifc not fp_compi1ersubset } 

{----------------------------------------------------------------------} 
{ MICROSEGMENT fpmsUb } { Internal assentlly language procedUres only. } 

{----------------------------------------------------------------------} 
{ MICROSEGMENT f32sUb } 

function f32_minus ( x : real ) : boolean ; {Sign(x)} 
function f32_integral ( x : real ) : boolean; {IS x integral? } 
function f32_fraction ( x : real ) : real; { Fraction part(x) } 
function f32_ilOQb (x: real ) : integer ; {Exponent(X)} 
function f32_sca1e ( x : real ; i : integer ) : real; { x * 2~i } 
function f32_Kind ( x : real) : fp_Kindtype ; 

{ Returns Zero, Norm1, lnf or NaN; NonNorma1 classifies as Norm1 } 

{$endc } 
function f32_fPCb: p_fPCb_type; { Returns iifPCB_ } 
{$ifC not fp_compi1ersubset } 

0-9 



Pascal Reference Manual Floating-Point Arlttmetlc 

{----------------------------------------------------------------------} 
{ HICROSEGMENT ux80sub } 

{ EXTENDED PRECISION ARITHMETIC } 

{ PROCEDURES for monadic zero address arithmetic } 

procedure fpneg; {FPO: = -FPO. } 
procedure fpabs; {FPO:= abs(FPO). } 
procedure fplnt; {FPO:= integral part of FPO } 
procedure fpsqrt; { FPO := sqrt(FPO) } 

{ PROCEDURES for dyadic zero address arithmetic } 

procedure fpadd; { FPO : = FPO + FPl } 
procedure fpsub; { FPO := FPO - FPl } 
procedure fpnul; { FPO : = FPO * FPl } 
prOCedure fpdiv; { FPO := FPO I FPl } 
procedure fprem; { FPO : = FPO rem FP1 } 
functIon fpcom: fp_cc; { Returns result of FPO compare FP1. } 

{ PROCEDURES for two address arithmetic } 

function fpints ( x : real ) : real ; 
function fpsqrts( x : real ) : real ; 
procedure fpnegd ( var x, z : fp_dOUble ); 
procedure fpabsd ( var X, z : fp_oouble ); 
procedure fpintd ( var X, z : fp_dOUble ); 
prOCedure fpsqrtd( var X, z : fp_dOUble ); 
procedure fpnegx ( var X, z : fp_extended ) ; 
procedure fpabsx ( var X, z : fp_extended ) ; 
procedure fpintx ( var X, z : fp_extended ) ; 
procedure fpsqrtx( var X, Z : fp_extended ) ; 

{ integral part of x } 
{ sqrt(x) } 
{ z := -x } 
{ Z := abs(x) } 
{ z := integral part of x } 
{ z := sqrt(x) } 
{ Z := -x } 
{ Z := abs(x) } 
{ z := integral part of x } 
{ Z := sqrt(x) } 

{ PROCEDURES for three address arithmetic } 

function fpaddS ( X, y : real ) : real; { Z := X + Y } 
function fpsUbs ( X, Y : real ): real; { Z := X - Y } 
function fpnulS ( X, y : real ): real; { Z := X * Y } 
function fpdlvs ( X, y : real ): real; { Z := x I y } 
function fprems ( X, y : real ): real; { Z : = x rem y } 
function fpcoms ( X, Y : real ): fp_cc ; 

procedure fpaddd ( var X, y, Z : fp_dOUble ); { Z := X + Y } 
procedure fpsubd ( var X, y, Z : fp_dOUble ); { Z := X - Y } 
procedure fpmuld ( var X, y, Z : fp_doUble ); { Z := X * Y } 

0-10 



Pascal RefeJ1Jf7CfJ Hanual Floating-Point Aritl1metic 

prOCedUre fpdivd ( var X, y" Z : fp_dOUble ); { Z := X / Y } 
procedUre fprend ( var x, y" Z : fp_doUble ); { Z : = x rem y } 
function fpComd ( var x, y : fp_dOUble ) : fp_cc ; 

prOCedure fpacldx ( var x, y" 
prOCedUre fpsUbx ( var X, y" 
procedUre fpnHx ( var x, y" 
procedUre fpcli vx { var x, y" 
procedUre fpremx ( var x, y" 
function fpcomx ( var X, y 

Z : fp_extendet1 
Z : fp_extencted 
Z : fp_extended 
Z : fp_extencled 
Z : fp_extended 

: fp_extended 

{ PROCEDURES for type conversion } 

{ PROCEDURES for FPO : & )( } 

procedUre WfOOvefp ( x : integer ) ; 
procedUre lroovefp ( x : longint ) ; 
procedUre slOOvefp ( x : real ) ; 
procedure dmovefp (var x : fp_doUble ); 
procedure XIOOvefp (var x : fp _extended ) ; 

{ PROCEDURES for FPl := )( } 

procedUre wmovefp1 ( x : integer ) ; 
procedUre lmovefp1 ( x : longlnt ) ; 
procedure smovefpl ( x : real ) ; 
procedUre dmovefpl ( var x : fp_OOUble ); 
procedUre XIOOvefp1 ( var x : fp_extended ) ; 

{ PROCEDURES for Z := FPO } 

function fpmovew 
function fpmovel 
function fpmoves 
procedure fpmoved 
procedUre fpmovex 

: integer ; 
: longint ; 
: real; 

( var z : fp_ooUble ) ; 
( var Z : fp_extended ) ; 

{ PROCEDURES for Z := X } 

) ; { Z := X ... Y } 
) ; { Z :& X - Y } 
) ; { Z := X * Y } 
) ; { Z :& X / Y } 
) ; { Z : = x rem y } 
) : fp_cc; 

function XIOOvew 
function dmovew 
function XIOOvel 
function dlOOvel 
function XIOOves 
function CImoves 
procedure wmoved 
procedUre lrooved 

( var x : fp _extended ) : integer ; 
( var x : fp_OOUOle ): integer ; 
( var x : fp_extended ) : longint ; 
( var x : fp_dOUble ): longint ; 
( var x : fp_extended ) : real ; 
( var x : fp_dOUble ): real ; 
( x : integer ; var Z : fp_double ) ; 
( X : longlnt ; var z : fp_doUble ) ; 

0-11 



Pascal Reference Mantlal Floating-PoInt Arlttmetlc 

procedUre smoved 
procedure xmoved 
procedure wmovex 
procedure lmovex 
procedure smovex 
procedUre dmovex 

( X : real , var z : fp_doUble ) ; 
( var x : fp_extended ; var z : fp_dOUble ) ; 
( X : integer; var z : fp_extended ) ; 
( X : longlnt; var z : fp_extended ) ; 
( X : real ; var z : fp_extended ) ; 
( var x : fp_CIOUble ; var z : fp_extended ) ; 

procedure cmovefp (var b : fp_bcdstring ) ; 
prOCedure 164neg ( var x, z : fp_lnt64 ) ; { z := -x } 
function x80_integral( var x : fp_extended ) : boolean ; 
procedUre xBO J)real< (var X, intx, fracx : fp_extended ; 

var izero, fzero : boolean ) ; 
{Senclc } 
function x80_fpcb: p_fpcb_type; { Returns iDFPCB_ } 

{----------------------------------------------------------------------} 
{ HICROSEGHENT ufpm } 

{ PROCEDURES for binary to ascii conversion } 

procedure fp_zero_ascii 
( sign : boolean; before, after : integer; format : fp_format ; 
var s : fp_string ; var error : boolean ) ; 

procedure fp_inf _ascll (Slgn: bOolean; "ldth : integer ; 
var s : fp_string ; var error : boolean) ; 

{ PROCEDURES for exceptions } 

function getxcpn ( e : xcpn ) : bOOlean ; 
prOCedure setxcpn ( e : xcpn ; b : boolean ) ; 
procedUre getexcepset ( var es : excepset ) ; 
procedure setexcepset ( es : excepset ) ; 
procedure gettexcepset ( var es : excepset ) ; 
procedure settexcepset ( es : excepset ) ; 
procedUre clrexcepset ; 

{ PROCEDURES for trap-enabled bits in FPCB_.BLOCK.STATUS.TRAP } 

procedure gettrapset ( var es : excepset ) ; 
procedure clrtrapset; { D1sables all traps. } 

{ PROCEDURES for floating point trapping } 

procedure fPJPOstoperation ( r : fp_traprecord ) ; 
{ Imitates effect of atomic floating point operation by using r.es 
as the set of exceptions generated by a composite operation } 

0-12 



Pascal Reference /'1antJsl 

procedUre CheCktrap ( r : fp_traprecord ) ; 
{Sife not fp_oompilerSUbset } 

Floating-PoInt ArltlJmetic 

{----------------------------------------------------------------------} 
{ MI~Gt1ENT uXSO } 

{ PROCEDURES that tell abOUt FPO } 

function fpminus : bOOlean ; { FPO has sign bit on? } 
fl.l'lction fpKind : fp_Kindtype; { Returns type Of argunent 1n FPO. } 

{ PROCEDURES tnat tell about extended X } 

function fpminusx (var x : fp_extended ) : bOOlean; { sign b1 t? } 
function fpKindx ( var x : fp_extendecl ) : fp_Kinotype; { Kind? } 

procedUre copysign ( var X, y, Z : fp_extended ) ; 
{ z gets y w1th s1gn Of x. } 

procedUre infinity ( var z : fp_extencJed ) ; { z := +INF. } 
procedUre errornan (error: byt ; var z : fp_extended ) ; 

{ Creates a NaN in z with error code set, other fields 
zero, ana s1gnals Invop xcpn. } 

procedUre createna1 ( trap: bOOlea1 ; extension: fp_6bit ; 
error, index: byt ; var z : fp_extended ) ; 
{ Creates a NaN in z with 23 significant bits defined. } 

procedUre checKnan (var x, z : fp_extended ) ; 
{ z := X bUt if x is a trapping NaN, the trapping bit of z is 
turned off and the Inval1d flag is set. } 

procedUre NaN-PSlts ( var x : fp_extendeO ; 
var trap : boolean ; var extens10n : fp_6b1 t ; 
var error, index, incJeX2 : byt ; var lowpart : fp .J)rocaddress ) ; 
{ Splits up x into i ts ~t parts. lOll/part gets the four 
least significant bytes. } 

prOCedUre ctIOOsenan ( var x, y, Z : fp_extended ) ; 
{ x or y RUst be a NaN. z is set to WhicheVer has the greater 
Error field. z 1s non trapp1ng. If e1 ther x or y 1s trapp1ng, 
the Invalid flag is set. } 

{ PROCEDURES that act on t'U1tlers bUt do not use ari thnetic } 

procedUre fpswap; {ExChange FPO and FP1 } 

procedure blocKprelude (var fpb : fp_blocktype ) ; 
prOCedUre bloCkpostlUde ( var fpb : fp_bloCktype ; var trapcom1ng : boolean); 

{----------------------------------------------------------------------} 

D-13 



Pascal Reference Manual Floating-Point Arithmetic 

{ HICROSEGMENT ux80elem } 

{ PROCEDURES that tell about extended X } 

function ilogb ( var x : fp _extended ) : integer; { exponent of x } 

{ PROCEDURES that produce extended Z } 

procedUre fpscalex { z := X * 2"i } 
( var x : fp_extended ; 1 : integer ; var z : fp_extended ) ; 

procedUre scalb { z : = X * 2"y for integral y } 
( var x., y" Z : fp_extended ) ; 

{ elementary function PROCEDURES that require in1telem } 

procedUre exp2 (var x., z : fp_extended ) ; { z : = 2"'x } 
procedUre expe (var x.. Z : fp_extended ) ; { z : = e"x } 
procedUre exp21 ( var x.. z : fp_extended ) ; { z : = 2"X -1 } 

prOCedure log2 (var x, z : fp_extended ) ; { z := log(x )/log(2) } 
procedUre loge (var x.. Z : fp_extended ) ; { z := log(X )/109(e) } 
procedUre log10 ( var x., z : fp_extended ) ; { z := loge x )/log(10) } 
procedUre log12 ( var X, z ; fp_extended ) ; { z := log2(1+X ) } 

procedUre xtoy ( var x., y" Z : fp_extended ) ; { z : = x"y } 

procedUre cQRllOUnd ( var r, p, Z : fp_extended ) ; { z :- (l+r)"p } 
procedure annu1ty ( var r" p" Z : fp_extended ) ; { z := (1 - (l+r)"'-p)/r } 

procedure postdyad1c( nane : fp_str1ng ; var x., y" Z : fp_extended ) ; 
procedUre xpwry ( var x : fp_extended ; y : integer; var z : fp_extended); 
procedure xexpy ( var x., y " Z : fp _extended ) ; 

{ HICROSEGMENT ux80tr1g } 

procedure p1value ( var z : fp_extended ) ; { z := pi } 
procedUre sinx ( var x.. Z : fp_extended ); { Z : = sin(x) } 
procedUre cosx ( var x, Z : fp _extended ) ; 
procedUre tanx ( var x.. z : fp _extended ) ; 
procecture as1n ( var X, Z : fp_extencJed ) ; { Z : = arcs1n(x) } 
procedure acos ( var X, z : fp _extended ) ; 
prOcedUre atan ( var x.. z : fp _extended ) ; 
{$endc} 

{----------------------------------------------------------------------} 

0-14 



Pascal Reference HanuaJ Floating-Point Arithmetic 

{ MICROSEGMENT Uf32 } 

functlon f32.,.plirten(n :lnteger): real; { Does pwrten(n). } 
function f32_exp (x: real ) : real ; 
function f32_ln (x: real ) : real ; 
function f32_sin (x: real) : real; 
functlon f32_cos (x: real ) : real ; 
function f32_atan ( x : real ) : real ; 
proceaure f32_trap; { Floating Point Trapping for Pascal Real Arithfretic } 

{----------------------------------------------------------------------} 
{ MICROSEGMENT f32in } 

{ simple PROCEDURES to convert ascli to bInary } 

functIon p_f32 ( var s : fp_string ) : real ; 
function f32_r _r ( var f : text ) : real; {Does read ( f, real) } 

{ general PROCEDURES to convert ascii to binary } 

procedure reatCf32 ( var Infi1e : text ; var Readchars : fp_string ; 
var Z : real ; var Error : boolean ) ; { Z, Readchars get input } 

procedure a$Oi1real 
( Fileio : bOOlean; var lnfile : text ; 
var S :fp_string ; First, Last : integer; var Next : integer; 
var Z : real ; var Error : bOOlean ) ; 

{----------------------------------------------------------------------} 
{ MICROSEGMENT f320ut } 

{simple PROCEDURES to convert binary to ascii } 

procedure f32_w_e ( var f : text; x : real; width : integer) ; 
{ Does lirlte(f,x:width) } 

procedure f32_w_f ( var f : text; x : real; width, after : integer) ; 
{ Does wrlte(f,x:wldth:after) } 

{$ifC not fp_compi1ersUbset } 

{ general PROCEDURES to convert binary to ascii } 

procedure f32_nan_ascii (x: real ; width : integer ; 
var s : fp_string ; var error : bOOlean ) ; 

prOCedure f32_f _ascii ( x : real; beforepoint : boolean; after integer; 
var s : fp_str1ng ; var error : boolean ) ; 

0-15 



P8SC8I Refe.rence /'1a7uaJ Floating-Point AdtlYnetic 

procedUre f32_e_ascii ( x : real; before, after, ew : integer; 
var s : fp_strlng ; var error: boolean) ; 

{----------------------------------------------------------------------} 
{ MlCROSEGMENT XSOin } 

{ general PROCEDURES to oonvert ascii to binary } 

procedure pmovefp ( var S : fp_string ; First, Last : integer; 
var Next : 1nteger ; var Error : boolean) ; { FPO := S } 

procedUre asciimovex ( Filei0 : boolean ; var Inf1le : text ; 
var S : fp_string ; First, Last : integer; var Next : integer; 
var x : fp_extencJed ; var Error : bOOlean) ; 

{----------------------------------------------------------------------} 
{ MlCROSEGMENT x800ut } 

{ general PROCEDURES to convert binary to ascii } 

orocedure x80 nan ascii (var x : fo extended! width 1nteger; 
. var s -: fp_string"; var error -: ooolean) ; 
prOCedure X8o_1_asc11 (var x : fp_extended ; 

var s : fp_string ; var error : boolean) ; 
procedure x8o_ir_ascii (var x : fp_extended ; 

var s : fp_string ; var error : ooolean ) ; 
procedure x80_f _asc11 (var x : fp_extended ; befOrepo1nt : boolean ; 

after : integer ; 
var s : fp_string ; var error : boolean) ; 

procedUre x80_e_ascii (var x : fp_extended ; before, after, ew : integer ; 
var s : fp_string ; var error : ooolean ) ; 

procedUre X80_free_ascii ( var x : fp_extended ; 
width, maxsig : integer; format : fp_format ; 
var s : fp string ; var error : boolean ) ; 

procedUre xso_asci1 ( var x : fp_extended ; 
Width, Before, After : integer ; Format : fp_Format ; 
var S : fp_string ; var Error : boolean) ; 

prOCedure x_eform ( var x : fp_extended ; n : integer; 
var sigma : integer ; var s : fp _string ; var e : integer ) ; 

procedUre x_iform ( var x : fp_extended ; 
var sigma : integer ; var s : fp _string ; var e : integer ) ; 

{----------------------------------------------------------------------} 

0-16 



Pascal Reference ~ Floating-PoInt ArIthmetic 

{ MICROSEGMENT fp11b2 } 

{ PROCEDl.f£S that act on nuntlers bUt dO not use ar1 ttmet1c } 

procedUre roovefp ( var x : fp_reg1ster ) ; { FPO : = X } 
procedUre roovefpl( var x : fp_reg1ster ) ; { FPI :- x } 
procedUre fproove ( var z : fp_reg1ster ) ; { Z : = FPO } 
procedure fplroove( var z : fp_register ) ; { z : = FPI } 

{ PROCEDURES for 64 bit integers } 

procedure i64abs ( var x" z : fp_int64 ) ; { Z : = abs(x) } 
procedUre 164mfp (var x : fp_lnt64 ) ; 
procedure i64mfpl (var x : fp_int64 ) ; 
prOCedUre fpmove164 ( var z : fp_1nt64) ; 

{ PROCEDURES that prOdUce extended Z } 

procedUre 10gb ( var X, Z : fp_extended ) ; { Z : = exponent(x). } 
procedUre nextafter ( var x" y, Z : fp_extended ) ; 

{ z gets the next number from x in the direct10n y, 
observing current rounding precision 1OOde. } 

{ elementary function PROCEDURES that require initelem } 

procedUre evalue( var Z: fp_extended ) ; { z :- e } 
prOCedure xtoi { z := x~1 } 

( var x : fp_extended; i : integer; var z : fp_extended ) ; 
prOCedure expel ( var X, z : fp_extended ) ; { z := expe(x)-l } 
procedUre log Ie ( var x" z : fp_extended ) ; { z : = loge ( 1 +X ) } 
procedUre s1ntlx ( var X, z : fp_extended ) ; { z : = sinh(x) } 
procedUre coShx ( var X, z : fp_extended ) ; { z := COSh(x) } 
procedUre tanhx ( var X, z : fp_extended ) ; { z : = tanh(x) } 
prOCedure abs2x ( var x" y, Z : fp_extended ) ; { Z := abs(x+iy) } 
prOCedUre atan2x( var x" y, Z : fp_extended ) ; { z : = atan(Xly) } 

{ s1mple PROCEDURES to convert asc1i to b1nary } 

prOCedUre pmoved (var s : fp_str1ng ; var x : fp_doUble ); 
procedUre proovex (var s : fp_string ; var x : fp_extencled ) ; 

{ simple PROCEDURES to convert binary X to ascii S 1n fp_l1sa format } 
{ comments indicate logical length Of S. } 

prOCedUre dIOOvep (var x : fp_dOuble ; var s : fp_str1ng ) ; { 24} 
procedUre xmovep (var x : fp _extended; var s : fp _string ) ; { 27} 

0-17 



Pascai Refenmce Manual Floating-Point Arltn/netlc 

{ PROCEDURES for use by Basic and other language processors } 

function next random ( lastrandom : longint ) : long1nt ; 
(* Returns randOm longint with 1 <. nextrandom <. randmOdUlus *) 

prOCedUre xBO_maXform ( var X : fp_extended ; 
var sigma : integer; var s : fp_str1ng ; var e : integer ) ; 

procedure x8o_eform (var x : fp_extended ; 
var sigma : integer ; var s : fp _string ; var e : integer ) ; 

{ PROCEDURES for exceptions } 

procedUre excepname ( e : xcpn ; var name : fp_str1ng ) ; 
{ Returns exception name: after excepname( invop, name ), 

name = I Invop I } 

{Sendc } 

{ PROCEDURES to get and set IEEE arithmetic modes } 

function getrOUnd : rmode ; 
procedUre setround ( x : rfOOde ) ; 
{SifC not fp_comp11ersuoset } 
function getclOS : closure ; 
procedure setclos ( x ! cln~tJre ) .= 
function getdnOrm: denorm ; 
procedUre setdnorm ( x : denorm ) ; 
function getprec : extprec ; 
procedure setprec ( x : extprec ) ; 

{ PROCEDURES for trap-enabled b1ts 1n FPCB_oBLOCICSTATUS. TRAP } 

funct10n getnal t ( e : xcpn ) : boolean ; 
procedUre setnal t ( e : xcpn ; b : boolean ) ; 
procedUre settrapset ( es : excepset ) ; 

{ PROCEDURES for Pascal trap nandlers in FPCB_oPTRAPVECTOR } 

funct10n gettrap ( e : xcpn ) : fp-procaddress; { FPCB_.ptrapvector[e] } 
procedure settrap ( e : xcpn; f : fp"'prOCaddress ) ; 

{ FPCB_.ptrapvector(e] := f } 

{$endC } 

{----------------------------------------------------------------------} 

0-18 



Pascal Reference HantJaI Floating-Point Aritlmetic 

{ MICROSEGHENT ulnitfp } 

{ FLOATING POINT INITIALIZATION } 

procedUre initfp ; {Initialize the floating point control block FPCB_. } 
{$ifc not fp_compilersUbset } 
prOCedure initfptrap; {Initialize maximal floating point trapping. } 
procedure initelem ; { Initialize FPCB_ and elementary functions. } 

{-----------------------------------------------------------------------} 
{ PROCEDURES that are noops, used to load segments } 

procedure ldfpnOOes; { in segrrent fptOOdes } 
procedUre ldf32 ; { in segment ldf32 } 
procedure ldX80 ; { in segment xeo } 
prOCedUre IdX8Delem; { in segment x80elem } 

{----------------------------------------------------------------------} 
{$endc } 

0-19 



Pascal Reference f\1anUaJ FloaUng-Point Arlthmetio 

0.9 BIblI~y 
The following arUcles contain detalled information and discussion of the 
proposed IEEE floating-point standard. (ArtiCles are I1sted In order of 
Importance.) 

• itA Proposed Standard for Binary Floating-point Arithmetic", IEEE 
COtnptIter, Vol. 14, No.3, March 1981. 

• coonen, J.: "An Implementation Guide to a Proposed Standard for 
Floatlng-polnt Arithmetic, IEEE CtJrnpt/ter, Vol. 13, No. 1, January 1980. 

• ACM SIGNlJfV1 Newsletter, special issue devoted to the proposed IEEE 
floating-point standard, OJtober 1979. 

0-20 



Appendix E 
QuickDraw 

E.1 MDJt lllis ~ ...... _ .. _ .... _ ......... _ ......... _ .............. _ ....... ______ . ___ . ___ . E-1 

E.2 IItJolIt QJickDraw .••••••••. _ .•••••.•.•••...••.. _ ................................. _ ••...••••• _ E-2 

E.2.1 How To Use QuickDraw ........................................................... E-3 
E.2.2 QuickDraw Data Types ........................................................... E-4 

E.3 TIle I'1att1eITlatlcal F OlI'ldatioo of QJickDraw •••• ••••.. ....•. •••..•• •...•.•. •••••• ••• E-4 

E.3.1 The Coordinate Plane ............................................................. E-4 
E.3.2 Points .................................................................................. E-S 
E.3.3 Rectangles................... ........ .... ........... .. . .. . ..... . .. .. .... ........ ..... E-6 
E.3.4 RegIons ................................................................................ E-7 

E.4 Grapt1ic Entities .•••..•.....•.....•.•.....•.•.....•.•.•.•..••..•.•••••.••••....•••....••....•. E-9 

E.4.1 The 8i t Image ....•....•.•••.............•...•...•..•.•.............•....•.........•.. E-9 
E.4.2 The 81 tmap .......................................................................... E -11 
E.4.3 Patterns .............................................................................. E -13 
E.4.4 Cursors ............................................................................... E-13 

E5 Tlle DrawlrYJ Envirorrnet1t: GrafPort ...•..•....•........•...••.••......•........•••... E -15 

E.5.1 Pen Characteristics ............................................................... E -18 
E.S.2 Text Characteristics ............................................................. E-20 

E.6 QxJrdinates in GrafPoIts ........................................................ _ ........ E-22 

E.7 Gieneral DisctJssion of Drawirlg .......................................................... E-24 

E.7.1 Transfer Modes ..................................................................... E-26 
E. 7.2 Drawing in Color ................................................................... E -28 

E.8 Pictl.lIeS CI1CI Pol~ ...................................................................... E-28 

E.8.1 PIctures ............................................................................... E-29 
E.8.2 Polygons .............................................................................. E - 30 

E. 9 QJickDraw Routines •••• ow ................................................................. E - 31 

E.9.1 GrafPort Routines ................................................................. E - 32 
E.9.2 Cursor-Handling Routines ...................................................... E-36 
E.9.3 Pen and Une-Drawing Routines .............................................. E - 37 
E. 9.4 Text-Drawing Routines ......................................................... E -40 
E.9.S Drawing in Color ................................................................... E -43 



Pascal Reference ,1vf8nl.l8} QuickDraw 

E.9.6 Calculations with Rectangles ................................................. E-43 
E. 9. 7 Graphic ~erations on Rectangles ............................................ E-46 
E.9.8 Graphic ~erations on OVals .................................................... E -47 
E.9.9 Graphic ~erations on Rounded-Corner Rectangles .................... E-47 
E.9.10 Graphic ~rations on Arcs and Wedges .................................... E-49 
E.9.II Calculations with Regions ...................................................... E-SI 
E.9.12 Graphic q:>erations on Regions ................................................ E-SS 
E.9.I3 Bit Transfer~erations .......................................................... E-56 
E.9.14 Pictures .............................................................................. E-SB 
E.9.1S Calculations with Polygons ..................................................... E-59 
E.9.16 Graphic qJerations on Polygons ............................................... E -61 
E.9.I7 Calculations with Points ........................................................ E-62 
E.9.18 Miscellaneous Utilities .......................................................... E-64 

E.I0 OJstcmizing QujckDra'w flleratioos ................................................... E-67 

E.ll Using QuickDraw from Assembly language ......................................... E-7l 

E.I1.I Constants ............................................................................ E-7I 
E.ll.2 Data Types .......................................................................... E-71 
E.11.3 Global Variables ................................................................... E -73 
E.l1.4 Procedures and Functions ....................................................... E -73 

E.12 Graf3[): Three-Dimensional Graphics ................................................ E-75 

E.12.1 How Graf3D is Related to QuickDraw ....................................... E-75 
E.12.2 Features of Graf3D ............................................................... E -75 
E.12.3 Graf3D Data Types ................................................................ E -76 
E.12.4 Graf30 Procedures and Functions ............................................ E -77 

E.13 G:ltrickDraw Interface •.•........•.....•.•.••.....•..•...•.•..•...•••.•...•............•...•. E-80 

E.13.1 Graf3D Interface .................................................................. E-89 

E.14 QJJckDra'w saTlJ)le Progra'ns ............................................................ E-91 

E.14.1 QDSarnple ........................................................................... E -91 
E.14.2 Boxes ................................................................................ E-I01 

E.15 ~ •••••...•.••••..•.•...••••.•.....•.....•..•..••.••....•.•...•.•............•...•... E-I06 

E.16 Glossary ....•.•...••.......•.....................•.......•.......•.•.•.•................•.•... E-I08 



QuickDraw 

E.l AbOUt TIlls AppendIx 
TIlis appendix describes QuickDraw, a set of graphics procedUres, functions, 
and data types tnat allows a Pascal or assembly-language programmer of Lisa 
to perform highly complex graphic operations very easUy and very quickly. It 
covers the graphic concepts behind QuiCkDraw" as well as the technical 
details of the data types, procedUres, and functions you will use In your 
programs. 
We assume tnat you are famUiar with the Usa WorkshOp Manager, Usa Pascal, 
and the Usa ~rat1ng System's memory management This graphics package 
Is for programmers, not end users. AlthOUgh QulckDraw may be used from 
either Pascal or assembly language, all examples are gIven in their Pascal 
form, to be clear, concise, and more intuitive; Section E.11 describes the 
detaIls Of me aSSembly-language Interface to QulckDraw. 
The appendix begins with an introdUction to QulCkDraw and what you can do 
with It (section E.2~ It then steps back a llttle and looKs at the mathemat­
ical concepts that form the foundation for QulckDraw: coordinate planes, 
points, and rectangles (section E.3~ O1Ce you Understand these concepts, read 
on to section E.4, which describes the graphic entities based on them--how 
the mathematical world of planes and rectangles is translated into the 
physical phenomena of Ught and shadOw. 
Then comes some discussion of hOw to use several graphiCS ports (Section E.6), 
a summary of the basic drawIng process (Section E.7)., and a discussIon of two 
more parts of QuickDraw, pictures and polygons (section E.8~ 
Next, In Section E.9, there's a detailed description of all QuickDraw proce­
dUres and functions, tnelr parameters, calUng protocol, effects, side effects, 
and so on--a11 the technical information you'll need each time you write a 
program for the Usa 
FOllowing these descrlptions are sections that will not be of interest to all 
readers. special information Is given In Section E.10 for programmers who 
want to customize QuickDraw operations by overriding the standard drawing 
procedUres, In Section E.11 for those who will be using QuICkDraw from 
assembly language, and In Section E.12 for thOse interested in creating 
three-dimensional graphIcs using the Graf3D unit 
Finally, there are listings of tne QuickDraw interface (section E.13), two 
sample programs (Section E.14), and the ~ unit (E.15); and a glossary 
that explains terms that may be unfamiliar to you (section E.16~ 

E-1 



Pascal Reference Mantlal QulckDraw 

E2 Abrut QUlCkDraw 
QulokDraw allows you to organize the Lisa soreen into a number of individUal 
areas. Wlttlln eaoh area you can draw many things, as 1l1ustrated In FIgure 
E-l. 

Text 

Bold 
//8/lt:: 
Underline 
@l!JROOm -

RoundRects 

00 

You can draw: 

Lines 

Wedges 

Rectangles Ovals 

DO 00 • " ,.,. ,. 
... , ,.,. ,. , , 

Polygons 

• " ,. , , , , ,. ,. 

Regions 

aC1c?~ 
• 8~~t til ~,,.,,,> 

Figure E-l 
SCI'fllles Of Qu1cI<oraw's Ab1l1t1es 

• Text characters in a number Of proportionally-spaced fonts, with variations 
that include boldfacing, ItaIlolzlng, Underllnlng, and outlining. 

• straight llnes of any length and wIdth. 
• A variety Of shapes, either sol1d or hollow, InclUding: rectangles, with or 

without rounded corners; full circles and ovals or wedge-Shaped secUons; 
and polygons. 

• My otner arbitrary snape or collection Of snapes, again either SOUd or 
hollow. 

• A picture consisting of any combination of the above items, with just a 
single procedUre call. 

In addition, QuickDraw has some other abilities that you won't find In many 
other grapnlcs packages. These an1l1ttes take care of most of the "hOUse-

E-2 



Pascal Reference Manual QuickDraw 

KeepIng"--the trIvial but tlme-consumlng and bothersome overhead that's 
necessary to Keep thIngs In order. 

• The ability to define many distinct ports on the screen, each with Its own 
complete drawing envlronment--its own coordInate system, drawing 
location, Character set, location on the screen, and so on. You can easlly 
switch from one such port to another. 

• Full and complete Clipping to arbitrary areas, so that drawing wlll occur 
only where you want. It's liKe a super-dUper COloring bOOK that wonl let 
you color outside the lines. You dOn't have to worry abOUt accidentally 
drawIng over somethIng else on the screen, or drawIng off the screen and 
destroying memory. 

• Off-screen drawing. Anything you can draw on the screen, you can draw 
into an off-screen buffer, so you can prepare an image for an output 
device withOut disturbing the screen, or you can prepare a picture and 
move it onto the screen very qulCIdy. 

And QuickDraw lives up to its name! It's very fast. The speed and 
responsiveness of the Usa user interface are dUe prlmarlly to the speed of the 
QulckDraw package. You can dO good-quality animation, fast interactive 
graphIcs .. and complex yet speedy text displays using the full features of 
QuickDraw. This means you dOn't have to bypass the general-purpose 
QUlckDraw routines by wrIting a lot of special routines to Improve speed. 

E.2.1 How To use QuiCI<DraW 
QUickDraw can be used from either Pascal or MC68000 machine language. It 
has no user Interface of its own. 
If you're using pascal; you must write a Pascal program that includes the 
proper QuickOraw calls, compUe It against the flIes OO/QUICkDIaW.CBJ and 
OO/QOSl.w)rt.ffiJ, Unf< it with the fUes listed in QOIQOStuff.TEXT, and 
execute the llnked Object fUel 
If you're using I ma9filn~ janguage:Jyour program shOUld include the proper 
QUlckDraw calfs:-'ancJ .INCI:(JJE' the fUe QlJlGRAFTYPEs. TEXT. Assemble the 
program, l1nk it with the fUes llsted In QOlQDStuff.TEXT, and execute the 
linKed object fUel 
A programmIng mOdel .. ~le, Is Included with the WOrkShOp SOftware In 
the fHe QD/~le. TEXT (I1Sted in section E.14.1); it shOWS the structure of 
a properly organized QuickOraw program. What's best for begInners Is to read 
through the text, and, using the superstructure of the program as a "shell", 
modify It to suit your own purposes. O1Ce you get the hang of wrltlng 
programs 1ns1de the presupplled shell, you can work on Changing the shell 
Itself. 
Note that all fUes related to QulckDraw are prefiXed by "r:t:JI'. 

QulckDraw inclUdes only the graphics and ut1l1ty procedUres and functions 
you'll need to create graphics on the screen. Procedures for dealing with the 

E-3 



Pascal Reference Manual QulckDraw 

r 

)
. -11 mouse, cursors, keybOard, and screen settings, as well as those allowIng you to 

generate sounds and read and set clOCks and dates, are descr1bed in Appendix 
F, Hardware Interface. 

E.2.2 (;)JlcidiaW"oala'~Types 
QuickDraw defines three general data types, Q[)Byte, QIJPtr, and Q[l-Icn:ne: 

~~ ,-"'-----~ ..... -
type f;.myte = -128 •• 127 

QPtr = AQlByte 
tJlH<Il(lle = "OPtr 

Other data types are described throughOUt this appendix In the sections In 
which they're relevant. For a summary of all QuickDraw data types, see 
Section E.13.2. 

E.3 The MaU1ematloal FOlIldatlon Of QuiOkDraw 
To create graphics that are bOth precIse ana pretty requires not super-Charged 
features but a firm mathematical fOUndation for the features you have. If the 
mathematics that underIle a graphIcs package are Imprecise or fuZZY, the 
graphics wUI be, too. QuickDraw defines some clear mathematical constructs 
that are widely used In Its procedUres .. functions, and data types: the COO.rdI­
nate plarJ6!, the poInt. the rectangle, and the regIon 

E.3.1 The COOrninate PIClle 
All information about location, placement .. or movement that you give to 
QuickDraw Is in terms of coordinates on a plane. The coordinate plane is a 
tWO-dimensional grid, as lllustrated In Figure E -2. 

-32768 
t 

- 32768 +- ~o++-++ ....... H-t-+-+++-+-t-4,.... 32767 

+ 
32767~··· 

J ... 
Figure E-2 

The COOrdinate Plme 

E-4 



Pascal Reference Mantlal QuickDraw 

There are two distinctive features of the QulckDraw coordInate plane: 
• All grId coordInates are Integers. 
• All grId llnes are Inflnl tel y thIn. 

These concepts are Important! FIrst, they mean that the QuiCk Draw plane is 
finite, not Infinite (although it's very large). Horizontal coordinates range 
from -32768 to +32767, and vertical coordinates have the same range. 
second, they mean that all elements represented on the coordInate plane are 
mathematically pure. Mathematical calculations using integer arithmetic will 
prOdUCe IntuItively correct results. If you keep In mInd that grId lines are 
infinitely thin, you'll never have "endpoint paranoia"--the confusion that 
results from not knowIng wt"Iether that last dot Is InClUded In me line. 

E.3.2 Points 
01 the coordinate plane are 4294,967,296 unique points. EaCh point is at the 
intersection of a hOrizontal grid line and a vertical grid 11ne. As the grid lines 
are infinitely thIn, a poInt Is Infinitely small. Of course there are more points 
on this grid than there are dots on the Lisa screen: when using QulCkDra\\l you 
associate small parts of the grid \\11th areas on the screen, so that you aren't 
bound into an arbitrary, limited coordinate system. 
The coordinate origIn (0,0) Is in the middle of the grid. Horizontal coordinates 
increase as you move from left to right, and verUcal coordinates increase as 
you move from top to bottom. This is the way both a TV screen and a page 
of EngliSh text are scanned: from the top left to the bottom rIght. 
You can store the coordinates of a point In a Pascal variable Whose type Is 
defined by QuickDra\\l. The type Polnt is a record of two integers, and has 
the fo11o\\lI09 structure: ... ~ 

type VHSelect = (V, H); 
Point = record case integer Of 

0: (v: integer; 
h: integer); 

1: (Vh: array [VHSelect] of integer) 

end; 

The variant part allows you to access the vertical and hOrizontal components 
of a point either individUally or as an array. For example, if the variable 
gocxPt were cJeclared to be of type Point, the fOllowing would all refer to the 
coordinate parts of the point: 

gocxPt. v goo<Pt. h 
gocxPt.Vh(V] gocxPt.Vh(H] 

E-S 



Pascal Reference I'18ntI8l QulckDraw 

E.3.3 Rectcl'YJles 
My two points oan define the top left and bOttom right corners of a 
rectangle. ~ these points are infinitely small, the borders of the rectangle 
are Infinitely thIn (see FIgure E-3~ 

Left 

Right 

Fl~e E-3 
A Recta. iQle 

Rectangles are used to defIne active areas on the screen, to assIgn coordinate 
systems to graphIc entities, and to specIfy the locations and sizes for various 
drawIng commands. QulckDraw also allows you to perform many 
mathematioal oalculations on reotangles--Changing their sIzes, shIfting them 
around, and so on. 

Remember that rectangles, like points, are mathematical conoepts that 
have no dIrect representation on the screen. The association between 
these conceptual elements and their physical representations is made oy 
a bItmap, descrloea below. 

E-6 



Pascal Reference /VIantIaJ QulekDraw 

The data type for rectangles Is Reet ana consIsts of four Integers or two 
points: 

• t 

( ( 

type Rect = record case integer of 

0: (tqJ: integer; 
left: integer; 
bot-a.: integer; 
ri~t: integer); 

1: (topleft: Point; 
botRi~: Point) 

ero; 
Again, the record variant allows you to access a varIable of type Reet either 
as four boundary coordinates or as two diagonally opposing comer points. 
COmbined with the record variant for points, all of the fallowing references to 
the rectangle named bRect are legal: 

~t {type Rect} 

IJReCt. tq1.eft IJReCt . botR1{1lt {type Point} 

tRm.~ bRaCt.1eft {type integer l 
bReCt.topLeft.v bRaCt. topLeft. h {type integer 
IJReCt.topLeft.Vh(V] bReCt.topLeft.Vh(H] {type integer} 

~.bottom IJReCt.ri~ {type integer} 
bReCt.bOtRi~t.v bRaCt. bOtRi~t. h {type integer} 
bRaCt .ootRi~. Vh[V] bReCt.botRignt.Vh[H] {type integer} 

WARNING 

I f the bottom coordinate of a rectangle Is equal to or less than the top, 
or the right coordInate Is equal to or less than the left, the rectangle 
Is an empty rectangle (I.e., one that contaIns no blts~ 

E.3.4 Regl00s 
unllke most graphics packages that can manipUlate only simple geometric 
structures (usually rectilinear, at that), QuickDraw can gather an arbitrary set 
of spatially coherent points into a structure called a region, and perform 
complex yet rapid manipulations and calculations on such structures. This 
remarkable feature not only will make your standard programs simpler and 
faster, bUt will let you perform operations that would otherwise be nearly 
ImpoSSible; it Is fundamental to the Usa user interface. 

