org.apache.spark.mllib.linalg.distributed

IndexedRowMatrix

class IndexedRowMatrix extends DistributedMatrix

:: Experimental :: Represents a row-oriented org.apache.spark.mllib.linalg.distributed.DistributedMatrix with indexed rows.

Annotations
@Experimental()
Linear Supertypes
DistributedMatrix, Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. IndexedRowMatrix
  2. DistributedMatrix
  3. Serializable
  4. Serializable
  5. AnyRef
  6. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new IndexedRowMatrix(rows: RDD[IndexedRow])

    Alternative constructor leaving matrix dimensions to be determined automatically.

  2. new IndexedRowMatrix(rows: RDD[IndexedRow], nRows: Long, nCols: Int)

    rows

    indexed rows of this matrix

    nRows

    number of rows. A non-positive value means unknown, and then the number of rows will be determined by the max row index plus one.

    nCols

    number of columns. A non-positive value means unknown, and then the number of columns will be determined by the size of the first row.

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. def computeGramianMatrix(): Matrix

    Computes the Gramian matrix A^T A.

  9. def computeSVD(k: Int, computeU: Boolean = false, rCond: Double = 1e-9): SingularValueDecomposition[IndexedRowMatrix, Matrix]

    Computes the singular value decomposition of this matrix.

    Computes the singular value decomposition of this matrix. Denote this matrix by A (m x n), this will compute matrices U, S, V such that A = U * S * V'.

    There is no restriction on m, but we require n^2 doubles to fit in memory. Further, n should be less than m.

    The decomposition is computed by first computing A'A = V S2 V', computing svd locally on that (since n x n is small), from which we recover S and V. Then we compute U via easy matrix multiplication as U = A * (V * S-1). Note that this approach requires O(n^3) time on the master node.

    At most k largest non-zero singular values and associated vectors are returned. If there are k such values, then the dimensions of the return will be:

    U is an org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix of size m x k that satisfies U'U = eye(k), s is a Vector of size k, holding the singular values in descending order, and V is a local Matrix of size n x k that satisfies V'V = eye(k).

    k

    number of singular values to keep. We might return less than k if there are numerically zero singular values. See rCond.

    computeU

    whether to compute U

    rCond

    the reciprocal condition number. All singular values smaller than rCond * sigma(0) are treated as zero, where sigma(0) is the largest singular value.

    returns

    SingularValueDecomposition(U, s, V)

  10. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  11. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  12. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  13. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  14. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  15. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  16. def multiply(B: Matrix): IndexedRowMatrix

    Multiply this matrix by a local matrix on the right.

    Multiply this matrix by a local matrix on the right.

    B

    a local matrix whose number of rows must match the number of columns of this matrix

    returns

    an IndexedRowMatrix representing the product, which preserves partitioning

  17. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  18. final def notify(): Unit

    Definition Classes
    AnyRef
  19. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  20. def numCols(): Long

    Gets or computes the number of columns.

    Gets or computes the number of columns.

    Definition Classes
    IndexedRowMatrixDistributedMatrix
  21. def numRows(): Long

    Gets or computes the number of rows.

    Gets or computes the number of rows.

    Definition Classes
    IndexedRowMatrixDistributedMatrix
  22. val rows: RDD[IndexedRow]

    indexed rows of this matrix

  23. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  24. def toRowMatrix(): RowMatrix

    Drops row indices and converts this matrix to a org.apache.spark.mllib.linalg.distributed.RowMatrix.

  25. def toString(): String

    Definition Classes
    AnyRef → Any
  26. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  27. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  28. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from DistributedMatrix

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped