®. Macintosh, Macintosh Programmer’s
Workshop 2.0 Reference

& APPLE COMPUTER, INC.

This manual and the software
described in it are copyrighted,
with all rights reserved. Under
the copyright laws, this manual
or the software may not be
copied, in whole or part,
without written consent of
Apple, except in the normal use
of the software or to make a
backup copy of the software.
The same proprietary and
copyright notices must be
affixed to any permitted copies
as were affixed to the original.
This exception does not allow
copies to be made for others,
whether or not sold, but all of
the material purchased (with all
backup copies) may be sold,
given, or loaned to another
person. Under the law, copying
includes translating into
another language or format.

You may use the software on any
computer owned by you, but
extra copies cannot be made for
this purpose.

© 1985, 1986, 1987 Apple
Computer, Inc.

20525 Mariani Ave.
Cupertino, California 95014
(408) 996-1010

Pascal Compiler © 1982, 1983,
1984, 1985, 1986, 1987 Apple
Computer, Inc.

© 1981 SVS, Inc.

C Compiler © 1984, 1985, 1986,
1987 Green Hills Software, Inc.

Apple, the Apple logo,
AppleTalk, ImageWriter,
LaserWriter, Lisa, MacDraw,
Macintosh, MacPaint, and
MacWrite are registered
trademarks of Apple Computer,
Inc.

AppleShare, MacApp, SANE,
and Switcher are trademarks of
Apple Computer, Inc.

Motorola is a trademark of
Motorola, Inc.

UNIX is a trademark of AT&T
Bell Laboratories.

Simultaneously published in the
United States and Canada.

MPW sample programs

Apple Computer, Inc. grants
users of the Macintosh
Programmer’s Workshop a
royalty-free license to
incorporate Macintosh
Programmer’s Workshop
sample programs into their own
programs, or to modify the
sample programs for use in
their own programs, provided
such use is exclusively on Apple
computers. For any modified
Macintosh Programmer'’s
Workshop sample program,
you may add your own
copyright notice alongside the
Apple copyright notice.

Part |

Chapter 1

Contents

Figures and tables xvii

Preface xxi

Power tools for Macintosh programmers xxi
What's new in MPW 2.0 xxii
New menus xxiii
New Shell commands xxiii
New tools xxiv
Other new features xxvi
What you'll need xvii
Hardware and system requirements xvii
System Folder requirements xxvii
Documentation xxviii
About this manual xxviii
Syntax notation xxix

Shell Reference I-1

System Overview 1-1

The MPW Shell 1-2
Window commands 1-2
File management commands 1-3
Editing commands 1-3
Structured commands 1-4
Other built-in commands 1-4
MPW command scripts 1-5
MPW tools 1-5
Assembler 1-6
Pascal tools 1-6
C Compiler 1-7
Linker 1-7
Make 1-7
Rescurce Compiler and Decompiler 1-8
Commando 1-8
Convession tools 1-8
Performance measurement tools 1-8
Applications 1-9
ResEdit 1-9

iv

Contents

Chapter 2

Chapter 3

Chapter4

Debugger 1-9
Special command scripts 1-9
Examples 1-10
Sample program files 1-10
Command-language examples 1-10
Overview of MPW files and directories 1-11

Getling Started 2-1

Installing the system 2-2
Starting up 2-3
Selecting commands from menus 2-4
Building a program: an introduction 2-4
The example programs 2-4
Two easy steps 2-5
Building a new program 2-8

Using the Shell Menus 3-1

Features 3-2
File format 3-2

Menu commands 3-3

Apple menu 3-3
File menu 3-3
Edit menu 3-6
Find menu 3-8
Selection expressions 3-10
Window menu 3-11
Mark menu 3-12
Directory menu 3-13
Build menu 3-15
User-defined menus 3-16

Using MPW: The Basics 4-1
Editing 4-2

Entering commands 4-2

Typing commands in a2 window 4-3

The Enter key 4-3

Executing several commands at once 4-4
Terminating a command 4-5

The Help command 4-5

File management commands 4-7
File and window names 4-8

Selection specifications 4-9
Directories and pathnames 4-9
Command search path 4-11
Changing directories 4-12

An aside: the Alias command 4-12
Pathname variables 4-12
Wildcards (filename generation) 4-13

Commando dialogs 4-13

Invoking Commando dialogs 4-13
Using Commando dialogs 4-14

Standard dialog box controls 4-15
Generic text parameters 4-15
Repeatable options 4-15
Radio buttons 4-15
Check boxes 4-16
Shadow pop-up menus 4-16
Other pop-up variations 4-16
Multiple input files 4-17
Multiple directories 4-18
Multiple files and/or directories 4-18
Single input or output file 4-19
Qutput file where a file or directory may be specified 4-19
New directories 4-20
Special dialog box controls 4-20
Nested dialog boxes 4-20
Redirecting output 4-21
Options dependent on other options 4-22
Three-state controls 4-23

Chapter5 Using the Command Language 5-1

Overview 5-2
Types of commands 5-2
Entering and executing commands 5-3
Negalive status 5-3
Structure of a command 54
Command name 5-4
Parameters 5-4
Command terminators 5-5
Command continuation 5-5
Comments 5-6
Simple versus structured commands 5-6
Running an application outside the Shell environment 5-6
Command scripts 5-7
Special scripts 5-7
The Startup and UserStartup files 5-8
Suspend, Resume, and Quit 5-8
Command aliases 5-8
Executable error messages 5-9
Variables 5-9
Predefined variables 5-10
Variables defined in the Startup file 5-11
Parameters to scripts 5-13
Defining and redefining variables 5-13
Exporting variables 5-14
Command substitution 5-15
Quoting special characters 5-15
How commands are interpreted 5-18
Structured commands 5-19
Control loops 5-21
Processing command parameters 5-22
Expressions 5-23
Filename generation 5-25

Contents

Vi

Contents

Chapter 6

Chapter 7

Redirecting input and output 5-26
Standard input 5-27
Terminating input with Command-Enter 5-28
Standard output 5-28
Diagnostic output 5-29
Pseudo-filenames 5-30
Editing with the command language 5-31
Defining your own menu commands 5-32
Sample scripts 5-32
“‘AddMenuAsGroup” 5-32
“CC" 5-33

Advanced Editing 6-1

Editing commands 6-2
Selections 6-3
Current selection (§) 6-5
Selection by line number 6-6
Position 6-7
Extending a selection 6-7
Markers 6-8
Pattern 6-9
Pattern matching (using regular expressions) 6-9
Character expressions 6-11
Wildcard operators 6-11
Repeated instances of regular expressions 6-12
Tagging regular expressions with the ® operator 6-12
Matching a pattern at the beginning or end of a line 6-13
Inserting invisible characters 6-13
Note on forward and backward searches 6-14
Some useful examples 6-14
Transforming DumpObj output 6-14
Finding a whole word 6-15

Editing Resources With ResEdit 7-1

About ResEdit 7-2
Uses 7-2
Extensibility 7-2
Using ResEdit 7-3
Working with files 7-3
Working within a file 74
Working within a resource type 7-6
Editing individual resources 7-7
'CURS' (cursor) resources 7-8
'DITL' (dialog item list) resources 7-8
'FONT' resources 7-9
TCN#' (icon list) resources 7-11
Creating a resource template 7-12

Chapter 8 Resource Compiler and Decompiler 8-1

About the Resource Compiler and Decompiler 8-2
Resource Decompiler 8-2
Standard type declaration files 8-3
Using Rez and DeRez 8-3
Structure of a resource description file 8-4
Sample resource description file 8-5
Resource description statements 8-6
Syntax notation 8-6
Special terms 8-6
Include—include resources from another file 8-7
Syntax 8-7
AS resource description syntax 8-7
Resource attributes 8-8
Read—read data as a resource 8-8
Syntax 8-8
Description 8-8
Data—specify raw data 8-9
Syntax 8-9
Description 8-9
Type—declare resource type 8-9
Syntax 8-9
Description 8-10
Data-type specifications 8-10
Fill and align types 8-13
Array type 8-14
Switch type 8-14
Sample type statement 8-15
Resource—specify resource data 8-16
Syntax 8-16
Description 8-16
Data statements 8-16
Sample resource definition 8-17
Preprocessor directives 8-19
Variable definitions 8-19
Include directives 8-19
If-Then-Else processing 8-20
Print directive 8-20
Resource description syntax 8-21
Numbers and literals 8-21
Expressions 8-22
Variables 8-23
Strings 8-24
Escape characters 8-25

Contents

vii

viii

Chapter 9

Chapter 10

Contents

Building an Application, a Desk Accessory,
oran MPW Tool 9-1

Overview of the build process 9-2
The structure of a Macintosh application 9-4
Linking 9-5
What to link with 9-6
Linking multilingual programs 9-6
File types and creators 9-7
Building a desk accessory or driver 9-7
Linking a desk accessory or driver 9-9
The desk accessory resource file 9-10
Mcdifying the Build menu and makefiles 9-11
Variables 9-11
Scripts 9-11
Files 9-11
UserStartup 9-11
Mcodifying the makefiles 9-12
Include dependencies 9-12
Library object files 9-12
Building an MPW tool 9-13
Linking a tool 9-13

Advanced Programming Tools 10-1

Using Make 10-2
Format of a makefile 10-2
Dependency rules 10-3
Double-f dependency rules 10-4
Default rules 10-5
Variables in makefiles 10-7
Shell variables 10-7
Defining variables within a makefile 10-7
Built-in Make variables 10-8
Quoting in makefiles 10-8
Line continuation character 10-8
Comments in makefiles 10-9
Executing Make’s output 10-9
The order in which Make builds targets 10-9
Debugging makefiles 10-10
Problems due to command generation
before execution 10-10
Problems with different specifications
for the same file 10-10
Problems with default rules 10-10
An example 10-11
Notes on Make's makefile 10-13

Chapter 11

More about linking 10-14
Linker functions 10-14
Segmentation 10-15
Segments with special treatment 10-16
Setting resource attributes 10-16
Controlling the numbering of code resources 10-17
Resolving symbol definitions 10-17
Multiple external symbol definitions 10-17
Unresolved external symbols 10-17
Linker location map 10-18
Optimizing your links 10-19
Library construction 10-19
Using Lib to build a specialized library 10-20
Removing unreferenced modules 10-20

Guidelines for choosing files for a specialized library 10-21

Debugging With MacsBug 11-1

About MacsBug 11-2
Installing MacsBug 11-2
Theory of operation: a technical aside 11-3
The boot process 11-3
Memory usage 11-4
MacsBug exceptions 11-4
Using MacsBug 11-5
Assembly language 11-5
Declaration 11-5
Example calls 11-5
Pascal 11-6
Declaration 11-6
Example calls 11-6
MPW C 11-6
Declaration 11-6
Example calls 11-6
The MacsBug command language 11-7
Numbers 11-7
Strings 11-7
Symbols 11-8
Expressions 11-8
General commands 11-9
Memory commands 11-10
Break commands 11-12
A-trap commands 11-14
Heap zone commands 11-16
Disassembler commands 11-18
MacsBug summary 11-20

Contents

Contents

Chapter 12 Performance Measurement Tools 12-1

About performance measurement tools 12-2
Components of performance tools 12-2
Requirements for using performance tools 12-3

How performance measurement works 12-3

Program Counter sampling 12-3
A restriction 12-4
Bucket counts 124

Using performance measurement tools 12-5

Performance reports 12-6
Performance output file 12-6

Analyzing the results with PerformReport 12-9
Adding identification lines to a data file 12-9
Interpreting the performance report 12-10

Implementation issues 12-10
Locking the interrupt handler 12-10
Segmentation 12-11
Dirty code segments 12-11
Movable code resources 12-11

Macintosh II ROMs and 24-bit addresses 12-11

Chapter 13 Writing an MPW Tool 13-1

Shell facilities 13-2
Parameters 13-2
Environment (Shell) variables 13-4
Standard I/O channels 13-4
I/O buffering 13-5

I/O to windows and selections 13-6-

Signal handling 13-6
Exit processing 13-7
Status codes 13-7
Restrictions 13-8
Inidalization 13-8
Memory management 13-9
Heap 13-10
Stack 13-10
Windows, graphics, and events 13-10
Conventions 13-11

Chapter 14 Creating a Commando Intertace tor Tools 14-1

About Commando 14-2
Using Commando 14-2

Resource description 14-3
Resource ID and name 14-3
Size of the dialog box 14-3
Tool description 14-4

Regular entry 14-5

Multiregular entry 14-5

Check boxes 14-6

Radio buttons 14-8

Chapter 15

Appendix A

Appendix B

Appendix C

Boxes, lines, and text titles 14-9
Box 14-9
TextBox 14-10
TextTitle 14-10

Pop-up menus 14-11
Editable pop-up menus 14-12

Lists 14-14

Three-state buttons 14-15

Icons and pictures 14-16

Control dependencies 14-16
Direct dependency 14-17
Inverse dependency 14-18
Dependency on the Do It button 14-19
Multiple dependencies 14-19
Dependencies on radio buttons 14-20

Nested dialog boxes 14-21

Redirection 14-22

Files and directories 14-23
Individual files and directories 14-23
Multiple files and directories for input and output 14-26
Multiple files and directories for input only 14-28
Multiple new files 14-30

A Commando example 14-30

Writing a Desk Accessory or Other Driver Resource 15-1

The DRVRRuntime library 15-2
What your routines need to do 15-3
Programming hints 15-4

Sample desk accessory 154

Macintosh Workshop Files A-1

Distribution files A-1
Distribution disk MPW1: A-1
Distribution disk MPW2: A-2
Distribution disk MPW3: A-3

MPW Assembler files A-3
Distribution disk MPW Assemblerl: A-3
Distribution disk MPW Assembler2: A-3

MPW Pascal files A-4

MPW C files A-5

Hard disk configuration A-7

Summary of Selections and Regular Expressions B-1
Selections B-1

Regular expressions B-2
Option-key characters B-3

MPW Character Reference C-1

Contents

Xi

Appendix D Resource Description Syntax D-1

Syntax notation D-1
Structure of a resource description file D-2
Include—include resources from another file D-2
Read—read data as a resource D-2
Data—specify raw data D-3
Type—declare resource type D-3
Data-type D-3
Fill-type D-4
Alignment D-4
Switch-type D-4
Array-type D-4
Resource—specify resource data D-4
Preprocessor directives D-5
Syntax D-5
Identifiers D-5
Token delimiters D-5
Compound types D-5
Expressions D-5
Numbers D-6
Variables D-7
Strings D-7

Appendix E File Types, Creators, and Suffixes E-1

File types and creators E-1
File suffixes E-1

Text files E-1

Object files E-2

Appendix F Object File Format F-1

Object file format F-1
Notation used in this appendix F-2
Object file records F-3
Pad record F-3
First record F-3
Last record F-3
Comment record F-4
Dictionary record F-4
Module record F-4
Entry-point record F-5
Size record F-6
Contents record F-6
Reference record F-7
Computed-reference record F-8

Appendix G In Case of Emergency G-1

Crashes G-1
Stack space G-1

Glossary GL-1
Index IN-1

xii Contents

Part il

Command Reference ll-1
Command prototype I1I-2

AddMenu—add menu item II-4
Adjust—adjust lines II-7

Alert—display an alert box II-8
Alias—define or write command aliases II-9
Align—align text to left margin II-10
Asm—MC68xxx Macro Assembler 1I-11

Backup—folder file backup II-16

Beep—generate tones II-22

Begin...End—group commands II-23
Break—break from For or Loop II-25
BuildMenu—create the Build menu 1I-26
BuildProgram—build the specified program II-27

C—C Compiler II-28

Canon—canonical spelling tool 1I-32
Catenate—concatenate files II-35

Clear—clear the selection II-36

Close—close specified windows II-37
Commando-—display dialog box for a command II-38
Compare—compare text files II-39

Confirm—display confirmation dialog box II-44

Continue—continue with next iteration of For or Loop I1-46

Copy—copy selection to Clipboard II-47
Count—count lines and characters I[1-48
CreateMake—create a simple makefile II-49
Cut—copy selection to Clipboard and delete it II-51
CvtObj—convert Lisa Workshop object files

to MPW object files II-52

Date—write the date and time [I-54

Delete—delete files and directories II-55
DeleteMenu—delete user-defined menus and items II-57
DeRez—Resource Decompiler II-58

Directory—set or write the default directory 11-61
DirectoryMenu—create the Directory menu II-62
DumpCode—write formatted resources 11-63
DumpObj—write formatted object file 1I-65
Duplicate—duplicate files and directories 1I-68

Echo—echo parameters II-70

Eject—eject volumes II-71

Entab-—convert runs of spaces to tabs 1I-72
Equal—compare files and directories 1I-74
Erase-—initialize volumes II-76

Evaluate—evaluate an expression II-77
Execute—execute a script in the current scope 11-80
Exists—confirm the existence of a file or directory I11-81
Exit—exit from a script 1I-82

Export—make variables available to programs II-83

Contents

xiii

FileDiv—divide a {ile into several smaller files 1I-84
Files—list files and directories II-85

Find—find and select a text pattern II-87

Font—set font characteristics II-88

For...—repeat commands once per parameter [1-89

GetErrorText—display text for system error numbers 1I-91
GetFileName—display a standard file dialog box II-93
GetListitem—display items for selection in a dialog box II-95

Help—display summary information II-97
If...—conditional command execution II-99

Lib—combine object files into a library file 1I-101
Line—find a line number II-104

Link—link an application, tool, or resource II-105
Loop...End—repeat command list until Break I1I-110

Make—build up-to-date version of a program II-111
MakeErrorFile—create error message textfile II-114
Mark—assign a marker to a selection II-115
Markers—list markers [1-117

MDSCvt—convert MDS Assembler source II-118
Mount—mount volumes II-121

Move—move files and directories 1I-122
MoveWindow—move window to h,v location 1I-124

New—open a new window [I-125
Newer—compare modification dates between files 1I-126
NewFolder—create a directory 1I-128

Open—open a window 1I-129

Parameters—write parameters II-130

Pascal—Pascal Compiler II-131

PasMat—Pascal program formatter II-134

PasRef—Pascal cross-referencer II-140

Paste—replace selection with Clipboard contents 1I-146
PerformReport—generate a performance report II-147
Print—print text files 1I-148

ProcNames—display Pascal procedure and function names II-151

Quit—quit MPW II-154
Quote—quote parameters II-155

Rename—rename files and directories II-157
Replace—replace the selection 1I-159
Request—request text from a dialog box 1I-161
ResEqual—compare resources in files 11-162
Revert—revert to saved files II-164

Rez—Resource Compiler II-165

RezDet—detect inconsistencies in resources 11-168

Xiv Contents

Save—save windows II-170

Search—search files for a pattern II-171

Set—define or write Shell variable II-173

SetDirectory—set the default directory H-175

SetFile—set file attributes 1I-176

SetPrivilege—set access privileges for folders on file server 11-178
SetVersion—maintain version and revision number II-180
Shift—renumber script parameters 1I-185
Shutdown—shutdown or software reboot II-186
SizeWindow—set 2 window’s size II-187
StackWindows—arrange windows diagonally II-188

Tab—set a window’s tab value [O-189

Target—make a window the target window II-190
TileWindows—arrange windows in tile pattern [-191
TLACvt—convert Lisa TLA Assembler source II-192
Translate—convert selected characters I1I-194

Unalias—remove aliases 11-196

Undo—undo last edit 1I-197

Unexport—remove a variable definition from export 1I-198
Unmark—remove a marker from a file II-200
Unmount—unmount volumes I[I-201

Unset—remove Shell variables II-202

Volumes—Ilist mounted volumes 11-203

Which—determine which file the Shell will execute II-204
Windows—list windows II-206

ZoomWindaw—enlarge or reduce a window II-207

Contents XV

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Figures and tables

System Overview 1-1

Figure 1-1

Setup of MPW folders and files 1-11

Getling Started 2-1

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9

Worksheet window 2-3

MPW menu bar 2-4

Directory menu 2-5

Show Directory alert 2-5

Build menu 2-6

Program Name? dialog box 2-7

Finished Sample build 2-7

Set Directory standard file dialog box 2-9
CreateMake dialog box 2-9

Using the Shell Menus 3-1

Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 3-11
Figure 3-12
Figure 3-13
Figure 3-14
Figure 3-15
Figure 3-16
Figure 3-17
Figure 3-18

File menu 3-3

New dialog box 3-4

Edit menu 3-6

Dialog box of the Format menu item 3-7
Find menu 3-8

Dialog box of the Replace menu item 3-8
Selection by line number 3-10

Example of a regular expression 3-10
Text selected with the Find command 3-11
Window menu 3-11

Mark menu 3-12

Mark dialog box 3-12

Unmark dialog box 3-13

Directory menu 3-13

Dialog box of the Set Directory menu item 3-14
Build menu 3-15

CreateMake dialog box 3-15

Program Name? dialog box 3-16

Using MPW: The Basics 4-1

Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Table 4-1

Pressing Enter to execute selected text 4-4
Help summaries 4-6

Hierarchical directory structure 4-10
Date dialog box 4-14

Rez: the first dialog box 4-20

Rez: nested Preprocessor dialog box 4-21
Rez: nested Redirection dialog box 4-21
Basic file management commands 4-7

Xvii

xviil

Chapter5 Using the Command Language 5-1

Chapter 4

Chapter 7

Chapter 8

Figures and tables

Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4

Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5
Table 5-6
Table 5-7
Table 5-8
Table 5-9

Table 5-10
Table 5-11
Table 5-12

Trafficking in variables 5-14
Standard input and output 5-26
Redirecting diagnostic cutput 5-29
Text highlighted in the active window
and target window 5-31

Command terminators 5-5
Variables defined by the Shell 5-10
Variables defined in the Startup file 5-11
Parameters to scripts 5-13

Special characters and words 5-16
Quotes 5-17

Special escape conventions 5-17
Structured commands 5-19
Expression operators in order of
decreasing precedence 5-23
Filename generation operators 5-25
I/O redirection 5-26
Pseudo-filenames 5-30

Advanced Editing 6-1

Figure 6-1
Figure 6-2
Table 6-1
Table 6-2
Table 6-3

A selection specification 6-5
Selections in two windows 6-5
Editing commands 6-2

Selection operators 6-4

Regular expression operators 6-10

Editing Resources With Reskdit 7-1

Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 7-7
Figure 7-8
Figure 7-9

Disk volume windows 7-3

A File Info window 7-4

A ResEdit file window 7-5

A resource type window 7-6

A Get Info window for ICN#'s 7-6
Editing 'CURS' resources 7-8
'FONT' editor window 7-9

ICN#' window 7-11

Window template data 7-12

Resource Compiler and Decompiler 8-1

Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Table 8-1
Table 8-2

Rez and DeRez 8-2

Creating a resource file 8-3

Padding of literals 8-21

Internal representation of a Pascal string 8-24
Resource description expression operators 8-22
Resource Compiler escape sequences 8-25

Chapter 9

Chapter 10

Chapter 13

Chapter 14

Building an Application, a Desk Accessory,
or an MPW Tool 9-1

Figure 9-1
Figure 9-2
Figure 9-3
Table 9-1
Table 9-2

Building a program 9-3
Linking 9-5

Building a desk accessory with DRVRRuntime 9-8
Files to link with 9-6

File types and creators 9-7

Advanced Programming Tools 10-1

Table 10-1

Makefile summary 10-2

Writing an MPW Tool 13-1

Figure 13-1
Figure 13-2
Figure 13-3

Parameters in C and Pascal 13-3
1/O buffering 13-5
Memory map 13-9

Creating a Commando Interface for Tools 14-1

Figure 14-1
Figure 14-2
Figure 14-3
Figure 14-4
Figure 14-5
Figure 14-6
Figure 14-7
Figure 14-8
Figure 14-9
Figure 14-10
Figure 14-11
Figure 14-12
Figure 14-13
Figure 14-14
Figure 14-15
Figure 14-16
Figure 14-17
Figure 14-18
Figure 14-19
Figure 14-20
Figure 14-21
Figure 14-22

Figure 14-23
Figure 14-24
Figure 14-25
Figure 14-26
Figure 14-27

Figure 14-28

Table 14-1

Basic template for a Commando dialog box 14-3
Multiregular entry 14-6

Setting the CheckOption default state 14-7
Radio buttons with default setting 14-8

Clicking a button other than the default 14-8
No button specified as set 14-9

TextBox example 14-10

Pop-up menu with default value 14-11

Pop-up menu without default value 14-12

How Font Size dependency is handled 14-13
Font Size pop-up menu with font selected 14-13
List control 14-14

Three-state buttons 14-15

Icon in 2 Commando window 14-16

Direct dependency 14-17

Inverse dependencies 14-18

Dependency on the Do It button 14-19
Dependencies on radio buttons 14-20

Setting up nested dialog boxes 14-21
Placement of nested dialog buttons 14-22

How to obtain input and output redirection 14-23
Resource description for “individual files
and directories” controls 14-24

Examples of “individual files

and directories” controls 14-26

Example of multiple input files 14-28
Multiple directories for input 14-29
Example of a “directories” control

for multiple input files 14-29

Using the MultiOutputFiles subcase

of the case MultiFiles 14-30

A Commando example: frontmost ResEqual
dialog box 14-32

Summary of recommended sizes

for Commando screen elements 14-4

Figures and tables

X X

Appendix B

Appendix C

Appendix E

Appendix F

Figures and tables

Summary of Selections and Regular Expressions B-1

Table B-1 Selections B-1
Table B-2 Regular expressions B-2

MPW Character Reference C-1
Table C-1 MPW operators C-1

File Types, Creators, and Suffixes E-1
Table E-1 File types and creators E-1

Object File Format F-1

Figure F-1 Record type prototype F-2
Figure F-2 Pad record F-3

Figure F-3 First record F-3

Figure F-4 Last record F-3

Figure F-5 Comment record F-4
Figure F-6 Dictionary record F-4
Figure F-7 Module record F-4

Figure F-8 Entry-point record F-5
Figure F-9 Size record F-6

Figure F-10 Contents record F-6
Figure F-11 Reference record F-7
Figure F-12 Computed-reference record F-8

Preface

Welcome to Macintosh® Programmer’s Workshop 2.0. This preface previews the
many new features in MPW 2.0, as well as the new hardware and software
requirements. It also gives the syntax conventions used in the rest of this reference.

Power tools for Macintosh programmers

The Macintosh Programmer’s Workshop provides professional software
development tools for the Apple® Macintosh computer. Briefly, the Macintosh
Programmer’s Workshop 2.0 consists of the following parts:

O MPW Shell (the programming environment)
O MC68xxx Assembler

Linker

Make (for tracking file dependencies)
Resource editor

Resource Compiler and Decompiler
Debugger

Performance measurement tools

0O 0o o0oaoooao

Commando dialog interface

The system also includes a comprehensive array of additional tools for creating and
manipulating text and resource files. The following MPW products are separately
available:

® Macintosh Programmer’s Workshop Pascal provides the additional tools,
interfaces, and libraries you need to develop applications, tools, and desk
accessories in Pascal.

m Macintosh Programmer’s Workshop C provides a C Compiler (copyright
Green Hills Software) along with the interfaces and libraries needed to develop
applications, tools, and desk accessories in C.

m MacApp™, the Expandable Macintosh Application. MacApp provides of a set of
object-oriented libraries that automatically implement the standard Macintosh
user interface, thus simplifying and speeding up the process of software
development. MPW Pascal is required for use of MacApp.

The entire MPW system is outlined in detail in Chapter 1, “System Overview.”

X Xi

The Macintosh Programmer’s Workshop 2.0 provides numerous advantages over
previous development systems:

m Integration: The various components of the MPW system all run within the MPW
Shell environment, which fully adheres to the standard Macintosh interface. The
integrated environment enables separately developed applications, called MPW
tools, to run in the MPW Shell environment.

= Automated build process: A pull-down menu provides several ways to quickly,
automatically build or rebuild your programs. You can also automate complex
builds by using the Make facility and command-language scripts.

