
System Software
Manuals
Pert 3 of 3

A6D0201

029-0414-A

Operating System
Reference Manual

for the Lisa 1M

LIcensIng Requirements for SOftware Developers
Apple has a low-cost licensing program, which permits developers of software
for .the Lisa to incorporate Apple-developed libraries and object code files
into their products. Both in-house and external distribution require a license.
Before distributing any products that incorporate Apple software, please
contact Software Licensing at the address below for Doth licensing and
technical information.

@1983 by Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010

Apple, Usa, and the Apple logo are trademarks of Apple Computer, Inc.

Simultaneously published in the USA ana Canada.

OJstomer Satisfaction

If you discover physical defects in the manuals distributed with a Lisa
product or in the media on which a software product is distributed, Apple
will replace the documentation or media at no charge to you during the
90-day period after you purchased the product.

PnxiK:tRevisions

Unless you have purchased the product update service available through
your authorized Lisa dealer, Apple cannot guarantee that you will receive
notice of a revision to the software described in this manual, even if you
have returned a registration card received with the product. You should
check periodically with your authorized Lisa dealer.

limitation on Warranties cnj liability

All implied warranties concerning this manual and media, including implied
warranties of merchantability and fitness for a particular purpose, are
limited in duration to ninety (90) days from the date of original retail
purchase of this product.

Even though Apple has tested the software described in this manual and
reviewed its contents, neither Apple nor its software suppliers make any
warranty or representation, either express or implied, with respect to this
manual or to the software described in this manual, their quality,
performance, merchantability, or fitness for any particular purpose. As a
result, this software and manual are sold "as is," and you the purchaser are
assuming the entire risk as to their quality and performance.

In no· event will Apple or its software suppliers be liable for direct,
indirect, speCial, incidental, or consequential damages resul ting from any
defect in the software or manual, even if they have been advised of the
possibility of such damages. In particular, they shall have no liability for
any programs or data stored in or used with Apple products, including the
costs of recovering or reproducing these programs or data

The warranty and remedies set forth above are exclusive and in lieu of all
others, oral or written, express or implied. No Apple dealer, agent or
employee is authorized to make any modification, extension or addition to
this warranty.

Some states do not allow the exclusion or limitation of implied warranties
or liability for incidental or consequential damages, so the above limitation
or exclusion may not apply to you. This warranty gives you specific legal
rights, and you may also have other rights that vary from state to state.

iii

LIcense and COpyr1~t

This manual and the software (computer programs) described in it are
copyrIghted by Apple or by Apple's software suppliers" with all rIghts
reserved" and they are covered by the Lisa Software License Agreement
signed by each Lisa owner. Under the copyright laws and the License
Agreement" this manual or the programs may not be copied" in whole or in
part., without the written consent of Apple" except In the normal use of
the software or to make a backup copy. This exception does not allow
copies to be made for others" whether or not SOld, but all of the material
purchased (with all backup copies) may be sold, given, or loaned to other
persons if they agree to be bound by the provisions of the Ucense
Agreement. Copying includes tranSlating into another language or format.
You may use the software on any computer owned by you, but extra copies
cannot be made for this purpose. For some products, a multiuse license
may be purchased to allow the software to be used on more than one
computer owned by the purchaser, inclUding a shared-disk system.
(Contact your authorized Lisa dealer for more information on multiuse
licenses.)

Prt:lWctRevisions

Unless you have purChased the prOduct update service avallable through
your authorIzed Usa dealer" Apple cannot guarantee that you will receive
notice of a revIsion to the software described In this manual, even if you
have returned a registration card received with the product. You should
cheCk perIOdIcally wIth your authorized Usa dealer.

tv

029-0415-A

Chapter 1
Ir1troWctlm

Contents

1.1 The Main Functions... 1-1
1.2 Using the OS Functions .. 1-1
1.3 The F11e System .. 1-2
1.4 Process Management ... 1-3
1.5 f'1emOry Management .. 1-4
1.6 Exceptions and Events ... 1-5
1.7 Interprocess COt'Tln1Unlcatlon ... 1-5
1.8 USing the OS Interface .. 1-6
1.9 Rumlng Programs under the ()S ... 1-6
1.10 writing Programs That Use ttle OS ... 1-6

Cllapter 2
The File System

2.1 File Names ... 2-1
2.2 The Wor1<.ing Directory .. 2-2
2.3 Devices .. 2-3
2.4 Storage Devices .. 2-3
2.5 The VOlume catalog .. 2-4
2.6 Labels .. 2-4
2.7 Logical and Physical End of File .. 2-4
2.8 File Access .. 2-5
2.9 Pipes ... 2-6
2 .. 10 File System calls .. 2":'7

01apter 3
Processes

3.1 Process Structure .. 3-2
3.2 Process H1erarchy .•.•...........•..................•.. 3-2
3.3 Process Creation ... 3-3
3.4 Process control•.•.................•.....................................•... 3-3
3.5 Process SCtteduling...... 3-3
3.6 Process Termination .. 3-4
3.7 A Process-Handling Example ... 3-5
3.8 Process System calls... 3-7

v

Q:JemtJng System Reference fo1anU8J Contents

~ter4
Memory t1ar~ISlt

4.1 Data segments•.•...•.•.•.•.•.......•.•..........•.........•....••...•.......•...•..•. 4~1
4.2 The Logical oata segment I\IUnlber •••••••••• •••••••••••••• ••••• •••••••••••• 4-1
4.3 Shared Data segments•.................••...•••...•••..•.••......•••...•.•...•. 4-2
4.4 Private Data segments•...•... 4-2
4.5 Code segments ... 4-2
4.6 swapping•.......... 0 ... 0 0 o •••••• 0............................... 4-2
4.7 f'1ernory Management System Calls ... 4-3

Chapter 5
Exceptions and Events

5.1 Exceptions...•..•...•.......•.•. 5-1
5.2 System-Defined Exceptions•..................................•..... 0 •••••••• 5-2
S.3 Exception Handlers .•.•.........•.•.......•..............................•....•.•.......•... 5-2
5.4 EVerlts•.. •.•..•... 5-5
5.5 Event Channels ...•...•...•.•. 5-5
5.6 The System Clock ...•.......•.. 5-10
S.7 Exception Management System calls ... 5-10
5.8 Evet'lt Management System caJ.Is ... 5-17
S.9 ClOCk System calls ...•.........•.•...•.•.. 5-27

Chapter 6
COOflgwraUoo

6.1 configuration Systenl calls .. 6-1

~
A ~ratlng system Interface LKli t ... A-I
8 System-Reserved Exception NarTleS ... 8-1
C System-Reserved Event Types ... C-l
o Error 1'1essages •• 0-1
E FS _II'F'O Fields ... E-l

Index

vi

Tables

2-1 ~CE_ClNTRG... FtrlCtloos R8(JIIred before USing a Devlce ••••••••••• 2-25
2-2 IJl:VlCE_cn..rrRo.. 0JtpJt F~tlOl'l81 GI'OUJ)$ •••••••••••••••••••••••••••••••••••• 2-26
2-3 IJcc()de ~cs •• 2-28
2-4 I:leVlce Infol11l8tloo .•••••••••.•••.•••.•••••••••••••••••.•.•••••••.••••••••••••••••••••••.•• 2-30
2-5 DISk f-fard Error COdeS ••• 2-32

Figures

2-1 DlSI< t-iard Error COdeS ••• 2-29
2-2 The RelatiOOShlp of a:M>ACT and lRlJ'CAlE •••••••••••••••.•••.•••••••••.• 2-35

3-1 Process AcJdress SfJaCEt La}lOlJt ... 3-2
3-2 Process Tree .•••••••••••••.•••••••.•••.•••••••••.•.•••.•••••••.••.•••••••••••••••••.•••••••••• 3-3

5-1 ~ at EXC6J)tlOI'l t-tandler IrMJeatlOl'l.... ••• •••• •••••• ••••••• •••••••• ••• 5-4

v11

Preface

The contents of ThIs IVIcnJal
This manual describes the Qleratlng System service calls that are available to
Pascal and assembler programs. It is written for experienced Pascal
programmers and dOes not explain elementary terms and programming
techniques. We assume that you have read the Lisa OWner's Guide and
WO/1<s/JOp User's Guide for tI7e Lisa and are familiar with your Usa system.
cnapter 1 Is a general Introauctlon to the qleraUng system.
Chapter 2 describes the File System and the available File System calls. This
includes a deScription of the interprocess communication facUlty, pIpes, and
the qleratlng System calls that allow processes to use pipes.
Chapter 3 describes the calls available to control processes, and also describes
tne structure Of processes.
Chapter 4 describes how processes can control their use of available memory.
Chapter 5 describes the use of events and exceptions that control process
synchronIzaUon. It also describes tne use of the system clock.
Chapter 6 describes the calls you can use to find out abOut the configuration
of the system.
Appendix A contains the source text of Syscall, the unit that contains the
type, procedUre, and function definitions discussed in this manual.
Appendix B contains a list of system-reserved exception names.
Appendix C contains a l1st of system-reserved event names.
Appendix 0 contains a list of error messages that can be prOdUCed by the
calls documented in this marual.
Appendix E contains a descriptlon Of the information you can Obtain from the
~rat1ng System aboUt fUes and devices.

Type and Syntax conventions

029-0.416-A

Bold-face type is used in this manual to distinguish programming keywords and
constructs from EngUsh text. For example, FLUSI-I is the name of a system
call. System call names are capitalized in this manual, although Pascal does
not distinguish between lower and upper case characters. Italics Indicate a
new term whose explanation follows.

lx

Future Releases
A few features of the Lisa q:,eratlng System wUI be Changed in future
releases:

• Pipes wUl not be supported.
• Timed events will not be Sl4JPOrted.
• conflguratlon System cans '11111 be ct\ange(1

If you want your software to be upward-compatible, please take these ChangeS
Into consideration. More Informatlon Is provided In tne appropriate sectlons
of the manual.

x

029-0053-A

Chapter 1
Introduction

1..1 llle JVIaIn FtrlCtl(l'lS .. 1-1

1.2 lJSIr1g U1e ()s FlIlCUons ... 1-1

13 ll"e FUe S}'Stern ... 1-2

1.4 Process I'1aI aagerTB It .. 1-3

1.S t1ernOry I'1aI aagerTB It ... 1-4

1.6 ExceIltlons arld Ever1ts •• 1-5

1.7 Interprocess OInrnlrllcatloo ••••.•••••••.•.•.•••.••.••••••••.•..•••••.••.••••••••••••••.•• 1-5

1.8 lJSIr1g Ule CIS Interface ••• 1-6

1.9

1.10 wrttlrlg PrUQ1dilS ll1at lJse U1e (JS .. 1~

Introduction

The cperating system (OS) provides an environment in which multiple processes
can coexist, conmunicate, and share data. It provides a file system for I/O
and information storage, handles exceptions (software interrupts), and performs
memory management

1.1 The MaIn Ft.rlCtions
ThIs Chapter describes the four main functional areas of the OS: the File
System, process management, memory management, and event and exception
handllng.
The File System provides input and output. The File System accesses devices,
volumes, and fUes. Each object, whether a printer, disk fUe, or any other type
of Object, Is referenced by a pathname. Every 110 operation is performed as
an unlnterpreted byte stream. Using the File System, all 110 is device
independent. The File System also provides device-specific control operations.
A process consists of an executing program and its associated data Several
processes can execute concurrently by multiplexing the processor between
them. These processes can be broken into segments which are automatically
swapped into memory as needed.
Memory management routines handle data segments. A data segment Is a file
that can be placed in memory and accessed directly.
Exceptions and events are process-communIcation constructs provIded by the
OS. M event Is a message sent from one process to another, or from a
process to Itself, that Is dellvered to the receIving process only When the
process aSks for that event M exception Is a special type of event that
forces 1tself on tile receIvIng process. There Is a set of system-defined
exceptions (errors), and programs can defIne their own. System errors such as
divIsIon by zero are examples of system-defined exceptions. You can use the
system calls provided to defIne any exceptions you want

12 LISlrYJ the os Ft.I1Ct1oos
Both bUilt-in language features and expllcit OS system calls can access OS
routines to perform desired functions. for example, the Pascal writeln
procedUre is a built-tn feature of the language. The code to execute writeln
is suppUed in IOSPASLIB, the Pascal run-time support routines library. This
Code, whiCh is added to the program when the program is linked, calls OS
file System routines to perform the desired output.

You can also call OS routines expllcltly. This Is usually dOne when the
language does not provide the operation you want OS routines allow Pascal
programs, for example, to create new processes, whIch could not otherwise be
done, since Pascal does not have any bUnt-In prOCeSS-handllng functions.

1-1

qJeralfng System ReFerence /t1CnI81 Intl'lJtUJtlon

All calls to the 00 are synchronous, Which means they dO not return until the
operation is complete. Each call returns an error code to indicate if anything
went wrong dUrlng the operation. My non-zero value indicates an error or
warning. Negative error codes Indicate warnings. For a Ust of error codes
and their meaning, see ~x D.

1.3 11le FHe system
The File System performs all I/O as uninterpreted byte streams. These byte
streams can go to fUes on disk or to other devices such as a printer or an
alternative console. In all cases, the device or file has a File System name.
Except for deVice-control functions, the FHe System treats devices and fUes
In the same way.
TIle FHe System allOWS Shartng of aU types Of Objects.
me FUe system provideS for naming Objects (devices, files, etc.~ A name In
the FHe System Is called a patmalT1l! A complete pat.hname consists of a
directory rane and a fUe name. me file name Is meaningful only for storage
devices {deVices that store byte streams for later use, such as dlS1<S~

Each process haS a working directory aSSOCiated with it. This allows you to
reference objects with an incomplete pathname. To access an object in the
working directory, you specify its fUe name. To access an objeCt in a
different directory, you specify its complete pathname.
Before a device can be accessed, it must be mounted. Devices can be
mounted using the Preferences tool or by using the Ml..NT call. see Chapter
2 for an explanation of this call and other File System calls. If the device is
a storage device, the mount operation makes a volume name available. A
volume name is a logical name for a disk, and is saved on the disk itself. The
mount operation logically connects the volume to the system, so that the files
on the volt.me may be accessed. The volume name can replace a device name
in a pathname uSed to access an object on· the disK. The volume name allows
you to access a fUe with the same·pat.hname no matter where the drive is
actually connected.
A device can be accessed If it Is specified in the configuration Ust created by
the Preferences tool, Is physically connected to the Usa, and Is mounted.
There are some operations that can be performed on unmounted devices. Two
examples are lEVICE_CXNTR£L calls and scavenging. Logically mounting a
volume on a device mal<es file access to the volume possible. For storage
devices, a volume Is an actual magnetic medltJll that can contain recorded
flles. For non-storage devices, volumes and flles are concepts used to
maintain a uniform Interface. FlIes on non-storage devices such as printers
do not store data bUt act as ports for performing I/O to the devices.

1-2

qJerating System Reference H8ntJaJ

me basic operatlons provided by the FHe system are as follOWS:
mount and lIlf1'lOt.I'lt - make a volt.rne accessible/Inaccessible
open and close - make an Object accessible/inaccessible
read and write - transfer information to and from an object
deVice control functions - control device-specific functions

Some operations apply only to storage deVIces:
allocate and deallocate - specify size of an Object

IntroaJctlon

manipulate catalog - control naming of objects and creation and
destruction of objects

manipulate attribUtes - lOOk at or change the characteristics of
the object

In addition to the data in an Object, the object itself has certain
characteristics called attdblltes, such as the length at1(j creation ctate of a
f11e. Calls are available to access the attributes of any File System object. In
addition to its system-defined attributes, an Object on a storage device can
have a J8lJeJ. The label Is avallable for programs to store information that
they can Interpret
Non-storage devices suCh as printers are accessed with a limited set of
operations. They must be mounted and opened before they can be accessed.
Sequential read and/or write operations are available as appropriate for the
device. Device-control flllCtions are avallable to perform any device­
specific functions needed. The file-name portion of the complete pathname
for a non-storage device Is not used by the File System, although you do have
to provide one When you open the device.
For storage devices, the same sequential read and write operations are valid
as for non-storage devices. Storage deVices also must be mounted, and
part-lcular fUes opened, before the fUes can be used. They have appropriate
device-control functions avallable.
When wrltlng to a disk flle, space for the fUe is allocated as needed. Space
for a fUe does not need to be contiguous, and in some cases this automatic
allocation can result In a fragmented fUe, which may slow fUe access. To
insure rapid access, you can pre-allocate space for the fUe. pre-allocating
the fUe also ensures that the process wUl not run out of space on the disk.
Four types of objects can be stored on storage devices. These are fUes, pipes,
ctata segments, and event Channels. FUes, already discussed, are simply arrays
of stored data Pipes are objects that provide Interprocess communication.
Data segments are special cases of fUes that are loaded Into memory along
with program code. Event channels are pipes with a speCialized structure
Imposed by the system.

1.4 Process Mar aagemellt
A process is an executing program and the data associated with it. several
processes can exist at one time, and they appear to run simultaneously
because the CPU is multiplexed among them. The SCheduler deCides What

1-3

qJerating System Reference I'1anU8l IntJvtU:t1on

process ShOUld use the CPU at any one time. It uses a generally non­
preemptive SChedUllng algorithm. This means that a process will not lose the
CPU unless It blOOl<s. me blOOl<ed state Is explalned later In tnls section.
A process can lose the CPU When one Of the following happens:

• TtIe process oalls an q>erating system prOCedUre or function.
• The process references one of Its COde segments that is not currenUy In

memory.
If neither of these occurl the process will not lose the CPU.

Every process Is started by a10ther process. The newly started process Is
called the son proce~ The process that started it is called its fstller process
The resulting structure is a tree of processes. See Figure 3-2 for an
Ulustration of a process tree.
When any process terminatesl all its son processes and their descendants are
also terminated.
When the OS is bOOtedl It starts a shell process The shell process starts any
other processes desired by the user.
Every newly created process haS the same system-Standard attr1bUtes and
capabllIties. TheSe can be changed by usIng system calls.
lVly processes can Suspencll activate, or l<ill any ottler process for Which the
glObal 10 Is Known, as long as the other process dOes not protect Itself.
The memory accesses of an executing process are restricted to Its own ,
memory address space. Processes can communicate with other processes by
usIng shared flies, pipes, event ChannelS, or shared data segments.
A process-can be In one Of ttJree states: JeacJy, runnIng, or blocked. A ready
p.m7eSSls waIting for the SChedUler to select It to run. A nrnIng p.rocessls
currenUy using the CPU to execute its code. A blOCked process is waiting for
some event, SUCh as the completion of an 110 operation. It will not be
sChet1Uled untll the event occurs, at Which point it becomes ready. A
tennlnated pJ'lJCBSS has fInished executing.
Each process haS a priority from 1 to 255. The higher the number, the hl~r
tne prlor1ty Of the process. Pr10rIties 226 to 255 are reserved for system
processes. The SChedUler always runs the ready process with the highest
prIority. A process can change Its own priorIty .. or the priorIty of any other
process, Whlle It Is executing.

15 Memory Mal tagellB It
Memory managment is concerned with what is In physical memory at any one
time. Each process can use up to 128 memory segments. Each segment can
contain up to 128 Kbytes. Memory segments are of two types: code segments
and data segments. The total amru1t of memory used by any one process can
exceed the avaUable RAM of the Usa The ~rat1ng System will swap code
segments in and out of memory as they are needed. To aid the q,eraUng

1-4

cperatlng System Reference MantIal IntrotUJtlon

System In swapp1ng data segments .. calls are provided to give progrcrns the
abUlty to define Wh1Ch data segnents must be 1n memory while a particular
part of the program Is executing.
You have control of hOw your program Is dIvided up. For executable cOde
segments, you use the segmentation commands of the Pascal compiler to break
the program in pieces.
In addition to residing in memory, data segments can be stored permanently
on d1sK. They can be accessed with calls slmHar to FHe System calls. This
allows you to use a data segment as a direct-access flle--a flle that is
accessed as part of your memory space.
calls are· provided for making, kUling, opening, and closing data segments.
You can also Change the size of a data segment and set its access mode to
read-only or read-write. In addition, you can make a permanent disk copy of
the contents of a data segment at any time. Other calls give you ab1l1ty to
force the contents of the data segment to be swapped Into main memory so
they can be accessed by your process.

1.6 ExcepUOOs CIld Events
M exception Is an unexpected condition In the execution of a process (an
Interrupt~ M event Is a message from another process.
AA exception can be generated either by the system or by an executing
program. System exceptions are generated by various sorts of errors such as
divide by zero, Illegal Instruction, and illegal address. system exception
handlers are supplied that terminate the process. You can write your own
exception handlers for any of these exceptions If you want to try to recover
from the error.
User exceptions can be declared and exception handlers can be wrl tten to
process them. Your program can then signal th1s new exception.
Events are messages sent from one process to another. They are sent through
event channels.
A process that expects a message from an event Channel executes a call to
walt for an event on that Channel. This w111 gIve It the next message, If one
exists, or blocK the process until a message arrives.
If a process wants to know When an event arrives, bUt does not want to walt
for it, it can use an event-call Channel. This is set up by associating a user
exception with the event channel when it is opened. The ~rating System
wUI then inVOke the corresponding user exception handler wherever a message
arrives in the event channel.

L7 Interprocess COImUllcaUoo
There are four methOds for lnterprocess communication: shared fUes, pipes,
event Channels, and shared data segments.

1-5

(JJeratJng System Reference Manual IntrotUJtJon

Shared flIes are used for high volume transfers of Information. It Is necessary
to ooordinate the processes somenow to prevent them from overwriting each
other's Information.
Pipes are used for communication between processes with an uninterpreted
byte stream. (Note that pipes wlll not be supported In future releases of the
~rat1ng system.) The pipe mechanism provides for the needed
synchronization; a process will block if It is trying to read from an empty
pipe or write to a full one. A read from a pipe consumes the information, so
It is no longer available. O1ly one process can read from a given pipe.
Event channels are slmUar to pIpes, except that event channels transmit Short,
structured messages Instead of unlnterpreted bytes.
A Shared data segment can be used to transmIt a large amount of data
rapidly. HaVing a Shared data segment means that this data segment Is In the
memory address space of all the processes that want to use It All the
processes can then direcUy read and write Information In the data segment.
It Is necessary to prOVide some sort Of synchronization to keep one process
from overwrIting another's information.

1.8 Usq the OS Interface
rhe Interface to all the system callS Is provided In the Syscallll"llt, found In
Appendix A This lI"Ilt can be used to prOVide access to the calls. see the
WOIkS/JqJ user's GuIde for the LIsa for more Information on usIng SyscaJl.

1.9 Rtmlng ProgIall.s lhJer the m
Programs can be written end run by using the WorkshOp, WhiCh provides
program development tools SUCh as edIting and deWgging facUlties.

1.10 writing Programs That use the (I)
You can wrIte a program that calls OS routines to perform needed functions.
This program uses the 'SysC811 unit and then calls the routines needed. -

1-6

~-0417-A

Chapter 2
The File System

2.1 File I'Blles •••.•• 2-1

2.2 1'he WOIkirlQ Directory •.•••.••••...•••••••••••••.••••.••••••••.••••..•••.•.••.••••••••••••• 2-2

2.3 IJeV1ces ••• 2-3

2.4 storage IJev1ces ••• 2-3

2.5 1lle VOIllTle catalog ... 2-4

2.6 LatJels ••••••••••.•••.•.••••••.•••.••••.••••••••••.••••••••••••••••••••.••••.••••.•••.••••••••.••••• 2-4

2.7 L~caJ CIlC1 f'hySlcaJ Erld Of File •••••••••••••••••••••••••••••••.••••••••••••••••••••••• 2-4

2.8 FUe ~ •........•..•............•......•.•................................•................• 2-5

2.9 Pipes ••••••••••.••.•••••.•••••••••••••••••••••••••••••••••••.•••.••••••••••.••••.•••••••.•..••••••• 2-6

2.10 File SysterTt calls ••••••••••••••••••••.•••••••••••••••••••••.••••••••••..•.•.•••••.•.••..•••••• 2-7

2.10.1 M,AJ-<E FILE and MN<E PIPE•... 2-8
2.10.2 KILL ii3.:ECT :-•...••...•••.••.•..•.••••••....•.••.•.•.••....•••.•••• 2-10
2.10.3 I.JI\If'<ILL FILE ••••••••••••.•••••••••••.••••••••••••••••••••••.••••.•••..•••••••.••• 2-11
2.10.4 REN.AJVE" ENTRY•...............••......................•.•....•.......... 2-12
2.10.5 L£Xl'<LP .::•.. 2-13
2.10.6 INFO••..•••••..•..........•........•..•••..................•....•.•.....•....•.... 2-16
2.10.7 SET FILE II\IF'O .. 2-17
2.10.8 (J)EN •..•. : •••.••••••.•••••••••...•.•••••.••...••..•••...•••..•..•.•••.......•....•.. 2-18
2.10.9 CLOSE CBJECT .••••••••..•..•...•...•.•.•..•..•...•.........•.•.........•.•..... 2-19
2.10.10 READ DATA and WRITE DATA .. 2-20
2.10.11 READ-LABEL and WRITE LABEL .. 2-23
2.10.12 DEVICE ~TRCl..••...• : •..•....•.............•....•....•.•.......••...•.. 2-24

2.10.12.1 setting Device-Control Information 2-24
2.10.12.2 (])taining Devioe-control Information •.•.•...•••.••...... 2-28

2.10.13 .AJ...LOCATE ..••..•••.••••••..••....••.•••••••.•..••.•..••....•....•.•.•••••.••.•.••• 2-33
2.10.14 C()vpACT ••••.•.•••.•••..•••..•..•..•.•..••......•...............•.•..•....••...•.. 2-34
2.10.15 TRlJf\ICATE ..•....•.•.•..•.......••..•..........••...•...•.....•.•.•............••. 2-35
2.10.16 FLUSH ... 2-36
2.10.17 SET 5.AF'ETY ...••..••...•.....••...•...•................••.•....•.•....••..•.....• 2-37
2.10.18 SET-WeRKING DIR and GET WCRKING DIR 2-38
2.10.19 REsET CAT.AJ...OO and GET NEXT ENTRy 2-39
2.10.20 fv1Cl...Nf and ~T ••••• :: •••.•••. :: 2-40

The File System

The File System provIdes device-independent lID, storage with access
protection, and uniform file-naming conventions.

DevIce Independence means that all 1/0 Is performed In the same way,
whether the ultimate destination or source Is disk storage, another program, a
prInter, or anything else. In all cases, I/O Is performed to or from ffJes,
although those files can also be devices, data segments, or programs.

Every file is an uninterpreted stream of eight-bit bytes.

A fUe that is stored on a block-structured device .. such as a disk .. is listed in
a catalog(also called a directo~ and has a name. For each such file the
catalog contaIns an entry describing the file's attributes, inCludIng the length
of the fUe .. its position on the disk, and the last backup copy date. Arbitrary
appllcatlon-deflned information can be stored in an area called the file labeL
Each fUe has two associated measures of length, the Logical End of File
{LEa=} and the Pllysical End of File (PEa=) The LECF is a poInter tu the last
byte that has meaningful data. The PECF is a count of the number of blocks
allocated to the file. The pointer to the next byte to be read or written Is
called the file marker.

Since 110 is device independent, application programs do not have to take
account of the physical characteristics of a device. However, on block­
structured devices, programs can make 110 requests in whole-block increments
in order to improve program performance.

All input and output is synchronous in that the I/O requested is performed
before the call returns. The actual I/O .. however., Is asynChronous .. In that
processes may block when performing liD. See Section 35, Process Scheduling,
for more information on blocking.

To reduce the impact of an error, the File System maintains distributed,
redundant information about the files on storage devices. Duplicate copies of
critical lnformation are stored In different forms and in different places on
the media All the files are able to identify and describe themselves, and
there are usually several ways to recover lost information. The Scavenger
utility is able to reconstruct damaged catalogs from the information stored
wi th each fl1e.

2.1 File NCInes
All the flIes known to the ~eratlng System at a particular time are organIzed
into catalogs. Each disk volume has a catalog that lists all the files on the
dIsK.

My object catalogued in the File System can be named by specifying the
volume on which the file resides and the file name. The names are separated

2-1

qJe.rat/ng System Refemnce M8ntJaJ TIle File System

by the Character "_H. Because the top catalog In the system has no name" all
complete pathnames begin wIth fI_".

for example,
-LISA-FORMAT. TEXT

refers to a file named FORMAT. TEXT on a volume nanecl LISA. The fUe
ncme can contain up to 32 characters. If a longer name is specified, the
name is truncated to 32 Characters. Accesses to sequential devices use an
arbitrary Ck.rnmy fUename that is ignored but must be present in the
pathname. for example, the serial port pathname

-RS232B
is inSUfficient, bUt

-RS232B-XVZ
is accepted" even thOUgh the - XYZ portion is ignored.
are predefined:

Certain device names

RS232A
RS232B
PARAPORT
SLOTXCHANy
MAINCONSOLE
AI.. TCONSOLE
lPPER
LOWER
BITBKT

serlal Port A
serial Port B
Parallel Port
serial ports: x is 1, 2, or 3 and Y is 1 or 2
writeIn and readln deVice
w-iteln and readln device
Upper DiSkette drive (Drive 1)
Lower DiSkette drive (Drive 2)
Bit bUCket: data Is tnrown away When directeCl nere

see Chapter 6 for more Information on deVice names.
Upper a"Id lower case are not slgllflcant In pat.hrlCl'Oes: 'TEST\ICL' Is the same
Object as 'TestVol'. My ASCII cnaracter Is legal In a pathname, InclucJlng
non-printing cnaracters and blank spaces. However, use of ASCII 13,
RE~N, In a pathname Is strongly discouraged.

2.2 llle ~ Directory
It is sometimes inconvenient to specify a complete pat.tlname" especially When
working with a group of fUes in the same volt.me. To alleviate this problem,
the qJerating System maintains the name of a working directory for each
process. When a pathname Is specified without a leading "-", the name refers
to an object In the WOrking directory. for example, If the working directory
is -LISA the name FCRMAT.TEXT refers to the same fUe as
-LISA-fCRMAT.TEXT. The default working directory name Is the name of the
bOot volt.rne directory.
You can find out what the working directory Is with GET_wmKII'G_DIR.
You can cnange to a new workIng directory with SET_wtRKII'G_DIR.

2-2

qJeratlng s)'Sten1 Refell!l7Ce /Vf8nu81 The FIle s)'Stem

2.3 DeVIces
Devioe names follow the same conventions as file names. AttribUtes like baUd
rate are controlled by using the I:EVlCE_C(J\(fR(L call with the appropr1ate
pathname.
Each deVice has a permanently assigned priority. From highest to lowest, the
priorities are:

Power onloff bUtton
serial port A (RS232A)
serial port B (RS232B, the leftnDst port)
1/0 slot 1
1/0 slot 2
1/0 slot 3
Keyboard, mouse, battery-po~ered olOCk
10 ms system timer
CRT vertical retrace interrupt
Parallel port
DiSkette 1 (UPPER)
Diskette 2 (LOWER)
Video screen

The deVice driver associated with a device contains information aboUt the
device's physical Ctlaracteristics such as sector size and interleave factors for
diSks.

2.4 Storage DeVIces
O'l storage devices such as disk drives, the File System reads or writes fHe
data In terms of pages. A page Is the same size as a blOCk. My access to
data In a fHe Ultimately translates into one or more page accesses. When a
program requests an amount of data that dOes not fit evenly Into some
number Of pages, the File system reads the next highest number of WhOle
pages. Slmllarly .. data Is actually written to a flle only In whOle page
increments.
A file dOes not need to occupy contiguous pages. The File system Keeps
track of the locations of all the pages that make up a fIle.
Each page on a storage device Is self-identifying; the page descriptor Is stored
with the page contents to redUCe the destructive Impact of an 110 error.
The eight components of the page descriptor are:

Version nuntler
Volume identifier
File identifier
AIoount of data on the page
Page name
Page position in the file
Forward link
Backward link

2-3

t:perat/ng System Reference Mant./aJ Tfle FIle system

Each volume has a /VIecI/tII7} Descdptor Data File ~WhlCh describes the
various attribUtes of the medium SUCh as Its size, page length, blOCk layout,
and the sIze of the bOOt area. The MDDF is created When the volt.rne ·Is
Initialized.
The FUe system also maintains a record of Which pages on the medium are
currently allocated, and a catalog of all the fUes on the volume. Each fUe
contains a set of fUe hints" Which describe and point to the actual file data.

2.5 TIle VOlune catalog
()) a storage device, the volume catalog provides access to tne fUes. The
catalog Is Itself a fUe that maps user names Into the internal fUe Identifiers
used by the cperating System. Each catalog entry contains a variety of
Information aboUt each fUe InclUding:

Name
Type
Internal file number and address
Size
Date and time created, last modified, and last accessed
File identifier
safety switch

The safety switch is used to avoid accidental deletions. While tne safety
switch Is m the fUe cannot be deleted. The other fields are descrIbed under
the UXKLP File System call.
The catalog can be located anywhere on the medium.

2.6 Lcbels
M application can store Its own information aboUt a fHe in an area called
the file /atJei The label allows an appl1catlon to keep the fUe data separate
from Information maintaIned abOUt the fUe. Labels can be used for any
Object In the FHe System. The maximum label size is 128 bytes. 1/0 to labels
is handled separately from fHe data 110.

2.7 Logical cnj Physical fro Of FHe
A fHe contains some number of bytes of data recorded In some number of
physiCal pages. AdClIUonal pages which do not contain any file data can be
allocated to the fUe. There are, therefore, two measures of the end of the
fUe. The Logical End of File (LECF) is a pointer to the last stored byte that
has meaning to the application. The Physical End of FHe (PECF) Is a count of
the number of pages allocated to the fUe.
In additlon .. each open fUe haS a poInter called the file ~erWhICh points
to the next byte In the file to be read or wr! tten. When the file is opened,
the flIe marker points to the fIrst byte (byte number O~ The flIe marker can
be posltloned automatlCally or expliciUy using the read and write calls. For
example, when a program writes to a fHe opened wIth AWeOO access, the flIe
marker is automatically poSitioned to the end of the file before new data are
wrItten. The fUe marker cannot be poSltloned past LEOF except by a write

2-4

qJeratJng system ReFerence Manual TlJe Fjle system

operation tnat appends data to a fUe; in this case the fHe marker is
positioned one byte past LECF.
When a fUe Is created, an entry for it is made in the catalog specified in its
pathname, bUt no space is allocated for the fHe itself. When the file is
opened by a process, space can be allocated explicitly by the process, or
automatically by the qJerating System. If a write operation causes the file
marker to be pOSitioned past the LECF marker, LECF (and PECF if necessary)
are automatically extended. The new space Is contiguous if possible.

2.8 File,Access
The Flle System provIdes a devIce-Independent bytestream Interface. As far
as an appl1catlon program Is concerned, a spec 1 fled number of bytes Is
transferred either relative to the fIle marker or at a speCified byte location
in the flle. The physical attributes of the device or file are not important to
the appl1catlon, except that devIces that do not support positionIng can
perform only sequential operations. Programs can sometimes improve
performance, however, by takIng advantage of a devIce's physical
Characteristics.
Programs can request any amount of data from a fUe. The actual I/O,
hOwever, Is performed in WhOle-page increments when devices are blocK
structured. Therefore, programs can optimize I/O to such devices by setting
the fUe marKer on a page boundary and making I/O requests in WhOle-page
increments.
A fUe can be open for access by more than one process concurrently. All
requests to write to the fUe are completed before any other access to the file
Is permlttecJ. When one process writes to a fUe, the effect of the wrIte
operation is immediately available to all other processes reading the f11e. The
other processes may, however, have accessed the flIe in an earller state.
Data already obtained by a program are not changed. The programmer must
ensure that processes maintain a consIstent vIew of a shared f11e.
When you open a file, you specify the Kind of access allowed on the f11e.
When the file Is opened, the q>erating System allocates a file marker for the
calling process and a run-time identification number called the refntltn The
process must use the refnum in sUbsequent calls to refer to the f11e. Each
operatlon using the refnum affects only the fUe marker associated with that
refnum.
Processes can share the same fUe marker. In gJOlJal access f!}()(je, each
process uses the same refnum for the fUe. When a process opens a fUe in
glObal access made, tne refnum 1t gets bacK can be passed to any other
process, and used by any process. Note that any number of processes can
open a fUe with GIObal_Retrun, bUt eaCh time the (FEN call Is used a
different refnum is prOdUCed. Each of thOse refnums can be passed to other
processes, and each process using a particular refum shares the same fUe
marker with other processes with the same refum. Processes using different

2-5

t:peratfng System Reference M8IX/8l TIJe File System

refnums, hOwever, always nave Cllfferent fUe markers, wnether or not trIOse
refnums were obtalned with Global_RefrUn

A fUe can also be opened in private mode, which specifies that no other (FEN
calls are to be allowed for that fUe. A fUe can be opened with
GlttJal_Retrun and private, which opens the fUe for global access, but allows
no other process to open that file. By using this call, processes can control
Which other processes have access to a fUe. The openIng process passes the
global refrun to any other process tnat is to haVe access, and the system
prevents other processes from opening the f11e.
Processes using glObal access may not be able to make any assumptions about
the location of the fUe marker from one aooess to the next.

2.9 Pipes
Because the ~eratlng System supports multiple processes, a meChanism Is
prOvided for interprocess COfTlIlUlication. This mechanism Is called a pipe
Pipes are slmUar to the other Objects In the FHe System -- they are named
according to the same rules, and they oan have labels.

f\l)1E

Pipes will not be supported in future releases of the ~erating System.
Do not use the pipe rnectlCIlism If you want your software to be
upward-compatible.

As with a f11e, a pipe is a byte stream. With a pipe, however, information Is
queUed In a first-ln-first-out manner. AlSo, a pipe can have only one reader
at a time, and once data is read from a pipe it Is removed from the pIpe.
A pipe can be accessed only In sequential mOde. Although only one process
can read data from a pipe, any runber of processes can write data into it.
Because the Clata read from the pipe Is consumed, the file marker Is always at
zero. If the pipe is empty and no processes have it open for wriUng, ECF (End
Of FUe) Is returned to the reading process. If any process has the pipe open
for wri Ung, the reading process is suspended until enough data to satisfy the
call arrIves In the pIpe, or untll all writers close the pipe.
When a pipe is created, its size is 0 bytes. Ull1ke with ordinary files, the
initializing program must allocate space to the pipe before trying to write
data into it To avoid deadlocks between the reading process and the writers,
the ~ratlng System dOes not allow a process to read or write an amount of
data greater than half the physical size of the pipe. For this reason, you
shOUld allocate to the pipe twice as much space as the largest amount of data
In any planned read or write operation.
A pipe Is actually a oiroular bUffer with a read pointer and a write pointer.
All writers access the pipe through the same write pointer. Whenever either
pointer reaches the end of the pipe, it wraps back around to the first byte. If
the read pointer catChes .up with the write pointer, the reading process blocks

2-6

t:peratlng System Reference Mant/81 The File system

untIl data are wrItten or untll all the wrIters close the pIpe. SImilarly" If the
write pointer catches up with the read pointer" a writing process blocks until
the pIpe reader frees up some space or until the reader closes the pIpe.
Because pipes have this structure, there are restrictions on some operations.
These restrIctions are dIscussed wIth the relevant File System calls.
Processes can never make read or wrIte requests bIgger than half the size of
the pIpe because the qJerating system always fully satisfies each read or
write request before returning to the program. In other words, if a process
asks for 100 bytes of data from a pipe, the q:,erating System waits until there
are 100 bytes of data in the pipe and then completes the call. Similarly, if a
process tries to write 100 bytes of data into a pipe, the ~rat1ng System
walts until Ulere is room for the full 100 bytes before wrIting anything into
the pipe. If processes were allowed to make write or read requests for
greater than half of a partiCUlar pipe, it would be poSSible for a reader and a
writer to deadlock, with neither having room in the pipe to satisfy its
requests.

2.10 File System cans
ThIs section descrIbes all the Qlerating system calls that pertaIn to the FHe
System. A summary of all the q>erating System calls can be found in
Appendix A The followIng specIal types are used In the FHe System calls:

Pattrsne = STRIN;[t1aX_Pattnlne]; (* t1aX_Pattnlne = 255 *)
E_Name = SlRIN2[tIaX_Erare]; (* Hax_EName = 32 *)
Accesses = (Dreoo, o.rite, AWend, Private, GlObal_RefrUTl);
t1Set = SET (F Accesses;
IottxJe = (Absolute, Relative, sequential);

The FS_Info record and its associated types are described under the UIKLP
call. The Dctype record is described under the [EVlCE_ClNTRlL call.

2-7

tjJemtlng Systenl Reference I'1anlIal

2.10.1 MAKE_FILE cnt MAKEYIPE Flle System calls

MAKE_FILE (Var Ecode:Integer;
Var Path :PattTlcllE;

Label_Size: Integer)

HAKE_PIPE (Var Ecode:lnteger;
Var Path :Patt1'BIE;

Label_Size: Integer)

EcOde: Error indication
Path: Nane of new Db ject

TlJe File Systenl

Label_Size: Number Of bytes for the object's label

MAKE_FILE and MAKE_PIPE create the specified type of Object with the
given name. If the pathname dOes not specify a directory name (more
specifically, if the pathname does not begin with a dash)., the working
directory Is used. Label_Size specifies the initial size in bytes of the label.
It must be less than or equal to 128 bytes. The label can grow to contain up
to 128 bytes no matter what its initial size. My error indication is returned
in Ecode.

Pipes will not be supported in future releases of the ClJerating System.
Do not use the pipe mechanism if you want your software to be
upward-compatible.

The MAKE_FILE example on the next page checks to see Whether the
speCified file exists before opening it

2-8

t:peratlng system Reference fvfantIaJ

lDST F1leExlsts = 890;
YM FileReftun, Erro1'Code:INTEGER;
F11~ :Pa'tt't&OO;
Happy: lULENf;
Response:~

EEGIN
~y: =FAlSE;
~ILE tilT HaWy 00
E£GIN

The File System

REPEAT (* get a file flCIre *)
~ITE("F1Ie~: ");
READLN(FileName);

UNTIL LENGTH(F1IeName»0;
twCE_FILE(ErrorGode,FileNanE,O); (*nO label for this file*)
IF (Errorcode<>O) THEN (* does file already exist? *)
IF (Errol'Code=FileExists) nEN (* yes *)
E£GIN
~I1E(FileNcIE, I already exists. overwrite? ");
REAIl..N(Respmse);
HaWy: = (Response IN [" Y ", • V· »; (*gO ahead ald overwri te*)

EM)
ElSE MUTElN(· Error ., ErrorCode,· While creating file. •)
ElSE Happy: = lRlE;

EN);
(FfN(ErrorCode, F11eNcJE, FlleReftUt, (0,",1 te]);

00;

2-9

qJerating System Reference MantI8l

2.102 KlLLJRECT File System Call

KIll_£lU:CT (Var Ecooe:lnteger;
Var Path: Patt'l'lclE)

Ecode: Error indicator
Path: Nane of Object to be deleted

TIle File system

KILLJB:ECT deletes the Object given In Path from the FHe System. CIljects
with the safety switch on cannot be deleted. If a file or pIpe Is open at the
time of the KlLL_m.:ECT call, its actual deletion Is postponed until It has
been closed by all processes that have it open. During this periOd no new
processes are allowed to open it. The object to be deleted need not be open
at the time of the KILL tRECT call. A KILL tRECT call can be reversed
by IN'<ILL_FILE, as long as the object is a file and Is still open.

The fOllowing program fragment deletes flIes until RETURN Is pressed:

C(H)T FileNotFOlI'lO=894;
VM FileNaE:Patl'tOE;

ErrorCOde: INlEGER;
EEGIN

REPEAT
WUTE('File to delete: ');
READlN(FileName);
IF (FileName<>") THEN
BEGIN
KIll £lU:CT(E1TOI'COde, FileNclle);
IF (Errorcode<>O) Tl£N
IF (E1TOI'COde=fileNotFOU'ld) ll£N
IRITELN{FlleNale,' not fOlrld. ')

ELSE IRITELN(' Error " ErrorCode,' .tlile deleting file.')
ElSE IRITELN{FlleName,' deleted.');

EN>
UNTIL (FileName=");

EN>;

2-10

qJeratlng System Reference Manual

2.10.3 ~L_FILE File system call

Ltt<Ill_FIlE (var Ecode:Integer;
ReftOn: Integer;

Var Ne.-aIE:e_f1aIIe)

Ecode: Error indicator
RefNUm: Refrun Of the Killed and open file
Newname: New name for the file being restored

The File system

IN'<ILL_FILE reverses the effect of KlLL_m:ECT as long as the k1l1ec1
Object Is a fUe that Is stl11 open. A new catalog entry is created for the file
with the name given in Newrane. Newncme Is not a full pathname: the
resurrected file remains In the same directory.

2-11

QJeratlng System Refe.rence Mant.l81

2.10.4 RENAI'-'E_ENTRY Flle System Call

RENAtE _ ENlRV (Var Ecooe : Integer;
Var Path:Patt11aE;
Var NeWlClE :E_NalB)

Ecode: Error indicator
Path: Object's old name
Newnaroo: Object's new name

The File System

RfNAIvE_ENlRY changes the name of an Object in the FUe System.
Newrane cannot be a full pathname. The name of the object is changed, out
the object remains in the same directory. The following program fragment
changes the file name of F~MATTER.UST to NEWF~MAT.TEXT.

VM Ol~:Pattt8le;
Newaoo:E NaE;
ErrolCode:INTE~

BEGIN
OldName:="-LlSA-FORMATTER.lISro

;

Ne~:='N:"ORMAT. TEXT';
RENAtE_ENlRV(Errorcooe, Ol€l&Re, NeINaJe);

00;

The fUe's full pathname after renaming is
-LISA-NEWF~MAT. TEXT

Volume names can be renamed by specifying only the volume name in Path.
Here is a sample program fragment which changes a volume name. Note that
the leading dash (-), given In OltNClne, Is not given in NewNane.

VM OI~:PattlNaRe;
NeINaE:E NaiB;
ErroJ'Code:INTEGER

f£GIN
OldName: = '-thomas';
NeWNaE: = ° stearns ° ;
REtW£_ENlRV(Errorcode, OldName, Ne~);

00;

2-12

q;eratJng System Reference MantIal

2.10.5 La:KLP File System call

UlJap (Var Ecooe:lnteger;
Var Path:Patmalne;
Var AttrlbUtes:fs_InfO)

EcOde: Error indicator
Path: Object to lookup
Attributes: Information returned abOut path

me FIle system

UIKLP returns information abOUt an Object in the flIe system. For deVices
and mounted volumes, call UXJ<LP with a pathname that names the device or
volume withOUt a fUe name component:

DeVNCIIe:=I-lFPER"; (* DiSkette drive 1 *)
lOO<lP(ErrorGode,DevNaIE,InfoRec);

If the device Is currently mounted and is block structured, all of the record
fields of Attributes contain meaningfUl values; otherwise, some values are
undefined.
The Fs InfO record Is defined as follows. rne meanings Of the Information
fields are given in Appendix E.

fS_Info = REC(R)
name: e name;
deVrUn: INTEGER;

CASE OType:1nfo_type (F
deVice t, voIlIIE t:

(iOOta reI: fNTEGER
deVt: deVtype;
Slot no: INTEGER;
fs sIze: L£N3INT;
voi size: llN2INT;
blOOkstrooturedl

IOOlIlted: IDl..EAN;
~: L(HllNT;
prlvatedeV1

renutel

1000eddeV: IDl..EAN;
IOOU1t ...JJeR:11nJ,
t.IlIID.I'It...JJeR:11ng: EDLEAN;
volranel

passWrd: e_name;
fsversi€n
VOlidl

volrun: INlEGER;

2-13

tperating System Reference Mantlsl The File System

EN>;

blOCk sIze,
dataslze,
clusterslze,
fileGOll1t: INTEGER; (*tUItler of files on VOI*)
freecot.llt: UNiINT; (*fUtler Of free blOCks *)
OTVe... (* oate VOlUE created *)
OTVB, (* Date Volure last Backed l.4l *)
OTVS:LCN2INT; (* oate VOlUE last scavenged *)
Machine io,
ovel'llD.ilt _ stanp,
master_cqJy_id: LlNiINT;
privileged,
wri teJ)rotected: EDl..EAN;
master,
cqJY ...
scavenge_flag: EDl..EAN);

ooJect_t: (
size: LCN2INT; (*aCtual no of bytes written *)
psize: LlNiINT; (~ysical size in bytes *)
lpsize: INTEGER; (*Logical page size in bytes *)
ftype: filetype;
etype: entrytype;
orc, (* Date Created *)
OTA, (* Date last Accessed *)
OTNL (* Date last Modified *)
om: LlHJINT; (* Date last Backed t4) *)
refrun: INTEGER;
fmark: LlHJINT; (* file marker *)
acnllde: mset; (* access IOOde *)
nreaders... (* tOItler of readers *)
nwri ters, (* tt.IItler Of writers *)
rusers: INTEGER; (* tU1tler of users *)
fuId: uIO; (* unIque IdentifIer *)
eof... (* ElF et1COlI1tered? *)
safety_~ (* safety switch settIng *)
kswi tch: EDl..EAN; (* has file been killed? *)
prIvate, (* File opened for prIvate access? *)
lOCked, (* Is file lOCked? *)
protected:BOO...EAN);(* FIle copy protected? *)

2-14

cperatJng System Reference Manual The File system

Ul(J = INTEGER;
InfO_Type = (deVice_t, VOllllle_t, object_t);
Devtype = «(J1skdeV, pascaltxL seqde\I, b1W<t, fULlo);
Filetype = (l.Ildefined, tro=file, rootcat, freellst,

bcdlloc1<s" sysdata. SPOOL exec" usercat, pipe,
bOOtfile, swapdata, swapcode, raEp, userfile,
killedOOject);

Entrytype. (enptyentry, oatentry, lin<entry, fl1eentry,
plpeentry" ecentry, kl11edentry);

rne eof fleld Of the FS_1nfo record Is set after an attempt to read more
bytes than are available from the file marker to the logiCal end of the fUe, or
after an attempt to write When no dISk space Is avallaDle. If the fHe marker
is at the twentieth byte of a twenty-five byte fUe, for example, you can
read up to 5 bytes wIthOUt setting eof, OUt if you try to read 6 bytes, the
FUe system gives you only 5 bytes of data and eof is set

The fOllowing program reporn hOw many bytes of data a given file has:
VAR Infc8!c:Fs_InfO; (-informat1on returned by UJ(J(l'p cnJ ItFO*)

FileNa111e :Pattteme;
Errol'Code: INTEGER;

EEGIN
IRITE("F11e: ");
REAIJ..N(Fl1eNE1ne);
LOOKUP(ErrorDode"F11eName"InfoRec);
IF (Errol'COde<>O) 1lEN

MUTELN("ccmot 1~l4l ", Fl1etftne)
ElSE

IRI1ElN(F11eNrDe,· has ", InfoRec.Slze,," bytes of data. ");
00;

2-15

cpe.rat/ng System Reference M8nt18l

2.10.6 IN=O Flle System Call

1 .. 0 (var Ecode:Integer;
ReftUt: Integer;

Var RefInfO:FS_InfO)

Ecode: Error indicator

me File System

RefNum:
Refinfo:

Reference nurmer of Object in FUe System
Information returned about RefNum's Object

II'FO serves a function similar to that of UD(lP bUt is appllCable only to
objects In the File System mat are open. The definition of the Fs_lnfO
record Is given under UIKlP and in Appendix A

2-16

qJerat/ng System Reference Manual

2.10.7 SETj=Jl..E_If\FO File System Call

SET_FILE_It*O (Var Ecode:Integer;
ReftUn: Integer;
fsl:fS_InfO)

Ecode: Error indicator

TI7e FIle system

RefNum:
Fsi:

Reference nunDer of object in File System
New information aboUt the object

SET_FILE_JN=O changes the status information associated with a given Object.
This call works In exactly the opposite way that UD<.l.P and IN=O work, In
that the status information is given by your program to SET_FILE_JN=a The
Fsl argument Is the same type of information record as that returned by
UXKLP and If'Fa The Object must be open at the time this call is made.
The fOllowIng fleldS of the Informatlon report may be changed:

flle_scavenged
file_closed by_OS
file_left_~
user_type
user_sa.mtype

2-17

cperatJng System ReFenJnCe MantI8l

2.10.8 {PEN FUe System call

(FEN (Var Ecode: Integer;
Var Path :Pattl'lanE;
Var Reftt.B: Integer;

I1CIllp:t1Set)

Ecode:
Path:
RefNum:
Manip:

Error indicator
Name of Object to be opened
Reference number for Object
set of access types

Tt1e File System

The {PEN call opens an Object so that It can be read or wrItten to. When
you call (FEN, you specify the set Of accesses that will De allowed on that
fUe or sequential device. The available access types are:

• Dread -- Allows you to read ttle f1le
• o.rite -- Allows you to write in the file (to replace existing

data)
• Appero -- Allows you to add on to the end of the file
• Private -- Prevents other processes from opening the file
• GlObal_Refrun -- Creates a refnum that can be passed to other

processes
Note that you can give any number of these modes simultaneously. If you
specify Dwrtte and Append In the same (PEN call" Dwrtte access wUl be used.
see section 2.8 for more information on GlObal Refrun and Private access
nlOdes. -

If the Object opened already exists and the process calls WRITE_DATA
without having specified Append access, the object can be overwritten. The
~rat1ng System cJoes not create a temporary fUe and walt for the
a...me:_(RECT call before decIding what to dO with the old fUe.
M object can be opened by two separate processes (or more than once by a
single process) simultaneously. If the processes write to the fUe withoUt USing
a global refnum, they must coordinate their fUe accesses so as to avoid
overwriting each other's data
Pipes C8lY\Ot be opened for Dwrlte access. You must use Append if you want
to write Into the pipe. To set up a private pIpe" the rea<ler process opens the
pipe first, specifying Dread mode; the writer process then opens the pipe with
~ PrIvate access mc:xle.

2-18

cperatlng System Reference MantIaI

2.10.9 CLOOE_m.:ECT File System Call

l1.OSE _m.J:CT (var ECOde: Integer;
ReflUn: Integer)

Erode: Error indicator
RefNum: Reference f1UfJt)er of object to be closed

TIJe File System

If Re1tUn is not global, CLtB:_m.:ECT terminates any use of ReftUn for 110
operations. A FLUSH operation is performed automatically and the fUe is
saved in its current state. If Reft'Un Is a global refnum and other processes
have the fUe open, Refl\tm remains valid for these processes and other
processes can stUI access the fUe using RefN.m.

TtJe fOllowing program fragment opens a f11e, reads 512 oytes from it, and
then closes the file.

lYPE Byte=-128 •• 127;
VM FileNaDe :PattfElle;

ErroICode,FileRefNUm:Integer;
ActualByteS:Long[nt;
BUffer:ARRAY[O •• 511] (F Byte;

EECIN
IFEN(Errorcode, FileNalE, fileReftt.lq, [mead]);
IF (Erro1'Code>0) TI£N
~ImN('Ccrn:Jt ~ ',fileNane)

ELSE
BEGIN

READ _DATA(Errol'COde,
fl1~
mD4(i18Jffer),
51~
ActualBytes,
sequential,
0);

If (ActualBytes<512) TtEN
IRITEe~ly reoo ',ActualBytes,' byteS from ',FileNane);

CLOSE _oo:ECT(E1T01'Code, fileReftun);
00;

00;

2-19

t:pemtJng System Reference MantIal

2.10.10 READ_DATA CIld WRITE_DATA File system Calls

READ_DATA (var Ecode:Integer;
RefltIn: Integer;
Data_Addr:LoogInt;
co.nt : Lalglnt;

Var Actual:LoogInt;
tkJde : Iottlde;
Offset : LtrlgInt);

IRITE_DATA (var Ecode:Integer;
RefIUI: Integer;
Data_Addr:Longint;
CCUlt : LoogInt;

Var Actual : LoogInt;
Mode: Iottlde;
Offset:LmgInt);

EcOde: Error indicator
RefNum: Reference number of Object for 1/0

TI7e File System

Oata_Addr: Address of data (source or destination)
Count: Number of bytes of data to be transferred
Actual: Actual number of bytes transferred
Node: 1/0 mode
Offset: Offset (abSolute or relative modeS)

READ_DATA reads Information from the device, pipe, or file specified by
Ret1'Un, and WRITE DATA writes Information to it. Data Aan' Is the
address for the destination or source of Ctult oytes of data. The actual
number of bytes transferred Is returned In Actual.

~ can be absolute, relative, or sequential. In absolute mode, Offset
spec1fles an absolute byte of the fl1e. In relative mode, Offset specifies a
byte relative to the fUe marker. In sequential mode, Offset Is Ignored
(assumed to be zero); transfers occur relative to the fUe marker. sequential
mode (WhIch Is a specIal case Of relative mode) Is, the only access mode
allOWed for readIng or wrIting data In pipes or sequential (non-disK) devices.
Non-sequential modes are valid only on devices that support positioning. The
first byte Is numbered O.

If a process attempts to write data past the Physical End of File on a disk
fUe, the ~rating System automatically allocates enough additional space to
contain the data. This new space, may not be contiguous with the previous
blOCks. You can use the J'LLOCATE call to ensure that any newly allocated
blocks are located next to each other, althoUgh they may not be located near
the rest of the f11e.

RE.AD_DATA from a pipe that dOes not contain enough data to satisfy COlnt
suspends the call1ng process t.Iltll the data arrives In the pipe. If there are no

2-20

qJerat/ng system Reference Manllal TI1e FIle system

writers, the end-of-fUe Indication (error 848) is returned in ECOde. Because
pIpes are circular, WRITE_DATA to a pipe with insufficient room suspends the
call1ng process (the wr1ter) until enough space is avaUable (until the reader
has consumed enough data~ If no process has the pipe open for reading and
there is not enough space in the plpe, the end-of-fHe Indication (848) Is
returned in Ecode.

READ DATA from the MAlNC(]\.ISCLE or Al TC(]\.ISCLE devIces must
specify COUlt - 1.

The following program copIes a fUe. Note that you must supply the correct
location for Syscall in the second Une of the program.

PROORN1 COpyFl1e;
USES (*Syscall.(I)j*) Sy5Call;
TYPE By te=-128 •• 127;
VM Ol(J='1Ie,Ne.t='11e:Pa~;

Ol~tun, NeftftUn: INTEGER;
BytesRead, Byteswri tten :L(H;INT;
ErrorCOde: INTEGER;
Respoose :DM;
Buffer:AARAV [0 •• 511] (F Byte;

BEGIN
~ITE('file to ropy: f);
READLN(OldFile);
lFEN(ErrorGode, Ol€J=ile, Ol~ [mead]);
IF (Errorcode>O) ll£N
BEGIN

IRITELN('Error ., Errol'COde,' ... 11e ~lng ., Ol(J='11e);
EXIT(COpyFile);

01);
IRlTE('New file t'1CIIe: ');
READLN(Ne~ile);
MAKE fILE(ErrorGode, Nelfile, 0);
lFEN(ErrorcOde, Ne.t='ile, Ne~~ [Dlrlte»;
REPEAT

READ_DATA(Errol'COde,
Ol~~
(R)4(i8.tffer),
512, BytesRead, 5e{JJentlal, 0);

IF (Errol'Code=O) AN) (8ytesRead>0) ll£N
IRI TEJ>ATA (ErrorGode,

Ne~
(R)4(ill3Uffer) ,
8ytesRead, Byteswrl tten, 5e{JJential, 0);

lIflIL (8ytesRead=O) m (ByteSlrltten=O) m (ErroI'COde>O);

2-21

cperatJng System Reference HantI8l TI7e File system

IF (Errol'COde>O) llEN
IRIlElN(• File copy enoot.Iltered error • , ErrorCOde);

(lJ)5f_~CT(Errorcooe, NeftfNJR);
l1OSEJB:ECT(Erro1'COde, 01~);

00.

2-22

qJeratJng System Reference MantIal

2.10.11 READ_LABEL Cfld WRIlE_LABEL Flle System Calls

READ_lABEL (var ECOde:Integer;
Var Path:Patt1'lClle;

oata_Addl' : Loog1nt;
COUlt :L~nt;

Var Actual:LongInt)

IRITE_LABEL (Var ECOde:Integer;
Var Path :Pattnlne;

oata_Addr: Looglnt;
COtrlt : LongInt;

Var Actual:LongInt)

Ecode: Error indicator
Path: Nane of object containing the label
Data Addr: Source or destination Of 1/0
Count: Number of bytes to transfer
Actual: Actual number of bytes transferred

TI1e FIle system

These calls read or write the label of an object in the FHe System. 110
always starts at the beginning of the label. COtrlt Is the number of bytes the
process wants transferred to or from Data_Addr, and Actual Is the actual
number of bytes transferred. fVl error Is returned if you attempt to read
more than the maximum label size, 128 bytes.

2-23

t:peratJng System Reference M817t181

2.10.12 a:vICE_aNTRl1. FUe System call

DEVI~_arrno... (Var ECOCle:Integer;
Var Path:Pattl"lClre;
Var CParm:ootype)

Ecode: Error indicator
Path: Device to be controlled

me File System

CParm: A record of information for the device driver

EEVICE_aNTRG.. is used to send device-specific information to a device
driver or to obtain device-specific information from a device driver.
Regardless of whether you are settlng device-control parameters or requestlng
information .. you always use a record of type OOtype. The structure of OOtype
Is:

OOtype = REaR)
OOVersioo: INTEGER;
deCode: INTEGER;
dcData: MRAY [0 •• 9] (F LIHllNT
EM>;

deVersion: currently 2
deCOde: control code for device driver
dcOata: speCific control or data parameters

2.10.12.1 setting Devlce-cmtrol Informatim
Before you use a device, you call DEVICE_aNTRa.. to set the device driver.
Olee you begin using the device .. you call DEVICE_ceNTRa... as necessary.
Table 2-1 shows whICh groups of devIce-control functIons must be set before
using each type of device. Table 2-2 ShOWS Which characterIstics are
contaIned In each group. For example, you must set Group A for RS-232
input. As you see in Table 2-2 .. Group A indicates tne type of parity used
wIth the device. Each group requIres a separate call to t:EVICE_aNTRCL ..
and you can set only one characteristic from eaCh group. If you set more
than one from the same group for a particular device .. the last one set wIll
apply.

2-24

LpeJ"8tJn!l system Ref'enmce l'-1atx18l

Table 2-1
lEVICE_C(JffR{1. FtI1Ctions Required

before us1ng a DeV1ce

Ttle File S.ystern

Device T~~e Device Narre Reguired GrouQs
Serial RS-232 for RS232A or RS2328 A~ C~ D~ E~ F, G
input
Serial RS-232 for RS232A or RS2328 A" 8" C, G" H. .. I
output or printer
ProFile SLOTxCHANy (where J

x and yare nUmbers)
or PARAPORT

Parallel printer SLOTxCHANy (where I
x and yare numbers)
or PARAPORT

Console screen and HAINCONSOLE or I
keyboard ALTCONSOLE
Diskette drive UPPER or LOWER J

Here is a sample program that shows how a device-control parameter is set.
This program sets the parity attribute for the RS2328 port to "no parity,"
Note that the parity attribute requires only that you set cparm.dCCOde and
cparm.dcdatc(Ol Other parameters require that you also set cparm.dcdat((l]
and cparm.dcdatc(21 They are set in a similar manner.

VAR
cparm: octype;
errnum: integer;
path: pa~;

BEGIN
path: = • -RS232B· ;
cparm.dcVersion:=2; (* always set this value *)
cparm.dccode:= 1;
cparm.dcdata[O):= 0;
lEVICE_a:t4TR£l..(errrun, path, cparm);

EN>;

2-25

q;eratlng System Reference fvlanUal Tf1e FIle System

Table 2-2 shOws hOw to set cparm.00C0de, oparm.OOdatC(O], cparm.dcdatc(l],
and cpann.dOOaU(2] for the various avallable attribUtes. Note that any values
In cpann.OOdata past cparm.dcdaU(2] are Ignored when you are setting
attrIbUtes dOCumented here.

Table 2-2
IDID::_camn. rutput ft.rotimal Grol4Js

FUNCTION .decode .dCdataO) .dCdatal1 .dCdata21

Grol4J A--parity:
No parity 1 0
Odd parity, no 1 1
input parity
checKing

Odd parity, 1 2
input parity
errors = 00

Even parity, no 1 3
input parity
CheCKing

Even parity,
input parity

1 4

errors = $80

Grt:q) B--OUtput HandShake:
None 11
OTR hCJ1dshake 2
XON/XOFF handShake 3
delay after Cr, IF 4 ms delay

Grt:q) C--Baud rate:
S baud

Grt:q) D--Input waiting during Read_Data:
wait for count bytes 6 0
return Whatever rec'd 6 1

Grt:q) E --Input handshake:

no handShake 7
9 -1 -1 32767

OTR handShake 7
XON/XOFF handShake 8

2-26

t:peratlng system Reference I'18IXJ81 The File System

Table 2-2 (continued)

F~CTION .decode .dcdatciO) .dCdatc(1) .dcdatc(2)
Group F--Input typeahead bUffer:

flush only 9
flush and re-size 9
flUsh, re-size, 9
and set threShOld

Group G--Disconnect Detection:
none 10
BREAK detected 10

fJl3ans d1 sconnect

-1
bytes
bytes

o
o

-2
-2
low

o
non-zero

Group H--Timeout on output (handshake interval):
no timeout
tirooout enabled

12
12

o
seconds

Group I--Automatic linefeed insertion:
ell seined 17 0
enabled 17 1

-2
-2
hi

Group J--Disk errors (set to 1 to enable, to 0 to disable):
enable sparing 21 sparing rewrite reread

Group K--Break command (never required -- available only on serial
RS-232 devices):

send break 13

send break 13
while lowering OTR

millisecond
duration
millisecond
dUration

o
1

Using Group C, you can set baud to any standard rate. However, 3600, 7200,
and 19200 baud are avallaDle only on tne RS232B port.
"Lowll and IIHili under Group F set the low and high threshOld In the typeahead
Input bUffer. When "HI" or more bytes are In the input bUffer, XCFF Is sent
or OTR Is dropped. When "Low" or fewer bytes are In the typeahead buffer,
XCN Is sent or OTR Is reasserted. The sIze of the typeahead buffer (bytes) can
be any value between 0 and 1024 bytes inClusIve.
In Group J, enabllng disk sparing permits the device driver to relocate blOCks
of data from areas of the disk that are found to be bad. Enabling disk rewrite

2-27

t:peratlng system Reference I'1anI.Ial me File system

permits the ~eratlng System to rewr1te data that It had trOUble readIng, but
finally managed to read. This condition Is referred to as a soft error.
Enabllng disk reread tells the ~ratlng System to read data after they are
written to make certain that they were written correctly.
When sending a break command" as shown In Group K, any device control from
Group A removes the break condition even if the allotted time has not yet
elapsed. Also" sending a break will disrupt transmission of any other character
st1l1 being sent. If you want to make certain that enough time has elapsed for
the last character to be transmitted" call WRITE_DATA with a single null
character (equal to 0) just prior to call1ng EEVlCE_aJ'IITRCL to send the break.
Table 2-3 gives a list of mnemonic constants that you can use In place of
explicit numbers when setting Decode. These mnemonics are provided for
convenience.

Tmle 2-3
Decode MlerOOnlcs

()XOde

1

MlemOnlc

dvParity
dvOUtOTR
dVOUtxON
dvOUtOelay
dvBaud
dvlnWa1t
dvlnOTR
dvlnXON
dVTypeahd
dvD1scon
dVOutNoHS

2
3
4
S
6
7
8
9

10
11
12
13
15
16
17
20
21

no mnemonic
no mnemonic
dvErrStat
dvGetEvent
dvAutoLf
dVOiskStat
dvDiskSpare

2.10.12.2 (l)talnlng DeV1ce-cmtrol Information
To use [l:VICE_aNl'R(L to find out abOUt the current state Of a particular
device" simply give the pathname for the particular device along wIth a
function code for the type of information you need. The record of type octype
that you supply is returned filled with information.

2-28

qJerat/ng System Reference I'1InA1J 1l1e FIle System

There are three types of information requests you can make. Note that each
type applies only to some of the 8Vallable devices. The request types tVld the
returned information are deSCribed In Table 2-4.
Table 2-5 ShOws the error code provlCied In response to a 0CC0de-15
information request. This code Is given In ~O]. The code, a long
integer, Is ShOWn In Table 2-5; the bits and bytes are numbered from the rt~t,
COU1tIng from 0, as ShOWn In Figure 2-1. The meaning asslQl1!d to the bit
applles If the bit is set (equals 1~

::1::

........... "l byte DYte 1 !.t?~,~mi "'J.-

7 ...•.......... 0 7 ...•.•....•.•. 0 7 .•.........•.. 0 7 •.•........... 0

Flpe 2-1
DISk t-tam Error COdeS

Here Is a program frcqnent that uses CEVlCE_cc:NfR(L to get Information
abOUt the l4lP9r diSkette drive.

VIR
qJ8l'II: ootype;
errn.a: INTEBER;
path: pattnIIe;

BEGIN
path:=.~.;

cparII.dOVers1m:-2; (- always set this value -)
cparII cbXlde -- 20-
1EVI~_aJfI1Ii.(errR. patt\, cpara);
IIlH cpat'II DO
1RI1B..N (OOdata(OL OOdata(1]1 OOdata[2 L OOdata[3]1

OOdata(4 L dCd8ta(5 L dCdata[6])
00;

2-29

cperatJng system Reference /'1anu8l me File System

Table 2-4
DeVice Informatim

Dcoode Devices

15

16

ProFiles

console Screen
and KeybOard

RetUl1'led in Dcdata

[0] contains diSk error status on
last hardware error (see Table
2-5)
(lJ contains error retry count
since last system bOOt

[0] contains numbers 0-10,
WhiCh indicate events:

o = no event
1 = upper diskette inserted
2 = upper diSkette bUtton
3 = lower diskette inserted
4 = lower diskette bUtton
6 = rouse bUtton dOwn
7 = rouse plUgged in
8 = power bUtton
9 = rouse bUtton up

10 = rouse unplugged
[1] contains the current state Of
certain keys, indicated by set
bits (if the bit 1s 1, the key is
pressed) (bits are numbered from
the right)

o = caps lock key
1 = shift key
2 = option key
3 = conmanc1 key
4 = rouse bUtton
5 = auto repeat

[2] contains X and V coordinates
of rouse, X in left 2 bytes, Y in
right 2 bytes
(3J contains timer value in
milliseconds

2-30

qJeralfng system Reference Ma7tJa1 me File ~yStem

Table 2-4 (continued)
Decode oevices Returned in Dcdata

20 ProFile or
Diskette Drive

[0] contains:
o = no disk present
1 = disk present (bUt not

accessed yet)
The following indicate that a
disk is present and has been
accessed at least once.

2 = bad block track appears
unformatted

3 = diSk formatted by some
program other than the
operating System

4 = OS-formatted disk
[1] contains:

o = no bUtton press pending
1 = button press pendl~

disk not yet ejected
[2] contalns number Of avallable

spare blocks~ 0-16,
neanlngful only When
OOdata[O] = 4 and for a
diSkette

[3] contains:
o = bOth coples of the

bad-block directory OK
1 = one copy is corrupt

(meaningful only when
Dcdata(O] = 4)

[4J contains:
o = sparing d1sabled
1 = sparing enabled

[5] contains:
o = rewrite disabled
1 = rewrite enabled

[6] contains:

2-31

o = reread dlsabled
1 = reread enabled

q:Jemtlng System ReFemnce MlnJaJ The File system

T(i)le 2-5
DiSk Hard Error COdes

Byte 3
7 = ProFile received <> 55 to its last response
6 = Write or write/verify abOrted because more than 532 bytes of

data were sent or because Profile could not read its spare
table

5 = Host' s data is no longer in RAM because ProFile updated its
spare table

4 = SEEK ERROR -- unable in 3 tries to read 3 consecutive headers
on a track

3 = CRC error (only set during actual read or verify of
write/verify, not While trying to read headers after seeking)

2 = TII'EOUT ERROR (COUld not find header in 9 revo1utions)-- not
set While trying to read headers after seeking

1 = Not used
o = Operation unsuccessful

Byte 2
7 = SEEK ERROR -- unable in 1 try to read 3 consecutive headers

on a track
6 = Spared sector table overflow (more than 32 sectors spared)
5 • Not used
4 = Bad blOCk table overflow (more tnan 100 baO blOCks in table)
3 • Profile unable to read its status sector
2 = Sparing occurred
1 = seek to wrong track occurred
o = Not used

Byte 1
7 = Profile has been reset
6 = Invalid blOCk number
5 = Not used
4 = Not used
3 = Not used
2 = Not used
1 = Not used
o = Not used

Byte 0
This byte contains tne nt.mber Of errors encot.rltered wnen rereading a
blOCk after My read error.

2-32

q:;eratlng Sj'StetT1 Reference M8ntJal

2.10.13 ,oUJJJATE FHe system can
N..lOOATE (var Ecode:lnteger;

~:Integer;
Qlnt1glD.1S :80018fl1;
co.nt:lqint;

var f«rtUal : Integer)

Ecode: Error indicator

The File Sj'Stem

RefNum: Reference t'U1tler of Object to be allocated space
contiguous: True = allocate contiguously
CWlt: Nl.IItler of blOCks to be allocated
Actual: fUlt)er of blocKs actually allocated

use AlLOOATE to Increase the space allocated to an object If possible,
Al...LOOA lE addS the requested runber of blocks to the space available to the
object referenced by RettUn. The actual number of blocks allocated is
returned in Actual. If COOtl~ Is true, tne new space Is allocated In a
single, unfragmented space on the diSk. This space Is not necessarlly adjacent
to any exIst1ng fUe blOCks.
Al...LOOAlE appl1es only to Objects on block-structured devices. AA atterT1lt to
allocate more space to a pipe Is successful only If the pipe's read pointer Is
less than or equal to its write pointer. If the write pointer haS wrapped
arotnl bUt the read pointer has not. an allocation would cause tne reader to
read Invalid and trlinltlallzed data, so the File System returns error 1186 In
this case.

2-33

q;erating System Reference I'1antIaI

2.10.14 C(JvpACT FUe System 0811

W'PACT (var Ecode:lnteger;
ReftUt: Integer)

EcOde: Error indicator

me File System

RefNum: Reference number of Object to be compacteo

CCJ1>ACT Changes the Physical End of FUe to deallocate any blocks after the
block that contains the Logical End of FHe for the fHe referenced by RefN.m
(See Figure 2-1.) ext-'PACT appUes only to Objects on block-structureo
devices. As In the case of PLLOOATE, compaction of a pipe Is legal only If
the read pointer is less than or equal to the write pointer. If the write pointer
has wrapped around, bUt the read pointer has not, compaction could destroy
data In the pipe. The FUe System returns error 1188 In this case.

2-34

t:peIatlng System Reference Mantlal

2.10.15 l"RlJ'CA TE Flle System Call

1'RlH!ATE (var ECOde:Integer;
ReftUI: Integer)

EcOde: Error indicator

Tile File System

RefNum: Reference l'lUfJt)er of Object to be truncated

l"RlJ'CATE sets the Logical End of FUe indicator to the current position of
the flIe marker. Any data beyond the fUe marker are losL TRlJ'>CATE
applles only to blOCk-structured devices. Truncation of a pipe can destroy
data that have been written bUt not yet read. ~ the diagram ShOWS,
TRLNCATE Changes only LECF. CCM>ACT, on the other hand, ChangeS only
PECF.

I· 1

,TRU'>ICATE
new
l.E(F

r C{]'-PACT-

I

- t~'-""""""""""'-'-'-t~ ~

File Marker old
LBF

Figure 2--2
The Relationship of COVPACT (I1d TRlJ\ICATE

In this figure the boxes represent bloCks of data Note that LECF can point to
any byte In tne fUe bUt PECF always points to a blOCk bOUndary. Therefore,
TRLNCATE can reset LECF to any byte In the file, but a:t1>ACT can reset
PECF only to a block bOUndary.

2-35

qJell1Ung System Refemnce /VItI7u8l

2.10.16 FLUH File System Call

flUSH (ver ECOde : Integer;
~:Integer)

EcOde: Error indicator
RefNUn: Reference rutler of destination of 1/0

ThP, FIle System

FLUSH forces all bUffered Information destined for the object Identified by
Reft\bn to be written out to that object.

A slele effect of FLUSH Is that all FS buffers an(l (lata structures are flUSl1ed
(as well as the oontrol information for the referenced flle~ If RetMm is -L
only the glObal FHe System Is flUSl1ed. TIlls Is a mettlOCl by wntcn an
appUcatlon oan ensure that the Flle System Is consistent.

2-36

qJeratlng system Reference I'18IVaJ

2.10.17 SET_SAFETY FOe System Call

SET_WElV (var Ecode:lnteger;
var Path:Patil bBlR3;

O'l_Off :6001eal)

Eoode: Error indicator
Path: Name of object containing safety switch
O'"LOff: set safety switch:

Q1 :II true
Off = false

The FIle System

Each object In the FUe System haS a "safety switch" to help prevent accidental
deletion. If the safety Nltch Is on, the Object camot be deleted.
SET_SAFETY turns the switch on or off for the object identified by paUl.
Processes tnat are Sharlng an Object ShOUld cooperate with each other When
setting or Clearing the safety switch.

2-37

tperat/ng System Reference H8nt18l me FIle System

2.10.18 SET_wmKING_DIR and GET_wmKI~_DIR File System C811s

SET_.aa:N3_DIR (Var ECOde:Integer;
Var Path:Patmane)

~TJO~KIN;_DIR (Var ECOde:Integer;
Var Path:PattI1cIIe)

EcOde:
Path:

Error indicator
working directory name

The ~rat1ng system uses the wOrking directory name to resolve partially
specified pathnames into complete pathnames. GET _ wmKING_DIR returns the
current wOrking directory name In Path. SET_wmKING_DIR sets the WOrking
directory name.
The following program fragment reports the current name of the working
directory and allows you to set it to something else:

VAR lOrki~ir :PathName;
Errol'Cofle : INTEGER;

BEGIN
GET_wmat«;_DIR(Errorcooe, Iorki~ir);
If (EJTOrCode<>O) TtEN

IRITaN('(3mt get ~ current working directory!')
ELSE IRITELNC1l1e current working directory is: ',tkJrkir9)ir);
WTE('New working directory ncIRe: ');
READLN(lOrki~ir);
SET_IORKIN;_DIR(ErrorDode,lorkingDir);

EN>;

2-38

cperat/ng System Reference Manual

2.10.19 RESET_CATALOO cn:J GETJ'EXT_ENlRY File System calls

RESET_CATN...OO (var Ecode:INTEGER;
Var Path :Pattnlne)

GETJEXT_ENTRV (var Ecode:INlECB;

Ecode:
Path:
Prefix:
Entry:

Var Prefi~
EntrY:E_NalE)

Error indicator
WOrking directory narre
Beginning of file names returned
NaRes from catalog

T!1e File System

RESET_CATALOO and GET_I'EXT_ENTRY give a process access to catalogs.
RESET_CATALOO sets the catalog file marker to the beginning of the catalog
specified by Path. Path should be a root volume name. GET_~XT_EN1RY
then performs sequential reads through the catalog fUe specified In the
RESET_CATALOO call and returns FHe System object names. AA end-of-flle
error COde (848) Is returned when GET_i'EXT_ENTRY reaches the end of the
catalog. If Preflx Is non-null, only thoSe entries in the catalog that begin with
that prefix are returned. If Preflx Is "1lB", for example, only fUe names that
begIn with "pelt are returned. The prefix and catalog marker are local to the
calling process, so several processes can Simultaneously read a catalog withOUt
affecting each other.

2-39

t:pemt/ng system Refemnce /t1a7uaI

2.10.20 t1l.NT CJ'ld LN1l..NT FOe System cans

tIUfT (Var ECOde:lnteger;
Var VNciIe:E NElle;
Var Passmrd:E tHe
Var DeVI'1E:Eji_>

lIIOJfT (Var Eoode:lnteger;
Var vr..:E_rae)

Ecoae: Error indicator
Vnane: Volt.ne nane
Password: Password for deVice (currently ignored)
DevrlaJe: Device name

The FIle System

t1l..NT and LN1l..NT handle access to sequential devices or blOCk-structured
deVices. For blocK-structured devices, Ml..NT logically attaches the volt.rne's
catalog to the File System. The name of the volt.me Il1Ol.I1ted Is returned In
the \hBne parameter.
LN1l..NT detaches the speclf1ed volume from the F1le system. No Object on
tnat volume can be opened after LN1l..NT haS been Called. The voltme
cannot be UI'VYlW'lted ""til all the Objects on the volume have been closed by
wI processes using tnem.

DEMlame Is the name of the deVice on whiCh a volume Is being mounted.
DEMlame ShOuld be given withOut a leading dash (-~

vrana Is tne ncrne of the volume tnat was succesSfully mounted, and Is
returned.

2-40

029-0418-A

Chapter 3
Processes

3.1 Process 8tItJctl.n'e •• 3-2

3.2 Process Herarctly •.••••..•••.•.•••••••••••••••••.••••.•.•.•••••••.•••••••••.•••.•.•••.•••.•••• 3-2

3.3 Process creaUoo .. 3-3

3.4 Process c:::oIltrol •• 3-3

3.5 Process setm.dlrlg •••.•••••••••••••••••••••••••••• 3-3

3..6 Process TemdJ1atlO1 ... 3-4

3.7 A Process-t-tandllrlg ExaJl1)le •• 3-5

3.8 Process SysteIn C8ll$ •••••••.•.•••••.•••••••.••...•••••...•.•••••.••.•••..•••.•...•.•.•.•••••. 3-7

3.8.1 ~ PROOESS ••••.•.•••••••••.••.•.•••••••••.•••••••••.•.•••••••••••..••••.••••.•.• 3-8
3.8.2 TERMiNATE PROOESS •.•.•.•.•.•.••.•.••••.•.•••••••..••••....•...•.•••.•..•..•••• 3-9
3.8.3 II'F'O PROOESs .. 3-11
3.8.4 KILL -PROOESS •••••• 0' ••• 3-13
3.8.5 SLJSPEI'[) PROCESS ... 3-14
3.8.6 ACTIVATE PROCESS ••••••••.••••.•••••••••••.•..••••.•.•.•.•••••.•.••.•••••••••.• 3-15
3.8. 7 SETPRIORiTY PROOESS •••.••••••••••••••••••.•••••••.••••••••••••••••••....••.. 3-16
3.8.8 YIELD CPU .:: ... 3-17
3.8.9 MY _ID. .••••.•••.••..•••.•.•••.•.•.•••.•.••..•..•...•.•.•..••.••...••..•..•.•••••.•.•... 3-18

Processes

A process is an entity in the Lisa system that performs wOrk. When you ask
the cperatlng System to run a program .. the OS creates a specific instance of
the program and its associated data That instance is a process.

The Usa can have a number of processes at anyone time; they appear to be
running simultaneously. Although processes can share code and data each
process has its own stack.

011 y one process at a time can use the CPU. The Scl7edu}eI determines
which process is active at a particular time. The Scheduler allows each
process to run until some condition that would slow execution occurs {an 110
request .. for example~ At that time .. the running process is saved in its
current state. The Scheduler then checks the pool of ready-to-run processes.
When the original process later resumes execution .. it piCkS up where it left
off.

The process schedullng state has three posslb1l1 ties. A lllfllling process Is
actually executing Instructions. A ready process is ready to execute but is
beIng held bacK by the Scheduler. A blocked process ls Ignored by the
Scheduler. It cannot continue its execution untll something causes It to
become ready. Processes commonly become blocKed whlle awaIting
completion of I/O .. although there are a number of other likely causes.

3-1

qJeratlng System Reference HtIV8J P.rocesses

3.1 Process Structure
A process can use up to 16 data segments and 106 code segments.
The layout of the process address space for user processes is shOwn in Figure
3-1.

Seg#
+--------
o I unavailable
+--------
1 I User Code Segments

I
I
I
I

106 I
+--------

107 I LDSN 1
I
I (data segments)
I
I

122 I LDSN 16
+--------

123 I Stack
+--------

124 I Shared Intrinsic unit Data
+--------

125 I Screen
+--------

126 I Reserved
+--------

127 I Reserved
+--------

F1gure 3-1
Process Amress Space layout

Each process haS an associated priority, an Integer between 1 and 255. The
SChedUler usually executes the highest-priority ready process. The hIgher
priorities (226 to 255) are reserved for the q,eratIng System.

32 Process Hierarchy
When the system Is first started, several system processes exist. At the base
of the process hierarchy, ShOwn 1n Figure 3-~ Is the root process~ which
handles various Internal Qleratlng System functions. It has at least two sons:
the Memory Manager process and the shell process.
The Memory:Manager process handles COde and data segment swapping.

3-2

cperatlng System Reference MantJa1 Processes

The Shell process Is a user process that Is automatically started when the OS
Is InItialIZed. It Is typIcally a command Interpreter, but It can be any
program. The OS sImply lOOKs for the program called SYSTEM.SHELL and
executes It

Root Process

/I~ Shell
Process

Memory Manager I Otner
Process U ser

;roj\
Other User Processes

Figure 3-2
Process Tree

My other system process (the network control process .. for example) Is a son
of the root proce~

3.3 Process creatloo
When a process Is created, It Is placed In the ready state with a priority equal
to that of the process that created it. All the processes created by a given
process can be thOUght of as existing In a subtree. Many of the process
management calls affect the entire subtree of a process as well as the process
itself.

3.4 Process COOtrol
Three system calls are provIded for expl1clt control of a process. These calls
allow a process to Kill, suspend (block), or activate any other user process in
the syste~ as long as the process Identifier Is known. Process-handl1ng calls
are not allowed to control ~rat1ng System processes.

35 Process SCheOJlI~
Process schedUl1ng Is based on the ·priority established for the process and on
requests for QJeratlng System servtces.
The SCheCJUler generally executes the hIgheSt-priOrity ready process. cree a
process Is executlng, It loses the CPU only under certain cIrcumstances. The
CPU Is lost When there Is some specIfIC request for the process to walt (for
an event, for example), When there Is an I/O request, or When there Is a
reference to a cocte segment that Is not In memory. A process that makes

3-3

t.;JeJatJng SystenJ Reference fvIant.Ial Pra::esses

any [peratIng System call may lose tne CPU. The process gets the CPU back
when the ~rating System is finished, except under the following conditions:

• The running process requests input or output. The Scheduler starts tne
next highest-priority process running while the first process waits for the
lID to complete.

I The runnIng process lowers Its priorIty below that of another ready process
or sets another process's priority higher than its own.

• The runnIng process expllcitly yIelds the CPU to another process.
I The runn1ng process activates a hIgher-prIorIty process.
• The running process suspends itself.
• A higher-priority process becomes ready.
• The running process needs code to be swapped into memory.
I The runnIng process executes an event-walt call.
I The running process calls CELAY _ TIrvE.

Because the q:>eratlng System cannot seize the CPU from an execut1ng
process except In the cases noted above, baCkground processes should be
llberally sprInkled wIth YIELD_CPU calls.
When the Scheduler is invOked, it saves the state of the current process and
selects the next process to run by examining the POOl of ready processes. If
the new process requIres that code or data be loaded into memory, the
Memory Manager process Is launched. If the Memory Manager Is already
Working on a process, the Scheduler selects the highest priority process in the
ready queue that does not need anything swapped.

3.6 Process TerminaUoo
A process termInates under one of the followIng conditlons:

• It calls TERMINATE_PROCESS.
• It reaches an 'EN): statement
• It Is referred to in a KILL_PRlcrSS call.
I Its father process termInates.
I It runs into an abnormal conal tiona

When a process begins to termInate, a SYS_ TERMINATE exception condition Is
slgnaled to the termlnating process and all of the processes It has created.
By means of the CEQARE_EXCEP _H1. call (descrIbed In Chapter 5), any
process can create an exception handler to catch the termInate exceptIon and
clean up before termInating. The SYS _ TERMINATE exception handler will be
executed only once. If an error occurs whIle the handler Is executing, the
process termInates immediately.

3-4

q;emtfng Systet11 Reference fvla'ltlal PJ'OCfJsses

A process can call KILL_PR(X)ESS on any user process whose Proc_Id Is
Known. TERMINATE_PR(X)ESS, on the other hand, terminates the process that
called It (and its descendants~ TERMINATE_PROCESS also allows an event to
be sent to the father of the termInating process if a local event channel was
specIfied In the MAKE_PR(X)ESS call.
Termination Involves the following steps:

1. SIgnal the SYS _ TERMINATE exception on the terminating process.
2. Execute the user's exception handler, If any.
3. Instruct all sons of the current process to termInate.
4. Close all open flIes, data segments.plpes, and event channels left open by

the user process.
5. Send the SYS_SCN_ TERM event to the father of the termInating process

1 f a local event channel exists.
6. Wait for all the sons to finish termInation.

3.7 A ProceSS-Handling Example
The following programs illustrate the use of many of the process-management
calls descrIbed In thIs Chapter. The program father .. oelow .. creates a son
process and lets it run for a while. It then gives the user a chance to
activate, suspend, kill, or get information about the son.

PR(GW1 father;
USES ('1lU SOOI'ce:syscall.(J)j*) sy5Call;
VAR ErrOJ'COde:INTEGER; (*error returns from system calls *)

proc_id:lONGINT; (* process global identifier *)
pnqaoo:PattYlcl1e; (* progran file to execute *)
rull:NcIIeString; (* progran entry point *)
InfO_Rec:ProclnfoRec; (* infornation abOUt process *)
i:INTEGER;
Answer: CHAR;

3-5

q:Je.rating System Reference ManlJal Processes

BEGIN
ProfIfaIE: =' sm. -lB)'; (* this prognn is defined belOW-)
tt.lll: =" ";
t1AKE_Pfln:SS(ErrorGode, Proo_Id, ProfIfaIE, tl.Il1, 0);
If (Errol'COOe<>O) n£N

.ulaN(• Error ", ErrorCOde,' c:lJring process mar.agene It. ');
fOR 1:=1 TO 15 00 (* 1dle for a~1le *)
BEGIN

IRITELNCfather executes for a DDEnt. ");
VIELD_lPU(Errol'Code,fALSE); (* let son nil *)

00;
IRITE('K(i11 S(Uspend A(ctivate I(nfO');
REAI1N(AnSEr);
CASE AnSEr (F

"K", "k ": KILLJ)'~SS(ErroI'Code, Proo_Id);
'S', 's': Sl.9lEN)_PROll:SS(Errol'Code,Proo_Id, TRl£ (- SUspend

fcn11y *»;
lA', la': ACTIVATEJlROOESS(ErroI'Code,Proo_Id, TRl£ (it activate

fElR11y *»;
I 1", "1 ": BEGIN
IN=O-'Jf~SS(ErrorCode, Proo_Id, InfO_Reo);
IRITELN("SCIl""S flCIE 1s ""Info_Rec.~ttf&ne);
00;

00;
If (ErrorGode<>O) llEN

IRITELN(I Error '" ErrorCode .. I m.a1ng prooess mar .ageIIBlt. I);

EN>.

The program 8m is:

PROORAt1 SOn;
USES (-stJ SOUrce:Sy5Ca11.(I)j*) Sy5Call;
VAR ErrorGode: INTEGER;

rul1 :NElEStrlrYJ;
BEGIN

RlE TRlE 00
BEGIN

IRImN(,son executes for a IIDEI'lt.');
VIELD_lPU(Errorcooe .. fALSE); (-let father prooess lUl*)

00;
Eft).

3-6

t:peratlng System Reference ManuaJ Processes

3.8 Process system calls
This section describes the q>erating System calls that pertain to process
control. A summary Of all the ~rat1ng system calls can be found in
~ndix A The following special types are used in process-control calls:

Pattnllle = STRIN2[255];
NanestrirYJ = STRIN2[20];
P s eventblOCk = "'s eventblOCk;
S-eVentblock = T event text;
{~event_text = array [0 .. size_etextJ of ltnJ1nt;
ProcInfoRec = record

prtg)attnIE : pa1:tI'lcIIE;
global. _id : longint;
father_id : longint;
priority : 1. .255;
state : (pactive, psuspellded, p.alting);
data in : boolean
end; -

3-7

cpemting System Reference Manual

3.8.1 MP-XE_PR(£fSS Process System call

MAKE_PROCESS (Var ErrtUn:Integer;
Var Proc_Id:LongInt;
Var Pro;;tlle: Pattflale;

Processes

Var EntryNa1E:NcIIEStrlng; (* NanEString = STRIN2[20] *)
Evnt_CtYl_Reft«.ln:Integer)

ErrNum:
Proc Id:
progFile:
EntryNarre:
Evnt_Chn_RefNum:

Error indicator
Process identifier (globally unique)
Process file name
Program entry point
Communication channel bet~een calling
process and created process

A son process is created when another process .. the father process .. calls
MAKE_PROCEss. The son process executes the program identified by the
pathname in ~ile. If ~ile is a null character string.. the program name
of the father process is used. A globally unique identifier for the son process
is returned in Proc_Id.
Evnt_CtYl_RefNt.m Is a local event channel supplied by the father process.
Event channels are d1scussed in Chapter 5. The ~erating System uses the
event ct'lannel IdentIfled by Evnt_CtYl_RefNlm to send the father process
events regarding the son process (for example .. SYS_SCN_ TERM~ If
Evnt_CtYl_RefNlm Is zero .. the father process Is not informed wt'len such
events are prodUced.
EntryNcme, If non-null .. specifies the program entry point where execution is
to begin. Because alternate entry points have not yet been defined for
Pascal, this parameter is current! y ignored.
My error encountered durIng process creatlon Is reported In Errr.un.

3-8

tpeJC1tlng systeln Reference I'-1anlIal

3.82 TERMINA TEJ'FUO:SS Process System Call

TERt1INATE_ PROCESS(Var ErrrtJn: Integer;
Event_ptr:p_s_eventblk)

ErrNum: Error indicator
Event_Ptr: Information sent to process's creator

P.ro{}esses

A process can be ended by TERMINATE_PROCESS. This call causes a
SYS _TERMINATE exception to be signaled for the calling process and for all
of the processes it has created. The process can declare its own
SYS _TERMINATE exception handler to handle whatever cleanup it needs to do
before it Is actually terminated by the system. When the terminate exception
handler is entered, the exception information block contains a longlnt that
describes the cause of the process termination:

Excep JJatc(O] - 0 Process called TERMINATE_PROCESS.
1 Process executed the 'Ef'[).· statement
2 Process called KILL_PROCESS on itself.
3 Some other process called KILL_PROCESS on the

terminating process.
4 Father process Is termInating.
5 Process made an invalid system call (that is, an

unknown call~
6 Process made a system call wIth an invalid ErrNlm

parameter address.
7 Process aborted due to an error while trying to swap

in a code or data segment
8 Process exceeded its maximum speCified stack size.
9 Process aborted due to possible lockup of the system

by a data space exceeding physical memory size.
10 Process aborted due to a parity error.

There are an additional twenty-six errors that can be signaled. The entire list
is shown at the beginning of Appendix A

I f the terminating process was created with a communication channel, a
SYS_SCN_ TERM event Is sent to the termInating process's father. The
terminating process can specify the text of the SYS_SCN_ TERM with the
Event_Ptr parameter. Note that the fIrst (otth) longlnt of the event text is
reserved by the system. When the event Is sent to the father, the OS places
the terminatlon cause of the son process In the flrst longlnl ThIs Is the same
termination cause that was supplied to the terminating process itself In the

3-9

qJeratlng System Reference MantI8l Processes

SYS_ TERMINATE exception information block. Any user-supplled data in the
first lorgnt of the event text is oven-,ri t ten.
If a process specifies an event to be sent in the TERMINATE_PRt:D::SS call
but the process was created without a local event channel, no event is sent to
the father.
If the process was created wIth a local event channel.. an event Is sent to the
father if the process calls TERMlNAlE_PRtxJESS with a nil Event_Ptt or if
the process terminates by a means other than call1ng TERMINA TE_PRtn::SS.
The event contains the termination cause in the first longlnt and zeroes in the
remainIng event text
P _S_everltblk is a pointer to s_eventblk, defined as:

(XH)T size_etext = 9; (* event text size - 40 bytes *)
lYPE t_event_text = MRAY [0 •• slze_etext] CF LongInt;

s_eventblk = t_everlt_text;

If a process calls TERMINATE_PRt:D::SS twice, the q:>erating System forces it
to terminate even if it has disabled the terminate exception.

3-10

t:perating System Reference Manual

3.8.3 II'FO_PRtD:SS Process System call

Itt="O_PROCESS (var ErrtUI:lnteger;
PrOC_Id :L~Int;

Var Proc_Info:ProclnfoRec);

ErrNum: Error indicator
Global identifier of process

Processes

Proc 1d:
proc=Info: Information about the process identified by

Proc_Id

A process can call II'FO_PRoc:ESS to get a variety of information about any
process known to the ~erating System. Use the function MY _ 10 to get the
Proc _Id of the calling process.

ProcInfoRec is defined as:

TYPE ProclnfoRec = RECOOO
Pr()(jla'tt1"lCllE : Patt'l'lalE;
GIObal_id : Longlnt;
Priority :1 .. 255;
state : (PActive, PSuspended, Pwai ting);
Data_in :Booleal

EN);

Data_In IndIcates whether the data space of the process Is currently In
memory.

The procedure on the next page gets information about a process and displays
some of it.

3-11

cperatlng System Reference Mantlal

PROCElXH: 01splay_Info(Proc_Id:L£HiINT);
VM ErrorCOde: INlEGER;

Info Rec :Proclnf~;
BEGIN -

nt=U_PROCESS(Errol'COde, Proc_Id, InfO_Rec);
IF (ErrorDode=lOO) THEN

IRITELN(OAttempt to dlsplay info aboUt nonexistent
process. ")

ELSE
BEGIN

.Im Info Reo 00
BEGIN -

IRITELN(I program nane: ", ProFclthNale);
IRITELN(" global id: ", Global_id);
IRITELNC priority: ", priority);
IRITE(" state: ");
CASE state (F

PActi ve: WRITELN(I active I);
PSuspended: WRITELN(I suspended I);
Plaiting: WRITELN("waiting")

EN)
EN>

EN)
EtC>;

3-12

Processes

t:peratlng System Reference Mantlal

3.8.4 KlLL_PR~SS Process System Call

KIll_PROCESS (var ErrtUl: Integer;
Proc_Id:Longlnt)

ErrNum:
Proc_Id:

Error indicator
Process to be killed

Processes

KILL_PRo::ESS kills the process referred to by Proc_Id and all of the
processes in its sUbtree. The actual termination of the process does not occur
until the process is in one of the following states:

• Executing in user mode.

• Stopped due to a SUSPENJ_PRIXESS call.

• Stopped due to a CELAY _ TIrvE call.

• Stopped due to a WAIT_EVENT_CH\I or SEI\D_EVENT_CH\I call ... or
READ_DATA or WRITE_DATA to a pipe.

3-13

cperatfng System Reference Manual

3.8.5 SUSPfl\O _PRCCESS Process System call

SlJSPEN) J)ROOESS (Var Errtt.ln: Integer;
Proc_Id:LongInt;
susp_Faml1y:Boolean)

ErrNum: Error indicators

Processes

Proc 1d: Process to be suspended
Susp=Family: If true, suspend the entire process subtree

SUSPfl\O_PRo::ESS allows a process to suspend (blOCk) any process in the
system. The actual suspension does not occur until the process referred to by
Proc_Id is in one of the following states:

• Executing in user mode
• Stopped due to a DELAY _ ~ call
• Stopped due to a WAIT_EVENT _ a-N call

Neither expiration Of the delay time nor receIpt of the awaited event causes
a suspended process to resume execution. SUSPEf'I)_PROCESS is the only
direct way to block a process. Processes, however, can become blocked during
I/O, by the timer (see DELAY _TI~), or for many other reasons.
If SUSp_Fcm1IY Is true, the ~rat1ng System suspendS both the process
referred to by Proc_ld and all of its descendents. If SUSp_Famlly is false,
only the process Identified by Proc_Id is suspended.

3-14

cperatfng System Reference Mafll/sl

3.8.6 ACTIVATE_PRoc::ESS Process System Call

ACTIVATEJJfU::ESS(var ErrtUn: Integer;
Proc_Id:LongInt;
Act_FCI1lily:Boolea1)

ErrNum: Error indicator
Proc Id: Process to be activated

Processes

Act_Family: If true, activate the entire process subtree

To awaken a suspended process, call ACTIVATE_PRoc:Ess. A process can
activate any other process in the system. Note that ACTIVATE_PRCCESS can
awaken only a suspended process. If the process Is blocked for some other
reason, ACTIVATE_PRoc::ESS cannot unblocK it. If Act_Fcmlly is true,
ACTIVATE_PRoc::ESS also activates all the descendents of the process referred
to by Proc _Id.

3-15

q;eratlng system Reference Manual

3.8.7 SETPRICRITY _PROJESS Process System Call

SETPRI(JUTY _PROCESS(Var ErrtUn:lnteger;
Proc_Id:longlnt;
NeW_Priority:lnteger)

ErrNum: Error indicator
Proc Id: Global io of process
Ne~_Priority: Process's ne~ priority number

Processes

SETPRICRITY _PRcx::ESS changes the scheduling priority of the process
referred to by Proo_ld to New_Priority. The priority value must be between 1
and 225. (cperatlng System processes execute with priorities between 226
and 255.) The higher the priority, the more likely the process is to be allowed
to execute.

3-16

t:perating System Reference Manual

3.8.8 YIELD_CPU Process System Call

VIELo_cpu(Var ErrNUm:Integer;
TO_Any:Boolea1)

ErrNum: Error indication
TO_Any: Yield to any process, or only higher or equal

priority

Processes

Background processes should use YIELD_CPU often to allow other processes to
execute when they need to. Successive yields by processes of the same
priority result in a "round robin" scheduling of the processes. If To_Any is
true, YIELD_CPU causes the calling process to yield the CPU to any other
ready process. If To_Any is false, YIELD_CPU causes the calling process to
give the CPU to any other ready-to-execute process with an equal or higher
priority. If no process meets the TO_Any criterion, the calling process simply
continues execution.

3-17

t:peratlng System Reference Manual

3.8.9 MY _10 Process System call

t1V_ID:Longint

Processes

MY _10 is a function that returns the unique glObal identifier (a looglnt) of the
calling process. A process can use MY _IO to perform process handling calls
on itself.
For example:

setPriority_Process(ErrtUQ, My_Id, 100)

sets the priority of the call1ng process to 100.

3-18

0419-A

Chapter 4
Memory Management

4.1 £lata 8eg1leflts ••• 4-1

112 lt1e Logical [)ata 8eg1ler1t tol.I11Jer .. 4-1

4.3 StlaJ'e(jlJata8eg1leflts ... 4-2

4.4 PrIvate oata 8eg1leflts •• 4-2

4.5 0Jde 8eg1leflts ••• 4-2

4..6 ~ ••• 4-2

4.7 t-1enlory ~.ageIlleIlt Systenl C81ls .. 4-3

4.7.1 M,AJo<E OATASEG ••••••••••••••••.•••.••••••••••••••••••••••••••••.••••••••••••••••• 4-4
4.7.2 KILL DATASEG ... 4-6
4.7.3 CPEN-OATASEG .. 4-7
4.7.4 CLOSE OAT ASEG ••• 4-8
4.7.5 FLUSI-f" OAT ASEG •••••••••••••••••••.•• 4-9
4.7.6 SIZE OATASEG •••.•••••••••••••••••••••••• 4-10
4.7.7 II\FO-OATASEG ••.•.•••••••••••••••••••• 4-11
4.7.8 If'.FO-LDSN •• 4-12
4.7.9 II\F'O-~ESS .. 4-13
4.7.10 MEM-II\If'O ... 4-14
4.7.11 SET,Aj:)CESS OATASEG ... 4-15
4.7.12 Bll\O_OATASEG andL.Jf'.eII\O_OATASEG 4-16

Memory Management

Every process has a set of code segments and data segments which are in
physical memory when they are used. The logical address used by the process
must be translated into the physical address used by the memory controller.
This function is handled by the memory management unit (MMU~

4.1 oata SEgnents
Each process has a data segment that the ~rating System automatically
allocates to it for use as a stack. The stack segment's internal structures are
managed by the hardware and the ~rating System.

A process can acquire additional data segments for uses such as heaps and
interprocess communication. These additional data segments can be private
(or local) data segments or shared data segments. Pdvate data segments
can be accessed only by the creating process. When the process terminates,
any private data segments still in existence are destroyed. Sl7a.red data
segments can be accessed by any process that opens those segments.

The cperating System requires that data segments be in physical memory
before the data are referenced. The Scheduler automatically loads all of the
data segments that the program says it needs. It is the responsibility of the
programmer to. ensure that the program declares all Its needs by assocIating
itself with the needed data segments before they are needed.

This process of association is called binding. A program can bind a data
segment to itself in several ways. When a program creates a data segment by
using the MAKE_DATASEG call, the segment is automatically opened and
bound to the program. If a program needs to open a segment that was
created by another program, the £PEN_OAT ASEG call is used. That call binds
the segment to the calling process, as well as opening the segment for the
process. Since there may be times When a process needs to use more data
segments than can be bound at one time, the LteII'V_OATASEG call is
provided to unbind the data segment without closing it. The program can then
use BII'V_DATASEG to bind another data segment to the program.

The cperating System views all data segments except the stack as linear
arrays of bytes. Therefore, allocation, access, and interpretation Of structures
within a data segment are the responsibility of the program.

4.2 TIle Logical Data SEgnent ~r
The address space of a process allows up to 16 data segments bound to a
process at the same time, in addition to the stack. Each bound data segment
is associated with a specific region of the address space by means of a
Logical Data Segment Number (LDSN~ See Figure 3-1 for an illustration of
the address space of a process. While a data segment Is bound to the process,
it is said to be a member of the wOJ1(ing set of the process.

4-1

t:perating System Reference Manual MemolY Management

The process assocIates a aata segment wIth a specl flc LDSN In the
MAKE_DATASEG or (PE~CDATASEG call.
The LDSN" which has a valid range of 1 to 16" is local to the calling process.
The process uses the LDSN to keep track of where a gIven data segment can
be found. More than one data segment can be associated with the same LDSN"
but only one such segment can be bound to a given LDSN at any instant and
thus be a member of the working set of the process.

4.3 Shared Data ~ts
Cooperating processes can share data segments. Shared segments cannot be
larger than 128 Kbytes In length. As wIth local data segments" the segment
creator assigns the segment a File System pathname. All processes that share
that data segment then use the same pathname. If the shared data segment
contains address pointers to data within the segment" the cooperating
processes must also use the same LDSN with the segment. ThIs ensures that
all logical data addresses referencing locations within the data segment are
consistent for the processes sharIng the segment. A Shared data segment Is
permanent until explicitly killed by a process.

4.4 Private Data SEgnents
Data segments can also be private to a process. In this case" the maximum
:;ize of the segment can be greater than 128 Kbytes. The actual maximum
size depends on the amount of physical memory in the machine and the
number of adjacent LDSNs available to map the segment. The process gives
the desired segment size and the base LDSN to map the segment. The
Memory Manager then uses ascending adjacent LDSNs to map successive 128
Kbyte chunks of the segment. The process must ensure that enough
consecutive LDSNs ,are available to map the entire segment.
Suppose a process has a data segment already bound to LDSN 2. If the
program tries to bind a 256 Kbyte data segment to LDSN 1 ... the ~erating
System returns an error because the 256 Kbyte segment needs two consecutive
free LDSNs. Instead ... the program should bind the segment to LDSN 3 and the
system automatically also uses LDSN 4.

4..5 COde ~ts
Division of a program into multiple code segments (swapping units) is dictated
by the programmer through commands to the Compiler and Linker. The MMU
registers can map up to 106 code segments.

4.6 ~Ing
When a process executes ... the following segments must be In physical memory:

• The current code segment
• All the data segments In the process working set (the stack and all bound

data segments)
The ~erat1ng System ensures that this minimum set of segments is in physical
memory before the process Is allowed to execute. If the program calls a
procedure In a segment not in memory ... a segment swap-in request is initiated.

4-2

t:perating System Reference Mantlal Hemol)' Management

In the sImplest case, thIs request only requIres the system to allocate a block
of physical memory and to read in the segment from the disk. In a worse
case, the request may requIre that other segments be swapped out first to
free up sufficient memory. A clock algorithm is used to determine which
segments to swap out or replace. ThIs process Is Invisible to the program.

4.7 t-1emory I"Blagement System Calls
This section describes all the q:>erating System calls that pertain to memory
management. A summary of all the Q3erating System calls can be found in
Appendix A The following special types are used in memory management
calls:

Pattvlane = STRING [255];
Tdstype = (ds_sha:re(l, dS""pr1vate);
DsInfORec = Record

mem_s1ze:long1nt;
disc_size:longint;
t'UIb_~: 1nteger;
LDSN: integer;
bot.I1(F : boolea1;
presentF:boolean;
creatorf:boOlean;
rwaccess : boolean;
seg>tf: long1nt;
volnane: e nane; em; -

E_naIOO = string [32];

4-3

QJerating System Reference Manual

4..7.1 MAKE_DATASEG Memory Management System Call

MAKE_OATASEG (Var Errtt.ln:Integer;

ErrNum:

Var SeglaE:PattT1clE;
Hem_Size, Oisk_Size:longInt;

Var Ref Nun: Integer;
Var SegPtr:longInt;

ldsn:Integer
Ostype:Tdstype)

Error indicator
Segnarre: Pathname of data segment

MemolY Management

Nem Size:
Disk Size:
RefNum:

Bytes of memory to be allocated to data segment
Bytes on disk to be allocated for swapping segment
Identifier for data segment

Segptr
Ldsn:
Dstype:

Address of data segment
Logical data segment number
Type of dataseg (shared or private)

MAKE_DATASEG creates the data segment identified by the pathname ..
SegKme, and opens it for immediate read-write access. SegKme is a File
System pathname.
The parameter f'-1em_Slze determInes how many bytes of maIn memory are
allocated to the segment. The actual allocation takes place in terms of
512-byte pages. If the data segment Is private (OStype Is dS"'prlvate),
Mem_Slze can be greater than 128 Kbytes, but you must ensure that enough
consecuUve LDSNs are free to map the enUre segment.
DISk_SIze determines the number of bytes of swapping space to be allocated
to the segment on disk. If DiSk_Size is less than Mem_Slze, the segment
cannot be swapped out of main memory. In this case the segment is memory
resident untll It Is k1lled or until its size in memory becomes less than or
equal to its DiSk_Size (see SIZE_DATASEG~ The application programmer
Should be aware of the serious performance implications of forCing a segment
to be memory resident. Because the segment cannot be swapped out, a new
process may not be able to get all of its working set into memory. To avoid
thraShIng, each application should ensure that all of Its data segments are
swappable before it relinquishes the attention of the processor.
The call1ng process assocIates a LogIcal Data Segment Number (LDSN) with
the data segment. If this LDSN is bound to another data segment at the time
of the call, the call returns an error.
Refl\Un is returned by the system to be used in any further references to the
data segment. The qJerating System also returns SegPtr .. an address pointer to
be used to reference the contents of the segment. SegPtr points to the base
of the data segment.
My error condl Uons are returned In Errt-Un..

4-4

cperatlng System Reference Manual MemolY Management

When a data segment Is created~ It Immediately becomes a member of tne
working set of tne calling process. You can use LteII'D_DATASEG to free
the LDSN.

4-5

tperat1ng System Reference Manual

4.7.2 K1LL_OATASEG Memory McI'lagement system call

KILL_DATASEG (Var ErrtUl:lnteger;
Var ~ :Pa'tt1'lclle)

ErrNum: Error indicator
Segname: Name of data segment to be deleted

MemolY Management

When a process is finished with a shared Clata segment, it can issue a
K1LL_DATASEG call for that segment. (KILL_DATASEG cannot be used on a
private data segment.) If any process, including the calling process, still has
the data segment open, the actual deallocation of the segment is delayed until
all processes have closed it (see a..OSE_OATASEG~ During the interim period,
however, after a K1LL_DATASEG call has been issued but before the segment
is actually deallocated, no other process can open that segment.
KILL_OAT ASEG does not affect the membership of the data segment in the
working set of the process. The Refl'lm and ~tr values are valid until a
U.JlSE_DATASEG callis issued.
01e important note: normally, when a data segment is closed, the contents
are written to disk as a file with the pathname associated with the data
segment. If, however, the program calls KlLL_DATASEG on the data segment
before closing it, the contents of the data segment are not written to disk and
are lost when the segment is closed.

