Lisa Systems Software

| JUALCLTZA File Edit Search Type Style Print Markers

" Clipboard

v —# 24 2—-Hemisphere. TEXT

—#2# 2-Stretch. TEXT

= #2# 2-Stretch. TEXT
BEGIN { main program }

OpenPort(@myPort);

DrawStuff;

DrawStuif;

PaintRect(thePort”.portRect); imBl||| -+ 24 2-Hemisphere. TEXT |||
SetRect(srcRect,0,0,720,360); PROCEDURE DrawFigqure(viewAng, rollAng, pitchAng :

Initialization - Generic to all applications using QuickDraw
QDInit(@heapBuf, @heapBuf[8192], ®@heapError);

PaintRect(thePort” .portRect);
Initlcons; {moved to here from below stuffhex}
InitScales; {moved to here from below stuffhex}

REPEAT UNTIL KeyBdEvent(FALSE,FALSE,event) AND

(event.ascii <> CHR(1));

BEGIN

myPicture := OpenPicture(srcRect); Viewenglalviewing):

Identity;
Roll(rollAng);

Pitch(pitchAng);
EraseRect(port1”.portRect);

FrameRect(porti®.portRect);
PlotGrid;

O
)
]
]
7
B

Lisa Pascal 3.0 Systems Software

Copyright

Thiz manual and the software described in it are copyrighted with all rights
reserved. Under the copyright laws, this manual or the software may not be
copied, in whole or in part, without the written consent of Apple, except in
the normal use of the software or to make & backup copy. The same
proprietary and copyright notices must be affixed to any permitted copies &s
were affixed to the original. This exception does not allow copies to be
made for others, whether or not sold, but all the material purchased (with all
backup copies) may be sold, given, or loaned to another person. Under the
law, copying includes translating into another language or format.

You may use the software on any computer owned by you, but extra copies
cannot be made for this purpose. For some products, a multiuse license may
be purchased to allow the software to be used on more than one computer
owned by the purchaser, including a shered-disk systemn. (Contact your
authorized Apple dealer for inforrnation on multiuse licenses.)

Licensing Requirements for Software Developers

Apple has a low-cost licensing program, which perrnits developers of
software for the Lisa to incorporate Apple-developed libraries and object
codes into their products. Both in-house and external distribution require a
licenze. Before distributing any products that incorporate Apple software,
please contact Software Licensing at the address below for both licensing and
technical information.

81983, 1984 Apple Computer, Inc.
20525 Mariani Ave.

Cupertino, CA 95014

{(408) 996-1010

Apple, Lisa, ProFile, MacWorks, and the Apple logo are trademarks of Apple
Computer, Inc.

Macintosh is a trademark licensed to Apple Computer, Inc.

Priam is a registered trademark of Priam, Inc. Sony is a registered
trademark of Sony Corporation. Centronics is a registered trademark of
Centronics Data Computer Corporation. Y752 and ¥T100 are trademarks of
Digital Equiprent Corporation.

Simultaneously published in the U.5.A. and Canada.
Reorder Apple Product #620-6149-E.

Limited Warranty on Media and Manuals

If you discover physical defects in the media on which this software is
distributed, or in the manuals distributed with the software, Apple will
replace the media or manuals at no charge to you, provided you return the
itern to be replaced with proof of purchase to Apple or an authorized Apple
dealer during the 90-day period after you purchased the softweare. In some
countries the replacement period may be different; check with your
authorized Apple dealer.

ALL IMPLIED WARRANTIES ON THE MEDIA AND MANUAL, INCLUDING
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO NINETY (90) DAYS
FROM THE DATE OF THE ORIGINAL RETAIL PURCHASE OF THE
PRODUCT.

Even though Apple has tested the software and reviewed the documentation,
APPLE MAKES NO WARRANTY OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS SOFTWARE, ITS QUALITY,
PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS SOFTWARE IS SOLD "AS IS," AND YOU,
THE PURCHASER, ARE ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND PERFORMANCE.

IN NO EVENT WILL APPLE BE HELD LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM
ANY DEFECT IN THE SOFTWARE OR ITS DOCUMENTATION, even if advised
of the possihility of such damages. In particular, Apple chall have no
liability for any programs or data stored in or used with Apple products,
including the costs of recovering such programs or data

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or limitation of implied warranties or
liability for incidental or conseguential damages, so the above limitation or
exclusion may not apply to you. This warranty gives you specific legal
rights, and you may also have other rights which vary from state to state.

What's Inside

This binder contains seven documents about the Lise™ system software for
programmers’ reference. The manuals are, in order:

» Operating S\stem Reference Manual for the Lisa.
Fhe OEMSyscall Linit.

The Standard Apple Nurneric Environment.

The 88300 Assembly-Language SANE.

The Stdlinit.

The FrogCormm Unit.

s The QuickFort Frogrammer's Guide.

In addition, elsewhere in this package of books and medis, there is a copy of
Motorola's MSRXD 15/32 Bit Microprocessor Frogrammer's Reference Manual.

Operating System
Reference Manual
for the Lisa

Contents

Chapter 1
Introduction
1.1 The MaIN FUNCUONS.......iiiieiiriimiieiinreatensinerrennsnssseremsssstrssssnnssssssans 1-1
1.2 USING the 0S FUNCHIONS ..ccceecieereereaessnsissesessessnesarsnsessssessassssssnseransans 1-1
1.3 The FII& SYSUEM....iiiiiiieeciiiesireirinennsancaeesnsrseennnssesssassesnesresnensssessnanse 1-2
1.4 Process Management ... w 1-3
1.5 ™Memory Management1
1.6 EXCeptions @nd EVENLS.....ccccciererssesnssssssssternneersenennssasemassssssssasarsessans 1-5
1.7 Interprocess COomMMUNICALION.cccvrermreinreessrerecrteeenssstnniensesserasssssasenee 1-5
1.8 Using the 0S INLEITACEccovirerrerncsssistnnenssisenisssssssssssisasssssesnansasssacne 1-6
19 Running Programs under the 05ccccceeiiiiincceimeetssnrenissccenseeensessenaes 1-6
1.10 Wwriting Programs That Use the 0Scicccvciiiriieminennsasiiessesesennensssscae 1-6
Chapter 2
The Flle System
2.1
2.2
23
24
25
2.6
27
2.8 FIIB ACCESS cevreiierciririnicinesniansieiniieteesosnsssssssssssssassssssssiassssssssssasssassss 2-5
2.9 PIPES .oocciiceerreeretiteseseaenesatesaeessassnesssasaastesasesaterasesinssanasensessaennnin 2-6
2.10 F11E SYSLEM CallS...icieimniiiitieritimncsstmnnsaieansettessserssanssssessnssassenesssssanne 2-7
Chapter 3
Processes
3.1 PYOCESS SUUCIUTE ...ccoeeeeerciiireerannnnsnsetnnnnnnns Cessssseesnt ettt et ateesetaesenean 3-2
3.2 PrOCESS HIBTAICNY «.uurrecnncciirerectrenssererssernsesssnnsesssanessrressnsasssasessssanse
3.3 PIOCESS Creation...iciiiiiciiiniciiiinieeinierneasnnnsnssssssssssasssessannnsasnnnessssnsans
34 Process Control

3.5 Process Scheduling..
3.6 Process Termination
3.7 A Process-Handling EXBMPIEcvvieieirieeennincnie st sessaseanens 3-5
3.8 Process System CallS....cuuiiiiriiiiiiiiinenieeennunnnessssseesissiereasensssssnsess 3-7

Qperating System Reference Manual Contents

Chapter 4
Memory Management
8.1 D38 SBOMENLS...ccciiesierrereessnessressessaasnesssasaressssesssssnsssssessasssssanssasans 4-1
4.2 The Logical Data Segment NUMDETccciiirieierenssststnssasrissssssrsnsssssne a-1
8.3 Shared Datd SEOMENLS.....cicecieessersseesensarsssssssesssssssssasessesssssanessassasens 4-2
8.4 Private Data SEOMENLScciiiiieesiienecitearesesnastsnnnssssssessasssasssssanssasass -2
4.5 COote SEOIMEBNLS .iiiiiiiriniiressitiietteiienstinetinisstansrestssssssttssssteesssasases 4-2
8.6 SWADPING ...ceecrereeseeesreraraseessasssessessssssasassassasessasssessssesssessssanessnssessas 4-2
4.7 Memory Management SYStEM CallS....ccuiiiiiiimrirriirineenistsssennscesssesarseees 4-3
Chapter 5
Exceptions and Events
5.1 EXCEPUONS .c.eeereceeireeiemrennnesessserteenennsseserennsnestensansssessseeseannssssaseansens S-1
5.2 System-Defined EXCEPLIONSciiiciiiritiirienireetcreeriesesssereesssaasssenssanses 5-2
5.3 Exception HaNOIerS (... ciiiiiirieriiieneniesnenmesssseecennessesersananssssssssnarasees 5-2
Sl EVBNLS...cimmeieeerirtrieentsaeetstnre et s saasesesssssssstansesressnnssesanensnsnssnaess 5-5
5.5 EVENL ChamBIS ..iicrriiiiiniiintensrissssensrinsinsssassassssassstassssansesaessnssasase 5-5
5.6 The SYSLEM CIOCK ...ceevnvreermsnmnrecsssmeassssssissisesamstsereersnessssensasnsaranssasas 5-10
5.7 Exception Management System Callsivuicciiiiiinencaiieesesnnseseansiane S5-10
5.8 Event Management SYStEM CallScccvvviereirismneririnerneersaressasernmsnenene 5-17
5.9 Clock System CallS...cciiieiriniinirtiitisiiisiereieresesssesssestesssnssssssenssassssas 5-27
Chapter 6
Configuration
6.1 Conflguration System CallS......ucvieirisininieenennreeeesenssnnensnessssssnsssssasees 6-1
Appendixes
A Operating System INterface Unitcciiiiiiiniiinnniecccnennessnsssnseness
B System-Reserved Exception Names
C System-Reserved Event TYpes
D EXTOL MESSAGES e ceirrnrnrnnssssssssssssssssisssssssssisissesessssssssssssnssssssssssssasssssne
E FS_INFO FIBLAS «.ecceereeieesserssesasesaassesssasssnessasesasesanesasssansassassesansnsansans

Index

Preface

The Contents of This Manual
This manual describes the Operating System service calls that are available to
Pascal and assembler programs. It is written for experienced Pascal
programmers and does not explain elementary terms and programming
techniques. We assume that you have read the LJ/sg Owner’s Guide and
workshop Users Guide for the Lisa and are familiar with your Lisa system.

Chapter 1 is a general introouction to the Operating System.

Chapter 2 describes the File System and the available File System calls. This
includes a description of the interprocess communication facility, pipes, and
the Operating System calls that allow processes to use pipes.

Chapter 3 describes the calls available to control processes, and also describes
the structure of processes.

Chapter 4 describes how pracesses can control their use of available memory.

Chapter S describes the use of events and exceptions that control process
synchronization. It also describes the use of the system clock.

Chapter 6 describes the calls you can use to find out about the configuration
of the system.

Appendix A contains the source text of Syscall, the unit that contains the
type, procedure, and function definitions discussed in this manual.

Appendlx B contalns a list of system-reserved exception names.
Appendix C contalns a list of system-reserved event names.

Appendix D contains a list of error messages that can be produced by the
calls documented in this manual.

Appendix E contailns a description of the information you can obtain from the
Operating Systemn about files and devices.

Type and Syntax Conventions
Bold-face type is used in this manual to distinguish programming keywords and
constructs from English text. For example, FLUSH is the name of a system
call. Systern call names are capitalized in this manual, although Pascal does
not distinguish between lower and upper case characters. //g//cs indicate a
new term whose explanation follows.

Future Releases
A few features of the Lisa Operating System will be changed in future
releases:

* Pipes will not be supported.
* Timed events will not be supported.

* Configuration System Calls will be changed.
If you want your software to be upward—-compatible, please take these changes

Into consideration. More information is provided In the appropriate sections
of the manual.

11
1.2
13
14
15
16
1.7
18
19

1.10 writing Programs That Use the 0S

Chapter 1
Introduction

The Main Functions

Using the 0S Functions....

The File System.....

Process Management

Memory Management

Exceptions and Events
Interprocess Communication

Using the OS Interface

Running Programs under the 0S5

1-1
1-1

1-3
1-4
1-5
1-5
1-6
1-6
1-6

Introduction

The Operating System (0S) provides an environment in which multiple processes
can coexist, communicate, and share data. It provides a file system for 1/0
and information storage, handles exceptions (software interrupts), and performs

memory management.

11 The Main Functions
This chapter describes the four main functional areas of the 0S: the File
System, process management, memory management, and event and exception
handling.

The File System provides input and output. The File System accesses devices,
volumes, and files. Each object, whether a printer, disk file, or any other type
of object, is referenced by a pathname. Every 1/0 operation is performed as
an uninterpreted byte stream. Using the File System, all 1/0 is device
independent. The File System also provides device-specific control operations.

A process consists of an executing program and its associated data. Several
processes can execute concurrently by multiplexing the processor between
them. These processes can be broken into segments which are automatically
swapped into memory as needed.

Memory management routines handle data segments. A data segment is a file
that can be placed in memory and accessed directly.

Exceptions and events are process-communication constructs provided by the
0S. An event is a message sent from one process to another, or from a
process to Itself, that Is delivered to the recelving process only when the
process asks for that event. An exception is a special type of event that
forces itself on the recelving process. There is a set of system-defined
exceptions (errors), and programs can define their own. System errors such as
divislon by zero are examples of system-defined exceptions. You can use the
system calls provided to define any exceptions you want.

1.2 Using the 0S Functions
Both built-in language features and expiicit 0S system calls can access 0S
routines to perform desired functions. For example, the Pascal wrlteln
procedure is a built-in feature of the language. The code to execute writeln
is supplied in IOSPASLIB, the Pascal run-time support routines library. This
code, which Is added to the program when the program is linked, calls 0S
File System routines to perform the desired output.

You can also call 0S routines explicitly. This is usually done when the
language does not provide the operation you want. 0S routines allow Pascal
programs, for example. to create new processes, which could not otherwise be
done, since Pascal does not have any buflt-in process-handling functions.

1-1

(perating System Reference Markal Introguetion

All calls to the 0S are synchronous, which means they do not return until the
operation is complete. Each call returmns an error code to indicate if anything
went wrong during the operation. Any non-zero value indicates an error or
warning. Negative error codes indicate warnings. For a list of error codes
and thelr meaning, see Appendix D.

13 The File System
The File System performs all 1/0 as uninterpreted byte streams. These byte
streams can go to files on disk or to other devices such as a printer or an
alternative console. In all cases, the device or file has a File System name.
Except for device-control functions, the Flle System treats devices and flles
in the same way.

The Flle System allows sharing of all types of objects.

The File System provides for naming objects (devices, flles, etc.). A name In
the Flle System Is called a pat/mame A complete pathname consists of a
directory name and a file name. The file name Is meaningful only for storage
devices (gdevices that store byte streams for later use, such as disks).

Each process has a working directory assoclated with it. This allows you to
reference objects with an incomplete pathname. To access an object in the
working directory, you specify its file name. To access an object in a
different directory, you specify its complete pathname.

Before a device can be accessed, it must be mounted. Devices can be
mounted using the Preferences tool or by using the MOUNT call. See Chapter
2 for an explanation of this call and other File System calls. If the device is
a storage device, the mount operation makes a volume name avallable. A
volume name is a logical name for a disk, and is saved on the disk itself. The
mount operation logically connects the volume to the system, so that the files
on the volume may be accessed. The volume name can replace a device name
In a pathname used to access an object on the disk. The volume name allows
you to access a file with the same pathname no matter where the drive is
actually connected.

A device can be accessed if it is specified in the configuration list created by
the Preferences tool, Is physically connected to the Lisa, and 1s mounted.
There are some operations that can be performed on unmounted devices. Two
examples are DEVICE_CONTROL calls and scavenging. Logically mounting a
volume on a device makes file access to the volume possible. For storage
gevices, a volume is an actual magnetic medium that can contain recorded
files. For non-storage devices, volumes and flles are concepts used to
maintain a uniform interface. Files on non-storage devices such as printers
do not store data but act as ports for performing 1/0 to the devices.