E-7 



Pascal Reference ManueJ QulckDraw 

You define a region by drawIng lines, shapes such as rectangles and ovals, or 
even other regIons. The outline of a regIon should be one or more closed 
loops. A region can be concave or convex, can consist of one area or many 
disjoint areas, and can even have "holes" in the middle. In FIgure E-4 ... the 
regIon on the left has a hole In the middle, and the regIon on the right 
consists of two disjoInt areas. 

r 

FI~ E-4 
Regions 

Because a region can be any ami trary area or set of areas on the coordinate 
plane, It takes a varIable amount of information to store the outline of a 
regIon. The data structure for a region, therefore, Is a variable-length entity 
wIth two flxed fIelds at the beglmlng, followed by a varIable-length data 
field: 

type RegI00 = record 
JVlS1ze: Integer; 
I ~ 1BBoX: Rect; 
{optional region definition data} 

end; 

The r{JlSlze fIeld contaIns the sIze, In bytes, of the regIon varIable. The 
~x field is a rectangle which completely encloses the region. 
The simplest region Is a rectangle. In this case, the ~x field defines the 
entire region, and there is no optional region data For rectangular regions (or 
empty regions), the J{JlSize field contains 10 (two bytes for IglSIze, plus 
eigtt for ~x). 

The region definition data for nonrectangular regions is stored in a compact 
way whiCh allows for highly efficient access by QuickDraw procedures. 

E-8 



Pascal Reference Manual QulckDraw 

As regIons are of varIable sIze, they are storecJ dynamIcally on the heap, and 
the qleratlng system's memory management moves them arouno as their sizes 
change. Be!ng dyoom19, ~ .. reglO1} .. par'l. be .. ~~~~t.Qr)ly_ .tnrQugtLa_POlntgI;J2~t 
When a region Is moved, all pointers referring to It must be updated. For this 
reason, all regIons are accessed through handles, WhIch point to one master 
pointer Whlen In tum poInts to the regIon. 

type ~r = AReglm; 
~le =A~; 

When the memory management relocates a regIon's data in memory, it updates 
only the R~ master pointer to tnat region. me references througtl tne 
master pointer can find the region's new hOme, bUt any references pointing 
directly to the region's previous posItion In memory would now point at dead 
bits. To access individUal fields of a region, use the region nanetle and dOUble 
Indirection: 

myRgl"" .1V'Slze 
myRg1"" .l'g'ftJox 
myRgl"" .l'g'ftJox. top 

{size of reglm \tJhOSe henne Is myR~ 
{recta1gle enclos1~ tI1e scme reglm} 
{mlnlnun vertical cooIdlnate of all points 
In the reglm} 
{semantlcally irmrrect; wlll not COf1l)l1e If 
myRglis a ~e} 

Regions are created by a QulckDraw function whlon allocates space for the 
regIon, creates a master pointer, and returns a regIon handle. When you're 
done with a region, you dispose Of It with another QulckDraw routine which 
frees up the space used by the region. O1ly these calls allooate or deallocate 
regIons; do not use the Pascal prOCedUre new to create a new region! 
You specify the outUne of a region with procedUres that draw lines and 
shapes, as described in Section E.9, QuiokDraw Routines. M example Is given 
In the discussion of CloseRgn in section E.9.11, Calculations with Regions. 
Many calculations can be performed on regions. A region can be "expanded" 
or "shrunk" and, given any two regions, QulckDraw can fina their union. 
intersection, difference, and exclusive-CR; it can also determine whether a 
given point or rectangle Intersects a given region, and so on. There is of 
course a set of graphiC operations on regions to draw them on the screen. 

E.4 GraPllc Entitles 
Coordinate planes, points, rectangles, and regions are all goOd mathematical 
models, bUt they aren't really graphic elements--they don't have a direot 
physical appearance. some graphiC entities that do have a direct graphic 
interpretation are the bit Image, bltmS/J pattern and cursor. This section 
describes the data structure of these graphic entities and hOw they relate to 
the mathematical constructs described above. 

E.4.1 The Bit Image 
A bit image is a oollection of bits in memory whioh have a rectilinear 
representation. Take a collection of wordS In memory and lay them end to 

E-9 



Pascal Reference fvf8nuaI QulekDraw 

end so that bIt 15 Of the lowest-numbered word Is on the left and bit 0 of 
the highest-numbered word Is on the far rIght Then take thIs array of bits 
and divide It, on word bOUndaries, Into a number of equal-size rows. Stack 
these rows vert1cally so that the first row Is on the top and the last row Is on 
the bOttom. The result Is a matrix llke the one shOwn In Figure E-5--rows 
and columns of bits .. with each row contaInIng the same number of bytes. The 
I"Wlber of bytes In each row of the bIt Image Is called the row W.fl:lth Of that 
Image. 

Byte 

FI~E-S 
A Bit Image 

Row width 
is 8 bytes 

Last 
Byte 

A bIt lmage can be stored In any static or dynamic variable, and can be of 
any length that is a multiple of the row width. 

The Lisa screen itself is one large visible bit Image. There are 32,760 bytes Of 
memory that are displayed as a matrix Of 262,080 pixelS on the screen, eaCh 
bit corresponding to one pixel. If a Dltis value is 0, Its pixel Is white; If the 
bIt's value Is 1, the pixel Is black. 
The screen is 364 pixels tall and 720 pixels wide, and the row wIdth of its bit 
Image is 90 bytes. f;ach pIxel on tt)e spreen. is one and a half times taller . 

J.tlanJLlscwlQe.,meantrg a . rectangle 30 pixelS wIde by 20 tall lOOks square, 
and a 30 by 20 oval lOOks cIrcular. There are 90plxelsper inch horizontally, 
and 69J)~r inch vertically. "'"'''" . 

.-" "'" 

E-I0 



Pascal Reference MantJaJ Qt.JlckDraw 

SInce each pixel on tne screen represents one btt In a bit Image, 
Wherever this appendix says "bit", you can SUbstitute "pixel" If the bit 
Image Is the LIsa screen. LIKewise, this appendix often refers to pixels 
on the screen Where the discussion applies equally to bits In an 
off-screen bit Image. 

E.4.2 The Bitmap 
When you comolne the physical entity of a bit Image with the conceptual 
entities Of the coordinate plane and rectangle, you get a bitmap. A bitmap 
haS three parts: a pointer to a bIt Image, the row wIdth (1n byteS) of that 
Image, and a bOUndary rectangle Which gives the bitmap bOth its dimensions 
and a coordinate system. NOtice that a bItmap dOes not actually Incluoe the 
bits themselves: it points to them. 

There can be several bitmaps pointing to the same bit Image, each ImposIng a 
different coordinate system on it. This Important feature Is explained more 
fully in Section E.6, COOrdinates in GrafPorts. 

As shown In Figure E-6, the data structure of a bitmap Is as follows: 
type Bitt1ap = record 

baseAddr: QOPtr; 
rotIBytes: integer; 
txulds: Rect 

end: 

+---- Row width -----1' 

Fl~ E-6 
A Bitmap 

E-ll 



Pascal Reference Hafl()81 QuiCkD18W 

The baseAddr fleld Is a poInter to the beginning of the bit Image In memory, 
and the rowBytes fIeld Is the number of bytes In each row of the Image. Both 
of these shOUld always be even: a bitmap ShOUld always begIn on a word 
bOUndary and contain an integral number of words In each row. 
The lXU1dS field is a bOundary rectangle that both encloses the active area of 
the bit image and imposes a coordinate system on It The relatlonshlp 
between the boundary rectangle and the bit Image in a bItmap is simple yet 
very important. First, a few general rules: 

• 61 ts In a bit image fall between points on the coordinate plane. 
• A rectangle divides a bit Image Into two sets of bIts: those bits inside the 

rectangle and those outside the rectangle. 

• A rectangle that is H points wIde and V poInts tall encloses exactly 
(H-l) * (V-l) bits. 

The top left comer of the boundary rectangle Is allgned around the first bit in 
the bIt Image. The WIdth of the rectangle determInes how many bits of one 
row are logically owned by the bItmap; the relatlonship 

8 * EP.rowBytes >. EP.bOtIlds.r1~t-lR8p.bOt.IldS.left 

mJSt always be true. The height of the rectangle determines how many rows 
of the image are logically owned by the bitmap. To ensure that the number 
of bits in the logical bitmap Is not larger than the number of bits in the bit 
Image, tne bit Image must be at least as bIg as 

(1R8p. bOlIlds .bOtUR--lEp .bOt.Ilds • ~)-mp. row8ytes 

Normally, the bOundary rectangle completely encloses the bit image: the width 
of the boundary rectangle is equal to the number of bits In one row of the 
image, and the height of the rectangle is equal to the number of rows In the 
Image. If the rectangle is smaller than the dimensions of the image, the least 
significant bits in each row, as well as the last rows in the image, are not 
affected by any operations on the bitmap. 
The bitmap also imposes a coordinate system on the image. Because bits fall 
between coordinate points, the coordinate system assigns integer values to the 
lines that border and separate bits, not to the bit positions themselves. For 
example .. If a bItmap Is asslgnea the bounaary rectangle with corners (10 .. -8) 
and (34,,8), the bOttom right bit in the image will be between horizontal 
coordinates 33 and 34, and between vertical coordinates 7 and 8 (see Figure 
E-7~ 

E-12 



Pascal Reference M8niJ81 

(10,8) 

E.4.3 Patterns 

Fl{JJJ'e E-7 
COOrdinates and Bitmaps 

• 

QulckDraw 

A pattern Is a 64-bit Image, organized as an 8-by-8-blt rectangle, Which Is 
used to define a repeating design (SUCh as strIpes) or tone (SUCh as gray~ 
Patterns can be used to draw lines and shapes or to fill areas on the screen. 
When a pattern Is drawn, It Is aligned such that. adjacent areas of the same 
pattern in the same graphics port will blend with each other into a contin­
uous, coordinated pattern. QuickDraw provides the predefined patterns WhIte, 
black, gray, ItGray, and (l(Gray. My other 64-blt variable or constant can be 
uSed as a pattern, too. The data type definItion for a pattern is as follows: 

type Pattern = packed array [0 •• 7] Of O •• 255; 

The row width of a pattern is 1 byte. 
E.4.4 cursors 

A cursor Is a small Image that appears on the screen and Is controlled by the 
mouse. (It appears only on the screen, and never In an off-screen bit image.) 
A cursor is deflneCl ~ a 256-bit image, a 16-by-16-bit rectangle. The row 
width of a cursor is 2 bytes. Figure E -8 illustrates four cursors. 

E-13 



PascaJ ReFerence I'1antIa1 

o 
0-1IT

1 
mrnmmm 

8 
1 

8 
I 

(;llJiCkOraw 

16 
I 

mmma 8- __ .-9 
-

FI~ E-8 
cursors 

A cursor has three fields: a 16-word data field that contains the Image itself, 
a 16-word maSk field that contains information abOut the screen appearance 
of each bit of the cursor, and a 1101'spot point that aligns the cursor with the 
pOSition of the mouse. 

type CUrsor = record 
data: array [0 .. 15] Of integer; 
maSk: array [0 .• 15] of integer; 
hOtspot: POint 

end; 

The data for the cursor must begin on a word bOundary. 

Tne cursor appears on the screen as a 16-0y-16-01t rectangle. The appear­
ance of each bit of the rectangle is determined by the corresponding bits in 
the data and maSk and, If the mask Olt Is o,Oy the pixel "under" the cursor 
(the one already on the screen in the same position as this bit of the cursor~ 

Data MaSk Resulting pixel on screen 
-0- --1- White 

1 1 Black 
o 0 Same as pixel under cursor 
1 0 Inverse of pixel under cursor 

Notice that If all maSk Oits are 0, the cursor Is completely transparent, In 
that the image under the cursor can still be viewed: pixels under the white 
part of the cursor appear uncnanged, whlle under the Dlack part of the cursor, 
black pixels ShOw through as wnlte. 

The hOtspot aUgns a point In the image (not a bit, a point!) with the mouse 
position. Imagine the rectangle with corners (0,0) and (16,16) framing the 
image, as In each of the examples In Figure E-8; the hOtspot Is defined In this 
coordinate system. A hotspot of (0,0) is at the top left of the Image. For the 
arrow in Figure E-8 to point to the mouse position, (0,0) would be its hotspot. 
A hotspot of (8~) Is In the exact center of tne Image; the center of the plus 

E-14 



Pascal Reference Manual QulekDraw 

sign or oval in Figure E-8 would coincide wlth the mouse position if (8~) were 
the hOtSpot for that cursor. SimUarly, the hOtSpot for the pointing hand would 
be (16,9~ 
Whenever you move the mouse, the low-level interrupt-driven mouse routines 
move the cursor's hOtspot to be aUgned with the new mouse poSition. 
QulC1<Draw supplles a predeflned arrow cursor, an arrow poInting north­
northwest. 
Refer to ~lx F, HardWare Interface, for more information on the mouse 
and cursor control. 

E.S 1lle Drawing Envlrorrnent: GrafPort 
A gJafPOrt is a complete drawing environment that defines how and where 
graphic operations will have their effect. It contains all the information 
abOut one Instance of graphIc outPut that Is kept separate from all other 
instances. You can have many grafPorts open at once, and each one will have 
its own coordinate system, drawing pattern, baCkground pattern, pen size and 
location, character font and style .. and bitmap In WhiCh drawing takes place. 
You can Instantly swItch from one port to another. GrafPorts are the 
structures on Which a program bUilds windOWS, which are fundamental to the 
~Usa's "overlapping windOWS" user Interface. 
A grafPort is a dynamic data structure, defined as follows: 

type GrafPtr = "GrafPort; 
GrafPort = record 

device: 
portB1ts: 
portRect: 
visRal: 
Cli~: 
bkPat: 
fillPat: 
prt.oc: 
poSize: 
prftlde: 
pr9at: 
pnVis: 
txFont: 
tXface: 
txtlode: 
tXS1ze: 
spExtra: 
fgColor: 
bkCOlor: 
colrBit: 
patstretch : 
piCS8Ve: 

E-15 

integer; 
B1~; 
Rect; 
Rg"fBldle; 
Rg"fBldle; 
Pattern; 
Pattern; 
P01nt; 
POint; 
1nteger; 
Pattern; 
integer; 
integer; 
style; 
integer; 
integer; 
longlnt; 
longlnt; 
long1nt; 
integer; 
integer; 
t;.OiEn21e; 



Pascal RefelfJnce Manual QuICkDraw 

I1J1SaVe: (;.I.)HcIldle; 
pol ySave: (;.I.)HcIldle; 
grafPrOOs: fl)ProCsPtr 

ero; 
All QulcKDraw operations refer to grafPorts via grafPtrs. You create a 
grafPort with the Pascal procedUre new and use the resulting pointer in calls 
to QuicKDraw. You COUldl of course, declare a static variable of type 
GrafPort, and Obtain a pointer to that static structure (with the • operator), 
but as most grafPorts wUl be used dynamically, their data structures should be 
dynamic also. 

You can access all fields and sUbfields of a grafPort normally, bUt you 
shOuld not store new values directly Into them. QulckDraw has 
procedUres for altering all fields of a grafPortl and using these 
procedures ensures that Changing a grafPort produces no unusual Side 
effects. 

The deVIce fIeld of a grafPort Is tne number Of the logical output <levice that 
the grafPort will be using. QuicKDraw uses this Informatlonl since there are 
physical differences In the same logical font for different output devIces. The 
default device number is 0" for the Usa screen. 
The portBits field Is the bitmap that points to the bit image to be used by the 
grafPort. All drawing that Is dOne in this grafPort wlll take place In this bit 
image. The default bitmap uses the entire Lisa screen as its bit image, with 
rowBytes of 90 and a bOUndary rectangle of (O,o,720,364~ The bitmap may be 
changed to indicate a different structure in memory: all graphics procedUres 
work In exactly the same way regardless of whether their effects are visible 
on the screen. A program can, for example, prepare an image to be printed 
on a printer withoUt ever displaying the image on the screen, or develop a 
picture in an off-screen bitmap before transferring it to the screen. By 
altering the coordinates of the portBits.tJot.rlds rectangle, you can change the 
coordinate system of the grafPort; with a QuicKDraw procedUre call, you can 
set an arbitrary coordinate system for each grafPort, even if the different 
grafPorts all use the same bit Image (e.g., the fUll screen). 

The portRect fleld Is a rectangle that defInes a subset of the bItmap for use 
by the grafPort. Its coordinates are In the system defined by the 
portBlt.s..txulds rectangle. All drawIng dOne oy the applIcation occurs InsIde 
th1s rectangle. The portRect usually def1nes the "writable" interIor area of a 
windOw, dOCument, or other Object on the screen. The default portRect Is the 
entire screen. 
The vlsRgl field indicates the region that Is actually v1s1bleon the screen. It 
Is reserved for use by future SOftware, and should be treated as read-only. 

E-16 



Pascal Reference Manual QulckDraw 

The default vlsR(JlIs set to the portRecl 

The cl1pRglis an arbitrary region that the appUcation can use to Umlt 
drawing to any region withIn the portRecl If, for example, you want to draw 
a half cIrcle on the screen, you can set the cl1pR~ to half the square that 
would enclose the WhOle cIrcle, and go ahead and draw the Whole circle. O1ly 
the half within the cllpR{Jl will actually be drawn In the grafPort. The 
default cUpRgn Is set arbitrarlly large, and you have full control over its 
setting. Notice that unliKe the vlsRgl, the cl1pR~ affects the Image even If 
it is not dIsplayed on the screen. 

Figure E-9 Illustrates a typical bitmap (as defined by portBlts)., portRect, 
vlsRgl, and Cl~ 

Figure E-9 
GratPort Regions 

The bkPat and flllPat fields of a grafPort contaln patterns used by certain 
QulcKDraw routines. BkPat Is trle "bacKground" pattern that Is used When an 
area is erased or when bIts are scrolled out of It. When asked to f111 an area 
with a spec1fled pattern, QuiCK Draw stores the given pattern In the flllPat 
field and then calls a low-level drawing routine Which gets the pattern from 
trlat field. The various graphic operations are discussed in detail later In the 
descriptions of incfividUal QulCkDraw routines. 

Of the next ten fields, the first five determine characteristics of the graphics 
pen, descrIbed in Section E.5.1, and the last five determine characteristics of 
any text that may be drawn, described In Section E.5.2. 

The fgCOlor, bkCOIOI, and collelt fields contain values related to drawing in 
color, a capabllity that will be available In the future when Apple supports 

E-17 



Pascal Reference /YIaJuaJ ~/ckDraw 

cOlor output devices for the Usa. FgColor Is the grafPort"s foreground color 
and bkColor is its background color. CoIlBlt tells the color imaging software 
Which plane of the color picture to Clraw Into. For more Information, see 
Section E.7.2, Drawing In COlor. 
The patstretch field is used dUring output to a printer to expand patterns if 
necessary. The applIcation shOUld not Change its value. 
The plcSeve, ~, and polySave fields reflect the state of pioture, region, 
and polygon definition, respectively. To define a region, for example, you 
"open" it,oall routines that draw It, and then "close" It. If no region is open, 
~ contains nil; otherwise, it contains a handle to information related to 
the region definition. The applioation shOuld not be concerned aboUt exactly 
What Information the handle leads to; you may, hOwever, save the current 
value of rgnsave, set the field to nil to disable the region definition, and later 
restore It to the saved value to resume the regIon definition. The plCS8Ve 
and polySave fields work. sImilarly for pictures and polygonS. 
Finally, the gratProcs field may point to a special data structure that the 
application stores Into If It wants to customize QulckDraw drawing prOcedUres 
or use QulckDraw In other advanced, highly specialized ways. (For more 
information .. see Seotion E.l0 .. CUStomizing QulokDraw q>eratlons.) If 
gratProcs Is nil, QuickDraw responds In the standard ways described in this 
appendix. 

ES.l Pen Charactertstics 
The p1...OC, pnSlze, ~, IJ1>at and IXlVls fieldS Of a grafPort deal with the 
graphics pen. Each grafPort has one and only one graphics pen, Which Is used 
for drawlng Unes, ShapeS, and text As lllustrated In FIgure E-l0" tne pen has 
four characteristics: a JOCBtJOIJ a s/~ a d.r8W/ng ~ and a llraw/ng pattem 

E-18 



Pascal ReFerence fvICnI8.I t;;UickDraw 

Fl~e E-l0 
A~CSPen 

The pen location (p'Loc) is a point In the coordinate system of the grafPort, 
and Is Where Qulot<Draw will Degln drawing the next 11ne, Shape, or character. 
It can be anYWhere on the coordinate plane: there are no restrictions on the 
movement or placement of the pen. Rernernber that the pen location Is a 
point on the coordinate plane, not a pixel In a bit image! 
The pen Is rectangular In Shape, and has a user-definable width and height 
(plSlze~ The default size Is a 1-by-l-bit rectangle; the width and heIght can 
range from (0,0) to (32767 ;32767~ If either the pen width or the pen neight is 
less than 1, the pen wll1 not draw on the screen. 

• The pen appears as a rectangle wIth Its top left comer at the pen 
location; It hangs below and to the rIght of the pen locatIon. 

me ~ ana P'P8t fielas Of a grafPort determine now me bits lJ1der the 
pen are affected when lines or shapeS are drawn. The prPclt Is a pattern that 
Is used as the "InK" In the pen. TIlls pattern, llke all other patterns drawn In 
the grafPort, Is always aUgned wIth the port's coordinate system: the top left 
corner of the pattern Is aligned with the top left comer Of the portRect, so 
that adjacent areas of the same pattern will blend Into a continuous, 
coordinated pattern. Five patterns are predefIned (white, black, and three 
Shades of gray); you can also create your own pattern and use It as tne prPat 
(A ut1lIty procedUre, called StuffHe~ allows you to f111 patterns easUy.) 

E-19 



Pasoal Reference Manual QuJokDraw 

The pnIVIOOe fIeld determInes how the pen pattern Is to affect what's already 
on the bitmap when lines or shapes are drawn. When the pen draws, 
QulckDraw first determines what bits of the bitmap will be affected and finds 
their corresponding bits in the pattern. It then does a bit-by-bit evaluation 
based on the pen mode, which specif1es one of eight bOOlean operations to 
perform. The resulting bit is placed into its proper place in the bitmap. The 
pen mOdes are descrIbed In Section E.7.1, Transfer Modes. 
The pnVls fIeld determines the pen's visIbilIty, that is, whether It draws on the 
screen. For more Information, see the descriptions of HidePen and ShowPen 
In Section E.9.3, Pen and Une-Drawlng Routines. 

E.5.2 Text Characteristlcs 
The txFoot, txFooe, txf'o1Ode, txSlze, and spExtra fields of a grafPort determIne 
how text wn}· be drawn--the font, style, and size of characters and hOw they 
will be placed on the 01 tmap. 

QuICkDraw can draw characters as quiCkly and easUy as it draws Unes and 
shapes, and In many prepared fonts. Figure E-ll shows two QuICkDraw 
characters and some terms you should become famUlar with. 

_r_-.......---.---- 6scent line 

ascent 

-+-~--~+r~- base line 

descent 
-%-___ --1... __ descent line 

Fl~ E-ll 
QulCkDraw Olaracters 

QuickDraw can display characters in any size, as well as boldfaced, ital1cized, 
outUned, or shadowed, all without Changing fonts. It can also underline the 
characters, or draw them closer togetner or farther apart. 
Tna txFoot field Is a font number that 1dentifles the character font to be used 
In the grafPort. The font number 0 represents the system font, and is the 
default esta0l1Sh80 by qlenPort. The unit QIJSl4lport (Usted In section E.15) 
inclUdes definitions Of other available font numbers. 
A character font is defined as a collection of bit Images: these images make 
up the IndividUal characters of the font. Tne characters can be of unequal 
widths, and they're not restricted to their "cells": the lower curl of a 
lowercase 1, for example, can stretch back under the previous character 
(typographers call this kemlng ~ A font can consist of up to 256 distinct 
characters, yet not all characters need be defined in a stngle font. EaCh font 

E-20 



Pascal Reference Manual QuickDraw 

conta1ns a mlsslng syntJoJ to be drawn In case of a request to draw a 
character that Is mIssing from the fonl 
The txF~ fIeld controls the appearance of the font wIth values from the set 
defined by the style data type: 

type StylelteRt = (bOlct. italic, ..merline, outline, shadoW, 
condense, extem); 

style set Of styleIteAl; 

You can apply these either alone or in combination (see Figure E-12~ Most 
combinations USUally 1001< goocJ only for large fonts. 

Normal Characters 
Bold Characters 
//t7/lc {;!](]/"::7t.:lers 
Underlined Characters XY1. 
0UitIm1ii ~1fI 
IIIIIiInIII IJIaInIttan 
Condensed Characters 
Extended Characters 
Bold laic ChanJcIets 
U@vlJDmrl1llJbxfimfJtmJ!l 

... and in other fonts, too! 

Fl~re E-12 
ChaJaCterstyles 

If you specify bOld, each Character Is repeatedly drawn one bit to the right an 
appropriate number of Umes for extra thiCkness. 
Italic adds an Italic slant to the characters. Character bits above the base 
Une are skewed right; bits below the base Une are skewed left 

·Uldedlne draws a Une below the base Hne of the Characters. If part of a 
ctlaracter oescends below Uleoase Une (as "t' In Figure £-12), tJleunderllne Is 
not drawn through the pixel on either side of the descending part. 

You may specify either OUUine or shadOW. rutllne makes a hollow" outlined 
Character rather than a solid one. With ShadoW, not only is the character 
hollow and outlined, but the outline is thickened below and to the right of the 
Character to aChieve the effect of a Shadow. If you specify bold along with 
outline or shadow, the hollow part of the character is widened. 

E-21 



Pascal Reference Hamal QI.IICkDraw 

Conelense and extend affect ttJe hOrIzontal dIstance between all characters, 
InclUdIng spaces. Condense decreases the distance between characters and 
extend increases it, by an amount which QulckDraw determines Is appropr1ate. 
me txMode fIeld controls ttJe way characters are placed on a bit Image. It 
functions mUCh lIKe a ~ when a character Is drawn, QulcKDraw 
determInes WhIch bIts Of the bIt Image will be affected, does a blt-by-blt 
comparIson based on the mOde, and stores the resulting bIts Into ttJe bIt 
Image. These modes are descrIbed In Section E.7.1, Transfer MOdeS. 011y 
three of them--srCOl, sroxor, and srcBic--ShOUld be used for drawIng text. 
The txStze field specifies the type size for the font, In points (where "poInt" 
here Is a typographical term meaning approximately ln2 Inch~ MY size may 
be specified. If QulckDraw does not have the font In a specified size, It wlll 
scale a s1.ze it does have as necessary to produce the size desired. A value of 
o In this field directs QulcKDraw to choose the sIze from among those It has 
for the font; it will chOOse whichever size is closest to the system font size. 
Finally, the spExtra field Is useful when a line of characters is to be drawn 
justified sUCh that it is al1gned with both a left and a rlght margin (sometimes 
called "full just1flcatlon"~ SpExtra Is the number of pixels by whIch each 
space Character should be wIdened to fill out the 11ne. 

E.G COOrdinates In GrafPorts 
Each grafPort has Its own local coordInate system. All fle}(lS In the grafPort 
are expressed In these coordinates, and all calculations and actions performed 
In QuICK Draw use the local coordInate system of the currently selected port 
Two thIngs are important to remember: 

• Each grafPort maps a portion of the coordinate plane Into a slmilarly­
sIzed portion of a bIt Image. 

• The portBIts..tx:um rectangle defines the local coordinates for a grafPort. 
The top left comer of portBlts.bOlrlds Is always aligned around the first bit in 
the bIt Image; the cooralnates of that corner "anchOr" a point on the grid to 
that bit In the bit image. This forms a common reference point for mUltiple 
grafPorts using the same bIt Image (SUCh as the screen~ GIven a 
portBlts.txuldS rectangle for each port, you Know that their top left comers 
colnclOO. 
The interrelationship between the portBlt.s.bOl.n:ts and portRect rectangles Is 
very important. As the portBlts.bOU1dS rectangle establiShes a coordinate 
system for the port, the portRect rectangle indicates the section of the 
coordinate plane (and thUs the bit image) that wlll be used for drawing. The 
portRect usually falls inside the portBlts.tnn:Js rectangle, bUt it's not required 
to do so. 
When a new grafPort Is created, Its bItmap Is set to poInt to the enUre Usa 
screen, and bOth the portBits.bOU1dS and the portRoot rectangles are set to 

E-22 



Pascal Reference /VIanua1 QulckDraw 

720-by-364-bit rectangles, with the point (0,0) at the top left corner of the 
screen. 

You can redefine the local coordinates of the top left corner of the grafPort's 
portRect, using the SetDrlgln procedUre. This Changes the local coordinate 
system of the grafPort, recalculating the coordinates of all points in the 
grafPort to be relative to the new corner coordinates. For example, consider 
these procedUre calls: 

5etport{gamePort); 
8etOrigin(40,80); 

The call to SetPort sets the current grafPort to gcmePort; the call to 
SetOr1g1n ChangeS the local coordinates of the top left corner of that port's 
portRect to (40,80) (see Figure E-13~ 

0 95 300 512 -55 40 245 457 

0-
I I I I I I I I 

-40 

120- 80 

pnLoc 

portAect 

275- 235 
3~- 3~ 

visAgn (95,120)(300,275) visRgn (40J80)(245J 235) 
clipRgn (95,120)(300,275) clipFign (95}120)(300,275) 

Before SetOrigin After SetOrigin( 40,80) 

FI(JJre E-13 
ChangIng Local COOrdinates 

This recalculates the Coordinate components of the following elements: 

gamePort A .portBits.tnnls gamePort A .portReCt 

gamePortA • vl~ 

These elements are always kept "in sync", so that all calculations, compari­
sons, or operatlons that seem rlgtlt, work rlgtlt. 

Notice that When the local coordinates of a grafPort are offset, the vlsRgl of 
that port is offset also, but the CllpR~ is not. A good way to think of it Is 
that If a document is being shOwn inside a grafPort, the document "stiCks" to 
the coordinate system, and the port's structure "sticks" to the screen. 
Suppose, for example, that the vlsRgl and cllpRglin Figure E -13 before 

E-23 



Pascal Reference fvfantIal QuICkDraw 

setOrlgln are the same as the portRect., and a elocument Is being shown. After 
the SetOr1g1n call, the top left comer of the c1lpR~ Is still (95,120), but this 
locatIon has moved ClOwn ana to the right, and the location of the pen wi thin 
the document has slmllarly moved. The locations of portBlt.s.bot.r'ds, portRect., 
and VlsR~ eliel not change; theIr coordinates were offset. As always, the top 
left comer of portBlts.botnJs remains aligned around the first bit In the bit 
Image (the fIrst pIxel on the screen~ 

If you are moving, comparing, or otheNise cJealing with mathematical items In 
different grafPorts (for example, finding the intersection of two regions In two 
different grafPorts), you must adjust to a common coordinate system before 
you perform the operation. A QuiCkDraw procedUre, Local ToGlobal, lets you 
convert a point's local coordinates to a gJo/Jal system where the top left 
corner of the bit image is (0,0); by converting the various local coordinates to 
global coordinates, you can compare and mix them with confidence. For more 
information, see the description of this procedUre in Section E.9.17, 
Calculations with Points. 

E.7 General Dlscusslm of Drawing 
Drawing occurs: 

• Always InsicJe a grafPort, in the bit image and coorcJinate system defined 
by t. .. e grafPoit's bitmap. 

• Always wIthIn the intersectIon Of the grafPort's portBlts.txulds and 
portReot, and olipped to Its vlsRgl and ollpRgl. 

• Always at the grafPort's pen location. 
• usually with the grafPort"s pen size, pattern" and mOde. 

With QulckDraw prOCedUres" you can draw lines, Shapes, and text. Shapes 
include rectangles, ovals, rounded-corner rectangles, wedge-shaped secUons of 
ovals, regions, and polygons. 
Lines are defined by two points: the current pen location and a destination 
locatIon. When orawlng a Une .. QulCkOraw moves the top left corner of the 
pen along the mathematical trajectory from the current location to the 
destination. The pen hangs below and to the right of the trajectory (see 
Figure E-14~ 

E-24 



Pascal Reference Manual 

I -II 
--

I 

Fl!J.ll'e E-14 
OIawlrg Lines 

NlTE 

QlIickDraw 

No mathematical element (SUCh as the pen location) Is ever affected by 
cllppIng; cUpp1ng only determInes what appears where In the bIt Image. 
I f you draw a line to a location outside your grafPort" the pen location 
wIll move there, but only the portIon of the Une that Is InsIde the port 
w1ll actually be drawn. Th1s 1s true for all drawing procedUres. 

Rectangles, ovals, and rounded-comer rectangles are defIned by two corner 
p01nts. The Shapes always appear 1ns1de the mathematical rectangle defined 
by the two poInts. A regIon Is deflnecl In a more complex manner, but also 
appears only w1th1n the rectangle enclosing it. Remember, these enclosing 
rectangles have InfinItely thIn borders and are not vIsIble on the screen. 
As Illustrated In Figure E-1S" shapes may be drawn eIther solid (f1lled In with 
a pattern) or flamed (outlined and hollow~ 

E-2S 



Pasoai RefeJ(:lr~'e Hanuai QtliCkDr8W 

pen height 

I~~h I 
Figure E-1S 

SOlid Shapes em Fnmed Shapes 

In the case of framed Shapes, the outline appears completely within the 
enclosing rectangle--wlth one exceptlon--and the verUcal and horizontal 
tnlckness of tne outllne Is determined by the pen size. The exception Is 
pOlygons .. as OlSCUSSed In section E.S.2, pOlygons. 
The pen pattern ts used to fill tn the bits that are affected by tne drawing 
operation. The pen mode defines now tnose bits are to be affected by 
directing QuickDraw to apply one of eight boolean operations to the bits in 
tne Shape and the corresponding pixels on the screen. 
Text orawlng aoes not use the pnSlze, pnPat, or p1'1oae, bUt It does use tne 
pt..oc. Eacn character Is placed to the rlgnt of the current pen location, with 
me left end Of Its £lase Hne at the pen's locatIon. me pen Is moVed to the 
rignt to tne location wtlere It will draw the next character. No wrap or 
carriage return Is performed automatiCally. 
The methoO QulckDraw uses In placing text is controlled by a mode similar to 
me pen mode. This is explained in Section E.7.1, Transfer Modes. CUpping of 
text Is performed In exactly the same manner as all other clipping in 
QulCkDraw. 

E.7.1 TIa'lSfer MOaeS 
When Unes or shapes are drawn .. the p1'1oae field of the grafPort determines 
now tne drawing is to appear In the port's £lIt Image; slmllarly, the b<t1Jde 
field determines how text is to appear. There is also a QuickDraw procedUre 
tnat transfers a £lIt Image from one tl1tmap to another, and this proceaure has 
a mode parameter that determines tne appearance of the result. In all these 
cases, the mode, called a transfer ITIOf1e, specifies one Of eIght bOolean 
operations: for each bit In the item to be drawn, QuickDraw finds the 

E-26 



Pascal Reference HantIal QtJickDraw 

corresponding Oit In the destination Oit Image ... performs the ooolean operation 
on the pair of bits, and stores the resulting bit into the bit image. 
There are two types of transfer mOde: 

• Pattem tra?sfer modeS, for drawing nnes or ShapeS with a pattern. 
• source transFer ~ for drawing text or transferrIng any bit Image 

between two bitmaps. 
For each type of mode ... there are four Oaslc operatIons--COpy, or, xor, and 
Blc. The COpy operation simply replaces the pixelS In the destination with 
the pIxels In the pattern or source, "paInting" over tne destination wltnout 
regard for what Is already there. The or, Xor, and Blc operations leave the 
destination pIxelS under the WhIte part Of the pattern or source unchangeO, 
and differ In hOW they affect the pixels under the black part: or replaces 
thOse pixels with black pixelS, thus "overlaying" the destination wIth the Olack 
part of the pattern or source; Xor inverts the pixels under the black part; and 
Blc erases them to White. 
Each of the basic operations has a variant In whiCh every pixel In the pattern 
or source Is Inverted Defore the operation Is performed, giving eight 
operations in all. EaCh mode Is defined by name as a constant In QulckOraw 
(see Figure E-16~ 

pattern or source dest inetion 

"Peint" "Overlev" "Invertll II E resell 

II II 
patCopy pe10r petXOl' petBic 
srcCopy srcOr sreXor srcBic 

notPatCopy notPatOr notPa1Xor notPatBic 
notSrcCopy notSrcOr notSrcXor notSrcBic 

fl(JJle E-16 
Tnmfer I'1Odes 

E-27 



Pascal Reference M8f1(J8/ 

Pattern 
transfer 
mode 

patCopy 
patOr 
patxor 
patBlc 
nolPateopy 
notPator 
nolPatxor 
notPatBic 

E.7.2 DraWing 10 COlor 

SOUrce 
transfer 
mode 
srccopy 
srcor 
srcXor 
sroBie 
notsrccopy 
notsrCOl 
notsrcXor 
notsroBio 

QIJ/ckDraW' 

Action on each pixel In destination: 
If black pixel In If white pixel In 
pattern or source pattern or source 
Force black 
Force black 
Invert 
Force White 
Force whIte 
Leave alone 
Leave alone 
Leave alone 

Force white 
Leave alone 
Leave alone 
Leave alone 
Force black 
Force black 
Invert 
Force white 

Currently you can only loOk at QulckDraw output on a black-and-whIte screen 
or printer. Eventually, hOwever, Apple wIll support color output devices. If 
you want to set up your appllcatIon now to produce COlor output In tne future, 
you can dO so by using QulckDraw procedures to set the foreground color and 
the background color. EIght standard colors may be specifled wIth the 
fOllowIng predefined constants: blackCOlor, WhiteColor, redCOlor, greencolor, 
bluecolor .. cycrColor .. magentacolor~ and yellOWCOlor. Init1ally .. the foreground 
color Is blOOkCOlor and the background color is whiteColor. If you specify a 
color otner than WhlteColor, It will appear as black on a black-and-white 
output deVice. 
To apply the table above (1n Section E.7.1) to drawing In color, make the 
following translation: where the table shows "Force black", read "Force 
foreground color", and Where it shOws "Force white .... read "Force background 
color". When you eventually receive the COlor output device, you'll find out 
the effect of inverting a color on it. 

NJTE 

QulckDraw can support output devIces that have up to 32 bits of color 
information per pixel. A color picture may be thOUght of, then, as 
having up to 32 planes. At anyone time, QulckDraw draws Into only 
one of these planes. A QulCl<Draw routine called by the COlor-imaging 
software specifies which plane. 

E.8 Pictures crd Polygons 
QulcKDraw lets you save a sequence of drawing commands and "play them 
back" later with a Single procedure call. There are two such mechanisms: one 
for drawing any picture to scale in a destlnatlon rectangle that you specify, 
and another for drawing polygons In all the ways you can draw other shapes in 
QulckDraw. 

E-28 



Pascal Reference Manual QufckDraw 

EAl Pictures 
A pioture in QuickDraw is a transcript of calls to routines Which draw 
somethlng--anythlng--on a bitmap. Pictures maKe It easy for one program to 
draw something defined in another program, with great flexibility and withoUt 
knowing the details about what's being drawn. 
For each picture you define, you specify a rectangle that surrounds the 
picture; this rectangle Is called the plctl.lre flame When you later call the 
procedUre that draws the saved picture, you supply a destination rectangle, 
and QuicKDraw scales the picture so that Its frame is completely al1gned with 
the destination rectangle. Thus, the picture may be expanded or shrunK to fit 
its destination rectangle. For example, if the picture is a circle inside a 
square picture frame, and the destination rectangle is not square, the picture 
is drawn as an oVal. 
SInce a picture may InclUde any sequence of drawing commandS, Its data 
structure is a variable-length entity. It consists Of two flxed fields followed 
by a varIable-length data fIeld: 

type Picture = record 
p1CS1ze: 1nteger; 
p1Cfrcae: Root; 
{p1cture def1nit1on data} 

em; 
The plostze field contains the size, In bytes, of the picture variable. The 
pJcFrane field Is the picture frame Which surrounds the pIcture and gIves a 
frame of reference for scaling when the picture Is drawn. The rest of the 
structure contains a compact representation of the drawIng commands that 
define the picture. 
All pictures are accessed through handles, Which point to one master pointer 

. WhiCh In tum points to the picture. 
type PlcPtr = "'P1cture; 

P1cHt:nile = "PicPtr; 
To define a picture, you call a QuicKDraw function that returns a picture 
handle and then call the routines that draw the picture. There Is a procedUre 
to call When you've finished defining the picture, and another for when you're 
done with the picture altogether. 
QulckDraw also allows you to Intersperse picture COIl7!TIefJts with the 
definlt1onof a picture. These comments, Which dO not affect the picture's 
appearance, may be used to provIde adalt10nal Informatlon about the picture 
wtlen 1t's played t>ack. This Is espec1ally valuable when pictures are 
transmitted from one applicat10n to another. There are two standard types of 

E-29 



Pascal Reference /'1aIJt.I8J QUiCKDraw 

comment WhIch, llKe parentheses, serve to group drawIng commands together 
(SUCh as all the commands that draw a particular part of a picture) 

cmst plclParen = 0; 
plcRParen = 1; 

The appUcation deflning the picture can use these standard comments as well 
as comments of its own design. 
To IncluCle a comment in the definition Of a picture, the applIcation calls a 
QuickDraw procedure that specIfies the comment with three parameters: the 
comment kind, which identifies the type of comment; a handle to additional 
data if desired; and the size of the additional data, if any. When playIng bacK 
a picture, QulckDraw passes any comments In the picture's definition to a 
low-level procedure accessed indirectly through the grafPIoos field of the 
grafPort (see Section E.10, Customizing QuickDraw ~rat1ons, for more 
informat1on~ To process comments, the application must include a procedure 
to do the processing and store a pointer to it in the data structure pointed to 
by the grafProcs field. 

The standard low-level prOCedUre for processIng pIcture comments 
SImply Ignores all comments. 

E.8.2 Polygons 
Polygons are similar to pictures In that you define them by a sequence of 
calls to QuickDraw routines. They are also slmllar to other shapes that 
QuickDraW' knoW's about, since there Is a set of procedures for performing 
graphIc operations and calculations on them. 
A pOlygon is simply any sequence Of connected lines (see Figure E-17). You 
define a polygon by movlng to the starting point of the polygon and drawing 
lines from there to the next point, from that point to the next, and so on. 

Fl~re E-17 
Polygons 

E-30 



Pascal Reference HantIal QuICkDraw 

The data structure for a polygon Is a variable-length enUty. It consIsts of 
two fIxed fIeldS followed by a variable-length array: 

type Pol}9ln = record 
polySize: integer; 
polyBBox: Rect; 
polyPoints: array [0 .. 0] Of Point 

em; 
The poly51Ze fleld contaIns the size, In bytes, of the polygon van able. me 
polyBBox field is a rectangle whICh just encloses the entire polygon. The 
polyPolnts array expandS as necessary to contain the points of the polygon-­
the starting point followed by each successive point to whiCh a llne Is drawn. 
Like pictures and regions, polygons are accessed through handles. 

type PolyPtr = APolygm; 
PolyHcmle = "PolyPtr; 

To defIne a polygon, you call a QuiCkDraw function that returns a polygon 
handle and then form the polygon Dy callIng procedUres that draw 11nes. You 
call a procedUre when you've finiShed defining the pOlygon, and another when 
you're dOne wIth the polygon altogether. 
Just as for other Shapes that QuickDraw knows abOut, there Is a set of 
graphIc operations on polygons to draw them on the screen. QulckDraw draws 
a polygon by movIng to the starting point and then drawIng lines to the 
remaining points In successIon, Just as when the routines were called to def1ne 
the polygon. In this sense It "plays back" those routine calls. Ns a result, 
pOlygons are not treated exactly the same as other QulCkDraw snapes. For 
example, the prOCedure that frames a polygon draws outsIde the actual 
boundary of the pOlygon, because QuiCkDraw 11ne-orawlng routines draw below 
and to the rlgnt of the pen location. The prOCedUres that fIll a polygon wIth 
a pattern, hOwever, stay wIthin the bOUndary Of the pOlygon; they also add an 
additIonal Une between the ending point and the starting poInt if thOse points 
are not the same, to complete the shape. 
There is also a difference In the way QulckDraw scales a polygon and a 
simllarly-shaped reglon If It's beIng drawn as part of a picture: when 
stretched, a slanted Une is drawn more smoOthly If it's part of a polygon 
rather than a region. You may find It helpfUl to keep In mInd the conceptual 
difference between polygons and regIons: a polygon Is treated more as a 
continuous shape, a region more as a set of bits. 

E.9 QulCI<Draw RouUnes 
This section describes all the prOCedures and functions In QulckDraw, theIr 
parameters, and theIr operation. They are presented In theIr Pascal form; for 
information on using them from assembly language, see Section E.ll, UsIng 
QuICkDraw from Assembly Language. Note that the actual proceaure ana 
function declarations are given here~ rather than the 8NF notation or syntax 
diagrams used elsewhere In thIs manual. 

E-31 



Pascal Reference l'1anIJal QufckDraw 

E.9.1 GrafPort Rout1neS 

ProcedIre In1 tGraf (glooalPtr: Q[Ptr); 

In1tGraf 1n1t1allzes QulC1<Draw. It Is called by the QIJSt4lpOrt unIt's QDInit 
routine; you neea not call It again. It Inl tlallzes the QuICK Draw global 
varIables l1Sted below. 

Variable 
tnePort 
Wh1te 
black 
gray 
ItGray 
d<.Gray 
arl'Otf 
soreer1J1ts 
rcnlSeed 

~ 
GrafPtr 
Pattern 
Pattern 
Pattern 
Pattern 
Pattern 
rut'sor 
BitMap 
longlnt 

In! t1al setting 
n11 
all-white pattern 
all-black pattern 
50% gray pattern 
25% gray pattern 
75% gray pattern 
poIntlng arrow cursor 
Usa screen, (0,0,720,364) 
1 

The gIObalPU parameter tells QuiCK Draw where to store Its glObal varlables, 
begimlng wIth thePort From Pascal programs, this parameter shOuld always 
be set to I'tteePOrt; asserntHy-language programmers may choose any location .. 
as long as it can accommodate the number of bytes specIfied by GRAFSIZE In 
GRAFTYPES. TEXT (see section E.11, usIng QulcKDraw from Assemoly 
Language~ 

TO InltlaUze the cursor" call InltCursor (descrlbeO In section E.9.2, 
cursor-HandUng Rout1nes~ 

ProceWre ~rt (~: GrafPtr); 

qJenPort allocaleS"space for the given grafPort's VlsRgl and cllJRgl, 
Inl UaUzes the fields of the grafPort as indicated below, and maKes the 
grafPort the current port (see Setport., below~ You must call CfJenport Defore 
usIng any grafPort; first create a grafPtr wIth new, then use that grafPtr In 
me (l)enPort call. 

E-32 



Pascal Reference Manual 

Field 
deVIce 
portBlts 
portRect 
vI~ 
Ol~ 

bkPat 
f111Pat 
prLoo 
plS1ze 
pR10de 
pPat 
pnVls 
tXfmt 
t)(face 
b<J1ode 
tXS!ze 
~xtra 
f~lor 
bkCOlor 
colrBlt 
patstretcll 
p1cSave 
r(JlSaVe 
poly8aVe 
gratProcs 

~ 
integer 
B1~ 
Root 
~le 
~le 

Pattern 
Pattern 
Point 
Point 
integer 
Pattern 
integer 
integer 
style 
integer 
integer 
looglnt 
loogint 
loogint 
integer 
integer 
~le 
Wbldle 
~le 
(DJrOCsPtr 

Ini Ual setting 
o (Lisa screen) 
screerBlts (see InltGraf) 
screerelts.tnms (0,0,720,364) 

QulckDraw 

nanCJIe to the rectangular regIon (0,0,720,364) 
nancne to the rectangular regIon 
(-30000, -30000, 30000, 30000) 
WhIte 
black 
(0,0) 
(1,1) 
patcopy 
black 
o (vISible) 
o (system font) 
normal 
sJCOr 
o (QulckDraw decIdes) 
o 
blackCOlOr 
WhlteColor 
o 
o 
nll 
nil 
nll 
nil 

ProceWre InltPort (~: GrafPtr); 
GIven a pointer to a grafPort tnat nas been opened wltn qlenPort, Inltport 
reinitlalizes tne fields of tne grafPort and makes it tne current port (If it's 
not alreaCJy~ 

Inl tPort does everytnlng qrenport dOeS except allocate space for the 
vlsRal and cllJR.n 

ProceWre ClosePort ({I): GrafPtr); 

ClosePort d~aH~()a~~tJ)espace o()cupled. by the gIven grafPo~t's vlsRgl and 
cllPRIJl. When you are bompleteTy--througn witn a grafPort, call thIs 
procedure. 

E-33 



Pascal Reference Manual 

WARNN3S 

If you dO not call ClosePort before dIsposing of the grafPort, the 
memory used by the vlsRgl and CIIJRgl wUl be unrecoverable. 

QtlICkDraw 

After calling ClosePort., be sure not to use any caples of the VlsRgl or 
cllpfQl handles that you may have made. 

Procec:lJre setPort (gl: GrafPtr); 

Setport sets the grafPort InOlcated by ~ to be the current port. The glObal 
pointer UlePort always points to the current port. All QulckDraw drawing 
routInes affect the bitmap thePOrt" .portBlts ana use the local cooralnate 
system of UlePort". Note that ~enPort ana InltPort ao a Setport to the 
given port. 

Never ao a SetPort to a port that has not been opened with qlenPort. 

Each port possesses Its own pen and text CharacterIstics whIch remaIn 
uncI,angeu wtlen the port is not selected as the current port. 

Procec:lJre Ge'tPort (var m>: GrafPtr); 

Getport returns a poInter to the current grafPort. If you have a program that 
draws Into more than one grafPort, it's extremely useful to have each 
procedUre save the current grafPort (wIth Getport), set 1ts own grafPort, do 
drawIng or calculations, and then restore the previous grafPort (with setport~ 
The pointer to the current grafPort is also available through the glObal 
pointer thePort, bUt you may prefer to use Getporl for better readability of 
your program text. For example, a procedure could dO a Getport(savePort) 
before setting its own grafPort and a setPort(savePort) afterwards to restore 
the previous port. 

Procec:lJre GrafDeVice (deVice: integer); 

GrafDevlce sets thePort" .deVice to the given number, WhiCh Identifies the 
logical output device for this grafPort. QulckDraVi uses this information. The 
iniUal device number is 0, whiCh represents the Usa screen. 

Procec:lJre setPortBits (bin: Bitttap); 

SetPortBits sets thePort".portBlts to any previOUSly defined bitmap. This 
alloYls you to perform all normal drawing and Calculations on a bUffer other 
than the Lisa screen--for example, a 640-by-8 output bUffer for a dOt matrix 
printer, or a small off-screen image for later "stamping" onto the screen. 

E-34 



Pascal Reference /'1antJaJ QulckDraw 

Remember to prepare all flelOS of the bItmap before you call 5etportBlts. 

ProceWre PortS1ze (w1dth, he1{tlt: integer); 

PortSIze changes the sIze Of the current grafPort's portRecl TIlls dOes not 
affect tI7e screen.- It merely changes the size of the "active area'· of the 
grafPOrt. 
The top left comer of the portRect remains at Its same location; the wIdth 
and heIght of the portRect are set to the gIven width and height. In other 
words, PortSlze moves the bottom right corner of the portRect to a post tion 
relative to the top left comer. 
PortSlze does not Change the cllpRgl or the VlsRg'l, nor does It affect the 
local ooordinate system of the grafPort: It ohanges only the portRect's width 
and heIght Remember that all drawIng occurs only In the Intersection Of the 
portBlts.t:xxn:Js and the portReot, cUpped to the vlsR{Jl and the cllpRg'l. 

ProceWre tkWePortTo (leftGlooal, topGIObal: 1nteger); 

MovePortTo Ohanges the position of the ourrent grafPort"s portRecl ThIs does 
not affect the semen.: It merely Changes the location at Which SUbsequent 
drawing Inside the port wIll appear. 
The leftGlObal and tq)Global parameters set the distanoe between the top left 
corner of the portBlts..bot.rlds and the top left corner of the new portRect. 
For example, 

t1OVePortTo(360,l82); 
will move the top left comer of the portRect to the center of the screen (if 
portBlts Is the Usa screen) regardless of the local coordinate system. 
LIke portSlze, MovePortTo does not cnange the CIIJ,:R{Jl or the VlsRg'l, nor 
does it affect the local coordinate system of the grafPort 

ProceWre setor1gin (h, v: integer); 

setOrlgln Ohanges the local coordInate system Of the current grafPort. mls 
lkJeS not affect the sc.recn-lt does, however, affect where subsequent drawIng 
and oalculation will appear In the grafPort. 8etOrlgln updates the ooordinates 
Of the portBlts..bot.rlds, the portRect, and the VlsRg'l. All SUbsequent drawIng 
and oalculation routines wll1 use the new ooordinate system. 
The. h and v parameters set the coordinates of the top left corner of the 
portRecl All other coordinates are calculated from thIs poInt. All relative 
dIstances among any elements In the port will remain the same; only their 
absolute local coordInates will change_ 

E-35 



Pascal ReFerence I'18nU8l G;t/lCkDraw 

Setorlgln does not upaate the coordinates of the cllpRg'l or the pen; 
these Items stick to the coorc11nate system (unUke the port's structure .. 
Which sticks to the screen~ 

Setortgln Is useful for adJusting the COOrdInate system after a scroll1ng 
operation. (see ScrollRect in Section E.9.13 .. Bit Transfer q>erations.) 

ProcedIre setclip (1Vl: Rg1icI1dle); 

setCUp changes the cUpping region of the current grafPort to a region 
equIvalent to the gIven region. Note that thIs does not change the region 
handle .. but affects the cUpping region Itself. Since SetCUp makes a copy of 
the given regIon, any SUbsequent Changes you make to that regIon wIll not 
affect the cUpping region Of the port. 
You can set the cUpping region to any arbitrary regIon .. to aid you in drawIng 
inside the grafPort. The IniUal cl1pRgn Is an arbitrarlly large rectangle. 

Procewre Getcllp (IVl: Rg'lHandle); 

Getcllp changes the given region to a region equivalent to the cUpping regIon 
of the current grafPort. This is the reverse of what SetCUp does. Like 
SetCUp .. it does not Change the region handle. 

PrOOedIre CllpRect (r: Root); 

Cl1pRect Changes the cUpping region of the current grafPort to a rectangle 
equivalent to given rectangle. Note that this does not change the region 
handle .. but affects the region Itself. 

ProcedIre BackPat (pat: Pattern); 

BackPat sets the background pattern Of the current grafPort to the given 
pattern. The bacKground pattern Is used In ScrollRect and In all QulCKDraw 
routines that perform an "erase" operation. 

E.9.2 cursor-Hcn:tllng Rootlnes 
Additional Information on cursor hanc111ng can be found In Appendix F .. 
Hardware Interface. 
P1'OCEO.Il:'e Initcursor; 

InltCUrsor sets the current cursor to the predefined arrow cursor, an arrow 
pointing north-northwest .. and sets the cllrsor level to 0 .. making the cursor 
vISible. The cursor level, whIch Is Inltlal1zed to 0 when the system Is booted" 
keeps track of the number of times the cursor has been hIdden to compensate 
for nested calls to Hldecursor and snowCursor (below~ 

E-36 



Pascal Reference Manual QIIiCkDraw 

Before you call InitCursor" the cursor Is uncIeflneCl (or" If set by a previous 
process" it's whatever that process set it to~ 

ProceclIre setrursor (crsr: cursor); 

SetCursor sets the current cursor to the 16-by-16-bit image in crSl. If the 
cursor Is hlClden" It remains hlClden ana wm attain the new appearance When 
It's uncovered; if the cursor is alreooy visible" it changes to the new 
appearance ImmeCllately. 
The cursor image is iniUalizeCl by InltCursor to a north-northwest arrow" 
visible on the screen. There is no way to retrieve the current cursor image. 

ProceclIre Hidf:O.lrsor; 

HideCursor removes the cursor from the screen" restoring the bits unCler it" 
anCl Clecrements the cursor level (WhiCh InltCursor inltiallzeCI to o~ Every call 
to HiCleCursor should be balanceCl by a sUbsequent call to ShowCursoT. 

ProceclIre ShO.ruI'sor; 

ShowCursor increments the cursor level" Which may have been ClecrementeCl by 
HIC1eCursor" and displays the cursor on the screen if the level becomes O. A 
call to ShowCursor should balance each previous call to HiCleCursor. The 
level Is not incrementeCl beyond 0" so extra calls to ShowCursor dOn't hUrt. 
If the cursor has been changed (with setcursor) while hidCIen" ShOwCursor 
presents the new cursor. 
The cursor is initiaUzed by InitCursor to a north-northwest arrow" not hidden. 

ProceclIre OOscureOJrsor; 

CbscureCursor hiCleS the cursor until the next time the mouse is moved. Unlike 
HideCursor" it has no effect on the cursor level and must not be balanceCl by 
a call to ShoWCursor. 

E.9.3 Pen nj Une-Drawlng Routines 
The pen anCl Une-Clrawlng routines all ClepenCl on the coordinate system of the 
current grafPort. Remember that each grafPort has its own pen; if you draw 
in one grafPort" Change to another" ana return to the first., the pen wUI have 
remained in the same location. 

ProceWre HidePen; 

HidePen decrements the current grafPort's pnVls fielCl" which is initialized to 
o by qJenPort; whenever pnVls Is negative" the pen dOeS not Clraw on the 
screen. PnVls keeps track of the number of times the pen has been hidden to 
compensate for nesteCl calls to HIClePen and ShOwPen (below~ HldePen Is 

E-37 



Pascal Reference MantJal QulckDraw 

oalled Dy (l>enRgn, Q>enPioture, and (llenPoly so that you oan defIne regIons, 
pictures, and polygons withOut drawIng on the screen. 

ProceaJre StnR!n: 

ShowPen 1ncrements the current grafPort's pnVls f1eld, whioh may have been 
decremented Dy HldePen; If pnVls becomes 0, QulcKDraw resumes drawing on 
the screen. Extra oa11s to ShowPen '11111 increment pnVls beyond 0, so every 
oall to snowPen Should t)e balanced Dy a suDsequent oall to HldePen. 
ShowPen is called by CloseRgn, ClosePIcture, and ClosePoly. 

ProceaJre Getl'en (var pt: Point); 

GetPen returns the current pen location, in the local coordinates of the 
ourrent grafPort. 

ProceaJre GetPenState (var pnState: PenState); 

GetPenState saves the pen location, sIze, pattern, and mode In a storage 
varIable, to re restored later wIth setpenstate (relow~ ThIs Is useful When 
calling shOrt suorouUnes tMt operate In the current port Out must Change the 
graphics pen: eaCh such procedure can save the pen's state When It's Called, dO 
whatever it needs to dO, and restore the prevIous pen state ImmedIately 
before return1ng. 
The PenState data type is not useful for anything except savIng the pen's 
state. 

ProceaJre 5etPenState (pnState: PenState); 

SetPenState sets the pen location, size, pattern, and mode In the current 
grafPort to the values stored in pnState. This is usually called at the end of 
a procedUre that has altered the pen parameters and wants to restore them to 
their state at the Deglnning of the procedure. (See GetPenState, above.) 

ProceaJre PenSize (width, hei~t: integer); 
PenSlze sets the dimensions of the graphics pen In the current grafPort. All 
suosequent calls to Une, lineTo, and the procedures that draw framea Shapes 
In the current grafPort wUl use the new pen dimensions. 
The pen dimens10ns can be accessea In the varlaDle thePOrt" .pnSlze, which Is 
of type Point If either of the pen dimensions Is set to a negative value, the 
pen assumes the dImensions (0,0) and no drawing Is performed. For a 
Cliscussion of now the pen draws, see Section E.7, General Discussion of 
Drawing. 

E-38 



Pascal Reference Manual QulckDraw 

ProceWre Pert10de (nooe: integer); 

Pert-1Ode sets the transfer mode througn Which the prPat Is transferred onto 
the bItmap When Unes or stlapes are drawn. The mode may be any one of the 
pattern transfer mocJes: 

patcopy patXor notPatcopy notPatXor 
pator patBIC notPator notPatBlc 

If the mode Is one of the source transfer mOdes (or negative), no drawing Is 
performed. The current pen mode can be Obtained In the variable 
thePort ".prtYIode. The Initial pen mode Is patcopy, In whiCh the pen pattern 
Is copied directly to the bitmap. 

ProceWre PerPat (pat: Pattern); 

PenPat sets the pattern that is used by the pen in the current grafPort. The 
standard patterns WhIte, black, gray, ItGray, and (l(Gray are predefined; the 
inlUal pen pattern is black. The current pen pattern oan be Obtained In the 
variable thePort ft .prPat, and this value can be assigned (but not compared!) to 
any other variable of type Pattern 

ProceWre Per1tll'llBl; 

PenNormal resets the initial state of the pen In the current grafPort, as 
follOWS: 

Field 
pnSlze 
pr1tlde 
prPat 

settl? 
(LI 
patcopy 
black 

The pen location Is not Changed. 

Procedlre ttlVeTo (n, V: integer); 

MoveTo moves the pen to location (h,v) In the local coordinates of the current 
grafPort. No arawlng Is performed. 

ProceWre Hove (ell, dV: integer); 

Move moves the pen a distance of c:I1 horizontally and dV vertically from its 
current location; It calls I'bIeT«h+dl,v+dV), Where (h,v) Is the current location. 
The positive directions are to the right and down. No drawing Is performed. 

E-39 



Pascal Reference Hantlal QtJickDraw 

ProoeWre L1neTo (h, V: 1nteger); 

UneTo draws a line from the current pen location to the location specIfIed (In 
local coordinates) by h and v. The new pen location Is (h,v) after the line Is 
drawn. See Section E.7, General Discussion of Drawing,. 
If a region or polygon is open and being formed, its outline Is Infinitely thin 
and Is not affectect oy the JIlSlze .. Jrt1OOO .. or prFat (see qlenRgn ana 
~enPoly.) 

ProceclJre Line (CIl, dV: integer); 

Une draws a line to the location that Is a distance of c:Il hOrizontally and dV 
vertically from the current pen location; It calls LlneTc(h+(hV+dV), where (h,v) 
is the current location. The positive directions are to the right and down. 
The pen location becomes the coorctlnates Of the end of the Une after the Une 
is drawn. See section E.7, General Discussion of Drawing. 
If a region or polygon Is open and being formed, 1ts outline Is infinitely thin 
and Is not affected by the ~ze, Jrt1OOO .. or pnPat (see ~enRgn and 
~enpoly.) 

E.9.4 Text~DraW1ng Rrutlnes 
Each grafPort has Its own text oharaoteristios, and all these prooedures deal 
wi th trIOse of the current port. 

ProoeWre Textfoot (foot: integer); 

TextFont sets the current grafPort's font (thePOrt" .beFoot) to the given font 
number. The iniUal font number is 0, whioh represents the system font. For 
other font numbers, refer to the QOSe..4lport unIt, l1stectin Section E.lS. 

ProoeWre TextFace (face: Style); 

TeXtFace sets the current grafPort's character style (thePOrt" .txFace~ The 
Style data type allows you to specify a set Of one or more of the following 
preclefined oonstants: bold, ltaUc, lIlderl1ne, ouUlne, shadOw, condenSe .. anC1 
extern. For example: 

Textface( [bold]); 
TextFace([bOld, italiC]); 
Textface(thePort~.tXface+(bOld); 
TextFace(thePort". txFace-[bold)); 
Textface([ ]); 

E-40 

{bOld} 
{bold and italic} 
{WhateVer it was plUS bold} 
{Wlatever it was bUt not bOld} 
{normal} 



Pascal Reference Manual QuickDraw 

ProcedJre Textt10de (1IIlde: integer); 

TextMode sets the current grafPOrt's transfer mode for drawing text 
(thePort" .txt-1ode~ The mode ShOUld be SICOr .. sroXor, or sroBic. The InlUal 
transfer mode for drawIng text Is srcB'. 

ProceWre Textsize (Size: integer); 

TextSize sets the current grafPort's type size (thePort" .bCSlze) to the given 
number Of points. MY size may be specified, bUt the result will lOOk best If 
QuiCkDraw has the font in that size (otherwise It will scale a size It does 
have~ The next best result will ocour If the gIven size Is an even mUltiple of 
a size available for the font. If 0 is specified .. QulokDraw will chOOse one of 
the available sizes--Whichever Is olosest to the system font s1ze. The 1n1Uai 
txSlze setting is 0. 

ProcedJre SpooeExtra (extra: integer); 

SpaceExtra sets the current grafPort's spExtra field .. whIch specifIes the 
number of pIxels by Whioh to wIden eaoh space In a Une of text. ThIs Is 
useful when text Is beIng fully justifIed (that Is, aligned wIth both a left and a 
r1ght margln~ Cons1der, for example, a Une that conta1ns three spaces; 1f 
there would normally De six pixelS between the end of the Une and the rIght 
margIn, you would call SpcD£xtrc(2) to print the line with full justification. 
The InItial spExtla setting Is O. 

SpaceExtra wIll also take a negative argument, but be careful not to 
narrow spaces so muCh that the text is unreadable. 

JlrcK.mJre ora.am (00: Char); 

DrawChar places the g1ven oharaoter to the right of the pen locat1on .. with 
the left end of Its base line at the pen's location .. and advances the pen 
accord1ngly. If the character Is not 1n the font .. the font's m1ss1ng symbol Is 
drawn. 

ProceWre DraWString (s: str255); 

DrawString performs consecutive calls to DrawChar for each character In the 
supplied string; the string Is placed beglming at the current pen location and 
extending right. No formatting (carriage returns, line feeds, etc.) Is performed 
by Qu1okDraw. The pen location ends up to the right of the last character In 
the string. 

E-41 



Pascal Reference MantIaI QtlfekDraw 

ProceclJre Ora.Text (textflJf: (lPtr; firstByte,byteCt:Ult: integer); 
DrawText draws text from an arbitrary structure in memory spec1fled by 
textBuf, starting ftrstByte bytes into the structure and continuing for 
byteColllt bytes. The string of text is placed beginning at the current pen 
location and extending right. No formatting (carriage returns, Une feeds, etc.) 
is performed by QulckDraw. The pen location ends up to the right of the last 
character in the strIng. 

flmtion am'iath (m: Char) : integer; 
CharWldth returns the value that w111 be added to the pen horizontal 
coordinate if the specified cnaracter is drawn. CharWictth InclUdes the effects 
of the stylistic variations set with TextFace; if you Change these after 
determining the character width but before actually drawing the Character, 
the predetermined wIdth may not be correct. If the character is a space, 
CharWidth also inclUdes the effect of SpaceExtra. 

fUlCtion strirYJiidtfl (s: str255) : integer; 
Strlngwldth returns the width of the given text string., which It calC'..IJlates by 
adding the widths Of all the characters In the string (see CharWidth, abOve~ 
This value will be added to the pen horizontal coordinate If the specified 
string is drawn. 

flmtion Text'iath (textflJf: CP'tr; firstByte,byteCt:Ult: integer) : 
integer; 

TextWldth returns the width of the text stored in the arbitrary structure in 
memory speCified by textBuf, starting ftrstByte bytes into the structure and 
continuing for byteCoult bytes. It calculates the width by adding the widths 
of all the characters In the text. (See CharWidth, above.) 

ProcedIre GetFontInfo (var info: fontInfO); 
GetFontInfo returns the fOllowing Information abOut the current grafPort's 
character font, taking Into consideration tne style and size in Which the 
characters '11111 be drawn: the ascent, descent, maximum character width (the 
greatest distance the pen will move when a character is drawn), and leading 
(the vertical distance between the descent Une and the ascent line below it), 
all In pixels. The FontInfo data structure Is defined as: 

type fontInfo = record 
ascent: integer; 
descent: integer; 
wlc:11aX: integer; 
leadiIYJ: integer 

end; 

E-42 



Pascal Reference Manual QulckDraw 

E.95 DraWlrg In COlor 
These routines will enable appllcations to dO color drawing in the future 'When 
Apple supports color output devIces for the Usa All nonwhite colors will 
appear as black on blacK-and-white output devices. 

ProcedJre ForeQllor (color: longlnt); 

ForeColor sets the foreground color for all drawing In the current grafPort 
(tI1ePOrt ... fgColor) to the gIven color. The followIng standard colors are 
predefined: blaokCOlor~ WhlteColor~ rec:color~ greenColor~ bJ.ueColor~ Cycl'lColor~ 
magentaCoIOT~ and yellOWCOIOT. The InItial foreground color Is blaokCOlor. 

ProcedJre BackCOlor (COlor: longlnt); 

BacKColor sets the bacKground color for all drawIng In the current grafPort 
(tnePort" .bkCOlor) to the given color. Eight standard colors are predefined 
(see Forecolor, above~ Tne Initial baCKground color Is WhlteColOT. 

ProcedJre COl0r8it (lhictfJit: integer); 

ColorBlt Is called by prInting software for a color printer., or other color­
imaging software~ to set the current grafPort's colrBlt field to Whlctett; this 
tells QulcKDraw Which plane of the color picture to draw Into. QulcKDraw 
will draw into the plane corresponding. to bit number wttlot1B1t. Since 
QulcKDraw can support output devices that have up to 32 bits of color 
information per pixel~ the pOSSible range of values for Whl.ctelt Is 0 through 
31. The initial value of the calrBlt field Is O. 

E.9.6 calculations with Recta'lgles 
Calculation routines are independent of tne current coordinate system; a 
calCUlation will operate the same regardless of which grafPort is active. 

t-IJTE 

Remember that if the parameters to one of tne calculation routines 
were defined in different grafPorts .. you must fIrst adjust them to be In 
the same coordinate system. If you do not adjust them~ the result 
returned by tne routine may be dIfferent from What you see on ttte 
screen. To adjust to a common coordinate system" see LocalToGlObal 
and GlobalToLocal In Section E.9.17~ Calculations with PoInts. 

ProcedJre setRect (var r: Root; left, top,ri41tt,bottom: integer); 
SetRect assigns the four boundary coordinates to the rectangle. The result is 
a rectangle with coordinates (left,top,rl~tJ)Ottom~ 
This procedure is supplled as a ut1lity to help you snorten your program text. 
I f you want a more readable text at the eXpense of length, you can assign 

E-43 



Pascal ReFerence MantIa! QulekDraw 

Integers (or poInts) dIrectly into the rectangle's fields. There Is no sIgnificant 
code size or execution speed advantage to either method; one's just easier to 
wr1 te, and the other's easier to read. 

Procewre OffsetRect (var r: Rect; tfl, dV: integer); 
OffsetRect moves the rectangle by add1ng CIl to each hor1zontal coordInate 
and dV to each vertical coord1nate. If CIl and dV are positive, the movement 
Is to the rIght and down; If eIther Is negative, the corresponding movement Is 
in the opposite direction. The rectangle retains its shape and size; it's merely 
moved on the coordInate plane. This does not affect the screen unless you 
subsequently call a routine to draw wIthin the rectangle. 

Procewre InsetRect (var r: Rect; (fl,dv: integer); 

InsetRect shrinks or expands the rectangle. The left and right sides are 
moved In by the amount specified by CIl; the top and bottom are moved 
toward the center by the amount speCified by <N. If ell or dV is negative, the 
appropriate pair of sIdes Is moved outward Instead Of inward. The effect Is to 
alter the size by 2*CIl horizontally and 2*dV vertically, with the rectangle 
remaining centered 1n the same place on the coordinate plane. 
If the resulting wIdth or heIght becomes less than 1, the rectangle Is set to 
the empty rectangle (o,o,o,o~ 

FUlCtion 8ectRect (sroReotA, srcRectB: Rect; var dstRect: Rect) : 
bOoleal; 

SectRect calculates the rectangle that Is the intersection of the two input 
rectangles, and returns true if they indeed intersect or false if they do not. 
Rectangles that "tOUCh" at a line or a point are not considered intersecting, 
because their intersection rectangle (really, in this case, an intersection Une 
or point) does not enclose any bits on the bitmap. 
If the rectangles do not intersect, the destination rectangle Is set to (O,O,O,O~ 
SectRect works correctly even if one of the source rectangles 1s also the 
destination. 

Proce<lJre tklionRect (srcRectA, srcRectB: Rect; var dstRect: Rect); 

UnlonRect calculates the smallest rectangle Which encloses both input 
rectangles. It workS correctly even If one of the source rectangles Is also the 
destination. 

E-44 



Pascal Reference Manual QulckDraw 

FtIlOtion ptlrfleCt (pt: Point; r: Root) : bOOlea'l: 

PtInRect determines whether the pixel below and to the right of the given 
coordinate point Is enclosed in the specified rectangle, and returns true if so 
or false If not. 

ProceC1lre pt2ReCt (ptA,ptB: Point; var dstRect: ROOt); 

Pt2Rect returns the smallest rectangle which encloses the two input points. 

ProceclJre ptToAngle (r: Root; pt: Point; var crgle: integer); 

PtToAngle calculates an integer angle between a Une from the center of the 
rectangle to the given point and a Une from the center of the rectangle 
pointing straight up (12 o'cloCk hlgh~ The angle Is In degrees from 0 to 359, 
measured clOCkwise from 12 o'clock, with 90° at 3 o'cloCk, 1800 at 6 o'clock, 
and 2700 at 9 o'clock. Other angles are measured relative to the rectangle: If 
the line to the given point goes through the top rIght corner of the rectangle, 
the angle returned Is 45 degrees, even if the rectangle is not square; if It goes 
through the bottom right corner, the angle is 135 degrees, and so on (see 
Figure E -18~ 

Figure E-18 
PtToArgie 

. The angle returned mIght be used as input to one of the procedures that 
manipUlate arcs and wedges, as descrloed In Section E.9.l0, GraPhiC (lleratIons 
on Arcs and Wedges. 

F~tioo E(JJ8lRect (rectA, recta: Rect) : boolem; 

EqualRect compares the two rectangles and returns true If they are equal or 
false if not. The two rectangles must have identical Ooundary coordinates to 
De considered equal. 

E-45 



Pascal Reference Manual QuickDraw 

FlIlCtion EnptyRect (r: Rect) : boolean; 

EmptyRect returns true if the given rectangle Is an empty rectangle or false 
if not. A rectangle is considered empty if the bottom coordinate is equal to 
or less than the top or the right coordinate is equal to or less than the left. 

E.9.7 Graphic qJeratlons on Recta1gles 
These procedures perform graphIc operat1ons on rectangles. See also 
ScrollRect in Section E.9.13, Bit Transfer q>eratlons. 

ProceclJre FrcneRect (r: Rect); 

FrameRect draws an outline just inside the specified rectangle, using the 
current grafPort's pen pattern, mode .. and size. The outl1ne Is as wlae as the 
pen width and as tall as the pen height. It Is drawn with the pnpat, according 
to the pattern transfer mOde speclf1ea by pnMade. The pen location Is not 
changed by this procedure. 
If a region is open and being formed, the outside outline of the new rectangle 
is mathematically added to the region's boundary. 

Pl'OCedIre Pa1ntRect (r: Rect); 

PaintRect paints the specified rectangle with the current grafPort's pen 
pattern and mode. The rectangle on the bitmap is filled with the prPat, 
according to the pattern transfer mOde speCified by pnI'1ode. The pen location 
Is not changed by this procedUre. 

ProoeclJre EraseRect (r: Rect); 

EraseRect paints the specified rectangle with the current grafPort's back­
ground pattern bkPat (In patcopy mOde~ The grafPort's pnPat and pnMlde are 
ignored; the pen location is not changed. 

ProceWre InvertRect (r: Rect); 

InvertRect inverts the pIxels enclosed by the specIfIed rectangle: every whIte 
pixel becomes black and every black pixel becomes whIte. The grafPort's 
pnPat, pnMode, and bkPat are all ignored; the pen location is not Changed. 

ProceWre FlllRect (r: Rect; pat: Pattern); 

FillRect fills the speCified rectangle with the given pattern (In paf.Cq)y mOde~ 
The grafPort's pnPat .. pnMlde, and bkPat are all ignored; the pen location is 
not changed. 

E-46 



Pascal Reference Manllal Qt.JiCkDraw 

E.9.8 Graphlc (l)eraUons on OVals 
OVals are drawn 1ns1de rectangles that you spec1fy. If the rectangle you 
spec1 fy 1s square, Qu1CkDraw draws a cirCle. 

ProcedUre FrClEOVal (r: Rect); 

FrameOVal draws an outllne just Inslde the oval that flts InsIde the specIfIed 
rectangle, using the current grafPort's pen pattern, mocJe, and s1ze. The 
outlIne Is as wide as the pen width and as tall as the pen heIght. It Is drawn 
wIth the pPat, according to the pattern transfer mode specified by pnvIode. 
The pen location Is not changed by this procedure. 
If a region Is open and being formed, the outside outline of the new oval Is 
mathematically added to the region's boundary. 

ProcedUre PaintDval (r: Rect); 

PaintOVal paints an oval just inside the specified rectangle with the current 
grafPort's pen pattern and mOde. The oval on the bitmap is filled with the 
p-Fat, accordIng to the pattern transfer mode specified by prMode. The pen 
location is not Changed by this procedure. 

ProcedIre Erase£JVal (r: Root); 

EraseOVal paints an oval just inside the specified rectangle with the current 
grafPort's background pattern bkPat (1n patcopy mOde). The grafPort's p-Pat 
and pnMode are ignored; the pen location is not changed. 

ProceclJre Invert0V81 (r: Root); 

InvertOVal inverts the pixels enclosed by an oval just inside the spec1 fied 
rectangle: every whIte pIxel becomes black and every blaCk pixel becomes 
white. The grafPort's pnPat, pnvIode, and bkPat are all ignored; the pen 
location is not Changed. 

ProcedUre Fl110V81 (r: Rect; pat: pattern); 

FillOVal fills an oval just insIde the specIfied rectangle wIth the given pattern 
(1n patCopy mOde). The grafPort's prPat, pnvIode, and bkPat are all ignored; 
the pen location Is not Changed. 

E.9.9 Graphlc qJeraUons Cl'l ROtJ1ded-COmer Rectalgles 

Procec:lae Fr~t (r: Root; oval'ldth,ovalHel~t: integer); 

FrameRoundRect draws an outline just inside the specified rounded-corner 
rectangle, using the current grafPort's pen pattern, mode, and size. DvalWidth 
and ovaJ.Hel~t specify the diameters of curvature for the corners (see Figure 
E-19). The outline is as wIde as the pen wIdth and as tall as the pen height. 

E-47 



Pascal Reference Manual QuickDraw 

It Is drawn wIth the prPat ... accordIng to the pattern transfer mode specIfied 
by pnMode. The pen location Is not changed by this procedure. 

ovelwidth 

Fl~Jle E-19 
Rcxnted-COmer Rect.crlgle 

If a regIon Is open and being formed, the outsIde outline of the new rounded­
corner rectangle Is mathematically added to the region's boundary. 