4-6

q:;eJatlng System Reference Manual

4.7.3 (PE~CDATASEG Memory McJlagement System Call

(lJEN_OATASEG (var Errtt.n:Integer;
var~:Pa~;
Var RefNUm:Integer;
Var ~r : Looglnt;

Ldsn: Integer)

ErrNum: Error indicator
Segname: Name of data segment to be opened
RefNum: Identifier for data segment

MemolY Management

SegPtr Pointer to contents of data segment
Ldsn: Logical data segment number

A process can open an existing shared data segment with (PEN_DATASEG.
The calling process must supply the name of the data segment (~) and
the Logical Data Segment Number to be associated with it. The LDSN given
must not have a data segment currently bound to it. The segment's name is
determined by the process that creates the data segment; it cannot be nUll.

The ~erating System returns both RefNt.m, an identifier for the calling
process to use In future references to the data segment .. and ~tr .. an
address pointer used to reference the contents of the segment.

When a data segment is opened, it immediately becomes a member of the
working set of the calling process. The access mode of the newly opened
segment is Readcx11y. You can use SETACCESS_DATASEG to change the
access rights to Readwrlte. You can use LteINJ._DATASEG to free the
LDSN.

You cannot use lPEN on a pr1vate data segment, sInce call1ng a....OOE on a
private data segment deletes it.

4-7

tpeIatfng SyS/.en1 RefeIenCe fvlanual

4.7.4 QOOE_OATASEG Memory Mcrlagement system Call

CUJSE_DATASEG (var ErrM.ln:Integer;
ReftUn: Integer)

ErrNum: Error indicator
RefNum: Data segment identifier

fvlemCJJY fvla?agement

Cl..OSE_DATASEG terminates any use of Retl\k.m for data segment operations.
If the data segment is bound to a Log1cal Data Segment Number,
Cl..OSE_DATASEG frees that LDSN. The data segment is removed from the
working set of the calling process. ReftoUn Is made invalid. My references
to the data segment using the original ~ will have unpredictable results.

If RefNlrn refers to a private data segment, CUJSE_DATASEG also kills the
data segment, deallocatlng the memory and dIsk space used for the data
segment. If RefNlrn refers to a shared data segment, the contents of the
data segment are written to diSk as If FLUSH_OATASEG had been called. (If
KILL OAT ASEG Is called before CLOSE OAT ASEG, the contents of the data
segment are thrown away when the lase process closes the data segment.)

The fOllowing procedUre sets up a heap for LisaGraf using the memory
management calls:

PROCEDl.R: In1tOata5etf'orLlsaGraf (var ErrorGode:1nteger);
CONST HeapSize=16384; (* 16 KBytes for graphics heap *)

D1SkS1ze= 16384;
VAR HeapBuf:LONGINT; (* po1nter to heap for LisaGraf *)

GrafHeap : PathNaroo; (* data segnmt path naroo *)
Heap_Refrun:INTEGER; (* refrun for heap data seg *)

BEGIN
GrafHeap:=lgrafheap";
CPEN_DATASEG(ErroI'Code, GrafHeap, Heap_Refrun, HeapBuf, 1);
IF (ErrorGode<>O) Tl-EN
BEGIN

IRITELN(" Lntlle to ~', Grafheap ... I Error 1s ", Errorcode)
END
ELSE

EN>;

In1 tHeap(POINTER(HeapBuf), POINTER (HeapBuf +HeapS1ze),
~rror);

4-8

t:peratfng System Reference Manual

4.7.5 FLUSH_DATASEG Memory Malagement System Call

FUJSH_DATASEG (Var ErrtUl:Integer;
Ref tun : Integer)

ErrNum: Error indicator
RefNum: Data segment identifier

Memo;y Management

FLUSH_DATASEG writes the contents of the data segment identified by
ReftU11 to the disk. (Note that a...OSE_DATASEG automatically flushes the
data segment before closing it, unless KILL_DATASEG was called first.) This
call has no effect upon the memory residence or binding of the data segment.

4-9

t:peratlng System Reference Manual

4.7.6 SIZE_DATASEG Memory rvIcrlagement System Call

SIZE_DATASEG (var ErrtUn:lnteger;

ErrNum:
RefNum:

Refrun: Integer;
DeltaMemSlze:Longlnt;

Var NelMemSize:Longlnt;
DeltaOiskSize:LongInt;

Var NeWOiSkSize:Longlnt)

Error indicator
Data segment identifier

MemolY Management

DeltaHemSize: Amount in bytes of change 1n roomory
allocation

NewHemSize:
DeltaDiskSize:
NewDiskSize:

New actual size of segment in memory
Amount in bytes of change 1n disk allocation
New actual disk (swapping) allocation

SIZE_DATASEG changes the memory and/or disk space allocations of the data
segment referred to by Refl\k.rn. Both DeltaMemSlze and DeltaDiskSize can
be either positive, negative, or zero. The changes, to the data segment take
place at the high end of the segment and do not destroy the contents of the
segment., unless data are lost 1n shrinking the segment. Because the actual
allocation is done in terms of pages (S12-byte blOCkS), the NewMemSlze and
NewOiskSize returned by SIZE_DATASEG may be larger than the old size plus
delta size of the respective areas.
If the NewDtskSize is less than the NewMemSize, the segment cannot be
swapped out of memory. The appl1catlon programmer should be aware of the
serious performance implications of forcing a segment to be memory resident.
Because the segment cannot be swapped out, a new process may not be able
to get all of its working set into memory. To avoid thrashing, each
application should ensure that all of its data segments are swappable before It
relinquishes the attention of the processor.
If the necessary adjacent LDSNs are available, SIZE_DATASEG can increase
the size of a private data segment beyond 128 Kbytes.

4-10

t:peratlng System Reference Hanus}

4.7.7 Ii'FO_DATASEG Memory Management system Call

IN='O_DATASEG (var Errtt.a:Integer;
Reftt.ln: Integer;

Var Dslnfo:DslnfoRec)

ErrNum: Error indicator
RefNum: Identifier of data segnent
DsInfo: AttribUtes of data segment

MemolY Management

IN=O_DATASEG returns information abOUt a data segment to the calling
process. The structure of the DsInf~ record is:
REaR)

t1eoLSize : LongInt (* Bytes of menDry allocated to data SE9Blt *);
D1sc_S1ze:LoogInt (* ByteS Of d1sk space allocated to segIBlt *);
~:Integer (* current rumer Of processes with ~t open *);
ldsn:Integer (* lOSN for segoont bind1ng *);
EkJtI'd=:Boolecwl (* True if segnent is bou1d to LDSN of calling proo *);
Presentf:Boole<l'l (* True 1f segrent 1s present 1n IBIlry *);
GreatorF:Boolecra (* True if the call1ng process 1s the creator *)

(* of the segBlt *);
RWAccess:Booleal (* True if the calling process has write access *)

(* to seg1Blt *)
EN);

4-11

t:peratlng System Reference HanlIal

4.7.8 IN=O_lDSN Meroory McI.agemeltt System Call

Itt='O_LDSN (Var ErrtUl:Integer;
ldsn: Integer;

Var RefNUm:Integer)

ErrNum: Error indicator
Ldsn: Logical data segnent nunDer
RefNum: Oata segment identifier

MemolY Management

D\F'O_LOSN returns the refnum -of the data segment currently boUnd to ldsn
You can then use IN=O_DATASEG to get information about that data segment.
If the lDSN specified is not currently boUnd to a data segment, the refnum
returned is -1.

4-12

Q:Jerating System Reference Manual

4.7.9 II'FO_Pll:RESS Memory Mclsgemellt System call

Itt=O_AllH:SS (Var Errtl.n:Integer;
Address:Longint;

Var ReftUn:Integer)

ErrNum: Error indicator

/'1emol)l Management

Address: The address about Which the program, needs information
RefNum: Oata segment identifier

This call returns the refnt.m of the currently bound data segment that
contains the address given.
If no data segment that contains the address given Is currently boUnd to the
calling process, an error indication is returned In EIltUTl.

4-13

qJemting System Reference ,..,tanua/

4..7.10 t-£M_JN=O Memory Mci.agelilelit system call

tEtCI~O (var ErrtUl:lnteger;
Var swapspace;

Dataspace;
cur cooeslze;
Hax=codeslze:Longlnt)

ErrNum: Error indicator

tvtemory ""1anagemen1

Swapspace: AfOOUI1t, in bytes, of swappable system JreJOOry
available to the calling process

Dataspace: Amount, in bytes, of system memory that the
calling process needs for its boUnd data areas,
including the process stack and the shared
intrinsic data segment

Cur_codesize: Size, in bytes, of the calling segment
Hax_codesize: Size, in bytes, Of the largest code segment

within the address space of the calling process
This call retrieves information about the memory resources used by the call1ng
process.

4-14

t:perating System Reference MantlaJ MemolY Management

4.7.11 SETACCESS_DATPS:G r--1emory IV1anagement System Call

SETAreESS_DATASEG (Var ErrttJn:Integer;
Ref tun: Integer;
ReaOO'll y:Booleal)

ErrNum: Error indicator
RefNum: Data segrrent identifier
Readonly: Access mode

A process can control the kinds of access it is allowed to exercise on a data
segment with the SETACCESS_DATASEG call. Refrun is the identifier for
the data segment. If Readonly is true, an attempt by the process to write to
the data segment results in an address error exception condition. To get
readwrite access, set Readonly to false.

4-15

cperatJng system Reference Manual Memory Management

4.7.12 BINJ_DATASEG cn:J L,..fUNJ_DATASEG Memory I'1CIlagemeflt System calls

BIND_DATASEG{Var ErrNum:Integer;
Reft«.ln: Integer)

t.teIND _ DATASEG(Var EITtUI: Integer;
ReftUI: Integer)

ErrNum: Error indicator
RefNum: Data segment identifier

BIf\D _DAT ASEG binds the data segment referred to by RefNUn to its
associated Logical Data Segment Number(s). l.N3If\D_DATASEG unbinds the
data segment from its LDSNs. BINJ_DATASEG causes the data segment to
become a member of the current working set. At the time of the
BIf\D_DATASEG call, the necessary LDSNs must not be bound to a different,
data segment. U'IUNJ_OATASEG frees the associated LDSNs. A reference to
the contents of an unbound segment gives unpredictable results.
«PEN DAT ASEG and MAKE OAT ASEG define which LDSNs are associated
with a given data segment. -

4-16

029-0420-A

Chapter 5
Exceptions and Events

5.1 E><CeJ)tlOl'lS .•••.•.•.•••.••.••••••••..•••••.•••••.••••••••••.••••••••.•.••••.•••••••••.••••••.••••. 5-1

52 Systef1l-[)eflt' ExceptlOl1S •••••••••••••••••••••••••••••••••••.••••••••••••••••••••••••••• 5-2

5.3 Exceptloo l-tCIldlers ••••••••••••••••••••••••••••••••••.••.••••.•.•..•••••.•••.•••••••...•••.•• 5-2

5.4 EverlU ...•.•.•.•.•...••....••..•••..•.••.•....•.••...••.....•.•...•••...•••..•••...••.••••••.•.•• 5-5

55 Everlt CllarYlels .. 5-5

5.6 TIle System ClOCk .••••••.•.•••••••••••••.••••••••••••••••••••••.•.••••••••••.•••••••••••••• 5-10

5.7 Exceptloo Mauagemellt System calls ... 5-10

5.7.1 ClE.CLAAE EXCEP I-D.... ... 5-11
5.7.2 DISABLE EXCEP .:: .. 5-12
5.7.3 EN.ABl.E -EXCEP .. 5-13
5.7.4 INfO EXCEP ... 5-14
5.7.5 SIGI\iAt.. EXCEP ... 5-15
5.7.6 FLlJSH_EXCEP .. 5-16

5.8 Everlt t-1aIlagelllei It System calls ... 5-17

5.8.1 M~ EVENT Cf-fN ... 5-18
5.8.2 KILL EVENT 6J-t.1 ~ .. 5-19
5.8.3 (PEN- E'lENT-a-iI'J .. 5-20
5.8.4 CLosE' EVENT CJ-N ... 5-21
5.8.5 INFO EVENT CI-tN ... 5-22
5.8.6 WAIT E'JE:NT CJ-iN .. 5-23
5.8.7 FLusFi E'lENT Cf-N .. 5-25
5.8.8 SEI\O _EVENT _ 6t-N .. 5-26

5.9 Clocl< System calls •••••••••.•.••.••••.••.•••••••••••.••••.••••••.••••.•••••.•••.•••••••••• 5-27

5.9.1 ClE:LAY TIfVE .. 5-28
5.9.2 GET niVE ... 5-29
5.9.3 SET -LOCAL.. TlfvE DIFF .. 5-30
5.9.4 cct.J\IE:RT _ Tl~ .• : ... 5-31

Exceptions and Events

Processes have several ways to keep informed about the state of the system.
Normal process-to-process communication and synchronization employ pipes"
shared data segments" or events. Abnormal conditions, inclUding those your
program may define" employ exceptions (lnterrupts~ Exceptions are signals to
which the process can respond in a variety of ways under your control.

5.1 Exceptions
Normal execution of a process can be interrupted by an exceptional cond1 tion
(SUCh as division by zero or reference to an invalid address~ Some error
condit1ons are trapped by the hardware and some by the system software. The
process itself can define and sIgnal except10ns of your choice.
When an exception occurs" the system first checks the state of the exception.
The three exception states are:

• Enabled
• Queued
• Ignored

If a system-CJefined exception Is enable{/, the system looks for an associated
user-defined handler. If none is found, the system invokes the default
exception handler, which usually aborts the process that generated the
exception. If a user-defined exception is enabled, the system invokes the
associated user-defined exception handler. You create a new exception by
declaring and enabling a handler for it.
If the state of the exceptlon Is llllelJet.'t the exception Is placed on a queue.
When the exception Is subsequently enabled" the queue Is examined and the
appropriate exception handler Is invoked. Processes can flush the exception
queue.
If the state of the exception is ignore{/, the system detects the occurrence of
the exception, but the exception is neither honored nor queued. Note that
ignoring a system-defined exception has uncertain effects. Although you can
cause the system to ignore even the SYS _ TERMINATE exception, that
capability is provided so that your program can clean up before terminating.
You cannot set your program to ignore fatal errors.
Invocation of the exception handler causes the Scheduler to run" so it is
possible for another process to run between the signaling of the exception and
the execution of the exception handler.

5-1

qJerating System Reference Manual Exceptions and Events

52 System-Deflned Exceptioos
Certain exceptions are predefined by the q:>erating System. These inclUde:

• Division by zero (SYS_ZERO_DIV~ The default handler aborts the process.
• Value out of bounds (that ls~ range check error) or 111egal string index

(SYS_ VALUEJm~ The default handler aborts the process.
• Arithmetic overflow (SYS_OVERFLOW~ The default handler aborts the

process.
• Process termination (SYS _ TERMINATE~ This exception is signaled 'When a

process termlnates~ or 'When there Is a bus error~ address errOL illegal
instruction~ privilege violation~ or 1111 emulator error. The default handler
does nothing. This exception Is different from the other system-defined
exceptions in that the program always terminates as soon as the exception
occurs. In the case of other (non-fatal) errors~ the program Is allowed to
continue until the exception is enabled.

Except where otherwise noted" these exceptions are fatal if they occur within
cperatlng System code. The hardware exceptions for parity error, spurious
interrupt, and power failure are also fatal.

5.3 Exception t-IcnD.ers
A user-defined exception handler can be declared for a speCifiC exception.
This exception handler Is coded as a procedure but must follow certain
conventions. Each handler must have two input parameters: Envlrorrnent_Ptr
and oata_Ptr. The ~rat1ng System ensures that these pointers are valld
When the handler is entered. Environment_ ptr pOints to an area in the stack
containing the Interrupted envIronment: regIster contents .. condition flags .. and
program state. The handler can access this environment and can modify
everything except the program counter, register A7, and the supervisor state
bit in the status register. Data_Ptr points to an area in the stack containing
Information about the specIfIc exception.
Each exception handler must be defined at the global level of the process,
must return~ and cannot have any EXIT or global GOTO statements. Because
the ~erating System disables the exception before calling the exception
handler" the handler should re-enable the exception before It returns.
If an exception hancjIer for a gIven exception already exists when another
handler is declared for that exception, the old handler becomes dissociated
from the exception.
M exception can occur during the execution of an exception handler. The
state of the exception determines whether it Is honored"placed on a queue, or
Ignored. If the second exception has the same name as the exception that Is
currently being handled and its state is enabled, a nested call to the exception
handler occurs. (The system always disables the exception before calling the
exception handler, hOwever. Therefore, nested handler calling occurs only if
you explicitly enable the exception.)

5-2

t:peratlng System Reference Hanual Exceptions and Events

There Is an except1on-occurred flag.. Ex_occurre(Cf .. for every declared
exception; it is set whenever the corresponding exception occurs. This flag
can oe examined and reset using the II'FO_EXCEP system call. O1ce the flag
is set, it remains set until FLLJSI-LEXCEP is called.
The following program fragment gives an example of exception hancll1ng.
PROCEI:X..RE Hemler (Envlnnnent_Ptr:p_env _blk;

Data_PtI".p _ex_data);
VAA EIl1'lmINTEGER;
BEGIN
(ttf:nvlronment_Ptr points to a reroro contalnlng the progrcm *)
(*COU1ter CI'ld all registers. oata_ptr points to an array of 12 *)
(*longlnts that cootaln the event header CI1d text If thls ha'ldler *)
(*1s associated with an event-call ctmnel (see belOW) *)

.
EtV;

BEGIN (*Main progran*)

Excep_ncme:-'ErdJfOoc';
DEa...AAE_EXCEP _t-D...(eJJfU1\,excep_raTle)iHa1dler);

.
SIGNAL_EXCEP(eI'frl'UMxcep_ncme..excep_data);

At the time the exception handler is invoked for a SYS _TERMINATE
exception, the stack is as shown in Figure 5-1.

S-3

t:pef8tJng System Reference Mantlal Exceptions and Events

low add ress LInk

Program Counter

oata_ptr
~

",--
Envlronment_Ptr

Terminate Flag

Exception Kind +--'

Function Code (fc)

Access Address (aa) Exc eption Data Block

Instruction Register (SY S _TERMINATE Exception)

Status Register

Program Counter
...

~ Program Counter Exc eptlon Environment Block

Status Register

00-07 and AO-A7

Link

Program Counter

tllgn aaaress

Figure 5-1
Stack at Exceptlon Henner Invooatlon

The Exception Data Block given here reflects the state of the stack upon a
SYS_ TERMINATE exception. The TeIm_Ex_Data record (described in Appendix
A) gives the various forms the data block can take. The ExcepJ<lnd field (the
first, or Oth, longlnt) gives the cause of the exception. The status register and
program counter values in the data block reflect the true (current) state of
these values. The same data in the Environment block reflects the state of

5-4

cperating System Reference Manual Exceptions and Events

these values at the time the exception was sIgnaled, not the values at the
time the exception actually occurs.
For SYS_ZERO_DIV, SYS_ VALUEJ.m, and SYS_OVERFLOW exceptions, the
Hard_Ex_Data record described in Appendix A gives the various forms that
the data block can take.
In the case of a bus or address error, the PC (program counter) can be 2 to 10
bytes beyond the current instruction. The PC and A7 cannot be modified by
the exception handler.
When a disabled exception Is re-enabled, a queued exception may be signaled.
In this case, the exception environment reflects the state of the system at the
time the exception was re-enabled, not the time at which the exception
occurred.

5.4 Events
M event is a piece of information sent by one process to another, generally
to help cooperating processes synchronIze theIr activIties. M event Is sent
through a kind of pipe called an event channel. The event is a fixed-size
data block consisting of a header and some text. The header contains control
information, the identifier of the sending process, and the type of the event.
The header Is wrItten by the system .. not the sender, and Is readable by the
receiving process. The event text is written by the sender; its meaning is
defined by the sendIng and receivIng processes.
There are several predefined system event types. The predefined type "user" is
assigned to all events not sent by the qJerating System.

5.5 Event O'aYlels
Event channels can be viewed as higher-level pipes. Ole important difference
Is that event channels requIre fixed-sIze data blOCks, whereas pIpes can
handle an arbitrary byte stream.
M event channel can be defined globally or locally. A global event channel
has a globally defined pathname catalogued In the Flle System and can be
used by any process. A local event channel, however, has no name and is
Known only by the ~ratlng System and the process that opened it. Local
event channels can be opened by user processes only as receivers. A local
channel can be opened by the father process to receive system-generated
events pertaining to Its son.
There are two types of glObal and local event channels: event-walt and
event-call. If the receIvIng process Is not ready to receive the event, an
event-walt type Of event Channel queues an event sent to It. M event-call
type of event Channel, hOWever ... forces Its event on the process, in effect
treating the event as an exception. In that case, an exception name must be
given when the event-call event channel Is opened, and an exception handler
for that exception must be declared. If the process reading the event-call
channel is suspended at the time the event is sent, the event Is delivered
when the process becomes active.

5-5

qJeratJng system Reference I'1antIaJ Exceptions and Events

When an event Channel Is created, the qleratIng system preallocates enough
space to the channel for typical interprocess communication. If
SEI'O_EVEN'T_CI-N Is called when the Channel dOes not have enough space for
the event, the call1ng process is blocked until enough space is freed up.
If WAlT_EVENT_CI-N is called When the channel is empty, the Call1ng process
is blocked lIltll an event arrives.
The fOllowing code fragments use event-wait channels to handle process
synchronIzation. ~rat1ng System calls used In these program fragments are
dOCUmented later In this chapter.
Process A:

.
cITI rae : = 'event chcnlel 1'·
exciption: = "; - - ,
receiver : = TRlE;
(IlEN_EVENT_~ (errint, cITI_rae, refrunl., exception, receiver);
cITI rae : = 'event chcnlel 2-·
receiver := FAlSE; - ,
(JJfN_EVENTJlfi (errint, Chl_rae, refrutZ, exception, receiver);
waitlist.length := 1;
wa1 tlist. refB.R[0] : = reflUl1;
REPEAT

eventl.JJtrA .[0] := agreed_'4D'Lvalue;
interval. sec : = 0; (* send event 1nInediately *)
interval.1IISeC : = 0;
sat) _EVENT _afi (errint, refrutZ, eventl..,ptr, interval, clktine);
IAIT_EVENT_Dfi (errint, waitlist, refR.IILSipl1rY:J, event2..,Ptr);

.
(* processing perfonEd here *)

.
lIflIl AllOone;

S-6

cperating System Reference ManiJa/ Exceptions and Events

Process B:

.
Chl name : = 'event chcnlel 2';
exciptioo: = "; - -
receiver := TRlE;
(FEN_EVENT _ Ctft (errint, ctwLrBE, refrutl, eXDepti(ll, receiwr);
Chl name : = 'event chcnlel 1';
receiver : = fALSE;- -
(FEN_EVENT _~ (errint, Chl_name, refrunl, excepti(ll, receiver);
wai tlist . length : = 1;
laitlist.refnum[O] := refound;
REPEAT

event2J)tr" • [0] : = agreed_'4O'l_ value;
interva1.sec := 0; (- sem event illlEdiately -)
interval.msec : = 0;
IAIT_EVENT_Dfi (errint, waitlist, ref'ULsipling, eventl.-Ptr);

(* prooessing perfOrmed here *)

.
SfN)_EVENT_Ctft (errint, refrutl, event2.J)tr, interval, clktine);

lMfIl AllDone;

The order of execution of the two processes 1s the same regardless of the
process prlOrltles. Process sWitch always occurs at the WAIT_EVENT_~
call.
In the following example using event-call channels, process switch may occur
at different places in the programs. Process A calls YIELD_CPU, Which gives
the CPU to Process B only If Process B Is ready to run.

5-7

cperat/ng System Reference M8I'UIJ

Process ~

PfUBlft HcnJler(Env.J)tr :p_flW_bll(;
Data...,Ptr:p_ex_data);

.
BEGIN

everlt2.Jltr'" . [0] : = agreed_t.,ULV8lue;

(* process:l.r¥J perfol'lEd here *)

.
1nterval.sec := 0; (* send ~ t.Bd1ately *)
1oterval.lISeC :. 0;
SEtf>_EVENT_atf (errtnt, ~event2...Ptr, 1nterval, clkt1ne);
to_Sly : = true;
YIELD_mJ (errlnt, to_CIlY);

EH>;

BEGIN (. Ha10 progr.-)

1Ea..ARE_ExtEP _ID.. (err1ot, e>«leP_naE_1, iiHaldler);
em rae := "event chcnlel r-
exception: = e><eep]ae _1; - ,
receiver := TRlE;
(FEN_EVENT _(Hf (errint, ch"U'laIE, refrunl, exception, receiver);
em JlCIIB : = °event chcnlel 20

•

receiver := FN...SE;- - ,
except1oo: = •• ;
(FEN_EVENT_a.. (errint,clTLraE, refrul2,e>eception, receiver);
SEtt>_EVENT_la (errlnt,1'8fI'UI2, eventZ.,.Ptr, intervaL clktiE);
to_Sly : = true;
YIELD_mJ (errint, to_CIlY);

5-8

t:peratlng System Reference Manual Exceptions and Events

Process B:

PIDElR HEI1dler(Env.J)tr :p_env _bll<.;
Data...,ptr :p_eX_data);

.
BEGIN

event2j)tr ... (0) := agreed_t4XIl_value;

(* processing perfol'lRed here *)

.
interval. sec : = 0; (* send event ililrediately *)
interval.m8eC : = 0;
SEN>_EVENT_Cffl (err1nt, refrunl, event2-ptr, 1ntervaL clktim);
to CWly : = true;
VIElO_(llU (errlnt, to_CflY);

EtI);

.
BEGIN (*Main program *)

[Ea..ARE _ E)((El_JO... (errint, excep _naRej_l, iiHamler)
em·naE : = • event chcnlel 1·;
exceptlon:= excepjiane_l; -
receIver -= F~SE;
exceptloo: = ";
lFEN_EVENT -Cffl (errint, em_raE, refrUnl, exceptlm, receiver);
em nane : = • event Chamel 2··
receiver : = TRlE; - - ,
£PEN_EVENT _ (}fl (errint, em _rtalRe, refrun2, exception, receiver);

.
EtI).

S-9

cperatlng System Reference Ma?lI8J Exceptions and Events

5.6 The System Clock
A process can read the system clock time, convert it to local time, or delay
its own continuation untU a given time. The year, month.. day, hOUr, minute,
second, and millisecond are available from the Clock. The system clock is set
up through the WorkShOp shell. For more Information, see the WOJ1<sllop User's
Guide for tile Lisa.

5.7 Exceptloo MaI.ageI re It System calls
This section describes all the ~rating System calls that pertain to exception
management. A surrmary of all the qleratlng system calls can be found In
Appendix A. The follo'-lllng special types are used in exception management
calls:

T _eX_naE = S1RIr«i[16];
longadr = Alongint;
T_eX_data = Array [0 •• 11] Of longlnt;
T ex sts = Record
- - ex occurred f:bOOlean;

ex-state:t ex state;
ruR_excep: Integer;
hdl_adr: longadr;

end;
T_ex_state = (enabled, queued, Ipred);

5-10

cperating System Reference Manual Exceptions and Events

5.7.1 a:a..ARE_EXCEP _t-D... ExcepUm Mel aagemellt System call

[ECLARE_EXCEP _ JD.. (Var ErrtUn: Integer;
Var Excep _NellIe: t _ex _nanE;

Entry_Polnt:LongAdr)

ErrNUm: Error indicator
Excep_Naroo: NaJre of exception
Entry_Point: Address of exception handler

a::a...ARE_EXCEP J-O .. sets the q>erating System so that the occurrence of
the exception referred to by Excep J'bne causes the execution of the
exception handler at Entry_Point

ExcepJ'aTte is a character string name with up to 16 characters that is
locally defined In the process and Known only to the process and the q>erating
System. If Entry_Point Is nll and Excep_Ncme specifIes a system exception,
the system default exception hanctler Is used. Any previously declared
exception handler 1s dissociated by th1s call. The exception 1 tsel f 1s
automatically enabled.
If any Excep_Name exceptions are queued at the time of the
DEQ..ARE_EXCEP _HJL call, the exception is automatically enabled and the
queued exceptions are handled by the newly declared handler.
You can call DEa..ARE_EXCEP _H:l... with an exception handler address ofnll
to dissociate your handler from the except1on. If there Is no system handler
defined, the program that signals the exception receives an error 201.