1-2

Querating System Reference Merxial Introgetion

" The basic operations provided by the File System are as follows:

mount and unmount - make a volume accessible/inaccessible
open and close - make an object accessible/inaccessible
read and write - transfer Information to and from an object
device control functions ~ control device-specific functions

Some operations apply only to storage devices:

allocate and deallocate - specify size of an object

manipulate catalog - control naming of objects and creation and
destruction of objects

manipulate attributes - look at or change the characteristics of
the object

In addition to the data In an object, the object itself has certain
characteristics called aterituites such as the length and creatlon date of a
file. Calls are avallable to access the attributes of any File System object. In
addition to its system-defined attributes, an object on a storage device can
have a /abel The label is available for programs to store information that
they can Interpret.

Non-storage devices such as printers are accessed with a limited set of
operations. They must be mounted and opened before they can be accessed.
Sequential read and/or write operations are avallable as appropriate for the
device. Device-control functions are avallable to perform any device-
specific functlons needed. The file-name portion of the complete pathname
for a non-storage device is not used by the File System, although you do have
to provide one when you open the device.

For storage devices, the same sequentlial read and write operations are valid
as for non-storage devices. Storage devices also must be mounted, and
particular files opened, before the files can be used. They have appropriate
device-control functions available.

when writing to a disk file, space for the flle is allocated as needed. Space
for a file does not need to be contiguous, and in some cases this automatic
allocation can result In a fragmented file, which may slow file access. To
insure rapid access, you can pre-allocate space for the flle. Pre-allocating
the flle also ensures that the process will not run out of space on the disk.

Four types of objects can be stored on storage devices. These are flles, pipes,
data segments, and event channels. Flles, already discussed, are simply arrays
of stored data. Pipes are objects that provide Interprocess communication.
Data segments are speclal cases of files that are loaded Into memory along
with program code. Event channels are pipes with a specialized structure
imposed by the system.

1.4 Process Management
A process is an executing program and the data associated with it. Several

processes can exist at one time, and they appear to run simultaneously
because the CPU is multiplexed among them. The Scheduler decides what

1-3

(perating System Reference Manual Introguction

process should use the CPU at any one time. It uses a generally non-
preemptive scheduling algorithm. This means that a process will not lose the
CPU uniess 1t blocks. The blocked state is explained later in this section,

A process can lose the CPU when one of the following happens:
* The process calls an Operating System procedure or function.

* The process references one of its code segments that is not currently in
memory.

If neither of these occur, the process will not lose the CPU.

Every process is started by another process. The newly started process is
called the san7 process The process that started it is called its /avwer process
The resulting structure is a tree of processes. See Figure 3-2 for an
llustration of a process tree.

when any process terminates, all its son processes and their descendants are
also terminated.

When the 0S Is booted, it starts a s/ arocess The shell process starts any
other processes desired by the user.

Every newly created process has the same system-standard attributes and
capabllities. These can be changed by using system calls.

Any processes can suspend, activate, or kill any other process for which the
global ID Is known, as long as the other process does not protect itseif.

The memory accesses of an executing process are restricted to its own
memory address space. Processes can communicate with other processes by
using shared flles, pipes, event channels, or shared data segments.

A process can be in one of three states: ready, running, or blocked. A seagy
process §s walting for the Scheduler to select it to run. A suming process Is
currently using the CPU to execute its code. A blocked process is waiting for
some event, such as the completion of an 1/0 operation. It wiil not be
scheduled untl]l the event occurs, at which point it becomes ready. A
emminater processhas finished executing.

Each process has a priority from 1 to 255. The higher the number, the higher
the priority of the process. Prloritles 226 to 255 are reserved for system
processes. The Scheduler always runs the ready process with the highest
priority. A process can change its own priority, or the priority of my other
process, while it is executing.

15 M™Memory Management
Memory managment is concemed with what is In physical memory at any one
time. Each process can use up to 128 memory segments. Each segment can
contaln up to 128 Kbytes. Memory segments are of two types: code segments
and data segments. The total amount of memory used by any ohe process can
exceed the available RAM of the Lisa. The Operating System will swap code
segments in and out of memory as they are needed. To aid the Operating

Qperating System Reference Manial Introaction

System In swapping data segments, calls are provided to glve programs the
abllity to define which data segments must be In memory while a particuiar
part of the program is executing.

You have control of how your program is divided up. For executable code
segments, you use the segmentation commands of the Pascal compiler to break
the program In pleces.

In addition to residging in memory, data segments can be stored permanently
on disk. They can be accessed with calls similar to Flle System calls. This
allows you to use a data segment as a direct-access flie--a file that is
accessed as part of your memory space.

Calls are provided for making, killing, opening, and closing data segments.
You can also change the size of a data segment and set its access mode to
read-only or read-write. In addition, you can make a permanent disk copy of
the contents of a data segment at any time. Other calls give you ability to
force the contents of the data segment to be swapped into maln memory so
they can be accessed by your process.

1.6 Exceptions and Events
An exception is an unexpected condition in the execution of a process (an
interrupt). An event is a message from another process.

An exception can be generated either by the system or by an executing
program. System exceptions are generated by various sorts of errors such as
divide by zero, lllegal instruction, and illegal address. System exception
handlers are supplied that terminate the process. You can write your own
exception handlers for any of these exceptions if you want to try to recover
from the error.