Proce<lUre Pa1nt~t (r: Root; ovall1dttl,ovalHe1glt: 1nteger); 

PalntRoundRect paInts the speCified rounded-corner rectangle with the 
current grafPort's pen pattern and mode. ClvalWidth and ovalHel~t specify 
the diameters of curvature for the corners. The rounded-corner rectangle on 
the bitmap Is filled with the pnPat, accordIng to the pattern transfer mode 
specified by pnMode. The pen location Is not changed by this procedure. 

ProcedUre Era~t (r: Root; oval'1dth,ovalHei~t: integer); 

EraseRoundRect paInts the speCified rounded-corner rectangle wIth the 
current grafPort's background pattern bkPat (1n patCopy mOde~ (NalWldth and 
OValHel~t specify the dIameters of curvature for the corners. The grafPort's 
prPat and pnMode are ignored; the pen location is not changed. 

ProceWre Inver~t (r: Rect; oval'1dtn,ovalHe1~t: 1nteger); 

InvertRoundRect Inverts the pixels enclosed by the specified rounded-corner 
rectangle: every white pIxel becomes black and every black pixel becomes 
white. OValWidth and OValHel~t specify the diameters of curvature for the 
corners. The grafPort's pnPat ... pnMode ... and bkPat are all ignored; the pen 
location Is not changed. 

E-48 



Pascal Reference Manual QuiCkDraw 

Proceciae Fill~t (r: Root; ovallidtn,ovalHei~t: integer; pat: 
Pattern); 

F1l1RoundRect f11ls the specified rounded-corner rectangle with the given 
pattern (In patcopy mode~ ovaIWicJth and ovalHel~t specify the diameters of 
curvature for the comers. The grafPort's prPat, JP'1Ode, and l1<Pat are all 
Ignored; the pen location is not changed. 

E.9.tO Graphlo qleratlons on Arcs and WedgeS 
These procedures perform graphIc operations on arcs and wedge-shapea 
sections of ovals. see also PtTOAngle in Section E.9.6, Calculations with 
Rectangles. 

ProoeWre FlCIEArc (r: Reot; startArgle, arcAngle: integer); 

FrameArc draws an arc of the oval that fits Inside the specIfied rectangle, 
using the current grafPort's pen pattern, mode, and size. startAngle indicates 
where the arc begIns ana Is treated mod 360. ArcAngle aefines the extent of 
the arc. The angles are given in posit1ve or negative degrees; a positive angle 
goes ClOCKwIse, whUe a negative angle goes counterclocKwIse. Zero aegrees Is 
at 12 o'cloCK high, 90° (or -270°) is at 3 o'clocK, 180° (or -180°) is at 6 
o·cloCK .. ana 2700 (or -90j Is at 9 o·clocK. Other angles are measured relative 
to the enclosing rectangle: a l1ne from the center of the rectangle through Its 
top right corner is at 45 degrees, even if the rectangle Is not square; a line 
through the bottom right comer Is at 135 degrees, and so on (see Figure E-20~ 

startAngl e = 0 

startAngle = 0 startAngle = 0 I :":;~lel"~"45 
8rcAngl~ =-4~'! i arcAngle = 45 .... r ____ --r. 

"1"",<1 1 [~J 
FrameArc 

FrameArc 

startAng I e = 0 

! arcAngle = 45 

• "T"" 
PaintArc 

Figure E-20 
qleratloos on Arcs cn1 WedgeS 

E-49 



Pascal Reference Hanual QuiCkDraw 

The arc Is as wIde as the pen wIdth and as tall as the pen heIght It Is drawn 
wIth the prPat, according to the pattern transfer mode specified by prt-1ode. 
The pen location Is not Changed by thIs procedUre. 

WAANING 

FrameArc differs from other QulCkDraw procedures that frame shapes 
In that the arc is not mathematically added to the boundary of a 
region that is open and being formed. 

ProceclJre PaintArc (r: Root; startAngle, arcAngle: integer); 

PaintArc paints a wedge of the oval just inside the specified rectangle with 
the current grafPort's pen pattern and mOde. startAngle and arcAngle define 
the arc of the wedge as In FrameArc. The wedge on the bitmap is filled with 
the prFat, accordIng to the pattern transfer mode specIfIed by prt-1ode. The 
pen location is not changed by this procedUre. 

Procewre EraseArc (r: Rect; startAngle,arcAngle: integer); 

EraseArc paints a wedge of the oval just inside the specified rectangle with 
the current grafPort's bacKground pattern tlkPat (1n pateopy mOde~ 
startAngle and aroAngle define the arc Of the wedge as In FrameArC. The 
grafPort's prPat and prt-1ode are ignored; the pen location Is not Changed. 

Procet1n'e InvertAro (r: Rect; startAngle" arcI\nJle: integer); 

InvertArc Inverts the pIxels enclosed by a wedge of the oval just InsIde the 
specified rectangle: every white pixel becomes black and every black pixel 
becomes whIte. startAngle and arcf\llgle defIne the arc of the wedge as In 
FrameArc. The grafPort's prPat, prt-1ode, and bkPat are all Ignored; the pen 
location is not Changed. 

ProceclJre FillArc (r: Rect; startAngle,arcAngle: integer; pat: 
Pattern); 

FillArc fills a wedge of the oval just inside the specified rectangle with the 
given pattern (In patCopy mOde~ startAngle and aroAngle deflne the arc of 
the wedge as in FrameArc. The grafPort's pnPat, prt-1ode, and bkPat are all 
Ignored; the pen location Is not changed. 

E-50 



Pascal Reference Manual QulckDraw 

E.9.II caIculaUons with Regions 

Remember that if the parameters to one of the calcUlation routines 
were defIned In dIfferent grafPorts .. you must first adjust them to oe In 
the same coordinate system. If you do not adjust them, the result 
returned Oy the routine may oe different from what you see on the 
screen. To adjust to a common coordinate system, see LocalToGlobal 
and GloOalToLocal In Section E.9.17, Calculations with POints. 

Ftrotl00 Netlfql : ~le; 

NewRgn allocates space for a new, dynamic .. variable-size regIon, inItializes it 
to the empty region (0,0,0,0), and returns a handle to the new region. O'lly 
this function creates new regIons; all other procedures just alter the size and 
shape of regions you create. CllenPort calls NewRgn to allocate space for the 
port's vlsRg1 and cl1pRgl. 

WARNlI'GS 

Except when using v1sR~ or cUpR!Jl, you must call NewRgn Oefore 
specIfying a regIon's handle In any drawIng or calculation procedure. 
Never refer to a regIon without using its handle. 

ProcetiJre DisposeR!Jl (rgl: ~le); 

DlsposeRgn deallocates space for the regIon Whose handle Is supplied, and 
returns the memory used oy the regIon to the free memory pOOl. Use this 
only after you are completely through with a temporary region. 

WARNING 

Never use a regIon once you have deallocated It, or you will risk beIng 
hung by dangl1ng po1nters! 

Procedlre COpyRg'l (srcRgl, dstRgl: ~le): 

CopyRgn copies the mathematical structure of srcRgl into dstRgl; that is, it 
makes a duplicate copy of srcRgl. O'lce this is done, srcRgl may be altered 
(or even disposed of) without affecting dstRgl. COpyRgn dOes not create the 
destJnatJon region: you must use NewRgn to create the dStRgl before you 
call CopyRgn. 

E-SI 



Pascal Reference Manual Qu/ckDraw 

ProceWre setEnptyRgl (l'{Jl: ~le); 

SetEmptyRgn destroys the previous structure of the given region, then sets the 
new structure to the empty region (O,o,o,o~ 

ProceWre setRect~ (l'g'I: ~le; left, top,ri~t,bottom: integer); 

SetRectRgn destroys the prevIous structure of the gIven regIon, then sets the 
new structure to the rectangle specIfIed by left, top, r1~t, and bottom. 

If the specified rectangle Is empty (i.e., left>-r1~t or top>-bottom), the regIon 
Is set to the empty regIon (0,0,0,0). 

Procetilre Rect~ (r~: ~le; r: Rect); 

RectRgn destroys the prevIous structure Of the gIven regIon, then sets the new 
structure to the rectangle specified by r. This Is operationally synonymous 
with setRectRgn, except the input rectangle Is defined by a rectangle rather 
than by four boundary coordinates. 

ProceWre ~; 

q>enRgn tells QulckDraw to allocate temporary space and start saving lines 
and framed Shapes for later processing as a region definition. While a region 
Is open, all calls to Une, LineTo, and the procedures that draw framed Shapes 
(except arcs) affect the outlIne of the region. O1ly the Hne endpoints and 
shape boundaries affect the region definition; the pen mode, pattern, and size 
dO not affect It. In fact, (l)enRgn calls HIdePen, so no drawIng occurs on the 
screen while the region Is open (unless you called ShowPen just after ~enRgn, 
or you called ShowPen prevIously without balancing It by a call to Hidepen~ 
Since the pen hangs below and to the right of the pen location, drawing lines 
wIth even the smallest pen w111 Change bits that lle outside the regIon you 
define. 
The outline of a regIon Is mathematically defined and infinitely thin, and 
separates the bitmap into two groups of bits: ttlose wittlln the regIon and 
those outside it. A region should consist of one or more closed lOOps. Each 
framed Shape itself constitutes a lOOp. My lines drawn with Une or UneTo 
should connect with each other or with a framed shape. Even though the 
on-screen presentation of a region Is clipped, the definition of a region Is not; 
you can define a region anywhere on the coordinate plane with complete 
disregard for the location of various grafPort entities on that plane. 
When a region is open, the current grafPort's rgnSave field contains a handle 
to information related to the region definition. If you want to temporarily 
disable the collection of lines and shapes, you can save the current value of 

E-S2 



Pascal Reference Mantlal Qi,ljckDraw 

thIs fIeld, set the fIeld to nil and later restore the saved value to resume the 
region definition. 

WARNIf'G 

Do not call q>enRgn while another region Is already open. All open 
regIons but the most recent will behave strangely. 

ProceOJre CloseR{Jl (dst~: ~le); 

CloseRgn stops the collection of lines and framed shapes, organizes them into 
a regIon definItion, and saves the resulting regIon Into the region Indicated by 
dstRgl. You should perform one and only one closeRgn for every ~enRgn. 
CloseRgn calls ShowPen, balancIng the HldePen call made by (llenRgn. 
Here's an example of how to create and open a region, def1ne a barbell Shape, 
close the regIon, and draw It: 

barbell := NeIRgl; {make a new regIon} 
Oper'flgl; {begin collecting stUff} 

8etRect(tempRect,20,20,30,50); {form the left weIght} 
Fr~l(tempRect); 
8etRect(tempRect, 30, 30, 80,40); {form the bar} 
FrameRect(tempReot); 
8etRect(tempRect, 80, 20, 90, 50); {form the rIght welglt} 
Fr~l(tempRect); 

CIOseR{Jl(barbell); 
FlllRgn(barbell,blaok); 
OlsposeR{Jl(bartlell) ; 

{we're dOne; save In barbell} 
{draw it on the screen} 
{we dOn't need you a'lytOOre. •• } 

Prooerure OffsetR!JI (l1Jl: ~le; tIl,dv: integer); 

OffsetRgn moves the regIon on the coordInate plane, a dIstance of til 
horizontally and dV vertically. This does not affect the screen unless you 
SUbsequently call a routine to draw the regIon. If til and dV are positive, the 
movement is to the right and down; if either is negative, the corresponding 
movement Is In the opposIte dIrection. The region retaIns Its size and Shape. 

f\[)lE 

OffsetRgn Is an especially efficient operation, because most of the data 
defining a region Is stored relative to Ig"eBox and so isn't actually 
Changed by OffsetRgn. 

E-53 



PascaJ Reference fvlantlal QujCkDraw 

ProceOJre InsetRgl (l1Jl: ~le; (fl,dV: integer); 

InsetRgn shrinks or expands the regIon. All points on the region boundary are 
moved Inwards a dIstance Of dV vertically and (J) horIzontally; if (J) or dV Is 
negative, the points are moved outwards in that direction. InsetRgn leaves 
the regIon "centered" at the same posItion, but moves the outline In (for 
posItive values of (J) and dV) or out (for negative values of (J) and dV~ 
InsetRgn of a rectangular regIon works just like InsetRect 

Procewre 8ectRgl (srcRg'lA, sr~, dstRgl: ~le); 

SectRgn calculates the intersection of two regIons and places the intersection 
In a third regIon. Thls doeS 110t {~.reate the destination .reglon.: you must use 
NewRgn to create dstR~ before you call sectRgn. The dstRgn can be one of 
the source regIons, If desired. 
If the regions do not intersect, or one of the regions Is empty .. the destination 
is set to the empty region (O,O,O,O~ 

ProceWre U1itxfig1 (srcRg'lA, s~, dstR!Jl: ~le); 

UnlonRgn calculates the union Of two regIons and places the unIon In a thIrd 
region. This dOes not creale the destination region: you must use NewRgn to 
create dStR{Jl before you call unlonRgn. The dStR{Jl can be one Of the 
source regIons, if desired. 
If both regions are empty, the destination Is set to the empty region (O,o,o,o~ 

ProoeOJre 01ffRgl (SrcRglA,s~,dStRgl: ~le); 

DlffRgn subtracts srcRg-B from srcR~ and places the difference in a third 
regIon. This dOes not create the destinatIon regIon: you must use NewRgn to 
create ostRgn before you call DlffRgn. The ostRgn can be one of the source 
regions, if desired. 
If the first source region Is empty, the destination is set to the empty region 
(O,O .. O,O~ 

ProceWre XorRgn (srcRg'lA, s~, dStR9'1: ~le); 

XOrRgn calculates the dIfference between the unIon and the Intersection of 
two regions and places the result In a third regIon. This dOes not create the 
destination region: you must use NewRgn to create dstR(Jl before you call 
XorRgn. The dstRgl can be one of the source regIons, if desired. 
If the regions are coincident, the destination is set to the empty region 
(O..o,o..o~ 

E-S4 



Pascal Reference Manual Qu!ckDraw 

FlIlCtion ptlrflgl (pt: Point; l1Jl: ~le) : bOOlean; 

PtInRgn checKs whether the pixel below and to the right of the given 
coordinate point is within the specified region, and returns true if so or false 
if not 

FlI"Ctlon RectI~ (r: Rect; l1Jl: ~le) : bOOlecl1; 

RectInRgn checKs whether the given rectangle intersects the specified region, 
and returns true if the Intersection encloses at least one bit or false If not. 

FlIlCtlon Equal~ (r!JlA, rgre: ~le) : bOoleal; 

EqualRgn compares the two regions and returns true if they are equal or false 
If not. The two regions must have identical sizes, shapes, and locations to be 
considered equal. My two empty regions are always equal. 

FlIlCtion EnptyRgl (l1Jl: ~le) : bOolean; 

EmptyRgn returns true If the region is an empty region or false if not. Some 
of the circumstances in which an empty region can be created are: a NewRgn 
call; a CopyRgn of an empty region; a SetRectRgn or RectRgn with an empty 
rectangle as an argument; closeRgn without a previous c.penRgn or with no 
drawing after an cpenRgn; OffsetRgn of an empty region; InsetRgn wIth an 
empty region or too large an inset; SectRgn of nonintersecting regions; 
unionRgn of two empty regions; and DiffRgn or xorRgn of two identical or 
nonlntersecting regions. 

E.9.12 GraphiC qJeratlons on Regions 
These routines all depend on the coordinate system of the current grafPort. If 
a region is drawn in a different grafPort than the one in which 1 t was defined, 
it may not appear in tne proper posit1on insIde the port. 

ProceclJre fI'CllER!Jl (IV': ~le); 

FrameRgn draws a hollow outl1ne just InsIde the specIfied region .. using the 
current grafPort's pen pattern, mode .. and size. The outline Is as wIde as the 
pen width and as tall as the pen height; under no cIrcumstances wIll the 
frame go outside the region boundary. The pen location Is not changed by 
th1s procedure. 
If a region Is open and being formed, the outside outline Of the region beIng 
framed Is mathematically addect to that region's bounctary. 

Prooewre Pa1n~ (l1Jl: ~le); 

PaintRgn paints the speCified region with the current grafPort's pen pattern 
and pen made. The region on the bitmap is filled with the prPat, according 

E-SS 



Past...""81 Reference Manual QuICkDraw 

to the pattern transfer mode spec1 fled by prMode. The pen location Is not 
changed by this procedUre. 

procewre EraseRg1 (r{Jl: ~le); 

EraseRgn paints the specifIed region with the current grafPort's background 
pattern l1<Pat (In patcopy mOde~ The grafPort's pnPat and prMode are 
ignored; the pen location Is not changed. 

ProcedUre InvertRgl (l1Jl: ~le); 

InvertRgn inverts the pixels enclosed by the specified region: every white 
pixel becomes black and every black pIxel becomes wh1te. The grafPort's 
prPat, prMode, and bkPat are all ignored; the pen locat1on Is not changed. 

ProceWre Fl1lRgl (r{Jl: ~le; pat: pattern); 

F1l1Rgn fills the specified region with the given pattern (in patCopy made). 
The grafPort's pnPat, prMode, and OkPat are all Ignored; the pen location Is 
not changed. 

E.9.13 BIt TrCl'lSfer qJeraUoos 

ProceclJre SCrollRect (r: Rect; (!l,eN: integer; updateR{Jl: ~le); 

ScrollRect shifts C'scrollSU
) thOse bits inside the intersection of the speCified 

reotangle, vlsR{Jl, cll~{Jl, portRect, and portBlts.bolI1ds. The bits are shifted 
a distance of ctl horizontally and dV vertically. The positive directions are to 
the right and down. No other bits are affected. Bits that are shifted out of 
the scroll area are lost; they are neither placed outside the area nor saved. 
The grafPort's baokground pattern bkPat fIlls the space created by the scroll. 
In addition, ~teRgn is changed to the area filled with bkPat (see FIgure 
E-21~ 

E-56 



Pascal Reference Manual QuickDraw 

BeforeScrollRect After ScroIiRect(dstRect,-1 0,5 ... ) 

s~ 

QuickDraw.~ 
~pnlo(: 

dstRec:t 
updateAgn 

Fl~re E-21 
SCrolling 

figure E-Zl shows that the pen locatlon after a scrollRect 1s In a different 
position relative to what was scrolled in the rectangle. The entire scrolled 
item has been moved to different coordinates. To restore it to its coordInates 
Defore the ScrollRect, you can use the SetDrigln procedure. for example, 
suppose the ostRect here Is tne portRect Of the grafPort and Its top left 
corner Is at (95,120). setOrlglr(105,11S) w1ll offset the coordinate system to 
compensate for the scroll. Since the cUpRg1 and pen location are not offset, 
they move down and to the left. 

ProcedUre COpyBits (srcBits,dstBits: Bi~; srcRect, dstRect: Rect; 
IOOde : integer; maSkRgn: RgntBldle); 

CopyBlts tranSfers a olt Image oetween any two oltmaps and clips the result 
to the area speCified oy the masI<R~ parameter. The transfer may De 
performed in any Of the eight source transfer modes. The result is always 
clipped to the maskR~ and the ooundary rectangle Of the destination oitmap; 
If the destlnatlon oitmap Is tne current grafPort's portBlts, It Is also cllpped 
to the intersection of the grafPort's olipRgn and visRgn. If you do not want 
to cUp to a maskRg1, just pass nU for the maskRg1 parameter. 
The dstRect and maskR~ coordinates are in terms of the dstBlts..bot.11dS 
coordinate system, and the srcRect coordinates are in terms of the 
srcBtts..bolrlds coordinates. 
The oits enclosed oy the source rectangle are transferred into the destination 
rectangle according to the rules Of the chosen mode. 

E-S7 



Pascal Reference Manual QufckDraw 

The source transfer mOdes are as follows: 
Srccopy srcXor notsrccopy notSroXor 
srcor srcBlc notsrcOr notSrcBic 

The source rectangle Is completely alIgned with the destination rectangle; If 
the rectangles are of different sizes" the bIt image Is expanded or shrunk as 
necessary to fIt the destInation rectangle. For example, If the bit Image Is a 
circle In a square source rectangle" and the destination rectangle Is not 
square, the bit Image appears as an oval In the destinat10n (see Figure E-22). 

E.9.14 Pictures 

Source Bitmap 

Source Bitmap 

Source 
Transfer 

Mode 

Source 
Transfer 

Mode 

Destination Bitmap 

Destination Bitmap 

Fl~e E-22 
(l)eIatlon Of COpyBlts 

flllCtlon ~lcture (plCfraJE: ROOt) : PICHcnlle; 

meskAgn 

maskAgn 
=nil 

~enPlcture returns a handle to a new picture which has the given rectangle 
as its picture frame" and tells QuickDraw to start saving as the picture 
definition all calls to drawing routines and all picture comments (if any~ 
~enPicture calls HidePen, so no drawing occurs on the screen while the 
picture is open (unless you call ShowPen just after ~enplcture, or you called 
ShowPen previously without balanCing It by a call to HidePen~ 
When a picture Is open, the current grafPort's plcsave field contains a handle 
to information related to the picture definition. If you want to temporarlly 

E-S8 



Pascal Reference Manual Ql.JickDraw 

dIsable the collecUon of routine calls and pIcture comments, you can save the 
ourrent value of this field, set the field to nll... and later restore the saved 
value to resume the picture definItion. 

WAANlI\G 

Do not call ~enPlcture While another picture is already open. 

procerure CIosePicture; 

ClosePicture tells QulokDraw to stop saving routine calls and picture 
comments as the definItion of the currently open picture. You should perform 
one and only one ClosePlcture for every q>enPloture. ClosePicture oalls 
ShowPen ... balancing the HldePen call made by q,JenPlcture. 

ProcedJre PicGamalt (kind,dataSize: integer; datc8n11e: (J)tIa1dle); 

PicComment Inserts the specIfIed comment Into the deflnition of the currently 
open picture. Kind identifies the type of oomment. Data-lCn:ne is a handle 
to addItional data If desIred, and dataSlze Is the sIze Of that data In bytes. If 
there Is no additional data for the comment ... data-lCn:ne should be nll and 
dataSlze snould be O. The appIlcatlon that processes the comment must 
Inolude a procedure to do the processing and store a pointer to the procedure 
In the data structure poInted to by the grafProCs field of the grafPort (see 
SeotIon E.l0, Customizing QuickDraw q>erat1ons~ 

procerure Dra.Picture (myPicture: pictBldle; dstRect: Rect); 

DrawPicture draws the given picture to scale in dstRect, expanding or 
ShrinkIng It as necessary to aUgn the borders of the pIcture frame with 
dstRecl DrawPioture passes any picture oomments to the procedure aocessed 
IndIrectly through the grafProCs f1eld of the grafPort (see PicComment above~ 

procerure KillPicture (myPicture: picttcmle); 

KlllPIcture deallocates space for the pIcture whose handle Is supplied.., and 
returns the memory used by the picture to the free memory pool. Use thIs 
only when you are completely through with a picture. 

E.9.iS calculations with Polygons 

FU1Ction ~ly : PolyHcn11e; 

q>enPoly returns a handle to a new polygon and tells QuickDraw to start 
saving the polygon definition as specified by calls to line-drawing routines. 
While a polygon is open ... all calls to Line and LineTo affect the outline of the 
polygon. O1ly the Une endpOints affect the polygon definition; the pen mode ... 
pattern, and size do not affect it. In fact ... q>enPoly calls HidePen ... so no 

E-59 



Pascal Reference Manual QujckDraw 

drawing occurs on the screen whUe the pOlygon Is open (unless you call 
ShowPen just after qlenPoly ... or you oalled ShowPen previously without 
balancing it by a call to HIC1epen~ 
A polygon should consist of a sequence of connected l1nes. Even though the 
on-soreen presentation of a polygon is cUpped ... the definit10n of a polygon Is 
not; you can define a polygon anYWhere on the coordinate plane with complete 
disregard for the looation of various grafPort entities on that plane. 
When a pOlygon Is open, the current grafPort's polySave fIeld contaIns a 
handle to information related to the polygon defini Uon. I f you want to 
temporarHy dIsable me polygon defInItion, you oan save the current value of 
thIs fleld, set the field to n11, and later restore the saved value to resume the 
pOI ygon deflnl tion. 

WAANlf\G 

00 not call qlenPoly while another polygon Is already open. 

Procewre CIosePoly; 

ClosePoly tells Quiokoraw to stop saving the definition of the ourrently open 
pOlygon and computes the polyBBox rectangle. You should perform one and 
only one ClosePoly for every qlenPoly. ClosePoly oalls ShowPen ... balanoing 
the HldePen call made by ~nPolY. 
Here's an example of how to open a polygon, define It as a triangle, close it, 
and draw it: 

trlPoly := ~ly; {save hc:rlCJle CIld begIn collectIng stUff} 
MoVeTo(300 ... 100); { move to fIrst point and } 
llneTo(400 ... 200); { form } 
lineTo(200 ... 200); { the } 
llneTo(300 ... 100); {triargle } 

CIOsePoly; { stop collecting stUff } 
FIIIPoly(trIPoly, gray); { ettaw It on the screen } 
KII1Poly(triPoly); { welre all dOne } 

ProcedUre KI1lPoly (poly: PolyHaneJle); 

KlllPOly deallooates spaoe for the polygon whose handle is supplied ... and 
returns the memory used by the polygon to the free memory pool. Use thIs 
only after you are oompletely through with a polygon. 

Procewre OffsetPoly (poly: PolyHandle; <I'l ... dV: integer); 

OffsetPoly moves the specified polygon on the ooordinate plane ... a distance of 
c:Il horIzontally and dv vertically. This does not affect the screen unless you 

E-60 



Pascal Reference Manual QulCkDraw 

SUbsequently call a routIne to araw the pOlygon. If (Jl and dV are posItive, 
the movement is to the right and down; if eIther Is negat1ve, the correspond­
Ing movement Is In the opposIte direction. The pOlygon retaIns Its Shape and 
sIze. 

OffsetPoly is an especially efficient operation, because the data 
defining a pOlygon Is stored relative to polyStart and so isn't actually 
changed by OffsetPoly. 

E9.16 Graphic ~rat1ons on Polygons 

Proceoore FraEPoly (poly: PolyHcn:.1le); 

FramePoly plays back the Une-drawing routine calls that define the given 
polygon, using the current grafPort's pen pattern, mode, and size. The pen 
wll1 hang below and to the right of each poInt on the boundary of the 
polygon; thus, the pOlygon drawn will extend beyond the right and bottom 
edges of POlY" .. .polyBBox by the pen width and pen height, respectively. All 
other graphic operatlons occur strictly within the boundary of the polygon, as 
for other shapes. You can see this difference In Figure E-23, where each of 
the polygons is shown with Its polyBBoX. 

FramePoly PaintPoly 

Figure E-23 
Drawing Polygons 

If a polygon is open and being formed, FramePoly affects the outline of the 
polygon just as if the line-drawlng routines themselves had been called. If a 
region is open and being formed, the outside outline of the polygon being 
framed is mathematically added to the region's boundary. 

E-61 



Pascal Reference Manual QufckDraw 

ProceWre PaintPoly (poly: PolyHcn:.1le); 
paintpoly paints the specified polygon with the current grafPort's pen pattern 
and pen made. The polygon on the bitmap is filled with the p1=>at" according 
to the pattern transfer mode specified by ~ The pen location is not 
changed by this procedUre. 

Procewre ErasePoly (poly: PolyHcn:.1le); 
ErasePoly paints the specified polygon with the current grafPort's background 
pattern bkPat (1n patcopy mOde~ The pnPat and pnMode are ignored; the pen 
location Is not changed. 

Procedure Inver'tPoly (poly: PolyHclldle); 
InvertPoly inverts the pixels enclosed by the specified pOlygon: every White 
pixel becomes black and every black pixel becomes white. The grafPort's 
JX1>at .. pnMode" and bkPat are all ignored; the pen location Is not Changed. 

Procedure FillPoly (poly: PolyHcn:.1le; pat: Pattern); 
FiilPoiy fiBs the speclflea polygon witn tne given pattern (1n pateq>y mOde~ 
The grafPort's pnPat" pnMode" and bkPat are all ignored; the pen location is 
not changed. 

E.9.17 caIculaUons With Points 

ProcedUre AddPt (srcPt: Point; var dstPt: Point); 

AddPt adds the coordinates of srePt to the coordinates of dst.Pt" and returns 
the result in dst.Pt 

ProceWre SttI>t (srcPt: Point; var dstPt: Point); 

SubPt subtracts the coordInates of srePt from the coordinates Of dstJ>t .. and 
returns the result In dstpt 

ProcedUre setPt (var pt: Point; h"v: integer); 

SetPt assigns two integer coordinates to a variable of type Point 

FUlCtion EqualPt (ptA, ptB: Point) : bOOlean; 

EqualPt compares the two points and returns true if they are equal or false if 
not 

E-62 



Pascal Reference ManUal Qu/ckDraw 

Procec1ae LocalTaalobal (var pt: Point); 

LocalToGlobal converts the gIven point from the current grafPort's local 
coordinate system into a glObal coordinate system with the orIgIn (0,0) at the 
top left comer of the port's bIt image (SUCh as the screen~ This global point 
can then be compared to other global poInts, or be Changed into the local 
coordinates of another grafPort. 
Since a rectangle Is defined by two points, you can convert a rectangle into 
global ooordinates by performing two LooalToGlobal oalls. YOU can also 
convert a rectangle, region, or pOlygon into global coordinates by calling 
OffsetRect, OffsetRgn, or Offsetpoly. For examples, see GlobalToLooal below. 

Procec1ae GlobalTa..ooal (var pt: Point); 

GlobalToLooal takes a point expressed in global coordInates (with the top left 
corner of the bitmap as coordinate (0,0» and converts it into the local 
ooordinates of the current grafPort. The global point can be obtained with 
the LocalToGlObal call (see above~ For example, suppose a game draws a 
"ball" withIn a rectangle named tlal1Rect, defined in the grafPort named 
gcmePort (as illustrated below in Figure E-24~ If you want to draw that ball 
In the grafPort named selectPort, you oan calculate the ball's selectf>Ort 
coordinates l1ke this: 

setPort( garePort); 
selectBall := ballRect; 
LocalToGlobal(selectBall.topLeft); 
LocaIToGlobal(selectBall.botRight); 

{ start in origin port } 
{ make a copy to be IIDVed } 
{ put bOttI corners into } 
{ global coordinates } 

setPort( selectPort); { switch to destination port} 
GlobaITa..ocal(selectBall. topLeft); { put both corners into } 
GlobaIToLocal{selectBall.botRight); { these local coordinates } 
Fllloval(selectBall,ballCOlor); { now yru haVe the ball! } 

E-63 



Pascal Reference Manual 

20 SO 
40-' I 

70-

90 
I 

120-1··+··:·· ............ ··:···j··+··1 

o 30 70 
o _;-.1 :-:--:--:-:--:-i-~:""'\ 

Loc:slToGlobal 

80 -1 .. ·; .. ·; .. 4ooii-...,f,,:,,·:,,·;·"1 

Figure E-24 

QulckDraw 

15 45 85 
-30 -~' :-:-:-:-:--:-:-~:""'\ 

convertlrvJ between COOrdinate systems 
You can see from Figure E-24 that LocalToGlobal and GlobalToLocal simply 
offset the coordinates Of the rectangle by the coordinates of the top left 
corner of the local grafPort's boundary rectangle. You could also do this with 
OffsetRect. In fact ... the way to convert regIons and polygons from one 
coordinate system to another is with OffsetRgn or Offsetpoly rather than 
LocalToGIObal and GlobalToLocal. For example ... If myRgl were a regIon 
enclosed by a rectangle having the same coordinates as ballRect in gamePort ... 
you could convert the region to glObal coordinates with 

OffsetRg(myR~ -20 ... -40); 

and then convert it to the coordinates of the selectPort grafPort with 
OffsetRg(myRgn, 15, -30); 

E.9.l8 MlscellClleOUS utll1tles 

FlR!tim Rarmn : integer; 

Random returns an integer, uniformly distributed pseudo-random, in the range 
from -32768 throUgh 32767. The value returned depends on the glObal 
variable 1CIldSeed ... which InitGraf init1aUzes to 1; you can start the sequence 
over again from where It began by resetting ICIldSeed to 1. 

E-64 



Pascal Reference Manual QulckDraw 

FlJ'lCt1on Getp1xel (h... v: 1nteger) : bOOlecrl; 

GetPixel looKs at the pixel associated with the given coordinate point and 
returns true If it is blacK or false If It is whIte. The selected pIxel is 
immediately below and to the right of the point whose coordinates are given 
in h and v, in the local coordinates Of the current grafPort. There is no 
guarantee that the specified pixel actually belongs to the port, however; it 
may have been drawn by a port overlapping the current one. To see if the 
point indeed belongs to the current port, call PtlrRg(pt,thePOrt" .vlsRgl~ 

Proceoore stuff Hex (th1ngPtr: (.IPtr; s: Str255); 

Stuff Hex pOKes bits (expressed as a string of hexadecimal digits) into any data 
structure. This is a good way to create cursors, patterns, or bit images to be 
"stamped" onto the screen with CopyBits. For example, 

StuffHex(iilstr1pes,'Ol02040810204080') 

places a striped pattern into the pattern variable stripes. 

WARNIN3 

There Is no range ChecKIng on the sIze Of tne dest1natlon varIable. It's 
easy to overrun the variable and destroy something if you don't Know 
What you're doIng. 

Procooure 8calePt (var pt: Po1nt; srcRect,ostRect: Reet); 

A width and helght are passed in pt; the horizontal component of pt is the 
width, and the vertical component of pt is the heIght. ScalePt scales these 
measurements as follows and returns the result In pt: it multlplles the gIven 
width by the ratio of dStRect's width to srcRect's wIdth, and multIplies the 
gIven height by the ratio of dStRect's height to srcRect's height In Figure 
E-25, where dStRect's wIdth Is twice srcRect's w1dth and 1ts heIght Is three 
times srcRect's heIght, the pen width is scaled from 3 to 6 and the pen height 
Is scaled from 2 to 6. 

E-65 



Pascal Reference Manual 

0 
0 I 

2-

4-

7-

1618 
I I 

ScalePt scales pen size (312) tel (6,6) 
MapF't maps point (3,2) to (18,7) 

Figure E-25 
8calePt CVld MapPt 

Pl'OcE!OJre I1apPt (var pt: Point; srcRect,dStRect: Root); 

QU!ckDraw 

Given a point wltnln sTeReot, MapPt maps It to a similarly located point 
wIthin dStRect (that Is" to where it would fall if It were part Of a drawing 
being expanded or shrunk to fit dstRect~ The result Is returned In pt A 
corner point of sTeRect would be mapped to the corresponding corner point of 
dstReot" and tne center of sTeReot to tne center of dstReot In Figure E-2S 
above" the point (32) In srcRect Is mappeCl to (18,,7) In dstRect FIOI'T"Aect anCl 
dstRect may overlap" and pt need not actually be wltnln srcReot 

E-66 



Pascal Reference Manual Qu/ckDmw 

Remember, If you are going to draw InsIde the rectangle In ostRect, 
you w111 probably also want to scale the pen size accordingly with 
ScalePt. 

Procedure t1apReot (var r: Rect; SrcRect, dstRect: Rect); 

Given a rectangle within srcRect, MapRect maps it to a slmllarly located 
rectangle within dstRect by callIng MapPt to map the top left and bottom 
right corners of the rectangle. The result Is returned in r. 

ProcellJre ~ (IVt: fqKYldle; srcRect,dstRect: Rect); 

Given a regIon wIthIn sreReot, MapRgn maps it to a similarly located regIon 
wI thIn dStRect by calI1ng MapPt to map all the poInts In the regIon. 

ProcellJre ~ly (poly: PolyHcr"Ole; srcRect,dstRect: Rent); 

Given a pOlygon within sroRect. MapPoly maps It to a slmllarly located 
polygon within dStRect by calling MapPt to map all the points that define the 
pOlygon. 

E.I0 CUStomizing QuickDraw ~ratlom 
For each shape that QuickDraw knows how to draw, there are procedures that 
perform these basic graptlic operations on the Shape: frame, paint, erase, 
invert, and fill. Those procedures In turn call a low-level drawing routine for 
the Shape. For example, the FrameOVal, PaintOVal, EraseOVal, InvertOVal, and 
F1llOVal procectures all call a low-level routine that draws the oval. For each 
type of object QuickDraw can draw, inclUding text and lines, there Is a 
pointer to such a routine. By changing these pointers, you can install your 
own routines, and either completely override the standard ones or call them 
after your routines have modified parameters as necessary. 
Other low-level routines that you can Install In thIs way are: 

• The procedure that does bit transfer and is called by CopyBlts. 
• The function that measures the width of text and is called by CharWidth, 

string WIdth, and TextWldth. 
• The procedure that processes picture comments and Is called by 

DrawPlcture. The standard such procedure ignores picture comments. 
• The procedure that saves drawIng commands as the definItion of a pIcture, 

and the one that retrieves them. This enables the application to draw on 
remote devIces, prInt to the dISk, get pIcture Input from the dIsk, and 
support large pIctures. 

E-67 



Pascal Reference Manual QuickDraw 

The grafProcs fIeld of a grafPort determInes whIch lOW-level routines are 
called; If it contains nil" the standard routines are called .. SO that all 
operations In that grafPort are done in the standard ways descrIoed In thIs 
appendix. You can set the grafProcs field to poInt to a record of pointers to 
routines. The data type Of grafProcs Is Q:ProcsPtr: 

type (p'rocsPtr = A(p'rocs; 
QOProcs = record 

textProc: 
lineProc: 
rectProc: 
rRectProc: 
ovalProc: 
arcProc: 
polyProc: 
l1JlProC: 
bitsProc: 
cOl1llB1tProc : 

txtleasProc : 
aetPicProc : 
i)utPicProc : 

end; 

(l)Ptr; 
t;.llPtr; 
(p'tr; 
t;.llPtr; 
tJ)Ptr; 
t;.llPtr; 
(p'tr; 
(,.l)Ptr; 
(p'tr; 
(,.l)Ptr; 

(,.l)Ptr; 
fJ)Ptr; 
(,.l)Ptr 

ProcedUre 8etstcProcs (var procs: QOPrOCS); 

{text drawing} 
{line drawing} 
{rectangle drawing} 
{~t drawing} 
{oval drawing} 
{arc/wedge drawing} 
{polygon drawing} 
{region drawing} 
{bit transfer} 
{picture comment 
processing} 
{text width reasurene1t} 
{picture retrieval} 
{picture saving} -

SetStdProcs Is provided to assist you in setting up a QlJProcs record. It sets 
all the fields of the given QDProcs to point to the standard low-level 
routines. You can then change the ones you wiSh to point to your own 
routines. For example .. if your procedure that processes picture comments is 
named MyQxmlents .. you \NUl store filIV'IyQxmlents in the commentProc field 
of the QDProcs record. 
The routines you Install must Of course have the same calling sequences as 
the standard routines .. which are described below. The standard drawing 
routines tell whICh graphiC operatlon to perform from a parameter of type 
GrafVerb. 

type GrafVerb = (frClE, paint, erase, invert, fill); 
When the grafVerb Is flIt the pattern to use when fUlIng Is passed In the 
flllPat field of the grafPort. 

ProcedUre StdText (byteColllt: integer; textBuf: QOPtr; runer,denOm: 
Point); 

StdText Is the standard low-level routine for drawIng text. It draws text from 
the arbitrary structure in memory speCified by textBuf .. starting from the first 
Oyte and continuing for byteCot.rlt bytes. ~r and denom specIfy the 

E-68 



Pasl."181 Reference !'--1anl/a1 QlIlCkDraw 

scal1ng, If any: runer.v over denOm.v gives the vertical scallng, and runer.h 
over denom.h gives the horizontal scaling. 

ProceWre std...ine (ne.,pt: Point); 

StdLine is the standard low-level routine for drawing a line. It draws a line 
from the current pen location to the location specified (in local coordinates) 
by newPt. 

ProceWre ~t (verb: GrafVerb; r: Rect); 

StdRect is the standard low-level routine for drawing a rectangle. It draws 
the given rectangle according to the spec1f1ed gratVeIb. 