» Command scripting: In addition to menu commands, MPW provides a full
command language, including Shell variables, command aliases, pipes, and the
ability to redirect input and output. You can combine any series of commands
into a command file (or “script”) for fast, accurate, automatic results.

m Regular expression processing: The editor component of the Shell provides
powerful search and replace capabilities with regular expressions, which form a
language for describing complex text patterns. Regular expressions allow you, for
instance, to restructure complex tables with a single command.

m Extensibility: You can create your own integrated tools to run within the Shell
environment. You can also add your own menu items to the Shell.

m Ease of use: The Commando dialog interface gives you immediate on-screen
access to all of MPW’s versatile options and functions in specialized dialog boxes.
This interface makes learning easier and faster. You can compose complex
command lines without referring to the manual. You can create a Commando
interface for your own tools and scripts as well.

Taken together, these features add up to a level of integration, power, and ease of use
not found in any previous microcomputer-based development system.

What’'s new in MPW 2.0

MPW 2.0 is much faster and easier to use than its predecessor. Many new tools and
options to existing tools have been added.

You can quickly and easily build a simple program or desk accessory by using the
Build menu. The Commando dialog interface makes the numerous command
options available in dialog boxes, with help text on every option instantly available.

The four lists below summarize the changes that have been made since the release of
MPW 1.0 and where you can find more information about these changes. The first list
describes the changes that are immediately noticeable—the menus. The second list
mentions changes and additions to the MPW Shell’s command repertoire. The third
list introduces the new tools and significant changes to existing tools. The final list
itemizes miscellaneous improvements.

xXil Preface

New menus

The first thing you'll notice about MPW 2.0 is that the menus have undergone a
substantial revision since the release of MPW 1.0:

Build menu lets you build and execute simple programs entirely by using menus,
without prior knowledge of many details, such as the command language,
compiler, linker and make options. You can rebuild complex programs by
selecting a single menu item, after doing some one-time-only setup work. See
Chapters 2 and 3.

Clipboard control has been moved from the Window menu to the Edit menu.
The Edit menu contains a Show Clipboard item that toggles to Hide Clipboard.
See Chapter 3.

Directory menu lets you set the current directory. Use the Build menu to build
programs that reside in the current directory. See Chapters 2 and 3.

Enter command has been removed from the Edit menu. It is quicker to click the
Status panel in the lower-left corner of the active window or simply to press the
Enter key. See Chapter 4.

Find options (searching backwards, selection expressions, and so on) are now
contained in the dialog boxes for Find and Replace, as radio buttons and check
boxes. A new option, Wrap-Around Search, has been added. There is now more
room in the Find menu for adding your own customized menu items. See
Chapter 3.

Format menu has been replaced by a Format... command in the Edit menu.
Choose Format to display a dialog box listing all of the available fonts in their
actual sizes. You can set tabs and auto-indentation, and show invisible settings.
Use Command-Y to display the Format dialog box. See Chapter 3.

Mark menu makes it possible to select large portions of a textfile by embedding
markers. This menu contains the scriptable commands Mark, Unmark, and
Markers. See Chapter 3 and “Selections” in Chapter 6.

Menu item styles (for the windows listed in the Window menu) are new. They
supply more information: A standard check mark indicates the active window; a
bullet indicates the target window; dirty windows are underlined.

Window menu (formerly Windows) now contains the new commands
TileWindows and StackWindows. See Chapter 3 and respective command
descriptions in Part II.

New Shell commands

All of these built-in commands are fully described in Part II:

Exists: A new built-in Shell command, Exists determines the existence of a file or
directory. See Part II.

Mark: This item in the new Mark menu displays a dialog box asking you to supply a
name for a selected text. See Chapters 3 and 6.

m Markers: This command displays a list of currently marked texts. See Part II.

® MoveWindow: Use this new command to move a window to a specified h,v

location. See Part II.

Newer: This built-in Shell command compares two files to see which was
modified most recently; the newest filename is displayed. See Part II.

What's new in MPW 2.0

xXiii

Quit: Use this command (the equivalent of the menu item) to exit MPW at the
conclusion of a script. See Part II.

Quote: Like Echo, Quote writes its parameters to standard output, except that
Quote writes parameters that contain special characters, enclosing these special
characters in single quotation marks. See Part II.

Revert: This command changes your current window back to its condition at the
last save. This command is now scriptable. See Part II

Shutdown: You can now do a scripted shutdown or reboot of your machine. See
Part II.

B SizeWindow: This command sets a window’s size. See Part II.

o StackWindows: Use this command to arrange open windows in a diagonal

pattern across the screen. See Part IL

TileWwindows: You can arrange open windows onscreen in a tile pattern so that
each is fully visible. Then select the window you want and use the zoom box
control (or its scriptable equivalent, ZoomWindow) to enlarge the window or put
it back. See Part II.

B8 Undo: The familiar menu item to undo your last edit is now scriptable. See Part II.

o Unexport: This command removes variable definitions from the export list. See

Part II.

Unmark: This item in the new Mark menu displays a dialog box asking which
marked texts you want to unmark. See Chapter 3.

Which: This new Shell command displays the full pathname for a given
file/command/alias. See Part II.

ZoomWindow: You can instantly enlarge or reduce a window by using this
scriptable command. It is handy when used in conjunction with TileWindows. See
Part II.

New fools

The tools included with the original MPW 1.0 have been improved in many ways for
faster performance and increased versatility. In addition to these improvements, the
following new tools have been developed:

Assembler: CYCLE and LEAVE directives have been added to the macro
processor for use with WHILE statements. Performance enhancements are
expected to increase the speed of macro-intensive assemblies by 40 to 50 percent.
This improvement has necessitated a change in the format of the LOAD and
DUMP files. If you have been using this feature, you will need to rebuild alil LOAD
files. See Part IL

Backup: This versatile new Shell tool is designed primarily to back up project
directories rather than whole disks. See Part II.

Commando: This new user interface displays in dialog boxes all the functions,
parameters, and options for MPW commands. Help for each option is available
in a special window. See Chapter 4 for an introduction to Commando dialogs.
You can also use Commando to create a dialog interface for your own MPW tools.
See Chapter 14.

xxiv Preface

Compare: The new option -v displays differences between two files in a format
that lets you cut and paste output lines into a source file. See Part II.

DeRez: The new -i option lets you specify one or more pathnames to search for
#include files. An -s option lets you search for resource includes. See Part IL

GetErrorText: This command displays the explanatory text for error messages.
See Part II.

GetFileName; Use this command to quickly generate a standard file dialog box.
See Part IL.

GetListItem: This tool makes it easy to display a selection list in a dialog. See
Part IL

Link: This tool now contains the method table optimizer for object Pascal,
available as the -opt option, thus eliminating any need for the Optimize tool
distributed with MacApp. See Chapter 10 and Part II.

MacsBug: MacsBug performance has been enhanced and upgraded. MacsBug
runs on the Macintosh 512K, Macintosh 512K enhanced, and Macintosh Plus, as
well as the Macintosh SE and Macintosh II. The MC68881 floating-point
coprocessor is supported. See Chapter 11.

@ MakeErrorFile: Create error message text with this new command. See Part II.

o PerformReport: This new utility reports the processor time spent in your source

code or the ROM on a per-procedure basis. Included in MPW 2.0 is a set of
performance measurement tools for evaluating the execution speed of your
programs. See Chapter 12 and Part II.

Print: This Shell command has been modified to run on all Macintosh
computers, including the Macintosh SE and Macintosh II, where it uses the new
ROMs. Three options have also been added. See Part II.

ProcNames: This new Pascal utility lists a program’s procedure and function
names, including their nesting level and line numbers. See Part II.

ResEqual: This command compares two files to determine whether they have
identical resources. See Part II.

Resource Tools: Rez and DeRez have some new syntax rules, plus new functions
and options. See Chapter 8 and Appendix D.

Search: A new set of five options has been added to increase the versatility of this
Shell command to search for both matching and non-matching patterns. See
Part IL

SetPrivileges: You can now set access privileges to folders shared on an
AppleShare™ file server. See Part II.

SetVersion: This is a versatile tool for maintaining version and revision
numbers. See Part II.

Translate: This new command lets you change all occurrences of selected
characters in a file. It is useful for changing capitalization and for remapping ASCII
control characters. See Part II.

What's new in MPW 2.0

XXV

Other new features
m Editor capabilities: Several new capabilities have been added:

0 Command-arrow key combinations move the cursor to the extremes of the
document.

Command-Backspace deletes to ECF.
Command-D opens the selection.
Command-B clears the selection.

0O O o o

Command-W closes the window.
0 Command-period cancels.

® -c option: Some commands display a dialog box for a user decision when a
conflict occurs. The -c option is equivalent to answering “cancel” to any dialog
box that might otherwise be displayed. In cases where Cancel is clicked in a
confirmation dialog box, the status return, in MPW 2.0, is nonzero. This feature is
useful in Shell scripts. For example, the -c option used in a duplicate command
will abort the script if a conflict should somehow occur. You could then investigate
the cause of the conflict.

m Locked files: Locked files can be duplicated, but cannot be renamed or moved.
m Printing: You can now print from the Finder.

m Rotate Cursor: Be advised that a change in Rotate Cursor since MPW 1.0 will
cause old tools to crash when recompiled.

a Shell scripts: The six command scripts listed here are included to support the
items in the new menus Directory and Build. You can easily customize these. See
“Modifying the Build Menu and Makefiles” in Chapter 9. Scripts are also
individually documented in Part IL

O Build
0 BuildCommands

O BuildMenu

O CreateMake

O DireétoryMenu

0 SetDirectory

m Standard Shell variables: The three new standard Shell variables listed here are

included in MPW 2.0 to support Commando. See “Variables Defined in the
Startup File” in Chapter 5.

0 {Aliases}
0 {Commando}
O {Windows}
u Status panel: Placing the mouse arrow in the Status panel at the lower-left corner

of the MPW worksheet changes the panel into a Do It control. Clicking the control
is equivalent to pressing the Enter key.

XX Vi Preface

What you'’ll need

This section describes the hardware and documentation you'll need in order to
develop software with the Macintosh Programmer’s Workshop 2.0.

Hardware and system requirements

The Macintosh Programmer’s Workshop 2.0 can generate applications that will run
on any Macintosh, including the Macintosh II, Macintosh SE, Macintosh Plus,
Macintosh 128K, Macintosh 512K and 512K enhanced, and Macintosh XL.

However, the MPW 2.0 system requires, at the minimum, a Macintosh Plus with one
megabyte of RAM and a hard disk drive, such as the Apple Hard Disk 20. The new
Workshop will not run on the Macintosh XL, the Macintosh 512K, or Macintosh 512K
enhanced or on systems without hard disks. MPW 2.0 requires the 128K or 256K
ROMs; it cannot execute on the older 64K ROMs. A Macintosh II and a SCSI hard disk
drive is an ideal developmental system for use with MPW 2.0.

In general, a small RAM cache of about 32K is useful. However, some functions in
MPW 2.0 may run slower with a RAM cache. Use of MPW with the Switcher™ is not
recommended.

MPW software is shipped on 800K disks. Although MPW 2.0 can still read from and
write to disks that use non-hierarchical filing system disks, MPW’s files must be kept
on disks that use the hierarchical filing system. Hard disks, when used as boot disks,
must be hierarchical (HFS) volumes.

Apple’s Macintosh peripherals, including the LaserWriter® and LaserWriter Plus
printers and the AppleShare™ file server, are supported.

System Folder requirements

Please make sure that you are using the latest versions of the System file and the
Finder. This software is frequently upgraded by Apple Computer. MPW 2.0 requires
these minimum system file versions:

System file 4.1

Finder 5.5

Laser Prep 4.0
ImageWriter® 2.6
AppleTalk® ImageWriter 3.1
LaserWriter 4.0

O oo o oo

These files are available on version 2.0 or later of the System Tools disk, and on the
latest version of the Printer Installation disk.

What you'll need

XX VIi

Documentation

All programmers will need Volumes I-IV of Inside Macintosh (published by
Addison-Wesley, 1985), the definitive guide to the Macintosh Operating System and
user-interface toolbox. Additional features of the Macintosh SE and Macintosh II
computers are documented in Volume V. If you need to understand and control the
numeric environment, you'll need the Apple Numerics Manual, a guide to the
Standard Apple Numeric Environment (SANE™), Finally, you'll need the
appropriate documentation for the programming language you'll be using:

m Assembly language: Macintosh Programmer’s Workshop Assembler 2.0
Reference. This reference is included in your Macintosh Programmer’s Workshop
package. You may also need the appropriate microprocessor documentation
from Motorola.

® Pascal: Macintosh Programmer’s Workshop Pascal Reference. This reference is
available as part of a separate MPW product.

m C: Macintosh Programmer’s Workshop C Reference. This reference is available
as part of a separate MPW product. For a guide to the C language itself, you’ll need
The C Programming Language by B. Kernighan & D. Ritchie, or a similar C
manual.

” MacApp: MacApp Programmer’s Reference. This reference is part of a separate -
product, MacApp, the Expandable Macintosh Application, available from
Apple. The MacApp product also requires MPW Pascal.

About this manual

Part I of this book describes the MPW development system, including the Shell and
tools. This reference is written for programmers who are already familiar with the
Macintosh. It outlines the process of building a program, but does not deal with the
particulars of writing it. Language-specific information is covered in the appropriate
language references.

If you are new to MPW, see the brief section “Building a Program: An Introduction”
in Chapter 2. This introduction will take you through MPW's build process in
minutes. Chapter 3 introduces the commands available from the menus and
Chapter 4 covers the basics of using MPW, including features of the Commando
dialog interface.

Part II of this manual is a complete alphabetical reference to MPW commands. As
you become familiar with MPW and no longer need to refer often to the indexed
chapters of Part I, you may find it convenient to remove Part I and place it in a
smaller binder for handy reference.

xXXvill Preface

Syntax notation
The following syntax notation is used to describe Macintosh Workshop commands:

terminal Plain text indicates a word that must appear in the command
exactly as shown. Special symbols (-, §, &, and so on) must also be
entered exactly as shown.

nonterminal Items in italics can be replaced by anything that matches their

definition.
[optional] Square brackets mean that the enclosed elements are optional.
repeated... An ellipsis (...), when it appears in the text of this reference only,

indicates that the preceding item can be repeated one or more
times. Do not confuse this reference convention with the ellipsis
command-line character (Option-semicolon), used to invoke the
Commando dialog interface.

alb A vertical bar indicates an either/or choice.
(grouping) Parentheses indicate grouping (useful with the | and ... notation).

This notation is also used in the output of the Help command. (See “The Help
Command” in Chapter 4.)

Filenames and command names are not sensitive to case. By convention, they are
shown with initial capital letters. Terms printed in boldface appear in the glossary.

About this manual XX1X

|

O
Q
—
g

Shell

Reference

Chapter 1

System Overview

1-

The MPW Shell

The MPW Shell is an application that provides an integrated, window-based
environment for program editing, file manipulation, compiling, linking, and
program execution. The other parts of the Macintosh Workshop—the Assembler,
compilers, and other tools described below (excepting ResEdit)—operate within the
Shell environment. These tools can perform input and output to files and to Shell
windows. '

The Shell combines a command language, a text editor, and the Commando user
interface. You can enter commands in any window, or execute them by using menus
and dialogs. A dialog may include one or more dialog boxes, which may in turn
contain text boxes, check boxes, radio buttons, and so on. The command language
provides text editing and program execution functions, including parameters to
programs, scripting (command file) capabilities, input/output redirection, and
structured commands. All of the parameters, functions, and options of the
command language are also available in dialog boxes.

The MPW Shell integrates the following functional components:

m Editor for creating and modifying text files. The editor implements normal
Macintosh-style editing together with scriptable editing commands so that you
can program the Shell to perform editing functions. (See Chapters 3, 4, and 6.)

® Command interpreter that interprets and executes commands that you enter in
a window or read from a file. (See Chapter 5 and Part II.)

m User interface that displays dialog boxes providing immediate, graphic access
to all of MPW’s many functions and options.

® Built-in commands that, besides editing commands, include commands for
managing files without returning to the Finder, for manipulating windows,
processing variables, program control flow, and more. (See Chapter 5.)

Window commands

All work in MPW is done within windows. The following commands are available for
manipulating windows:

Close Close a window

MoveWindow Move window to h,v location on screen

New Open a new window

Open Open a window

SizeWindow Set a window’s dimensions

StackWindows Arrange open windows in a staggered diagonal array
Target Make a window the target window

TileWindows Arrange open windows in a tile pattern

Windows List windows

ZoomWindow Enlarge or reduce a selected window

1-2 Chapter 1: System Overview

File management commands

The MPW Shell provides the following commands for manipulating files and
directories without having to exit to the Finder:

Backup Back up folder files

Catenate Concatenate files

Delete Delete files and directories

Directory Set the default directory

Duplicate Duplicate files and directories

Eject Eject volumes

Equal Compare files and directories

Erase Initialize volumes

Exists Find out if a file or directory exists

Files List files and directories

Mount Mount volumes

Move Move files and directories

Newer Compare two files to see which was modified most recently
NewFolder Create a directory

Print Print text files

Rename Rename files and directories

Save Save files in all windows

SetFile Set file attributes

SetPrivileges Set access privileges to folders on file server
Unmount Unmount volumes

Volumes List mounted volumes

Which Determine which file (pathname) the Shell will execute

Editing commands

Besides the Macintosh’s usual mice-and-menus editing capabilities, a number of
built-in editing commands are provided. You can use these commands both
interactively and in command files. Editing commands feature the use of regular
expressions, a set of special operators that forms a powerful language for defining
text patterns. See “Pattern Matching” in Chapter 6 for a discussion of regular
expressions.

Adjust Adjust lines

Align Align text to left margin

Clear Delete the selection

Copy Copy selection to the Clipboard

Cut Copy selection to the Clipboard and delete the selection
Find Find and select a text pattern

Font Set a window’s font characteristics

Mark Mark and name a text selection

Markers List marked selections

Paste Replace selection with contents of the Clipboard
Replace Replace the selection

Revert Revert to saved file

Tab Set 2 window's tab value

Translate Convert one or more characters

Undo Undo last edit

Unmark Remove a marker from its text selection

The MPW Shell

1-3

Structured commands

The Shell also provides a number of built-in structured commands. Used mainly in
command files, these commands provide conditional execution and looping

capabilities:

Begin...End Group commands

Break Break from For or Loop

Continue Continue with next iteration of For or Loop
Exit Exit from a script

For... Repeat commands once per parameter
If... Conditional command execution
Loop...End Repeat commands until Break

Other built-in commands
The MPW Shell also provides a number of other predefined commands:

AddMenu Add menu item

Alert Display alert box

Alias Define alternate command names
Beep Generate tones

Confirm Display confirmation dialog box

Date Write the date and time

DeleteMenu Delete a user-defined menu or item
Echo Echo parameters

Evaluate Evaluate an expression

Execute Execute a script without affecting variable scope
Export Make variables available to programs
GetErrorText Display text for system error numbers
GetFileName Display a standard file dialog box
GetlListItem Present file selection list in dialog box
Help Display summary information
Parameters Write parameters

Quit Quit MPW

Quote Echo parameters, quoting if needed
Request Request text from a dialog box

Set Define and write Shell variables

Shift Renumber script positional parameters
ShutDown Shut down or reboot machine

Unalias Remove aliases

Unexport Remove variable definition from export list
Unset Remove Shell variables

1-4 Chapter 1: System Overview

MPW command scripts

The items available in the Directory and Build menus use these scripts:

BuildCommands

BuildMenu
BuildProgram
CreateMake
DirectoryMenu
Line
SetDirectory

MPW tools

Show build commands

Create the Build menu

Build the specified program

Create a simple makefile

Create the Directory menu

Find line number

Set current directory (from Directory menu)

MPW tools are programs that run within the Shell environment. The tools listed here
are included with the Macintosh Programmer’s Workshop; several are described in
more detail in the sections that follow.

Asm

C

Canon
Compare
Count
CvtObj
DeRez
DumpCode
DumpObj
Entab
FileDiv
Lib

Link

Make
MDSCvt

Pascal
PasMat
PasRef
PerformReport
ProcNames
ResEqual
Rez

RezDet
Search
SetVersion
TLACvt

MCG68xxx Macro Assembler (available as a separate
product)

C Compiler (available as a separate product)
Canonical spelling tool

Compare text files

Count lines and characters

Convert Lisa® object files to MPW object files
Resource Decompiler

Dump code resources

Dump object files

Convert runs of spaces to tabs

Divide a file into several smaller files

Combine object files into a library file

Link an application, tool, or resource

Program maintenance tool

Convert MDS Assembler source (part of the MPW
Assembler product)

Pascal Compiler (available as a separate product)
Pascal program formatter (part of the MPW Pascal product)
Pascal cross-referencer (part of the MPW Pascal product)
Generate a report analyzing program performance-
Display Pascal procedure and functions names
Compare files on a resource-by-resource basis
Resource Compiler

Detect inconsistencies in resources

Search files for a pattern

Maintain version and revision numbers

Convert Lisa TLA Assembler source (part of the MPW
Assembler product)

MPW tools

1-5

Assembler

The Assembler translates MC68000, MC68010, MC68020, and MC68030 assembly-
language programs into object code. MC68881 floating-point instructions and
MC68851 memory-management instructions are also supported. The Assembler
provides powerful macro facilities, code and data modules and entry points, local
labels, and (optional) optimized instruction selection. Assembly-language
interfaces are provided to the “Inside Macintosh” libraries. Other libraries and
example files are also provided.

The Assembler is provided as a separate product, MPW Assembler, which includes
the following:

a

translation of MC68000, MC68010, MC68020, and MC68030 assembly-language
programs into object code

support for MC6881 floating-point instructions and MC68851 memory
management instructions

powerful macro facilities, code and data modules, and entry points, local labels,
and (optional) optimized instruction selection

assembly-language interfaces to “Inside Macintosh” routines
conversion tools

O TLACvt to convert Lisa Workshop Assembler (TLA) source files to MPW
Assembler source files

g MDSCvt to convert Macintosh 68000 Development System (MDS) Assembler
source files to MPW Assembler source files

sample programs

Pascal tools

The Pascal system is provided as a separate product, MPW Pascal, which includes the
following:

O 0O 0o a o o

a

Pascal Compiler

Pascal cross reference program (PasRef)

Pascal source file format program (PasMat)

Pascal procedure and name program (ProcNames)
Pascal runtime library

Pascal interfaces to the “Inside Macintosh” routines
sample programs

Macintosh Workshop Pascal 2.0 is an improved version of MPW 1.0 Pascal. The
improvements include: access to C functions and global data, arbitrary-length
identifiers, object Pascal extensions, support for dynamic array types greater than
32K, generation of MCG68881 code, optional long word data and stack alignment, and
peephole optimization.

1-6 Chapter 1: System Overview

C Compiler

The C Compiler is provided as part of a separate product, MPW C, which includes the
following:

0 C Compiler

a0 Standard C Library

o C interfaces to the “Inside Macintosh” libraries
O sample programs

The C Compiler implements the full C language as defined in The C Programming
Language, by Brian Kernighan and Dennis Ritchie. The usual extensions to this
definition provide enumerated types and structure assignment, parameters, and
function results. In addition, Apple extensions provide SANE numerics and
interfaces to Pascal functions and Macintosh traps. Most Standard C Library
functions, including character and string processing, memory allocation, and
formatted input/output, are also provided. Macintosh Workshop C 2.0 supports
generation of MC68881 code, as well as optional long word data and stack alignment.

Linker

The Linker combines object code files into executable programs or driver resources.
The Linker optionally includes only the code and data modules that are referenced.
The Linker replaces the code segments in an existing resource file, without disturbing
other resources in the file. An option directs the Linker to produce a link map as a text
file. Other options allow the creation of an object module cross reference file or a file
containing a list of all the unreferenced modules.

A separate tool, Lib, provides library manipulation. Linking is performed
automatically for simple programs constructed by using the Build menu. See
Chapter 10 for details on the use of the Linker with more elaborate programs.

Make

The Make tool simplifies software contruction and maintenance. Its input is a list of
dependencies between files, and instructions for building each of the files. Make
generates commands to build specified target files, rebuilding only those
components that are out-of-date with respect to their dependencies. Makefiles are
generated automatically when you build simple programs from the Build menu. To
use Make with more elaborate programs, see Chapter 10.

MPW tooils

1-7

Resource Compiler and Decompiler

The Resource Compiler (Rez) reads a textual description of a resource and converts it
into a standard Macintosh resource file. The Resource Decompiler (DeRez) converts
resources into a textual representation that can be edited in the Shell, and
recompiled with Rez.You can use DeRez to create Resource Compiler input from any
existing resource files. Rez and DeRez need templates (type declarations) to define
resource types. Definitions of the standard Macintosh resource types (‘MENU',
'STR#', 'ICON', and so on) are provided in two commented text files, Types.r and
SysTypes.r.Another tool, RezDet, checks resource files for consistency. These
resource tools are documented in Chapter 8.

Rez has a new feature in MPW 2.0—an option that permits you to add resources
without disturbing other resources in the file.

Commando

The Commando tool implements the Commando dialog user interface for all other
MPW tools and commands. Obviously, this is a great convenience for dealing with
tools offering many interdependent options. Newcomers to MPW will appreciate
Commando’s instant assistance in building complex command lines. You can also
use Commando to create specialized dialogs for your own MPW tools and scripts.

Commando looks in a tool’s or script’s resource fork for a resource of the type cmdo.
Commando then loads the resource, builds a dialog, handles events, and passes the
resulting command line back to the Shell for execution .Commando relies on three
Shell variables to do its work: {Commando}, {Aliases}, and {Windows}. The basics of
using Commando dialogs are described in Chapter 4. Dialogs utilizing specialized "
types of dialog boxes are presented with the tools they support in Part II. Chapter 14
tells you how to create a Commando interface for your own tools and scripts.

Conversion tools

Canon is a tool for regularizing the spelling and capitalization of identifiers in source
files moved from other systems. (In the Macintosh Workshop languages, all
characters are significant rather than just the first eight as in the Lisa Workshop. In C,
case also matters.)

The file Canon.dict contains the correct spelling and capitalization for “Inside
Macintosh” ROM routines. C programmers, in particular, will find Canon and
Canon.dict useful.

Entab is a useful tool for converting space characters and tabs to conform to MPW
editor or other editor conventions.

You can look up these conversion tools in Part II.

Performance measurement tools

The performance measurement tools enable you to pinpoint where your code is
spending time. These libraries allow you to sample the program counter, produce a
file of output data, and analyze that data with a report generator. Advanced
programmers will find these tools useful for streamlining the execution of their code.
Chapter 12 is devoted to this subject.

1-8 Chapter 1: System Overview

Applications

Applications are stand-alone programs that can execute outside the Shell
environment. A single application, ResEdit, is provided with MPW. It is assumed
that you already have the Font/DA Mover, which is distributed on the System Tools
and System Installation disks. Any application can be executed from the MPW
Shell.

ResEdit

ResEdit is an interactive, graphically-based resource editor for creating, editing, and
copying resources. An interface like that in the MacDraw® application is provided to
help you design your own fonts. MPW Pascal includes a set of extended Resource
Manager routines that make it possible to write your own add-on resource editors for
ResEdit. See Chapter 7 for a thorough explanation of ResEdit.

Debugger

An improved MacsBug debugger is provided with MPW 2.0, fully supporting the
MC68000 and MC68020 processors, as well as the MC68881 floating-point
coprocessor. MacsBug resides in RAM together with your program. MacsBug allows
you to examine memory, trace through a program, or set up break conditions and
execute a program until they occur. MacsBug runs on ail Macintosh computers,
including the Macintosh SE and Macintosh II. See Chapter 11 for instructions on
using MacsBug and Appendix F for the object file format.

Special command scripts

Several special command scripts are provided. These text files contain commands
that are read by the MPW Shell at startup and shutdown:

O The Startup file is a command script containing another script, UserStartup, that is
run each time you start the MPW Shell. You can use UserStartup to customize
MPW. The Startup file is discussed in detail in Chapter 5.

O The Suspend and Resume files are scripts that preserve the state of the Shell
environment while a stand-alone application is executing. The Quit file saves the
state of the Shell environment when you exit to the Finder.

Special command scripts

1-9

Examples

In addition to the examples excerpted in this reference work, you’ll find numerous
complete examples in folders included on the MPW distribution disks.

Sample program files

Source files are provided for the sample application from Inside Macintosh, as well
as for a sample MPW tool and a sample desk accessory. Assembly-language versions
of these programs are contained in the folder AExamples. MPW Pascal and MPW C
also include Pascal and C versions of the sample files, in the folders PExamples and
CExamples. The Examples folders also contain instruction files and makefiles for
building the sample programs. Some of these examples are referred to in Chapter 2,
in the introduction to building a program.