5-11

tperatlng system Reference Manual

5.72 DISABl....E_EXCEP ExcepUon Mar.agemel.t System call

DlSABlE_EXlEP (Var Errtt.ln:lnteger;
Var Excep Ncme: t ex 1'1CIIe;

Queue:Booleal) -

ErrNum: Error indicator

Exceptions and Events

Excep _Name: Name of exception to be disabled
Queue: Exception queuing flag

A process can expl1c1tly dIsable the trappIng of an exception by call1ng
DISt68..E_EXCEP. Excep_NcI'ne Is the name of the exception to be dIsabled.
If ~ Is true and an exception occurs, the exception Is queued and Is
ha'ldled When It Is enabled again. If Queue Is false, the exception Is Ignored.
When an exception handler Is entered, the state of the exception In question
Is automatically set to queued.
If an exception handler Is assocIated through tPEN_EVENT_a-N wIth an
event channel and DISABLE_EXCEP is called for that exception, then:

• If Queue is false, and if an event is sent to the event channel by
~ EVENT a-N, the SEI\D E\JENT a-N call succeeds, bUt it is
equlv8ient to not calling SEN5_EVENf_~ at all.

• If Queue Is true, and If an event Is sent to the event channel by
SEN.) EVENT ct+t the SEN) EVENT CI-N call succeeds and a call to
WAlT:EVENT]:l-N receives the event:" thUs cJequeulng the exception.

5-12

qJeratlng system Refereme I'18ntI8J

5.7.3 ENABl..E_EXCEP ExcepUm 1'1cI8jelIBlt System Call

ENA8lE_EXCEP (var ErrtUa:lnteger;
Var Excep-t1Clle:t_ex_nclE)

ErrNUm: Error indicator

ExceptllYlS and Events

Excep_Nante: Name of exception to be enabled

ENABl.E_EXCEP causes an exception to be handled again. Since the
~rating System automatically disables an exception when its exception
handler is entered (see DISAB...E_EXCEP), the exception handler shOUld
explicitly re-enable the exception before it returns to the process.

5-13

QJeIatlng system Reference Manual

5.7.4 IN=O_EXCEP EXcepUOO Management system Call
IN=O_EXlE' (var ErrM.a:lnteger;

Var Excep_Nane:t_ex_nallle;
Var Excep_status:t_ex_sts)

ErrNum: Error indicator
Excep_Nalre: Name of exception
Excep_Status: Status of exception

Exceptions and Events

IN=O_EXCEP returns Information abOut the exception specIfied by
Excep J'ene. The parameter EXcep_status Is a record containIng Information
abOUt the exception. ThIs record contains:

t ex sts = RECORD (* exception status *)
Ex_occumKCf:Boolean;(-exceptl00 occurred flag *)
Ex_state:t_ex_st8te; (* exceptlm status *)
ftilLexcep:1nteger; (wno. Of except10ns (JJetJed *)
ItJl_adr:longadr; (-exceptlm Nniler·s addresS *)

00;

01ce EX_occurred_f has been set to true, only a call to FLUSI-CEXCEP can
set it to false.

5-14

t:perstlng System Reference HantIal

5.75 SIGNPL_EXCEP ExcepUm Management System call

SIGNAL_ExtEP (Var Errtt.:Integer;
Var Excep _Malle: t_ex _rale;
Var ExcepJlata: t_ex_data)

ErrNum: Error indicator

Exceptions and Events

EXC9p_name: Nane of exception to De sigmled
Excep_Data: Information for exception handler

A process can sIgnal the occurrence of an exception by calling
SIGNAL_EXCEP. The exception handler associated with Excep_Ncme is
entered. It Is passed Excep_Data, a data area containing Information abOUt
the nature and cause of the exception. The structure of this information area
is:

array [o .. size _eXdata 1 Of longlnt
SIGNAL_EXCEP can be used for user-defined exceptlons and for testing
exception handlers defined to handle system-defined exceptions.

5-15

q:Jeratlng System Reference Manual

5.7.6 FLlB·CEXCEP E>ecepUon M8uagemeflt system Call
FLuStCEXCEP (Var ErrtUn:lnteger;

Var Exmp3eme:t_ex_nanle)

ErrNUm: Error indicator

Exceptions and Events

Excep _Name: Name of exception WhOse queue is flushed

FLL&·CEXCEP clears out the queue assocIated wIth the exception
Excep_Ncme and resets its "exception occurred" flag.

5-16

cperatJng System Refereme I'-'1a'lJa/ ExceptJcns W1d Events

5.8 Event I"1auagemerat System Galls
This section describes all the q:>eraUng System calls that pertain to event
management A summary of all the Q')eratlng System calls can be found In
AppendIx A The following special types are used In event management callS:

Pattn::IIE = STRINi[255];
T_ex_name = STRIN2[16];
T em sts = Record
- - chn_type:chn_kiro;

num_events:integer;
open _ recv : integer;
operl_ sam: integer;
ec _ rane :pattflalle;

ern;
chnJ<1ro = (wit_ee, call_ec);
T witllst = Record
- length: integer;

refrun:array [0 .. 10] of integer;
end;

P r eventblk = "'r eventblk;
R=eVentblk = Record

event header: t eheader;
event-text: t eVent text;

end;- - -
T eheOOer = Record
- sendjpld:longint;

event_type:longint;
ern;

T _event_text = array [0 .. 9] of longint;
P s eventblk = "s eventblk;
s-eVentblk = T event text;
TIlEstnp_interVal = Record

Tine reo = Record

sec: longint;
1IISeC: o .. 999;

end;

- ~:integer;
day:1. .366;
hour:-23 •• 23;
tnirute: -59 .• 59;
secood:O •• 59;
1IISeC: O •• 999;

erd;

5-17

qJeratlng system Reference Manual

5.8.1 MAKE_EVENT_a-N Event Maragement System Call

tIAKE_EVENT_afl (Var Errtt.n:lnteger;
Var Ewnt_D'n_Nane:Pattnlle)

ErrNum: Error indicator
Event_Chn_Nane: Pathl'lane of event Channel

Exceptions and Events

MAKE_EVENT_a-t\I creates an event channel with the name given In
Event_OTl_Ncme. The name must be a File System pathname; it cannot be
null.

5-18

qJeratJng System Reference Manual

5.8.2 KlLL_EVENT_CI-N Event Mcmgement System Call

KILL_EVENT_CIfl (var ErrtOn:lnteger;
Var Event_ Ol'l_Ncme :Pattl1ale)

ErrNum: Error indicator

ExceptJons and Events

Event_Chn_Name: Pathname of event channel

To delete an event channel, call KILL EVENT a-N. The actual deletion Is
delayed until all processes using the event channel have closed it. In the
period between the KILL_EVENT _a-N call and the channel's actual deletion,
no processes can open it. A channel can be deleted by any process that
knows the channel's name.

5-19

cperatlng System Reference Manual

5.8.3 CPEN_EVENT _ CI-f\J Event Management System Call
£PEN_EVENT _CI-fl (var ErrNll1l: Integer;

Var Event Oln N<me: PattlrlanE;
Var RefnUm:Integer;

Excep _ Nafoo : t _ex _.rKIOO;
Receiver : Boolean)

ErrNum: Error indicator

Exceptions and Events

Event Chn Name: Pathname of event channel
RefNum: - Identifier of event channel
Excep_Name: Exception name, if any
Receiver: Access mode of calling process

CPEN_EVENT_CH\I opens an event channel and defines its attrIbutes from ttle
process point of view. RefNtm is returned by the ~erating System to be
used in any further references to the channel.
Event_Chn_Name determines whether the event channel is locally or globally
defined. If it is a null string, the event channel is locally defined. If
Event_Chn_Name Is not null, it is the File System pathname of the channel.
ExcepJ~clTle determines whettler the channel is an event-wait or event-call
channel. If it is a null strIng, the channel is of event-wait type. Otherwise,
the channel is an event-call channel and Excep_NcIne is the name of the
exception that is signaled when an event arrives in the channel. Excep_Name
must be declared before its use in the CPEN_EVENT_~ call.
Receiver Is a Boolean value indIcating whether the process Is openIng the
channel as a sender (Receiver Is false) or a receiver (Receiver is true~ A
local channel (one with a null pathname) can be openea only to receive
events. Also, a call-type channel can only be opened as a receiver.

5-20

cperatlng System ReFerence fvIantI8l

5.8.4 a..(l)E_EVENT_a-N Event ManagelIlel'lt System Call

CL.OSE_EVENT_~ (var ErrtUn: Integer;
ReftUI: Integer)

ErrNum: Error indicator

Exceptions a?d Events

RefNum: Identifier of event channel to be closed

a..OSE_EVENT_ct-N closes the event channel assocIated wIth RefN.m My
events queued In the chamel remaIn there. The channel cannot be accessed
until It Is opened agaIn.

If the channel has previously been killed with KILL_E~NT_CI-f'.l" you cannot
open it after It has been closed.
If the channel has not been killed" it can be opened by CPEN_E~NT_ct-N.

5-21

cperatlng System Reference Manual

5.8.5 II'FO_EVENT _ ~ Event f'1aIlageffiet'lt System Call

Itt=O_EVENT_~ (Var ErrtUt:Integer;
ReflUn: Integer;

Var Chn_Info:t_Chn_sts)

ErrNum: Error indicator
RefNum: Identifier of event channel
Chn_Info: Status of event channel

Exceptions and Events

II\FO_EVENT_a-N gives a process information aoout an event channel. The
~erating System returns a record, Oln_Info, with information pertaining to
the channel associated with Refl'Un.

The definition of the type of the Oln_lnfO record is:

t cITl sts =
- - REC(R) (* event ChcITleI status *)

CITl_type:CITl_kind; (* wait_ec or call_ec *)
Num_events:lnteger; (* number of queued events *)
Open_recv:Integer; (* I'UItler of processes reading Chcn1e1 *)
Open_send: integer; (* no. of processes sending to this

chcmel *)
Ec_name:pattname; (* event chamel name *)
EN);

5-22

cperating System Reference Manual

5.8.6 WAIT_EVENT_a-N Event Mcrlagement System Call

WAIT_EVENT -':H-4 (Var ErrfoUn: Integer;
Var wait list:t waitlist;
Var RefNUm:Int9Qer;

Event_ptr :p_f_eventblk)

ErrNum: Error indicator

Exceptions and Events

Wait List:
RefNum:
Event_Ptr:

Record with array of event channel refnums
Identifier of channel that had an event
Pointer to event data

WAIT_EVENT_a-N puts the calling process in a 'Waiting state pending the
arrival of an event in one of the specified channels. Walt_list Is a pointer to
a list of event channel identifiers. When an event arrives in any of these
channels, the process Is made ready to execute. Re1N.rn identifies 'Which
channel got the event, and Event_Ptr points to the event itself.

A process can 'Wait for any Boolean combination of events. If it must 'Wait
for any event from a set of channels (an CR condition), it should call
WAIT_EVENT_CI-N 'With Walt_list containing the list of event channel
identifIers. If .. on the other hand .. it must 'Wait for all the events from a set
of channels (an AN) condition), then for each channel in the set,
WAIT_EVENT_CI-N should be called 'With Wait_list containing just that
channel identifier.

The structure of t_ watUist is:

REC(H)
Length : Integer;
Refrun:Array[O .. slze_waltllst] of Integer;

EN::>;

Event_Ptr is a pointer to a record containing the event header and the event
text. Its definition is:

P r eventblk = "r eventblk;
R-eVentblk = Record
- event header: t eheader'

event-text: t event text;
end; - - -

T ~r = Recoro
- sendJPid:longint;

event_type:longlnt;
end;

T _event_text = array [0 .. 9] of longlnt;

set'ldJPld 1s the process 1d of the sender.

5-23

cperatlng System Reference Manual Exceptions and Events

Currently, the poss1ble event type values are:
1 Event sent by user process
2 Event sent by system

When you receive the SYS_S(J\C TERM event, the fIrst longlnt of the event
text contains the termination cause of the son process. The cause is same as
that g1ven In the SYS_ TERMINATE exception gIven to the son process. The
rest of the event text can be filled by the son process.
If you call WAIT_EVENT_Q-I\J on an event-call channel that has queued
events, the event is treated just like an event in an event-wait channel. If
WAIT_EVENT _ Q-I\J is called on an event -call channel that does not have any
queued events, an error is returned.

5-24

qJerating System Reference I'-1anlJaJ

5.8.7 FLUSt-LEVENT_c:t-f\I Event Mcrlagement System Call

FLUSI-CEVENT _~ (Var ErrtOn:lnteger;
ReftUl: Integer)

ErrNum: Error indicator

Exceptions and Events

RefNum: Identifier of event channel to be flushed

FLUSf-CEVENT _a-N clears out the specified event channel. All events
queued in the channel are removed. If FLUSt-LEVENT_a-N is called by a
sender, it has no effect.

5-25

t:perating System Reference Manual

5.8.8 SEI'D_EVENT_ct-N Event Mar.agemertt System call

SEN)_EVENT_~ (var Errft.ln:Integer;

ErrNum:
RefNum:
Event Ptr:
Interval:
Clktime:

Refton: Integer;
Event_ptr:p_s_eventblk;
Interval: TilEstnp _interval;
Clktime:Time_rec)

Error indicator
Channel for event
Pointer to event data
Tiner for event
Time data for event

Exceptions and Events

SEt\D_EVENT_CH\I sends an event to the channel specified by Refl\lm
Event_ Ptr points to the event that is to be sent. The event data area
contains only the event text; the header is added by the system.
If the event is of the event-walt type, the event Is queued. Otherwise the
~erating System sIgnals the corresponding exception for the process receiving
the event.
If the channel Is opened by several senders, the receiver can sort the events
by the process identifier, which the qleratlng System places In the event
header. Alternatively, the senders can place predefined identifiers, which
identify the sender, in the event text.
The Interval parameter indicates whether the event is a timed event.

I'IlTE

TImed events wIll not be supported In future releases of the Qleratlng
system. The Interval and ClI<time parameters wIll be ignored in future
releases. If you want your software to be upward-compatible, always
set both fIelds of the Interval parameter to zero.

TlrnestfT1J_lnterval is a record containing a second and a millisecond field. If
both fields are 0, the event is sent immediately. If the second given Is less
than 0, the millisecond field is ignored and the TIRE_rec record is used. If
the time in the Time_rae has already passed, the event is sent immediately.
If the millisecond field is greater than 0, and the second field is greater than
or equal to 0, the event is sent that number of seconds and milliseconds from
the present.
A process can time out a request to another process by sendIng Itself a timed
event and then wa1t1ng for the arrival of either the timed event or an event
Indicating the request has been served. If the timed event Is received first,
the request has timed out A process can also time Its own progress by
perIodIcally sendIng Itself a tlmed event thrOUgh an event-call event Channel.

5-26

cperatlng system Reference Mant.Ial Exceptlons and Events

5.9 ClOCk System calls
This section describes all the QJerating System calls that pertain to the clock.
A summary of all the Qleratlng System calls can be found in Appendix A

The following special types are used in clock calls:
T1restnp_interval = Record

Tim rec = Record

sec: longint;
msec:O •• 999;

end;

- year: integer;
day: 1. .366;
hOUr: -23 .. 23;
m1rute: -59 .• 59;
second: O •• 59;
msec:O •• 999;

end;
Hour_range = -23 .. 23
Mioote_range = -59 •• 59;

5-27

tperatlng System Reference Mantia}

5.9.1 DELAY _ n~ ClOCk System can

DELAY _ TItE (var ErJ'ttUR: Integer;
Interval:Timestmp_1nterval;
clkt1me:T1me_rec)

ErrNum: Error indicator
Interval: Delay timer
Clktime: Tine information

Exceptions and Events

[ELAY _ TJIVE stops execution of the calling process for the number of seconds
and milliseconds specified in the Interval record. If this time period is zero,
[£lAY _11~ has no effect. If the period is less than zero, execution of the
process is delayed until the time specified by Clktlme.

5-28

cperating System RefeJ"fJnce Manual

5.92 GET _ TIf'oIE ClOCk System Call

GET_TIt£: (Var Errtt.n:lnteger;
Var SyS_TilE:TilE_rec)

ErrNum: Error indicator
sys_Time: Time information

Exceptions and Events

GET_llJVE returns the current system clock time in the record Sys_Tlme. The
rmec field of Sys_ Time always contains a zero on return.

5-29

QJerating System Reference Manual

5.9.3 SET_UX::~_llf'YE_DIFF ClOCk System Call
SET_LreAI..._TItE_DIFF (Var Errtt.n:lnteger;

tDJr:Hour _1W1ge;
Mlnute:Mlnute_range)

ErrNum: Error indicator

Exceptions and Events

Hour: Number of hours difference from the system clock
Minute: Number of minutes difference from the system clock

SET _LOCAL_ TJrYE_DIFF informs the qlerating System of the difference in
hours and mInutes between the local time and the system clock. Hour and
Mlrute can be negatIve.

5-30

cpemting System Reference Manual

5.9.4 al'NERT_~ ClOCk system can

aNlERT_TItE (var ErrtOn:lnteger;
Var sys_Tine:T111E_rec;
Var Local TiE: TiE rec;

TO_SYS:Boolea1)-

ErrNum: Error indicator
Sys_Tine: System clock tine
Local Tire: Local time
TO_SYS: Direction of time conversion

Exceptions and Events

CCNVERT _ ~ converts between local time and system clock time.
To_Sys is a Boolean value indicating in which direction the conversion is to
go. If To_Sys is true, the system takes the time data In Local_Time and puts
the corresponding system time in Sys_ Time. If To_Sys is false, the system
takes the time data in Sys_ Time and puts the corresponding local time In
Local_Time. Both time data areas contain the year, month, day, hour, minute,
second, and m1l1lsecond.

5-31

0421-A

Chapter 6
Configuration

6.1 OlIlflguratloo system C8lls •• ~ .. 6-1

6.1.1 CMOS EQ.JIPPED .. 6-2
6.1.2 GET C(]\FIG N,l\IVE .. 6-3
6.1.3 ClSBCiJT'ICl. •• :: .. 6-4

Configuration

Every Lisa system is configured using the Preferences tool. Preferences
places the configuration state of the system in a special part of the system's
memory called parameter memory AlthoUgh parameter memory is not
contained on a disk, it is supplied with battery power so that the contents are
kept even When the system Is turned off. The batteries are charged as long
as the Lisa is plugged in, even if the unit is powered off. If Une power is
lost, the batteries will keep parameter memory secured for several noun. In
addition, every time parameter memory Is changed, a copy of the new data is
made on the boot diSk. If the contents of parameter memory are lost, this
disk copy is automatically restored to parameter memory.
SInce the devices actually connected may differ from the configuration storecJ
in parameter memory, three calls are prOVided that allow programs to request
Information abOUt the configuration of the system.

I\IJTE

Configuration System calls will be changed In future releases of the
~rating System. 00 not use these calls If you want your software to
be upward-compatible.

6.1 cont1~m System calls
This section describes all the Qleratlng system calls that pertain to
configuration. A summary of all the q>eraUng System calls can be found in
~lx A. Special data types used by configuration calls are defined along
with the calls.

6-1

qJeratJng System Reference Manual

6.1.1 CARDS_EQUIPPED cont1lJJl8UOO System Call

CNIlS_ECJJIPPED (var ErrM.a:lnteger;
Var In_Slot:Slot_array)

ErrNum: Error code
In_Slot: Identifies the types of cards configured

COI1f1gumtJon

thIs call returns an array shOwIng the types of carcJs WhIch are In the varIous
card slots.
The definition of Slot_anay Is:

slot_array = array (1. .3] of card_types;
where:

6-2

t:peratlng System Reference /VIantJaJ

6.12 GET_aN=IG_NAI"'E cont1.guratlon System can
GET_art=IG_NNE (var Errrun:lnteger;

Devpostn: Tports;
var Devrane:E_NcIIE)

Errnum: Error coce
Devpostn: A port identifier
Devnane: The name of the deVice attached to the port

COnfiguration

This call returns the name Of the deVice configured at the port given in
Devpostn See (93(IJJV(L for the defInItion of Tports. Type E_Ncme Is
defined as:

E_NaIRe = SlRINi [32];

6-3

qJeratlng ~yStem Reference /t1a1V8J

6.13 (l)8(JJ'TV{L contl{JJlaU(Il system Call

0S800Ml. (Var Er1'tUl:Integer) : Tports

ErrNum: Error COde

conn[pf8t1m

Tports: Identifies the port to Which the bOOt volUlre is attached

(l)8(JJ'TV{L is a function that returns the identifier for the port attached to
the bOot volt.me. This port might not be the port configured for the bOOt
volume, since It is possible for the user to override the default boOt. Note
that the port Identifier Is not the same as the device name. You can use
GET_(XN=IG_~ to find out the name of the device attached to the port.
Tports Is a set tnat has this deflnl tlon:

Tports = (~rt.ig, lo.art.ig, parallel,
slot11, slot12, slot13, slot14,
slot21, slot22, slot23, slot24,
Slot3!, slot32, slot33, slot34,
seriala, serialb, main console, al t console,
t_RDJse, t_speaker, t_extra1, t_extia2, t_extra3);

6-4

Appendixes

A ~rat1ng System Interface llllt ... A-I

8 Systern-ReseJVe(J ExceJ)tlm ~ •.••••••••.•••••• ~ ••••.•••.•.•••••••••••••••••••••••• 8-1

C Systern-ReseJVe(! E\Ieflt Types .. C-l

o Error ~ .. 0-1

E FS_IJ\I=O FIelds ... E-l

029-0422-A

Appendix A"
Operating System Interface Unit

ooT syscall;
INTRINSIC;

INTERFACE

(!(H)T

(* system call definitions unit *)

max encIE = 32-
max~ttTlaIIE =' 255;
max label size = 128;
len - exnc:ne = 16;
size_exaata = 11;

(* maxinun 1er¥Jth of a file system ooject ~ *)
(* max1nun lerYJth of a file system patmane *)
(* maximum size of a file label, in bytes *)
(* lerYJth of exception rane *)
(* 48 bytes, exception data block should haVe the

same size as r_evet1tblk, received event block *)

size etext = 9; (* event text size - 40 byteS *)
size=waitlist = 10; (* size of wait list - shoUld be same as reqptr_Iist *)

(* exception kind definitions for 'SYS_TERt1INATE' exception *)
call_tem = 0; (* process called terminate'-process *)
ended = 1; (* process executed 'end' statenEnt *)
self_killed = 2; (* process called kill'-process on self *)
killed = 3; (* process .as killed by cn:Jther process *)
fthr_term = 4; (* process's father is terminating *)
bad_syscall = 5; (* process made invalid sys call - StiJcOde bad *)
bad_errruo = 6; (* process paSsed bad address for ernun parm *)
swap_error = 7; (* process aborted ClJe to code s~-in error *)
stk_overflow = 8; (* process exceeded max size (+ T mn) of stack *)
data_overflow = 9; (* process tried to exceed max data space size *)
parity_err = 10; (* process got a parity error .nile e)(BCUting *)

def div zero
def-valiE 000
def-OVfw -
def=nn1_key
def_1'OOQE!
def_str_iroex

= 11;{* default hcnUer for div zero exception was called *)
= 12; (* • for value 000 exceptioo *)
= 13; (* • for overflow exception *)
= 14; (* • for tf1I key exceptioo *)
= 15;(* • for 'SVS_VALlE_(XB' excep we to value 1'OOQE! err *)
= 16; (* • for 'SYS_VAlI£_()(I)' excep ClJe to string indeX err *)

A-I

cperatJng system Reference Manual qJeratJng system Interface unit

bUs error = 21;
adcii error = 22;
111~lnst = 23;
prIv_violation = 24;
line 1010 = 26;
linf()111 = 27;

U'le><pecte«cex = 29;

(*bUs error occurred
(* address error occurred
(* Illegal Instruct 1m trap occurred
(* privilege violation trap occurred
(* lIne 1010 enulator occurred
(- line 1111 enulator occurred

(- M U'le><pected exceptIon occurred

*)
-)
-)
*)
*)
-)

-)

dlv zero ::I 31; (- exception kind definitions for hardWare exception -)
valUe 00b = 32;
ovfw - .. 33;
rat_key = 34;
value_range = 35; (- excep kind for value range and str~ 1mex error -)
str_lndeX = 36; (* ttlte that these two cause "SYS_VAU£_(D" excep *)

(-tEVI~_WfTRO.. fU'lCtlms*)

dVParl ty = 1;
dVOJtOTR ::I 2;
dVrutO = 3;
dVOJtOelay = 4;
dVBaud = 5;
dVlnlait = 6;
dVIrvTR = 7;
dVInXCIf = 8;
dVTypechj = 9;
dVOiscon = 10;
dVOJtNoHS = 11;
dVErrStat = 15;
dVGetEvent = 16;
dVAutoLf = 17;
dVDlSkstat = 20;
dVOiskSpare = 21;

TYPE

(-RS-232*)
(-RS-232*)
(-RS-232*)
(*RS-232*)
(-RS-232*)
(-RS-232, CCJfStl.E*)
(*RS-232*)
(-RS-232*)
(*RS-232*)
(-RS-232*)
(*RS-232*)
(~ILE*)
(i(Df)(LE*)
(-RS-232, CCJfStl.E, PNW...LEl PRlNTER*) (-rot yet-)
(it()ISKETTE, PRCFILE*)
(it()ISKE~ PROFILE*)

patmame = strll'VJ [1IBX.J)8tr1'a1e);
e_rtaIIe = strirYJ [ma)CenaE];
namestrll'VJ = strll'VJ [20);
prooinfoRec ::I record
pl'OfPlttnlne : pathlClE;

glOO8l_ id : longint;
father_ld : longlnt;
priority : 1. .255;
state : (J)(l}tlve .. psusperldecL pwaltll'VJ);
data in : bOolean

end; -

A-2

Q:Jerating System Reference Manual QJerating System Interface Unit

Tdstype = (ds_shared, dSjprivate); (* types of data segments *)

dslnfoRec = record
mem_size : longint;
disc_size: longint;
nunt> _open: integer;
ldsn : integer;
boundF : boolean;
presentF : boolean;
creatorF : boolean;
rwaccess : boolean;
segptr : longint;
vo lnarre: e narre;

end; -

t_ex_naIe = string [len_eXl'lalle];
longadr = longlnt;
t_ex_state = (enabled, queued, ignored);
p_ex.Jlata = t_ex_data;

(* exception natre

(* exception state

*)

*)

t_ex_data = array [0 .. size_eXdata] of longint;
t_ex_sts = record

(* exception data blk *)
(* exception status *)

ex occurred f : boolean;
ex-state : t ex state;
ruQ_ excep : Integer;
hCH_adI' : longadr;
end;
p_env_blk = "env_blk;
env blk = record

- pc longlnt;
sr : integer;
dO : long1nt;
d1 : longint;
d2 : longlnt;

erx1;

d3 : longint;
d4 : longlnt;
dS : longint;
d6 : longint;
d7 : longint;
aO : long1nt;
a1 : longint;
a2 : longint;
a3 : longint;
a4 : longint;
as : longint;
a6 : long1nt;.
a7 : longint;

(* exception occurred flag *)
(* except10n state *)
(* nuntJer of exceptions q' ed *)
(* handler address *)

(* environment block to pass to handler *)
(* program counter *)
(* status register *)
(* data registers 0 - 7 *)

(* address registers 0 - 7 *)

A-3

t:peraUng System Reference Manual t:perating System Interface Unit

p_ term_ex_data = "term_ex_data;
term ex data = record (* terminate exceptim data blOCk *)

case excep_kind : longint of
call_term,
ended,
self killed ..
killed,
fthr term,
bad_syscall,
bad_errnum,
swap_error ..
stk overflow,
data overflow,
parity_err : (); (* dUe to process termination *)

IllqJnst,
pri v_violation,

line 1010,
line-1111,
def di v zero,
def-valUe oob ..
oef-OVfW,-

(* dUe to illegal instruction, privilege
violation

(* dUe to lIne 1010, 1111 enulator

*)