ProcedUre sttflRect (verb: GrafVerb; r: Rect; oval.idth,ovalHei~t: 
integer); 

StdRRect is the standard low-level routine for drawing a rounded-corner 
rectangle. It draws the given rounaea-corner rectangle according to the 
specified grafVerb. CNalWidth and ovalHel~t specify the diameters of 
curvature for -the corners. 

ProceWre StdOval (verb: GrafVerb; r: Rect); 

StdOVal Is the standard low-level routine for drawIng an oval. It araws an 
oval inside the given rectangle according to the specified grafVeIb. 

ProcedUre StdAre (verb: GrafVerb; r: Root; startAngle, arcAngle: 
integer); 

StdArc Is the standard low-level routine for drawing an arc or a wedge. It 
draws an arc or wedge of the oval that fits inside the given rectangle. The 
gratVeIb specifies the graphiC operation; if It's the frame operation ... an arc Is 
d!awn; otherWise, a wedge is drawn. 

ProceOJre SUPoly (verb: GrafVerb; poly: PolyHandle); 

StdPoly is the standard low-level routine for drawing a polygon. It draws the 
given polygon according to the specified grafVem. 

ProcedUre St.tflg1 (verb: Grafverb; rgn: ~le); 

StdRgn Is the standard low-level routlne for drawing a regIon. It draws the 
given region according to the specified grafVeIb. 

E-69 



Pascal ReFerence I'18ntI8l QlIfCkDraw 

Procec:lJre St(J31 ts (var srcB1 ts: B1 tt1ap; var SrcRect, dstRoot: Root; 
1OOde: integer; maSkRg'l: Rgftcnlle); 

StdBlts Is the standard low-level routine for doIng bIt transfer. It transfers a 
bit Image between the given bitmap and thePOrt .portBlts, just as If copyBlts 
were called wIth the same parameters and wIth a destination bItmap equal to 
thePOrt" .portB1ts. 

ProoeclJre SttDJma1t (kInd.,datasIze: Integer; datC8n:Jle: Q)Handle); 

StdComment is the standard low-level routine for processing a picture 
comment. Kind identifies the type of comment. Data-tcnlle is a handle to 
additional data, and dataSlze is the size of that data in bytes. If there Is no 
additional data for the command, dat.ct-larde will be nIl and dataSize will be 
O. StdComment simply ignores the comment. 

ftllCtI00 stdTxtleas (nyteGOll'lt: Integer; textBuf: tXPtr; var runer ... 
denom: Point; var info: FontInfo) : integer; 

StdTxMeas Is the standard low-level routine for measuring text width. It 
returns the width of the text stored in the arbitrary structure in memory 
specifiea by textBuf, starting with the first byte ana continuing for byteCou1t 
bytes. I\lmer and denom specify the scaling as In the StdText procedure; note 
that StdTXMeas may Change them. ' 

ProoeWre StcEetpio (dataPtr: QOPtr; byteColl1t: integer); 

StdGetPic is the standard low-level routine for retrieving information from 
the definition of a picture. It retrieves the next byteCotrlt bytes from the 
definition of the currently open picture and stores them in the data structure 
pointed to by dataPtr. 

Procec1lre stcRftPic (dataPtr: f;,()Ptr; nyteColl1t: integer); 

StdPutPic Is the standard low-level routine for saving information as the 
definition of a picture. It saves as the definition of the currently open 
picture the drawing commands stored in the data structure pointed to by 
dataPtr, starting with the first byte and continuing for the next byteCou1t 
bytes. 

E-70 



Pascal Reference Manual QulckDraw 

E.ll USing QulckDraw from Assermly LCflgU8ge 
All QulckDraw routines can be called from assembly-language programs as 
well as from Pascal. When you write an assembly-language program to use 
these routines, though, you must emulate Pascal's parameter passing and 
variable transfer protocolS. 
This section discusses how to use the QuickDraw constants, global variables, 
data types, procedures, and functions from assembly language. 
The prImary aId to assembly language programmers Is a fUe named 
QD/GRAFTYPES.TEXT. If you use .INCLLDE to include this file when you 
assemble your program, all the QulcKDraw constants, offsets to locations of 
global variables, and offsets into the fields of structured types wIll be 
avallable In symbollc form. 

E.ll.l constmts 
QuickDraw constants are stored in the QD/GRAFTYPE5. TEXT fUe, and you 
can use the constant values symbollcally. For example, if you've loaded the 
effective address of the thePort".t.xfYklde field into address register P\2., you 
can set that field to the srcXor mode with this statement: 

HOVE. " ISRCX(It. (A2) 
To refer to the number of bytes occupied by the QuickDraw glObal variables, 
you can use the constant GRAFSIZE. When you call the InitGraf procedure, 
you must pass a pointer to an area at least that large. 

E.ll.2 oata Types 
Pascal's strong typing ability lets you write Pascal programs without really 
considering the size Of a variable. But in assembly language .. you must keep 
track of the size of every variable. The sizes of the standard Pascal data 
types are as follows: 

~ 
integer 
longlnt 
boOleCl1 
char 
real 

Size 
Word (2 bytes) 
Long (4 bytes) 
Word (2 bytes) 
Word (2 bytes) 
Long (4 bytes) . 

Integers and longlnts are In two's complement form; booleans have theIr 
boolean value in bit 8 of the word (the low-order bit of the byte at the same 
locatlon); Chars are stored In the high-order byte of the word; and reals are in 
the KCS standard format 

E-71 



Pascal Reference Mantlal QufckDraw 

The QuicKDraw sImple data types llsted below are constructed out of these 
fundamental types. 

~ 
QIPt.r 
QIJI-tCrldle 
Word 
Str255 
Pattern 
Blts16 

Size 
Long (4 byteS) 
Long (4 byteS) 
Long (4 byteS) 
Page (256 byteS) 
8 bytes 
32 bytes 

Other data types are constructed as records of variables of the above types. 
The sIze of such a type Is the sum of the sizes Of all the fields in the record; 
the fIelds appear In the varIable wIth the first fIeld In the lowest address. 
For example ... consider the data type Bl~ ... which Is defined as follows: 

type Bit~ = record 
baseAddr: (JPtr; 
rolBytes: integer; 
bol.rlds: Root 

end; 

ThIs data type would be arranged In memory as seven words: a long for the 
baseAddr ... a word for the rowsytes ... and four 'Words for the top ... left ... right... and 
bottom parts of the bOtJ'l(ls rectangle. To assist you in referrIng to the fields 
inside a variable that has a structure like this ... the QDIGRAFTYPES.TEXT file 
defines constants that you can use as offsets into the fields of a structured 
variable. For example ... to move a bitmap's rowBytes value into 03 ... you 'Would 
execute the followIng instruction: 

HOVE.' MVBITHAP+ROWBVTES,03 
Displacements are given In the QDIGRAFTYPES. TEXT fUe for all fields of all 
data types defIned by QuiCkDraw. 
To do double indirection ... you perform an LEA indirectly to obtain the 
effective address from the handle. For example ... to get at the top coordinate 
of a regIon's enClosIng rectangle: 

MOVE.l MVHANOlE,Al 
MOVE.l (Al),A1 
MOVE.' RGNBBOX+TOP(Al),03 

E-72 

; load handle into A1 
; Use handle to get pointer 
; load value using pointer 



Pascal Reference Manual Qu!ckDraw 

WARNII'X3 

For regions (and all other variable-length structures with handles), you 
must not move the pointer into a register once and just continue to use 
that pointer; you must dO the double indirectlon eaCh time. Every 
QuickDraw call you make can possibly trigger a heap compaction that 
renders all poInters to movable heap Items (lIke regIons) Inval1d. The 
handles will remain valid, but pointers you've obtaIned through handles 
can be rendered InvalId at any subroutine call or trap In your program. 

E.ll.3 Global variables 
RegIster AS always poInts to the sectlon of memory where glObal varIables 
are stored. The QlJ/GRAFTYPES.TEXT fUe defines a constant GRAFGUE 
that poInts to the begInnIng Of the QulckDraw varIables in thIs space, and 
other constants that point to the individual variables. To access one of the 
varIables, put GRAFGUE In an address register, sum the constants, and Index 
off of that register. For example, if you want to know the horizontal 
coordInate of the pen location for the current grafPort, whIch the glObal 
variable thePort points to, you can give the following instructions: 

MOVE.L GRAfQ.OO(AS), AO ; Point to t;.Uict<Dra. globals 
MOVE.L THEPORT(AO),Al ; Get current grafPOrt 
MOVE.' PN...OC+H(Al),OO ; Get thePort'" .pnloc.h 

E.l1.4 Procerures CI1d Fl.IlCt1ons 
To call a QulckDraw procedure or function, you must puSh all parameters to it 
on the stack, then JSR to the function or procedure. When you link your 
program with QuickDraw, these ~s are adjusted to refer to QuickDraw's 
jump table, so that a JSR into the table redirects you to the actual location 
of the procedure or function. 
The only difficult part about calling QulokDraw prooedures and functions Is 
staCking the parameters. You must follow some strIct rules: 

• Save all registers you wish to preserve before you begin pUShing 
parameters. My QuickDraw prooedure or function can destroy the 
oontents of the registers AO, A1, DO, 01, and 02, but the others are never 
altered. 

• Push the parameters In the order that they appear In the Pascal procedural 
interface. 

• For booleans, push a byte; for integers and characters, push a word; for 
pointers, handles, long integers, and reals, push a long. 

• For any struotured variable longer than 4 bytes, push a pointer to the 
varIable. 

E-73 



Pascal Reference Manual QuiCkDraw 

• For all var parameters, regardless of sIze, PUSh a poInter to the varIable. 
• When calling a function, first PUSh a null entry equal to the sIze of the 

function result, then PUSh all other parameters. The result will be left on 
the stack after the function returns to you. 

Th1s makes for a lengthy interface, but It also guarantees that you can mock 
up a Pascal versIon Of your program, and later translate It Into assembly code 
that works the same. For example, the Pascal statement 

blackness := GetPixel(50,mousePos.v); 

would be wrItten In assembly language like thIs: 
CLR.I -(SP) ; save space for boolean result 
MOVE.W ISO, -(SP) ; Push cmstCllt SO (deCimal) 
tlNE.W tOJSEPOS+V, -(sp) ; PuSh the value of mousePos.v 
JSR GETPlXEL ; call routine 
tINE.' (SP)+,BlACKtESS ; Fetch result from stack 

This Is a simple example, pUshing and pulling word-long constants. Normally, 
you'll be pUShIng more poInters, usIng the PEA (PUSh Effective Address) 
instruction: 

FllIRolnJleCt(~t, 1, thePort" .pnSize.v, white); 

PEA MYRECT ; Push pointer to myRect 
MOVE.I 'l,-(SP) ; Push constant 1 
MOVE.l GRAFGlOB(A5),AO ; Point to QuiCkDraw globalS 
MOVE.l THEPORT(AO),Al ; Get current grafPort 
MOVE.' PNSIZE+V(Al),-(SP); Push value Of thePortA.pnSize.v 
PEA IHITE(AO) ; PuSh pointer to glObal variable .. ite 
JSR FIlltUHH:CT ; call the stbroutine 

To call the TextFace procedure, puSh a word in which eaCh of seven bits 
represents a stylistic variation: set bit 0 for t:xlld, bit 1 for Itallc, bIt 2 for 
tnterllne, bit 3 for outline, blt 4 for ShadoW, bit 5 for condenSe, and bit 6 for 
extend. 

E-74 



Pascal Reference Manual QuickDraw 

E.12 Graf3D: Tnree-DlmenslmaI Gr~cs 
Graf30 helps you map three-dimensional images onto the two-dimensional 
space used by QuicKDraw. If thIs Is your first exposure to three-dImensional 
graphics ... you wm find Graf30's standard procedures and functions a great help 
in producing vIsually excIting graphS, Charts ... and drawings. If you are famBiar 
wI th Applegraphlcs for the Apple II ... you wlll feel r1ght at home with Graf30's 
use of real varIables and world coordinates. 
With three-dimensional graphIcs you can present Objects in true perspective ... 
which will evoKe for users their everyday environment Graf3D helps you 
represent complex busIness Information pIctorially; for example ... a manager can 
see important relationships among sales ... profits ... and advertising dollars in a 
three-dimensional graph. 
You may be interested in a more theoretical discussion of three-dimensional 
graphIcs .. IncludIng an explanation of some of the basic concepts Of Graf3D" 
such as the viewing pyramid. A good ... illustrated discussion appears in the 
sectlon on three-dImensIonal computer graphIcs In Pril7ciples Of Interactive 
Computer Grapllics by William M. Newman and Robert F. Sproull (New York: 
MCGraw-HUl... 1973~ 

E.12.l How Graf3D Is Related to QulckDraw 
Graf3D Is a Pascal unit that makes the QuickDraw calls necessary to produce 
three-dimensIonal graphiCS. It provides you wIth an easy-to-use real number 
interface to QuickDraw's integer coordinates. You COUld .. of course .. write 
your own QuickDraw calls to perform the same functions Graf3D provides for 
you ... but that would be a little like goIng to the trouble of writing your own 
complIer. 

E.12.2 Features of Graf30 
• A l:'arn8Ja-e.ye view. ThIs allows you to set the point Of vIew from whIch 

the observer sees the object independently from the coordInates of the 
Object Itself. The camera Is set up wIth the VieWPort.. LOOkAt.. and 
VlewAngle procedures. You can set the focal length of the camera as if 
you had a ChoIce Of telepnoto .. wIde angle, or normal lenses. 

• TI'lJ-ee-{lln?elJsianal (..">j/pplly f.l.7 a fJUe t?YlaflJit.1. The apex of the pyramid 1s 
at the poInt of the camera eye ... and the base of the pyramid Is equIvalent 
to the ViewPort. When you use the Cl1p3D function ... only objects forward 
of the camera eye and within the pyramid are displayed on the screen. 

• Two-dimensional point am line capalJility using real coordinates. Graf3D 
provides commands corresponding to the QulckDraw commands but using 
real coordInates Instead of Integers. Wlth real coordInates you have a 
larger dynamic range for graphics calculations; wIth Integer coordinates 
you get faster drawIng time. For reals, the range Is 

1.4 x 10-45 to 3.4 x 1038 

E-75 



Pascal Reference Manual QuickDraw 

• TWO-{llnI81')J1onal OJ' tlJree-l1Jn"Jel1sJonaJ rotatJon. You can rotate an object 
along any or all axes sImultaneously, usIng the Pitch, Yaw, and Roll 
procedures. 

• Translation and scaling af aojects in one or more axes simultaneously. 
Translation means movement anywhere in three-dimensional space. Scaling 
means Shrinking or expanding. 

E.12.3 Graf3D Data Types 
Graf3D declares and uses the following data types: 
Polnt3D: A Polnt3D contaIns three real number coordInates: x, y, and z. 

Graf3D uses x, y, and Z for real number coordinates to distinguish 
between the h and v integer screen coord1nates 1n QuicKDraw. 

Polnt20: A Polnt2D Is Just liKe a Polnt30 but contains only x and y 
coordinates. 

XfMatrlx: The XfMatrix is a 4x4 matrix Of real values" used to hold a 
transformation equation. Each transforming routine alters this 
matrIx so that it contains the concatenated effects of all 
transformations applied. 

Port3DPtr: A Port3DPtr is a pointer to a Port3D. 

Port3D: A Port3D contaIns all the state variables needed to map real 
number coordinates into integer screen coordinates. They are as 
follows: 
GPort: a pointer to the grafPort associated with this Port30. 

viewRect: the viewing rectangle within the grafPort; the base of the 
viewing pyramid. 

xLeft, yTop" xRight yBottom: world coordinates corresponding to 
the viewRecl 

pen: three-d1mensional pen location. 
penPrime: the pen location transformed by the xFonn matrix. 
eye: three-dimensional viewpoint location established by View Angle. 
hS!ze, VS!ze: half-width and half-height of the viewRect in screen 

coordinates. 
hCenter, vcenter: center of the viewRect in screen coordinates. 
XCOtCll, yCotan: viewing cotangents set up by ViewAngle, used by 

Clip3D. 
ident: a boolean that allows the transformation to be sKipped when 

when )(form is an identity matrix. 
xForm: a 4x4 matrix that holds the net result of all transformations. 

E-76 



Pascal Reference Manual Qu/ckDraw 

E.12.4 Graf3D ProceclJres and Ft.I1Ct1ons 
The fOllowing procedures and functions are provided in Graf3D. 
ProcedUre ~3OPort(port: Port3tPtr); 

cpen3DPort initializes all the fields of a Port3D to their defaults" and makes 
that Port3D the current one. Gport Is set to the currently open grafPort. 
The defaults established are: 

thePort30: =port; 
port~.GPort:=thePOrt; 
ViewPort(thePort~.portRect); 
WITH thePort~ .portRect 00 LOOkAt(left, top, right, bottom); 
V leWAngle( 0); 
Identity; 
tIoveTo30(O" 0, 0); 

Procedure 5etPort30(port: Port3OPtr); 

SetPort3D maKes port the current Port3D and calls SetPort for that Port30's 
associated grafPort. SetPort3D allows an application to use more than one 
Port3D and swItch between them. 

ProcedUre GetPort3D(var port: Port3IFtr); 
GetPort3D returns a pointer to the current Port3D. This procedure is useful 
when you are using several Port3DS and want to save and restore the current 
one. 

ProcedUre t1oveT02O(~ y: real); ProcedUre t1oveT030(~ y, z: real); 
Procedure tIoVe2O(dX, tty: real); ProcedUre t1Ove30(dX, dy" ttz: real); 

These procedures move the pen In two or three dImensIons wI thout drawIng 
lines. The real number coordinates are transformed by the xForm matrix and 
projected onto flat screen coordInates; then Graf3D calls QulcKDraw's MoveTo 
procedure with the result. 

Proceaure LlneT02O(~ y: real); ProceflUre LineTo30(~ y, z: real); 
ProcedUre llne20(dX,dY: real); ProcedUre Llne30(dX,dy,dZ: real); 

These procedures draw two- and three-dimensional Hnes from the current pen 
location. LineT02D and Une2D stay on the same z-plane. The real number 
coordinates are first transformed by the xFonn matrix, then clipped to the 
viewing pyramid, then projected onto the flat screen coordinates and drawn by 
calling QuickDraw's UneTo procedure. 

" 
E-77 



Pascal Reference Manual QuickDraw 

FlflCtion Clip30( srcL src2: Polnt30; var dstL dst2: Point): bOOlean; 

Cllp3D cUps a three-dimensional l1ne segment to the viewing pyramid and 
returns the clipped line projected onto screen coordinates. Cl1p3D returns 
true if any part of the line is visible. If no part of the line is within the 
viewing pyramid .. Clip3D returns false. 

ProcedUre setPt30(var pt30: Point3D; Xvy,z: real); 

Setpt3D assIgns tnree real numbers to a Polnt3D. 

ProcedUre setPt20(var pt20: Polnt20; Xvy: real); 

SetPt2D assigns two real numbers to a Point2D. 

E.12.4.1 setting Up the camera (VieWPort, LOOkAt, a1d VleWAngle) 
Procedures ViewPort .. LookAt and VieWAngle position the image in the 
grafPort .. aim the camera" and choose the lens focal length in order to map 
three-dimensional coordinates onto the flat screen space. These procedures 
may be called in any order. 

Procedure ViewPort(r: Rect); 

ViewPort specifies where to put the image in the grafPort. The ViewPort 
rectangle Is in integer QuickDraw coordinates" and tells Where to map the 
LookAt ooordinates. 

ProcedUre LookAt(left, top .. right, bottom: real); 

LookAt specIfies the real number x and y coordinates corresponding to the 
viewRecl 

ProcedUre VieWAngle(angle: real); 

VieWAngle controls the amount of perspective by specifying the horizontal 
angle (in degrees) sUbtended by the viewing pyramid. Typical viewing angles 
are 00 (no perspective)" 100 (telephoto lens)" 250 (normal perspective of the 
human eye), and 80° (wide angle lens~ 

E.13.4.2 The TransfOImation Matrix 
The transformation matrix allows you to impose a coordinate transformation 
between the coordinates you plot and the viewing coordinates. Each of the 
transformation procedures concatenates a cumulative transformation onto the 
xFonn matrix. SUbsequent lines drawn are first transformed by the xFonn 
matrix, then projected onto the screen as speclflea by Viewport .. LooKAt .. and 
VlewAngle. 

Procewre Identity; 

Identity resets the transformation matrix to an identity matrix. 

E-78 



Pascal Reference Manual QulckDraw 

ProceWre SC8le(Xfactor,yFactor,Zfactor: real); 
Scale modifies the transformation matrix so as to shrink or expand by xFactor, 
yFactor, and zFactor. For example ... scaIe(2.02.02.0) \IIlll make everything 
come out twice as big when you draw. 

ProceWre TlCI'lslate( dX.. dy, dZ: real); 

Translate modifies the transformation matrix so as to displace by dX.,dyAz. 

ProceWre pltch(~le: real); 

Pitch modifies the transformation matrix so as to rotate xAngle degrees 
around the x axis. A positive angle rotates clockwise when looking at the 
orIgIn from positive x. 

ProceWre Yaw(yAngle: real); 
Yaw modifIes the transformatIon matrIx so as to rotate yAngle degrees around 
the y axis. A posit1ve angle rotates clookwise when looking at the origin 
from posItive y. 

ProcedUre Roll(ZAngle: real); 
Roll modifies the transformation matrix so as to rotate zAngle degrees around 
the z axis. A positive angle rotates clockwise when lOOking at the Origin 
from positlve z. 

PrOCedUre SkeW(ZAngle: real); 
Skew modifies the transformation matrix so as to skew zAngle degrees 
around the z axis. Skew only Changes the x coordinate; the result Is much 
like the slant QulckDraw gives to italic characters. (8I<ew(15.0) makes a 
reasonable ltaBc.) A positive angle rotates clOCkwise when lOOking at the 
orIgin from positive z. 

ProcedUre TlCI'lsform(src: Point30; var dst: Polnt30); 

Transform applies the XForm matrix to src and returns the result as dst. If 
the transformation matrix is identity ... dst will be the same as src. 

E-79 



Pascal Reference Manual 

E.13 QulCl<Draw interfaCe 

UNIT QuiCl<Draw; 

{ COpyright 1983 Apple Computer Inc. } 

INTERFACE 

CONST sreCOpy 
sreor 
srcXor 
sreBic 
notSrCCOpy 
notSreor 
notSrcXor 
notSrcBic 
patCopy 
patOr 
patxor 
patBic 
notPatCopy 
notPatOr 
notPatxor 
notPatBic 

= 0; {the 16 transfer modes } 
= 1; 
= 2; 
= 3; 
= 4; 
= 5; 
= 6; 
= 7; 
= 8; 
= 9; 
= 10; 
= 11; 
= 12; 
= 13; 
= 14; 
= IS; 

{ QuicKDraw color separation constants } 

normalBit = 0; 
inverseBit = 1; 
redBit = 4; 
greenBit = 3; 
blueBit = 2; 
cyanBit = 8; 
magentaBi t = 7; 
yellowBit = 6; 
blackBit = 5; 

{ normal screen mapping } 
{ inverse screen mapping } 
{ RGB additive mapping } 

{ CMVBk sUbtractive mapping } 

QufCkDraw 

blackCOlor = }}; 
whitecolor = 30; 
redColor = 205; 
greenColor = 341; 

{ colors expressed in these mappings } 

blueColor = 409; 
cyancolor = 273; 
magentaGolor = 137; 
yelloWCOlor = 69; 

picLParen = 0; 
picRParen = 1; 

{ standard picture comments } 

E-80 



Pascal Reference Manual 

TYPE QDByte = -128 •. 127; 
"QOByte; 

= "ODPtr; 
= String[25S]; 

{ blind pointer } 
{ blind handle } 

= PACKED ARRAV [0 .. 7 J OF 0 •. 255; 
== ARRAV [0 •• 1S] CF' INTEGER; 
= (VI n); 

(frane, paint, erase, invert, fill); 

QlJlckDraw 

QOPtr 
QOHant1le 
Str2SS 
Pattern 
Bits16 
VHSe1ect 
GrafVerb 
Sty1eItem = (bOld, italic, underline, outline, shadow, condense, 

extend); 
Style = SET OF Sty1eIt~ 

FontInfo = RECORD 
ascent: INTEGER; 
descent: INTEGER; 
wld11ax: INTEGER; 
leading: INTEGER; 

END; 

Point = RECORD CASE INTEGER Of 

0: (v: INTEGER; 
h: INTEGER); 

1: (Vh: ARRAV[VHselect] OF INTEGER); 

END; 

Reot = RECORD CASE INTEGER Of 

0: (top: 
left: 
bOttom: 
right: 

INTEGER; 
INTEGER; 
INTEGER; 
INTEGER); , 

1: (topLeft: Point; 
botRight: Point); 

END; 

E-81 



Pascal RefeJ1!l1Ce MantJaJ 

B1tHap = RECORD 
baseAddr: QOPtr; ~. 

rowBytes: INTEGER; . 
bounds: Rect; 

END; 

Cursor = RECORD 
oata: Blts16; 
maSk: Bi ts16; 
hotSpot: Point; 

END; 

Pen8tate = RECORD 
pnloc: 
poS1ze: 
poMade: 
pnPat: 

END; 

Point; 
POint; 
INTEGER; 
pattern; 

PolyHandle = hPolyPtr; 
pOlyptr = "POlygon; 
Polygon = RECORD 

polyS1ze: INTEGER; 
polyBBox: Rect; 
pOlyPolnts: ARRAV[O •. O] OF Point; 

END; 

RgnHandle = "RgnPtr; 
RgnPtr = "Region; 
Region RECORD 

QulckD.raw 

rgnS1ze: INTEGER; { rgnS1ze = 10 for rectangular } 
rgnBBox: Rect; 
{ plus more data if not rectangular } 

END; 

P1cHandle = ftP1cPtr; 
P1cPtr = AP1cture; 
P1cture = RECORD 

picSize: INTEGER; 
p1cFrame: Rect; 
{ plus byte codes for picture content } 

END; 

E-82 



Pascal Refemnce I'-1anuaJ 

QOProcsPtr = "'QOProcs; 
QOProcs = RECORD 

textProc: QDPtr; 
lineProc: QOPtr; 
rectProc: QOPtr; 
rRectproc: QOPtr; 
ovalProc: QOPtr; 
arcProc: QOPtr; 
polyProc: QOPtr; 
rgnProo: QOPtr; 
bltsProc: QOPtr; 
COf1IrentProo: QOPtr; 
txMeasProc: QOPtr; 
getPicProc: QOPtr; 
putPlcProc: QOPtr; 

END; 

GrafPtr = "'GrafPort; 
GrafPort = RECORD 

device: 
portBits: 
portRect: 
viSRgn: 
cllpRgn: 
bkPat: 
flllPat: 
pnLoo: 
pnS1ze: 
pnt1ode: 
poPat: 
pnVis: 
tXfont: 
tXfaoe: 
tXMode: 
tXSize: 
spExtra: 
fgColor: 
bkColor: 
colrBit: 
patStretch: 
pioSave: 
rgnSave: 

INTEGER; 
BitMap; 
Rect; 
RgnHandle; 
RgnHancIle; 
Pattern; 
Pattern; 
Point; 
Point; 
INTEGER; 
Pattern; 
INTEGER; 
INTEGER; 
Style; 
INTEGER; 
INTEGER; 
LongInt; 
LongInt; 
longInt; 
INTEGER; 
INTEGER; 
QOHandle; 
QOHandle; 

E-83 

Qt,IickDJ'8W 



Pascal Reference Manual QufckDraw 

polysave: QOHandle; 
grafProcs: QOProcsPtr; 

END; 

VAR tnePort: GrafPtr; 
white: Pattern; 
black: Pattern; 
gray: Pattern; 
1 tGray : Pattern; 
dkGray: Pattern; 
arrow: Cursor; 
screenBits: BitMap; 
randSeed: LongInt; 

{ GrafPort Routines } 

PROCEDURE InitGraf (globalPtr: QOPtr); 
PROCEDURE OpenPort (port: GrafPtr); 
PROCEDURE InitPort (port: GrafPtr); 
PROCEDURE ClosePort (port: GrafPtr); 
PROCEDURE SetPort (port: GrafPtr); 
PROCEDURE GetPort (VAR port: GrafPtr); 
PROCEDURE GrafDevice (device: INTEGER); 
PROCEDURE SetPortB1ts(bm: B1tMap); 
PROCEDURE PortSize (~idth,heignt: INTEGER); 
PROCEDURE MovePortTo (leftGlobal,topGlobal: INTEGER); 
PROCEDURE setOrigin (h,v: INTEGER); 
PROCEDURE setC11p (rgn: RgnHandle); 
PROCEDURE GetClip (rgn: RgnHandle); 
PROCEDURE CllpRect (r: Rect); 
PROCEDURE BackPat (pat: Pattern); 

{ CUrsor Routines } 

PROCEDURE In1tCUrsor; 
PROCEDURE Setcursor(crsr: cursor); 
PROCEDURE H1deCursor; 
PROCEDURE snoWCUrsor; 
PROCEDURE ObscureCUrsor; 

E-84 



Pascal Refemnce Manual 

{ Line Routines} 

PROCEDURE HidePen; 
PROCEDURE ShowPen; 
PROCEDURE GetPen (VAR pt: Point); 
PROCEDURE Getpenstate(VAR pnState: Penstate); 
PROCEDURE setpen8tate(pnState: pen8tate); 
PROCEDURE PenSize (width, height: INTEGER); 
PROCEDURE PenMode (rode: INTEGER); 
PROCEDURE PenPat (pat: Pattern); 
PROCEDURE PenNormal; 
PROCEDURE NoveTo 
PROCEDURE Hove 
PROCEDURE LineTo 
PROCEDURE Line 

(h, v: INTEGER); 
(dh,dV: INTEGER); 
(h, V: INTEGER); 
(dh,dv: INTEGER); 

(font: INTEGER); 
(face: Style); 
(rode: INTEGER); 
(s1ze: INTEGER); 
(extra: LongInt); 
(Ch: char); 
(s: Str2SS); 

QulckDraw 

{ Text Routines } 

PROCEDURE TextFont 
PROCEDURE TextFace 
PROCEDURE TextHOde 
PROCEDURE TextSize 
PROCEDURE SpaceExtra 
PROCEDURE DraWChar 
PROCEDURE DrawString 
PROCEDURE DrawText 
FUNCTION Charwidth 
FUNCTION Strlngwldth 
FUNCTION TextWidth 

(textBuf: QOPtr; f1rstByte,byteCOunt: INTEGER); 
(Ch: CHAR): INTEGER; 
(s: Str2SS): INTEGER; 
(textBuf: QDPtr; firstByte,byteCount: INTEGER): 

INTEGER; 
PROCEDURE GetFontInfo (VAR info: FontInfo); 

{ Point calculations } 

PROCEDURE AddPt (src: Point; UAR dst: Point); 
PROCEDURE SUbPt (src: Point; VAR dst: Point); 
PROCEDURE setpt (VAR pt: Point; h, v: INTEGER); 
FUNCTION Equalpt (ptl, pt2: Point): BOOLEAN; 
PROCEDURE SCalePt (VAR pt: point; fro~ect, toRect: Rect); 
PROCEDURE MapPt (VAR pt: Point; fro~ect,toRect: Rect); 
PROCEDURE LocalToGlobal (VAR pt: Point); 
PROCEDURE GlobalToLocal (VAR pt: point); 

E-8S 



Pascal Refell!l?Ce Manual QulckDraw 

{ Rectangle calculations } 

PROCEDURE SetRect (VAR r: Rect; left, top, right, bottom: INTEGER); 
FLt4CTION EqualRect (recti, rect2: Rect): BOOLEAN; 
FUNCTION Eq>tyRect (r: Rect): BOOlEAN; 
PROCEDURE OffsetRect (VAR r: Rect; dh, dV: INTEGER); 
PROCEDURE MapRect (VAR r: Rect; froflflect, toRect: Rect); 
PROCE~E InsetRect (VAR r: Rect; dh, dv: INTEGER); 
FUNCTION 8ectRect (srcl, src2: Rect; VAR dstRect: Rect): BOOLEAN; 
PROCEDURE unionRect (srcl,src2: Rect; VAR dstRect: Rect); 
FUNCTION PtInRect (pt: Point; r: Rect): BOOlEAN; 
PROCEDURE Pt2Rect (ptl,pt2: Point; VAR dstRect: Rect); 

{ Graphical Operat1ons on Rectangles } 

PROCEDURE FrameRect (r: Rect); 
PROCEDURE PaintRoot (r: Root); 
PROCEDURE EraseRect (r: Root); 
PROCEDURE InvertRoot (r: Rect); 
PROCEDURE Fl11Rect (r: Rect; pat: Pattern); 

{ RoundRect Routines } 

PROCEDURE FraneRoundRect (r: Rect; oVWCI, ovHt: INTEGER); 
PROCEDURE Pa1ntRoundRect (r: Rect; ovWd~oVHt: INTEGER); 
PROCEDURE EraseRoundRect (r: Root; ovllJd, ovHt: INTEGER); 
PROCEDURE InvertR~ect (r: Rect; ovld,OVHt: INTEGER); 
PROCEDURE FillRoundRect (r: Rect; ovWd,ovHt: INTEGER; pat: Pattern); 

{ Oval Routines } 

PROCEDURE Frameoval (r: Rect); 
PROCEDURE Palntoval (r: Root); 
PROCEDURE EraseDVal (r: Rect); 
PROCEDURE InvertOVal (r: Root); 
PROCEDURE Flll0val (r: Rect; pat: Pattern); 

{ Arc Routines } 

PROCEDURE FrameArc (r: Rect; startAngle,arcAngle: INTEGER); 
PROCEDURE PaintArc (r: Rect; startAngle, arcAngle: INTEGER); 
PROCEDURE EraseArc (r: Rect; startAngle,arcAngle: INTEGER); 
PROCEDURE InvertArc (r: Rect; startAngle, arcAngle: INTEGER); 

E-86 



Pascal Reference fvIanuaJ QtIICkDraw 

PROCEDURE FillAre (r: Rect; startAngle,areAngle: INTEGER; pat: 
Pattern); 

PROCEDURE PtToAngle (r: Rect; pt: Point; VAR angle: INTEGER); 

{ Polygon Routines } 

FUNCTION OpenPolY: 
PROCEDURE ClosePoly; 
PROCEDURE KillPoly 
PROCEDURE Offsetpoly 
PROCEDURE NapPoly 
PROCEOURE FramePoly 
PROCEDURE Paintpoly 
PROCEDURE ErasePoly 
PROCEDURE InvertPoly 
PROCEDURE FillPoly 

PolyHandle; 

(poly: PolyHandle); 
(poly: PolyHandle; dh,dV: INTEGER); 
(poly: PolyHandle; fronflect, toRect: Rect); 
(poly: PolyHandle); 
(poly: PolyHandle); 
(poly: PolyHandle); 
(poly: PolyHandle); 
(poly: PolyHandle; pat: Pattern); 

{ Region calculations } 

FUNCTI~ NewRgn: Rg1iandle; 
PROCEDURE OisposeRgn(rgn: RgnHandle); 
PROCEOURE COpyRgn ( srcRgn, dstRgn: Rg1iandle); 
PROCEDURE setE~tyRgn( rgn: RgnHandle); 
PROCEDURE setRectRgn(rgn: Rg1iandle; left, top, right, bOttom: INTEGER); 
PROCEDURE RectRgn (rgn: RgnHandle; r: Rect); 
PROCEDURE 0penRgn; 
PROCEDURE CloseRgn (dstRgn: RgnHandle); 
PROCEDURE OffsetRgt (rgn: RgnHandle; cIh, dV: INTEGER); 
PROCEDURE MapRgn (rgn: RgnHandle; frOilflect, toRect: Rect); 
PROCEDURE InsetRgn (rgn: RgnHandle; dh, dv: INTEGER); 
PROCEDURE 5ectRgn (srcRgnA, srcRgnB, dstRgn: RgnHandle); 
PROCEDURE U1ionRgn (srcRgnA, srcRgnB, dstRgn: RgnHandle); 
PROCEDURE Di ffRgn (srCRgnA., srcRgnB, ClStRgn: RgnHandle); 
PROCEDURE xorRgn (srcRgnA, srcRgnB, dstRgn: RgnHandle); 
FUNCTION EqualRgn (rgnA, rgnB: RgnHandle): BOOLEAN; 
FUNCTION E~tyRgn (rgn: RgnHandle): BOOLEAN; 
FUNCTION PtInRgn (pt: Point; rgn: RgnHandle): BOOLEAN; 
fUNCTION RectInRgn (r: Root; rgn: RgnHandle): BOOLEAN; 

{ Graphical Operations on Regions } 

PROCEDURE FrameRgn (rgn: RgnHandle); 
PROCEDURE PaintRgn (rgn: RgnHandle); 
PROCEDURE EraseRgn (rgn: RgnHandle); 

E-87 



Pascal Reference Hantlal QuICkDraw 

PROCEDURE InvertRgn (rgn: RgnHandle); 
PROCEDURE F111Rgn (rgn: RgnHandle; pat: Pattern); 

{ Graphical Operations on BitMaps } 

PROCEDURE ScrollRect(dstRect: Rect; dh,dv: INTEGER; upaateRgn: 
rgnHandle); 

PROCEDURE COpyBits (srcBits,dstBits: BitMap; 
srcRect,dstRect: Rect; 
rode: INTEGER; 
maskRgn: RgnHandle); 

{ Picture Routines } 

FUNCTION OpenP1cture(picFrame: Rect): PicHandle; 
PROCEDURE ClosePicture; 
PROCEDURE DrawP1cture(myPicture: PiCHandle; dstRect: Rect); 
PROCEDURE Piccomment(kind,dataSize: INTEGER; dataHandle: QOHandle); 
PROCEDURE KillPicture(myPicture: PicHandle); 

{ The Bottleneck Interface: } 

PROCEDURE setStdProcs(VAR procs: QOProcs); 
PROCEDURE StdText (count: INTEGER; textAddr: QDPtr; numer,denom: 

PROCEDURE StdLine 
PROCEDURE StdRect 
PROCEDURE StdRRect 
PROCEDURE StdOVal 
PROCEDURE StdArc 

Point); 
(newPt: Point); 
(verb: GrafVerb; r: Rect); 
(verb: GrafVerb; r: Rect; OVWd,ovHt: INTEGER); 
(verb: GrafVerb; r: Rect); 
(verb: GrafVerb; r: Rect; startAngle,arcAngle: 

INTEGER); 
PROCEDURE StdPoly (verb: GrafVerb; poly: PolyHandle); 
PROCEDURE StdRgn (verb: GrafVerb; rgn: RgnHandle); 
PROCEDURE StdB1ts (VAR srcBits: BitMap; VAR srcRect,dstRect: Rect; 

fOOde: INTEGER; maskRgn: RgnHanclle); 
PROCEDURE StdCortlnent (kind, datasize: INTEGER; dataHandle: QOHanclle); 
FUNCTION StdTXMeas (count: INTEGER; textAddr: QOPtr; 

VAR numer,denom: Point; 
VAR info: FontInfO): INTEGER; 

PROCEDURE StdGetPic (dataPtr: QOPtr; bytecount: INTEGER); 
PROCEDURE StdPutPic (dataPtr: QOPtr; bytecount: INTEGER); 

E-88 



Pascal Reference Manual 

{ Misc Ut1lIty Rout1nes } 

FUNCTION GetPlxel (h, V: INTEGER): BOOLEAN; 
FUNCTION Random: INTEGER; 
PROCEDURE Stuff Hex (th1ngptr: QOPtr; s:Str255); 
PROCEDURE Forecolor (color: Longlnt); 
PROCEDURE BacKCOlor (color: LongInt); 
PROCEDURE COlorBit (Wh1chBit: INTEGER); 

E.13.1 Graf3D InteI'faE 

{$S Graf } 

UNIT Graf30; 

QI,IiekDraw 

{ three-dimensional graphics routines layered on top of Qu1ckDraw } 

INTERFACE 

USES {$U QD/QuickDraw.OOJ} Quick.Draw; 

CONST radConst=57.29578; 

TYPE Point30=RECORD 
X: REAL; 
y: REAL; 
Z: REAL; 

END; 

Point2D=RECORD 
X: REAL; 
y: REAL; 

END; 

XfMatrlx = ARRAV[O .. 3,O •. 3] OF REAL; 
Port3OPtr = "'Port30; 
Port3D = RECORD 

GPort: GrafPtr; 
vlewRect: Rect; 
><Left, yTop, xRight, yBottom: REAL; 
pen, penPrIme, eye: PoInt3D; 
hSize,vSize: REAL; 
hCenter,vCenter: REAL; 
XCotan, yCotan : REAL; 
Ident: BOOLEAN; 
xForm: XfMatrix; 

END; 

E-89 



Pascal Reference H8nII81 QtJJckDraw 

VAR thePort30: Port3OPtr; 

PROCEDURE Open3OPort (port: Port3OPtr); 
PROCEDURE setPort3D (port: Port3DPtr); 
PROCEDURE GetPort30 (VAR port: Port3DPtr); 

PROCEDURE HoveTo2O(x,y: REAL); PROCEDURE HoveTo30(x,y,z: REAL); 
PROCEDURE LlneT020(x, y: REAl); PROCEDURE LlneTo3D(x, y .. z: REAl); 
PROCEDURE Hove2D(dx, dy: REAL); PROCEDURE t'Iove3D(dx, dy" dz: REAL); 
PROCEDURE Line2D(dx, cJy: REAL); PROCEDURE Line3D(cJx .. dy, dz: REAL); 

PROCEDURE VielJlPOrt (r: Rect); 
PROCEDURE LOOkAt (left, top, right, oottom: REAL); 
PROCEOI.H: ViewAngle (angle: REAL); 
PROCEDURE Identity; 
PROCEDURE Scale 
PROCEDURE Translate 
PROCEDURE Pi ten 
PROCEDURE Vaw 
PROCEDURE Roll 
PROCEDURE Skew 
PROCEDURE Transform 
FUNCTION Clip3D 

PROCEDURE setPt30 
PROCEDURE setpt20 

(Xfactor,yFactor,zFactor: REAL); 
(dX, dy, dZ: REAL); 
(xAngle: REAL); 
(yAngle: REAL); 
(zAngle: REAL); 
(ZAngle: REAL); 
(src: Polnt30; VAR dst: Polnt30); 
(srcl,src2: Point30; VAR dstl,dst2: POINT): 

BOOlEAN; 

(VAR pt30: Point30; x,y,z: REAL); 
(VAR pt20: Point20; X, y: REAl); 

E-90 



Pascal Reference ManIJaJ c;tIiCkDraw 

E.14 QulCI<DraW SCI11lle Prograr'a$ 
this section provides listings of two sample programs that are InclUded with 
the WOrkShOp software. 