Note that these are part of the respective C, Pascal, and Assembler products.

Command-language examples

Examples of the use of the MPW command language are provided in the folder
Examples. Among these are

0 Addmenu commands for creating user-defined menu items

O A list of UNIX-oriented aliases

a Suggestions for modifying the Startup script

To learn more about these examples, open the file Instructions in the Examples

folder. Additional examples are included with each of the MPW commands in
Part II. The command language is documented in Chapter 5.

1-10 Chapter 1: System Overview

Overview of MPW files and directories

Appendix A contains a complete list of all of the Macintosh Workshop 2.0 files. It
also describes the recommended setup of files on a hard disk. Figure 1-1 shows the
initial setup of your MPW folders and files on a hard disk. (The Pascal and C systems
are included.)

(& File Edit Ulew Special

500 aldlE—————————— =1
26 items 12,385K i disk 6,635K available

= 3 3 3 (33 [

MPY Shell Startup UserStartup Suspend Resume Quit MPW.Help

B oo ®

SysErrs Err Worksheet Applications Scripts Tools MaesBug

s [s [o e R

AExamples Libraries Alncludes Rinoludes ROM Maps AStructMacs

o e o

CExamples CLibraries Clncludes Examples

PExamples pLibraries Pinterfaces

K2 |

Trash

Figure 1-1
Setup of MPW folders and files

For important information about setting up your MPW system, see “Installing the
System” in Chapter 2.

Qverview of MPW files and directories 1-11

Chapter 2

Getting Started

2-1

This chapter explains how to start using MPW. If you are new to MPW, the tutorial
“Building a Program: An Introduction,” later in this chapter, will introduce you to
the extraordinary power and ease of using this environment.

Installing the system

Macintosh Programmer’s Workshop 2.0 is shipped on five 800K disks: MPW1,
MPW2, MPW3, MPW Assemblerl, and MPW Assembler2. The Pascal and C systems
occupy another disk each. This section describes how to install the Macintosh
Workshop files onto any hard disk configuration. MPW 2.0 cannot be installed in its
entirety on an 800K disk system.

Appendix A, “Macintosh Workshop Files,” shows the recommended arrangement of
files on a hard disk. HFS pathname rules are explained in this chapter.

% Note: A command script named Startup is executed by the MPW Shell during
initialization. This file defines several Shell variables, including the variables
that indicate the location of MPW tools, applications, include files, and
libraries. Startup must be in the same folder as the MPW Shell.

Use the Finder to follow these steps:
1. Create a folder named MPW on the hard disk.

2. Copy the contents of all five disks to folder MPW. If you have MPW Pascal or C,
also copy those disks into the MPW folder.

3. Move the entire contents of the folder More Tools to the Tools folder; then throw
away the (now empty) More Tools folder.

/"\
4. If you have MPW Assembler, move the files Asm, MDSCvt, MDSCvt.Directives,
TLACvt, and TLACvt.Directives to the Tools folder. If you have Pascal or C, move
the Pascal and C Compilers (named Pascal and C) into the Tools folder. MPW
Pascal includes the additional Pascal tools PasMat and PasRef—these should also
be moved into the Tools folder.
5. Make sure that the following files are in the same folder as the MPW Shell:
O Startup
O UserStartup
O Suspend
O Resume
0 Quit
0O MPW.Help
O SysErrs.Err
By default, the Macintosh Programmer’'s Workshop assumes installation in the MPW
folder as described above. Other configurations are possible but would require some
changes to the pathnames defined in the Startup file so that the Shell and tools could
find various files.
-

12-2 Chapter 2: Getting Started

Starting up

> Note: A small RAM cache (perhaps 32K) is useful when running MPW 2.0. You
may use larger caches on the Macintosh Plus, Macintosh SE, or Macintosh I,
with the Assembler and Pascal. MPW C may be used with larger RAM caches on
systems with more than 1 megabyte of memory. However, some functions in
MPW 2.0 may run more slowly with large RAM caches. Use of MPW with the
Switcher is not recommended.

o

From the Finder, select and open the MPW Shell icon. The Worksheet window
(shown in Figure 2-1) will appear with its full pathname in the title bar (for example,
“HD:MPW:Worksheet”). This window has no close box, and is always present on the
screen; otherwise it’s just like any other window.

You can also start the Workshop by double-clicking on any Macintosh Workshop text
document or tool.

MPW Shell

Figure 2-1
Worksheet window

The menus available from the Shell appear in the menu bar at the top of the screen.
An explanation of each menu is provided in Chapter 3. You can easily add your own
menu names. (See Chapter 9.)

A status panel at the window’s lower-left corner shows the name of the command
that’s currently executing, or simply “MPW Shell” when you're not executing a
command. A mouse click on the status panel is equivalent to pressing the Enter key.

When you first start the Macintosh Programmer’s Workshop, a script called Startup
executes. The Startup file defines several variables and command aliases (alternate
command names); this file is further described in Chapter 5.

Important
The Startup file must be in the same directory as the MPW Shell.

Starting up

2-3

Selecting commands from menus

In MPW, commands may be built-in commands, scripts (command files), tools, or
applications, as explained in Chapter 1.

Several of the built-in commands can be executed by using the File, Edit, Mark, and
Window menus. The Directory and Build menus are optional, and are normally
installed by UserStartup scripts. The items in these menus execute scripts (see
Chapter 3 for details about menus).

You can add your own menu items to the File, Edit, Find, Directory, and Build
menus. By using the AddMenu command you can even add your own menus. Each
user-defined menu item specifies a list of MPW commands that are executed when
the menu item is selected. See the file AddMenu in the Examples folder for a number
of ideas for user-defined menus.

{ & File Edit Find Window Mark Directory Build]

Figure 2-2
MPW menu bar

Building a program: an introduction

This section shows how easy it really is to use MPW 2.0 by taking you step by step
through the process of building an example program. You'll find that the Build menu
and the Commando dialog boxes make the learning process intuitive and
comfortable. Even if you've never used MPW before, you can immediately use the
Build menus to build programs.

MPW’s automated Build menu lets you assemble, compile, and link simple programs
without studying the command language, the numerous Compiler and Linker
options, or countless other details. You can use the Build menu to build

applications, tools, and desk accessories written in assembly language, C, Pascal,
and Rez or a combination of these languages. You may include resource
specifications when building programs with these menus.

The example programs

In this introduction, three assembly-language programs included with MPW are
suggested as examples:

m Sample: the “Inside Macintosh” sample application
m Count: an MPW tool that counts characters and lines in a file (see Part II)

® Memory: a sample desk accessory that displays the memory available in the
application and system heaps, and on the boot disk

Similar program examples are included with MPW C and MPW Pascal. If you are
primarily interested in programming in one of these languages, be sure to read, in
the corresponding language reference, the section on the example programs.

You can routinely rebuild more complex programs by selecting a single menu item.
There is a smooth transition from the simple builds to the more complex ones. (See

Chapter 9 for information on how to modify the Build menu and the makefile that it
creates.)

2-4 Chapter 2: Getting Started

The source files for each of these three assembly-language examples are in the
“AExamples” folder. For example, the source for Count consists of the files Count.a
and Stubs.a. A makefile that contains the commands for building all of the examples
is also provided in the same folder. Instruction files are also provided on the MPW
disks for each language. If you are new to MPW, we recommend that you start with the
tutorial that follows rather than with the Intructions file on the disks. At the
conclusion of this tutorial you will be referred back to the disk instructions.

Two easy steps

You can build each of the example programs in two steps, using the Directory and
Build menus:

1. Set the current directory.
2. Build the program.

Both of these steps are explained below. You can use this section to take MPW on a
test drive.

1. Set the current directory.

Open the Directory menu. The upper half of the menu contains the commands to
show the current directory and to change it to an arbitrary directory. The lower
half of the menu lists frequently used directories.

Show Directory
Set Directory...

HD:MPW:AERamples:
HD:MPW:CExamples:
HD:MPW:Examples:
HD:MPW:PEstamples:
HO:MPW:

Figure 2-3
Directory menu

Select Show Directory to find out what your current directory is. You'll see the
alert shown in Figure 2-4.

The default directory is

HD:MPW:

{ e

Figure 2-4
Show Directory alert

Building a program: an infroduction

2-5

Click OK to remove the alert. You're going to build the assembly-language

program Sample, so you'll need to set the current directory to the directory that o
contains the assembly-language examples. Now open the Directory menu again

and select the menu item that ends in “AExamples.” (See Figure 2-3.) Selecting

“AExamples” from the Directory menu runs commands that set the current

directory. You can check to see if the current directory has been correctly reset by

selecting the Show Directory menu item again. (The Set Directory... menu item is

used to add other directories to the list at the bottom of the Directory menu. This

menu item is explained in “Building a New Program” later in this chapter.)

2. Build the program.

Now open the Build menu and select any one of the four Build menu items.

Create Build Commands...

Buiid... %B
Full Build...

Show Build Commands...
Show Full Build Commands...

Figure 2-5
Build menu

Each Build item builds your specified program in a slightly different way:

Build... The program is built automatically, but only files that have been
modified since you last built the program will be processed. Use
this item to save time. The Command-key equivalent is
Command-P.

Full Build... The program is completely built, ignoring any obiject files or
intermediate files that may exist from a previous build.

Show Build The commands needed to build the program (using just those

Commands... files affected by modifications since the last build) are displayed

on the worksheet, but not executed. You can then select any or all
of the commands—or modify them—and then press Enter to
execute them.

Show Full Build All the commands needed to completely rebuild the program

Commands... (whether modified since the last build or not) are displayed on
the worksheet, but not executed. This is a convenient way to see
all of the commands used in building the program you’ve
selected.

2-6 Chapter 2: Getting Started

See “Build Menu” in Chapter 3 for more information on Build menu items. When
selected, each Build item first displays a dialog box like that in Figure 2-6, requesting
the name of your program.

For this tutorial, select Full Build.

Program Name?
L |

Figure 2-6
Program Name? dialog box

When the Program Name? dialog box appears, type the name of the program you
want to build (in this case, type “Sample™ and then click the OK button.(Be sure that
you type the name Sample and 7not Sample.a. Since you have already set the
directory to AExamples, you don't need to indicate that you want to build the
assembly-language version of Sample. If you give Sample.a as the program name,
the Build script will attempt to build the source file.)

The Worksheet window now becomes the frontmost window. The status panel in the
lower-left corner flashes the name of each operation as it is performed by MPW.
Each of the MPW commands used by the Full Build script appears on the worksheet as
it is executed. When the build has finished, your worksheet should look like

Figure 2-7.

€ Flle Edit Find Window Mark Directory Build

i=——=————~-————-3 HD :MPW:lWorkshest

21:04 PM - Build of Sample.

21:04 PN ===== Analyzing dependencies.
21:11 PH ===== Exacuting build commands.
Rez Sample.r -o Sampie -a

Asm Sample.a

: Link Samplie.a.0 =0 Sampie

H ® 2:22:08 PM -~-—== Done.

i Sample

H ® 2:
H »2:
H = 2.

MPY Shell

Figure 2-7
Finished Sample build

Building a program: an infroduction

2-7

To check your work, press Enter. The Shell then executes the newly built program,
displaying the text-edit window that Sample creates, as described at the beginning of
Inside Macintosh. When you quit the Sample program, you are returned to the
Shell.

Use the same procedure to build the two other examples in the AExamples folder: the
tool Count and the desk accessory Memory. For guidance in using these examples,
consult the file Instructions in the folder AExamples.

In general, to run a newly built program, select its name (and, in the case of a tool,
any parameters), and press Enter. If the program you have built is an application,
your open windows, user-defined menus, and other status information will be saved
before the program is run. When you quit the application you are returned directly to
MPW with your previously open windows and menus still displayed. If the program is
an MPW tool it is run without leaving MPW (be sure to spedify any required
parameters and options).

When you build a desk accessory by using Build or Full Build, the last line of the Build
transcript is a command that will run the Font/DA Mover to install the desk accessory
in the System file. After this installation is complete, the desk accessory will appear in
the Apple menu. If your Font/DA Mover isn't in the Applications folder or in
another directory specified by the {Commands} shell variable, then you should use
either the Finder or the MPW Duplicate command to move it there.

If you're curious about the functioning of any of the Build commands, see Chapter 9
for more background on the Build process.

Building a new program

The Directory and Build menus are convenient to use when writing programs of your
own. You use slightly different steps for creating a program of your own:

1. Set the current directory by using the Directory menu.

2. Type your program.

3. Select Create Build Commands... from the Build menu.

4. Select a build item from the Build menu.

Each of these steps is explained below.

2-8 Chapter 2: Getting Started

1. Set the directory.

The first step in creating a new program is to set the directory where you want your
new program to reside. You can select one of the directories that appears in the
Directory menu, or you can select another directory by using the Set Directory
menu item. When you select Set Directory from the Directory menu, a standard
file dialog box, like that in Figure 2-8, appears.

r (Select Current Directory:]

SIMPW

1 AEHamples - = HD
0O Alncludes

O Appllcations
[CExamples —
O Cincludes (Drive]
O CLibraries ———

0 Commando
3 Debuggers
O Libraries

Figure 2-8
Set Dlrectory standard file dlalog box

Select the directory you need. After highlighting the directory you want, dick
“Directory” or “Select Current Directory:” at the top of the dialog box. The new
directory will then be added to the list of directories on the Directory menu.

2. Type your program.

3.

The next step is to create the source files for your program. Select New in the File
menu. (Remember that assembly-language source filenames should end with
“.a", C filenames with “.c”, Pascal filenames with “.p”, and Rez filenames with
“£") An empty window now appears and you are ready to type your program.
Enjoy!

Select Create Build Commands... from the Build menu.

When you've finished typing in your program, select Create Build Commands
from the Build menu. You'll see the dialog box shown in Figure 2-9.

—~CreateMake Optians

Program Name ~Program Type—
[MyProgram| | @ Application
Source and Library files QO Tool i
(Files...) ! ODa i
[I— I

~Command Line
CreateMake MyProgram

o
Create a simple makefile for building an application, tool, or desk Cancel
accessory. The makefile {s for use by the Build menu. CepnteMoke |

Figure 2-9
CreateMake dialog box

Building @ new program

2-9

Type in the program’s name (without “.a”, “.c”, or “.p” suffixes) and click a radio
button to indicate whether you want to create an application, tool, or desk accessory.
When you click the Files button, another dialog box appears, permitting you to select
the needed source and library (ending with the “.0” suffix) files. Your program will
be linked with these files.

*» Note: It isn't necessary to indicate the standard library files supplied with MPW.
Your program will be automatically linked with the appropriate libraries. The
reference for CreateMake in Part I explains which standard library files will be
used.

The Create Build Commands item in the Build menu runs a script that creates a
makefile with the necessary commands for building programs written in assembly-
language, C, Pascal, Rez, or a combination of languages. This file is given your
program’s name with the suffix “.make”.

» Note: The Build script uses Make to determine the minimum operations
necessary to bring the program up to date. The Build script looks for its build
instructions first in program.make (for example, Sample.make). If no such file is
found, the Build script looks for its instructions in MakeFile.

4. Select a build item from the Build menu.

The four build items on the Build menus are variations on a theme. (See Chapter 3
for an explanation of each item. A brief explanation appears earlier in this chapter
under step 2 of “Two Easy Steps.”) For now, select Full Build. The rotating beach ball
cursor appears, indicating that processing has begun. Each step of the build process
is displayed on the worksheet as it occurs. Any errors will be displayed also, making it
easy to track down a bit of misplaced syntax. When you have fixed the problem, just
select Build from the Build menu to quickly rebuild the program. The record of
previous builds is left on the worksheet.

See Part II for detailed information on each of the Build menu items.

2-10 Chapter 2: Getting Started

Chapter 3

Using the Shell Menus

3-1

This chapter describes MPW'’s menus and associated dialog boxes. You can build
simple programs by using the Directory, File, and Build menus. (See Chapter 2.)
The other menus are used for general editing. Advanced editing capabilities are
discussed in Chapter 6.

Features

The MPW Shell provides the following editing features:

O Both menu and command-language editing. The menu commands provide the
usual Macintosh interface.

O Selecting text by program syntax. You can double-click any of the characters

() {] { } " ')

to select everything between the character and its mate. (To select text between
quotes, click the /eft quote.)

O Selection of large sections of text by embedding markers. Marked selections are
scriptable; your command files can refer to one or more marked selections. The
marker commands, Mark and Unmark, are available from the Mark menu. Basic
interactive use of markers is covered later in this chapter. See Chapter 6 for more .
detailed information on scripting marked selections.

o Complete integration of editing functions with the command interpreter. In the
MPW Shell, there is no separation of “command” and “editor” modes. To the
Shell, text is text—it is only when you try to directly execute a string of text that the
Shell decides whether it is a legitimate command or not.

O Scriptable commands. Because editing commands are part of the command
language, you can use them with structured commands and variables to put
together scripts that define new editing commands. (See Chapter 6.)

O Regular expressions for matching text patterns. These make possible powerful
search and replace functions that eliminate the need to make repetitive changes by
hand. (See Chapter 6.)

File format

Shell text is saved as a text-only (TEXT) file. The file contains tab and return
characters, but no other formatting information. This format is compatible with
other applications that create text-only files—for example, the Shell can process
MacWrite® files saved with the Text Only option. When you select the Open
command, the Shell displays all text-only files in its standard file dialog box,
regardless of the file creator.

< Note: From the Finder, you can open a text file created by another application
by selecting both the MPW Shell and the text file icons, and then choosing the
Open command.

You can display the invisible characters (spaces, tabs, returns, and all other
“control” characters) with the Show Invisibles menu item.

A file's tab setting, font setting, selection, window settings, auto-indent state,
invisibles state, and markers are saved with the file, in its resource fork.

3-2 Chapter 3: Using the Shell Menus

Menu commands

In general, the menu interface is the familiar Macintosh implementation. There are a
few differences and extensions, which are detailed in the following sections. (It's
assumed that you are already familiar with standard Macintosh editing techniques.)

All menu commands act on the active (that is, the frontmost) window.

¢ Note: Many menu items (including several items in the File menu and all user-
defined items) are disabled when you are running tools, scripts, applications
and other commands, This convention prevents you from closing windows that
the command may be reading, and from trying to run another command at the
same time.

Apple menu
About the MPW Shell Displays version and copyright information.

File menu
Each of the items in the MPW File menu is described below.

New... XN

Gpen... X0
Dpea Selaction =0

L lose AU
Save xS
Sauva as...

Save a Copy...
Revert to Saved

Page Setup...
Print Window

Quit *x0Q

Figure 3-1
File menu

Menu commands 3-3

Open...

Open Selection

Close

Save

Save as...

Displays the New dialog box, shown in Figure 3-2. The MPW New
dialog box allows you to enter a name and select a directory
location for the document. The Command-key equivalent is
Command-N.

SQ MPW

O RExamples
[Rlncludes
O fApplications
O CExamples
0 Cincludes
2 Clibraries

Open document

[T | (Concer)

Figure 3-2
New dialog box

Displays an Open dialog box (similar to that in Figure 3-2) that
allows you to open any TEXT file on the disk. When you open a
file for the first time, the selection point is at the top of the file.
When you open the file again, it reappears in the same state in
which it was saved; that is, the previous selection or insertion
point is preserved unless the file has been modified outside the
editor. The Command-key equivalent is Command-O.

Note: If you try to open a document that’s already open in
another window, that window will be brought to the front.

If you select a document name within a window, the Open
Selection command automatically displays the selected name.
This is a useful shortcut when you have already displayed
filenames on the screen, with the Files command for
example—you can then select a filename and open a file
directly, bypassing the usual Open dialog box. Variable and
command substitution occur on the selection. The
Command-key equivalent is Command-D.

Closes the active (frontmost) window. The Command-key
equivalent is Command-W.

Saves the active window under its current name, without closing
it. This menu item is dimmed if the contents of the window
haven’t been modified since it was last saved. The Command-key
equivalent is Command-S.

Displays a Save As dialog box, allowing you to change the name
and directory location of the active window. Saves the current
contents of the window as the “Save As” file, and allows you to
continue editing the new file. The old file is closed without
saving, under its original name.

3-4 Chapter 3: Using the Shell Menus

Save a Copy...

Revert to Saved

Page Setup...

Print Window

Quit

Saves the current state of the active window to a new file on the
disk. You can then continue editing the o/d file.

Throws away any changes you have made since you last saved the
active window.

Displays the standard Page Setup dialog box.

Prints either the entire active window or the selection in the
active window. If any text is selected in the active window, that
text is printed. If no text is selected, the entire contents of the
window (that is, the entire file) are printed.

The Print menu item doesn’t display the usual Print dialog box.
Instead, you can specify printing parameters by setting the Shell
variable {PrintOptions}, described in Chapter 5. Printing
options include the number of copies to print, which pages to
print, print quality, font and font size, headings and title,
borders, and printing the pages in reverse order (for use with the
LaserWriter). See the description of the Print command in Part II
for a complete specification of these options, or enter the
command Help Print to see a summary.

Technical note: The Print Window menu item executes the Shell
command

Print {(PrintOptions} "{Active}™ 9
22 "{Worksheet}"

Print Selection executes the same command, with .§ added after
the name of the active window.

Important: For the Print command to work properly, you must
install the printer drivers available on version 1.0 or later of the
Printer Installation disk. Use the Chooser Desk Accessory from
the Apple menu to specify which printer to use. Use the Page
Setup dialog box to specify paper size, orientation, and
reductions or enlargements.

Returns to the Finder, first allowing you to save the current state
of all open files. The Command-key equivalent is Command-Q.

Menu commands

3-5

Edit menu

See “Editing With the Command Language” in Chapter 5 for more information on
using the scriptable forms of the commands on this menu.

Undo %2
Cut N
Copy =0
Paste XU
Clear

SelectRll %A
Show Clipboard

Format... %Y

Rlign
Shift Left %I
shift Right %1

Figure 3-3
Edit menu

Undo

Cut

Copy

Paste

Clear
Select All

Show Clipboard

Undoes the most recent changes to fext in the active window (but
not changes to resources such as font or tab settings). You can
select Undo again to redo changes. The Command-key
equivalent is Command-Z.

Copies the current selection in the active window to the
Clipboard, and then deletes it from its original location. The
Command-key equivalent is Command-X.

Copies the current selection in the active window to the
Clipboard. The Command-key equivalent is Command-C.

Replaces the contents of the current selection in the active
window with the contents of the Clipboard. The Command-key
equivalent is Command-V.

Deletes the current selection in the active window.

Selects the entire contents of the active window. The
Command-key equivalent is Command-A.

Opens a window displaying the contents of the Clipboard, if
any.

3-6 Chapter 3: Using the Shell Menus

Format...

Tabs

Auto Indent

Show Invisibles

Displays the Format dialog box offering a selection of fonts and
sizes. The Command-key equivalent is Command-Y. This dialog
box is shown in Figure 3-4.

Font Size
Courter i) Shot inuatbes
g::‘ueeul'l’ca 12 Tabs: E
IEP)
o (Cancer)
Figure 3-4

Dlalog box of the Format menu Item

Sets the number of spaces that a tab character will signify for the
active window. (The default tab setting is set by the Shell variable
{Tab}, described in Chapter 5.)

Toggles Auto Indent on and off. When Auto Indent is on,
pressing Return lines up text with the previous line. (A check mark
indicates that Auto Indent is on.)

Displays the invisible characters as follows:

Tab A
Space 0
Return -

All other control characters ¢

The rest of the dialog box consists of a selection of the fonts installed in your System
file. Available font sizes are displayed in the dialog window.

% Note: Selecting a font and font size affects the entire active window, not just the
current selection in that window.

Align Aligns the currently selected text with the top line of the selection.

Shift Left, These commands move the selected text left or right by one tab stop.

Shift Right You can thus move a block of text while maintaining indentation. Shift
Left adds a tab at the beginning of each line. The Command-key
equivalent is Command-{. Shift Right removes a tab, or the equivalent
number of spaces, from the beginning of each line. The Command-
key equivalent is Command-]. If you hold down the Shift key while
using these menu items, the selection will be shifted by one space,
rather than by one tab.

Menu commands

3-7

Find menu

Each of the items in the Find menu is described below.

Display Selection

Find... ®RF
Find Same X6
Fing Selpction S&H

Replacae... %R
Replace Same XT

Figure 3-5
Find menu

Find...

Find Same
Find Selection
Display Selection

Replace...

Replace Same

Displays a Find dialog box and finds the string you specify. By
default, the Editor searches forward from the current selection
in the active window (and does not wrap around). The
Command-key equivalent is Command-F. This dialog box is
very similar to the Find-and-Replace dialog box described
below; the explanation of the radio controls and check boxes
applies to both dialog boxes.

Repeats the last Find operation, on the active window. The
Command-key equivalent is Command-G.

Finds the next occurrence of the current selection in the active
window. The Command-key equivalent is Command-H.

Scrolls the current selection in the active window into view.

Displays the Find-and-Replace dialog box shown in Figure 3-6
and explained below. The Command-key equivalent is
Command-R.

Repeats the last Replace operation. The Command-key
equivalent is Command-T.

Find what string?

[

@ Literal
QO Entire Word
Q Selection Expression

[Case Sensitive
[T Search Backwards

(Cconcel

Figure 3-6
Dialog box of the Replace menu item

3-8 Chapter 3: Using the Shell Menus

The operation of this dialog box is very similar to that of the Find dialog box, except
that selected strings can be located and replaced with a different string throughout a
file. Both dialog boxes have three radio buttons offering you one of three mutually
exclusive options:

Literal Finds the exact string (without regard for case) that you specify,
wherever it may appear, even if part of other words or
expressions.

Entire Word Finds the specified string only when it occurs as a single word.

To the Editor, a2 word is composed of the characters a-z, A-Z,
0-9, and the underscore character (_). (You can change these
default values by redefining the Shell variable {(WordSet}l—see
“Predefined Variables” in Chapter S.)

Selection Enables the full selection and regular expression syntax, as used

Expression with the command language and described in Chapter 6. These
expressions allow powerful selection and pattern matching
capabilities that use a special set of metacharacters introduced
below.

Any combination of the three check boxes may be selected:

Case Sensitive Searching is normally case insensitive; selecting this menu item
specifies case-sensitive searching. (It does this by setting the
Shell variable {CaseSensitive}—see “Variables Defined in the
Startup File” in Chapter 5.)

Search Backward Search backward, from the current selection to the beginning of
the file. (Normally, searching is forward, and stops at the end of

the file.)
Wrap-Around Searches forward to the end of file, then wraps around and
Search searches from the beginning of the file to the location of-the

cursor when the search was initiated. (Direction of search is
reversed if Search Backward is also checked.)

*» Note: For Find and Find-and-Replace operations, a beep indicates that the
selection was not found.

Menu commands

3-9

Selection expressions

When the Find-and-Replace dialog’s “Selection Expression” switch is selected, you
can use a special set of expression operators to specify selections and text patterns.

This section introduces a commonly used subset of these selection operators. Many
more capabilities are available, and a full discussion can be found in Chapter 6.

Selection by line number: A number given by itself specifies a line number. In the
figure below, for example, the command selects line number 30 in the active
window.,

QO Entire Word
@ Selection Expression

Potm—]
Find what selection expression?
[30|
O Literal [J Case Sensitive

[J saarch Backwards
[0 Wrap-Around Search

(_Fina_]

e ——

Figure 3-7
Selection by line number

Wildcard operators: The same wildcard operators used in filename generation can
also be used to specify text patterns for Find commands:
? Any single character (other than Return).

= Any string of 0 or more characters, not containing a Return. (To
get the = character, press Option-X.)

[characterList] Any character in the list.
Note: The brackets must be typed; they don't indicate an
optional syntax element.

[-characterListl Any character not in the list. (To get the — character, press

Option-L.)

These pattern matching operators are part of a larger set called regular expression
operators. A regular expression consists of literal characters and/or regular

expression operators, and must be enclosed in slashes (/.../). The figure below
shows an example.

Find what selection expression?

[/init=/]

Q Literal
Q Entire Word
@® Selection Extpression

[case Sensitive
O Search Backwrards
0 Wrep-fround Search

(find]

Figure 3-8

Example of a regular expression

3-10 Chapter 3: Using the Shell Menus

This command finds and selects any string that begins with “init” and is followed by
any characters other than a return. Figure 3-9 shows the result of this command.