*)

de()Wi_key (* term1nate dUe to default handler for hardware
exception *)

: (sr : integer;
pc : longint); (* at the time of occurrence *)

def_range ..
def_str_indeX (* terminate dUe to default handler for

'SVS_VALUE_OOS" excep for value range or string
index error *)

: (value_CheCk : integer;
upper _ bOlI1d : integer;
lower boUnd : integer;
returoJPC longint;
caller a6 long1nt);

bUs error ..
addf_error (* dUe to bUs error or address error

(fun_field : packed record (* one integer
f11ler : 0 .. S7ff; (* 11 b1ts
r_w_flag : boolean;
i-1l_flag : bOOlea'l;

fun_cooo : 0 .. 7; (* 3 bits *)
end;

A-4

*)
*)
*)

cperatlng System Reference Manual

end;

accesS_adr : longlnt;
Inst_register : integer;
sr_error : Integer;
pc_error : long1nt);

p_haI'd_eX_data = "nanceX_data;

cperating System Interface Unit

nard ex data = record (* nardware exception data block *)
Case excep_klnd : longlnt of

div zero, value rob, OVfw
: (sr : Integer;-
pc : longint);
value_range, str_lndex
: (value_check : integer;
upper _bolnl : Integer;

end;

) ower _boU'ld : integer;
retumJlC : longlnt;
oaller_a6 : longlnt);

accesses = (dread, dwrite, append, private, global_refruo);
mset = set of accesses;
iOlOOde = (abSOlute, relative, sequential);

UIO = record (-unique id*)
a, b: longlnt

end;

timestmp_interval = record
sec : longlnt;
msec : o •• 999;

end;

(. time interval *)
(* number of seconds *)
(* number of milliseconds within a second *)

tnfO_type = (deVlce_t, VOlllllLt .. ObJect_t);
deVtype = (diSkdeV, pascalbd, seqdev, bitbkt, non_io);
flletype = (lfldeflnecJ, tOOff 1 Ie, rootcat, freellst, baCl)locks, sySdata,

spool, exec, useroat, pipe, boOtfile, swapdata, swapcode, ramap,
userfl1e, kl11edObJect);

entrytype= (enptyentry, catentry, 11n<entry, flleentry, plpeentry, ecentry,
klll~try);

A-5

t:peratlng System Reference Manual

fs_1nfO = record
r&1e : e r&1e;
d1r.Jl8th -: pattnlE;
machine_id : lorgint;
fs_overtlead : 1nteger;
result_scavenge: integer;
case otype : info_type Of
devioe_ t, VOI'.lDEL t: (
10cra IlEH : 1nteger;
devt : devtype;
slot_no : integer;
fs_s1ze : lorgint;
vol_s1ze : long1nt;
blOCkstructured, IIIlU'lted : boolean;
opet'lCOl.Ilt : longint;
privatedeV, renDte, lOOkeddeV : boolean;
IIIUlt.J)end1rYJ, tnIW'lt.J)end1ng : boolecl1;
volr&1e, passWl'd : e_r&1e;
fsvers100, volrun : 1nteger;
volid : UIo;
baCkl4l_VOI1d : UIO;

cperatlng System Interface Unit

blOCksize, datasize, clustersize, fileoot.llt : integer;
label_s1ze : integer;
freecotrlt : lorgint;
OTVe, olre, OTVB, oTVS : long1nt;
IIBster _copy _id, copy_thread : lorgint;
oveI1lD.flt_stalp : UIo;
boot_COde : integer;
boot_envirm : 1nteger;
privileged, .r1te-protected : boolE9l;
master, copy, copy_flag, scavenge_flag: boolean;
VOI_Ieft_RD.I'lted : boolea'l);

object_t : (
s1ze : long1nt;
psize : lorgint; (* physical file size 1n bytes *)
Ips1ze : 1nteger; (* log1cal page s1ze 1n bytes for th1s f1le *)
ftype : filetype;
etype : entrytype;
OTC" oTA" 0111, oTB" 018 : longint;
refrun : 1nteger;
fmark : longint;
acnIXte : mset;
nreaders, rwriters, rusers : integer;
fu1d : UIo;
user_type: integer;
user_SUbtype : integer;

A-6

cperatlng System Reference Manual cperatlng System Interface UnIt

system_type : 1nteger;
eof, safety_on, kswitch : boolem;
private, lOCked, protected, master_f11e : bOOlea-t;
file_scavenged, file_closed_by_OS, file_left_open:bOOlem)

end;

dctype = record
dCVersion : integer;
decode : integer;
dodata : array [0 .. 9] of longint;

end;

t waitlist = record
- length: integer;

(* user/driver defined data

(* wait list

refrun : array [0 .. size_wa1tlist] Of integer;
end;

t eheader = record
- send..J)id: longInt;

event_type : longint;
end;

(* event header
(* sender"s process Id
(* type Of event

t_event_text = array [0 .. size_etext] Of longint;
p_r_eventblk = "'r_eventblk;
r eventblk = record
- event header : t eheader;

event-text : t eVent text;
end; - --

p_s_eventblk = "'s_eventblk;
s_eventblk = t_event_ text;

tInE rec = record

end;

""Year : integer;
day : 1. .366;
hoUr : -23 .. 23;
mlrute : -59 . .59;
second : O •• 59;
msec : O •• 999;

(* Julla-t date *)

A-7

*)

*)

*)
*)
*)

qJeratJng System Reference ManIIaI

ctl'Lklnd = (Elt_ee, call_ee);
t ctn sts = record
- dln_type: ctI1_klnt

RJlLevents : integer:
open_reGV : lnteger;
open_send : integer;
ee_1'lCIE : patl'lalB;

end;

twr _lCI'lQe = -23 .• 23;
m1rute_ICPJe = -59 .• 59;

{cmfiguration stuff: }

q;eratJng System Interface unit

(* channel status *)
(* cncmel type *)
(* I'UItler of events queued *)
(* rumer of opens for recelvlrYJ *)
(* FUlt)er of opens for sending *)
(* event cncmel rae *)

tports = (l4lJ)ertwig, l(Mlfertwig, parallel,
slot11, slot1~ slot13, slot1.,
slot21, slot22, slot23, slot2.,
slot3L slot3~ slot33, slot34,
serials, serialb, main console, al t console,
t_lIllUse, t_speaker, t_extra1, t_extlaz, t_extra3);

card_types = (no_cant. apple_cant. nJ)Ort_cant. net_cant. laser_card);

slot_array = array [1. .3] of card_types;

{ Lisa Office SysteIR parClleter IlEllDry type }

pn8ytelkliCJ.le = -128 •• 127;
pt1enAec = array [1 .. 62] of pn8ytelttlCJ.1e;

(* File system calls *)

procewre tW<E_FlLE (ver ecode:integer; var path:patmame;
label_slze:lnteger);

procewre tw<E_PIPE (var ecode:1nteger; var patn:pattnE;
18bel_slze:integer);

procewre tw<E_CATAUG (var ecode:integer; var path:pattrane;
label_size:lnteger);

procewre ttAKE_LINC (var ecode:lnteger; var path., ref:patnt'laE;
label_size: integer);

A-8

L/."JeIaUng S),:rterll RefeIelll7e Ivlanllai

procedUre KILL_OBJECT (var ecooe:lnteger; var path:pathname);

procedUre LN<ILL_FILE (var ecOde:1.nteger; refnum:lnteger; var
new_name:e_name);

procedure OPEN (var ecode:integer; var path:pathname; var refnum:integer;
manlp: mset);

procedUre CLOSE_OBJECT (Val ecOde:integer; refrun:integer);

procedUre READ_DATA (var ecOde:lnteger; refnum:lnteger; data_addr:longint;
count:longint; var actual:longint; mode:iomode;
Offset:longlnt);

procedUre WRITE_DATA (var ecode:lnteger; refnuntlnteger; data_addr:longlnt;
count:longlnt; var actual:1ongint; lOOde:iOfOOde;
offset:longint);

procedUre FLUSH (var ecooe:lnteger; refnum:lnteger);

procedUre LOOKUP (var ecOde:integer; var path:pathrlaloo; var
attributes:fs_info);

procedure INFO (var ecode:integer; refnum:integer; var refl.nfo:fs_info);

procedUre ALLOCATE (var ecode:integer; refnum:integer; contiguous:boOlean;
count:longlnt; var actual:longlnt);

procedUre TRUNCATE (var ~lnteger; refnuntlnteger);

procedUre COMPACT (var ~integer; refnuntinteger);

procedUre RENAME_ENTRY (var ecOde: integer; var path:pattlnalJE; var
newnarre:e _ nare);

procerure READ_LABEL (var ecode:integer; var path:pathnalre;
data_acJdr:longlnt; count:longlnt; var actual:longlnt);

proce<iJre WRITE_LABEL (var ecode:lnteger; var path:patt'Ylaffe;
data_addr:longint; count:longint; var actual:longint);

procedUre MOUNT (varecode:integer; var vname : e_naIDe; var password
e_naIOO ;var devnare : e_naIOO);

procedUre lHO..Nf (var ecode:lnteger; var vnaroo : e_nafOO);

A-9

LI-Jelating i.?}'stenl RerelPnce fvfanllal L1-J81ating Systern Inten'8ce Unit

procedure SET_WORKING_OIR (var ecode:integer; var path:pathname);

procedure GET_WORKINGJDIR (var ecode:integer; var path:pathname);

procedure SET_SAFETY (var ecode:integer;var path:pathname;on_off:boolean);

procedure DEVICE_CONTROL (var ecode:integer; var path:pathname;
var cparm : octype);

procedUre RESET_CATALOG (var ecode:lnteger; var path:pathnalre):

procedUre GET_NEXT_ENTRV (var ecode:lnteger; var prefix, entry:e_nalle);

procedUre SET_FILE_Itf="O (var erode :integer; refnum:integer; fsl:fs._info);

(* Process Management system calls *)

funct10n Ny_I~longint;

procedUre Info_Process (var errntlltlnteger; proc_1d:long1nt; var
proc_1nf~procinfoRec);

procedUre Yield_CPU (var errrun:integer; to_any:boolean);

procedUre setPriority_Process (var err~integer; proc_id:longlnt;
newJ)rlorl ty:Integer);

procedUre SUspendyrocess (var errrun:lnteger; proc_Id:longint;
susp _ family:boolean);

procedure Activate_Process (var errnum:integer; proc _ld:longint;
act_famI1y:boolean);

procedUre KIll_Process (var ermaIntp.ger; proc_ld:longlnt);

procedure Term1nate_Process (var errrun:Integer; eventJ)tr:p_s_eventblk);

procedure t1a<e_process (var errnum:integer; var proc_Id:longlnt; var
progfile:pathname; var entrynane:naIOOstring;
evnt_Chn_ref~integer);

A-lO

(* Memory Management system calls *)

procedUre make_dataseg(var errnum: integer; var segname: pathname; mem_slze,
disc_size: longint; var refnum: integer; var segptr:
longlnt; ldsn: integer; dstype= Tdstype):

prOCedUre k 111_ dataseg (var errntlfftinteger; var segnane:pattlnalJe);

procedUre operl_dataseg (var errnum:integer; var segrlaIOO:pattlnafre; var
refnunt:lnteger; var segptr:longint; Idsn:integer);

prOCedUre Close_dataseg (var err~integer; refntmtinteger);

prOCedUre size_dataseg (var errnUfltinteger; refnuntinteger;
del tatremSlze:longlnt; var newnemsize:longint;
deltadlscslze: longint; var newdlscsize: longlnt);

prOCedUre Info_dataseg (var errnum:lnteger; refnuntinteger; var
dsinfo:dsinfoRec);

procedure setaccesS_dataseg (var errnum:integer; refnum:integer;
readOnly:OOOlean) ;

prOCedUre unbind_dataseg (var er~lnteger; refntmtinteger);

prOCedUre blnd_dataseg(var err~integer; ref~integer);

procedUre info_ldsn (var errnum:integer; Idsn: integer; var refnum: integer);

procedUre flush __ dataseg(var errnum: integer; refnum: integer);

procedUre mem_info(var errnum: integer; var swapspace, dataspace,
cur_codesize, max_cOOesize: longint);

prOCedUre infO_address(var errnum: integer; address: longint; var refnum:
integer);

(* Exception t1alagetrent system calls *)

prOCedUre declare_excep_hdl (var errnum:lnteger; var excep_Mne:t_ex_natre;
entry J)Oint:longadr);

prOCedUre dlSable_excep (var errtUJtinteger; var excep_~t_ex_naIOO;
queue:boolean) ;

A-l1

LPt?l"BtilJg ... ~ystern RefelPllet? !'vlalJtlai LI-Jt?latillf) Systenlilltelface /jlli!

procedUre signal_excep (var errnum:lnteger; var excep_nanet_ex_natre;
excep _data:t _eX_data);

prOCedUre Info_excep (var errnuntinteger; var excep_nalre:t_ex_t'lCIOO; var
excep _status:t _ex_ sts);

procedUre fluSh_excep (var errnum:lnteger; var excep_natre:t_ex_narre);

(* Event Channel management system calls *)

procedUre maKe_event_Chn (var errnum:1nteger; var event_ctYt_naroo:pathnafre);

procedure k ill_event _em (var errnum:1nteger; var event _ chn _ natre:pathr'lalre);

procedure open_event_em (var errnum:1nteger; var event_chn_naroo:pathnafre; var
refnunt1nteger; var excep_naroo:t_ex_naJre;
reee1 ver:ooolean);

procedUre close_event_Chn (var errnUftinteger; refnum:integer);

procedure info_event_Chn (var err~integer; refnuntinteger; var
Chn_lnfo:t_Ctln_sts);

procedUre ~ait_event_chn (var errnum:integer; var wait_llst:t_waltllst; var
refnum:integer; eventJPtr:p_r_eventblk);

procedure flUSh_event_Chn (var err~integer; refnum:integer);

procedUre send_event_em (var er~integer; refnum:integer;
event -Ptr:p_s _eventrHk; Interval:tlJrestnp _interval;
clktlme:tlme_rec);

(* Timer functions system calls *)

procedUre delay_time (var er~integer; interval:timestmp_interval;
Clktl~tlJre~rec);

procedure get_tIre (var errrun:Integer; var ~t_tIre:tiJre_rec);

procerure set_local_tllre_dlff (var errnum:Integer; nour:hOUr_range;
mlnute:minute _range);

A-12

procedUre convert_time (var er~lnteger; var gmt_tl~tlme_ree; var
100a1_ tire:tire _ ree; to ~t:0001ean);

{configuration stUff}

function OSBOOTVOL(var error : integer) : tports;

procedure GET _C(N=IG_NAME{ var error:integer; devpostn:tports; var
devname:e _natre);

procedUre CAROS_EQUIPPEO(var error:lnteger; var in_s1ot:slot_array);

It1PLEtENTATION

procedUre MAKE~ILE; external;

procedUre MAKE_PIPE; external;

procedUre MAKE_CATAUJG; external;

procedUre MAKEJ_INK; external;

procedUre KILL_OBJECT; external;

procedUre OPEN; external;

procedUre CLOSE _OBJECT; external;

procedUre READ_DATA; external;

procedUre WRITE_DATA; external;

procedure FLUSH; external;

procedUre LOOKUP; external;

procedUre ItEO; external;

procedUre AlLOCATE; external;

procedUre TRlH!ATE; external;

procedUre C(JIlACT;. external;

A-13

q;erating System Reference Manual

proceclJre REtWE_ENTRV; external;

proceclJre READ_LABEL; external;

proceclJre IRITE_LABEL; external;

procedlre tOfU; external;

procewre ~T; external;

procedlre SET _I(R(ING_OIR; external;

proceclJre GET _wmKING_OIR; external;

proceclJre SET_SAFETY; external;

procedUre OEVI~JDHln .. ; external;

proceclJre RESET _CATNJli; external;

proceclJre GET _tEXT_ENTRY; external;

proceclJre GET _OEV _twE; external;

flllCtion My_IO; external;

proceclJre Info_Process; external;

procedlre Vield_lPU; external;

proceclJre setpriori ty _Process; external;

proceclJre SUspend_Process; external;

procewre Activate_Process; external;

proceclJre Kill_Process; external;

proceclJre Terminate_Process; external;

procewre Make_Process; external;

proceclJre SchecCClass; external;

A-14

q;erating System Interface Unit

t:peratJng System Refemnce Manual

procewre ntake_dataseg; external;

procewre klll_dataseg; external;

procewre opeIl_dataseg; external;

procewre close_dataseg; external;

procewre slze_dataseg; external;

procewre info_dataseg; external;

procewre setacceSS_dataseg; external;

procewre U1l1nd_dataseg; external;

procewre blnd_dataseg; external;

procewre info_ldsn; external;

procewre flush_dataseg; external;

procewre IIEIILinfo; external;

procewre declare_excep_hdl; external;

procewre dlsable_excep; external;

procewre enable_excep; external;

procewre slgl8l_excep; external;

procewre Info_excep; external;

procewre flust'Lexcep; external;

procewre make_everlt_chn; external;

procewre kill_everlt_chn; external;

procewre open_everlt_chn; external;

procewre close_everlt_ctvl; external;

A-iS

q:Jerating System Interface Unit

q;erating System Reference Manual

procedlre Info_event_CM: extemal;

procec:tlre walt_event_CM: extemal;

procec:tlre flustLevent_CM: extemal;

procec:tlre send_event_CM: extemal;

procec:tlre delay_time; external;

procec:tlre get_tine; external;

procewre set_local_tilE_diff; external;

procec:tlre convert_tine; external;

procec:tlre set_file_info; external;

flllCtion ENAELEDBG; external;

flllCtion OSBOOlV£I...; external;

procec:tlre GET _C{H=IG_NAtE; external;

flllCtion DISK_LIKELY; external;

procedure CMOS_EQUIPPED; external;

procec:tlre Read_Pf'1eIq; external;

procec:tlre Ifi te _Pt1efQ; external;

end.

A-16

q;eratlng System Interface unit

Appendix B
System-Reserved
Exception Names

SYS JJ\4:RFLOW O\Ierflow exception. Signaled when the TRAPV instruction is
executed and the overflow condtt1on Is on.

SYS_V,oLLEJXB Value-out-of-bOUnd exception. Signaled when the CHK
instruction is executed and the value is less than 0 or greater
than upper bound.

SYS_ZERD_DIV Division by zero exception. Signaled when the OIVS or DlVU
Instruction Is executed and the divisor Is zero.

SYS _ TERMlNA TE Termination exception. Signaled When a process is to be
terminated.

B-1

Appendix C
System-Reserved

Event Types

"Son terminate" event type. If a father process has created a son
process w1 th a local event channel, this event is sent to the
father process When the son process terminates.

C-1

Appendix D
Error Messages

-6081 End of exec file input
-6004 Attempt to reset text file with typed-file type
-6003 Attempt to reset non text file with text type
-1885 ProFile not present during driver initialization
-1882 ProFile not present during driver initialization
-1176 Data in the object have been al tered by Scavenger
-1175 File or volume was scavenged
-1174 File was left open or volume was left mounted, and system crashed
-1173 File was last closed by the OS
-1146 011 Y a portion of the space requested was allocated
-1063 Attempt to mount boot volume from another Lisa or not most recent boot

volume
-1060 Attempt to mount a foreign boot disk following a temporary unmount
-1059 The bad block directory of the diskette is almost full or difficult to read
-696 Printer out of paper during initialization
-660 Cable disconnected during ProFile ini tialization
-626 Scavenger indicated data are questionable, but may be G'<.
-622 Parameter memory and the disk copy were both invalid
-621 Parameter memory was invalid but the disk copy was valid
-620 Parameter memory was valid but the disk copy was invalid
-413 Event channel was scavenged
-412 Event channel was left open and system crashed
- 321 Data segment open when the system crashed. Data possibly invalid.
:-320 Could not determine size of data segment
-150 Process was created, but a library used by program has been scavenged and

altered
-149 Process was created, but the specified program file has been scavenged and

altered
-125 Sepcified process is already terminating
-120 SpeCified process is already active
-115 Specified process is already suspended
100 SpeCified process does not exist
101 Specified process is a system process
110 Invalid priority speCified (must be 1..225)
130 Could not open program file
131 File System error while trying to read program file
132 Invalid program file (incorrect format)
133 Could not get a stack segment for new process
134 Could not get a syslocal segment for new process
135 Could not get sysglobal space for new process
136 Could not set up communication channel for new process

t:pel"atjng System Reference Mantlal

138 Error accessIng program flle whlle loadIng
141 Error accessing a library file while loading program
142 Cannot run protected file on this machine

Error Messages

143 Program uses an intrinsic unit not found in the Intrinsic Library
144 Program uses an IntrInsIc unIt whose nameltype does not agree wIth the

Intrinsic Library
145 Program uses a shared segment not found in the IntrinsIc Library
146 Program uses a shared segment whose name does not agree wIth the Intrinsic

Library
147 No space in syslocal for program file descriptor during process creation
148 No space in the shared IU data segment for the program's shared IU globals
190 No space in syslocal for program file description during List_LibFiles

operation
191 Could not open program file
192 Error trying to read program fHe
193 Cannot read protected program file
194 Invalid program fHe (Incorrect format)
195 Program uses a shared segment not found in the Intrinsic Library
196 Program uses a shared segment whose name does not agree with the Intrinsic

Library
198 DisK 1/0 error tryIng to read the IntrinsIc unl t dlrectory
199 Specified library file number does not exist in the Intrinsic Library
201 No such exception name declared
202 No space left in the system data area for Declare_Excep_Hdl or

Signal_Excep
203 Null name spec! fied as exception name
302 Invalid LDSN
303 No data segment bound to the LDSN
304 Data segment already bound to the LDSN
306 Data segment too large
307 Input data segment path name is invalid
308 Data segment already exists
309 InsuffIcIent dIsK space for data segment
310 M invalid size has been specified
311 Insufficient system resources
312 Unexpected File System error
313 Data segment not found
314 Invalid address passed to Info_Address
315 InsufficIent memory for operation
317 DIsK error while trying to swap in data segment
401 InvalId event channel name passed to MaKe_Event_Chn
402 No space left in system glObal data area for (l)en _ Event_ Chn
403 No space left in system local data area for Open_Event_Chn
404 Non-blocK -structured device speci fled in pathname
405 Catalog Is full In MaKe_Event_Chn or Open_Event_Chn
406 No such event channel exists in KIll Event Chn
410 Attempt to open a local event channel to send

0-2

cperaUng System Reference Manual Error Messages

411 Attempt to open event Channel to receive when event channel has a receIver
413 Unexpected File System error in Open_Event_Chn
416 Cannot get enough dIsk space for event channel in cpen_Event_ Chn
417 Unexpected File System error in Close_Event_Chn
420 Attempt to walt on a channel that the calling process dId not open
421 Wait_Event_Chn returns empty because sender process could not complete
422 Attempt to call waICEvent_Chn on an empty event-call channel
423 Cannot find corresponding event channel after being blocked
424 Amount of data returned whlle reading from event channel not of expected

size
425 Event channel empty after be1ng unblOcked" Wai t_Event_ Chn
426 Bad request pointer error returned in Wait_Event_Chn
427 Wal t _List has lllegallength spec} fled
428 Receiver unblocked because last sender closed
429 unexpected FIle system error In Walt_Event_Chn
430 Attempt to send to a channel which the calling process does not have open
431 Amount of data transferred while writing to event Channel not of expected

size
432 Sender unblocked because receIver closed in Send Event Chn
433 Unexpected File System error in send_Event_Chn- -
440 unexpected Flle System error in Make_Event_Chn
441 Event channel already exists in Make _Event_ Chn
445 Unexpected Flle System error in Kill_Event_Chn
450 unexpected Flle System error in Flush_Event _ Chn
530 SIze of stack expansion request exceeds 11mi t speci fied for program
531 Cannot perform explicit stack expansion due to lack of memory
532 InsufficIent dISk space for expllci t stack expansion
600 Attempt to perform I/O operation on non I/O request
602 No more alarms available during driver initialization
605 Call to nonconfigured device driver
606 Cannot f1nd sector on flOPPY dIskette (dISk unformatted)
608 Illegal length or disk address for transfer
609 Call to nonconflgured device driver
610 No more room in sysglobal for I/O request
613 Unpermitted direct access to spare track with sparIng enabled on flOPPY

drIve
614 No disk present In drIve
615 Wrong call version to· floppy drive
616 Unpermitted floppy drive function
617 Checksum error on floppy diskette
618 Cannot format.. or wri te protected" or error unclamping floppy diSkette
619 No more room in sysglobal for 1/0 request
623 Illegal device control parameters to floppy drive
625 Scavenger indicated data are bad
630 The time passed to Delay_ Time" Convert_TIme" or Send_Event_Chn has

invalid year
631 Illegal timeout request parameter

0-3

[JJela/ilJ!l ~'ystenl Ret"el-ent.:'e I'-1anI.lal

632 No memory avallable to initialize cloCk
634 Illegal timed event 1d of -1
635 Process got unblocked prematurely due to process termination
636 Timer request did not complete successfully
638 Time passed to Delay_Time or Send_Event_ Chn more than 23 days from

current time
639 Illegal date passed to Set_Time, or lllega} date from system cloCk in

Get Time
640 RS-232 drlver called wIth wrong version number
641 RS-232 read or write initiated with illegal parameter
642 unlmplemented or unsupported RS-232 driver function
646 No memory available to ini tialize RS-232
647 unexpected RS-232 timer interrupt
648 Unpermi tted RS-232 In1 tlal1zatlon, or disconnect detected
649 Illegal devlce control parameters to RS-232
652 N-port driver not initialized prior to ProFile
653 No room In sysglobal to initlallze ProFlle
654 Hard error status returned from drive
655 Wrong call version to ProFlle
656 UnpermItted ProFile function
657 Illegal device control parameter to ProFIle
658 Premature end of file when reading from driver
659 Corrupt File System header ChaIn found in driver
660 Cable disconnected
662 Parity error while sendIng command or wrlt1ng data to ProFlle
663 Checksum error or CRe error or parIty error in data read
666 Timeout
670 Bad command response from drive
671 Illegal length specified (must ... 1 on input)
672 unimplemented console driver function
673 No memory available to initialize console
674 Console driver called with wrong version number
675 Illegal device control
680 Wrong call version to serial driver
682 Unpermitted serial driver function
683 No room in sysglobal to initialize serial driver
685 Eject not allowed this device
686 No room in sysglobal to initialize n-port card driver
687 UnpermItted n-port card driver function
688 Wrong call version to n-port card driver
690 Wrong call versIon to parallel prInter
691 Illegal parallel printer parameters
692 N-port card not initialized prior to parallel printer
693 No room in sysglobal to initialize parallel printer
694 Unimplemented parallel printer function
695 Illegal device control parameters (parallel printer)
696 Printer out of paper

0-4

[J.7erating System Reference Mantlal EJ70r Messages

698 Printer offline
699 No response from printer
700 Mlsmatch between loader version number and ~erat1ng system version

number
701 OS eXhausted its internal space during startup
702 Cannot make system process
703 Cannot k1ll pseUdo-outer process
704 Cannot create driver
706 Cannot ini tial1ze flOPPY disk dri ver
707 Cannot initialize the File System volume
708 Hard dIsk mount table unreadable
709 Cannot map screen data
710 Too many slot-based devices
724 The boot tracks do not know the right File System version
725 Either damaged Flle System or damaged contents
726 Boot device read failed
727 The OS w111 not fit into the available memory
728 SYSTEM.OS is missing
729 SYSTEM.CCNFIG Is corrupt
730 SYSTEM.OS is corrupt
731 SYSTEM.DEBUG or SYSTEM.DEBUG2 is corrupt
732 SYSTEM.LLD is corrupt
733 Loader range error
734 Wrong driver is found. For instance, storing a diskette loader on a ProFile
735 SYSTEM.LLD is missing
736 SYSTEM.UNPACK is missing
737 UnpaCk of SYSTEM.OS with SYSTEM.UNPACK failed
801 ICPesult <> 0 on I/O using the Monitor
802 Asynchronous I/O request not completed successfully
803 Bad combination of mode parameters
806 Page specified is out Of range
809 Invalid arguments (page, address, offset, or count)
810 The requested page could not be read In
816 Not enough sysglobal space for File System buffers
819 Bad device number
820 No space in sysglobal for asynchronous request list
821 Already initialized liD for this device
822 Bad device number
825 Error in parameter values (Allocate)
826 No more room to allocate pages on device
828 Error in parameter values (Deallocate)
829 Partial deallocation only (ran into unallocated region)
835 Inval1d s-file number
837 Unallocated s-file or I/O error
838 Map overflow: s-flle too large
839 Attempt to compact file past PECF
841 Unallocated s-file or I/O error