E.14..1 QDSallple 
The program QOS43l1ple (In the fUe GlJ/QOSall"le. TEXl) demOnstrates 
different things tnat QuiCkDraw can dO. Its output is Shown in Figure E-26. 

Text 

Bold 
Itolic 
Underline 
@KOO~ 

~ 

RoundRects 

Polygons 

Look what you can draw with QuickOraw 

Bit Images 

~ r.1 .. t 
~IB@ 

Fi!JJre E-26 
QIJSCIT1lle 

Rectangles 

Wedges 

Ovals 

The flIe Q[)lM/QIJSC:rT1)le.TEXT Is an exec flIe that can oe used to retlUlId 
this sample program. Disregard any warning messages from the llnker aoout 
name conflIcts. 

E-91 



Pascal Reference Manual 

PROGRAM QOSanple; 

{ Sample program ililustrating the use of QuickDraw. } 

USES {$U QO/QuiCkDraw.OBJ} QuickDraw .. 
{$U QO/QOSUpport. OBJ} QOSupport; 

TVPE IconData = ARRAV [0 .• 95] OF INTEGER; 

VAR heapBuf: 
myPort: 
icons: 

ARRAV[O .• 10000] Of INTEGER; 
GrafPort; 
ARRAV[0 •• 5) OF Iconoata; 

FUNCTION HeapFull(hz: QOPtr; bytesNeeded: INTEGER): INTEGER; 

QuICkDraw 

{ this function will be called if the heapzone runs out of space } 
BEGIN 

WRITELN( 'me heap is full. me program rust now terminate! '); 
Halt; 

END; 

PROCEDURE Initlcons; 
{ Manually stuff some icons. Normally we would read them from a file } 
BEGIN 

{ lisa } 
StUffHex(&icons[O .. 0] .. 'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOlFFFFFFFFC'); 
StuffHex(&icons[0 .. 12] .. '00600000000601BOOOOOOOOB060000000013OFFFFFFFFFA3'); 
StUffHex(wicons[0 .. 24] .. 'lB000000004311FFFFF000231200000BOF23120000OBF923'); 
StuffHeX(micons[O .. 36] .. '120000080F23120000OB0023120000080023120000OBOF23'); 
StuffHex(wicons[0 .. 48] .. '1200000Bf9231200000B0F231200000B002311FFFFF00023'); 
StUffHex(&icons[O .. 60] .. '08000000004307FFFFFFFFA3010000000026OFFFFFFFFE2C'); 
StUffHex(&icons[0,72], '18000000013832AAAAABA9F06555555153BOC2AAAAB2A580'); 
stUffHex(micons[0 .. 84] .. '80000000098OFFFFFFFFF300B0000000160OFFFFFFFFFCOO ' ); 

{ Printer } 
StUffHex(&iconS[l, 0], 1000000000000000000000000000000000000000000000000'); 
StUffHex(wiconS[1 .. 12] .. '00000000000000007FFFFF00000080000280000111514440'); 
StuffHex(wiconS[1,24], '0002000008400004454510400004000017COOOO4A5151000'); 
stUffHeX(micons[l .. 36], '0004000010000004A54510000004000017FEOOF4A51510031); 
StUffHex(&lcons[l,48], '0184000013870327FFFFFIOF06400000021BOCFFFFFFFC37'); 
StUffHex(mlconS[1,60], '1800000000683000000000077FFFFFFFFFABC00000000356'); 
StUffHex(wicons[1,72], '8000000001AC87F00000015884100OCCCIB087FOOOCCC160 ' ); 
StuffHex(miconS[l .. 84] .. '8000000001COC000000003807FFFFFFFFF0007BOOOOIEOOO'); 

E-92 



Pascal Reference /VIanua1 QulCl<Draw 

{ TraSh Can } 
StUffHex(&1cons[2, 0], 'OOOOOlFCOOOOOOOOOE060000000030030000000OC0918000'); 
Stuff Hex (m1cons [2, 12), '00013849800000026C4980000004C0930000000861260000'); 
StuffHex(m1cons[2,24], '0010064FE0000031199830000020E6301800002418EOOBOO'); 
StuffHex(m1conS[2,36], '0033E3801C0000180E002COOOOOFF801CC0000047FFEOCOO'); 
StuffHex(m1conS[2,48], 'OOOSOOOO4C0000OS259A4C0000OS2SOA4C00000S2SFA4C00'); 
StuffHex(m1cons[2,60], 'OOOS24024C00000524924C00600524924C0090E524924C7C'); 
StuffHex(m1cons[2,72), '932S24924CS2A44S24924DOIC88S24924CFIOC4S24924C09'); 
StuffHex(m1cons[2,84], '0784249258E70003049233100000EOO0E40800001FFFC3FO'); 

{ tray } 
StuffHex(m1cons[3, 0), '000000000000000000000000000000000000000000000000'); 
StuffHex(m1conS[3,12], '0000000000000000000000000000000000000007FFFFFFFO'); 
StUffHex(m1cons[3,24], 'OOOE0000001S00IA0000003800360000007S006A00000OO8'); 
StuffHex(m1cons[3,36], 'OOD7FFFFFFB801AC0000035803S8000006B807FCOOOFFD58'); 
StuffHex(m1cons[3,48], '040600180AB80403FFF00058040000000AB804000000ODSS'); 
StuffHex(m1conS[3,60], '040000000AB807FFFFFFFD5806ACOOOOOAB8OS5800000DS8'); 
StUffHex(m1conS[3,72], '06B000000AB807FCOOOFFD70040600180AE00403FFFOOOCO'); 
StuffHex(m1conS[3,84], '040000000B8004000000OF00040000000E0007FFFFFFFCOO'); 

{ File Cab1net } 
StUffHex(&1conS[4, OJ, '0007FFFFFCOOOOOSOOOOOCOOOOIOOOOOIC00002000003400'); 
StuffHex(mlconS[4,12], '004000006COOOOFFFFFFD40000800000ACOOOOBFFFFED400'); 
StuffHex(~iconS[4,24), 'OOA00002ACOOOOA07F02D40000A04102ACOOOOA07F02D400'); 
StuffHex(mlconS[4,36], '00A00002ACOOOOAOB082D40000AOFF82ACOOOOAOOOO2D400'); 
StuffHex(miconS[4,48), 'OOA00002ACOOOOBFFFFED40000800000ACOOOOBFFFFED400'); 
StuffHex(m100ns[4,60], 'OOA00002ACOOOOA07F02D40000A04102ACOOOOA07F02D400'); 
StuffHex(mioons[4,72J, 'OOA00002ACOOOOAOB082D40000AOFFS2ACOOOOA00002D800'); 
StuffHex(m1conS[4,84], '00A00002BOOOOOBFFFFEE0000080000OCOOOOOFfFFFF8000'); 

{ drawer } 
StuffHex(micons[S, 0), '000000000000000000000000000000000000000000000000'); 
StuffHex(mlcons[S,12], '000000000000000000000000000000000000000000000000'); 
StUffHex(mlcons[S,24], '000000000000000000000000000000000000000000000000'); 
StuffHex(mlcons[S,36), 'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOlFFFFFFO'); 
StuffHex(&lcons[S,48], '00003800003000006S000070000008000ODOOO3FfFFFFIBO'); 
StuffHex(mlcons[5~60]~ '0020000013S00020000016B000201fEOIOS0002010201ABO'); 
StUffHex(&lcons[S,72J, '00201FE01S60002000001AC0002000001S80002020101BOO'); 
StuffHex(mlcons[S,84], '00203FF01600002000001C00002000001800003fFFffFOOO'); 

END; 

E-93 



Pascal Reference HantI8J 

PROCEDURE Drawlcon(l1JhlChlcon, h, V: INTEGER); 
VAA srcB1 ts: 81 tt1ap; 

srcRect, dstRoot: Root; 
BEGIN 

srcBits.baseAOdr:=&lcons[WhlOhIcon]; 
srcB1ts.rowBytes:-6; 
setRect(srcBlts.bOUndS,O,0,48,32); 

" srcRect:=srcB1ts.bOUndS; 
~stRect:=srcRect; 

QulckOraw 

OffsetRect(dstRect, h, v); 
COpyBlts(srcBlts,thePort".portBlts,srcRect,dstRect,srCOr,Nll); 
END;" 

PROCEDURE DrawStUff; 

VAR 1: INTEGER; 
t~ect: Reot; 
myPoly: Po lyHancUe; 
myRgn: RgnHandle; 
myPattern: Pattern; 

BEGIN . 
stUffHex(&myPattern ... • 8040200002040800' ); 

t~ect :. thePort" .portRect: 
CllpRoot(t~t); 
EraseRoundRect(tef1l)Rect ... 30 ... 20); 
FratOORouncJRect(t~t, 30,20); 

{ draw two horizontal l1nes across the top } 
NoveTo(0,18); 
llneTo(719,18); 
NoveTo(0,20); 
llneTo(719,20); 

{ draw aivider lines } 
NoveTO(0,134); 
llneTo(719,134); 
NoveTo(0,248); 
llneTo(719,248); 
NoveTo(240,21); 
llneTo(240,363); 
NoveTO( 480,21); 
llneTo( 480,363); 

E-94 



Pascal Reference Manus} 

{ draw title } 
TextFont(O); 
MoveTo(210,14); 
DrawString('look what you can draw with QuickDraw'); 

{--------- draw text samples --------- } 

HoveTo(80,34); DraWString( 'Text'); 

TextFace( [bold}); 
MoveTo(70,55); DrawString('Bold'); 

TextFace([italic]); 
HoveTo(70,70); OraWString('ItBlic'); 

TextFace([undsrline]); 
MoveTo(70,85); OrawString('Underline'); 

TextFace([outline1); 
HoveTo(70,100); DrawString( 'OUtline'); 

TextFace«(shadow1); 
HoveTo(70,11S); DrawString('Shadow'); 

TextFace([J); {restore to normal} 

{ --------- draw line samples --------- } 

I1OveTo(330,34); DrawString( 'lines'); 

HoveTo(280,25); l ine (160, 40); 

PenSize(3,2); 
HoveTo(280, 35); line(160,40); 

PenSize(6,4); 
I1OveTo(280 .. 46); line{160 .. 40); 

PenSize(12 .. 8); 
PenPat(gray); 
t'foveTo(280,61); line(160,40); 

E-95 

QuickDraw 



PenSize(15,10); 
PenPat(ffl¥Pattern); 
HoveTo(280,80); L1ne(160,40); 
PenNormal; 

{ --------- draw rectangle samples --------- } 

HoveTo(560,34); DraWString( 'Rectangles'); 

SetRect(tefi\lRect, 510, 40, 570, 70); 
FrameRect(tempRect); 

OffsetRect(tempRect,25,15); 
PenSize(3,2); 
EraseRect(tenpRect); 
FrameRect(tempRect); 

OffsetRect(tempRect,25,15); 
paintRect(tempRect); 

Off setRect (tempRect, 25, 15); 
PenNormal; 
Fll1Rect(tempRect,gray); 
FrameRect(tempRect); 

OffsetRect(tempRect,25,15); 
FillRect(tempRect,myPattern); 
FrameRect(tempRect); 

{ --------- draw roundRect samples --------- } 

MoveTo(70,148); DrawString('RoundRects'); 

SetRect(te"lJRect .. 30 ... 150 .. 90 .. 180); 
FramoRoundRcot(tompRoot,30,20); 

Off setRect (tempRect, 25, 15); 
PenS1ze(3,2); 
EraseRoundRect(tempRect,30,20); 
FrameRoundRect(tempRect,30,20); 

OffsetRect(tempRect,25,15); 
PaintRoundRect(tempRect,30,20); 

E-96 

QuickDraw 



Pascal Reference MBnI.JBl 

OffsetRect(tempRect,25,15); 
PenNormal; 
F1 1 1 RoundRect(tempRect, 30,20, gray); 
FrameRoundRect(tempRect, 30, 20); 

OffsetRect(tempRect,25,15); 
F1l1RoundRect(tempRect,30,20,myPattern); 
FrameROl.n:JRect(tempRect, 30, 20); 

{ --------- draw bit image samples --------- } 

HoveTo(320,148); DrawStr1ng('Blt Images'); 

Drawlcon(0,266,156); 
Drawlcon(1,336,156); 
DrawIcon(2,406,156); 
Drawlcon(3,266,196); 
Drawl con (4, 336,196); 
Drawl con (5, 406, 196); 

{ --------- draw wedge samples --------- } 

Hove To (570, 148); DrawStrlng('Wedges'); 

SetRect(tempRect, 520,153,655,243); 
FillArc(tempRect,135,65,dkGray); 
FillArc(teJll)Rect,200,130,myPattern); 
FillArc(tempRect, 330, 75, gray); 
FrameArc(tempRect,135,270); 
OffsetRect(tempRect,20,0); 
PalntArc(tempRect, 45, 90); 

{ --------- draw polygon samples --------- } 

HoveTo(80,262); DrawString( • Polygons .); 
myPoly:=OpenPoly; 

HoveTo(30,290); 
l1neTo(3o,280); 
LineTo(50, 265); 
L1neTo(90,265); 
LineTo(80,280); 
lineTo(95,290); 
LineTo(30,290); 

ClosePoly; { end of definition } 

E-97 

QuickDmw 



Pascal Reference /'18ntJ8I 

FramePoly(~ly); 

Offsetpoly(myPoly,25, 15); 
PenSize(3,2); 
ErasePoly(myPoly); 
framePoly(myPoly); 

Off setPo ly (myPoly, 25, 15); 
P8intPoly(~ly); 

OffsetPoly(myPoly,2S,15); 
PenNormal; 
Fi 1 lPoly (mypo ly, gray); 
framePoly(myPoly); 

Off setPoly (myPoly, 25, 15); 
FillPoly(myPoly,myPattern); 
FramePoly(myPoly); 

KillPoly(myPoly); 

{ --------- demonstrate region clipping --------- } 

HoveTo(320,262); OraWString('Regions'); 

myRgn: =NewRgn; 
OpenRgn; 

ShowPen; 

SetRect(teqlRect, 260, 270, 460, 350); 
franeRoundRect(tetrpRect,24,16); 

HoveTo(275,335); {define triangular hOle} 
LineTo(325,285); 
l1r~To(375,335); 
LineTo(275, 335); 

SetRect( te~ect, 365, 277,445,325); {oval hole } 
frameOval(tempRect); 

HidePen; 
CloSeRgn(myRgn); 

SetClip(myRgn); 

{ end of definition } 

E-98 

QujckDRiW 



Pascal Refemnce Manual 

FOR i: =0 TO 6 00 {dra" stuff inside the clip region } 
BEGIN 
HoveTo(260,280+12*1); 
DraWString("Arbitrary Clipping Regions"); 

END; 

ClipRect(thePortA.portRect); 
Oi sposeRgn( myRgn); 

{ --------- draw oval samples --------- } 

HoveTo(S80,262); Ora"string(IOvals"); 

SetRect(t~ect, 510, 264, 570, 294); 
FrameOval(tempRect); 

OffsetRect(teq>Rect,25,15); 
PenSize(3,2); 
EraseOval(teq>Rect); 
FrameOval(tempRect); 

OffsetRect(tempRect,25,15); 
PaintOval(tempRect); 

OffsetRect(teq>Rect,25,15); 
PenNormal; 
FillOval(t~ect, gray); 
FrameDval(tempRect); 

OffsetRect(tempRect,25,15); 
FI11OVal(tempRect,myPattern); 
FrameDval(teq>Rect); 

END; {DrawStuff} 

E-99 

QujckDmw 



Pascal Reference 1-18nu81 QuickDraw 

BEGIN {main program } 
{ Initialization - Generic to all applications using QuickDraw } 
QOInit(mheapBUf, mneapBuf(lOOOO], ~ull); { Must do this once at 

beginning } 
OpenPort(&myPort); 
PaintRect(thePortA.portRect); { Paint grey background } 

InitIcons; 
OrawStuff; 
Tone (2000, 500); { Beep tone of (1/2000)*10 A6 == 500 cycles/sec for 

500 milliseconds } 
Readln; {Wait until RETURN entered before terminating program } 

ENO. 

E-100 



Pascal Reference H8I7lJ8l QuickDraw 

E.l4.2 Boxes 
The program Boxes (in the file QOIBoxes.. TEX1) uses the Graf30 routines to 
draw random three-dimensional boxes on a grid, as shown in Figure E -27. 

Figure E-27 
Boxes 

The file QDIMIBoxes. TEXT is an exec file that can be used to rebuild this 
sample program. Disregard any waming messages from the lInker about name 
conflIcts. 

E-10l 



QuickDfiiW 

PROGRAM Boxes; 

{ Sample program illustrating use of the Graf3D unit by drawing random 
3D boxes on a grid. } 

USES 
{$U QO/QuickDraw.OBJ} QuickDraw, 
{$U QO/Graf3D.OBJ } Graf3D, 
{$U OO/QDSUpport. OBJ} QDSupport, 

CONST boXCOUnt = 15; 

TYPE Box3D=RECORD 
ptl: Point3D; 
pt2: Point3D; 
dist: REAL; 

END; 

VAR 
heapBuf: 
GPortl: 
GPort2: 
myPort: 
myPort30: 
boxArray: 
nBoxes: 
1: 

ARRAY [0 .. 8192J OF INTEGER; 
GrafPort; 
Port3d; 
GrafPtr; 
Port3DPtr; 
ARRAY[O •• bOXCOUnt] OF Box3D; 
INTEGER; 
INTEGER; 

{16k bytes} 

FUNCTION HeapError(hZ: QDPtr; bytesNeeded: INTEGER}: INTEGER; 
{ this procedure gets called when the heap zone is full } 
BEGIN 

WRITELN('The heap is full. The program must now terminate! '}; 
HALT; 

END; 

FUNCTION Oietanoe(ptl, pt2: POINTJO): REN...; 
VAR dx., dy, dz: REAL; 
BEGIN 

dx:=pt2.X - ptl.X; 
dy:=pt2.V - ptl.V; 
dz:=pt2.Z - ptl.Z; 
Distance:=SQRT(dx*dx + dy*dy + dz*dz); 

END; 

E-I02 



PascsJ Reference Manual 

PROCE~ HakeBox; 

VAR myBox: 
i,j,h,v: 
p1,p2: 
myRect: 
testRect: 

BEGIN 

Box30; 
INTEGER; 
Po1nt30; 
Rect; 
Rect; 

pl.x:=Random mod 70-15; 
p1.y:=Random mod 70 -10; 
p1.z:=O.O; 
p2.x:=p1.x + 10 + ABS(Random) HOD 30; 
p2.y:=p1.y + 10 + ABS(RandOm) HOD 45; , 
p2.z:=p1.z + 10 + ABS(Randorn) MOO 35; 

QuickDraw 

{ reject box if it intersects one already in list } 
SetRect(myRect,ROUNO(pl.x),ROUNO(p1.y),ROUNO(p2.x),ROUND(p2.y»; 
FOR i: =0 TO nBoxes-1 00 

BEGIN 
11TH boxArray[ i] DO 

SetRect(testRect,ROUND(pt1.x),ROUND(pt1.y), 
ROUNO(pt2.x),ROUND(pt2.y»; 

IF SectRect(~ect,testRect,testRect) THEN EXIT(HakeBox); 
END; 

my80x. ptl : =p1; 
myBox.pt2: .. p2; 

{ calc midpoint of box and its distance from the eye } 
pl.x:=(pl.x + p2.x)/2.0; 
pl.y:=(pl.y + p2.y)/2.0; 
pl.z:=(pl.z + p2.z)/2.0; 
Transform(p1,p2); 
myBox.dist:=Distance(p2, myPort30" . eye); {distance to eye} 

i:=O; 
boxArray[nBoxes] .dist:-myBox.dlst; { sentinel} 
WHILE myBox.dist > boxArray[i].dist DO i:=1+1; {insert in order of dist} 
FOR j: -nBoxes DOWNTO i + 1 00 boxArray [j ] : -boxArray [j-1 ]; 
boxArray( i ] : =myBoX; 
nBoxes: =nBoxes+ 1; 

END; 

E-I03 



PasC8J Reference M8nual 

PROCEDURE DrawBox(ptl,pt2: Po1nt30); 
{ draws a 30 box with shaded faces. } 
{ only shades correctly in one direction } 
VAR t~gn: RgnHandle; 

BEGIN 
tenpRgn: =NewRgn; 
OpenRgn; 

MoveTo30(ptl.x, ptl.y, pt1.z); { front face, y=yl } 
LineTo30(ptl. x, ptl. y, pt2 .z); 
LineTo30(pt2. X, pt1.y, pt2. z); 
LineTo30(pt2. x, ptl.y, ptl.z); 
L1neTo30(ptl. X, ptl.y, ptl.Z); 

CloseRgn(tempRgn); 
FillRgn(tenpRgn,white); 

OpenRgn; 
HoveTo30(pt1.x,pt1.y,pt2.z); { top face, z=z2 } 
l1neTo3D(ptl.x, pt2 .y, pt2.z); 
LineTo30(pt2. X, pt2 .y, pt2.z); 
lineTo3D(pt2.x, ptl.y, pt2.z); 
LineTo30(ptl.x, ptl.y, pt2.z); 

CloseRgn(tempRgn); 
FillRgn(teptJRgn,gray); 

OpenRgn; 
MoveTo3D(pt2.x,ptl.y,ptl.z); { right face, x=x2 } 

lineTo30(pt2 .x, ptl.y, pt2.z); 
lineTo3D(pt2.x, pt2 .y, pt2.z); 
LineTo30(pt2.x, pt2 .y, ptl.z); 
llneTo30(pt2.x, pt1.y, pt1.z); 

CloseRgn(tempRgn); 
FillRgn(tenpRgn,black); 

PenPat(llIhite); 
I1oveTo30(pt2.x,pt2.y,pt2.z); {outline right} 
LineTo30(pt2.x.. pt2 .Y", ptl.zj; 
LineTo30(pt2.x, ptl.Y, pt1.z); 
PenNormal; 

01sposeRgn(tempRgn); 
END; 

E-I04 

QuickDraw 



Pascal Reference fvlanual QujckD18W 

BEGIN {main program } 
{ Initialization - Generic to all applications using QuickOraw } 
QOInit(iilheapBuf, iilheapBuf[8192], iiheapError); { Must do this once at 

myPort := &GPortl; 
OpenPort(myPort); 
myPort3D := aGPort2; 
Open3OPort(myPort3D); 

begiming ) 

ViewPort(myPort'" .portRect); { put the image in this reet } 
LookAt(-100,7S,100,-7S); { aim the canera into 30 space } 
ViewAngle(30); { choose lens focal length } 
Identity; Roll(20); Pitch(70); {roll and pitch the plane } 

PenPat (llhi te); 
BackPat(black); 
EraseRect(myPort"'.portRect); 

fOR i:;-10 TO 10 DO 
BEGIN 

MoveTo30(i*10, -100,0); 
LineTo3D(i*10, +100, 0); 

END; 

fOR i:;-10 TO 10 DO 
BEGIN 

HoveTo3D( -100, i*10, 0); 
LineTo3D( +100, i*10, 0); 

END; 

nBoxes:;O; 
REPEAT MakeBox; UNTIL nBoxes;boxCount; 
fOR i.: ;nBoxes-1 DO~TO 0 00 

DrawBox(boxArray [i] . ptl, boxArray [ i ] . pt2); 

Tone(2000, 500); {Beep tone of (1/2000)*10"'6 ;= 500 cycles/sec for 
500 milliseconds } 

ReadLn; {Wait until RETURN entered before terminating program } 

END. 

E-l05 



Pascal Reference Mantlal QuICkDraw 

E.IS ~n 
The ~rt unit (in the fUe QO/QOSt.4lport. TEXT) provides the 
Inttlal1zatlon that you need to use QulcKDraw In the QDlnlt procedure, as well 
as prooedures for simpl1fied aooess to mouse tracKing, the mouse button, and 
sound generation, arlO useful defInitions of font numbers. For more detaIled 
information on mouse-handling routines and sound, refer to ~ndix F, 
Hardware Interface. 

UNIT QDSupport; 

INTERFACE 

USES 
{$U QO/unitStd.OBJ } unitStd, 
{$U QD/unitHz.OBJ } unitHz, 
{$U QO/Hardware.OBJ } Hardware, 
{$U QD/Fontngr .OBJ } Fontngr, 
{SU QO/QuiOkOraw.OBJ} QuiOKDraw; 

CONST 
{---------- Font Numbers ----------} 

FTile12 4; {proportional} 
FTile18 = 5; {proportional} 
FTile24 = 6; {proportional} 
FP1STile = 7; {Honospaoed - 8 lines/inch & 15 ohars/inCh} 
FP12Tile = 8; {Monospaced - 6 lines/inch & 12 Chars/inch} 
FP10Tile = 9; {Honospaoed - 6 lines/inch & 10 chars/inch} 
FCent12 = 10; {proportional} 
FCent18 = 11; {proportional} 
FCent24 = 12; {proportional} 
FP12C8nt = 13; {Honospaced - 6 1 ines/inCh & 12 Chars/inch} 
FPI0Cent = 14; {Honospaced - 6 lines/inch & 10 chars/inch} 
FP20Tile = 19; {Honospaced} 

E-I06 



Pascal Reference M8nu8J QuickDraw 

PROCEDURE QDInit(startPtr, limitPtr: QOPtr; ErrorProc: QOPtr); 
{ QDInit: Initializes QuickOraw unit by setting up its heap 

zone, global vars, cursor, and the Font Hanager it 
calls on. } 

PROCEDURE GetHouse(VAR pt: Point); 
{ GetHouse: Returns the current noose location in the local 

coordinates of the current grafPort. } 

fUNCTION HouseButton: BOOlEAN; 
{HouseButton: Returns TRt£ if the rouse button is currently held 

down, otherwise fALSE. } 

PROCEDURE Tone ( wavelength, duration: longInt); 
{ Tone: Produces a square wave tone of the specified 

wavelength (microseconds) for the specified duration 
(milliseconds). } 

E-I07 



P8sc81 Refemnce M8nu8l QuickDraw 

E.16 Glossary 
bit Image: A collection of bits in memory that have a rectilinear represen­
tation. The Lisa screen is a visible bit image. 
bitmap: A poInter to a bit Image, the row wIdth of that image, and its 
boundary rectangle. 
botn1ary JeCta'lgIe: A rectangle defined as part of a bItmap, which encloses 
the active area of the bit image and imposes a coordinate system on it Its 
top left comer is always alIgned around the fIrst bit In the bit image. 
camera eye: A concept in three-dimensIonal graphIcs: the poInt of view and 
the viewing angle in which an object appears, independent of the object's 
coordinates. 
character style: A set of stylistic variations, such as bold, italic, and 
underline. The empty set indicates normal text (no stylistic variations~ 
clipping: Limiting drawing to within the bOunds of a particular area 
clipping region: Same as clipRgn. 
cllJA!J1: The region to which an application limits drawing in a grafPort. 
coordinate piMa: A two-dimensIonal grid. In QuickDraw, the grid coordinates 
are integers rangIng from -32768 to +32767, and all grId lines are infInitely 
thin. 
cunor: A 16-by-16-bit image that appears on the screen and is controlled by 
the mouse. 
cursor level: A value, initialized to 0 when the system is booted, that keeps 
track of the number of Umes the cursor has been hIdden. 
ef1l)ty: Containing no bits, as a shape defined by only one point 
font: The complete set of characters of one typeface, such as Century. 
fnme: To draw a shape by drawing an outline of it 
global coordinate system The coordinate system based on the top left corner 
of the bit image being at (O,o~ 
Graf3O: A three-dimensional graphicx lJnit that c-aUt QuickDraw routinet. 

grafPort: A complete drawing environment, including such elements as a 
bitmap, a subset of it In which to draw, a character font, patterns for drawing 
and erasing, and other pen characteristics. 
grafPtr: A pointer to a grafPort. 
handle: A pointer to one master pointer to a dynamIc, relocatable data 
structure (such as a region~ 
hotspot: The point in a cursor that is aligned with the mouse position. 
kern: To stretch part of a character back under the previous character. 

E-I08 



Pascal RefeIl!f1Ce I'1avaI 

local coordinate system: The coordinate system local to a grafPort, imposed 
by the botsldary rectangle defined in its bitmap. 
missing syntJol: A character to be drawn in case of a request to draw a 
character that is missing from a particular font. 
pattem AI:l 8-by-8-bit image, used to define a repeating design (such as 
stripes) or tone (such as gray~ 
pattern tnnfer mode: 01e of eight transfer modes for drawing lines or 
shapes with a pattern. 
picture: A saved sequence of QuickDraw drawing commands (and, optionally, 
picture comments) that you can play back later with a single procedure call; 
also, the image resulting from these commands. 
picture corma ats: Data stored in the definition of a picture which does not 
affect the picture's appearance but may be used to provide additional 
information about the picture when it's played back. 
picture fnme: A rectangle, defined as part of a picture, Which surrounds the 
picture and gives a frame of reference for scaling when the picture is drawn. 
pixel: The visual representation of a bit on the screen (white if the bit is 0, 
black if it's 1~ 
point: The intersection of a horizontal grid line and a vertical grid line on 
the coordinate plane, defIned by a horizontal and a vertical coordinate. 
polyga'l: A sequence of connected lines, defined by QuickDraw line-drawing 
commands. 

put: GrafPort or Port3D. 
Port3D: A data structure in Graf30 that maps three-dimensional coordinates 
into a two-dimensional QuickDraw grafPort. 
Port3l:Ptr: A pointer to a Port30. 
p:lrtBits: The bitmap of a grafPort. 
portBlts.bot.llds: The boundary rectangle of a grafPort's bItmap. 
portRect: A rectangle, defIned as part of a grafPort, which encloses a subset 
of the bitmap for use by the grafPort 
reglm M arbitrary area or set of areas on the coordinate plane. The 
outline of a region should be one or more closed loops. 
row width: The runber of bytes in each row of a bit image. 
scale: To shrink or expand by a specIfied factor. 
saUd: FIlled in with any pattem 
source transfer mode: Ole of eIght transfer modes for drawing text or 
transferring any bIt Image between two bItmaps. 

E-l09 



style: See character style. 
thePort: A global variable that points to the current grafPorl 

thePort3O: A global variable that points to the current Port3D. 
tra1sfer rmde: A specification of which boolean operation QuickDraw should 
perform When drawing or when transferring a bIt Image from one bitmap to 
another. 
tnIlslate: To move in three-dimensional space by a specified amount 
transfonnatioo matrix: Same as xForm matrIx. 
viewing pynmld: The portion of three-dimensional space that a camera eye 
can see. The pyramid·s apex Is the point of the camera eye; its base is the 
viewRect in a Port3D. 
visR~ The region of a grafPort which is actually visible on the screen. 
xFOHn matri>e A 4x4 matrix that holds an equation to transform points 
plotted in three-dimensional coordinates into two-dimensional screen 
coordinates. 

E-ll0 



Appendix F 
Hardware Interface 

F.1 1lle IVIolIse •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• F-1 

F.l.l 
F.l.2 
F.l.3 
F.l.4 

fVIolIse Locatioo •.•.•............................•...................•.•.....•....... F-l 
I'1ouse lJpdate Freq..ency ........................................................ F-l 
I'1ouse Scalif19 •.•.•.•.•.•.•........••.•••••..•••.•••.•...•.•....••••.•.••.•..•.•••••• F-l 
I'1ouse o:torneter .................................................................... F - 2 

F.2 11le ClJrmr ••••••••••••••••••.••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••• ••• F -2 

F .2.1 CUrsorJlv1ouse Tracking ....•....•...•.........................•.•... eo... .... .•..• F - 3 
F.2.2 111e Busy cursor ..................................................................... F-3 

F .3 TIle DiSl)lay ~reerl.. ••••••• •••••• ••••••••• ••• •••• •••••••••••••••••• •••••••••• ••••••• ••••••••• F-4 
F.3.1 
F.3.2 

Screen Cootrast ... ............ ........ ...•.•........................•............... F-4 
~anat.ic Screen F adiflQ ........................................................ F-4 

F.4 1lle ~ •.•.•...•••••..•.•.•••...•.........•...•••..•••.........•...•......••.•.•.••....•..• F-5 

F 5 TIle Keyboard ••••••• •••••••.••••••••••••••• •••••• ••••••• •••••••• ••••. •••••••• ••••••• ••••••• •••• F-5 
F.S.l 
F.5.2 
F.5.3 
F.5.4 
F.S.5 

Keyboard lderltification .......... .•.. ...... ....... .......... ............•... ..... F-7 
Keyboard State................ . . .... .. ........................ ..........•...•....... F-8 
Keyboard Events .•...•.•.....••......•.••.................•.....•.....•.•...•.•.•..• F-8 
[)ead Key Oiacriticals .................•......................................... F-l0 
Repeats ............................................................................... F-l1 

F.6 11le to1lCIOSeCOl d TImer .................................................................... F -11 

F.7 Tlle HIHsecot1d Tlrner ..................................................................... F-12 

F.8 ()at.e lI"'II1ln1e •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• F-12 

F.9 T~starl1> ................................................................................... F-12 

F .10 Interface of tile ~ uut ......................................................... F-13 





Hardware Interface 

The hardware interface software provides an interface for accessing and 
controlling several parts of the Lisa hardware. The hardware/software 
capabilities acldressed include the rrouse, the cursor, the display, the contrast 
control, the speaker, both L8ldecoded and decoded keyboard access, the micro­
second and millisecond timers and the hardware clock/calendar. 

This appendix contains Pascal procedure and function declarations interleaved 
With text describing them. Pascal type declarations and a summary of the 
function and procedure declarations ca1 be found in Section F.1D, Interface of 
the Hardware Unil 

Programs using this lIlit stnJld be compiled against the file QOll-fardwareJEJ 
and linked to the file QDIHWlntL.CBJ. 

F.1 1he Mouse 
F.1.1 Mouse Location 

ProcetiIIe t1Jusel.tx:ati01 (var x: PIxels; var y: PixelS); 

The motJSe is a poInting devIce used to IndIcate screen locations. 
MouseLocaUm returns the location of the mouse. The X -coordinate can range 
from 0 to 719, and the Y -coordInate from 0 to 363. The inItial mouse 
location is 0,0. 

f.l.2 MoJse l..4Jdate f~y 
ProceclJre MJasel ~tes (delay: MllllSecmds); 

Software knowledge of the mouse location is updated periodically, rather than 
continuously. The frequency of these updates can be set by calling 
(vb lEI .-tes. The time between updates can range from 0 milliseconds 
(continuous updating) to 28 millisecollds, in intervals of 4 milliseconds. The 
initial setting is 16 millisecalds.. 

F.L3 Mouse Scaling . 

ProcetiIIe MJ ISeScalllYJ (1C8le:Boole81); 

ProceclJre M:lJse1hresh (threshlld: Pixels); 

The relationship between physical mouse movements and logical mouse move­
ments is not necessarily a fixed linear mapping. Three alternatives are 
available: 1) t.mealed, 2) scaled for fine movement and 3) scaled for coarse 
movemenl Initially mouse movements are unsealed. 

When mouse movement is unscaJect, a horizontal mouse movement of x lIlits 
yields a change in the mouse X-coordinate of x pixels. Similiarly, a vertical 
movement of y units yields a change is the mouse Y -coordinate of y pixels.. 
These rules apply inctepencJent of the speed of the mouse movement. 

F-l 



Psscai Rele.rence H8nuBJ Hardware Interface 

When mouse movement Is SC8Iet:t horizontal movements are magnified by 3/2 
relative to vertical movements. This is to compensate for the 213 aspect 
ratio of pIxels on the screen. When scallng Is in effect., a distinction is made 
between nne (small) movements 8'ld C08Il'e (large) movements. Fine move­
ments are Sll~Uy reduCed, While coarse movements are magnIfIed. For scaled 
fine movements, 8 horizontal mouse movement of x l.Illts yields a change in 
the X-coordinate of x pixels, but a vertical movement of y lIlits yIelds a 
ctBlge of (213)*y pixels. For scaled coarse movements, a horizontal movement 
a x lIlits yields a ct'laNJe of (3/2)*x pixels, whUe a vertical movements of y 
lI'Ilts yields 8 ct'laNJe of Y pixels. 
The distinction between fine movements and coarse movements is determined 
by the un of the x and y movements each time the mouse location is 
updated. If this SlI1l is at or below the tI1re.rfJolq the movement is considered 
to be a fine movement Values of the threshold range from 0 (which yields all 
coarse movements) to 256 (which yields aU fine movements~ Given the 
default mouse ~ting fr~y, a threshold of about 8 (threshold's initial 
setting) gives a comfortable tra1Sition between fine and coarse movements. 
~£8Ilng enables aid disables f11Ot.JSe scalIng. MooseThresh sets the 
threshold between fine and coarse movements. 

F .1.4 tbJse Ob'net.er 

FlI1Ction ~r: ManyPIxels; 

In order to properly specify, design and test mice, it's important to estimate 
how far a mouse moves ckn'ing its lifetime. t1JuseQ:kmeter returns the st.m 
of the X and Y fl1O\Ief1'lents of the rl1OU!e since boot time. The value returned 
is in (U'lSCaled) pixels. There are 180 pixels per inch of mouse movement. 

F2 The Cursor 

ProceciJre CUnorlmage (hotX: Pbels; tnty: Pi)CBJs; tEi«1tf.: OJnoJt-lei9lt; data: 
CursmPtr; mask: CursmPtr); 

The CIDJ'Of Is a small image that is displayed on the screen. Its shape is 
specified by two bitmaps, called data 8'ld I118Sk These bitmaps are 16 bits 
wide a1d from 0 to 32 bits hlgl. The rule used to combine the bits already 
on the screen wI til the data and mask is 

EI1B1 <- (screen and (not mask» )CIJf data. 