EO=====———=—===v wn:MPW:PExamples:Sample.p
TEPaste(teoxtH) ;

oz

ol«.réomad: TEDelete(textH);
END; (of item CASE)
END; (of editlD)

END; {(of menu CASE) {to indicate completion of command,)
Hilitetienu(0); (call tfenu tansger to unhighlight menuf
(highlighted by MenuSeleot))

END; {(of DoCommend)

3EGIN {main program)
[@Irar1alizaticr
UnLoadSeg(Q _Datalnit); (remove data initialization code befo:

InitOrat(QtbePort); {inditialize QuickDraw)

InitFonts; {initialize Font tanager)

FlushEvents(everyEvent, 0); {call 0S Event lgr to discard any pre
MPY Shell KJ] |

Figure 3-9
Text selected with the Find command

As mentioned, many additional Find and Replace capabilities are available. (See
Chapter 6.) In the command language, the Find and Replace functions are
performed by the Find and Replace commands. There’s also a tool named Search
(described in Part II) that can search through a list of files for the occurrence of any
text pattern.

Window menu

The upper half of the Window menu contains the two commands Tile Windows and
Stack Windows; the lower half lists all open windows, as shown in Figure 3-10.
Selecting a window from the menu brings that window to the front, that is,
superimposes it over anything else on your display. A check indicates that the
window is currently the “active” window, that is, the frontmost. A bullet (¢) indicates
that the window is the “target” window, that is, the second to the front. Underlining
indicates that 2 window contains changes that have not yet been saved.

Tile Windows
Stack Windows

|JHD :MPlll:lVorksheet

Figure 3-10
Window menu

Tile Windows Use this command to arrange windows in a tile pattern on the
screen so that each window’s contents are visible. Then choose a
window and dlick its zoom box to enlarge it to full screen size. See
Part II for information on using TileWindows in scripts.

Stack Windows Use this command to arrange windows in a diagonally staggered
pattern on your screen. This is the “open file folder” way to see
several windows at once. See Part II for a description of the
scriptable version, StackWindows.

Worksheet The Worksheet window always appears first in the Window menu.
The menu item lists the full pathname of the worksheet.

Menu commands

Mark menu o

A marker is a text selection that has been given a name. Markers are useful for
navigating within a window, and they can simplify many selection expressions. The
upper half of the Mark menu contains the commands Mark and Unmark and the lower
half lists all existing markers. To jump to the location of a marker you simply choose
the name of the marker you want from the Mark menu, shown in Figure 3-11 (only the
marker “Here” has been created in this example).

Markers can be created and used both interactively, via the Mark menu, and
programmatically, via the Shell commands Mark, Unmark, and Markers. For a
detailed discussion of the syntax, characteristics, and programmatic use of markers,
see Chapter 6 and Part II.

Mark... %M
Unmark...

Here

Figure 3-11
Mark menu

Mark... To create a new marker interactively, first select the text you want to
mark, then choose “Mark” from the Mark menu. A dialog box like that
in Figure 3-12 appears, asking for the name you want the marker to
have. The editable text field in the dialog box is initialized to the first
word (that is, whatever you would select by a double-click) in the "
selection. If you click Cancel in the dialog box, the selection is ~
unchanged and no new marker is created. If you click OK a new marker
is created with the specified name and the new marker’s name is added
to the list of marker names displayed by the Mark menu.

Mark the selection with what name?

Figure 3-12
Mark dialog box

If you try to create a new marker using the name of an already existing
marker, a dialog box will appear, giving you the chance either to delete
the old marker and add the new (OK), or to forget about adding the new
marker (Cancel).

3-12 Chapter 3: Using the Shell Menus

Unmark... If you choose the Unmark menu item from the Mark menu, you'll see a
dialog box, like that in Figure 3-13, that contains a list of currently
defined markers and the two buttons Delete and Cancel. If a marker is
currently selected, its name is highlighted in the marker list. You can
select any number of marker names from the list. If you click Delete,
every marker selected in the list is deleted. If you dlick Cancel, the
selection remains unchanged and no markers are deleted.

Delate which markers?

Here
There
Everywhere

5
=3

Figure 3-13
Unmark dialog box

Directory menu

The Directory menu, shown in Figure 3-14, lets you display and easily change the
name of the default (current) directory. The Directory menu is implemented by the
scripts DirectoryMenu and SetDirectory, that you can medify to suit your own needs.

Directory
Show Directory
Set Directory...

HD :MPW:AREXamples:
HD :MPW:CExamples:
HD :MPW:PExamples:
HD :MP1W:

Figure 3-14
Directory menu

Menu commands 3-13

Show Directory

Set Directory...

<DirectoryName>

An alert box displays the name of the current default
directory. Click OK to make the alert go away.

Sets the default directory. When you select this menu item the
Set Directory... dialog box, shown in Figure 3-15, appears,
providing interactive selection of the default directory. Your
selection is then added to the Directory menu.

[T—

(Select Current Directory:]

L AERamples - -~
0O Alncludes
O Applications
0 CExamples
0 Cincludes
2 CLibraries
0 Commando
0 Debuggers
O Libraries

Figure 3-15
Dialog box of the Set Directory menu item

Selecting a directory name makes this directory the new
default directory.

As you select various default directories, using either the Set
Directory... menu item or the SetDirectory command, each
is added as a separate menu item to make it easy to return to
that directory in the future. The UserStartup script creates
menu items for each of the Examples folders in the MPW
directory, and for the default directory at the time the
UserStartup script is run. You can add your own favorite
directories by medifying UserStartup.

Warning

Directory names should not contain any of these special characters:

. ; A

< / (

These characters have special meanings when they appear as menu items.

3-14 Chapter 3: Using the Shell Menus

Build menu

The Build menu, shown in Figure 3-16, has two primary purposes. First, it is used to
create a makefile containing the commands needed to build a program. Second, it is
used either to build a specified program or to display the commands needed to do
the build. Use of the Build menu is demonstrated in Chapter 2, “Building a Program:
An Introduction.”

Create Build Commands...

Build...
Full Build...

Show Build Commands...
Show Full Build Commands...

Figure 3-16
Build menu

Create Build
Commands...

Creates a makefile containing the build commands for a specified
program. When you click Create Build Commands..., the
CreateMake dialog box appears. (See Figure 3-17.) You can then
enter the program name and select its type (that is, Application,
Tool, or Desk Accessory—make sure that you do 7ot include a
*a", “~c”, or “.p” suffix to the program name).

Click the Files button to select the program’s source and library
files. (MPW libraries are automatically linked; certain special
libraries you may require may not be automatically linked. See
CreateMake in Part IL.) - If the program’s name is program, a new
makefile, called “program.make”, is created. The makefile will
contain simple build commands from the program.

Be sure to run Create Build Commands whenever you create
additional source or library files for a program. Answering the
CreateMake dialog box generates a new set of rules in
program.make that includes the new source files.

~CreateMake Options

Program Name {—Program Type
(MyProgram | | @ Application i
Source and Library Flles : QTool !

(Files...) i o) 1] i

~Command Line
CreateMake MyProgram

e
Create a simple makefTle for building an application, tool, or desk
accessory. The makefile is for use by the Build menu. r ["r QII)I.“:M ake n

Figure 3-17
CreateMake dialog box

Menu commands

3-15

When you select from the Build menu, one of the following four Build items, a dialog
box appears, asking for the name of the program you want to build.

Program Name?

n 1

Figure 3-18
Program Name? dialog box

Type the name and click the OK button. The commands used to build the program,
plus any error messages, will then be displayed on the worksheet.

Build... The program is built automatically, but only files that have been
modified since you last built the program will be compiled. Use
this item to save time. The Command-key equivalent is
Command-P.

Full Build... The program is completely built, ignoring any object files or
intermediate files that may exist from a previous build.

Show Build =~ The commands needed to build the program (for just those files

Commands affected by modifications since the last build) are displayed on

the worksheet, but not executed. You can then select any or all of
the commands—or modify them—and press Enter to execute
them.

Show Fuil Build All the commands needed to completely rebuild the program

Commands (whether modified since the last build or not) are displayed on
the worksheet, but not executed. This is a convenient way to see
all of the commands used in building the program you've
selected.

Each of the four Build menu items uses the MPW tool Make to determine which
operations are necessary to build the program. The Makefile “program.make” is
created by the Create Build Commands... menu item (described above). If you have
not used this item—that is, if program.make doesn’t exist—MPW will use the file
MakeFile. (See Chapter 10.)

User-defined menus

You can define your own menu commands with the AddMenu command, described
at the end of Chapter 5. These commands can be appended to existing menus, or
you can create new menus.

3-16 Chapter 3: Using the Shell Menus

Chapter 4

Using MPW: The Basics

4-1

This chapter introduces the basic conventions for manipulating files, editing text,
executing commands, and responding to dialogs in the Macintosh Programmer’s
Workshop. You can easily enter all commands, command options, and parameters
by using the menus and dialog boxes. The basics for directly typing commands in a
window are also introduced. A full discussion of command scripting can be found in
Chapter 5. See Chapter 2 for an introduction to building a simple program, using
examples contained in the “Examples” folders.

Editing

Basic editing functions are available as menu commands. You can open a file with
the Open command, or by selecting its name on the screen and choosing the Open
Selection command (Command-D) from the File menu. You can select and edit text
with the usual Macintosh editing techniques, using menu commands to cut, copy,
and paste selected text. The menu commands are described in Chapter 3.

Editing with MPW is unique in that most menu functions are duplicated in the Shell
command language. Editing and other command-language functions are fully
integrated—you enter and execute editing commands just like any other commands.
Editing commands are entered in the active window (the frontmost window), but
they act on text in the target window (the second window from the front), or
another window that you explicitly name. The command language lets you produce
scripts of editing commands: You can save any series of commands as a normal text
file, and execute the file by simply entering the filename. Command-language
editing is discussed further in “Editing With the Command Language” in Chapter 5.

Entering commands

All MPW commands and their options can be selected from menus and dialog
boxes. Generally, this interactive method of command selection is the easiest. You
can immediately execute commands selected from menus and dialog boxes, or you
can use the dialog boxes to compose complex command lines that can then be
copied to a command script.

The dialog boxes for MPW commands are generated by the Commando user
interface (described in the last section of this chapter). Besides the usual Macintosh
dialog boxes, Commando provides several new forms and controls to handle the
special requirements of MPW tools. For example, dialogs for commands with many
options may have several nested dialog boxes. Which dialog boxes are actually
displayed may vary according to dependency relations between the particular
options you may have selected. Some of the specialized dialog controls are
introduced at the end of this chapter. Other unique dialog boxes are shown in Part II
of this reference with their respective commands. A detailed discussion of all the
elements of Commando dialogs can be found in Chapter 14, which explains how to
create a Commando interface for your own tools and scripts.

Of course, you can also type commands directly in any window as a series of words
separated by spaces or tabs.

4-2 Chapter 4: Using MPW: The Basics

Typing commands in a window

By default, command output and any error messages appear in the window
immediately below the executed command line. Commands are not case sensitive.
You can have multiple open files, and you can enter commands in any window.

The simplest commands consist of the command name only. For example, type the
command

Date

and press the Enter key (without pressing Return first—that is, the insertion point
must be on the same line as the command when you press Enter). This command
outputs the date and time:

Tuesday, July 14, 1987 7:12:00 AM

Commands can have options. For example,

Date -d

The -d option tells the Date command to list the date only,
Tuesday, July 14, 1987

Commands typed into a window are referred to as standard input. When the results
of the command(s) are then displayed in the same window (the normal, default
setting) they are called standard output. Any window that is used to enter standard
input and display standard output is referred to as the console.

Most commands read from standard input, write their output to standard output, and
write error messages to diagnostic output. By default, standard input refers to text
that is selected and entered while the tool is running. Standard output and diagnostic
output appear following the commands. (These input and output defaults can be
changed using I/O redirection. See Chapter 5 for details.)

The Enter key

The Enter key serves as a “do it” button, causing commands to be executed. You can
type commands in any window and press the Enter key to execute the command line.
(When no text is selected, the entire line is executed, regardless of where the
insertion point is on the line.) You can also select command text that is already on
the screen and press the Enter key to execute the selected text.

Pressing Command-Return is equivalent to pressing the Enter key. In addition, using
the mouse to click the status panel in the lower-left comer of the active window is a
convenient way to get the same result.

Entering commands

4-3

Executing several commands at once

By selecting several lines of command text and then pressing Enter, you can execute
any number of commands with one stroke. An example is shown in Figure 4-1.

€ File Edit Find Window Mark Directory Build

w HD :MPW:Worksheet

H date -d
[Tuesday, July 5, 1987

Hl=wrslder EBackup
£ I0upl icate Starop Lzerlear ey
:[liFil=z Bactkup

MPY Shell

i

Figure 4-1
Pressing Enfer to execute selected text

In Figure 4-1, executing the selected text would first make a new folder (directory)
named Backup, then copy the files Startup and UserStartup into Backup, and then list
all of the files in Backup. (Each of these commands, and the pathname syntax, is
described in the sections that follow.)

You can also directly execute text files that contain other commands, simply by
entering the filename of the script. Executing a script has the same effect as selecting
the commands in an open window and pressing Enter—the only difference is the
scope of variable and alias definitions (discussed in Chapter 5).

Important

Commands that don’t produce any output run silently; this facilitates their use
in scripts. Other commands are equipped with a “run silentty” option.

4-4 Chapter 4: Using MPW: The Basics

Terminating a command

To terminate a command while it’s executing, press Command-period, the standard
Macintosh command for this purpose.

Important

Many commands (Including Asm, C. and Pascal) normally take their Input from a
file: however, if no file Is specified, they will begin reading from the console (that
Is, from the window where the command was entered: “standard input”). If the
Shell appears not to be listening to the commands you are entering. it probably
lsn’t: The currently executing command (shown in the active window’s status
panel) may be reading the text that you enter. If a program is reading from
standard input, you can press Command-Enter (cr Command-Shift-Return) to
Indicate end-of-file and terminate Input. (See “Terminating Input With
Command-Enter® In Chapter 5.)

The Help command

The Help command displays summary information for commands. For example, to
display a description of the Files (list files) command and its options, type the
command

Help Files
and press the Enter key. You'll see the following syntax description:

Files [(option..] [name..] > filelist
-c creator # list only files with this creator
-d # list only directories
~-f # list full pathnames
-1 # treat all arguments as files
-1 # long format (type, creator, size, dates, etc.)
-m columns # n column format, where n = columns
-n # don't print header in long or extended format
-q # don't quote filenames with special characters
-r # recursively list subdirectories
-5 # suppress the listing of directories
-t type # list only files of this type
-x format # extended format--fields specified by format

Note: The following characters can specify the format
Flag attributes

Logical size, in bytes, of the datafork
Logical size, in bytes, of the resource fork
Creator of File ("Fldr" for folders)

Creation date

Physical size, in kilobytes, of both forks
Modification date

Type

Owner (only for folders on a file server)
Group (only for folders on a file server)
Privileges (only for folders on a file server)

Qo T3 A0 U0 N

<+ Note: In Help texts, the square brackets are a syntax element indicating that a
parameter is optional. An ellipsis (...) indicates that the preceding item may be
repeated. (Note that this use of the ellipsis is a syntax convention only for Help
text and documentation; an ellipsis in an actual command line invokes the
command’s Commando dialog.) Syntax notation is described in the preface to
this manual. The number sign (#) is the MPW comment character.

Entering commands

You can directly edit and execute the text on the screen. For example, assuming that
your current directory is {MPW}, you can edit the above text as follows:

1. Use the mouse to select [option..] and [name...]; replace them with the
option ~1 and the directory name AExamples.

2. Remove the output specification > f£ileList.

The result is a command that will list the files in directory AExamples, in long
format:

Files -1 AExamples

(AExamples is the directory containing sample assembly-language programs; -1 is an
option that generates “long” output.) Press Enter to execute the command—
directory information will appear immediately following the command.

You can also use the Help command to display additional summary information,
including

O an annotated list of all MPW commands

O an annotated list of the characters that have special meanings to the MPW Shell
0 descriptions of the syntax of expressions, selections, and text patterns

O a summary of MPW Shell shortcuts

For general information about Help, execute the Help command with no
parameters:

Help

This command displays the information shown in Figure 4-2.

€ File Edit find Window Mark Directory Build

: Help
H MPH 2.0 Halp Summaries

Help summaries are available for each of the MPH commands.

To see the |ist of commands enter “Halp Commands”. In addition,

brief descriptions of Expressions, Pattarns, Selections, Characters,
and Shortcuts are included.

To see Help summaries, Enter a command such as

Help commandName ® information about commandName

Help Commands ® g |ist of commands ’

Hailp Expressions 8 gummory of expressions

Help Pattarns % summory of pattarns (regular expressions)
Help Selections 8 summary of seiections

Haip Characters 8 gummary of MPU Shell special charactars
Halp Shortcuts & summary of MPH Shell shortcuts

H MPW Shell !

Figure 4-2
Help summaries

You can directly execute the Help commands given in the “Help Summaries” list.

» Note: The MPW Help file should be in the same directory as the MPW Shell or in
the System folder.

4-6 Chapter 4: Using MPW: The Basics

File management commands

The MPW Shell lets you manipulate files without returning to the Finder. Table 4-1
introduces the most commonly used file management commands.

» Note: The descriptions in the table omit some of the command options that are
available. For complete descriptions, see Part IL

Table 4-1

Basic file management commands

Backup [option] -from folder -to folder [file...]

Catenate { file...]

Delete name...

Directory directory
Directory

Duplicate name... targetName
Exists name...

Files [name... |

Copy files in source folder to destination folder
based on modification date. This is useful when
you maintain an identical backup folder on a
separate disk.

Read the data fork of each file and write it to
standard output. (By default, standard output is
to the active window, immediately after the
command.)

Delete file or directory name. If name is a
directory, all of its contents are deleted.

Set the default directory to directory.

Directory with no parameters writes the
pathname of the current directory.

Duplicate file or directory name to file or
directory targetName.

Determine the existence of file or directory
name.

List names of directories and files. Options allow
you to include various attributes in the listing.

GetFileName [options...] [pathname]

Mount dnive...
Move name... targetName
New [name...]

Newer [option] name... target

NewFolder name...
Open [option] [names...]
Rename namel name2
Revert

Save [-a | windouws...]

SetFile [option...] file...

Display a standard file dialog box.

Mount volumes.

Move file or directory name to targetName.
Open a new window.

Compare modification dates between files name
and target . List files newer than target .

Create the new directory name.

Open a window.

Rename File or Directory namel to name2.
Revert window to previous saved state.

Save a window.

Set file attributes.

(continued)

File management commands

4-7

Table 4-1 (continued)
Baslc flle management commands

SetDirectory directory Set the default directory.

SetPrivileges [option] folder... Set access privileges for folders on the file
server.

SetVersion [option ...] file Independently maintain the version and

revision numbers as a resource in the
application or tool. Optionally, update a
version and revision string in a source file.

Target name Make a window the target window.
Volumes [name... | List mounted volumes.
Which [command | Determine, for the specified command, which

existing aliases, Shell built-in commands, and
commands accessed via the Shell variable
{Commands} will be executed when command is
entered.

Windows List open windows.

File and window names

In the MPW, files and windows are specified in the same way. When a name is passed
as a parameter to a2 command, the system looks first for an open window with that
name; if no window is found, it locks for a file on the disk.

The following rules apply to naming:
0O Names are not case sensitive.

O A single component (file or directory name) of an HFS pathname is limited to 31
characters.

O Any character except a colon (:) may be used in a file or directory name. (Colons
separate elements in a pathname.)

It's wisest to avoid using spaces and special characters in filenames. When using
filenames that contain spaces, you'll need to quote them so that they won't be
interpreted as individual words in the command language—for example, you would
need to specify the name “System Folder” as follows:

Files "HD:System Folder"

For the rules concerning quoting, see “Quoting Special Characters” in Chapter S.

4-8 Chapter 4: Using MPW: The Basics

Selection specifications

Commands that take filenames for parameters can also act on the current selection
in a window. The current selection character, § (Option-6), represents the currently
selected text in a window. There are two ways to use this character:

§ Currently selected text in the target window. (The target window is the
second window from the front, as explained in Chapter 1.)

name.§ Currently selected text in window name.

For example, the Count command counts lines and/or characters in a file. The
command

Count -1 Sample.a.$
counts the lines within the current selection in the window Sample.a.

The current selection is explained more fully in “Editing With the Command
Language” in Chapter 5.

%+ Note: The MPW Shell uses a number of special characters (ike §) from the
extended character set. These characters are fully listed in Appendix C.

Directories and pathnames

With the hierarchical file system (HFS), specifying a filename alone is often not
enough to identify a file—you frequently need to specify a pathname. A full
pathname is specified as follows:

volume :ldirectory :...] filename

A full pathname contains at least one colon (:), but cannot begin with a colon. An
example of a full pathname is

"HD:MPW:MPW Shell™

(The quotation marks are required because the filename “MPW Shell” contains a
space.)

A partial pathname is usually all you'll need to specify. When HFS encounters a
partial pathname, it begins the path at the current default directory. Any name that
contains no colons or begins with a colon is considered a partial pathname. A
partial pathname that contains no colons is a leafname. For example, the name

:AExamples
is taken as a partial pathname. However, the name
MPW:

is taken to be a full pathname (that is, a volume name only), rather than meaning the
directory HD:MPW. (When in doubt, you can always specify the full pathname for a
file or command.)

Double colons (::) in a pathname specify the current directory’s parent directory;
triple colons specify the “grandparent” directory (two levels up), and so on. See the
File Manager chapter in Volume IV of nside Macintosh for more information on
HFS conventions.

< Note: Notice that there’s no single “root” directory—each volume name (that is,
disk name) is a separate starting point for a directory tree.

File and window names

4-9

etc.
1
System Folder: MPW:
o_l_l:l = etc. etc.
=) | T
MPW Shell Startup UserStartup AExamples: Libraries: Tools:
= etc.
Instructions.a MakeFile.a Sample.a
o044 014 etc.
400 100
040 o440
Runtime.o Toollibs.o
Pllol@ onol’@ Fﬂ : ot101 etc.
Link Print Rez Search
Figure 4-3
Hierarchical directory structure

4-10

Figure 4-3 is a directory tree showing the arrangement of MPW files and folders

Chapter 4: Using MPW: The Basics

You can use the Files command to list the names of files and directories. For
example, the command

Files HD:MPW:
might display the following:

:AExamples:
sAlncludes:
:Applications:
:Libraries:
:RIncludes:
:Tools:
'MPW Shell'
MPW.Help
Quit

Resume
Startup
Suspend
SysErrs.Err
UserStartup
Worksheet
etc.

In the output of the Files command, the names that begin and end with colons are
directory names, and the other names are filenames. All of these names are partial
pathnames—in this case, “HD:MPW” forms the beginning of each pathname. Also
note that filenames containing special characters are quoted.

Command search path

When you enter a command name (that is, a leafname), the Shell searches for the
command in the directories listed in the Shell variable {Commands}. As described
in Chapter 5, this search path is initially set to

: (the current directory)
HD:MPW:Tools:,
HD:MPW:Applications:,
HD:MPW:Scripts:

This means that when you type any command the Shell first assumes that you want to
execute a tool; if it can't find the tool, it then assumes that you want an application; if
it can’t find the application, it then assumes that you want a command script. If your
frequency of use is different, you can change the search path to improve the Shell’s
performance. (See Chapter 5.)

File and window names

Changing directories

You can change the default directory with the Directory command. Assuming you
have a hard disk named HD, you could change the default directory to the directory
AExamples in the MPW folder with the command

Directory HD:MPW:AExamples

Like most commands, Directory runs silently—it generates output only if an error
occurs. To verify that you have set the appropriate directory, enter the Directory
command with no parameters:

Directory
This command displays the default directory.

Remember that to specify a pathname containing spaces or other special characters,
you'll need to quote it by surrounding it with single or double quotes. (See
Chapter 5.)

An aside: the Alias command

For frequently used commands such as Directory, you may get tired of typing the
entire command name. You can easily define your own alternate names with the
Alias command. For example,

Alias dir Directory

After executing this command, you can execute the Directory command by entering
the new command name:

dir

To make an alias definition part of the Shell’s standard startup procedure, place the
definition in the file UserStartup. See Chapter 5, “The Startup and UserStartup Files.”

Pathname variables

One way of specifying a pathname is by using Shell variables. For example, the Shell
variable {(MPW}, defined in the Startup file, expands to form the full pathname for
the MPW folder, in this case “HD:MPW.:” (assuming that the MPW folder is at the top
level). Thus, the previous Directory command could be entered as

Directory "{(MPW}AExamples"

In this particular case, the quotes aren’t necessary. If you adopt the practice of never
using spaces or other special characters in a pathname, then you don't need to
bother with quotes. On the other hand, if a pathname may contain spaces or other
special characters, then it would be a good idea to use quotes whenever variables are
included in a pathname.

You can use the Set command to define and redefine variables, as described in
Chapter S. To see the values of all currently defined variables, enter the Set
command with no parameters:

Set

4-12 Chapter 4: Using MPW: The Basics

Wildcards (filename generation)

You can specify a number of files at once by using the wildcard characters ? and =
(Option-X). The ? character matches any single character (except a colon or
Return); = matches any string of zero or more characters (other than colon or
Return). For example, the command

Files =.a

lists all filenames in the current directory that end with the suffix “.a”. (Several other
wildcard characters can also be used to generate filenames—see “Filename
Generation” in Chapter 5.)

Commando dialogs

The Commando user interface lets you operate any properly configured MPW
command by means of a special Macintosh dialog, rather than the traditional
command line interface. Commando dialogs may consist of several dialog boxes
containing a variety of controls. You can choose options, select filenames, pick
directories, and read help information for each option. Commando lets you operate
MPW commands in a more intuitive format. All options are visible, and help text for
each option can be instantly displayed in the frontmost dialog box.

Because of the complexity of many MPW commands, several specialized controls
and nested dialog boxes have been implemented for them. The various types of
controls and dialog boxes are introduced below. Other unique dialog boxes, specific
to a particular command, are described with the command in Part IL

Invoking Commando dialogs

To invoke a Commando dialog for tools and other commands from the worksheet:
type the command name followed by either an ellipsis (...) or the word Commando in
front of the command line.

< Note: To get the ellipsis character,hold down the Option key while
simultaneously typing the semicolon (;) character. Although three periods
closely resemble an ellipsis character, Commando won't be fooled; you must
use Option-semicolon to get the true ellipsis character that invokes Commando.

The ellipsis may appear anywhere in a command line (except with quotes or after d)
and it is considered a word-break character. The ellipsis invokes the Commando user
interface after the Shell has carried out all alias and variable substitutions. The entire
command line is passed to Commando and the output of Commando is then
executed by the Shell.

Alternatively, if you don't want the resulting command line to be immediately
executed, you can type

commando toolname

In this case, Commando will not find 2 command if the command has been aliased
to a different name. The tool’s frontmost Commando dialog box is displayed.
Clicking the Do It button writes the command line to standard output (that is, the
window in which you typed the command) instead of executing it immediately. This
second method of using dialog boxes is useful for building command lines that are to
be cut and pasted into scripts.

Commando dialogs

Using Commando dialogs

The function and appearance of Commando dialog boxes may vary widely
according to.the syntax and semantics of the particular command or tool selected.
The basic dialog box is typical of a simple command such as Date, the first example
used above. Type

Date ..

Be sure to use Option-semicolon to get the ellipsis. Then press Enter. Figure 4-4
shows the resulting Commando dialog box for Date.

(~Date Options

~Date/Time ——————— Amount of Detail

| @ Both date and time @ Full date

i O Date only i O Abbreviated date
{ O Time only { O short date
Output Error

—Command Line
Date

Show the current date and time.

ﬂ Date i]
m.

Figure 4-4
Date dialog box

Most dialog boxes share the basic structure shown in Figure 4-4. Various controls for
options and parameters appear in the largest, upper area of the box. Date has two
parameters, “Date/Time” and “Amount of Detail.” Each of these parameters is
defined by a radio button control. The default settings for Date appear preselected as
the topmost radio button for each parameter.