User exceptions can be declared and exception handlers can be written to
process them. Your program can then signal this new exception.

Events are messages sent from one process to another. They are sent through
event channels.

A process that expects a message from an event channel executes a call to
walt for an event on that channel. This will give it the next message, if one
exists, or block the process until a message arrives.

If a process wants to know when an event arrives, but does not want to wait
for it, it can use an event-call channel. This Is set up by assoclating a user
exception with the event channel when it is opened. The Operating System
will then invoke the corresponding user exception handler whenever a message
arrives in the event channel.

1.7 Interprocess Communication
There are four methods for interprocess communication: shared files, pipes,
event channels, and shared data segments.

1-5

Querating Systerm Reference Maal Introavection

Shared flles are used for high volume transfers of information. It Is necessary
to coordinate the processes somehow to prevent them from overwriting each
other's Information.

Pipes are used for communication between processes with an uninterpreted
byte stream. (Note that pipes will not be supported In future releases of the
Operating System.) The pipe mechanism provides for the needed
synchronization; a process will block if it is trying to read from an empty
pipe or write to a full one. A read from a pipe consumes the information, so
it is no longer avallable. Only one process can read from a given pipe.

Event channels are similar to pipes, except that event channels transmit short,
structured messages Instead of uninterpreted bytes.

A shared data segment can be used to transmit a large amount of data
rapidly. Having a shared data segment means that this data segment is In the
memory address space of all the processes that want to use it. All the
processes can then directly read and write information in the data segment.
It is necessary to provide some sort of synchronization to keep one process
from overwrliting another’s information.

1.8 Using the 0S Interface
The Interface to all the system calls is provided In the Syscall unit, found in
Appendix A. This unit can be used to provide access to the calls. See the
workshop Lisers Guice for the Lisa for more information on using Syscall.

1.9 Running Programs Under the 0S
Programs can be written and run by using the workshop, which provides
program development tools such as editing and debugging facllities.

1.10 writing Programs That Use the 0S
You can write a program that calls 0S routlnes to perform needed functions.
This program uses the Syscall unit and then calls the routines needed.

1-6

Chapter 2
The File System

21 File NBMES ... em—————————— 2-1
22 The Warking Directory __ L 2-2
23 DeVICES e amemecmeemcemeeameeem—eeee—m——————— 2-3
24 Storage Devices 2-3
25 The Yolume Calalog ... oo .. ccamencccaaaan 2-4
2.6 LADBIS ..o ———————— 2-4
27 Logical and Physical End of File 2-4
28 File ACCEBSS oot ccceeemeccevameaceeaenmaeam—eenn———— 2-5
2O PADBS oo mm————m—m—————— 2-6
210 File System Calls ... cecccemnnecnnanan 2-7
2.10.1 MAKE_FILE and MAKE_PIPE iieeeenn 2-8
2102 KILL _OBIECT . i reeeeeei e aaaans 2-10
2103 UNKILL _FILE L ieeeiee e eceeae et 2-11
2104 RENAME ENTRY ..t 2-12
2105 LOOKUP L . i, 2-13
A L R (N | o 2-16
2107 SET FILE _INFO Lttt eee e et 2-17
2308 OPEN L e 2-18
2109 CLOSE _OBJIECT oottt eee e eeee e 2-19
2.10.10 READ_DATA and WRITE_DATA ... i, 2-20
2.10.11 READ_LABEL and WRITE_LABEL ciiiiiiiiierinans 2-23
2.10.12 DEVYICE _CONTROL .. eeeee e cece e, 2-24
2.10.12.1 Setting Device-Control Information............... 2-24
2.10.12.2 Obtaining Device-Control Information 2-29
210,13 ALLOCATE ..o et 2-34
210,14 COMPRACT L oot 2-35
210,15 TRUNCATE .t et eie e caaeaaans 2-36
21016 FLUSH it etiiiieeeieereaaannaaes 2-37
210,17 SET _SAFETY ottt eeaaaaaaas 2-38
2.10.18 SET_WORKING_DIR and GET_WORKING DIR 2-39
2.10.19 RESET_CATALOG, RESET_SUBTREE, GET_NEXT_ENTRY,
and LOOKUP NEXT _ENTRY ..o eeeee 2-40
2.10.20 MOUNT and UNMOUNT 2-41

The File System

The File System provides device-independent 1/0, storage with access
protection, and uniform file-naming conventions.

Device independence means that all 1/0 Is performed in the same way,
whether the ultimate destination or source is disk storage, another program, a
printer, or anything else. In all cases, 1/0 Is performed to or from s/es
although those flles can also be devices, data segments, or programs.

Every file is an uninterpreted stream of eight-bit bytes.

A file that is stored on a block-structured device, such as a disk, is listed in
a catalog(also called a a/rectory) and has a name. For each such file the
catalog contains an entry describing the file's attributes, including the length
of the file, its position on the disk, and the last backup copy date. Arbitrary
application-defined information can be stored in an area called the A/7e /sbel
Each file has two associated measures of length, the Logical £nd of File
LEGF) and the Physical £nd of Flie (PEOF) The LEOF is a pointer Lo the last
byte that has meaningful data. The PEOF is a count of the number of blocks
allocated to the file. The pointer to the next byte to be read or written is
called the Ale markex

Since 1/0 is device independent, application programs do not have to take
account of the physical characteristics of a device. However, on block-
structured devices, programs can make 1/0 requests in whole-block increments
in order to improve program performance.

All input and output is synchronous in that the 1/0 requested is performed
before the call returns. The actual 1/0, however, is asynchronous, in that
processes may block when performing 1/0. See Section 3.5, Process Scheduling,
for more information on blocking.

To reduce the impact of an error, the File System maintains distributed,
redundant information about the files on storage devices. Duplicate copies of
critical information are stored in different forms and in different places on
the media. All the files are able to identify and describe themnselves, and
there are usually several ways to recover lost information. The Scavenger
utility is able to reconstruct damaged catalogs from the information stored
with each file.

2.1 File Names
All the files known to the Operating System at a particular time are organized
into catalogs. Each disk volume has a catalog that lists all the files on the
gisk.

Any object catalogued in the File System can be named by specifying the
volume on which the file resides and the file name. The names are separated

(perating System Reference Maal The Flle System

by the character "-". Because the top catalog in the system has no name, all
complete pathnames beglin with “-".

For example,
-LISA-FORMAT. TEXT

refers to a file named FORMAT.TEXT on a volume named LISA. The file
name can contain up to 32 characters. If a longer name is specified, the
name Is truncated to 32 characters. Accesses to sequential devices use an
arbitrary dummy filename that is ignored but must be present in the
pathname. For example, the serial port pathname

-RS2328
is insufficlent, but
-RS232B-XYZ

Is accepted, even though the -XYZ portion is ignored. Certain device names
are predeflined:

RS232A Serial Port A

RS232B Serial Port B

PARAPORT Parallel Port

SLOTXCHANy Serial ports: x is 1, 2, or 3andy is 1 or 2
MAINCONSOLE writeln and readln device

ALTCONSOLE writeln and readln device

UPPER Upper Diskette drive (Drive 1)
LOWER Lower Diskette drive (Drive 2)
BITBKT Bit bucket: data is thrown away when directed here

See Chapter 6 for more Information on device names.

Upper and lower case are not significant In pathnames: ‘TESTVOL' is the same
object as ‘Testvol. Any ASCH character Is legal in a pathname, including
non-printing characters and blank spaces. However, use of ASCII 13,
RETURN, In a pathname is strongly discouraged.

22 The Working Directory
It is sometimes inconvenient to specify a complete pathname, especially when

working with a group of files in the same volume. To alleviate this problem,
the Operating System maintains the name of a working directory for each
process. when a pathname is specified without a leading “-*, the name refers
to an object in the working directory. For example, if the working directory
is -LISA the name FORMAT.TEXT refers to the same file as
-LISA-FORMAT.TEXT. The default working directory name is the name of the
boot volume directory.

You can find out what the working directory is with GET_WORKING_DIR.
You can change to a new working directory with SET_WORKING_DIR.

Qoerating System Reference Mokl The Flle System

23 Devices
Device names follow the same conventions as file names. Attributes like baud
rate are controlled by using the DEVICE_CONTROL call with the appropriate
pathname.

Each device has a permanently assigned priority. From highest to lowest, the
priorities are:

Power on/off button

Serial port A (RS232A)

Serial port B (RS232B, the leftmost port)
I1/0 slot 1

I1/0 slot 2

I/0 slot 3

Keyboard, mouse, battery-powered clock
10 ms system timer

CRT vertical retrace interrupt
Parallel port

Diskette 1 (UPPER)

Diskette 2 (LOWER)

Video screen

The device driver associated with a device contalns information about the
device's physical characteristics such as sector size and interleave factors for
‘disks.

2.4 Storage Devices
On storage devices such as disk drives, the File System reads or writes file
data In terms of pages. A pagels the same size as a block. Any access to
data in a flle ultimately translates into one or more page accesses. when a
program requests an amount of data that does not fit evenly into some
number of pages, the File System reads the next highest number of whole
i)ages. Similarly, data Is actually written to a file only in whole page
ncrements.

A flle does not need to occupy contiguous pages. The File System keeps
track of the locations of all the pages that make up a flle.

Each page on a storage device is self-identifying; the page descriptoris stored
with the page contents to reduce the destructive Impact of an 1/0 error.

The eight components of the page descriptor are:

version number

volume ldentifier

Flle identifier

Amount of data on the page
Page name

Page position in the file
Forward link

Backward 1ink

Qoerating System Reference Marval The Flle Systemn

Each volume has a8 Mealum Descriptor Data Flle (IMOOF) which describes the
various attributes of the medium such as its size, page length, block layout,
?t}ditnle size of the boot area. The MDDF is created when the volume Is
nitialized.

The File System also malntains a record of which pages on the medium are
currently allocated, and a catalog of all the flles on the volume, Each flle
contains a set of file hints, which describe and point to the actual file data.

25 The Volume Catalog
On a storage device, the volume catalog provides access to the files. The
catalog Is itself a file that maps user names into the intermnal file 1dentifiers
used by the Operating System. Each catalog entry contains a varlety of
information about each file including:

Name
Type

Iri\ternal file number and address

Size

Date and time created, last modifled, and last accessed
File identifier

Safety switch

The safety switch is used to avoid accidental deletions. while the safety
switch is on, the file cannot be deleted. The other flelds are described under
the LOOKUP File System call.

The catalog can be located anywhere on the medium.

26 Labels
An application can store its own information about a file In an area called
the /%/e /abel The label allows an application to keep the file data separate
from information maintained about the file. Labels can be used for any
object in the File System. The maximum label size is 128 bytes. 1/0 to labels
is handled separately from file data 1/0.