The effect is that white areas of the screen are replaced with the cursor 
data Black areas of the screen are replaced with (not mask) xor data. If the 
data and mask bitmaps are identical" the effect is to or the data onto the 
screen. 
The cursor has both a location and a hotspot The location is a position on 
the screen, with X-coordinates of 0 to 719 a1d V-coordinates of 0 to 363. 
The hotspot is a position within the cursor bitmaps, with X- and Y-coordi­
nates ranging from 0 to 16. The cursor is displayed on the screen with its 

F-2 



Pasc81 RefelEJl7Ce Manual Hardware Interface 

hotspot at its location. If the cursor·s location is near an edge of the screen, 
the cursor image may be partially or completely off the screen. 

Most cursor operations CCIl be performed by calling the Set.Cursor, HldeCunor, 
ShowCunor, and CIJsaa'eCunor procedures defined by QuickDraw (see Section 
E.9.2, CUl'sor-I-BldUng Rrutines~ Additional capabilities are provided by the 
Hardware Interface rrutines described below. 

The CUnorImage procedure is used to specify the data bitmap, mask bitmap, 
hel{tlt and hotspot of the cursor. InItially the cursor data and mask bitmaps 
contain all zeros, which yields a blank (invisible) cursor. The initial hotspot is 
OJ). 

F .2.1 OJrsorJt.bJse Trad<IrJ:J 

Prooe€1Ire CUnorTrackir¥:J (track: Boolem); 

Prooe€1Ire CUnmLcx:atim (x: Pixels; 1= Pixels); 

OJrsorTI8d<1rYtJ enables and dIsables cursor tl11c1dng of the mouse. When 
tracking is enabled, the cursor location is changed to the mouse location each 
time the mouse moves. Setting the cursor location by calling OJnoILocatim 
will have no effect; the cursor sticks with the mouse. 
When tracking Is disabled, the mouse location and cursor location are indepen­
dent C8lling CUnmLocatim wlll move the cursor; moving the mouse will not 
When tracking Is first enabled (i.e., on each transition from disabled to 
enabled) the mouse location Is modI fled to equal the cursor location. There­
fore, enabling tracking does not move the cursor; it does modify the mouse 
location. Initially trackIng is enabled. 

F .22 The Busy CUnor 

ProceWre BusyImage (rot><: Pixels; tDtY: Pixels; heig.t: CUrsolHei~; data: 
OJrsoIPtr; mask: OJnorPtr); 

procewre BusyDelay (delay: MiJllseco1lds); 

Applications may desire to display a busy cursor (e.g., an hourglass) when an 
operation In progress requires more than a few seconds to complete. The 
BusyImage procedure Is used to specify the data bitmap, mask bitmap, height 
and hOtspot of the bUSy cursor. 

A call to BusyOelay specifies that the normal cursor should currently be 
displayed, and that display of the busy cursor should be delayed for the 
specified runber of milliseconds. SUbsequent calls to BusyDelay override 
previous calls, postponing display of the busy cursor. If no calls to BusyDelay 
occur for the specified number of milliseconds, the busy cursor will be 
displayed until the next call to BusyDelay. 

Initially the busy cursor data and mask bitmaps contain all zeros, which yields 
a blank (invisible) cursor. The initial hotspot is 0,0. The initial busy delay is 

F-3 



HatrIwB.Il! Interlace 

infinite, that is, the busy cursor will not be displayed until BusyOelay is 
called.. 

F.3 1he Display Screen 

Procec:tIre ScMenSlze (var x: Pixels; var y: Pixels); 

The display screen is a bit mapped display,' that is, each pixel on the screen 
is controlled by a bit in main memory. The display has 720 pixels horizontally 
and 364 lines vertically, and therefore requires 32,760 bytes of main memory. 
The screen size may be determined by calling ScreenSize.. 

Ft.n::tion FraneCou1ter: FIa'1leS; 

The screen is redisplayed about 60 times per second. A frame counter is 
incremented between screen UJXiates, at the vertical retrace interrupl The 
frame counter is an lI1sig1ed 32-bit integer which is reset to 0 each time the 
machine is booted. FraneCou1ter returns this value. An application can 
synchronize with the vertical retraces by watching for changes in the value of 
this COlI'lter. The frame cot-Inter should f1(Jt be used as a timer; use the 
millisecond and mircoseCOlId timers instead. 

F .3.1 Screen CO'ltrast 

Ft.n::tion Co'ltrast: ScreerOJntrast; 

Procec:tIre Setcontrast (cootrast: ScreenContrast); 

The display's contrast level is under program control. Contrast values range 
from 0 to 255 ($f=F), with 0 as maxim..m contrast and 2SS as minifTUll. 
Cmtrast. returns the contrast setting; Set.Cootrast sets the screen contrast. 
The low order two bits of the contrast value are ignored. The initial contrast 
value is 128 ($80~ 

Procec:tIre R~trast (cmtrast: ScreenContrast); 

A sudden change in the contrast level can be jarring to the user. 
R~l1lJCcntrast gradually changes the contrast to the new setting over a period 
of about a second. P~"3St rett..'Il1S imrr.ediatel y, t.t-:en ramps t.'1e 
contrast using interrupt driven processing. 

F.3.2 Automatic Screen FadirYd 

Ft.n::tim DlmCmtrast: ScreerCo1trast; 

Procec:tIre SetDlmCmtrast (cmtrast: ScreenContrast); 

The screen contrast level is automatically dimmed if no user activity is noted 
over a specified period (usually several minutes} This is done in order to 
preserve the screen phospher. DlnCDntrast returns the contrast value to which 
the screen is dirrmed; SetDirrContrast sets this value. The initial dim 
contrast setting is 176 ($80). 

F-4 



Pascal Reference ManuaJ Han:Iw8re Interface 

Ftnrtioo FadeCJelay: MllliSeams; 

Procec:tIre SetFadeDelay (delay: MllliSecolIds); 

The delay between the last user activIty and dimmIng of the screen is under 
software control. FadeOelay returns the fade delay; SetFadeIJelay sets it. 
The actual delay will range from the specified delay to twIce the specIfied 
delay. The initial delay period Is five minutes. 

When the screen is dim, user interaction will cause the screen contrast to 
return to its normal bri~t level (determined by the CootIast and set.Caltrast 
routines defined above~ t--1oving the mouse or pressing a key on the keyboard 
(e.g., SHIFT) is enough to trigger the screen brightening. Calling 
cunmt..ocatlm or SetFadeDelay also indicates user activity. 

F.1l The Speaker 
FlI"Ction Volune: SpeakerVolt.me; 

ProceclJre SetVolune (volune: speakerVolune); 

Procedure f'.blse (waveLength: Mlcrr:JSec:m:ts); 

Procedure SIlence; 

Procedure Beep (waveLength: MicroSeconds; c1Iration: MillISeams); 

The routines in this section provide square wave output from the Lisa speaker. 
The speaker volt.rne can be set to values in the range 0 (soft) to 7 (loud). 
Voltme reads the volt.me setting; SetVOlune sets it. The initial volume 
setting Is 4. 

I\blse produces a square wave of approximately the specified wavelergth. 
Sileree shuts off the square wave. The mininun wavelength is about 8 
microseconds, which corresponds to a frequency of 125,000 cycles per second, 
well aoove the audible range. The maximtm wavelerYJth is 8,191 micro­
seconds, which corresponds to about 122 cycles per second. 

I\bise and Silence are called in pairs to start and stop square wave output. In 
contrast, Beep starts square wave output whIch will automatically stop after 
the specified period of time. The effects of t-obise, Silence and Beep are 
overrIdden by subSequent calls. 

F.5 The Keyboard 
The routines in this section provide an interface to the keyboard, the keypad, 
the mouse button and plug, the diskette bUttons and insertion switches, and 
the power switch. Two interfaces are prOVided, a pollable keyboard state and 
a queue of keyboard events. 

Three physical keyboard layouts are defined, the "Old US Layout" (with 73 
keys on the main keyboard and runeric keypad), the "Final US Layout" (76 
keys) and the "European Layout" (77 keys). Each key has been assigned a 
keycode, which uniquely identifies the key. Keycode values range from 0 to 

F-S 



Pascal RefeJ'lJf1Ce fvI8nuaJ i-Iarr:Iw8re Interface 

127. Table F-1 defines the keycodes for the "Final US Layout", usIng the 
legends from the US Keyboard. The "Old US Layout" has three less keys; I\, 
Alpha Enter, and Rlglt ~tion are not on the old k8ytxlard. The "EuropeCll 
Layout" has one additional key, ><, wIth a keycode of $43. 

Two keys on the "Old US Layout" generate keycodes different from the 
corresponding keys on the "Final ~ .. Layout". To aid in compatibility, 
software Changes the keycode for from $7C to $68, and the keycode for 
Right cption from $68 to $lIE. 

Teille F-l 
Keycodes for ""Final US Layout-

HIGH.... 000 
Lf 0 

001 
1 

0000 
o 

0001 
1 

0010 
2 

0011 
3 

0100 
4. 

0101 
5 

0110 
6 

0111 
7 

1000 
8 

1001 
9 

1010 
A 

1011 
B 

1100 
C 

1101 
o 

1110 
E 

............ 
DISK 1 ::::::::::::::::::::::: 

INSERTED ';;;;:::::::::::;:;:;:;; 

............ 
PMAllEL ,::::::::::::::::::::::: 

PORT ';:;:;:;:;:;:;:;:;:;:;:: 

nOOSE 
BUTTCJf 

HOOSE 
PLUG 

PWER 
BUTTCJf 

............ ............ ............ 
.:-:.:.:-:.:.:.:-:-:.:-: ............ 
............ 
.:.:-:.:-:.:-:-:.:-:-:.: ............. ............ ............ 
. :.:.:<-:~:.:.:-:<-:-: ............ ............ ............ ............ 

010 
2 

CLEAR 

7 

8 

9 

I 

rn 
4 

5 

6 
, 

(JJ 

2 

3 

011 
3 

............ 

100 
4 

';':';';';';':';';';';'; p 
-:.>:-:<~:-:.:-:.:-:< . .......... . 
~ .. ~ , . ~ .... . 
\))))) BACKSPACE 
. .......... . 
':::;:;:;:;:;:::;:;:;:;: ALPHA 
';:::;:;:::::::;:::::;:: ENTER 

.:.:-:-:-:.:.:-:<.:-:.: . .......... . 
:.:.:-:-:.:-:.:-:.:.:.: . .......... . ............ 
.. ~ - ....... .. ............ 
.::::::::::::::::::::::: 

............ ............ ............ ............ 
:.:.»:.:.:.:.:.:.:.: 

.:.:-:.:-:.:.:.:-:.:.:.: ............ ............ ............ ............ 

F-6 

RETURN 

o 

? 
/ 

1 

RIGHT 
lPTICJf 

101 
5 

) 
o 
u 

J 

K 

{ 
[ 

} 
] 

M 

L 

; 

< 

> 

110 
6 

E 

6 
& 
7 

* 
8 

% 
5 

R 

T 

y 

F 

G 

H 

v 

c 

B 

N 

111 
7 

A 

CD 

2 
it 
3 
$ 
4 

1 

Q 

s 

w 

TAB 

z 

x 

o 
LEFT 

(PTlCJf 

CAPS 
LOCK 

SHIft 



F 5.1 KeybOard IdenUflcaUm 

FlIlCtion KeybOard: Keybdld; 

FlIlCtioo LegeOOs: Keybdld; 

PIooedtre setLegeOOs (ld: KeytJdld); 

l-/e.rdWare InterFace 

Usa software supports a hOst of dIfferent keyboards. Each keyboard has three 
major attribUtes: manufacturer, physical layout, and legends. The Chart 
below descrIbes hOW these three attributes are combined to form a keyboard 
idenU- ficaUon number. The keyboards self idenUfy when the machine is 
turned on and when a new keyboard Is attached. KeybOard returns the 
identification number of the keyboard currently attached. LegeOOs and 
setLegeOOs provIde a means of pretending to have different legendS, wIthOUt 
physiCally replacing the keyboard. 
Keyboard identification numbers: 

7 6 5 4 
I McnJfacturer Layoot 

McnJfacturer: 

00 APD (l.e., TKC) 
01 --
10 -- Keytronlcs 

Layout: 
00 Old US (73 keys) 
01 
10 -- European (77 keys) 
11 -- Final US (76 Keys) 

LayoutILegeOOs: 

$OF ma US 

$26 
$27 
$29 
$29 
$2A -­
$28 -­
$2C -­
$20 -­
$2E 
$2F --

Swiss-German 
Swiss-FrenCh 
Portuguese 
SpaniSh-Latin American 
Danish 
Swedish 
Ital1an 
French 
German 
UK 

F-7 

3 2 1 o 
Legent1S 

(allocated for proposed software) 
(allocated for proposed SOftware) 
(allocated for proposed software) 
(allocated for proposed SOftware) 
(allocated for proposed software) 
(hardware not yet available) 
(hardware not yet available) 



Pascal Refe.rence Manual Harclwa.re Interface 

$3C -- APL 
$30 -- French-Canadian 
$3E -- US-Dvorak 

(allocated for proposed software) 
(allocated for proposed software) 
(allocated for proposed software) 

$3F -- Final US 
F .52 Keyboard State 

FlI'lCtloo KeyIsDown (key: Ke.YCc1J~ Boo18Cll; 

ProceO.Ire KeyMap (var keys: Keycapset); 

Low level access to the keyboard is provided through a pOllable keybOard 
state. This state informat10n Is based on the physical keycooes deflned above. 
KeylsDown returns the position of a single speCified key. Keytvlap returns a 
128-blt map .. one bit for each key. A zero IndIcates the key Is UP .. a one 
indicates dOwn. For the mouse plug, a zero indicates unplugged .. a one indi­
cates plugged in. CertaIn keys are not pollable; the corresponding bits wlll 
always be zero. These keys are the diskette insertion switches and buttons .. 
parallel port., and power switch. (The parallel port and mouse plug keys are 
unreliable across reboots on older hardware.) 

F .5.3 Keyboard Events 
The hardware interface provides a queue of keyboard events. The events in 
the input queue are generally key down transitions. Each event contains the 
followIng information: 

keyoode physical key 
ascU ASCII Interpretation of this key 
state caps-lock .. Shift., option, .r .. mouse button and repeat 
mousex X -coordinate of the mouse 'tlhen the key was pressed 
nwseY Y -coordinate of the mouse when the key was pressed 
time value of the mllllsecOnd timer When the key was pressed 

Keyoode -- KeycodeS are defined in Table F-l, above. 
Ascll -- The ASCII interpretation of keys depends on the state of the caps­
lOCk, shIft ana option keys. SIx Interpretations are assocIated w1th each 
different keyboard layout: 

normal 
capS-loCk 
shift or both shift and caps-lock 
option 
option with caps-lock 
option wIth ShIft or bOth ShIft ana caps-lOCk 

F-8 



Pascal Reference I'1anuaJ l-lan:lwam Interface 

In most cases the ASCII value returned Is obvIous. The table below lIsts the 
cases that arenOt so obvious. 

$00 (NULl Disk 1 Inserted 
$00 (NLL Disk 1 Button 
$00 (NU.. Disk 2 Inserted 
$00 (NU.. DIsk 1 Button 

$00 (NUL Mouse Button (down) 
$00 (NLLj' Power Button 

$00 i Mouse Plug (in) 
$01 S(H~ Mouse Button (up) 
$01 SCH Mouse Plug (out) 
$03 ETX Enter 
$08 ) BackSpace 
$09 T) Tab 
$00 (CR) Return 
$18 (ESC) Clear 

$lC (FS) 
$10 ;) 
$lE S) 
$lF ) 
$20 SP) 

Left 
Right 
Up 
Down 
Space 

State -- A 16-bit word is used to return the state of several keys with each 
event Each bit represents one or more keys; a zero indicates that all of the 
keys are up, a one indicates that at least one of the keys is down. M 
additional bit indicates, if it is a one, that the event was generated by 
repeating the previous event. The following bits of state are currently 
assigned: 

bit 0: caps-lock 
bit 1: left or right shift 
bit 2: left or right option 
bit 3: "key 
bit 4: mouse button 
bit 5: this event is a repeat 

certaIn Keys never generate events. These Keys are caps-locK, bOth shift 
Keys, option keys, and the • key. The mouse button generates events on both 
the down and up transItions. [)()wn transItions have an ascii value of 0, up 
transitions 1. The mouse plug also generates two different events. When the 
mouse is plugged in an event wIth an ascJI value of 0 Is returned, when It Is 
unplugged a value of 1 is returned. 

F-9 



FtIlCtion KeybcPeek (repeats: Boolean; inclex: Ke~lncleX; var event.: 
KeyEvent) Boole8li 

KeybcPeek Is used to examine events In the keyboard queue, without removing 
them from the queue. The first Input parameter Indicates whether repeats are 
desired. The second parameter is the queue index. The first output para­
meter indicates whether the specified queue entry contaIns an event To 
examine an entire queue, first call KeybcPeek. with a queue Index of 1. If an 
event is returned, call it again with a queue index of 2, etc. 

FtIlCtion KeytxEvent (repeats: Boole&l; wait.: Boolean; var event.: KeyEvent.} 
Boolean; 

KeytxEvent is used both to determine if a keyboard event is available, and to 
return the event if one is available. The event is removed from the queue. 
KeytxEvent returns a boolean result which is true if an event is returned. 
The first parameter to KeytxEvent is used to indicate if the caller will 
accept repeated events on this call. The second parameter indicates if the 
functions should wait for an event if one is not if1l'1'\ediately available. 

F 5.4 Dead Key Diacriticals 
Many languages eff1)loy diacritical marks on certain letters. several of the 
required diacritical mark-letter combinations appear on European keyboards, 
but others do not. The combinations shown in the table below may be typed as 
a tWO-key sequence, by first typing the dead key diacritical (which has no 
immediate effect), and then typing the letter. Dead key dlacriticals appear on 
keyboard legends as the diacritical mark over a dotted square or hollow box. 

circumflex -- a e i 0 U 
grave accent" -- a e 0 U 
tilde ... -- a "'" 0 
acute accent ' -- a et 6 a 
umlaut .• -- SA e i oH UO 

A dead key diacritical followed by a letter Which appears In the table abOve 
yields the corresponding character. The event that is generated contains the 
keycode, state, mouse location and time that correspond to the letter, but the 
A.SCII value of tt,e letter-dIacritical combir.aUorl. A dead key diaciltical 
followed by a space yieldS Just the dIacritical mark. The event contaIns the 
keycode, state, mouse location and time corresponding to the space, but the 
ASCII value of the diacritical mark. Finally, a dead key diacritical followed 
by any other character (i.e., not a space or defined letter) yields the diacrit­
ical mark followed by the other Character. 

diacritical, defined letter --> foreign character 
diacritical, space --:> diacritical 
diacritical, other character --> diacritical, other character 

F-10 



Pascal Reference Manual Hardware Interface 

F 5.5 Repeats 
Most keys, if held down for fIl extended period of time, may generate 
multiple events (repeats} The keys that are not repeatable are caps-lock, 
both shifts, both options, the • key, the diskette insertion switches and 
dIskette buttons, parallel port, the mouse button and plug, and the power 
button. Several conditions must be satisfied before a repeat is generated. 
These concJttions are as follows: 
1. Keyt:xPeek or KeytxEvent is called with repeatsOedred true. 
2. The keyboard event queue is empty. 
3. The key returned in the last event is still c:town. 
4. No down transitions have occurred since the last evenL 
S. The key is repeatable. 
6. Enough time has elapsed. 
Repeats generate events wIth the following attrIbutes: 

keycode original keycode 
ascii original ASCIJ interpretation 
state original position of the caps-lock, shift, etc. 
IT1l1ISeX revised X -coordinate of the mouse 
rTn.ISey revised Y -coordinate of the mouse 
time revised value of the millisecond timer 

Procedae Repe8tRate (var initial: Mi1liSeconds; var S.meq.Blt: tvlilllSeconds); 

Procedae set.RepeatRate (Initial: MlIUSecmds; sttJsequent: MllliSecoods); 

The repeat rates can be read and set by calls to RepeatRate and 
SetRepeatRate. The rates include an initial delay, which occurs prior to the 
first repetition, and a subsequent delay, prIor to additional repetitions. They 
are both in units of milliseconds. The default repeat rates are 400 
milliseconds initially and 100 mllliseconds subsequently. 

F.6 The MiCllJSeC(lld Timer 

FU1Ctim M1croTImer: Mlcrosecouds; 

The MicroTlmer flI'lction sirrulates a contil'lJOUSly IlI'1ling 32-bit COlIlter 
which is incremented every microsecond. The timer is reset to 0 each time 
the machine is booted. The timer chcJ1ges sig1 about once every 35 minutes, 
and rolls over about every 70 mirutes. 
The microsecond timer is designed for performance measurements. It has a 
resolution of 2 microsecondS. Calling MicroTlmer from Pascal takes aboUt 135 
microseconds. Note that interrupt processing will have a major effect on 
mIcrosecond timings. 

F-11 



P8scaJ Reference /VIsnuaJ 

F.7 The MiJllsecooo Timer 

Ftn:tloo Timer: Millisecol d; 

H8JlfwaFe IntedlJCt! 

The Timer fU'lCUon silTlllates 8 continuously running 32-bi t eotnter whiCh is 
Incremented every millisecond. The timer is reset to 0 each time the 
machine is booted. The timer changes sign about once every 25 days, and 
rolls over about every 7 weeks. 
The millisecond timer is designed for timing user interactions such as mouse 
clicks and repeat keys. It can also be used for perforrnallCe measurements, 
assuming that millisecon:J resolution is sufficient 

F.8 Date tn:S Time 

PmcetUJe Date1lme (var date: DateArray); 

PmcetUJe SetDateTlme (date: DateArray); 

PmcetUJe oateToTime (date: DateAn:ay; var time:: seconds); 

The current date and time are available as a set of 16-bit integers which 
represent the year, day, hOUr", minute and second" by calling DateTIme and 
SetDateTIme. The date and time are based on the hardware clock/calendar. 
This restricts dates to the years 1980-1995. The clock/calendar continues to 
operate during soft power off, and for brief periods on battery backup if the 
machine is lIlPlugged. If the clock/calendar hasn't been set since the last loss 
of battery power, the date and time will be midnight prior to January 1, 1980. 
Setting the date and time also sets the time stamp described below. 
DateToTlme converts a date and time to a time stamp, defined in the next 
section. 

F.9 TIme stal1l 
FUlCtion TirneSf.arIlt SecoOOs; 

PmcetUJe SetTirneSt.cl'r1l (time: SecoOOs); 

PmcetUJe nmeTtOate (time: seconds; var date: DateArJay); 

The current date and time are also available as a 32-bit unsigned integer 
Which represents the runber of seconds since the midnight prior to 1 January 
1901, by calling TimeSian1> and SetTirneS1:a11l The time stamp will roll over 
once every 135 years. Beware--for dates beyond the mid 1960's, the sign bit 
is set. The time stamp is based on the hardware clock/calendar. This clock 
continues to operate during soft power off, and for brief periods on battery 
backup if the machine is LIlplugged. If the clock/calendar hasn"t been set 
since the last loss of battery power, the date and time will be midnight prior 
to January 1, 1980. Setting the time stamp also sets the date and time 
described above. Since the date and time is restricted to 1980-1995, the time 
stamp is also restricted to this range. TimeToOate converts a time stamp to 
the date and time format defined above. 

F-12 



Pascal Reference tvlanual 

F.l0 Interface of the HaItIWare Ullt 

Unit Hardware; 

Interface 

type 

Pixels 
HanyPixels 
CUrsorHeight 
CursorPtr 
oateArray 

Frames 
Seconds 
MilliSeconds 
Microseconds 
SpeakerVolune 
ScreenContrast 
KeybdQIncJex 
KeybdId 
KeyCap 
KeyCapSet 
KeyEvent 

{ Mouse } 

= Integer; 
= longlnt; 
= Integer; 
= "'Integer; 
= Record 

year: Integer; 
day: Integer; 
hour: Integer; 
minute : Integer; 
second: Integer; 
end; 

... Longlnt; 
= longInt; 
= longlnt; 
= longlnt; 
... Integer; 
= Integer; 
= 1. .1000; 
= Integer; 
... O .. 127; 
= Set of KeyCap; 
= Packed Record 

key: KeyCap; 
ascii: Char; 
state: Integer; 
IlDUseX: Pixels; 
IIDlJseV: Pixels; 
time: MilliSeconds; 
end; 

Hardware Interface 

Procedure HouseLocation (var x: Pixels; var y: Pixels); 
Procedure HouselJpdates (delay: MilliSeconds); 
ProCedure HouseScaling (scale: Boolean); 
Procedure ttouseThresh (threshold: Pixels); 
FlIlCtion HouseOdometer: HanyPixels; 

F-13 



P8SC8l Refen.;'/7ce H8nuaJ 

{ CUrStir } 

Procedure CUrsorlocat1on (x: Pixels; y: Pixels); 
Procedure CUrsorTracking (track: Boolean); 

1-lardW8J'f! Inte.rfBce 

Procedure CUrsorlmage (hotX: Pixels; hotY: Pixels; height: 
fJursorHeight; data: CursorPtr; mask: CursorPtr); 

Proc::edure Busylmage (hotX: Pixels; hotV: Pixels; height: 
GursorHeight; data: CUrsorPtr; mask: CursorPtr); 

Procedure BusyOelay (delay: Milliseconds); 

{ SCreen } 

function FranECounter: Frames; 
Procedure ScreenSize (var x: Pixels; var y: Pixels); 

funrJtion Contrast: ScreenContrast; 
PrQ(J~re SetContrast (contrast: ScreenContrast); 
Procedure RanpContrast (contrast: SCreenContrast); 
ft.n:;tion DinContrast: SCreencontrast; 
Pror.:edure SetOinContrast (contrast: ScreenContrast); 

Function facJeOelay: MilliSeconds; 
Pr01::edure SetFadeOelay (delay: MilliSecondS); 

{ Speaker } 

func::tion Volume: SpeakerVolume; 
PrOL~re setVolume (volume: SpeakerVolume); 
Pr()jJedure Noise (wavelength: HicroSeconds); 
PrQ(~re Silence; 
Proc-edure Beep (wavelength: MicroSeconds; duration: MilliSeconds); 

F-14 



Pascal Reference fvfanual 

{ Keyboard } 

Function Keyboard: Keybdld; 
Function legends: Keybdld; 
Procedure setlegends (id: Keybdld); 
Function KeylSOown (key: KeyCap): Boolean; 
Procedure KeyHap (var keys: KeyCapset); 

Hardware Interface 

Function KeytxPeek (repeats: Boolean; index: KeybdQlndex; var 
event: KeyEvent): Boolean; 

Function KeybdEvent (repeats: Boolean; wait: Boolean; var event: 
KeyEvent): Boolean; 

Procedure RepeatRate (var initial: MilliSeconds; var subsequent: 
Hi 11 iSeconds); 

Procedure SetRepeatRate (initial: MilliSeconds; subsequent: 
MilliSeconds); 

{ Timers } 

Function HicroTiner: MicroSeconds; 
Function Timer: MilliSeconds; 

{ Date and Time } 

Procedure oateTine (var date: oateArray); 
Procedure setoateTire (date: DateArray); 
Procedure DateToTime (date: OateArray; var tine: Seconds); 

{ Time Stanp } 

Function TimeStamp: Seconds; 
Procedure SetTimeSt~ (time: secondS); 
Procedure TimeToDate (tire: Seconds; var date: DateArray); 

F-15 





0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

C 

0 

E 

F 

0 1 

NUl OLE 

sa. DC1 

STK 002 

ElK DC3 
Enter 
Eor 004 

ENQ NAI< 

ACK SVN 

BEL ETB 

85 CAN 

HT £It 

IF SUB 

VT ESC 
Clear 

FF FS 
iiJ 

CR GS 
~ 

SO ~ 
S1 & 

2 

SP 

tt 

# 

$ 

% 

& 
t 

( 

) 

* 
+ 

-

/ 

3 

0 
1 

2 

3 

4 

5 

6 

7 

8 

9 

( 

= 

> 

? 

Appendix G 
Lisa Character Set 
4 5 6 7 8 9 ABC 0 E F 

I Y i 

J Z j 

K[ k { 

L " 1 I 
M ] m } 
N 

o 
The first 32 characters and DEL are nonprinting control codes. 

The ShaOeO area Is reserved for future use. 

G-l 





Appendix H 
Error Messages 

1-L1 Lexical EIrOIS ................................................................................. 1-f-1 

I-L2 syr1ta::tic Errors •.•..••••..••..••••••..•••.•.•••••.•.••.••••••....••.••.•••.•..••.•..•.•.••.•. 1-t-1 

I-L3 Serr&1t.ic EITDlS .............................................................................. 1-f-2 

I-L4 Colditiot1Bl O:Jr11lilatim .................................................................. 1-f-4 

I-LS ~iler SJe::ific LinlitatiOllS .......................................................... H-4 

1-L6 II() ErImS ....................................................................................... 1-t-4 

1-L7 CI83l:8l Erron ................................................................................. H-4 

1-L8 Code ~tiOIl Erron ................................................................... 1-t-5 

I-L 9 VerificatiOl1 ErIOn .......................................................................... 1-f-5 





Appendix H 
Error Messages 

I-Ll Lexical ErI1Jn 
10 Too many digits 
11 Digit expected after '.' in real 
12 Integer overflow 
13 Oigi t expected in expel Jet It 
14 End of line encountered in string constant 
15 Illegal character in input 
16 Premature end of file in source program 
17 Extra characters encountered after end of program 
18 End of file encountered in a comment 

I-L2 Syntactlc Erron 
20 Illegal symbOl 
21 Error in simple type 
22 Error in declaration part 
23 Error in parameter list 
24 Error in constant 
25 Error in type 
26 Error in field list 
27 Error in factor 
28 Error in variable 
29 Identifier expected 
30 Integer expected 
31 • (. expected 
32 ' ). expected 
33 • [. expected 
34 • ]' expected 
3S ':' expected 
36 • ;' expected 
37 • - • expected 
38 ',,' expected 
39 • .' expected 
40 • : = t expected 
41 • program' expected 
42 • of' expected 
43 I begin' expected 
44 • end t expected 
4S • then' expected 
46 • until t expected 
47 I do I expected 
48 • to' or t dOwnto' expected 

H-l 



49 'file' expected 
50 ' if' expected 
51 '.' expected 
52 • inplementation' expected 
53 'interface' expected 
54 'intrinsic' expected 
55 • Shared' expected 

H.3 Semantic Errors 
100 Identi fier declared t.ice 
101 Identifier not of the appropriate class 
102 Identifier not declared 
103 Sign not allowed 
104 Number expected 
105 Lower bound exceeds upper bol.lld 
106 Inconpatible subrange types 
107 Type of constant must be integer 
108 Type must not be real 
109 Tagfield p.ust be scalar or subrange 
110 Type incompatible with with tagfield type 
111 Index type must not be real 
112 Index type must be scalar or subrcnge 
113 Index type must not be integer or longint 
114 Unsatisfied forward reference 

Error /'1essages 

115 Forward reference type identifier cannot appear in variable 
declaration 

116 forward declaration - repetition of parameter list not allowed 
117 Forward declared function - repetition of result type not allowed 
118 Function result type must be scalar, subrange, or pointer 
119 File value parameter not allowed 
120 Hissing result type in function declaration 
121 F-format for real only 
122 Error in type of standard function parameter 
123 Error in type of standard procedure parameter 
124 Number of parameters does not agree with declaration 
i25 Illegal parameter substitution 
126 Result type of parameteric function does not agree with 

declaration 
127 Expression is not of set type 
128 Only tests on equality allowed 
129 Strict inclusion not allowed 
130 file comparison not allowed 
131 Illegal type of operand(s) 
132 Type of operand must be boolean 
133 Set element type must be scalar or subrange 
134 Set element types not compatible 
135 Type of variable is not array or string 
136 Index type is not compatible with declaration 

H-2 



Pascal Reference Manua/ Error Messages 

137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
190 

Type of variable is not record 
Type of variable must be file or pointer 
Illegal type of loop control variable 
Illegal type of expression 
Assignment of files not allo.ad 
Label type incompatible with selecting expression 
Stbrange boln1s must be scalar 
Type conflict of operands 
Assignment to standard function is not allowed 
Assignment to formal function is not allowed 
No such field in this record 
Type error in read 
Actual parameter must be a variable 
HUltidefined case label 
Hissing corresponding variant declaration 
Real or string tagfields not allowed 
Previous declaration was not forward 
SUbstitution of standard procedure or function is not allowed 
HUltidefined label 
t1JI tideclared label 
Undefined label 
lkldeclared label 
Value parameter expected 
Multidefined record variant 
File not allowed here 
Unknown compiler directive (not 'external' or 'forward') 
Variable cannot be packed field 
Set of real is not allowed 
Fields of packed records cannot be var pararreters 
Case selector expression rust be scalar or subrange 
String sizes rust be equal 
String too long 
Value out of range 
Address of standard procedure cannot be taken 
Assignment to function result rust be done inside function 
Loop control variable must be local 
label value must be 1n 0 .. 9999 
Must exit to an enclosing procedure 
Procedure or function has already been declared once 
Hissing procedure or function body 
No SUCh unit in this file 

H-3 



Pascal Reference I4Bnt.18l Error I'1essages 

H.4 Galdltlmal ~n8t1m 
260 New compile-time variable must be declared at global level 
261 Undefined compile-time variable 
262 Error in compile-time expression 
263 COnd1tiona1 COfIllllation opt1ons nested too deeply 
264 Unmatched ELSEC 
265 unmatched ENDC 
266 Error in SETe 
267 unterm1nated conditional compilation option 

H.5 ~ner Specific Umltations 
300 Too many nested record scopes 
301 set lim1 ts out of range 
302 string limits out of range 
303 Too many nested procedures/functions 
304 Too many nested include/uses files 
305 InclUdes not allowed in interface section 
306 Pack and trrpaek are not inplemented 
307 Too many units 
308 set constant out of rCl1ge 
309 Structure too large ( > 321< ) 
310 Paraneter list too large ( >= 321< ) 
350 Procedure too large 
351 File name in option too long 

H.6 IJOErron 
400 Not enough room for code file 
401 Error in rereading code file 
402 Error in reopening text file 
403 Unable to open uses file 
404 Error in reading uses file 
405 Error in opening inclUde file 
406 Eror in rereading previously read text block 
407 Not enough room for I-code file 
408 Error in writing code file 
409 Error 1n reading I-COde f1le 
410 Unable to opai listirg file 
420 I/O error on debug file 

1-l7 Clascal Errors 
800 Of missing 
801 SUperclass identifier missing 
802 Method NEW is not declared 
803 SUbclass declaration not allowed here 
804 Method is not a procedure 
805 t1ethod is not inplemented 
806 Class is not inplemented 
807 SUperclass identifier is not.a class 
808 Identifier is not a class 

H-4 



Pascal Reference I'1lnIBl 

809 'NEW' not allowed here 
810 'NEW' was expected here 
811 Illegal 'NEW' rethod 
812 Illegal use of class identifier 
813 unsafe use of a handle 1n an assignment statement 
814 Unsafe use of a handle in a WITH statement 
81S unsafe use of a handle as a var paraneter 

H.8 Code Generation Errors 
1000-1999 Internal code generation errors 
2000 End of I-COde file not found 
2001 Expression too conplicated, code generator ran out of registers 
2002 Code generator tried to free a register that was already free 
2003-2005 Error in generating address 
2006-2010 Error in expressions 
2011 Too many globals 
2012 Too many locals 

t-l9 Verification Erron 
4000 Bad verification blOCk format 
4001 SOUrce code version conflict 
4002 Compiler version conflict 
4003 linker version conflict 
4100 Version in file less than minimum version supported by program 
4101 Version in file greater than maximum version supported by program 

H-S 





Appendix I 
Pascal Workshop Files 

This appendix lists the files on the Pascal 1.0 diskettes. 

File Nate Pascal Notes Description 
DiSkette 

Assent>ler.obj 2 WorkShOp program. 
BVE. TEXT 1 WorkShop installation exec file. 
ByteOiff.obj 3 Utility program. 
changeseg.Obj 2 UtilIty program. 
Cistart.text 1 Workshop installation exec file. 
CISTART1.TEXT 1 WorkshOp installation exec file. 
Code.Obj 2 Workshop program. 
Codeslze.obj 2 Utility program. 
Oiff.Obj 3 Utility program. 
OUq:OO j . Obj 2 Utility program. 
OUfI1)Patch.obj 3 Utility program. 
EDIT.MENUS.TEXT 3 EdItor support file. 
Editor.obj 3 WorkShOp program. 
Fllediv.obj 3 Utility program. 
Filejoin.obj 3 Utility program. 
flnd.obj 3 Utility program. 
FHOATA 1 1,,2 Data segrrent. 
font.heur 1 1, 2,3 Data needed to support SVS1Lib. 
FONT.HEUR 3 Second copy of same file. 
font.lib 1 1,2,3 Data needed to support SVSILlb. 
GETPROFILELOC.TEXT 1 Workshop installation exec file. 
GETVESNO.TEXT 1 Workshop installation exec file. 
Gxref.obj 2 Utility program. 
INSERTOISK.TEXT 1 WorKshOp installat10n exec file. 
Intrinsic.lib 1 2,,3 Library directory. 
IOSFpllb.Obj 3 Library unit w/interface. 
IOSPaslib.obj 1 2,,3 Library unit w/interface. 
LOSPREFERENCES.OBJ 3 WorKshop program. 

Note 1: Tnese fUes are Identical to Offlce system Release 1.0 fUes. 
Nlte 2: These fUes are identical to Office System Release 1.2 files. Office System 

1.2 is functionally identical to Office System 1.0" but is released to ensure 
compatibll1ty with Pascal 1.0" BASIC-Plus 1.0, and C(ECL 1.0. 

Nlte 3: These files are the minimum necessary to run a user program in the 
WOrKsnop envIronment A user program may requIre otner flIes as well. 

1-1 



Pascal Refe.rence I'1BntIaI Pascal WoIksl1t:p Fjles 

File HalE Pascal Notes DescrIptIon 
Diskette 

lOS RES PROCS.TEXT 3 Workshop data. 
linker .Obj 2 WOrkshop program. 
N68k.err 2 AsselJt)ler data. 
N68K .opcodes 2 Assentller data. 
Objiolib.obj 2 library unit (no interface). 
OSERRS.ERR 1 3 Workshop data. 
PAPER. TEXT 3 WorkstKlp data. 
Pascal.obj 2 Workshop program. 
PASERRS.ERR 2 Workshop data. 
PASLIBCAlL.08J 2 Library unit w/interface. 
Portconfig.obj 3 utility program. ~.'.---,-.. , .... -

QO/BDXES.OBJ 2 Quickdraw sample program. 
QO/BOXES . TEXT 2 Quickdraw sample program. 
QD/fH68K.OBJ 2 QuickDraw unit (no interface). 
QD/FONTHGR . OBJ 2 QuickDraw unit w/interface. 
QO/GRAf3D . OBJ 2 QuickDraw unit w/interface. 
QD/GRAFlIBoOBJ 2 QuickOraw unit (no interface). 
QD/GRAfTVPES.TEXT 2 Quickdraw assembly interfaces. 
QO/GRAfUTIl. OBJ 2 QuickDraw unit w/interface. 
QD/HARDWARE.OBJ 2 Hardware unit w/interface. 
QD/HUlINTl.OBJ 2 Hardware unit (no interface). 
QD/H/BOXES.TEXT 2 Exec file. 
QO/H/QOSAHPlE.TEXT 2 Exec file. 
QO/QDSAHPLE . OBJ 2 QuiCkdraw sample program. 
QO/QOSAHPlE.TEXT 2 Quickdraw sample program. 
QD/QDSTUFF . TEXT 2 QuiCkdraw unit filenames. 
QD/QDSUPPORT . DBJ 2 QuickDraw unit w/interface. 
QD/QUICKDRAW.OBJ 2 QuickDraw unit w/interface. 
QD/STORAGE.OBJ 2 QuickDraw unit w/interface. 
QD/UNIT68K.OBJ 2 QuickDraw unit (no interface). 
QD/lINI THZ . OBJ 2 QuickDraw unit w/interface. 
QD/UNITSTD.OBJ 2 QuiCkDraw unit w/interface. 
resident channel 1 1,2,3 System data. 
Seg.rnep • obj I") utility program. , 
Shell.workShop 1 , WtJrK:StlOp maiM program. 
SUlib.obj 1 3 library unit w/interface. 
Sxref .obj 3 utility program. 