Clicking and holding down the mouse button on any control or option displays help
information in the standard help window at the bottom of every Commando dialog
box.

Use the output box to redirect output. See the section “Redirecting Output” later in
this chapter.

The Command Line window displays the command line resulting from the options
you select from the dialog box. As you select options or change parameters, this
Command Line box is continuously updated.

Clicking the lower-right Do It button passes the completed command line back to the
Shell for execution. Alternatively you can press the Enter key. If you change your
mind, you can click the Cancel button, which is the same as pressing
Command-period.

4-14 Chapter 4: Using MPW: The Basics

Standard dialog box controls

This section describes the most frequently encountered Commando dialog box
controls.

Generic text parameters

Not only do tools have options, they also have parameters. Nonspecific parameters,
where the parameter can be just about any string, are simply entered in a editable text
field. For items where text is required, the text is quoted by Commando before being
passed to the Shell. You can scroll the line right and left (by dragging) if the text in
the box is longer than the text box. Here's an example of an editable text field:

Mark the selection with what name?

L]

Repeatable options

Various text field options, such as the -dlefine] option in Rez and Asm, may be
specified more than once. The control below shows an option of this type. The
number of lines displayed is controllable by the tool's builder. The small window is
basically an area where text can be entered, very much like the Notepad desk
accessory. This window does not automatically wrap around lines larger than the
window area. Instead, it scrolls left and right. You create a new line by pressing the
Return key. Scroll the window horizontally by dragging. The window is scrolled
vertically either by dragging or by the scroll bar control.

Preprocessor defines:
Language=english
size=height*200

[>

|

Radio buttons

Some options are mutually exclusive and are therefore available as a set of radio
buttons. The default setting of the button corresponds to the default state of the
option. Groups of mutually exclusive items are often surrounded with a labeled
perimeter:

Print Quality
Q High

@ Standard
QO Drart

Commando dialogs

Check boxes

An option, such as the Assembler’s -print option, may have many simultaneous
settings. Options like this are implemented with check boxes (versus on/off radio
buttons). Most of the MPW tool's options are Boolean flags. Check boxes are used
for these types of options also and are usually surrounded by a labeled perimeter.

— Listing Control
X show macro expansions
[Allow automatic page ejects
< Show warning messages
X show macro call statements
X show generated object code
[0 show up to 255 bytes of data
X show macro directive lines
[show header lines
(] show generated literals
O show assembly status

Shadow pop-up menus

Some options require the name of a window, alias, font, or Shell variable.
Commando will display a field of this type with a shadow:

Window | HD:0S:Worksheet]

When you click inside the shadowed box, a pop-up menu displays all the choices for
that particular field (that is, windows, aliases, fonts, or Shell variables). The menu
box is aligned around the current selection. Also, the current selection is checked in
the menu box. As long as the mouse button is held down, the menu behaves like the
standard pull-down menu. If necessary, the pop-up menu will scroll. When the
mouse is released within a menu item, that item then appears in the shadowed box.

Window |vHD:0S:Worksheet l
HD:MPW:MyCroft:test.c
HD:MPW:MyCroft:getopt.c

Other pop-up variations

Some options are similar to the pop-up menus above but also allow a little more
flexibility. The Menu Name box in AddMenu allows you to type in the name of a new
menu or select an existing menu name from a list of names.

Menu NnmeL

4-16 Chapter 4: Using MPW: The Basics

Click on the menu icon at the right of the box to display a pop-up menu containing
the existing choices.

Menu Name ||

Find
Hindow
Murk
Diractory
Build

Drag down the pop-up menu until the item you want is highlighted and then release
the mouse button. The selected item will appear in the text-edit box.

Multiple input files

When a tool can handle multiple input files of the same type (C, ASM, Rez, and so
on), only a single button is displayed. ‘

(source Files)

Clicking on the button displays a modified standard file dialog box. Commando
adds some functionality to the standard file package (SFGetFile) to let you select
multiple files in different directories. Another scrollable list appears under the file
list. Use the standard file controls to select files. After you've selected a file with the
Add button, the dialog box does not go away. Instead, the file is added to the lower
list. You can delete a file from the list by selecting it (in the lower list) and clicking
Remove. When all desired files have been selected, click Done or Cancel to return to
Commando’s dialog box.

A tool may tell Commando that the tool requires files with a particular extension. A
radio button lets you display and select any text file (or whatever type the tool wants).
When you select a folder, the Open button reads “Open.” When a file is selected,
this same button is labeled “Add.” If you select a file that has already been added to
the lower list, then the file in the lower list is selected (and scrolled into view if
necessary), and the Remove button undimmed.

€ CExamples
=HD
0O Memory.c .
D sample.c
Q Stubs.c
D testperf.c
5
@ Flles end!ng In .c Q Alt text fles
Source:
:(Euamples:Memorq.c
[Add]

Commando dialogs

4-17

Multiple directories

Some tools, such as C and Asm, have options that let you specify directories to
search when looking for various files. Clicking a single button, like this one, will
display a modified standard file dialog box:

(Include Directories)

The selection of multiple directories works the same way as the selection of multiple
files. In this example, however, only folders are visible. Because a selected directory
has the potential for being both opened and added to the lower list, there must be
two controls for both operations. Clicking the Add button adds the directory selected
in the upper list to the lower list. The Open button operates in its normal manner:
Clicking it opens the selected folder. You can delete a directory from the lower list by
selecting it (in the lower list) and clicking Remove. Finally, clicking Continue or
Cancel returns control to Commando.

(Add Current Directory:)

0 AExamples
O Rlncludes
O Applications
1 CExamples
0O Cincludes
Q ClLibraries
0O Commando
0O Debuggers
O Libraries

Ejact

Mhive

Include Search Paths:
CEsamples:

Remove

{8

Multiple files and/or directories

For MPW tools or built-in commands that can deal with both multiple files and
directories, this dialog box, almost the same as the one shown above, lets you select
files and directories. The model is almost the same as the one above, except that
both files and folders are visible. Selecting anything in the upper scroll window
highlights the lower Add button. The controls work as shown in the example above.

4-18 Chapter 4: Using MPW: The Basics

Single input or output file

You select options or parameters that require a single file (whether it be for input or
output) with a control similar to the example below. Clicking in the dotted rectangle
displays a pop-up menu with choices depending upon the tool. The first choice can
be either Default Output or No Output (or, if the file is an input file, Default Input or
No Input). The Default Output is used for tools that write to a default output file if one
is not specified. Link and Rez, for example, write to link.out and rez.out if no explicit
output file is specified. If Input File... or Output File... is selected, SFGetFile (for
input files) or SFPutFile (for output files) is displayed so that a file can be chosen. If
the filename selected is too long to fit in the space provided, the middle of the path is
annotated with “...".

Resource Output File [rez.out |

Here’s an example of an output file pop-up menu:

v Write avipul ta Rez.out
Select an edisting output file...
Write output to a new file...

Output file where a file or directory may be specified

The various compilers have options to specify the object filename or the object file
directory. Commando displays a pop-up menu similar to the one above, except that
the standard dialog box that appears when you select the Qutput File or Directory...
item looks like the one below. When you select a directory in the file’s window, the
File button changes to Directory. The File button is dimmed when the text-edit field
is empty.

File/Directory gy R s :
Specify object file name or select dlrectorg

This dialog box appears when the Output File or Directory... item is selected:

| Select Current Dlrectnr!! |
@ﬂEuamples
Q S HD
] (Birectory
Object File/Directory [ok]
" l | Cancel |

Commando dialogs

4-19

New directories

-~ass

example below (based upon SFPutFile) is used to create multiple directories. When

you type a directory name in the middle text-edit area and click the Add button (or

press Return), a pathname is added to the lower list. The root of the new directory is
the same as what is displayed in the upper scroll list. You can continue to add more

directories. Click the Done button to close the dialog box.

The NawFnldar rammand late v cmacifir tha craatinn Af multinla dirastariac Tha
1he MNewolcer command el you speculy the creaion o muliple Qirécliornies.

& AExamples
3 Caount.a < HD
0 Caunt.y
D (nstructians
0 MakefFile Trive
0 Memary.s
A Sample
New directories:
"] | Cancel |
O
|_ o]

Special dialog box controls

Commando uses standard Macintosh text-edit boxes, radio buttons, and check
boxes. In addition to these, you'll encounter some specialized controls, because of
the variety of options and parameters and certain dependencies between them.
These various types of specialized controls are introduced below.

Nested dialog boxes

Some tools, such as Rez and PasMat, have more options and parameters than can fit
into one dialog box. The additional options are grouped into nested dialog boxes
that are available from the first dialog box. Figure 4-5 below shows, as an example,
the first dialog box of Rez.

~Rez Options
~Resaurce Qutput File O Redeclared types ok
|Rez.out | QUL APPL | O Progress information
Creator |277?
@ Rewrite resource file (Descriptian Files...]
(0 Make resource file read-only (" #1nciude Patns...)
~Resource Alignment —Mm ———
g @Byte OWord O LongWord } (include Paths...)
O Merge resources into resource file (__Prepracessor...)
[J 0K ta replace protecied yesoures [Redirection...]
~Command Line
Rez
ot
Rez is 3 too] used to compile resources.
Rez

Figure 4-5
Rez: the first dialog box

4-20 Chapter 4: Using MPW: The Basics

Note the five control buttons at the right side of the “Rez Options/Parameters”

window. When you click one of these buttons, a nested dialog box appears with the
title of the selected button. For example, selecting the button labeled
“Preprocessor..."” displays the nested dialog box shown in Figure 4-6.

| ~Rez Options

—— 1

~Preprocassor...

Defines: Undefines:

B

<al

~Command Line

~Help
Preprocessor variables can be DEFINE'd and UNDEFINE'd iIn this dialeg.

Ii Continue I

— |

Figure 4-6
Rez: nested Preprocessor dialog box

As you type in the preprocessor defines and undefines, the command line you began
in the first dialog box is further updated in the Command Line window of the nested
dialog box. The lower-right Do It button in a nested dialog is always labeled
“Continue.” Clicking Continue closes the nested dialog box, and again displays the
first dialog box with the command line updated to show the options and parameters
selected in the nested dialog box. If you dick Cancel, changes from nested dialog
boxes are not recorded and you return to the first dialog box. From there you can

then select another nested dialog box.

Redirecting output

Every tool that can write information to standard output or to standard error has
controls to assign destinations for this output. Consider the Error Output window in
the Redirection nested dialog box of Rez, shown in Figure 4-7.

~Rez Options v I

~Redirection...

Input Error

~Command Line

Red

~Help

Rez can read standard input and send warnings to diagnostic output.

ﬂ Continue I

L=

Help
l‘Clid: this button to open a dialog with the redirection controls,

Figure 4-7
Rez: nested Redirection dialog box

Commando dialogs

4-2]

Clicking inside the Error window displays the pop-up menu shown below.

Error
v Neo Quipul Redirection
New File...
Estisting File...
Window...
Current Selection in Window...
Current Selection in Target Window
Standard Output
Standard Diagnostic

Null Device
Console

Here “Null Device” has been selected. When the mouse is released, the filename
dev:null appears in the Error window. Whenever you select an output redirection,
the two radio buttons directly beneath the Error window are activated.

Selecting Existing File in the pop-up menu displays the standard file dialog box.
Selecting New File brings up the standard output file dialog box and lets you create a
new file. Selecting Window brings up a list of the windows to choose from. Because a
window is a file, a window could also be chosen with the Existing File command.
When you select Current Selection in Target Window, output is redirected to §.
Selecting Current Selection in Window also brings up a list of windows to choose
from. When you choose a window, output is redirected to window.§. When you
choose any file other than a new file, the Overwrite and Append buttons are
activated. These buttons correspond to the functions of the > and >>, 2>
redirection operators, respectively. Selecting No Output Redirection clears the
dimmed box so that no redirection occurs.

After you release the mouse over Null Device, the command window looks like this:

Error @2 Q2

The Diagnostic Output windows and Standard Input windows (in the case of tools that
read standard input) work in a similar fashion.

Options dependent on other options

Some options may be dependent on another option. For example, the -hf (header
font) and -hs (header size) options of the print tool don’t mean anything unless the
-h (header) option is specified. Commando implements this model by disabling all
controls dependent upon some other control. When you check (or otherwise
activate) the main control, the dependent controls are enabled. Another example is
the AddMenu command. The syntax of this command is

AddMenu [menuName [itemName [command..]}]

4-22 Chapter 4: Using MPW: The Basics

An itemName cannot be entered until a menuName is entered. Likewise, a command
cannot be entered until an itemName is entered.

Menu Name || B
Item Name | E
Cammands

Here is the same set of options after “Find” has been typedin the first text-edit entry
field. Notice that as soon as something is entered in the field, the “Item Name” entry
is enabled, but the Commands field remains dimmed.

Menu Name (Find B
Item Nama | E
Cammands

When an item is selected for the Item text-edit box, the Commands field is enabled.

Menu Name |Find E
Item Name |Replacd E
Commands
O
1

There may be several text-edit boxes that are disabled (dimmed) until you have
entered something in the adjacent enabled text-edit box.

Three-stale controls

Some options, like the -a option of Setfile, need the support of a three-state control.
For example, Setfile can set, clear, or do nothing to the bundle bit. Clicking this
control cycles through its three states. The color of the diamond determines its state:

Gray—Don't touch the flag
White—cClear the flag
Black—Set the flag

— fAttributes

< Locked

< invisible
4 Bundle

@ system

4 Protected
4 Open

4 Changed
@ Inited

< on Desktop

Commando dialogs

4-23

Chapter 5

Using the
Command
Language

5-1

So far, we've introduced only isolated groups of commands without treating the
Shell’'s command language as a whole. This chapter describes the complete syntax of
the MPW command language and explains its use. Each command is defined in
detail in Part II.

Overview

The command language provides the following features:
O built-in and user-definable variables of the form {variableName}
O command aliases, used to create alternate names for commands

O command substitution, by which commands enclosed in back quotes (°...>) are
replaced by their output

O a quoting mechanism for disabling special characters or inserting invisible
characters in text: d literalizes a single character; '...' and "..." quote strings

O an extensive set of structured commands for controlling the order of command
execution, including Begin...End, If...Else...End, and For...In...End

O filename generation with “wildcard” operators such as = and ?

0 redirection of input and output with the <, >, >> 2, and 2> operators

When you enter command text, the Shell first interprets and processes all special
symbols, before actually running the command. The order of interpretation is
explained later in this chapter under “How Commands Are Interpreted.” For the

most part, the order of presentation in this chapter follows the order of
interpretation by the Shell.

In order to begin using MPW, you should read the following sections of this chapter
as a minimum:

O the opening sections of the chapter, which describe the basic form of all
commands: “Types of Commands,” “Entering and Executing Commands,” and
“Structure of a Command”

0 “Command Scripts” and “Special Scripts”
O “Variables”
0 “Quoting Special Characters”

The operators and syntax of the command language are summarized in Appendix D.

Types of commands

In all, four kinds of commands are provided:
® Built-in commands, such as Files or Duplicate, are part of the MPW Shell.

m Command scripts, such as Startup, are text files that contain commands. You
can combine any series of MPW commands in a text file, and execute the file by
entering its filename, just like any other command. You can also pass parameters
to a script and use them in commands within the file.

® Tools, such as Link or Asm, are executable programs (that is, separate files on the
disk) that are fully integrated with the Shell environment.

® Applications, such as ResEdit or MacPaint®, are stand-alone programs that can
be launched from the Shell, but run outside the Shell environment.

5-2 Chapter §: Using the Command Language

To execute a tool, application, or script, you need to have the proper program file
on your disk.

» Note: A built-in command overrides a script or executable program with the
same name. You should therefore use either full pathnames or quotes to specify a
command file or program with the same name as a built-in command. (Quotes
work for this purpose because the names of built-in commands must appear
unquoted—see “Quoting Special Characters” later in this chapter.)

< Note: The Shell will not execute tools whose modification date is 12:00 AM
1/1/04.

Entering and executing commands

Press the Enter key to execute command text. You can select command text on the
screen and press Enter to execute the selected text. If no text is selected, pressing
Enter executes the entire line that contains the insertion point. Alternatively, you can
use the mouse to click the Status Panel in the worksheet’s lower-left corner, or press
Command-Return; both of these have the exact same result as pressing the Enter key.

Important

if no text is selected, pressing Enter always passes the enfire line to the Shell (or
to whatever other program happens to be reading from the console—this rule
also applies to your own Integrated programs that run within the Shell).

Cautlon

If you enter a line that ends with the Shell escape character, 9, the command
interpreter will pause, waiting for the rest of the line.

All commands return a status value: 0 indicates successful completion; nonzero
values usually indicate an error. This value is returned in the {Status} variable,
described later in this chapter.

Negative status

The command interpreter will return negative status values when it encounters an
error. These values are as follows:

-1 Command not found, script is a directory, script is not executable, or script
has a bad date.

-2 Filename expansion failed or there was an error in the expression syntax.

-3 Bad syntax. Quotes and braces were not balanced, or were missing end or)"
command. Error in control constructs.

-4 Missing filename following I/O redirection or the file could not be opened.

-5 Invalid expression (If, Break If, Continue If,and other such constructs).

Entering and executing commands

-6 Tool could not be started.

-7 Runtime error during tool execution. Most likely an out-of-memory error.
-8 User aborted the tool from the debugger.

-9 User aborted the tool with Command-Period.

These values can be used to distinguish between errors returned by the commands
themselves and errors returned by the Shell.

Important

All negative numbers are reserved for the Shell. Use only positive numbers for
errors in tools or scripts.

Structure of a command

A command is written as a list of words separated by blanks. (Blanks may be either
space or tab characters.) The first word is the name of the command, and each word
that follows is passed as a parameter to the command. The general form of a simple
command is

commandName [parameters...] commandTerminator

Each of these elements is described below.

Command name

The command name is either the name of a built-in command or the filename of
the program or script to execute, Command names are not case sensitive. Alternate
names can be defined for a command—see “Command Aliases” in this chapter for
information.

The command name is passed to tools and scripts as parameter 0, and can be
referenced by scripts in the variable {0}, explained later in this chapter under
“Variables.”

Parameters

Each of the subsequent words in a command is a parameter to the command or to
the command interpreter. Note that certain parameters, such as I/O redirection, are
interpreted by the Shell, and never seen by the command itself. Variables are also
interpreted before being passed to the program.

By convention, there are two distinct types of parameters to commands: options
and files. See the “Command Prototype” section at the beginning of Part II for more
details on these conventions.

You can reference parameters within scripts by using the variables {1}, {2},...{n}.
(See Table 5-4.)

5-4 Chapter §: Using the Command Language

Command terminators

Each command is normally terminated by a return character. Commands can also
be terminated by the pipe symbol (1), the conditional execution operators (&& and
I'1), or the simple command terminator (;). Each of these symbols may be followed
by a return. Table 5-1 describes the command terminators in order of decreasing
precedence.

Except as modified by structured commands, commands are read sequentially and
executed as they are read.

Tabie 5-1
Command terminators

cmdl | cmd2 Saves the standard output of cmd1 in a temporary file and uses
it as the standard input of cmd2. (Standard I/O is explained
later in this chapter.)

Note: In MPW, unlike UNIX systems, the commands execute

sequentially.

cmdl && cmd2 Executes cmd?2 only if cmd1 succeeds (that is, returns a status
value of 0).

cmdl |1 cmd2 Executes cmd?2 only if cmd1 fails (returns a nonzero status
value).

cmdl ;3 cmd2 Executes cmd1 followed by cmd?2; this terminator allows more

than one command to appear on a single line.

These command terminators may be applied to both simple and structured
commands. They all group from left to right. Parentheses can be used to group
commands for conditional execution and pipe specifications. Some examples
follow.

Files | Count =1

This command pipes the output of the Files command (a list of files and directories)
to the Count command, which counts the lines in the list.

Asm Sample.a && Link Sample.a.o -o Sample.code ||
(Echo Failed; Beep)

This example begins by assembling Sample.a. If that operation succeeds, it links the
object file; but if the assemble-and-link operation fails, it echoes the message
“Failed,” and beeps.

Command continuation

You can continue a command onto the next line by typing 0 (Option-D) followed by
a return. Both characters are discarded when the line is interpreted. The return must
come immediately after the 9, with no blanks or comments between them. (For
more information about the 9 escape character, see “Quoting Special Characters” in
this chapter.)

Echo This is all 9
one command

Notice that the output appears on one line.

Structure of a command

5-5

Comments

The number sign (#) indicates a comment. Everything from the # to the end of the
line is ignored. (Comments always end at the next return, even if the return is
preceded by a d.)

Echo This is echoed. # This is not.
Echo parameters # comment 0
more parameters # another comment

Simple versus structured commands

All of the commands introduced so far have been simple commands. Simple
commands consist of a single keyword, followed by zero or more parameters. Simple
commands are distinguished from structured commands-—commands such as
For and If, which let you control the order in which other commands are executed.
For example,

For file In =.c; Count {file}; End

All of the structured commands are built-in, and usually have more than one
keyword. The entire structured command is read before its execution begins.

Also see “Structured Commands” in this chapter.

Running an application outside the Shell environment

You can run an application outside the MPW Shell environment by executing the
program name just like any other command. For example,

ResEdit

The application is loaded and launched as if it had been started from the Finder. Any
files specified as parameters are passed to the program via the application parameter
handle, in Finder fashion. (See “Finder Information” in the Segment Loader chapter
of Inside Macintosh.) The following option is available on the command line:

-p file... Tell the program to print the specified files.
For example,
MacPaint -p "HD:Screen 1" "HD:Screen 2"

This command tells the Shell to run MacPaint (assuming MacPaint is in adirectory
listed in the Shell variable {Commands}, and to print the files Screen 1 and Screen 2.

The Shell environment is saved when the application is launched and restored when
the application terminates. (These actions are performed by the Suspend and
Resume command files, described below.)

Cautlon

Running an application from a command script terminates the script.

5-6 Chapter §: Using the Command Language

Command scripts

You can create your own commands by writing text files of previously defined
commands, called scripts or command files. You can execute such a file just like
any other command within the Shell environment—the name of the file you created
is the name of the new command.

For example,

Date

ECho Volumes.iiiiiiieiierirerierensosenesscncnsnonnns
Volumes

Echo Current Directory...ceeieesseeccoasssenssssnnacesns
Directory

EChO FillesS.iiuiiiiiietieeeeseeeseacaasesnsacssanssanannes
Files

If this text is on the screen, you can execute it by selecting it and pressing Enter. You
could also save this text as a script so that it's always available. To save it under the
name “Info”, for example, you could first select the command text, and type the
following command in another window:

Duplicate -d § Info

You can now execute this series of commands by entering the command name Info.
(Recall that the § character indicates the selection in the target window.)

You can pass parameters to a script just as you would to a predefined command,
using the normal Shell syntax:

filename [parameters... |

Parameters can be referred to within the scripts by using the built-in variables {1},
{2},...{n}, explained below under “Parameters to Scripts.”

» Note: As a matter of convenience, scripts (as well as applications and tools) are
usually kept in directories that the Shell automatically searches when a leaf name
is given for a command name. This convention allows you to invoke the
command by using its leaf name instead of its full pathname. The Shell variable
{Commands} contains a comma-separated list of directories to be searched; you
can easily modify it to include additional directories.

Special scripts

The scripts described in this section are provided with MPW. You can modify
commands in each of these files to suit your needs.

Important

Each of these scripts must be in the same directory as the MPW Shell, or in the
System Folder.

Special scripts

5-7

The Startup and UserStartup files

When you start up the Shell, commands are initially read from a file named Startup.
The Shell executes the commands in Startup as if you had entered them interactively.
The Startup file provided with MPW contains several default variable and alias
definitions. You can modify the commands in Startup to suit your own needs; for
instance, you can change the default pathnames to suit a special directory
configuration.

Startup executes another script called UserStartup. It's recommended that you use
this file for your own changes and additions to the startup sequence. You can
redefine the variables defined in Startup, set and export any number of additional
command-language variables, and define aliases and create menu items. Aliases and
variables are fully described in the sections that follow.

Suspend, Resume, and Quit

When you run an application from the Shell, commands are read from the file
Suspend. When you quit the application and return to the Shell, commands are read
from the file Resume. The Suspend and Resume files save state information about
variable definitions, exports, aliases, and windows before running an application,
and restore the state after returning to the Shell.

When you quit from the Shell, commands are read from the file Quit. The Shell
executes these commands before closing any windows.

» Note: If you cancel from the Quit command, the Quit file will already have been
executed.

Like Startup and UserStartup, these scripts run as if you had entered the commands
interactively. You can modify them to suit any special requirements you might have.

Command dliases

An alias is an alternate name for a command (and possibly some parameters). The
Alias command is used to define aliases, and to display the list of aliases. If an alias
has been defined, it will be recognized by the command interpreter and the
corresponding definition will be substituted.

s Note: Variable substitution and alias substitution occur on the alias definition
itself, after it has been substituted.

The following commands are used to define and undefine aliases:

Alias name word... Name becomes an alias for the list of words.

Alias name Displays any alias definition associated with name.
Alias Displays all alias definitions.

Unalias name Removes any alias definition associated with name.
Unalias Removes all alias definitions.

Aliases are local to the script in which they are defined (and are globally available if
they are defined in the Startup file or entered interactively). Aliases are automatically
inherited from enclosing scripts, and may be redefined locally. However, aliases
redefiried locally will revert to their previous value when the script terminates.

See the Alias and Unalias commands in Part II for a complete specification of aliases
and several examples.

5-8 Chapter §: Using the Command Language

Executable error messages
The following alias is defined in the Startup file:
Alias File Target

That is, the word “File” is defined as an alias for the Target command, which opens a
file as the target window. (See Chapter 6.) This alias is useful when a compiler returns
an error message such as

Not a parameter name: counts
File "Count.c" ; line 73

By placing the insertion point anywhere on the line or by selecting the entire line and
pressing the Enter key, you'll automatically open the specified file as the target
window, find and select the offending line, and bring the window to the top. The
command that the Shell actually executes is

Target "Count.c" ; Line 73

“Line” is a script, which automatically finds and selects a line by number and then
brings the target window to the top.

Variables

The Shell provides several predefined variables and allows you to declare any
number of additional variables. Variables are used for

O shorthand notation

O providing status information

O local variables in scripts

O parameters to scripts and tools

O setting certain defaults for the MPW Shell

You can define or redefine variables with the Set command, and remove variable
definitions with the Unset command. For example,

Set PFiles HD:MPW:PFiles:
This command defines a variable {PFiles} with the value “HD:MPW:PFiles:”.

Variables have strings as their values. You can reference them by using the notation
{name}, where name is the name of the variable. When a command containing a
variable {name} is executed, {namej is replaced with the current value of the
variable. For example,

Files {PFiles}Src.p

In this example, {PFiles} is replaced with its definition before the command is
executed.

A variable may form one or more words, or part of a word. If a variable is undefined,
{name} is removed (that is, replaced with the null string).

Variable names are case insensitive, and can’t include the right brace character (}),
for obvious reasons. It's wise to avoid using any special characters in variable
names—future extensions to the command language may assign special meanings to
some of these characters.

Variables

5-9

% Note: For variables such as {Exit} and {CaseSensitive} that can be either “true” or
“false,” the variable is considered “true” if it is set to anything other than zero or
the null string (a string of length zero). The variable is considered “false” if it is
set to zero, null, or undefined. The best way to set one of these variables is as

follows:

Set Exit 1
Set Exit O

turn {exit} on
turn {exit} off

(These values also apply to expressions that return a Boolean value, defined later
in this chapter under “Structured Commands.”)

Predefined variables

Table 5-2 lists the variables defined by the MPW Shell. These variables provide the
status value returned by the last command, and the pathnames of several files and

directories.

Table 5-2

Variables defined by the Shell

{Active}
{Aliases}

{Boot}

{Command}

{ShellDirectory}
{Status}

{SystemFolder}

{Target}

{Windows}

{Worksheet}

Full pathname of the current active window.

Contains a list of all defined aliases with each name separated by
a comma. The list contains only the names, not the definitions.
Commando uses this variable with the built-in commands Alias
and Unalias. Commando needs this variable in order to know
the names of existing variables. {Aliases} must be exported.

Volume name of the boot disk.

Full pathname of the last command executed. (For built-in
commands, this is the name of the command.)