2.7 Logical and Physical End of Flle
A flle contains some number of bytes of data recorded In some number of
physical pages. Additional pages which do not contain any file data can be
allocated to the file. There are, therefore, two measures of the end of the
file. The Loglical End of File (LEOF) Is a pointer to the last stored byte that
has meaning to the application. The Physical End of File (PEOF) is a count of
the number of pages allocated to the file.

In addition, each open file has a pointer called the /e manker which polints
to the next byte in the flle to be read or written. when the file Is opened,
the flle marker points to the first byte (byte number 0. The file marker can
be positioned automatically or explicitly using the read and write calls. For
example, when a program writes to a flle opened with Append access, the flle
marker is autormatically positioned to the end of the file before new data are
written. The flle marker cannot be positioned past LEOF except by a write

perating System Reference Marneal! The Flle System

operation that appends data to a file; in this case the flle marker is
positioned one byte past LECF.

when a flle is created, an entry for it is made in the catalog specified in its
pathname, but no space is allocated for the file itself. when the file is
opened by a process, space can be allocated explicitly by the process, or
automatically by the Operating System. If a write operation causes the flle
marker to be positioned past the LEOF marker, LEOF (and PEOF if necessary)
are automatically extended. The new space is contiguous if possible.

2.8 File Access
The Flle System provides a device-independent bytestream interface. As far
as an application program is concemed, a specified number of bytes is
transferred either relative to the file marker or at a specified byte location
in the file. The physical attributes of the device or file are not important to
the application, except that devices that do not support positioning can
perform only sequential operations. Programs can sometimes improve
performance, however, by taking advantage of a device's physical
characteristics.

Programs can reguest any amount of data from a file. The actual 1/0,
however, s performed in whole-page increments when devices are block
structured. Therefore, programs can optimize 1/0 to such devices by setting
the file marker on a page boundary and making 1/0 requests in whole-page
increments.

A file can be open for access by more than one process concurrently. All
requests to write to the file are completed before any other access to the file
is permitted. when one process writes to a file, the effect of the write
operation is immediately available to all other processes reading the file. The
other processes may, however, have accessed the flle in an earller state.

Data already obtained by a program are not changed. The programmer must
ensure that processes maintain a consistent view of a shared file.

when you open a flle, you specify the kind of access allowed on the file,
when the file is opened, the Operating System allocates a file marker for the
calling process and a run-time identification number called the re/7w/m The
process must use the refnum in subsequent calls to refer to the file. Each
operation using the refnum affects only the file marker associated with that
refnum.

Processes can share the same flle marker. In g/otal acoess mook each
process uses the same refnum for the file. when a process opens a file in
global access mode, the refnum it gets back can be passed to any other
process, and used by any process. Note that any number of processes can
open a flle with Global_Refrum, but each time the OPEN call Is used a
different refnum is produced. Each of those refnums can be passed to other
processes, and each process using a particular refum shares the same flle
marker with other processes with the same refum. Processes using different

Qperating System Rererence Marial Tre Flie System

refnums, however, always have different file markers, whether or not those
refnums were obtained with Global_Refnum.

A flle can also be opened in private mode, which specifies that no other OPEN
calls are to be allowed for that file. A flle can be opened with
Global_Refrnum and private, which opens the file for global access, but allows
no other process to open that file. By using this call, processes can control
which other processes have access to a file. The opening process passes the
global refnum to any other process that is to have access, and the system
prevents other processes from opening the file.

Processes using global access may not be able to make any assumptions about
the location of the flle marker from one access to the next.

29 Pipes
Because the Operating System supports multiple processes, a mechanism is

provided for interprocess communication. This mechanism is called a pjpg
Pipes are similar to the other objects in the File System -- they are named
according to the same rules, and they can have labels.

NOTE

Plpes will not be supported In future releases of the Operating System.
Do not use the pipe mechanism if you want your software to be

upward-compatible.

As with a file, a plpe is a byte stream. Wwith a pipe, however, information is
queued In a flrst-In~flrst-out manner. Also, a pipe can have only one reader
at a time, and once data is read from a pipe it {s removed from the pipe.

A plpe can be accessed only In sequential mode. Although only one process
can read data from a pipe, any number of processes can write data into it.
Because the data read from the pipe is consumed, the file marker is always at
zero. If the pipe is empty and no processes have it open for writing, EOF (End
Of Flle) Is returned to the reading process. If any process has the pipe open
for writing, the reading process is suspended until enough data to satisfy the
call arrives in the pipe, or until all writers close the pipe.

when a pipe Is created, its size is 0 bytes. Unlike with ordinary files, the
initializing program must allocate space to the pipe before trying to write
data into it. To avold deadlocks between the reading process and the writers,
the Operating System does not allow a process to read or write an amount of
data greater than half the physical size of the pipe. For this reason, you
should allocate to the pipe twice as much space as the largest amount of data
in any planned read or write operation.

A pipe is actually a circular buffer with a read pointer and a write pointer.
All writers access the pipe through the same write pointer. Whenever either
pointer reaches the end of the pipe, it wraps back around to the first byte. If
the read pointer catches up with the write pointer, the reading process blocks

Qperating System Reference Manual The File System

untll data are written or untll all the wrlters close the plpe. Simllarly, If the
write pointer catches up with the read pointer, a writing process blocks until
the pipe reader frees up some space or until the reader closes the pipe.
Because pipes have this structure, there are restrictions on some operations.
These restrictions are discussed with the relevant Flle System calls.

Processes can never make read or write requests bigger than half the size of
the pipe because the Operating System always fully satisfies each read or
write request before returning to the program. In other words, If a process
asks for 100 bytes of data from a pipe, the Operating System waits until there
are 100 bytes of data in the plpe and then completes the call. Similarly, if a
process tries to write 100 bytes of data into a pipe, the Operating System
walts until there is room for the full 100 bytes before writing anything into
the pipe. If processes were allowed 10 make write or read requests for
greater than half of a particular plipe, it would be possible for a reader and a
writer to deadlock, with neither having room in the pipe to satisfy its

requests,

210 Flle System Calls
This section describes all the Operating System calls that pertain to the File
System. A summary of all the Operating System calls can be found in
Appendix A. The followling speclal types are used In the File System calls:

Pathname = STRING[Max_Pathname]; (* Max_Pathname = 255 *)
E_Name = STRING[Hax_Ename]; (* Hax_EName = 32 *)
Accesses = (Dread, Dwrite, Append, Private, Global_Refnum);
HSet = SET OF Accesses;

IoMode = (Absolute, Relative, Sequential):

The Fs_Info record and its associated types are described under the LOOKUP
call. The Dctype record is described under the DEVICE_CONTROL call.

Qperating System Rerferernce Marnal The Flle System

2.10.1 MAKE_FILE and MAKE_PIPE Flle System Calls

MAKE_FILE (var Ecode:Integer;
var Path:Pathname;
Label_Size:Integer)

MAKE_PIPE (var Ecode:Integer;
var Path:Pathname;
Label_Size:Integer)

Ecode: Error indication
Path: Name of new object
Label Size: Number of bytes for the object's label

MAKE_FILE and MAKE_PIPE create the specified type of object with the
given name. If the pathname does not specify a directory name (more
specifically, if the pathname does not begin with a dash), the working
directory is used. Label_Size specifies the initial size in bytes of the label.
It must be less than or equal to 128 bytes. The label can grow to contain up
lto 128 bytes no matter what its initial size. Any error indication is returned
n Ecode.

NOTE

Pipes will not be supported In future releases of the Operating System.
0o not use the pipe mechanism if you want your software to be
upward-compatible.

The MAKE_FILE examplie on the next page checks to see whether the
specified file exists before opening it.

qperating System Reference Markdl The Flle System

CONST FileExists = 890;
VAR FileRefNum, ExrorCode:INTEGER;
F1leName:PathName;
Happy : BOOLEAN;
Response:CHAR;
BEGIN
Happy : =FALSE;
WHILE NOT Happy DO
BEGIN
REPEAT (* get a file name *)
WITE('File name: °);
READLN(F1leName);
UNTIL LENGTH(FileName)>0;
MAKE_FILE(ErrorCode, FileName, 0); (*no label for this filex)
IF (ErrorCode<>0) THEN (* does file already exist? *)
IF (ErrorCode=FileExists) THEN (» yes =)
BEGIN
WRITE(FileName, * already exists. Overwrite? °);
READLN(Response)
&mpy:=(Response IN ['y','Y']); (»go ahead and overwrite*)

ELSE RITELN(Error ', ErrorCode, ' while creating file.')

ELSE Happy:=
END;

OPEN(ErrorCode, FileName, F1leRefNum, [Dwrite]);
END;

2-9

Querating System Reference Maral The Flle System

2102 KILL_0BJECT Flle System Call

KILL_OBJECT (var Ecode:Integer;
var Path:Pathname)

Ecode: Error indicator
Path: Name of object to be deleted

KILL_0BJECT deletes the object given in Path from the File System. Objects
with the safety switch on cannot be deleted. If a flle or pipe is open at the
time of the KILL_OBJECT call, its actual deletion is postponed until it has
been closed by all processes that have it open. During this perlod no new
processes are allowed to open it. The object to be deleted need not be open
at the time of the KILL_O0BJECT call. A KILL_OBJECT call can be reversed
by UNKILL_FILE, as long as the object Is a flle and is still open.

The following program fragment deletes files until RETURN Is pressed:

CONST FileNotFound=894;
VAR FileName:PathName;
ErrorCode:INTEGER;
BEGIN
REPEAT
WITE('File to delete: °);
READLN(F1leName);
IF (FileName<>'') THEN
BEGIN
KILL_OBJECT(ErrorCode, FileName);
IF (ErrorCode<>0) THEN
IF (ErrorCode=FileNotFound) THEN
WRITELN(FileName, * not found.')
ELSE WRITELN('Error ', ErrorCode, ' while deleting file.®)
ELSE WRITELN(FileName, ' deleted.');
END
UNTIL (FileName="");
END;

2-10

Qperating System Referance Maual “ Trhe File System

2103 UNKILL_FILE File System Call

UNKILL_FILE (var Ecode:Integer;
RefNum:Integer;
var Newname:e_name)

Ecode: Error indicator
RefNum: Refnum of the killed and open file
Newname: New name for the file being restored

UNKILL_FILE reverses the effect of KILL_OBJECT as long as the killed
object is a file that is still open. A new catalog entry is created for the flle
with the name given in Newname. Newname is not a full pathname: the
resurrected file remains in the same directory.

2-11

Qerating System Reference Manial The Flle System

2104 RENAME_ENTRY Flle System Call

RENAME_ENTRY (Var Ecode:Integer;
var Path:Pathname;
var Newname:E_Name)

Ecode: Error indicat