Note 1: These fUes are Identical to Office System Release 1.0 fUes. 
~te 2: These files are identical to Office System Release 1.2 files. Office System 

1.2 is functionally identical to Office System 1.0, but is released to ensure 
compatibility with Pascal 1.0, BASIC-Plus 1.0, and CCBCL 1.0. 

Nate 3: These files are the minimum necessary to run a user program in the 
Workshop environment A user program may require other files as well. 

1-2 



P8SC8l Reference Manual Pascal Workshop Files 

File NaIIe Pascal ttltes Descrlptlm 
Diskette 

, SXREf . (llIT . TEXT 3 Data. 
-S,ysllib .obj 1 1,2,3 Library units (no interface). 

SYS2LIB.OBJ 3 1,2,3 Library units (no interface). 
SVSCALl. OBJ 2 library unit w/interface. 
SYSTEM.BT'PROf 1 1,2,3 System support. 
SYSTEM.BT-TWIG 1 1,2,3 System support. 
SYSTEM.DEBuG 2 WOrkshop program. 
SYSTEM.DE8UG2 2 Workshop program. 
SYSTEM.IUOIRECTORY 1 1,2,3 System data. 
SYSTEM.llD 1 1,2,3 System program. 
SYSTEM.LOG 1 1,2,3 System data. 
SYSTEM.OS 1 2,3 System program. 
System. Shell 1 1,2,3 System program. 
SYSTEM.STACK1 1 1,2,3 System data. 
SYSTEM.STACK2 1 1,2,3 System data. 
SYSTEM.STACK3 1 1,2,3 System data. 
SYSTEM.STACK4 1 1,2,3 System data. 
SYSTEM.SYSlOC1 1 1,2,3 System data. 
SYSTEM.SVSlOC2 1 1,2,3 System data. 
SYSTEM.SYSlOC3 1 1,2,3 System data. 
SYSTEM.SVSlOC4 1 1,2,3 System data. 
SYSTEM. TIMER PIPE 1 1,2,3 System data. 
SVSTEM.UNPACK 1 1,2,3 System data. 
term.menus.text 3 Data for transfer program. 
transfer.obj 3 Workshop program. 
Uxref.obj 3 Utility program. 
UXREf . UMAP • TEXT 3 Data for UXREf program. 
ILIHDATA 1 1,2 Data segment. 
Xejectem.obj 1 Workshop installation program. 
{T11}BUTTONS 3 2 Data. 
{T11}t1ENUS.TEXT 3 2 Data. 

t«lte1: These files are identical to Office System Release 1.0 flIes. 
t«lte 2: These files are identical to Office System Release 1.2 flIes. Office System 

1.2 is functional I y identical to Office System 1.0, but is released to ensure 
compatibility with Pascal 1.0, BASIC-Plus 1.0, and CCBCl. 1.0. 

Note 3: These files are the minimum necessary to run a user program in the 
Workshop envIronment A user program may requIre other flIes as well. 

1-3 





Index 

Please note that the top1c references 1n this Index are by sectim f'U'I'Der. 

----------A----------
abs function 11.4.2 
accuracy in real ari t.hnetic 0 
actual-parameter 5.2, 7.1, 7.3 

syntax 5.2 
actual-parameter-list 5.2 

syntax 5.2 
actual-parameters in procedure call 

6.1.2 
AddPt procedure E.9.17 
anomalies in Lisa Pascal B 
Apple II Pascal A 
Apple III Pascal A 
applestuff unit A 
arcs, graphic operations E.9.10 
arctan function 11.4.9 
arithmetic functions 11.4 
arithmetic operators 5.1.2, 0 
array 3.2.1, 4.3.1 

component 3.2.1, 4.3.1 
reference 4.3.1 

array-type 3.2.1 
syntax 3.2.1 

ascent line E.5.2 
ASCII 3.1.1.5 
assembly language, QuiCkDraw E.ll 
assignment-cOfllJ8tibility 3.4.3 
assignment-statement 6.1.1 

syntax 6.1.1 

----------B----------
BackCOlor procedure E.9.5 
BackPat procedure E.9.1 

029-0412-A 
Inclex-1 

base line E .5.2 
base-type 3.2.3, 3.3, 5.3 

of pointer-type 3.3 
syntax 3.3 
scope anomaly B 
of set-type 3.2.3, 5.3 

Beep procedure F.4 
bit image E.4.1 
bit transfer operations E.9.13 
BitMap data type E.4.2 
bitmaps E.4.2 
bitwise boolean operations A 
blank character 1.1 
blank segment 8.3, 9.1 
block 2 

syntax 2.1 
block-structured lID 3.2.4, 

10.1.1-2, 10.4 
blockread function 3.2.4, 10.4.1 
blockwrite fLllCtion 3.2.4, 10.4.2 
boolean 3.1.1. 4, 5.1. 3, 5.1. 5 . 2, 

10.3.3.7, 12.3-12.4 
comparisons 5.1.5.2 
constants as control values 12.3, 

12.4 
operands, evaluation of 5.1.3 
operators 5.1.3 
data type 3.1.1.4 
values in text-oriented output 

10.3.3.7 
boundry rectangle E.4.2 
Boxes program E .14.2 
buffer variable 10.1.3, 10.1.7 



bUilt-in procedures & functions 10, 
11 

busy cursor F.2.2 
BusyDelay procedure F.2.2 
BusyImage procedure f.2.2 
byte array 11. 7 
byte-oriented procedures & functions 

11.7 
byte-s1ze files 3.2.4 
bytestream type A 

----------C----------
camera eye E.12 
case 6.2.2.2 

syntax 6.2.2.2 
case-constant in case statement 

6.2.2.2 
case-sensitivity 1.1, 1.2, 1.4 
case-statement 6.2.2.2 

efficiency 12.S 
syntax 6.2.2.2 

char 1.6.1,3.1.1.5,10.3.1.1, 
10.3.3.2, l1.S 

constant 1.6.1 
type 3.1.1.5 
values in text-oriented 1/0 

10.3.1.1, 10.3.3.2 
character 1.1, 3.2.4, 4.3.1 

device 3.2.4~ 10.1.1-2 
files 3.2.4 
font E.S.2 
in string 4.3.1 
set 1.1 

character style E.S.2 
CharWidth function E.9.4 
chr function 11.5.2 
Clip30 function E.12.4 
ClipRect procedure E.9.1 
clipRgn E.5 

Index-2 

clOCklcalendar f.8, f.9 
close procedure 10.1.5 
ClosePicture procedure E.9.14 
ClosePo1y procedure E.9.1S 
ClosePort procedUre E.9.1 
CloseRgn procedure E.9.11 
closing a file 10.1.5 
code generation 12.1 
color drawing E.7.2 

routines E .9.5 
COlorBit procedure E.9.S 
conment 1.8 
comparisons S.l.S 
compatibility of parameter lists 

7.3.5 
compatibie types 3.4 
compile-time expressions a variables 

12.2.1-3 
compiler 1.8, 12, A 

commands 1.8, 12.1-2, A 
component of array 3.2.1, 4.3.1 
component of file 3.2.4, 4.3.3 
component-type of array 3.2.1 
con"ollent-type of file 3.2.4 
compound-statement 6.2.1 

syntax 6.2.1 
concat function 11.6.3 
conditional compilation 12.2 
conditional-statement 6.2.2 

$}'J1tax 6.2.2 
constant 1.4-7 

syntax 1.7 
constant-declaration 1.7, 2.1, B 

scope anonral y B 
syntax 1.7 

constant-declaration-part 2.1 
syntax 2.1 

constants, assembly language E.l1.1 
contrast control f.3.1 
Contrast function F.3.1 



Pascal RefeJ-entJe /'1aIKJal 

control-variable 6.2.3.3 
syntax 6.2.3.3 

coordinate plane E.3.1 
coordinates, grafPort E.3.1, E.6 
copy function 11.6.4 
CopyBits procedure E.9.13 
CopyRgn procedure E.9.11 
cos function 11.4.5 
OR character 1.1, 1.6, 10.3 

in text-oriented I/O 10.3 
crunch 10.1. 5 
current block J'llIIt)er 10.4 
current file position 4.3.3 
cursor control 10.3.7, F.2 
Cursor data type E.4.4 
cursor-handling routines E.9.2 
CUrsorHeight data type F .10 
Cursorlmage procedure F.2 
CUrsorLocation procedure F.2.1 
CursorPtr data type F .10 
cursors, QuiCkDraw E.4.4 
CUrsorTracking procedure F.2.1 
customizing QuiCkDraw operations 

L10 

----------0----------
data bitmap F.2 
data types 3 

assembly language E.ll.2 
Graf30 E.12.3, E.13.5 
QuickDraw E.2.2, E.13.2 

datafile 10.1.2 
date F .8, F.9 
DateArray data type F.I0 
DateTime procedure F.B 
DateToTime procedure F.8 
dead key diacriticals F.5.4 
debugging 12.1 

IncJex-3 

defining declaration 7.1 
delete procedure 11.6.5 
descent line E.5.2 
device 10.1.1-2 

Inde.x 

character 10.1.1, 10.1.2 
file-structured 10.1.1, 10.1.2 
types 10.1.1, 10.1.2 

diacritical marks F.5.4 
DiffRgn procedure E.9.11 
digit 1.1 
digit-sequence 1.4 

syntax 1.4 
DimDontrast function F.3.2 
dimensions of Lisa screen E.4.1 
directive 1.3 
diskette insertion switches F.S 
display screen F.3 
DisposeRgn procedure E.9.11 
div operator A 
division by zero (real arithmetic) 

3.1.1.3, 0 
DLE cnaracter 10.3 
DraWOhar procedure E.9.4 
drawing E.7 

color E.7.2 
DrawPicture proceoure E.9.14 
DraWString procedure E.9.4 
DrawText procedure E.9.4 
dynamic allocation procedures 11.2 

----------E----------
efficiency, case-statements 12.5 
enpty set 5.3 
EnptyRect flflCtion E. 9.6 
EnptyRgn function E.9.11 
enumerated-type 3.1.2 

syntax 3.1.2 



eof function 10.1.7 
and various procedures 10.1.3-4, 

10.1.7, 10.2.1-2, 10.2.4, 
10.3.1-2, 10.4.1 

eoln function 10.3.5 
and read and readln procedures 

10.3.1, 10.3.2 
EqualPt function E.9.17 
EqualRect function E.9.6 
EqualRgn function E.9.11 
EraseArc procedure E.9.10 
EraseDval procedure E.9.8 
ErasePoly procedure E.9.16 
EraseRect procedure E.9.17 
EraseRgn procedure E.9.12 
EraseRoundRect procedUre E.9.9 
ETX character A 
exit procedure 11.1.1, A 
exp function 11.4.6 
expression 5 

syntax 5 
extended ~risons A 
external file 10.1 
external fll1ction 7.2 
external procedure 7.1-2 

----------F----------
factor 5 

syntax S 
FadeDelay function F.3.2 
field of record 3.2.2, 4.3.2, 6.2.4 
field-declaration 3.2.2 

syntax 3.2.2 
field-designator 4.3.2 

syntax 4.3.2 
field-list 3.2.2 

syntax 3.2.2 

Index-4 

file 3.2.4, 4.3.3, 10 
buffer 4.3.3 
buffer and eof function 10.1.7 
buffer and reset procedure 10.1.3 
component 3.2.4, 4.3.3 
identifier as parameter type 7.3 
of char 3.2.4 
position and reset procedure 

10.1.3 
record 10.2 
reference 4.3.3 
species 10.1.2 
standard file-type identifier 

3.2.4, 10.1, 10.4 
types and reset procedure 10.1.3 
variable 3.2.4, 4.3.3, 10 

file-buffer-symbol 4.3.3 
syntax 4.3.3 

file-structured device 3.2.4, 
10.1.1-2, 10.4 

file-type 3.2.4 
syntax 3.2.4 

FillArc procedure E.9.10 
fillchar procedure 11.8.3 
FillOval procedure E.9.8 
fillPoly procedure E.9.16 
FillRect procedure E.9.7 
FillRgn procedure E.9.12 
FillRoundRect procedure E.9.9 
final-value 6,2_3_3 

syntax 6.2.3.3 
finite real values 3.1.1.3 
fixed-part 3.2.2 

syntax 3.2.2 
fixed-point output of real value 

10.3.3.4 
floating-point arithmetic 0 
floating-point output of real value 

10.3.3.4, A 



Pascal Reference I'-1antJa1 

font nuntJers E . 15 
fonts E.S.2 
for-statement 6.2.3.3 

syntax 6.2.3.3 
ForeColor procedure E.9.S 
foreign characters F.S.4 
formal-parameter-list 7.3 

syntax 7.3 
formal-parameters and procedure call 

6.1.2 
forward declaration 7.1-2 
FrameArc procedure E.9.10 
Framecounter function F.3 
FrameDval procedure E.9.8 
framePoly procedUre E.9.16 
FrameRect procedure E.9.7 
FrameRgn procedure E.9.12 
FrameRoundRect procedure E.9.9 
Frames data type F .10 
flllCtion 7.2-3 
flllCtion-body 7.2 

syntax 7.2 
funct1on-call 5, 5.2, 7.2, 7.3 

syntax: 5.2 
function-declaration 7.2 

syntax 7.2 
funct1on-head1ng 7.2 

syntax 7.2 
functional parameter 7.3.4 
functions, assembly language E.l1.4 

----------G----------
get procedure 10.2.1, 10.2.3 
GetClip procedure E.9.1 
GetFontlnfo procedure E.9.4 
GetPen procedure E.9.3 
GetpenState procedure E.9.3 
Getpixel function E .9.18 
Getport procedure E.9.1 

Index-5 

Getport30 procedure E.12.4 
global coordinates E .6, E. 9.17 
global var1ables, aSsembly language 

E.l1.3 
GlobalTolocal procedure E.9.17 
goto-statement 6.2, A 

syntax 6.1.3 
gotoxy procedure 10.3.7.2 
Graf30 E.12 

data types E.12.3, E.l3.S 
s8Jl1)le program E .14.2 

GrafOevice procedure E.9.1 
grafPort coordinates E.3.1, E.6 
GrafPort data type E.S 
grafPort routines E.9.1 
grafPorts E .5 
GrafPtr data type E.5 
GrafVerb data type E.lO 
graphics pen E.S.l 

----------H----------
halt procedure 11.1.2, A 
handles E.3.4 

picture E.B.1 
polygon E.B.2 
region E.3.4 

hardware interface F 
heap 11.2 
heapresul t function 11.2.2 
heX-d1g1t 1.1 
hex-digit-sequence 1.4 

syntax 1.4 
hexadecimal constants 1.4 
HideCursor procedure E.9.2 
HidePen procedure E.9.3 
host program or unit 9 
host-type of subrange 3.1.3 
hotspot E.4.4, F.2 
hourglass cursor F.2.2 



Pascal Reference !-fonuaJ 

----------1----------
identical types 3.4 
identi fier 1. 2 

of program 8.1 
syntax 1.2 

identifier-list 3.1.2 
syntax 3.1. 2 

Identity procedure E.12.4.2 
IEEE Floating-Point Standard 0 
if-statement 6.2.2.1 

optimization 12.3 
syntax 6.2.2.1 

implementation-part 9.1.1 
syntax 9.1.1 

in operator 5.1.5.5 
index 4.3.1 

1n variable-reference 4.3.1 
syntax 4.3.1 

index-type 3.2.1 
syntax 3.2.1 

infinities 3.1.1.3, 0 
InitCUrsor procedure E.9.2 
InitGraf procedure E.9.1 
initial-value 6.2.3.3 

syntax 6.2.3.3 
initialization-part A 
InitPort procedure E.9.1 
input (standard file) 10.1.7, 10.3 
input file control (in compilation) 

12.1 
input variables in read procedure 

10.3.1 
inputloutput 10 
insert procedure 11.6.6 

Index-6 

Index 

InsetRect procedure E.9.6 
InsetRgn procedure E.9.11 
integer 1.4, 3.1.1.1-2, 10.3.1.2, 

10.3.3.3, 11.3-S, 0 
arithmetic 3.1.1.1, 3.1.1.2 
constant 1.4 
conversion overflow 0 
data type 3.1.1.1, 3.1.1.2 
data type conversions 3.1, 

3.1.1.S, 3.1.2, 11.5.1 
values in text-oriented 110 

10.3.1.2, 10.3.3.3 
interactive file-type A 
interface-part 9.1.1 

syntax 9.1.1 
intrinsic=unit 9.2 
INTRINSIC.LIB 9_2~ 12.1 
invalid operations in real arithmetic 

o 
InvertArc procedure E.9.10 
InvertOval procedure E.9.8 
InvertPoly procedure E.9.16 
InvertRect procedure E.9.7 
InvertRgn procedure E.9.12 
InvertRoundRect procedure E.9.9 
ioresult function 10.1.2, 10.1.6 

----------K----------
key state f.S.3 
KeybdEvent function f.S.3 
Keybdld data type F.10 
KeybdPeek function f.S.3 
KeybdQlndex data type f.10 



Pascal ReFerence /t1anJaI 

keyboard 3.2.4, 10.1.1, 10.3, 
10.3.7.1, F.S 

attributes F.S.1 
echoing on input 10.3 
events F.S, F.S.3 
identification F.S.1 
layouts F.S.1 
legendS F.S.1 
physical 3.2.4, 10.1.1, 10.3, 

10.3.7.1 
queue F.S.3 
repeats F .5.5 
state f .5.2 
testing 10.3.7.1 

Keyboard function F.S.l 
KeyCap data type F.10 
KeyCapSet data type f .10 
keycodes F.S 
KeyEvent data type F.I0 
KeyIsDown function F.S.2 
KeyMap procedUre f.S.2 
keypress function 10.3.7.1 
KillPicture procedure E.9.14 
KillPoly procedure E.9.1S 

----------l----------
label 1. 5, 2.1, 6 

on statenent 6 
syntax 2.1, 6 

label-declaration-part 2.1 
syntax 2.1 

legendS function f.s.l 
length attribute 3.1.1.6 
length function 11.6.1 
letter 1.1 
line procedUre E.9.3 
line-drawing routines E.9.3 
line2D procedure E.12.4 
Line3D procedure E.12.4 

Index-7 

LineTo procedUre E.9.3 
LineTo2O procedure E.12.4 
lineTo30 procedure E.12.4 
Linker 7.1 
listing control 12.1 
In function 11.4.7 

JlX1ex 

local coordinates E.6, E.9.17 
LocalToGlobal procedure E.9.17 
lOCk 10.1.5 
long integer data type A 
longint 1.4, 3.1.1.2, 10.3.1.2, 

10.3.3.3, 11.3-5, 0 
arithmetic 3.1.1.2 
constant 1.4, 1.6, 1. 7 

11.3.4 
data type 3.1.1.2 
data type conversions 11.3.3, 
values in text-oriented 110 

10.3.3.3 
LookAt procedure E.12.4.1 

----------H----------
HanyPixels data type F.I0 
MapPoly procedUre E.9.18 
HapPt procedure E.9.18 
HapRect procedure E.9.18 
HapRgn procedure E.9.18 
mark proceclJre 11.2.3, A 
mask bitmap f. 2 
maxint 3.1.1.1 
memavail function 11.2.5 
member-group 5.3 

syntax 5.3 
memory allocation procedures 11.2 
microsecond timer F.6 
MicrOSeconds data type f.l0 
MicroTimer function F.6 
millisecond timer F.7 
MilliSeconds data type f.l0 



missing Symbol E.S.2 
I1Ild operator A 
noose F.l 

button F.5 
plug F.s 

Houselocation procedure F.l.1 
HouseOdoneter procedure F .1.4 
HouseSC8ling procedure F .1.3 
MouseThresh procedure F.1.3 
MouseUpdates procedure F.1.2 
Hove procedure E.9.3 
Move20 procedure E.12.4 
Hove30 procedure E.12.4 
moveleft procedure 11.7.1 
MovePortTo procedure E.9.1 
moveright proc~re 11.7.2 
MoveTo procedure E.9.3 
HoveTo20 procedure E.12.4 
HoveTo30 procedure E.12.4 

----------N----------
NaNs 3.1.1.3, 0 
new procedure 3.3, 11.2.1, A 
NewRgn function E.9.11 
nil 3.3, 4.3.4, 11.2.1 
Noise procedure F.4 
normal 10.1.5 
nuntJer 1.4-
numerical comparisons 5.1.5.1 

----~-----O----------
object file 9 
object of pointer 4.3.4 
ObscureCursor procedure E.9.2 
odd function 11.4.1 
OffsetPoly procedure E.9.15 
OffsetRect procedure E.9.6 
OffsetRgn procedure E.9.11 

Index-8 

1l1dex 

Open3OPort procedUre E.12.4 
opening a file 10.1, 10.1.2-4 
OpenPicture function E.9.14 
OpenPoly function E.9.15 
OpenPort procedUre E.9.1 
OpenRgn procedure E.9.11 
operands 5 

compile-time 12.2.3 
in expressions 5 

operators 5 
compile-time 12.2.3 
in expressions 5 

optimization of if, repeat, and while 
statements 12.3, 12.4 

ord function 3.1, 3.1.1.5, 3.1.2, 
11.5.1 

ord4 function 3.1.1.2, 11.3.3 
order of evaluation of operands 

5.1.1 
ordinal functions 11.5 
ordinal-type 3.1 

and ord function 11.5.1 
and ord4 function 11.3.3 
and pred function 11.5.4 
and succ function 11.5.3 
syntax 3.1 

ordinal-type-identifier 3 
ordinality 3.1 
otherwise-clause 6.2.2.2 

syntax 6.2.2.2 
output (standard file) 10.3 
output expression in write procedure 

10.3.3 
output file in write procedure 

10.3.3 
output-specs in write procedure 

10.3.3 
ovals, graphic operations E.9.8 
overflow (real arithmetic) 

3.1.1.3, 0 



Pascal Refereme MavaJ 

----------P----------
packed array of char 5.1.5.6, 

10.3.1.5, 10.3.3.6, 11.8 
comparisons 5.1.5.6 
fillchar procedure 11.8.3 
scanning functions 11.8.1, 11.8.2 
text-oriented 110 10.3.1.5, 

10.3.3.6 
packed data types 3.1.1.6, 3.2 
page procedure 10.3.6 
PaintArc procedure E.9.10 
PaintOVal procedure E.9.8 
PaintPoly procedure E.9.16 
PaintRect procedure E.9.7 
PaIntRgn procedure E.9.12 
PaintRoundRect procedUre E.9.9 
parameter 7.1, 7.3 
parameter list compatibility 7.3.5 
parameter-deClaration 7.3 

syntax 7.3 
parameters in procedure call 6.1.2 
Pascal coopi ler 12 
Pattern data type E.4.3 
pattern transfer mode E.7.1 
patterns E.4.3 
pen E.5.1 
pen routInes E.9.3 
PenHode procedure E.9.3 
PenNormal procedure E.9.3 
PenPat procedure E.9.3 
Pen5Ize procedure E.9.3 
performance penalty for longint 

values 3.1.1. 2 
PioGomment procedure E.9.14 
PlcHandle data type E.8.1 
PicPtr data type E.8.1 
picture comments E.8.1 
Picture data type E.8.1 
pIcture frame E.8.1 
picture routines E.9.14 

Index-9 

pictures E.8.1 
Pitch procedure E.12.4.2 
pIxel E.4.1 
Pixels data type F .10 
Point data type E.3.2 
pointer 4.3.4, 11.2 

lrx:Jex 

pointer function 3.3, 11.3.4 
pointer-abject-symbol 4.3.4 

syntax 4.3.4 
pointer-reference 4.3.4 
poInter-type 3.3 

conversions 11.3.3, 11.3.4 
syntax 3.3 

pointer-type-identifier 3 
points E.3.2 
points, calculations E.9.17 
Polygon data type E.8.2 
pol ygonsE. 8.2 

calculations E.9.15 
graphic operations E.9.16 

PolyHandle data type E.8.2 
PolyPtr data type E.8.2 
portSi ts E .5 
portRect E. 5 
PortSize procedure E.9.1 
pos function 11.6.2 
power swl tCh f. 5 
precedence of operators 5 
pred function 3.1, 11.5.4 
predecessor 3.1 
procedUral parameter 7.3.3 
procedure 7.1, 7.3 
procedure-and-function-deClaration-

part 2.1 
syntax 2.1 

procedure-body 7.1 
syntax 7.1 

procedure-deClaration 7.1 
syntax 7.1 



Pascal Reference I'-1a1UaJ 

procedure-heading 7.1 
syntax 7.1 

procedure-statement 6.1.2, 7.1 
syntax 6.1.2 

procedures, assembly language E.l1.4 
program 8 

identifier 8.1 
segnents 8.3 
syntax 8.1 

program-heading 8.1 
syntax 8.1 

program-parameters 8.1, 8.2 
syntax 8.1 

Pt2Rect procedure E.9.6 
PtlnRect function E.9.6 
PtlnRgn function E.9.11 
PtToAngle procedure E.9.6 
purge 10.1.S 
put procedure 10.2.2-3 
pwroften funct10n 11.4.10 
pyramid E.12 

----------Q----------
QDProcs data type E.l0 
QOProcsPtr data type E .10 
QOSample program E.2.1, E.14.1 
QOSUpport lIlit E .15 
qualifier 4.3 

syntax 4.3 
n. Ii ~Ltn1'~ld t= ...,-- ........ .......,. ....... "" ... 
QuiCkDraw data types E.2.2, E.13.2 
QuickOraw glossary E.16 

Index-10 

QuickOraw routines E.9 
arcs E.9.10 
bit transfer E.9.13 
color drawing E.9.S 
cursor handling E.9.2 
customizing E.I0 
grafPorts E.9.1 

lnt11x 

line drawing E.9.3 
miscellaneous utilities E.9.IS 
ovals E.9.8 
pen E.9.3 
pictures E.9.l4 
points E. 9.17 
polygons E.9.1S, E.9.16 
rectangles E.9.6, E.9.7 
regions E.9.l1, E.9.l2 
rounded-corner rectangles E.9.9 
text drawing E.9.4 
wedges E. 9.10 

QuickOraw sample programs E.2.1, 
E.14 

QuickDraw summary E.13 
QuiCkDrsJJJ, using from assentlly 

language E .11 
quoted-character-constant 1.6.1 

syntax 1.6.1 
quoted-strIng-constant 1.6 

syntax 1.6 

----------R----------
RampOontrast procedure F.3.1 
Random function E.9.1S 



Pascal Reference I'18ntJaJ 

range-checking 3.1.3, 12.1 
read procedure 10.3.1 
readln procedure 10.3.2 
real 1.4, 3.1.1.3, 10.3.1.3, 

10.3.3.4, 11.3-4, 0 
aritt'lrtetic 0 
constant 1.4 
data type 3.1.1.3, 0 
data type and round function 11.3.2 
values 3.1.1. 3 
values and write procedure 0 
values in text-oriented 1/0 

10.3.1.3, 10.3.3.4, 0 
real-type 3.1 

syntax 3.1 
real-type-identifier 3 
record 3.2.2, 4.3.2 

field 3.2.2, 4.3.2 
nurrtler and seek procedure 10.2.4 
of file 10.2 
reference 4.3.2 
reference in with statement 6.2.4 

record-oriented 1/0 10.2 
record-type 3.2.2 

new procedUre 11. 2 .1 
syntax 3.2.2 

rectangle calculation routines E.9.6 
Rectangle data type E.3.3 
rectangles E.3.3 

graphic operations E.9.7 
RectlnRgn function E.9.11 
RectRgn procedure E.9.11 
recursion 7.1-2 
redeclaration of identifier 2.2.2, 

2.2.4 
Region data type E .3.4 
regions E.3.4 

calculations E.9.11 
graphic operations E.9.12 

regular-unit 9.1 
syntax 9.1.1 

Index-11 

relational operators 5.1.5 
release procedure 11.2.4, A 
repeat-statement 6.2.3.1 

optimization 12.4 
syntax 6.2.3.1 

repeating keys F.S.S 
RepeatRate procedure F.S.S 
repetitive-statement 6.2.3 

syntax 6.2.3 
reserved words 1.1 

//1IBX 

reset procedure 10.1, 10.1.S, A 
result-type 7.2 

syntax 7.2 
rewrite procedure 10.1.4 
RgnHandle data type E.3.4 
RgnPtr data type E.3.4 
Roll procedure E.12.4.2 
rotation E.12 
round function 11.3.2, 0 
rounded-corner rectangles E.9.9 
rounding in real arithmetic 0 
row width E.4.1 

----------s----------
Scale procedure E.12.4.2 
scale-factor 1.4 

syntax 1.4 
ScalePt procedure E.9.18 
scan function A 
scaneq function 11.8.1 
scanne function 11.8.2 
scope 2.2 

of standard objects 2.2.S 
screen 10.3, 10.3.7.2, F.3 

contrast F.3.1 
cursor control 10.3.7.2, F.2 
fading F.3.2 
physical 10.3 

ScreenContrast data type F.lO 



Pascal Reference ,..,JanlIaJ 

Screensize procedure f.3 
ScrollRect procedure E.9.13 
Seconds data type F .10 
SectRect function E.9.6 
5ectRgn procedure E.9.11 
seek procedure 10.2.3 
segment keyword A 
segmentation 8.3 
segments 8.3, 9.1, 9.2.1 
selector in case statement 6.2.2.2 
set 3.2.3, 5.1.4, 5.1.5.4, 5.3 

comparisons 5.1.5.4 
nentJershlp testing 5.1.5.5 
operators 5.1.4 
values 5.3 

set-constructor 5, 5.3 
syntax 5.3 

set-type 3.2.3 
syntax 3.2.3 

SetClip procedure E.9.1 
SetContrast procedure f.3.1 
SetCursor procedure E.9.2 
SetOateTime procedure F.B 
SetOimContrast procedure f.3.2 
setEmptyRgn procedUre E.9.11 
SetfadeOelay procedure F.3.2 
SetLegends procedure F. 5.1 
SetOrigin procedure E.9.1 
SetPenstate procedure E.9.3 
SetPort procedure E.9.1 
SetPort30 procedure E.12.4 
SetPortBits procedure E.9.1 
setPt procedure E.9.17 
SetPt20 procedure E.12.4 
Setpt30 procedure E.12.4 
SetRect procedure E.9.6 
SetRectRgn procedure E.9.11 
SetRepeatRate procedure F.5.S 
SetStdProcs procedure E.I0 
SetTimeStamp procedure F.9 

IncJex-12 

SetVolune procedure f.4 
ShoWCursor procedure E.9.2 
ShowPen procedure E.9.3 
sign 1.4 

syntax 1.4 
signed zero 3.1.1.3 
signed-number 1.4 

syntax 1.4 
Silence procedUre f.4 
simple-expression 5 

syntax 5 
simple-statement 6.1 

syntax 6.1 
Simple-type 3.1 

syntax 3.1 
simple-type-identifier 3 
sin function 11.4.4 
size-attribute 3.1.1.6 

syntax 3.1.1. 6 
sizeof function 11.7.3 
Skew procedure E.12.4.2 
source transfer mode E.7.1 
SpaceExtra procedure E.9.4 
speaker F.4 

Index 

Speakervolune data type f.1D 
special symbols 1.1 
sqr function 11.4.3 
sqrt function 11.4.8, 0 
stack space and nemavall function 

11.2.5 
standard procedures and functions 

for 110 10 
10, 11 

standard Simple-types 3.1 
statement 6 

syntax 6.1 
statenent-part 2.1 

syntax 2.1 
StdArc procedure E.I0 
StdBits procedure E.lD 



Pascal Reference f\1antJaJ 

StdCormEnt procedure E .10 
StdGetPic procedure E.I0 
Stdline procedure E.10 
StdOval procedure E .10 
StdPoly procedUre E.10 
StdPutPic procedure f.10 
StdRect procedure E.10 
StdRgn procedure f.l0 
StdText procedure f.10 
StdTxHeas function E .10 
string 1.6, 3.1.1.6, 4.3.1, 5.1.5.3, 

10.3.1.4, 10.3.3.5, 11.6, A 
character 4.3.1 
comparisons 5.1.5.3 
concatenation 11.6.3 
constant 1.6, 3.1.1.6 
constant comparisons 5.1.5.3 
length function 11.6.1 
procedures and functions 11.6 
reference 4.3.1 
Substring copying 11.6.4 
substring deletion 11.6.5 
substring insertion 11.6.6 
substring search 11.6.2 
values in text-oriented I/O 

10.3.1.4, 10.3.3.5 
string-character 1.6 

syntax 1.6 
string-type 3.1.1.6 

syntax 3.1.1. 6 
string-type-identifier 3 
StringWidth function E.9.4 
structured-statement 6.2 

syntax 6.2 
structured-type 3.2 

syntax 3.2 
structured-type-identifier 3 
Stuff Hex procedure E.9.18 
SubPt procedure E.9.17 

Index-13 

subrange-type 3.1.3 
syntax 3.1. 3 

succ function 3.1, 11.5.3 
successor 3.1 

IrxIe.).'· 

syntax diagrams, complete collection 
C 

syntax diagrams, explanation Preface 
system intrinsic library 9.2.2, 12.1 

----------T----------
tag constants in new and dispose 

procedures 11.2.1-2 
tag-field 3.2.2 
tag-field-type 3.2.2 

syntax 3.2.2 
term 5 

syntax 5 
testing set membership 5.1.5.5 
text E.5.2 
text type 3.2.4, 10.1.2, 10.3 
text-drawing routines f.9.4 
text-oriented I/O 10.3 
TextFace procedure E.9.4 
textfile 10.1.2, 10.3, A 
textfile format 10.1.2, 10.3 
TextFont procedure E.9.4 
TextMode procedure E.9.4 
TextSize procedure E.9.4 
TextWidth function E.9.4 
three-dimensional graphics. See 

Graf30. 
time F.B, F.9 
time st8fJl) f.9 
Timer function (millisecond timer) 

F.7 
timers F.6, F.? 
TimeStamp function F.9 
TimeToOate procedure f.9 



Pascal Reference fVknI81 

transfer fl..l1Ctions 11.3 
transfer modes E.7.1 
TransForm procedure E.12.4.2 
transformation matrix f.12 
Translate procedure f.12.4.2 
treesearch procedure A 
trunc function 11.3.1, A, 0 
turtlegraphics unit A 
type 3 

compatibility and identity 3.4 
syntax 3 

type-declaration 3 
syntax 3 

type-declaration-part 2.1, 3.5 
syntax 2.1 

----------u----------
UCSO Pascal A 
unary arithmetic operators 5.1.2 
underscore character A 
UnionRect procedure E.9.6 
un10nRgn procedure E.9.II 
unit 9 

intrinsic 9.2 
regular 9.1 

unit-heading 9.1.1 
syntax 9.1.1 

unsigned-constant 5 
syntax 5 

unsignea-integer 1.4 
syntax 1.4 

unsigned-number 1.4 
syntax 1.4 

unSigned-real 1.4 
syntax 1.4 

untyped file 3.2.4, 10.1.1-2, 10.4 
1/0 10.4 

uses-clause 8.1, 9.1.1-2, 9.2, 9.3 
syntax 8.1 

Index-14 

----------V----------
value parameter 7.3.1 
variable 4 
variable parameter 7.3.2, A 
variable-declaration 4.1 

Index 

syntax 4.1 
variable-declaration-part 2.1 

syntax 2.1 
variable-identifier 4.1 

syntax 4.1 
variable-reference 4.2 

syntax 4.1 
variant 3.2.2 

records, new procedure 11.2.1 
syntax 3.2.2 

variant-part 3.2.2 
syntax 3.2.2 

vertical retrace F.3 
VHSelect data type E.3.2 
ViewAngle procedure E.12.4.1 
viewing pyramid E.12 
ViewPort procedure E.12.4.1 
visRgn E.S 
Volume function F.4 

----------w,X,z----------
wedges, graphic operations E.9.10 
while-staterrent 6.2.3.2 

optimization 12.4 
syntax 6.2.3.2 

with-statement 6.2.4 
syntax 6.2.4 

word stream type A 
write procedure 10.3.3, A 

wi th real values 0 
write-protection of file 10.1.5 
writeln procedure 10.3.4, A 
xForm matrix E.12 
xorRgn procedure E.9.11 



Pascal Refelf!lJCe fvIEnJaJ 

Vaw procedure E.12.4.2 
zero, signed 3.1.1.3 

----------CHARACTERS---------­
$C c~iler COIIIIIfU1ds 12.1 
$0 ~iler conmands 12.1 
$1)fCl ~iler conmand 12.2.1 
$E complIer command 12.1 
$ELSEC compiler command 12.2.4 
$ENDC cCJll1liler command 12.2.4 
$1 compiler conmand 12.1 
$IFC complIer command 12.2.4 
$l compiler commands 12.1 
$R compiler commands 3.1.3, 12.1 
$S cOlJ1)i ler CORIIIBIId 8.3, 9.1, 9. 2, 

12.1 
$SETe compiler command 12.2.1 
$U compiler commands 9.1.2, 9.2.2, 

12.1 
$X compiler conmands 12.1 
0, signed 3.1.1.3 
16-bit integer arithmetic 3.1.1.1-2, 

11.3.3 
32-0lt integer arithmetic 3.1.1.2, 

11.3.3 
30 graphics. See Graf30. 
iii operator 3.3, 5.1.6 

Index-iS 

Index 





Tms MANUAL was produced using 
Lisa Write, LisaDra-w, and 

LisaList. 

k PRINTING was done with an 
Apple Dot Matrix Printer. 

the LisalM 

... we use it ourselves. 





Pascal Reference Manual Mail-Back Form 

Apple publlcatlons would liKe to learn about readers and What you think aboUt this 
mcrlU81 In order to make better rncnJ81s in the future. Please fill out this form, or 
write all over It., and send it to us. We promise to read It 
How are you using this manual? 
[ ] learning to use the prOdUCt [] reference [] bOth reference and learning 
[]ot~r ______________________________________________ __ 

Is it quiCk ancJ easy to find the information you need In this manual? 
[ ] always [] often [] sometimes [] seldom [] never 
comnren~ ____________________________________________________ ___ 
What makes this manual easy to use? _____________________ _ 

What makes this manual hard to use? ___________________ _ 

What dO you llke most about the manual? _____________________ _ 

What dO you like least abOUt the manual? _____________ _ 

Please comment on, for example, accuracy, level of detail, number and usefulness of 
examples, length or brev1ty of explanation, style, use of graph1cs, usefulness of the 
index, organization, suitability to your partiCUlar needs, readatJ1l1ty. 

What languages dO you use on your Usa? (Check eacn) 

[ ] Pascal [] BASIC [] Ccea... [] other ____________ _ 

How long have you been prograrrmlng? 
[ ] 0-1 years [] 1-3 [] 4-7 [] over 7 [] not a programmer 
What is your job tltle? _______________________________ _ 

Have you completed: 
[ ] high school [] some college [] BAIBS [] MNMS [] more 
What magazInes dO you read? ____________________ _ 

Other corrrnents (please attach more sheets if necessary) _________ _ 

029-0406-A 



......... , ...... , ........................ , ....... , .. "" ....... " ......... ' ...... , ...... ", ..... ", .. " ...... " ......... """" ..... "",,, ... ,,, . NU)·" .... , .... ,,,,,,,,, .... .. 

Fan .. ·" .... · ...... · ...... " .. 

t. .!=,pplcz computczr 
POS Publications Department 

20525 t"'1ariani Avenue 

cupertIno,. california 95(Jll~ 

MPf OR 5'l'IJPLF 

r I---~-,~-~~ 
S!lJ 
flO 

L. 