Full pathname of the directory that contains the MPW Shell.

Result of the last command executed. (A value of 0 means
successful completion. Any other value is an error code:
Typically, 1'means an error in parameters, and 2 means that the
command failed.)

Full pathname of the directory that contains the System and
Finder files.

Full pathname of the target window (that is, the second window
from the top—by default, this is the window where editing
commands take effect).

This variable contains a list of the current windows with each
name separated by a comma. Commando uses this list to allow
redirection of output or input to or from existing windows.
Commando needs this variable in order to know the names of
the current windows. {Windows} must be exported.

Full pathname of the Worksheet window.

5-10 Chapter &: Using the Command Language

Variables defined in the Startup file

Table 5-3 lists the variables that are defined in the Startup file (described in the
“Special Scripts” section in this chapter). These variables define pathnames and
default settings to the Shell, and are referenced by the Shell and by some of the MPW
tools. You can change any of these definitions to suit your own needs.

«» Note: Hierarchical file system (HFS) pathname conventions are described in

Chapter 4.
Table 5-3

Variables defined In the Startup file

Variables referenced by the command interpreter

{MPW}

{Commands}

The volume or folder containing the Macintosh Programmer’s
Workshop. Initially set to * {Boot }MPW: ". If your MPW
directory is somewhere other than the root of the boot volume,
modify the value of {MPW} in the Startup file.

A list of the directories that the Shell searches when looking for a
command to execute. Directories in the list are separated by
commas. A single colon indicates the default directory.
{Commands} is initially set to

:, {(MPW}Tools:, {(MPW}Scripts:, {MPW}Applications:

—that is, the current directory, then HD:MPW:Tools, then
HD:MPW:Scripts, and then HD:MPW:Applications.

Variables referenced by the command Iinterpreter

{Exit}

{Echo}

{Test}

{Commando}

When {Exit} is set to a nonzero value, scripts terminate whenever
a command returns a nonzero status. This nonzero status is
returned as the status value of the script. (See the {Status} variable
in Table 5-2.) {Exit} is initially set to 1.

When (Echo} is set to a nonzero value, commands are written to
diagnostic output after aliasing, variable substitution, command
substitution, and filename generation, and just prior to
execution. This capability is useful for watching the progress of a
script and for debugging scripts—as the first line of your file, you
would include the line

Set Echo 1
{Echo} is initially set to 0.

When {Test} is set to a nonzero value, the command interpreter
executes built-in commands and scripts, but not tools or
applications. {Test} is useful for checking the control flow in
command files. (It's most useful if {Echo} is also nonzero.) {Test}
is initially set to 0.

This variable tells the Shell which command to execute when the
ellipsis character (Option-semicolon) is present anywhere in a
command line. The Startup file sets this variable to
"Commando". This variable allows the development of similar
tools whose output is to be executed by the Shell. If the variable is
not set, then the ellipsis character is removed from the
command line and normal execution proceeds. {Commando}
must be exported if scripts are to use Commando.

(continued)

Variables

Table 5-3 (continued)
Variables defined In the Startup file

Variables referenced by the editor

{CaseSensitive}

{Tab}

{WordSet}

{PrintOptions}

Any nonzero value specifies case-sensitive pattern matching.
{CaseSensitive} is initially set to 0 (that is, false). You can also set
{CaseSensitive} in the “Find and Replace” dialog boxes.. (See
Chapter 3.)

Default tab setting for new windows (initially 4). You can also set
{Tab} in the “Format...” dialog available from the Edit menu.

The set of characters that constitute a word to the editor (for Find
and Replace menu commands, and for word selection by
double-clicking). By default, {WordSet} is set to the characters
a-z, A-Z, 0-9, and _ (underscore). If a character is not in the
list, the editing commands regard it, like a blank, as a break
between words.

Options used by the Print Window and Print Selection menu
commands. Initially set to "~h". (The -h option prints pages
with headers. For more information on possible print options,
see the Print command in Part II.)

Pathnamaes for libraries and inciude files

{Alncludes}

{Cincludes}

{CLibraries}

{Libraries}

{PInterfaces}

{PLibraries}

{RIncludes}

The directories to search for assembly-language include files,
referenced by the Assembler. Initially set to
" {MPW}AIncludes:".

The directories to search for C include files, referenced by the C
Compiler. Initially set to " {MPW}CIncludes:".

The directory that contains C library files. Initially set to
"{MPW}CLibraries:".

The directory that contains shared library files. Initially set to
" {MPW}Libraries:".

The directories to search for Pascal interface files, referenced by
the Pascal Compiler. Initially set to " (MPW}PInterfaces:".

The directory that contains Pascal library files. Initially set to
"{MPW}PLibraries:".

The directory that contains Resource Compiler (Rez) include
files. Initially set to " (MPW}RIncludes:".

5-12 Chapter &: Using the Command Language

Parameters to scripts

When a script is executed, its parameters automatically set the value of certain Shell
variables. These variables are explained in Table 5-4.

Table 5-4
Parameters to scripts

{0} Name of the currently executing script.

{1}, (2},...(n} First, second, and nth parameter passed to the current script.
(These values are null for commands entered interactively.)

{#} Number of parameters (excluding the command name).

{Parameters} Equivalentto {1} {2} ...{n}.

{"Parameters"} Equivalentto "{1}"™ "{2}" ..."{n}". This form should be used if
the parameters could contain blanks or other special characters.

The {Parameters} variable is especially useful when the number of parameters is
unknown. The quoted forms, such as "(1}" or {"Parameters"}, are usually preferable
to the unquoted forms because, after variable substitution, {1}, {2}, and so on could
contain blanks or other special characters. For example, consider the Line script
(which is useful with error messages as explained earlier in this chapter under
“Executable Error Messages™):

Find "(1}" "{Target}" # Find line n in the target window.

Open "{Target}" # Make the target window the active 4
(top) window.

This script takes one parameter, a line number. Parameter {1} is quoted to handle the
case where Line is called without any parameters. In this case the value of {1} is the
null string, and without the quotes the {1} would completely disappear, leaving the
name of the target window as the only parameter to Find. The quotes ensure that at
least a null string is sent to Find as its first parameter—this is essential, because the
window name must be the second parameter. Also notice that the {Target} variable is
quoted, because it’s a filename that might contains blanks or other special

characters. (For more information on quoting rules, see “Quoting Special
Characters” later in this chapter.)

Defining and redefining variables
The following commands are used to define and modify variables:

Set name value Assigns the string value to variable name.

Set name Writes the value of variable name to standard output.

Set Writes a list of all variables and their values to standard output.
Unset name Removes the definition of variable name.

Unset Removes the definition of all variables in the current scope. (For

an explanation of the scope of a variable, see the next section.)

Caution

Removing all variables in the outermost scope can have serious consequences.
For example, the Shell uses the variable (Commands} to locate MPW tools and
other commands. The Assembler and Compilers use other variables to help
locate include files. Some variables, such as {Boot}, cannot be reinitialized
without restarting MPW.

Variables

Defining a variable and making it available for use by scripts and programs involves
two separate steps:

1. You can define a variable with the Set command. Note that variables are local to
the script in which they are defined—a variable definition ceases to exist when its
command file terminates.

2. You can pass a variable to scripts and tools with the Export command. After you
export a variable, nested scripts can reference that variable, and may override its
value locally—but any redefinition is strictly local, and terminates when the script
terminates. It's impossible to affect the value of a variable in an enclosing script.
(See Figure 5-1.)

Exporting variables
The Export command makes variables available to scripts and tools:

Export name... Exports the named variables.

Export Writes the list of exported variables to standard output.
Unexport mame... Removes specified variables from the list of exported variables.
Unexport Writes the list of unexported variables to standard output.

You can define a variable globally by setting its value in the Startup file and exporting
it. Figure 5-1 illustrates how Export works.

UserStartup File
Set var X
Export var

(var) = 'X°'
ACommandFile

##4 ACommandFile ###
Set Var Y

Export var
AnotherCommandFile

##4# AnotherCommandFile ###
(var) = 'Y!

Set var 2

Export var

(var) = '2'

(var) = 'Y!

(var) = 'X'

Figure 5-1
Trafficking in variables

< Note: You can use the Execute command to execute a script without creating a
new scope for variables, exports, and aliases. The Shell “executes” the Startup,
Suspend, Resume, and Quit scripts, and Startup uses Execute to run the
UserStartup script. For more details about Execute, see Part 1I.

5-14 Chapter &: Using the Command Language

Command substitution

Command substitution causes a command to be replaced by its output. You can
specify command substitution by enclosing one or more commands in back

quotes (°...7). The backquote key is located at the upper-left comer of the original
Macintosh keyboard; it is located near the space bar of the newer keyboards. When
the command is executed, the standard output of the enclosed commands replaces
the ~...". Command substitution can form part of a word, a complete word, or several
words, Command substitution is not done within “hard” quotes (that is, the standard
single quotes *...").

“ Note: If the standard output of the enclosed commands contains return
characters, the returns are replaced by blanks. If the output ends with a return,
this return is discarded.

For example, the command

Echo The date is ‘Date

echoes the parameters, replacing the Date command with its output, as follows:

The date is Wednesday, October 22, 1987 10:40:00 PM

The following example duplicates the files whose names are output by the Files
command:

Duplicate 'Files -t MPST MyDisk:® "{MPW}Tools"

“Files -t MPST MyDisk:" is replaced with a string of filenames of type MPST
(that is, MPW tools) before the Duplicate command is executed; these files are then
copied to the folder {(MPW}Tools. This command is useful because the Files
command allows you to specify files with a certain type or creator, which you can’t do
with wildcard operators.

Quoting special characters

There are numerous characters that have special meanings to the MPW Shell.
Normally, the Shell performs the action indicated by the special character—but you
can disable a character’s special meaning (that is, include it as a literal character) by
quoting it. You commonly need quotes when specifying filenames that contain
blanks or other special characters, or when searching for the literal occurrence of a
special character. See also “Pattern Matching” in Chapter 6.

Quoting special characters

5-15

Table 5-5 lists all of the special symbols recognized by the Shell.

Table 5-5
Special characters and words

Character Meaning

Where described

Space Separates words

Tab Separates words

Return Separates commands.

; Separates commands.

| Separates commands, piping output to input.
&& Separates commands, executing the second

if the first succeeds.
I Separates commands, executing the second
if the first fails.
¢.) Command grouping; grouping in filename
generation.

Invokes Commando.
The ellipsis must be obtained by using the
Option-semicolon key sequence; not three

periods.
Comments.
0 Escape character: quotes the

subsequent character.
vt Quotes all special characters, except "..."
nm Quotes all special characters, except 9, {, "

and °

/... Quotes all special characters, except 9, {, °
and /

VA Quotes all special characters, except d, {,
and \

{...} Variable substitution.

Command substitution.

? Matches a single character in filename
generation.

= Matches any string in filename generation.

[...] Character list in filename generation.

Zero or more repetitions in

filename generation.

+ One or more repetitions in filename
generation.

<« » Specified number of repetitions in filename

generation.

Input file specification.

Qutput file specification.

Output file specification (append).
Diagnostic file specification.
Diagnostic file specification (append).

vV IV V. V A
\

v

5-16 Chapter §: Using the Command Language

“Structure of a Command”

“Structure of a Command”
(Table 5-1)

“Invoking Commando
Dialogs” in Chapter 4

“Structure of a Command”

In this section (Table 5-7)

“Variables”
“Command Substitution”

“Filename Generation”
in this chapter and
“Pattern Matching” in
Chapter 6

“Redirecting Input
and Output”
(Table 5-11)

You can literalize a character by preceding it with the Shell escape character, d
(Option-D), or by including it within the quote symbols '...", "...", /.../, or \...\. The
escape character, 9, quotes a single character only; the other quote symbols may be
used to quote part or all of a word. These symbols are described in Table 5-6.

Table 5-6
Quotes

L “Hard quotes”: Take the enclosed string literally—no substitutions
occur. The quotes are removed before execution.

"L “Soft quotes”: Take the enclosed string literally. dc, variable
substitutions, and command substitutions occur. The quotes are
removed before execution.

/.../or\. .\ Regular expression quotes: Normally used to enclose regular
expressions. Take the entire string literally, including the quote
characters—the / or \ characters are not removed. Variable
substitutions and command substitutions occur. '...", "...", and d
have their usual meanings—however, they are not removed.

Single quotes, double quotes, and d are removed before parameters are passed to
programs (unless they are themselves enclosed in quotes). For example, here is how
you could define an AddMenu that compiles a C program in the active window:

Wrong: AddMenu Extras "C Compile" C "{Active}"
Right: AddMenu Extras "C Compile" 'C "{Active}"'®

The first example won't work because the {Active} variable will be expanded when the
menu is added (it should be expanded when the menu item is executed). The
second example is correct—when the AddMenu command is executed, the single
quotes defeat variable expansion; they are then stripped off before the item is
actually added. The double quotes remain, in case the pathname of the active
window happens to contain any special characters.

«» Note: When quoting spaces (as in filenames), you’ll usually use double quotes
(soft quotes), to permit variable and command substitution.

Slashes (or backslashes) are used to pass regular expressions as parameters to
commands, without filename expansion occurring. For example,

Search /proc=/ Sample.p

This command searches the file Sample.p for any string beginning with the
characters “proc”. (See “Pattern Matching” in Chapter 6 and the description of the
Search command in Part I1.)

Table 5-7
Special escape conventions

ac Escape character: Take the single character c literally. The four escape
conventions that follow are exceptions to this rule.

oReturn dReturn is discarded, allowing you to continue a command onto the next

line.
on Inserts a return character.
at Inserts a tab character.
of Inserts a form feed character.

Quoting special characters

How commands are interpreted

When you send text to the command interpreter (by pressing the Enter key or the
equivalent), the following sequence of steps is performed:

1.
2.

7.

Alilas substitution.

Eyaluation of control constructs. (This means that control constructs can’t be
produced by command substitution but can have aliases.)

. Vartable substitution, command substitution. All variables (unquoted or quoted

with "...", /.../, or \...\) are replaced with their value. All commands enclosed in
*..." (unquoted or quoted with "...", /.../, or \...\) are replaced with their output.
If the ellipsis is found, Commando is executed and the command is replaced by
the output of Commando.

. Blank interpretation. After variables and commands have been substituted, the

command text is divided into individual words separated by blanks. A blank is an
unquoted space or tab.

Note: The following symbols are normally considered separate words, whether or
not they are set off by blanks:
; 1 I && () < > >> 2> >>

Within expressions (used with If and Evaluate), all operators are considered
separate words, unless they are quoted—see “Structured Commands” in this
chapter.

. Filename generation. A word that contains any of the unquoted characters ?, =, [,

*, +, or « after variable substitution is considered a filename pattern. The word is
replaced with an alphabetically sorted list of the filenames that match the pattern.
df no filename is found that matches the pattern, an error results.)

. Input/output redirection. Because this step is performed last, variable

substitution, command substitution, and filename generation can all be used to
form the filenames used in I/O redirection.

Execution.

Any part of this process can be suppressed by using quotes as described in the
previous section. Remaining single and double quotes are removed prior to
execution.

5-18 Chapter §: Using the Command Language

Structured commands

Structured commands (listed in Table 5-8) override the normal sequential execution
of commands. They can be used interactively and within scripts. They may be nested
arbitrarily deeply (subject to a limitation on stack space). The entire structured

command is read before execution begins. All structured commnds are built into the

MPW Shell.

Cautlon

After the Shell “executes” an opening parenthesls or the opening word of a
Begin, If, For, or Loop command, It will not execute any subsequent commands
untll @ matching closing parenthesls or End word Is encountered. While it is
waiting for the end of the command. the status panel of the Worksheet window
will contain the left parenthesis character, (, or the command name. You can
abort the entlre structured command by typing Command-period.

The status value for a structured command is the status of the last command executed
within the structured command (except for the Exit command, which lets you set
your own status value).

*» Note: Expressions (used in If, Break, Continue, and Exit) are defined in the
section following the table.

Table 5-8

Structured commands

(command...)

Begin...End

For...

Parentheses are used to group commands for conditional
execution, pipe specifications, and input/output specifications.

Begin
command...
End

Like parentheses, Begin and End group commands for
conditional execution, pipe specifications, and input/output
specifications.

If expression
command. ..

[Else If expression
command...] ...

[Else
command... |

End

If... executes the commands following the first expression whose
value is true (that is, nonzero and non-null). At most one of the
lists of commands is executed. If none of the commands is
executed, If retumns a status value of 0.

For name In word...
command...
End

For... executes the enclosed commands once for each word from
the “In word...” list. For each iteration, a variable of the form
(name} represents the current value from the word... list. (See
the examples below.)

(continued)

Structured commands

Table 5-8 (continued)
Structured commands

Loop...End Loop
command...
End

This command repeatedly executes the enclosed commands.
The Break command is used to terminate the loop.

Break Break [If expression]

Break terminates execution of the immediately enclosing For or
Loop. If the expression is present, the loop is terminated only if
the expression evaluates to true (nonzero and non-null).

Continue Continue [If expression]

Continue terminates this iteration of the immediately enclosing
For or Loop and continues with the next iteration. If the
expression is present, the Continue is executed only if the
expression evaluates to true (nonzero and non-null).

Exit Exit [number] [If expression |

Exit terminates execution of the script in which it appears. If
numberis present, it is returned as the status value of the script;
otherwise, the status of the last command executed is returned. If
the expression is present, the script is terminated only if the
expression evaluates to true (nonzero and non-nuil). (You can
also use Exit interactively, to terminate execution of all
previously entered commands.)

The return characters in the command definitions above are significant; a return must
appear at the end of each line as shown above, or be replaced by a semicolon (;).

The following keywords are recognized when they appear unquoted as the first word
of a command:

Begin For If Else Loop End Break Continue Exit

The keyword “In” is recognized when it appears unquoted following For; the keyword
“If” is recognized when unquoted following Else, Break, Continue, and Exit. These
keywords are not considered special in other contexts and need not be quoted.

* Note: These keywords can't be produced as a result of variable substitution or
command substitution.

You can apply conditional execution (&& and | |), pipe specifications (1), and
input/output specifications (<, >, >>, 2, and 22) to entire structured commands
(that is, to Begin...End, If...Else...End, For...End, and Loop...End, and to
commands within parentheses). The operator should appear following the End or
closing parenthesis. For example, you can collect the output of a series of commands
and redirect it as follows:

Begin
Echo Goocd day
Echo Sunshine
End > OutputFile

Input/output specifications are discussed later in this chapter. Each of the structured
commands is described in detail in Part II.

5-20 Chapter 5: Using the Command Language

Control loops

The For and Loop commands are used for looping,

The For...End command executes the enclosed commands once for each word in the

“In word...” list. The current word is assigned to variable name, so you can
reference the current word by using the Shell variable notation, {name}. For
example,

For File In =~.c
C "{File}" ; Echo "{File}" compiled.
End

The Loop command provides unconditional looping—you’ll need to use the Break
or Exit commands to terminate the loop. You can use the Continue command to
continue with the next iteration.

For example, the script below runs a command several times, once for each
parameter:

Repeat - Repeat a command for several parameters

#
Repeat command parameter..
#
Repeat command once for each parameter in the parameter
list. Options can be specified by including them in
quotes with the command name.
#
Set cmd "{1}"
Loop
Shift
Break If (#) ==
{emd} "({1}"
End

In this example, the Shift command (explained in the next section) is used to step
through the parameters, and the Break command ends the loop when all the
parameters have been used. Using the script Repeat, you could compile several C
programs, with progress information, using the command

Repeat 'C -p' Sample.c Count.c Memory.c
Repeat might also be used to set the font and font size for all the open windows:

Repeat 'Font Courier 10' 'Windows'

Structured commands

5-21

Processing command parameters

In addition to the commands introduced in Table 5-8, there are several other
commands that are highly useful in scripts. The following commands are used to

display or modify parameters:

Echo [parameters...]

Parameters [parameters...]

Shift [number]

Writes its parameters, separated by blanks and
terminated by a return, to standard output.

Writes its parameters, including its name, to
standard output. One parameter is written per line,
preceded by the parameter number in braces and a
space. A return is written following the last
parameter.

Renames the parameters by subtracting number
from the parameter number; that is, parameters
number +1, number +2, and so on are renamed 1,
2, and so on. If number is not specified, the default
value is 1. The variables {1}, {2}...(n}, {#},
{Parameters}, and {"Parameters"} are all affected.
Shift does not affect parameter {0} (the command
name).

Echo and Parameters are useful for checking how your parameters will behave before
actually passing them to a command (for example, to check how your quotes are

working out). For example,

Parameters "="

For an example of how the various structured commands can work together, see
“Sample Scripts” at the end of this chapter.

5-22 Chapter 5: Using the Command Language

Expressions

Expressions are used in the If, Break, Continue, and Exit commands. They're also
used in the Evaluate command, which returns the result of an expression.

Table 5-9 lists the expression operators in order of decreasing precedence. Some
operators have more than one representation; these equivalent symbois are listed on
a single line. Groupings indicate operators of the same order of precedence.

Table 5-9
Expression operators In order of decreasing precedence
Operator Operation
1. (expr) Expression grouping
2. - Unary negation
~ Bitwise negation
! NOT — Logical NOT
3.0 Multiplication
+ DIV Division
% MOD Modulus division
4. + Addition
- Subtraction
5. << Shift left
>> Shift right
6. < Less than
<= < Less than or equal to
> Greater than
>= 2 Greater than or equal to
7. == Equal
1= <> # Not equal
=~ Equal pattern (regular expression)
'~ Not equal pattern (regular expression)
8. & Bitwise AND
9. » Bitwise XOR
10. | Bitwise OR
11. && AND Logical AND
12. 4] OR Logical OR

Structured commands

5-23

All operators group from left to right. Parentheses can be used to override the
operator precedence. Null or missing operands are interpreted as zero. The result of
an expression is always a string representing a decimal number. Relational operators
return the value 1 when the relation is true and the value 0 when the relation is false.

Logical operators: The logical operators !, NOT, -, &&, AND, | |, and OR interpret
operands of value 0 or null as false; and nonzero, non-null operands as true.

Numbers: Numbers may be either decimal or hexadecimal integers representable by
a 32-bit signed value. Hexadecimal numbers begin with either $ or 0x. Every
expression is computed as a 32-bit signed value. Overflows are ignored.

String operators: The operators ==, !=, =~ and !~ compare their operands as
strings. All others operate on numbers.

Comparing text patterns: The =~ (equal pattern) and !~ (not equal pattern)
operators are like == and != (which compare two strings), except that =~ and !~ are
used for comparing a string with a text pattern. The right-hand side is a regular
expression against which the left-hand operand is matched. For example:

If "(1}* !~ /=, [acpl/
Echo Filename must end with .a, ¢, or .p
End

*» Note: The regular expression in the above example must be enclosed in the
regular expression quotes, /.../. See Chapter 6 for more information about
regular expression syntax.

If the regular expression contains the tagging operator ®, then, as a side effect of
evaluating the expression, Shell variables of the form {®n} containing the matched
substrings are created for each tag operator in the expression. (For an example, see
the implementation of a wildcard rename command, under the description of the
Rename command in Part II.)

Use of special characters: Within expressions in the If, Break, Continue, Exit, and
Evaluate commands, the following Shell operations are disabled:

O filename generation

O conditional execution (! | and &&)

O pipe specifications (1)

O input/output specifications (>, >>, 2, 22, and <)

This allows the use of many expression operators that would otherwise have to be
quoted. In the case of If commands, the conditional execution or I/O specification
should come after the End word. For other commands that contain expressions, you

can specify conditional execution or I/O redirection by enclosing the command in
parentheses. For example,

(Evaluate (1} + {2}) 2 Errors

5-24 Chapter §: Using the Command Language

Filename generation

After variables have been substituted, an unquoted word that contains any of the
characters

? = [* + «

is considered a filename pattern. The word is replaced with an alphabetically sorted
list of filenames that match the pattern. An error is returned if no filename is found
that matches the pattern.

You can specify a group of file (or window) names with the “wildcard” notation given
in Table 5-10.

Table 5-10
Filename generation operators

? Matches any single character (except return or colon).

= Matches any string of zero or more characters (except
return or colon).

[characterList | Matches any character in the list.

[- characterList] Matches any character not in the list.

* 0 or more repetitions of the preceding character or
character list ¢* is the same as =).

+ 1 or more repetitions of the preceding character or
character list.

«number of repetitions» Specified number of repetitions of the preceding
character or character list.

Note: The pattern matching is case insensitive.
Note also: The pathname separator (:) must appear explicitly in the pattern—the : character
will never be substituted for ?, =, or [...].

These special characters are the same regular expression operators used in
editing commands. For a complete discussion of regular expressions, see Chapter 6.

Naturally, you need to be careful with these wildcard operators. The Parameters and
Echo commands are very useful for double-checking which filenames a command
will generate. For example, before giving the command

Delete =~.,c.o
you might want to run the command
Parameters =.c.o

This command: lists your “.c.0” files to standard output so that you can make sure you
really want to delete them all.

¢ Note: Wildcard characters only generate names that match existing filenames;

they do not create new files. For example, the following attempt to rename files
will not work:

Rename =.obj =.0

An example of how to perform a wildcard rename can be found under the
description of the Rename command in Part II.

Filename generation

5-25

Redirecting input and output

All built-in commands, scripts, and tools are provided with three open files:
standard input, standard output, and diagnostic output (Figure 5-2). By default,
standard input comes from the console (the window where the command is
executed); standard output and diagnostics are returned to the console, immediately
following the command.

Standard
output
>,>> /
Standard < Resource Compiler
Input (Rez)
22> \
Dlagnostic
output

Figure 5-2
Standard Input and output

You can override these default assignments with the <, >, >>, 2, and 22 symbols
described in Table 5-11. Note that input and output specifications are interpreted by
the Shell; they are not passed to commands as parameters. Parentheses (or the
Begin and End commands) can be used to group commands for input/output
specifications.

Table 5-11

1/0 redirection

< name Standard input is taken from name.

> name Standard output replaces the contents of name. File name is created if it

doesn’t exist.

>> name Standard output is appended to name. File name is created if it doesn’t
exist.

2 name Diagnostic output replaces the contents of name. File name is created if
it doesn't exist.

22 name Diagnostic output is appended to name. File name is created if it
doesn't exist.

5-26 Chapter &: Using the Command Language

Files and windows are treated identically—when given a name, the system looks first
for an open window. Input and output can also be applied to selections:

O § indicates the current selection (in the target window).
O name.§ indicates the current selection in window name.

From the point of view of a command running within the Shell environment, input
always comes from the standard input file and output goes to the standard output file.
The command doesn’t need to know whether standard input happens to be text from
a file, from a window, a selection, or typed in from the keyboard. For example, in
the statement

Program > OutputFile

the string “> OutputFile” is interpreted by the Shell and is not passed as a parameter
to the command—this process is completely invisible to the command.

I/O specifications also apply to scripts. The standard input, standard output, and
diagnostic output files provided to a script become the defaults for commands in the
file.

In addition to the sections later in this chapter, you'll find more on input and output
in “Standard I/O Channels” in Chapter 13.

Standard input

By default, standard input is supplied by typing text and pressing Enter, or by
selecting text that is already on the screen and pressing Enter. You can redirect
standard input with the < operator. Note, however, that most commands that read
standard input also accept a filename parameter. For example, the following two
commands have the same result:

Catenate < Sample.c
Catenate Sample.c

The Alert command reads from standard input if no message is supplied as a
parameter to the command, but Alert doesn't accept filenames as parameters. Thus
input redirection is the only way to cause Alert to read input from a file.

Alert Errors # Display Alert box containing the word Errors
Alert < Errors # Display Alert box containing the contents
of the file Errors.

Many commands, including the Assembler and Compilers, optionally read
standard input to allow input to be read from a pipe () or entered interactively, as
explained in the next section.

Redirecting input and output

5-27

Terminating input with Command-Enter

Many commands read from standard input if no filename is specified. For example,
if you execute the command

Asm

the Assembler will begin reading from standard input—that is, you can enter text to
it, and it will process each line as you enter it.

You can repeatedly enter text to a program that reads standard input, by typing or
selecting text and pressing Enter. You indicate end-of-file by holding down the
Command key and pressing Enter. For example, after you execute the command

Catenate >> {(Worksheet}

the Catenate command will be running (its name will appear on the status panel at the
bottom of the window). You can now enter data from the keyboard or select and
enter text from various windows, and ali of it will be concatenated to the Worksheet
window. Command-Enter indicates end-of-file and terminates the command.