0-5

[peratjng System Reference Manual

843 Requested exact fIt., out one could not be provIded
847 Requested transfer count Is <- 0
848 End of file encountered
849 Invalid page or offset value in parameter list
852 Bad unIt number
854 No free slots in s-l1st directory (too many s-files)
855 No available diSk space for fHe hints
856 Device not mounted
857 Empty ~ locked~ or Invalid s-flle
861 Relative page Is beyond PEOF (bad parameter value)
864 NO sysglobal space for volume bi tmap
866 Wrong FS version or not a valid Lisa FS volume
867 Bad unl t number
868 Bad uni t number
869 UnIt already mounted (mount)/no unl t mounted
870 No sysglobal space for DCB or MOOF
871 Parameter not a valld s-flle IO
872 No sysglobal space for s-file control block
873 Specified file is already open for private access
874 Device not mounted
875 Invalld s-flle 10 or s-flle control block
879 Attempt to posHon past LEOF
881 Attempt to read empty fHe
882 No space on volume for new data page of file
883 Attempt to read past LEOF
884 Not first auto-allocation, but flle was empty
885 Could not update flleslze hints after a wrIte
886 No syslocal space for I/O request list
887 Catalog poInter does not IndIcate a catalog (bad parameter)
888 Entry not found in catalog
890 Entry by that name already exists
891 Catalog is full or is damaged
892 Illegal name for an entry
894 Entry not found~ or catalog Is damaged
895 Invalld entry name
896 Safety switch Is on--cannot kill entry
897 Invalld bootdev value
899 Attempt to allocate a pipe
900 Invalid page count or FCB poInter argument
901 Could not satisfy allocation request
921 Pathname invalld or no SUCh device
922 Invalid label size
926 Pathname invalid or no such device
927 Invalid label size
941 Pathname Inval1d or no such devIce
944 Db ject is not a file
945 File is not in the killed state

0-6

ErrOl" Messages

[pelalin..q ,-?,ystefll Refel-enCe f-1anllal

946 Pathname invalid or no SUCh device
947 Not enough space in syslocal for File System refdb
948 Entry not found in specified catalog
949 Private access not allowed if file already open shared
950 Pipe already in use" requested access not possible or dwrite not allowed
951 File is already opened in private mode
952 Bad refnum
954 Bad refnum
955 Read access not allowed to specIfied Object
956 Attempt to position FMARK past LEOF not allowed
957 Negative request count Is 111egal
958 Nonsequential access is not allowed
959 System resources eXhausted
960 Error writing to pipe while an unsatisfied read was pending
961 Bad refnum
962 No WRITE or APPEND access allowed
963 Attempt to position FMARK too far past LEOF
964 Append access not allowed in absolute mode
965 Append access not allowed in relative mode
966 Internal inconsistency of FMARK and LECF (warning)
967 Nonsequential access is not allowed
968 Bad refnum
971 Path name invalid or no SUCh device
972 Entry not found in specified catalog
974 Bad refnum
977 Bad refnum
978 Page count is nonposi ti ve
979 Not a block-structured device
981 Bad refnum
982 No space has been allocated for speci fied file
983 Not a block -structured devIce
985 Bad refnum
986 No space has been allocated for speci fled file
987 Not a blOCk-structured device
988 Bad refnum
989 Caller is not a reader of the pipe
990 Not a block -structured device
994 Invalid refnum
995 Not a block-structured device
999 AsynChronous read was unblocked before it was satisfied

1021 Pathname invalid or no such entry
1022 No such entry found
1023 Invalid newname .. check for '-' in string
1024 New name already exists in catalog
1031 Pathname invalid or no such entry
1032 Invalid transfer count
1033 No suCh entry found

0-7

q.7eratjng Systef77 Reference Manual

1041 Pathname Invalid or no SUCh entry
1042 Invalid transfer count
1043 No such entry found
1051 No device or volume by that name
1052 A volume is already mounted on device

Error Messages

1053 Attempt to mount temporarily unmounted boot volume just unmounted from
tt1is Usa

1054 The bad block directory of the diskette is invalid
1061 No device or volume by that name
1062 No volume is mounted on device
1071 Not a valid or mounted volume for working directory
1091 Pathname invalid or no such entry
1092 No such entry found
1101 Invalid device name
1121 Invalid device~ not mounted~ or catalog is damaged
1128 Invalid pathname~ device ... or volume not mounted
1130 File Is protected; cannot open due to protection violation
1131 No device or volume by that name
1132 No volume is mounted on that device
1133 No more open files in the file list of that device
1134 Cannot find space in sysglobal for open fUe list
1135 Cannot find the open file. entry to mOdify
1136 Boot volume not mounted
1137 Boot volume already unmounted
1138 Caller cannot have higher priority than system processes when call1ng ubd
1141 Boot volume was not unmounted when calling rbd
1142 Some other volume still mounted on the boot device when call1ng rbd
1143 No sysglobal space for MDDF to do rbd
1144 Attempt to remount volume which Is not the temporarily unmounted boot

volume
1145 No sysglobal space for bit map to dO rbd
1158 Track-by-track copy buffer is too small
1159 Shutdown requested whlle boot volume was unmounted
1160 Destination device too small for track-by-track copy
1161 Invalid final shutdown mode
1162 Power Is already off
1163 Illegal command
1164 Device is not a diskette device
1165 No volume Is mounted on the devIce
1166 A valid volume Is already mounted on the device
1167 Not a blocK-structured devIce
1168 Device name Is invalid
1169 Could not access device before initialization using default device

parameters
1170 Could not mount volume after Inl tlallzatlon
1171 '-' is not allowed in a volume name
1172 No space available to initialize a bitmap for the volume

0-8

1176 Cannot read from a pipe more than half of its allocated physical size
1177 Cannot cancel a read request for a pipe
1178 Process waiting for pipe data got unblocked because last pIpe writer closed

it
1180 Cannot write to a pipe more than half Of its allocated physical size
1181 No system space left for request block for pipe
1182 WrIter process to a pIpe got unblocked before the request was satisfied
1183 Cannot cancel a wrIte request for a pipe
1184 Process wal tlng for pipe space got unbloCked because the reader closed the

pipe
1186 Cannot allocate space to a pIpe while it has data wrapped around
1188 Cannot. compact a pipe while it has data wrapped around
1190 Attempt to access a page that Is not allocated to the pipe
1191 Bad parameter
1193 Premature end of file encountered
1196 Something is still open on device--cannot unmount
1197 Volume Is not formatted or cannot be read
1198 Negative request count is illegal
1199 Function or procedure is not yet implemented
1200 Illegal volume parameter
1201 Blank file parameter
1202 Error wri ting destination file
1203 Invalld UCSD directory
1204 File not found
1210 Boot traCk program not executable
1211 Boot track program too big
1212 Error readIng boot traCK program
1213 Error writing boot track program
1214 Boot traCK program file not found
1215 Cannot write boot tracks on that device
1216 Could not create/close internal buffer
1217 Boot traCK program has too many code segments
1218 Could not find configuration information entry
1219 Could not get enough worKing space
1220 Premature EOF in boot tracK program
1221 Position out of range
1222 No devIce at that posl tlon
1225 Scavenger has detected an internal inconsistency symptomatic of a software

bug
1226 Invalid device name
1227 DevIce is not blocK structured
1228 Illegal attempt to scavenge the boot volume
1229 Cannot read consIstently from the volume
1230 Cannot wri te consistently to the volume
1231 Cannot allocate space (Heap segment)
1232 Cannot allocate space (Map segment)
1233 Cannot allocate space (SFDB segment)

0-9

LPt?J"8til}f} Systenl Refe/Po/1Ce I'-lamai

1237 Error rebullding the volume root dIrectory
1240 Illegal attempt to scavenge a non-OS-formatted volume
1296 Bad string argument has been passed
1297 Entry name for the object is invalid (on the volume)
1298 S-list entry for the object is invalid (on the VOlume)
1807 No disk in floppy drive
1820 write-protect error on floppy dr1ve
1822 Unable to clamp floppy drive
1824 Floppy drive write error
1882 Bad response from ProFile
1885 ProFile timeout error
1998 Invalid parameter address
1999 Bad refnurn
6001 Attempt to access unopened file

EllOl" l'-1essages

6002 Attempt to reopen a file which is not closed using an open FIB (file info blOCk)
6003 q:>eration incompatible with access mode with which file was opened
6004 Printer offline
6005 File record type incompatible with character device (must be byte sized)
6006 Bad integer (read)
6010 Operation incompatible with file type or access mode
6081 Premature end of exec fIle
6082 Invalid exec (temporary) file name
6083 Attempt to set prefix with null name
6090 Attempt to move console with exec or output file open
6101 Bad real (read)
6151 Attempt to reinitalize heap already in use
6152 Bad argument to NEW (negative size)
6153 Insufficient memory for NEW request
6154 Attempt to RELEASE outside of heap

qleratlng System Error COdes
The error codes listed below are generated only when a nonrecoverable error
occurs while in Operating System code.
10050 Request block is not chained to a PCB (Unblk _ Req)
10051 Bld_Req is called with interrupts off
10100 An error was returned from SetUp_Directory or a Data Segment routine

(Setup _ IUlnfo)
10102 Error> 0 trying to create shell (Root)
10103 Sem_Count> 1 (IniCSem)
10104 Could not open event channel for shell (Root)
10197 Automatic stack expansIon fault occurred in system COde (CheCk_Stack)
10198 Need_Mem set for current process while scheduling is disabled

(SimpleScheduler)
10199 Attempt to block for reason other than I/O while scheduling is disabled

(SlmpleSCheduler)
10201 Hardware exception occurred while in system code
10202 No space left from Sigl_Excep call in Hard_Excep

0-10

t:perating System Reference Manual

10203 No space left from Slgl_Excep call In Nml_Excep
10205 Error from Wait_Event_Chn called in Excep_Prolog
10207 No system data space In Excep_Setup
10208 No space left from Sigl_Excep call in range error
10212 Error in Term_Def _Hdl from Enable_Excep
10213 Error in Force_ Term_Excep,no space in Enq_Ex_Data
10401 Error from Close_EvenCChn in Ec_Cleanup
10582 Unable to get space in Freeze _ Seg
10590 Fatal memory parity error
10593 Unable to move memory manager segment during startup
10594 Unable to swap In a segment during startup
10595 Unable to get space in Extend _ MMlist

Error Messages

10596 Trying to alter size of segment that is not data or stack (Alt_DS_Size)
10597 Trying to allocate space to an allocated segment (Alloc_Mem)
10598 Attempting to allocate a non free memory regIon (Take_Free)
10600 Error attempting to make timer pipe
10601 Error from Kill_OOject of an existing timer pipe
10602 Error from second Make_Pipe to maKe timer pipe
10603 Error from Open to open timer pIpe
10604 No syslocal space for head of timer list
10605 Error during allocate space for timer pipe, or interrupt from nonconfigured

device
10609 Interrupt from nonconflgured device
10610 Error from info about timer pipe
10611 Spurious interrupt from flOPPY drive 4~2
10612 Spurious interrupt from floppy drive iH, or no syslocal space for timer list

element
10613 Error from Read_Data of timer pipe
10614 Actual returned from Read_Data is not the same as requested from timer

pipe
10615 Error from open of the receiver'S event channel
10616 Error from Write Event to the receiver's event channel
10617 Error from Close=Event_Chn on the receiver's pipe
10619 No sysglobal space for timer request block
10624 Attempt to shut down flOPPY disk controller while drive Is still busy
10637 Not enough memory to initialize system timeout drives
10675 Spurious timeout on console driver
10699 Spurious timeout on parallel printer driver
10700 MIsmatch between loader version number and ~erat1ng System version

number
10701 OS eXhausted its internal space during startup
10702 Cannot make system process
10703 Cannot kIll pseUdo-outer process
10704 Cannot create driver
10706 Cannot initlallze flOPPY disk driver
10707 Cannot initialize the File System volume
10708 Hard diSk mount table unreadable

0-11

(pel"atil7g SyS/elll Refel"fflOe 1'-18171.;a)

10709 Cannot map screen data
10710 Too many slot-based devices
10724 The boot tracKs do not Know the right Flle System version
10725 Either damaged File System or damaged contents
10726 Boot devIce read falled
10727 The OS will not fit into the available memory
10728 SYSTEM.OS Is missing
10729 SYSTEM.CONFIG is corrupt
10730 SYSTEM.OS Is corrupt
10731 SYSTEM.DEBUG or SYSTEM.DEBUG2Is corrupt
10732 SYSTEM.LLD Is corrupt
10733 Loader range error

Enol" I'-1essages

10734 wrong driver Is found. For Instance .. storing a disKette loader on a ProFile
10735 SYSTEM.LLD 1s mIssing
10736 SYSTEM.UNPACK is missIng
10737 UnpaCK of SYSTEM.OS with SYSTEM.UNPACK failed
11176 Found a pending write request for a pipe while in CloseJJbject when it is

called by the last wri ter of the pipe
11177 Found a pending read request for a pipe while in CloseJJbject when it is

called by the (only possible) reader of the pipe
11178 Found a pendIng read request for a pipe whlle in Read_Data from the pipe
11180 Found a pending write request for a pipe while in Write_Data to the pipe
118xx Error xx from disKette ROM (See OS errors 18xx)
11901 Call to Getspace or Relspace with a bad parameter ... or free pool is bad

0-12

Appendix E
FS INFO Fields

* defjned for mounted or unmounted devjces
$ defjned for mounted devjces only

All other fjelds are defjl7ed for mounted block-structured de;.dees only.

DEVICE_ T" VCLUME_ T:

backup __ volid
blocksize

* block structured
boot code
boot-environ
clustersize
copy
copy_flag
copy_thread
datasize

* devt
.,. diryath

DTCC
DTVB
DTVC
DTYS
filecount
freecount
fs __ overhead

fs size
fsversion

-M- iochannel

label_size

$ lockeddev
machine 10
master -
master_copy _10

* mounted
$ mount-.pending
-M- name
$ opencount

overmount_ stamp
password

10 of the volume of 'Which this volume is a copy.
Number of bytes in a block on this device.
Flag set if this device is block-structured.
Reserved.
Reserved.
Reserved.
Reserved.
Flag set if this volume is a copy.
Count Of copy operations involving this volume.
Number of data bytes in a page on this volume.
Device type.
Pathname of the volume/device.
Date/time volume was created if it is a copy.
Date/time volume 'Was last backed-up.
Date/time volume was created.
Date/time volume was last scavenged.
Count of files on this volume.
Count of free pages on this volume.
Number of pages on this volume required to store
File System data structures.
Number of pages on this volume.
Version number of the File System under which
this volume was initialized.
Number of the expansion card channel through
which this device is accessed.
Size in bytes of the user-defined labels associated
with objects on this volume.
Reserved.
Machine on which this volume was initialized.
Reserved.
Reserved.
Flag set if a volume is mounted.
Reserved.
Name of this volume/device.
Count of Objects open on this volume/device.
Reserved.
Password of this volume.

E-l

q:;erating System Reference Manual F~/NFO Fields

$ prlvatedev
privileged

$ remote
result_scavenge
scavenge_flag

$ unmount-pending
volid
vol_left_mounted

volname
volnum
vol_size

write-protected

OOJECT_T:

acmode
dir-path
DTA
DTB
DTC
DTM
DTS
eof

etype
flle_closed_by_OS

file_left_open

file_scavenged

fmark
fS_overhead

ftype
fuid
kswltch
locked
Ipslze

Reserved.
Reserved.
Reserved.
Reserved.
Flag set by the Scavenger if it has altered this
volume in some way.
Number of the expansion slot holding the card
through which this device is accessed.
Reserved.
Unique identifier for this volume.
Flag set if this volume was mounted during a
system crash.
Volume name.
Volume number.
Total number of blocks in the File System volume
and boot area on this device.
Reserved.

Set of access modes associated with this refnum.
Pathname of the directory containing this object.
Date/time object was last accessed.
Date/time object was last backed-up.
Date/time object was created.
Date/time object was last mOdified.
Date/time object was last scavenged.
Flag set if end of file has been encountered on
this object (through the given refnum~
Directory entry type.
Flag set if this object was closed by the Cperating
System.
Flag set if this object was open during a system
crash.
Flag set by the Scavenger if this object has been
altered in some way.
Absolute byte to which the file mark points.
Number of pages used by the File System to store
control information about this object.
Cbject type.
unique identifier for this object.
Flag set when the Object is k1lled.
Reserved.
Number of data bytes on a page.

E-2

[JJeJ"8tiI7f:.7 ~'Ster77 RefeJ"ellce f\-181lwl F .. ~JNFO Fjelt.1s

machine 10
master fIle
name
nreaders

nwriters

nusers
private
protected
psize
refnum

resul t _scavenge
safety_on
sIze
system_type
user_type
user_subtype

Machine on which this object may be opened.
Flag set if this object is a master.
Entry name of this object.
Number of processes with this object open for
reading.
Number of processes with this object open for
writing.
Number of processes wi th this object open.
Flag set if this object is open for private access.
Flag set if this object is protected.
Physical size of this object in bytes.
Reference number for this object (argument to
INFO~
Reserved.
Value Of the safety swItch for thIs Object.
Number of data bytes in this object (LECF).
Reserved.
User-defined type field for this Object.
User-defIned subtype field for this Object.

E-3

Index

Please note that the topic references in this Index are by section number.

----------A----------
accessing devices 1.3, 2.8
ACTIVATE_PROCESS 3.8.6
ALLOCATE 2.10.13
Append access 2.10.8
attribute 1.3, 2.10.5

----------6----------
baud rate 2.10.12.1
binding 4.1
BIND_DATASEG 4.7.12
blocked process 1.4,

3 (introduction), 3.8.5
buffer 2.9, 2.10.12.1, 2.10.16,

5.5, 5.8

----------C----------
CARDS_EQUIPPED 6.1.1
catalog 2.1, 2.5, 2.10.19
changing file size 2.10.13-2.10.15
clock 5.6
clock system calls 5.9
CLOSE DATASEG 4.7.4
CLOSE_EVENT_CHN 5.8.4
CLOSE_OBJECT 2.10.9
code segment 4.5
cOrrmJnication between processes 1.7
COMPACT 2.10.14, 2.10.15
configuration 6 (introduction)
configuration system calls 6.1
controlling

029-0427-A

a device 2.10.12
a process 3.4

Index-l

CONVERT_TIME 5.9.4
creating

a data segment 4.7.1
an event channel 5.8.1
an object 2.10.1
a process 3.3, 3.8.1

----------0----------
data segment

creating 4.7.1
private 4.1, 4.4
shared 1.7, 4.1, 4.3
swapping 4.6

Decode mnemonics 2.10.12
Dcdata 2.10.12
Dctype 2.10.12
Ocversion 2.10.12
DECLARE EXCEP HDL 5.7.1 - -
DELAY_TIME 5.9.1
deleting

a process 3.8.2, 3.8.4
an object 2.10.2

device 2.3-2.7, 2.10.12
accessing 1.3, 2.8
control information 2.10.12
mounting 1.3, 2.10.20
names 2.1, 2.3, 2.10.12.1
priority 2.3
storage 2.4

DEVICE CONTROL 2.10.12
directory 2 (introduction)
DISABLE_EXCEP 5.7.2
disk hard error codes 2~10.12.2

tperating System Reference Manual

division by zero 5.2, B
Dread, Owrite access 2.10.8

----------E----------
ENABLE_EXCEP 5.7.3
end of file 2.7, 2.10.14, 2.10.15
eof 2.10.5; see also end of file.
error

disk hard error codes 2.10.12.2
error messages 0
soft error 2.10.12.1
See also exception.

event 1.6, 5.4, C
event Channel 1.7, 5.5, 5.8.1
event management system calls 5.8
event types C
exception 1.6, 5.1-5.3, B
exception handler 5.1, 5.3
exception management system calls

5.7
exception names B

----------F----------
father process 1.4, 3.6, 3.7,

3.8.1, 3.8.2
file 2 (introduction)

access 2.8
attributes 2.10.5-2.10.7
changing size 2.10.13-2.10.15
label 2.6, 2.10.11
marker 2.7, 2.10.15
name 2.1, 2.10.1
private 2.8
shared 1.7, 2.8

File System 1.3, 2
File System calls 2.10
fLUSH 2.10.16

Index-2

FLUSH_OATASEG 4.7.5
FLUSH EVENT CHN 5.8.7 - -
FLUSH_EXCEP 5.7.6
FS_INFO fields E

----------G----------
GET_CONf1G_NAHE 6.1.2
GET NEXT ENTRY 2.10.19
GET TIME 5.9.2
GET_WORKING_OIR 2.10.18
global access to files 2.8
global event channel 5.5
Global_.Refnum 2.8, 2.10.8

----------H----------
handshake 2.10.12.1
hierarchy of processes 3.2

----------1----------
INFO 2.10.6
INfO_ADDRESS 4.7.9
INFO DATASEG 4.7.7
1NFO_EVENT_CHN 5.8.5
INFO_EXCEP 5.7.4
INfO_LDSN 4.7.8
INFO_PROCESS 3.8.3
interface unit A

Index

interprocess communication 1.7, 2.9
1/0 2 (introduction)

----------K----------
KILL_DATASEG 4.7.2
KILL_EVENT_CHN 5.8.2
KILL_OBJECT 2.10.2
KILL_PROCESS 3.8.4

cperatJng system Reference MantIal

----------L----------
label, file 2.6, 2.10.11
LDSN 4.2, 4.4, 4.7.8
LEOF. See end of file.
local data segment 4.1
local event channel 5.5
logical data segment number 4.2,

4.4, 4.7.8
logical end of file. See end of

file.
LOOKUP 2.10.5

----------H----------
MAKE_DATASEG 4.7.1
HAKE EVENT CHN 5.B.l - -
HAKE FILE 2.10.1
HAKE_PIPE 2.10.1
HAKE_PROCESS 3.8.1
memory management 1.5, 4.1-4.6
memory management system calls 4.7
memory, parameter 6 (introduction)
HEM_INFO 4.7.10
mnemonics for Dccode 2.10.12.1
MOUNT 2.10.20
mounting a device 1.3, 2.10.20
MY 10 3.8.9

----------N----------
naming an object 2.1, 2.10.1,

2.10.4

----------0----------
object 1.3

creating 2.10.1
deleting 2.10.2
naming 2.1, 2.10.1
renaming 2.10.4

Index-3

OPEN 2.10.8
OPEN_DATASEG 4.7.3
OPEN_EVENT_DHN 5.8.3
OS interface A
OSBOOTVOL 6.1.3

----------P----------
p~ge 2.4

Index

parameter memory 6 (introduction)
parity 2.10.12.1
pathname 1.3, 2.1, 2.2
PEOF. See end of file.
physical end of file. See end of

file.
pipe 1.7, 2.9. 2.10.1, 2.10.B
priority of devices 2.3
priority of processes 3.5, 3.B.7,

3.8.8
private access to files 2.8, 2.10.8
private data segment 4.1, 4.4
process 1.4, 3

blOCKed 1.4, 3 (introduction)y
3.8.5

creating 3.3, 3.8.1
father 1.4, 3.6, 3.7, 3.8.1,

3.8.2
hierarchy 3.2
priority 3.5, 3.8.7, 3.8.8
queuing 3.5, 3.8.5-3.8.8
scheduling 3.5, 3.8.5-3.8.8
shell 1.4, 3.2
son 1.4, 3.7, C
starting 3.8.1, 3.8.6
stopping 3.8.2, 3.8.4
structure 3.1
termination 1.4, 3.6, 5.2, B, C

process system calls 3.8

t:peratlng System Reference Manual

----------Q----------
queuing a process 3.5~ 3.8.5-3.8.8

----------R----------
range check error 5.2, B
READ_DATA 2.10.10
READ_LABEL 2.10.11
refnum 2.8; see also Global_Refnum.
RENAME_ENTRY 2.10.4
renaming an object 2.10.4
RESET_CATALOG 2.10.19
running a program 1.4~ 1.9, 3.8.1,

3.8.6

----------S----------
safety switch 2.5, 2.10.17
Scheduler 3
scheduling processes 3.5,

3.85-3.8.8
SENO_EVENT_CHN 5.8.8
SETACCESS_DATASEG 4.7.11
SETPRIORITV PROCESS 3.8.7
SET_FILE_INFO 2.10.7
SET_LOCAL_TIHE_DIFF 5.9.3
SET_SAFETY 2.10.17
SET WORKING DIR 2.10.18 - -
shared data segment 1.7, 4.1, 4.3
shared file 1.7, 2.8
shell process 1.4, 3.2
SIGNAL_EXCEP 5.7.5
SIZE DATASEG 4.7.6 - .
soft error 2.10.12.1
son process 1.4, 3.7, C
sparing 2.10.12
starting a process 3.8.1, 3.8.6
stopping a process 3.8.2, 3.8.4
storage device 2.4
SUSPEND_PROCESS 3.8.5

swapping 4.6
Syscall unit A
system call s

clock 5.9
configuration 6.1
event management 5.8
exception management 5.7
file 2.10
memory management 4.7
process 3.8

Index

system clock 5.6, 5.9
system-defined exceptions 5.2, B
SVS_OVERFLOW 5.2, B
SYS_SON_TERM C
SYS_TERMINATE 5.2, B
SVS_VALUE_OOB 5.2, B
SVS_ZERO_DIV 5.2~ B

----------T----------
terminated process 1.4~ 3.6, 5.2,

B, C
TERMINATE_PROCESS 3.8.2
timed events 5.8.8
tree, process 3.2
TRUNCATE 2.10.15

----------U----------
UNBIND_DATASEG 4.7.12
UNKILL_FILE 2.10.3
UNMOUNT 2.10.20
user-defined exception handler 5.3

----------V----------

IncJex-4

value out of bounds 5.2, B
volume catalog 2.1, 2.5, 2.10.19
volume name 1.3

t:peratlng System Reference Manual

----------W----------
WAIT_EVENT_CHN 5.8.6
working directory 2.2
~orking set 4.2
WRITE_DATA 2.10.10
WRITE_LABEL 2.10.11
writing buffered data 2.10.16

----------y----------
VIELD CPU 3.8.8

Index

Index-S

, 1 ~IS MANUAL was produced using
LisaWrite, LisaDraw, and

LisaList.

k PRINTING was done with an
Apple Dot Matrix Printer.

the Lisa'"
... we use it ourselves.

i.pelating .. ~ystenl Ref'elPonce I'-1allll8l ''''/ail-Back' FOln}

Apple publications would like to learn about readers and what you think about this
manual in order to make better manuals in the future. Please fill out this form .. or
write all over it and send it to us. We promise to read it.

How are you using this manual?
[] learning to use the product [] reference [] both reference and learning
(]other __ __

Is it quiCk and easy to find the information you need in this manual?
[] a1 ways [J often [J sometimes [] seldom [J never
CommenU __ __

What makes this manual easy to use? ________________________________ _

What makes this manual hard to use? ________ . _______ _

What do you like most about the manual? __________________________ _

What do you like least about the manual? ___________________ _

Please comment on .. for example,. accuracy,. level of detail" number and usefulness of
examples,. length or brevity Of explanation,. style" use of graphiCS" usefulness of the index"
organlzatIon, suitabilIty to your partiCular needs" readab1l1ty.

What languages do you use on your Lisa? (CheCk eaCh)

[] Pascal [] BASIC [J COOCL [J other _____________ .

How long have you been programming?

[] 0-1 years [] 1-3 [] 4-7 [] over 7 [] not a programmer
wnat~yo~ ~b title? ___ ~

Have you completed:

[) high school [] some college [] BNBS [] MAIMS [] more

What magazInes do you read7 ________________________________ _

Other comments (please attach more sheets if necessary) ________________ _

029-0408-A

.. FllO··

... , ... FaO .. ···· · .. ·· .. · .. · .. ·· · .. ···· .. · .. · .. ··· .. ·· .. ·· .. · ·

t
.~ppkz computar

POS PUblications Department

20525 Mariani Avenue

cupertino, Callfomla 95014

TAPE tR STAPLE

~
/I(

SIll.
HE/c