Standard output

By default, standard output appears in the window in which the command was
executed (that is, the console), immediately following the command. When
commands are executed from menus, standard output appears following the
selection in the active window. You can redirect standard output with the > and >>
operators. For example,

Catenate Filel File2 > CombinedFile

The Catenate command concatenates File2 to Filel—but instead of appearing in the
active window, output is sent to the file named CombinedFile. If window
CombinedFile is open on the desktop, its contents are overwritten. Otherwise, file
CombinedFile is replaced (or created if it doesn’t exist).

The >> operator appends standard output to the end of a selection, window, or file. If
the named file doesn't exist, a new file is created. For example,

Catenate § >> AFile

appends the contents of the current selection in the target window to AFile. (If the
command was entered in the active window, the current selection is the selection in
the target window.) You can also specify a selection in a named window:

Catenate Sample.c.§ >> AFile

5-28 Chapter 5: Using the Command Language

Diagnostic output

By default, a command’s diagnostic output also appears immediately after the
command, interleaved with standard output. The diagnostic output of commands
executed from menus appears following the selection in the active window. You can
redirect diagnostic output exactly as you redirect standard output, except that you use
the operators 2 and 22 in place of > and >>. You may find it useful to have all error
reporting appear in a separate window set aside for that task. For example, in

Figure 5-3, the Assembler has been run, and error and progress information has
been appended to a window called “Errors”.

€ File Edit Find Mark Window Directory Build
' HO:MPW:Worksheet

Sample.a 22 Error

=] HD:MPW:AERamplas:Errors

...continuing with Sampie.a
...lneludlnq HO:MPH:AlIncludes:QuickEqu.a
...continuing with Sample.a
...including HD:MPU:AInciudes:SysEqu.a

..continuing with Sampie.a
OUICXDREH
GLOBALDATA
SETUPMENUS
SHOWABOUTMED I ALOG
BocoMMAND
SANMPLE

Elapsed time: 22.46 saconds.

Assembiy complate - no errors found. 4535 |ines.

MPY Shell KA]

Figure 5-3
Redirecting diagnostic output

Redirecting input and ocutput 5-29

Pseudo-filenames

Pseudo-filenames are a set of device names that you can use in place of filenames,
but that have no disk files associated with them. Any command can open a pseudo-
filename as a file. These device names are most commonly used for I/O redirection.

Table 5-12 shows the available pseudo-filenames.

Table 5-12
Pseudo-filenames

Dev:Console Always refers to the current console device. The console is the
default source of input and the default destination of output—that
is, the active window where a command is entered and its output

displayed.

Dev:Null Null device. If you read from Dev:Null, it immediately returns end-
of-file. If you write to Dev:Null, output is thrown away.

Dev:Stdin Standard input.

Dev:StdOut Standard output.
Dev:StdErr Diagnostic output.
The last three names, StdIn, StdOut, and StdErr, are used to explicitly represent

input and output. You can use these specifications, for example, to send a
command's output and diagnostics to the same file:

Search /NULL/ =.c > Found 2 Dev:StdOut

Because the Shell opens standard input, standard output, and diagnostic output in
the order they appear, file Found is opened first, then diagnostic output is redirected
to the same file. The following command has the same effect:

Search /NULL/ =.c 2 Found > Dev:StdErr

However, if the filename and pseudo-filename specifications are simply reversed,
the result is quite different:

Search /NULL/ =.,c 2 Dev:StdOut > Found

This command redirects diagnostic output to the previous standard output (probably
the active window), then redirects output to file Found.

Pseudo-filenames are especially useful in a script when you want to do something like
sending standard output to the diagnostic output. Here are some examples:

Echo "An error message." >> Dev:StdErr
Echo "HELP !" >> Dev:Console

Dev:Null is useful in scripts when you want to throw away diagnostic output. For
example:

Eject 1 2 Dev:Null

This command ejects the disk in drive 1; if no disk is in drive 1, the script continues to
run silently. (Note that you would also need to set {Exit} to 0—see “Variables” earlier
in this chapter.)

5-30 Chapter §: Using the Command Language

Editing with the command language

Almost all menu functions have equivalents in the command language. In most
respects, there is no difference between the menu items and their command-
language equivalents. The primary difference is that with the com mand language,
you enter commands in the active (frontmost) window, while the editing command
acts on a selection in another window. You can explicitly name a window as a
parameter to the command. If you don't specify a window, the command acts on the
target window.

For example, to use command-language techniques to edit the file Sample.a, you
must first open that file, and then click on another window, such as the Worksheet
window, to make it the active window. You enter your commands in the active
window, as shown in Figure 5-4. When you select text in the active window, it’s
highlighted in the normal Macintosh fashion. In other windows, selected text is
indicated by dim highlighting (outlining), as shown in the target window in
Figure 5-4.

€ File Edit Find Mark Window Directory Build
e v T————

MPW Shell

HD:MPW:ARE4amples:Sample.a

tOVE.L (A7) ,appletienuK Leave extra copy of handle on
IOVE. L (A7) ,-(A?) stack for _AddReslilenu
CLR -(A7) Install Apple menu in menu bar
Inserttfanu H Insertifenu(appletlenuK, 0);
DYE.L #'DRVH’ ,-(A7) Add DA names to Apple menu
_AddRestfenu ; AddRestlenu(appletfenuK, 'DRYR')

SUBQ 4,07 Read File menu from resource
tOYE #241eID,-(A7) tile

=

Figure 5-4
Text highlighted In the active window and target window

Editing commands generally act on a selection. (The Find command simply creates
a selection—“DRVR” in this example.)

The § metacharacter (Option-6) is the current selection character—it signifies the
current selection in a window. For example, the following command erases from the
current selection or insertion point in the target window to the end of the window:

Clear §:o

The infinity character, e (Option-5), is a selection operator that indicates the
end of a window, as described in Chapter 6. For interactive editing, press
Command-Delete to clear to the end of a file.

Editing with the command language

5-31

Defining your own menu commands

The AddMenu and DeleteMenu commands are for adding and deleting menu items.
The AddMenu command takes three parameters: the menu name, the item name,
and the command text. For example,

AddMenu Find 'Top of Window/U' 'Find ¢ "{Active}™'

This command adds a “Top of Window” item to the Find menu, with the keyboard
equivalent Command-U. When you select the menu item, the corresponding
commands are executed. (The Top of Window item moves the insertion point to the
top of the active window.)

Invoking a user-defined menu item is the same as entering the command text from a
window—rvariable substitution and command substitution are performed normally.
Note, however, that the text of the menu command is processed twice—once when
the AddMenu command itself is executed, and again whenever the menu item is
executed. This means that you have to be especially careful in your use of quotes. The
mysteries of quoting are explained earlier in this chapter in “Quoting Special
Characters,” together with further AddMenu examples. You should also pay
particular attention to the section “How Commands Are Interpreted.” For further
information, and more examples, see the AddMenu command in Part II.

Sample scripts

The following examples use most of the Shell’s features to illustrate how you can
extend the MPW Shell with your own commands.

“AddMenuAsGroup”

The following script adds an extra feature to the AddMenu command:

AddMenuAsGroup - AddMenu, grouping user defined menu items:
#

AddMenuAsGroup [menuName [itemName [command]}]

#

AddMenuAsGroup duplicates the functionality of the AddMenu
command, adding a disabled divider before the first user-

defined menu items in the File, Edit, and Find menus.

#

Unalias

Set Exit O
Set CaseSensitive 0

If ({#} == 3) AND ("{1l}" =~ /File/ OR "(1l}" =~ /Edit/ 9
OR "({1}" =~ /Find/)
If "AddMenu "(l}"' == n"v # If this is the first addition
in (1},
AddMenu "{1}" "(-" "" # add the group divider
End
End

AddMenu ({"Parameters")

5-32 Chapter 5: Using the Command Language

When adding menu items to the predefined menus, it’s nice to add a disabled dotted
line item to separate the new menu items from the original ones. The script above
automatically adds the separator before the first new item in the File, Edit, and Find
menus, the only predefined menus that can be modified by using AddMenu. If you
put this script in a file named AddMenuAsGroup, the following alias will override the
built-in AddMenu command:

Alias AddMenu AddMenuAsGroup

“CC”

The following script extends the C command by making it possible to compile a
number of specified files:

CC - Compile a list of files with the C compiler

#

CC [optiocns..] [file..]

#

Note that the options and the files may be intermixed, and

that all options apply to all the files. The individual C

commands are echoed to diagnostic output as they are executed.
#

Unalias

Set Exit 0

Set CaseSensitive 0
Set options ""
Set files ""
Set exitStatus 0
Loop
Break If (#}) == 0
If "(1}" =~ /-[diosu]/ # options with a parameter
Set options "{options} '{1}' ‘'{2}'"
shift 2
Else If "“{1}" =~ /-=/ # other options
Set options "{options} '{1}'"
Shift 1
Else
Set files "(files} ‘'{1l}'"™
Shift 1
End
End
For 1 in (files}
C (options} "{i}"™ || Set exitStatus 1
End
Exit ({(exitStatus}

Sample scripts 5-33

Chapter 6

Advanced Editing

6-1

This chapter describes the editing operations available as built-in commands,
including the use of regular expressions. These commands enable powerful find-
and-replace functions, and make it possible to automate editing operations by using

scripts.

Menu commands for editing are described in Chapter 3. For a full description of the

use of the command language, see Chapter 5.

Editing commands

The command language contains editing commands that duplicate the functions of
many of the menu commands and provide additional capabilities. The editing
commands are listed in Table 6-1. (They're explained in detail in Part II.)

Table 6-1
Editing commands

Adjust [-c countl [-1 spaces) selection (windouw]
Align [-c counsl selection [windouwl

Canon [option...] dictionaryFile [inputFile...]

Clear [-c counidl selection [windouw]
Copy [-c count] selection [window]

Cut [-c coundl selection [windoul

Entab [option...] [file...]

Find [-c countl selection (window|
Font fontname fontsize [window...]
Line [number)

Mark [-y | -n] selection {[windoul

Markers [-q] [window ...]
Paste [(-c counil selection [window)

Replace [-c coundl selection replacement [windoul
Revert [-y] [window...]

Tab number [window..]

Target mame

Translate source l[destination]

Undo [window]

Unmark name... window

6-2 Chapter 6: Advanced Editing

Adjust lines in a selection.
Align text with first line of selection.

Replace a file’s identifiers with canonical
spellings given in dictionaryFile.

Delete selected text.
Copy selected text to the Clipboard.

Copy selected text to the Clipboard and then
delete the selection.

Convert runs of spaces to tabs.
Find and select text.

Change the font and/or size.
Find line number.

Assign the marker nameto range of text
selection selected in window.

Print list of all markers associated with
window.

Replace selection with the contents of the
Clipboard.

Replace selection with replacement.
Revert window to last saved state.

Set a window’s tab value to numberspaces.
Make a window the target window.

Convert selected characters.

Undo last command.

Remove the marker(s) name... from the list of
markers available for window.

If no window parameter is specified, editing commands act on the target window
(the second window from the front). Therefore, to edit the active window, you'll
need to switch to another window for entering your commands. (The Target
command makes a window the target window; the Shell variables {Active} and
{Target} always contain the full pathnames of the current active and target windows.)

Most editing commands take the following parameters:

-C count You can specify a repeat count with the -¢ option—count is the number
of times the command should be executed. Count may also be the
infinity character, oo (Option-5), which specifies that the operation
should be repeated as many times as possible.

selection Most editing commands act on a selection, either the current
selection in the target window or another selection that you specify.
First, an implicit Find is done to select the specified text. Then the text
is modified. The selection syntax is defined in the next section.

window The optional window parameter lets you specify the name of the
window to be affected by a command, without changing the position of
the affected window.

A command modifies the selection only if there were no syntactic errors in the
selection, and all regular expressions were matched. Commands run silently unless
an error occurs.

Selections

Selection is a parameter to editing commands, and tells the command what text to
select. A selection may be any of the following:

O a line in a file (selected by line number)

O a position in a file

O a specific character pattern

O a selection that begins and ends with any of the above

As an example of the selection syntax, consider the definition of the Find command:
Find [-c count] selection {windoul

Find takes a selection as an argument and selects the argument text (or sets the
insertion point). An actual command might take the form

Find /shazam/

This command finds and selects the first instance of the string “shazam” that appears
after the current selection. (The slashes are used to enclose a pattern, a special case of
a selection, as explained below.) No count is specified, so the command is executed

once. No window name is specified, so the command operates on the target window.

Selections

6-3

Table 6-2 shows all of the selection operators. These are more fully explained in the
sections following the table.

Table 6-2
Selectlon operators

Current selection

§

Line numbered selections
n
n
in

Position (Insertion point)
®

oo

Aselection

selectionA
selectionin
selectionin

Current selection in the target window (§ is Option-6 on
the keyboard)

Line number n

Line number 7 lines after the end of the current selection
Line number 7 lines before the start of the current
selection (j is Option-1)

Position before the first character of the file (e is
Option-8)

Position after the last character of the file (e is Option-5)
Position before the first character of selection (A is
Option-])

Position after the last character of selection

Position 7 characters after the end of selection

Position 7 characters before the beginning of selection

Pattern (characters to be matched)

/pattern/

\ pattern\

Extended selection
selectionl:selection2
marked selection name

Grouping
(selection)

Pattern (regular expression)—search forward (see
“Pattern Matching,” below)
Pattern—search backward

Both selections and everything in between

The name of a marked selection may contain any
characters except

§ ! i (: + = A [/ N\

Controls order of evaluation

A formal definition of selections can be found in Appendix B.

All of the operators group from left to right, and evaluation proceeds from left to
right. The selection operators are listed below in order of precedence:

/ and \ Everything within slashes is taken as a regular expression, and
evaluated as explained below under “Pattern Matching.”

@ Controls order of evaluation.

A Indicates position.

tand Indicates position (! = after; | = before).

Joins two selections.

Some examples will illustrate why it's important to pay attention to the precedence of

these operators:

A/begin/!1l means

rather than

(A/begin/) 'l
A(/begin/!1)

That is, the insertion point is located after the “b” of “begin” rather.than

after the “n”".

/begin/:/end/!'1

means the selection
rather than the position

/begin/: (/end/!1)
" (/begin/:/end/)!1

6-4 Chapter 6: Advanced Editing

That is, the character after “end” is included in the selection, as shown in Figure 6-1.

& File Edit Find Mark Window Oirectory Build
== HO:MPW:Worksheet ===

I

MPYW Shell

HD:MPW:PExampies:Memory.p

FUNCTION RsroID(dCtl: DCtlPtr): Integer;
EGIA

RsrcID :m (BOR($C000, (BSL(BNOT(ACt1~. dCt1RefMum) S5))));

Figure 6-1
A selection specification

Current selection (§)

The current selection character, § (Option-6), always indicates the current selection
in a window. If no window is specified, § indicates the current selection in the target

window. For example, consider the windows shown in Figure 6-2.

€ File Edit Find Merk Window DOirectory Build
::se

MPW Shell

HD:MPW:PExamples:Memory.p
ny¥indow: ¥indowPtr;
BEGIX
IF dCtl~.dCtl¥indow = NIL THEN
BEGIY
GetPort (SavePort);
nyfindow :a GetNewWindow(RsrcID(dCtl) ,nil ,POINTER(-1));
windowpeek(myW¥indow)~ ¥indowKind := dCtl~.dCtlRef¥um; (show ¢ DA
dCtl~.dCt1lWindow :w Ptr(my¥indow); (let the desk manager know too)
beapGrow = tlaxtiem (heepGrow)

Figure 6-2
Selections In two windows

Selections

6-5

The command
Replace § on

would replace the current selection in the target window with a single return (newline)
character. (“on” is a special code for inserting a return—see “Inserting Invisible
Characters” later in this chapter.)

Note that the current selection is a dynamic quantity—it's determined by the last
subexpression evaluated, and thus represents the current state of a selection as it's
being calculated. For example, consider the command

Find /if/:§11:8!1

At various points in the evaluation of the search string “/if/:§!1:§!17, the current
selection (§) has the following different values:

Before calculation The pre-existing selection in the target window
After “/if/" “if”
After “/if/:§t1" All characters from “if” to (and including) the first

character after the “if”
After “/if/:§11:§!1" All characters from “if" to (and including) the first
two characters after the “if”

Selection by line number

If you give a number, unquoted by slashes, as a selection, it's taken to be a line
number. This may be an absolute line number, or a number of lines relative to the
current selection. For example, to select line 3 of a file, you'd use the command -

Find 3

This expression is equivalent to
Find '3"

but

Find 3 or Find '3

is not equivalent to

Find /3/ or Find \3\

The exclamation mark and inverted exclamation mark (! and j) specify a number of
lines after or before the current selection. The command

Find !3
selects a line that is 3 lines beyond the current selection. Note that the !7 notation
specifies a line relative to the end of the current selection (that is, 7 lines past the line

containing §4); in specifies a line relative to the start of the current selection (7 lines
before the line containing A$).

6-6 Chapter 6: Advanced Editing

Position

A position is a special case of a selection. Position means the location of the
insertion point only. The A character (Option-J) is used to convey position relative
to a selection. For example, consider the commands

Find 3
Find A3
Find 3A

The first Find command selects the entire third line in the target file. The Find A3
and Find 3A commands place the insertion point at the beginning and at the end
of the third line.

You can also use the ! and | operators to specify a position that's a given number of
characters from a selection: selection!n specifies a position n characters after
selection, and selection;jn specifies a position 7 characters before selection.

Notice that this leads to two different uses of the ! and | operators, as in the following
example:

Find !4'4

The first “14” indicates a selection that's 4 lines beyond the current selection; the
second “14” indicates the position that's 4 characters beyond the end of that
selection.

You can specify other positions in a file with the following special notation:

e (Option-8) Position preceding the first character in file
o (Option-5) Position following last character in file

Extending a selection
A colon is used to join two selections. For example,
Find /begin/:/end/

This command selects “begin”, “end”, and everything in between. (See Figure 6-1
above.) Compare this command with

Find /begin=end/

which looks for a begin-end pair on a single line.

Selections

6-7

Markers

A marker is a selection that has been given a name. A marker may be used as a
selection variable. You can mark as many selections and insertion points as you
wish. You can create markers directly by selecting text in a window and then clicking
the Mark command in the Mark menu. See “Mark Menu” in Chapter 3 for more
information on the interactive use of markers. This section describes the general
behavior and programmatic use of markers.

Markers may be as simple as a position in 2 window, but more often a marker names a
range of positions. Markers have the special attribute of being able to remember
their assigned position(s) even when you’re making editing changes all around them.
For example, typing before marked text has the effect of moving both the text and its
associated marker toward the end of the window. Editing “inside” the range of a
marker will either increase or decrease the range of the marker depending on whether
the editing was an insertion or deletion, respectively.

Markers are “sticky.” For example, if an insertion point is marked and you type at that
point, everything you type will be added to that marker.

. If you delete the text encompassing a marker the marker will also be deleted. For
example, if the string “xyz” is deleted and the character “y” is marked, the “y”
marker will be deleted. However, if the string “xyz” itself is marked as “y”, deleting
the string “xyz” will result in marker “y” being reduced to an insertion point.

Markers are associated with individual windows. When you switch between windows,
the Mark menu is updated to reflect the markers of the new active window.

Markers are persistent. They are saved in the resource fork of the file you are editing,
just like the font, tab, and other information about the window.

You can create or delete Markers programmatically by using the following three Shell
commands:

Mark [-y | -nl selection [windoul Assign the marker name to range of text
selection selected in window.

Markers [window] Print list of all markers associated with
window.
Unmark mname.. window Remove the marker(s) name... from the list

of markers available for window.

For example, to mark the currently selected text in the target window with the name
“Function B” and to replace any previous marker of that name, you would type

Mark -y § 'Function B!

The new marker name will appear in the Mark menu. You might remove the marker
later by using the Unmark command:

Unmark 'Function B' "{Target”}

Tk command would remove that marker from the target window.

6-8 Chapter 6: Advanced Editing

The new selection syntax allows you to jump to a marker programmatically and
automatically select the output of a script for a user. To jump to a marker named
“george”, you might use a command similar to the following:

Find george

To automatically select the output of a script for a user, you could use a script similar
to the following:

Mark S§A X #Mark the start of output
Make #Run your Make command
Find X #Select the output of Make

For further details on the Shell commands for markers, see Part IL

Pattern

A pattern may be either a literal text pattern or a regular expression (defined in the
next section). You specify a pattern between the /.../ and \...\ delimiters. Forward
slashes indicate a search forward, and back slashes indicate a search backward. A
forward search begins at the end of the current selection and continues to the end of
the file. A backward search begins at the start of the current selection and continues
to the beginning of the file. For example, the command

Find /myString/

searches forward for the literal expression “mystring”. (Recall that to specify case-
sensitive pattern matching, you need to set the Shell variable {CaseSensitive}, or
select the “Case Sensitive” menu item.)

< Note: To locate the insertion point at the beginning of the target window, for
instance before executing a Find command, you can use the command

Find -«

In fact, this command is so useful that you may want to add it as a menu
command—see the example under the AddMenu command in Part II.

Pattern matching (using regular expressions)

Regular expressions are a shorthand language for specifying text patterns. Regular
expressions are used in editing commands, in the Search command (which searches
one or more files for occurrences of a pattern), and in If and Evaluate expressions
following the =~ and !~ operators. Most of the regular expression operators may also
be used in filename generation.

Regular expressions are always used within the pattern delimiters /.../ or \...\.

A special set of metacharacters, called regular expression operators, is used in
regular expressions (and in filename generation). The regular expression operators
are listed in Table 6-3.

Pattern matching (using regular expressions)

Table 6-3
Regular expression operators

c Any character matches itself Cunless it's one of the
special characters listed below)

dc Defeat special meaning of following character (cis
taken literally) except

on = return

ot = tab
of = form feed
Lt Literalize enclosed characters
L Literalize enclosed characters, except 9, {, and °
? Any single character (other than return)
= Any string of 0 or more characters, not containing a
return
{character...] Any character in the list
[—character...] Any character not in the list (— is Option-L on the
keyboard)
regularExpr* Regular expression 0 or more times
regularExpr+ Regular expression 1 or more times
regularExpr«n» Regular expression 7 times (« is Option-\ ; » is
Option-Shift-\)
regularExpran,» Regular expression 7 or more times
regularExprany, ny» Regular expression ny to n, times
(regularExpr) Grouping
(regularExpn®n Tagged regular expression (where 0 £ n< 9)
regularExpry regularExpry regularExpry followed by regularExpr,
e regularExpr Regular expression at beginning of line
regularExproo Regular expression at end of line

These characters are considered special in the following circumstances:

d Special everywhere except within single quotes C..."
? = * + [« () Special anywhere except within [...}, *...", and ".."

® Special only after a right parenthesis,)

. Special as first character of entire regular expression
oo Special as last character of entire regular expression
/N Special if used to delimit a regular expression

Their precedence (from highest to lowest) is as follows:
1.C)

2.7 = * o+ [] « ®

3. concatenation

4.0 oo

A formal definition of regular expressions can be found in Appendix B. The rest of
this section describes the use of regular expressions for describing selections.

6-10 Chapter 6: Advanced Editing

Character expressions

In the simplest case, regular expressions consist of literal characters enclosed in
slashes. For example,

/what the 2/

Notice one complication, however—if the literal character happens to be one of the
regular expression operators (such as “?"), it will be specially interpreted rather than
taken as a literal character. If you want to specify a literal character that happens to
have a special meaning within the context of regular expressions, you'll have to
precede it with the escape character, 9, or enclose it in quotes. The character d has
the effect of “literalizing” the character that follows it. For example, to find the literal
expression given above, you would use one of the following commands:

Find /what the 92/
Find /what the '?'/
Find /'what the ?'/

You could also use double quotes, that is "...".

Wildcard operators

In addition to literal characters, regular expressions can include the operators ?, =
(Option-X), and [], which are used as follows:

? Any character other than return

= Any string not containing return, including the null string (this
is the same as ?%)

[characterList] Any character in the character list (as defined below)
[— characterListt Any character not in the list

These operators are also used as wildcards in filename generation. (You can also use
the *, +, and «...» operators in filename generation—see “Filename Generation” in
Chapter 5.)

A character list is an expression consisting of one or more characters enclosed in
square brackets ([...]). It matches any character found in the list. The case-sensitivity
of characters in the list is governed by the {CaseSensitive} variable (which you can set
or unset by toggling the Case Sensitive check box in the Find or Replace dialog
boxes). A list may consist of individual characters or a range of characters, specified
with the minus sign (-). For instance, the following two commands are equivalent:

Find /[ABCDEF]/
Find /({A-F]/

You can also mix the two notations:
Find /[0-9A-F$]/

“ Note: This command specifies any of the characters 0 through 9, A through F,
and §. To specify the] or - character, place it at the beginning of the list or
literalize it with the escape character, 0.

The negation symbol, — (Option-L), lets you specify any character not in the list. For
example,

Find /([=-A-2]/

This example specifies all characters except the letters A through Z. (To specify the =
character itself, place it anywhere in the list other than the beginning, or literalize it
by preceding it with the escape character, 9.)

Pattern matching (using regular expressions)

Repeated instances of regular expressions

The asterisk character (*) matches zero or more occurrences of the immediately
preceding regular expression. The plus sign (+) matches one or more occurrences of
an expression. For example, the command

Find /({0-91+/
will find any string of one or more digits.

You can also specify an expression that occurs an explicit number of times with the
«7n» notation:

regularExpr«n» Regular expression 7 times
regularExpr«n,» Regular expression at least 7 times
regularExpreny, ny» Regular expression at least 7, times and at most 7, times

For example,
Replace -c = /' '«4,»/ dt

This command finds any string of four or more spaces, and replaces it with a tab.
(The -c oo option specifies a repeat count of “infinity”; that is, it replaces all
occurrences of the selection to the end of the document.)

Tagging regular expressions with the ® operator

The ® (Option-R) operator tags a regular expression between parentheses. This
operator is useful with the Replace command, for example, in reformatting tables of
data. Consider a table with two columns of numbers separated by spaces or tabs:

123 456
123 456
123 456
123 456

elc.

The following Replace command switches the order of the two columns:
Replace -c = /([0-9]+)®1[dt]+([0-9]+)®2/ '®2 ®1'
Translated into English, this expression means

{0-91+ Match one or more characters in the set “0” to “9”.

({0-91+)®1 Remember that selection (the expression enclosed in
parentheses) as ®1.

[o]+ Next, match at least one space or tab.

({[{0-91+)®2 Then match one or more characters in the set “0” to “9” and
remember it as ®2.

'®2 ®1° Finally, replace the whole matched string with what was
remembered as ®2, a space, and what was remembered as ®1.

Note: The quotes are stripped off, as explained under “Quoting
Special Characters” in Chapter 5. The ® operator itself can
be disabled only with the escape character, o.

6-12 Chapter 6: Advanced Editing

After this sequence is executed, the table will look like this:

456 123
456 123
456 123
456 123
etc.

Matching a pattern at the beginning or end of a line

In the context of regular expressions, the ¢ metacharacter (Option-8) means that the
subsequent expression must be matched at the beginning of a line. For example, the
regular expression

/e*main/

will match a line that begins with “main” but not a line that begins with “space main”.
The beginning of a line is either the first character after a return or the first character
of the file.

Likewise, the oo metacharacter means that the previous expression must be matched
at the end of a line. The regular expression

/mainee/

will match a line that ends with “main” but not a line that ends with “main space”.
The end of a line is either the last character of a line prior to the return, or the end of
the file.

Notice that ¢ and ee have another meaning within selections. Within a pattern, they
indicate the beginning and end of a /ine. Within a selection, they indicate the
beginnning and end of the file.

Inserting invisible characters

You can use the Shell escape character, d, to insert the following special characters in
text:

on return
ot tab
of form feed

% Note: The “Show Invisibles” menu item shows the invisible space, tab, and
return characters in a file.

For more information on the escape character, see “Quoting Special Characters” in
Chapter 5.

Pattern matching (using regular expressions)

Note on forward and backward searches

Forward and backward searches aren’t always completely symmetrical. For example,
consider the command

Find /2*/

This command finds zero or more occurrences of any character other than a return.
The first time you execute this command, if the current selection is not at the end of a
line, some range of characters will be sclected. However, in subsequent invocations,
the selection will hang at the end of the line—only an insertion point will be left at the
end of the line. This is because the * metacharacter matches zero occurrences and
the search starts with the character following the current selection—in this case, the
insertion point preceding a return. A backward search of the form

Find \2?*\

will never hang at the beginning of a line. This is because a backward search begins
with the first character to the left of the current selection and so has the effect of
jumping over a return after encountering it.

Some useful examples

This section shows some examples of complex use of regular expressions.

Transforming DumpObj output

The DumpObj command, described in Part II, formats the contents of an object file.
This example shows how to transform a DumpObj listing, such as the following, back
into valid assembly code.

000000: 4EBA 06Fr8 ‘N...!' JSR *+S06FA ; 6004282A
000004: 4EBA O4EA 'N...! JSR *+$S04EC ; 60042620
000008: 3B7C 0014 FCC4 ‘';l....' MOVE.W #50014, SFCC4 (AS)

00000E: 266D 0010 ‘ém. ., ' MOVEA.L $S0010(AS) , A3

000012: 2653 ‘&S MOVEA.L (A3),A3

000014: 0C5B 0000 Ll CMPI.W #50000, (A3) +

000018: 6600 0008 R BNE *+3000A ; 60042152
00001C: 3AlB et MOVE.W (A3) +,D5

00001E: 6600 0010 ELLL BNE *+$0012 ; 60042160
elc.

You could position the insertion point at the beginning of the code and use the
following Replace command:

Replace -c = /?«4l»/ "otot" 4 replace everything up to the
instruction with 2 tabs

However, the previous command works only because DumpObj happens to place the
instruction at column 42. The following example, by defining some Shell variables,
works regardless of the exact column layout:

Set hex "[0~9A-FJ«4, 6»" # 4 to 6 characters in the set 0-9 and A-F
Set space "[dt]+" # 1 or more spaces or tabs
Set chars "dd'?+do'" # 1 or more of any character between d

single quotes
Replace -c o /{hex}: ({space}{hex})«l,3»(space}{chars){space}/ "dtot"

6-14 Chapter 6: Advanced Editing

Finding a whole word

The following example illustrates how you could find an exact match for a C identifier
that you had previously defined in the variable {ident}:

Set tokensep "[-a-zA-Z_0-9]" # a token separator is any character
not in the set a-z, A-Z,_, or 0-9

Set CaseSensitive 1 # set to "true"—the case of each
character must match

The following Find command is not quite right, because it selects not only the
matched identifier, but also the token separator on each side of the identifier:

Find /{tokensep} {ident} {tokensep}/

The following Find command selects only the matched identifier. It accomplishes
this by adding 1 to the starting position of the selection (Aselection!l), and using
that as the starting point for a new selection that extends to the beginning of the next
token separator:

Find A/{tokensep}{ident}{tokensep}/!1:A/{tokensep}/

Some useful examples 6-15

Chapter 7

Editing Resources
With ResEdit

7-1

The chapter describes ResEdit, a stand-alone application for editing resources.

< Note: As in Inside Macintosh, resource types are shown within single quotes; for
example, 'STR ' (that is, STRspace). The quotes are not part of the name.

About ResEdit

ResEdit is an interactive, graphically based application for manipulating the various
resources in a Macintosh application. It lets you create and edit all standard resource
types except 'CODE!', and copy and paste all resource types (including 'CODE"Y.
ResEdit actually includes a number of different resource editors: There is a general
resource editor, for editing any resource in hex and ASCII format, and there are
several individual resource editors for specific types of resources. You can also
create your own resource editors to use with ResEdit.

Uses

ResEdit is especially useful for creating and changing graphic resources such as
dialog boxes and icons. For example, you can use ResEdit to put together a quick
prototype of a user interface and try out different formats and presentations of
resources. Anyone can quickly learn to use ResEdit for translating resources into a
foreign language without having to recompile the program. You can use ResEdit to
modify a program'’s resources at any stage in the process of program development.

Once you have created or modified a resource with ResEdit, you can use the Resource
Decompiler, DeRez, to convert the resource to a textual representation that can be
processed by the Resource Compiler, Rez. You can then add comments to this text
file or otherwise modify it with the Shell editor. (Rez and DeRez are fully described in
the next chapter.)

Extensibility

A key feature of ResEdit is its extensibility. Because it can't anticipate the format of all
the different types of resources that you might use, ResEdit has been designed so that
you can teach it to recognize and parse new resource types.

There are two ways that you can extend ResEdit to handle new types:

O You can create templates for your own resource types. ResEdit lets you edit most
resource types by filling in the fields of a dialog box—this is the way you edit
'BNDL' and 'FREF' resources, for example. The layout of these dialog boxes is
determined from a template in ResEdit’s resource file, and you can.add templates
to edit new resource types. Resource templates are described later in this chapter.

@ You can also program your own special-purpose resource picker and/or editor
and then add it to ResEdit. The resource picker is the code that displays all the
resources of one type in the resource type window. The editor is the code that
displays and allows you to edit a particular resource. These pieces of code are
separate from the main code of ResEdit. A set of Pascal routines, called ResEd, is
available for this purpose—see the MPW Pascal 2.0 Reference for information.

7-2 Chapter 7: Editing Resources With ResEdit

Using ResEdit

From the MPW Shell, you can start ResEdit by entering the command

ResEdit

(This assumes, of course, that ResEdit is in the Applications folder, or elsewhere in

the

search path defined by the {Commands} variable.) From the Finder, you can just

select and open the ResEdit icon. ResEdit displays a window that lists the files and
folders for each disk volume currently mounted (Figure 7-1).

HD

o

sO0=——-o MPW

<]

A
A
¢}
[m}
(]
(]
B
()

O AExamples
O Alncludes
O Applications
D CExamples
QO Clncludes
OCLibraries
O Commando

O Debuggers
0 errors

QLibraries

Figure 7-1
Disk volume windows

Working with files

To list the resource types in a file, select and open the filename from the list. (You

can

select a name by clicking on it or by typing one or more characters of the name.)

When a directory window is the active window, the File menu commands act as

follows:

New Creates a new file.

Open Opens the selected file or folder. (This is the same as double-clicking on
the name.)

Close Closes the volume window. (This is the same as clicking the close box.) If

it's a 3.5-inch disk, the disk is ejected.

Using ResEdit

7-3

GetInfo Displays file information and allows you to change it. Figure 7-2 is an
example of the File Info window for the MPW Shell file.

HD]
a MPW
IO EOE==== Info for file MPW shell
(] ———
AR~ ew shet - - - |
g g Type |APPL | Creator iMPS
Olp { Otocked [JInvisible {XBundle O system
Ol CJ0nDesk [JBozo O Busy [changed
R iy CJCached [Jshared [XIniled
0O4{n { O Always switch launch
{® % OFite Busy [J File Lack [J File Protect
Created (4/22/87 9:42:00 AM
Modified |4/22/87 9:42:00 AM
Resource fork size = 237282 bytes
Data fork size = 0 bytes
Figure 7-2

A File Info window

Transfer Allows you to transfer to an application other than the application that
launched ResEdit. (This is an alternative to the Quit command.)

Quit Quits from ResEdit and returns to the MPW Shell (or Finder).

Warning

You can edit any file shown in the window. including the System file and ResEdit
itself. However, it's dangerous to edit a file that's currently in use. Edit a copy of
the file instead. (For example, edit the System file on a non-boot volume.)

ResEdit will recognize a new disk when it's inserted, and handle multiple drives. Note
that you can also use ResEdit to copy or delete files:

O To delete a file, select the file and choose Clear from the Edit menu.

O To copy a resource file, you must select all of its resources and copy them. Then
paste them into a new file. (File attributes are not automatically copied by this
operation—you must set them via the Get Info command.) ResEdit cannot copy a
data fork.

Working within a file

When you open a file, a window displays a list of all the resource types in that file
(Figure 7-3). While this window is the active window, you can create new resources,
copy or delete existing resources, and paste resources from other files.

%+ Note: The resources are displayed by a resource picker. The general resource
picker displays the resources by type, name, and ID number; there are also
special resource pickers for some resource types. (For example, the 'ICON'
resource picker displays the icons graphically.)

7-4 Chapter 7; Editing Resources With ResEdit

HD |

MPW

0O EO=== MPW Shell =——
acur
BNOL
c¢mdo
CODE
CURS
DITL
DLOG
FREF
sz
HEXA

DPDDD99 o0

[Po9#DDODDBDD

Figure 7-3
A RestEdit file window

When a file window is the active window, the File menu commands have the following
effects:
New Creates a new resource in the open file.

Open Opens a window displaying all resources of the resource type
selected. (Select the resource type by clicking on it or by typing its
first character.)

Note: If you hold down the Option key while opening a resource
type, the resource window will open with the general resource

picker.

Open General Opens the general resource picker.

Close Closes the file window and asks if you want to save the changes you
have made.

Note: If you've made changes, you should not reboot before

closing.

Revert Changes the resource file back to the version that was last saved to
disk.

Quit Quits from ResEdit.

When a file window is the active window, the Edit menu commands have the
following effects:

Cut Removes all resources of the resource types selected, placing them
in the ResEdit scrap.

Copy Copies all resources of the resource types selected into the ResEdit
scrap.

Paste Copies the resources from the ResEdit scrap into the file window’s

resource type list.

Clear Removes all resources of the resource type selected, without
placing them in the ResEdit scrap.

Duplicate Creates duplicates of all resources of the resource types selected,
and assigns a unique resource ID number to each new resource.

Using ResEdit

-

Working within a resource type

Opening a resource type produces a window that lists each resource of that type in the
file (Figure 7-4). This list will take different forms, depending on the particular
resource picker; if you hold down the Option key during the open, the general
resource picker is invoked.

HD |

= MP1U |
g af MPLW Shell]
a2 | cnfE0E 1EN#'s from MPW Shell =
al=fc

Qfcy > = =
210 (pL
Qo R
B fafry N N N
o fd

@1ic

MEWUT]

Figure 7-4

A resource type window

When a resource type window is the active window, the File menu commands have
the following effects:

New Creates a new resource and opens its editor.

Open Opens the appropriate editor for the resource you selected.

Open a ... Allows you to open an editor template of a different type.

Open General Opens the general (hex) resource editor.

Close Closes the resource type window.

Revert Changes the file back to what it was before you opened the resource
type window.

Get Info Displays resource information and allows you to change it.

Figure 7-5 is an example.

HD |
Q MPLW]
g =) MPU Shell]
a gj cn{ ICN®'s from MPW shell |
Qg gu ECJ=—== Info for ICN# 128 from MPW Shell —e
g Ofor} | type: 1cN# Size: 256
O {o
g Qirg | Neme: | N
ot | [l2s |
|&D HEl Owner type
Biic Owner ID: DIDRDUEI:'
ME Sub 10: MDEF
fAittributes:
{OJsystem Heap [JLocked [Preload
(O Purgeable O rrotected

Figure 7-5
A Get Info window for ICN#'s

7-6 Chapter 7: Editing Resources With ResEdit

When a resource type window is the active window, the Edit menu commands have
the following effects:

Undo Undoes the most recent editing command. Undo may or may not be
selectable, depending on the specific editor in use.

Cut Removes the resources that are selected, placing them in the ResEdit
scrap.

Copy Copies all the resources that are selected into the ResEdit scrap.

Paste Copies the resources from the ResEdit scrap into the resource type
window.

Clear Removes the resources that are selected, without placing them in the

ResEdit scrap.

Duplicate Creates a duplicate of the selected resources and assigns a unique
resource ID number to each new resource.

Editing individual resources

To open an editor for a particular resource, either double-click on the resource or
select it and choose Open from the File menu. One or more auxiliary menus may
appear, depending on the type of resource you're editing. Some editors, such as the
'DITL' editor, allow you to open additional editors for the elements within the
resource. All the editors use File and Edit menus similar to those described above,
but operate on individual resources or individual elements of a resource, and hence
vary in their appearance and function as explained below.

If you hold down the Option key while opening a resource, the general data editor is
invoked. This editor allows you to edit the resource as hexadecimal or ASCII data. If
you hold down the Shift and the Option keys while opening, ResEdit shows you a list

of all editors and templates.

Caution

Individual editors may not be appropriate for all resource types—inappropriate
editors may cause system errors to occur.

The menus for some of the editors are discussed below. The use of the editors not
discussed here should be apparent when you run them.

» Note: The general data editor will not edit resources larger than 16K bytes;
however, you can move larger resources with the Cut, Copy, Paste, and Clear
commands as described above.

Using ResEdit

7-7

'CURS' (cursor) resources

For 'CURS' resources, the editor displays three images of the cursor (Figure 7-6). You
can manipulate all three images with the mouse.

HD i
[MPLW 1
2 a MPLU Shell |
@ 8 cnf Cursors from MPIW Shell |
C 1
Al cu ‘. [J====3 Cursor "BullCursor® 10 = 132 from MPW Shell =]
(=) oI B
Q10 (py
k(=1 P
X4 1t x =
LY AT —
ol | gag® "
MEN] m m]
am N__Em U]
BN __unEssNEEsEN

Figure 7-6
Editing 'CURS' resources

In Figure 7-6 the left image shows how the bulldozer cursor will appear. The middle
image is the mask for the cursor, which affects how the cursor appears on various
backgrounds. The right image shows a gray picture of the cursor with a single point in
black—this point is the cursor’s hot spot.

The Cursor menu contains the following commands:

Try Cursor Lets you try out the cursor by having it become the cursor in use.
(Restore Arrow restores the standard arrow cursor.)

Data — Mask Copies the cursor image to the mask editing area.

‘DITL' (dialog item list) resources

For 'DITL' resources, the editor displays an image of the item list as your program
would display it in a dialog or alert box. When you select an item, a size box appears
in the lower-right corner of its enclosing rectangle so that you can change the size of
the rectangle. You can move an item by dragging it with the mouse.

If you open an item within the dialog box, the editor associated with the item is
invoked; for an 'TCON', for example, the icon editor is invoked. If you hold down the
Option key while opening, the general data editor is invoked.

7-8 Chapter 7: Editing Resources With Restdit

The DITL menu contains the following commands:

Bring to Front

Send to Back

Grid

Use RSRC Rect

Use Full Window

'FONT' resources

Allows you to change the order of items in the item list. Bring to
Front causes the selected item to become the last Chighest
numbered) item in the list. The actual number of the item is
shown by the 'DITM' editor.

Like Bring to Front, except that it makes the selected item the first
item in the list—that is, item number 1.

Aligns the item on an invisible 8-pixel by 8-pixel grid. If you
change the item location while Grid is on, the location will be
adjusted such that the upper-left corner lies on the nearest grid
point above and to the left of the location you gave it. If you
change the size, it will be made a multiple of 8 pixels in both
dimensions.

Restores the enclosing rectangle to the rectangle size stored in
the underlying resource. Note that this works on 'ICON', 'PICT’,
and 'CNTL' items only;, the other items have no underlying
resources.

Adjusts the window size so that all items in the item list are visible
in the window.

For 'FONT" resources, the editor window is divided.into fourpanels: a character
editing panel, a sample text panel, a character selection panel, and a set of
MacDraw-like graphics tools. These are shown in Figure 7-7. :

4 in the mind-
- The fitful tracing of a
uin portal. But in the flesh
g it is immortal]
e EEw
=IIIIII==
1]
» nam mmaN @ A B
>
] [=][=][s)
a a SIZANNEICIE
AsCll Offset Width Location
65 1 16 203
Figure 7-7

'FONT editor window

Using ResEdit

7-9

The character editing panel, on the left side of the window shows an enlargement of
the selected character. You can edit it, as with FatBits in MacPaint, by clicking bits on
and off. Drag the black triangles at the bottom of the character editing panel to set
the left and right bounds (that is, the character width). The three triangles at the left
of the panel control the ascent, baseline, and descent.

The sample text panel, at the upper right, displays a sample of text in the font
currently being edited. (You can change this text by clicking in the text panel and
using normal Macintosh editing techniques.)

The character selection panel is below the text panel. You can select a character to
edit by typing it (using the Shift and Option keys if necessary), or by dicking on it in
the row of three characters shown. (Click on the right character in the row to move
upward through the ASCII range; click on the left character to move downward.) The
character you select is boxed in the center of the row with its ASCII value shown below
it (in decimal).

The graphic tools panel, directly below the character selection panel, offers a dozen
or more of the familiar MacDraw-type tools including the hand mover, pencil,
eraser, circles, and rectangles. In addition, a selection of colors is available.

Caution

Changing the ascent or descent of a character changes the ascent or descent
for the entire font.

Any changes you make in the character editing panel are reflected in the text panel
and the character selection panel. Remember that you cannot save the changes until
you close the file.

You can also change the name of a font. The font name is stored as the name of the
resource of that font family with size 0. This resource does not show up in the normal
display of all fonts in a file. To display it, hold down the Option key while you open
the FONT' type from the file window. You will see a generic list of fonts. Select the
font with the name you wish to change, and choose Get Info.

7-10 Chapter 7: Editing Resources With ResEdit

'ICN#' (icon list) resources

For 'ICN#' resources, the editor displays two panels in the window (Figure 7-8). The
upper panel is used to edit the icon. It contains an enlargement of the icon on the left
and an enlargement of the icon’s mask on the right. The lower panel shows, from left
to right, how the icon will look unselected, selected, and open on both a white and a
gray background. It also shows how the icon will appear in the Finder’s small icon
view.

lm Ho | : system Folder
- Finder | ICN#'s {rom Finder
a °AT_“F‘2 E0==——— ICN#'s |10 = 133 from Finder =
| CNT -
0l cop o M
0| cur _-' -.u.
2 DITY - s, o HH
D|Pas|a nnene, e, | i
D FND .I l. (1] .- l. .==== HHH ==u--
L— .. “l“:l.:.l— .l=.-
|CN1 [] [} an aan
s . HH
.. 'IIIII-. :::
.I I- -.===
-
..l-l..
& €@ @
Figure 7-8
ICN#' window

To install a new icon for your application when you already have an old one in the
Finder’s desktop file, follow these steps:

1. Open the file called DeskTop.

2. Open type 'BNDL' and find the bundle that belongs to your application. (This is
the one that has your owner name in it.) Look through the bundle and mark down
the type and resource ID of all resources bundled together by the bundle (that is,
the 'ICN#'s and 'FREF's).

3. Go back to the DeskTop window and remove these resources along with your
'BNDL' and signature resource (the resource whose type is your application’s
signature).

4. Now close the DeskTop window, save changes, and quit ResEdit. Your new icon
will be installed if you have the proper 'BNDL', 'FREF', and 'ICN#' resource
numberings.

% Note: To see how 'BNDL', 'FREF', and 'ICN#' resources are interrelated, use
ResEdit to look at those resources in an existing application such as the MPW
Shell.

Alternatively, you can rebuild the DeskTop file by holding down the Option and
Command keys when entering the Finder. (This method is faster and easier, but you
will lose your Finder Get Info comments; you will also lose folder names on a non-
HFS volume.)

Using ResEdit

7-11

Creating a resource template

You can customize ResEdit by creating new templates for your own resource types.
The generic way of editing a resource is to fill in the fields of a dialog box—for
example, this is the way you edit 'FREF', 'BNDL', and 'STR#' resources. The layout of
these dialog boxes is set by a template in ResEdit’s resource file. The template
specifies the format of the resource and also specifies what labels should be put
beside the editText items in the dialog box that’s used for editing the resource. You
can find these templates by opening the ResEdit file and then opening the type
window for 'TMPL' resources. For example, if you open the template for "WIND'
resources (this is the 'TMPL' with name “WIND"), you'll see the template shown in
Figure 7-9.

HD |
] MPW 1
== TMPLs from ResEdit]
&l SO0====5 TMPL "PICT" |ID = 22 from ResEdit %l
g g L L T]
Ao Label [size |
(] (]
olo Type (OWRD I
[] (o) P
210 -
o Label Rect |
Type RECT
EELL L]
Label Opcodes |
Type ‘HEHD
.

Figure 7-9
Window template data

The window template, then, consists of the following:

1. A RECT (4 words) specifying the boundary of the window.

2. A word that is the procID for the window (DWRD tells ResEdit to display the word
in decimal as opposed to hex).

3. A Boolean indicating whether or not the window is visible. (BOOL is 2 bytes in the
resource but is displayed as a radio button in the dialog window used for editing.)
4. Another Boolean indicating whether or not the window has a close box.

5. A long word that is the reference value (refCon) for the window. (DLNG indicates
that it should be displayed in the editor as a-decimal number.)

6. A Pascal string (PSTR), the title of the window.
You can look through the other templates and compare them with the structure of
those resources to get a feel for how you might define your own resource template.

(These templates are equivalent to the resource type declarations contained in the
{RIncludes} directory—refer also to the DeRez command in Part II.)

7-12 Chapter 7: Editing Resources With ResEdit

These are the types you have to choose from for your editable data fields:
DBYT, DWRD, DLNG Decimal byte, word, long word
HBYT, HWRD, HLNG Hex byte, word, long word

HEXD Hex dump of remaining bytes in resource

PSTR Pascal string (length byte followed by the characters)

LSTR Long string (length long followed by the characters)

WSTR Same as LSTR, but a word rather than a long word

ESTR, OSTR Pascal string padded to even or odd length (needed for
DITL resources)

CSTR C string

ECST, OCST Even-padded C string, or odd-padded C string (padded
with nulls)

BOOL Boolean

BBIT Binary bit

TNAM Type name (4 characters, like OSType and ResType)

CHAR A single character

RECT An 8-byte rectangle

Hnnn A 3-digit hex number (where nnn < $900); displays nnn

bytes in hex format:

ResEdit will do the appropriate type checking for you when you put the editing dialog
window away.

The template mechanism is flexible enough to describe a repeating sequence of
items within a resource, as in 'STR#', 'DITL!, and 'MENTU" resources. You can also
have repeating sequences within repeating sequences, as in 'BNDL' resources. To
terminate a repeating sequence, put the appropriate code in the template as follows:

LSTZ

LSTE List Zero—List End. Terminated by a 0 byte (as in 'MENU's).

ZCNT
LSTC

LSTE Zero Count/List Count-List End. Terminated by a zero-based count that
starts the sequence (as in 'DITL' resources).

OCNT
LSTC

LSTE One Count/List Count-List End. Terminated by a one-based count that

starts the sequence (as in 'STR#' resources).
LSTB

LSTE Ends at the end of the resource (no example exists in the given templates).

The “list-begin” code begins the repeating sequence of items, and the LSTE code is
the end. Labels for these codes are usually set to the string “*****” Both of these
codes are required.

Creating a resource template

To create your own template, follow these steps:
1. Open the ResEdit file window.

. Open the "TMPL' type window.

. Choose New from the File menu.

. Select the list separator (¥****),

. Choose New from the File menu. You may now begin entering the label, type pairs
that define the template. Before closing the template editing window, choose Get
Info from the File menu and set the name of the template to the 4-character name
of your resource type.

6. Close the ResEdit file window and save changes.

W oA W N

The next time you try to edit or create a resource of this new type, you'll get the dialog
box in the format you have specified.

Warning

Changing resource templatfes (and hence resource type descriptions) can cause
system crashes If you open older versions of a resource with a new template.

7-14 Chapter 7: Editing Resources With ResEdit

Chapter 8

Resource Compiler
and Decompiler

8-1

In the Macintosh Programmer’s Workshop, you can build a resource graphically with
ResEdit, or in text form with the Resource Compiler. This chapter explains the use of
the Resource Compiler (Rez) and Resource Decompiler (DeRez). The command line
syntax for Rez and DeRez is explained in Part II. General information on resource
files is given in the Resource Manager chapter of Inside Macintosh.

About the Resource Compiler and Decompiler

The Resource Compiler, Rez, compiles a text file (or files) called a resource
description file, and produces a resource file as output. The Resource Decompiler,
DeRez, decompiles an existing resource, producing a new resource description file
that can be understood by Rez. Figure 8-1 illustrates the complementary relationship
between Rez and DeRez.

Resource Resource Compiler
file (Re2)

] Resource
Resource Decompiler description
(DeRez) fileo

('TEXT)

Figure 8-1
Rez and DeRez

The Resource Compiler can combine resources or resource descriptions from a
number of files into a single resource file. The Resource Compiler also supports
preprocessor directives that allow you to substitute macros, include other files, and
use if-then-else constructs. (See “Preprocessor Directives” later in this chapter.)

Resource Decompiler

The DeRez tool creates a textual representation of a resource file based on resource
type declarations identical to those used by Rez. (If you don't specify any type
declarations, the output of DeRez is in the form of raw data statements.) The output of
DeRez is a resource description file that may be used as input to Rez. This file can be
edited in the MPW Shell, allowing you to add comments, translate resource data to a
foreign language, or specify conditional resource compilation by using the if-then-
else structures of the preprocessor. You can also compare resources by using the
MPW Compare command to compare resource description files.

< Note: MPW also includes a tool, ResEqual, which directly compares resource
files. The source for ResEqual is located in the PExamples folder.

8-2 Chapter 8: Rescurce Compiler and Decompiler

Standard type declaration files

Three text files, Types.r, SysTypes.r, and MPWTypes.r, contain resource
declarations for standard resource types. These files are located in the {RIncludes}
directory, which is automatically searched by Rez and DeRez (that is, you can specify
a file in {RIncludes} by its simple filename). These files contain definitions for the
following types:

Types.r Type declarations for the most common Macintosh
resource types ('ALRT', 'DITL!, 'MENU', and so on)
SysTypes.r Type declarations for 'DRVR', 'FOND!, 'FONT", 'FWID', 'INTL',

and 'NFMT' and many others
MPWTypes.r Type declarations for the MPW driver type 'DRVW'

Using Rez and DeRez

Rez and DeRez are primarily used to create and modify resource files. Figure 8-2
illustrates the process of creating a resource file,

[Shell editor or DeRez J

Resource Other
description resource
(r) files files

(TEXTY

Resource Compiler
(Rez)

Resource Editor Resource
(ResEdit) file

Figure 8-2
Creating a resource flle

About the Resource Compiler and Decompiler

8-3

Rez can also form an integral part of the process of building a program. For instance,
when putting together a desk accessory or driver, you'd use Rez to combine the
Linker’s output with other resources, to create an executable program file. (See
Chapter 9 for details.)

Structure of a resource description file

The resource description file consists of resource type declarations (which can be
included from another file) followed by resource data for the declared types. Note
that the Resource Compiler and Resource Decompiler have no built-in resource
types—you need to define your own types, or include the appropriate “.r” files.

A resource description file may contain any number of statements, where a statement
is any of the following:

include Include resources from another file.

read Read data fork of a file and include it as a resource.

data Specify raw data.

type Type declaration—declare resource type descriptions for

subsequent resource statements.

resource Data specification—specify data for a resource type declared in
a previous type statement

Each of these statements is described in the sections that follow.

A type declaration provides the pattern for any associated resource data
specifications by indicating data types, alignment, size and placement of strings,
and so on. You can intersperse type declarations and data in the resource
description file as long as the declaration for a given resource precedes any
resource statements that refer to it. An error is returned if data (that is, a
resource statement) is given for a type that has not been previously defined.
Whether a type was declared in a resource description file or in an include file, you
can redeclare it by providing a new declaration later in a resource description file.

A resource description file can also include comments and preprocessor directives:

m Comments can be included anywhere where white space is allowed in a resource
description file, within the comment delimiters /* and */. Note that comments
do not nest. For example, this is one comment:

/* Hello /* there */

® Preprocessor directives substitute macro definitions and include files, and
provide if-then-else processing before other Rez processing takes place. The
syntax of the preprocessor is very similar to that of the C-language preprocessor.

8-4 Chapter 8: Resource Compiler and Decompiler

Sample resource description file

An easy way to learn about the resource description format is to decompile some
existing resources. For example, the following command decompiles only the
"WIND' resources in the Sample application, according to the the type declaration in
{RIncludes}Types.r.

DeRez Sample -only WIND Types.r > DeRez.Out

After executing this command, DeRez.Out would contain the following decompiled
resource.

resource '"WIND' (128, "Sample Window") {
(64, 60, 314, 460},
documentProc,
