org.apache.spark.mllib.random

RandomRDDs

object RandomRDDs

:: Experimental :: Generator methods for creating RDDs comprised of i.i.d. samples from some distribution.

Annotations
@Experimental()
Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. RandomRDDs
  2. AnyRef
  3. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  12. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  13. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  14. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  15. def normalJavaRDD(jsc: JavaSparkContext, size: Long): JavaDoubleRDD

    RandomRDDs#normalJavaRDD with the default number of partitions and the default seed.

  16. def normalJavaRDD(jsc: JavaSparkContext, size: Long, numPartitions: Int): JavaDoubleRDD

    RandomRDDs#normalJavaRDD with the default seed.

  17. def normalJavaRDD(jsc: JavaSparkContext, size: Long, numPartitions: Int, seed: Long): JavaDoubleRDD

    Java-friendly version of RandomRDDs#normalRDD.

  18. def normalJavaVectorRDD(jsc: JavaSparkContext, numRows: Long, numCols: Int): JavaRDD[Vector]

    RandomRDDs#normalJavaVectorRDD with the default number of partitions and the default seed.

  19. def normalJavaVectorRDD(jsc: JavaSparkContext, numRows: Long, numCols: Int, numPartitions: Int): JavaRDD[Vector]

    RandomRDDs#normalJavaVectorRDD with the default seed.

  20. def normalJavaVectorRDD(jsc: JavaSparkContext, numRows: Long, numCols: Int, numPartitions: Int, seed: Long): JavaRDD[Vector]

    Java-friendly version of RandomRDDs#normalVectorRDD.

  21. def normalRDD(sc: SparkContext, size: Long, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Double]

    Generates an RDD comprised of i.

    Generates an RDD comprised of i.i.d. samples from the standard normal distribution.

    To transform the distribution in the generated RDD from standard normal to some other normal N(mean, sigma2), use RandomRDDs.normalRDD(sc, n, p, seed).map(v => mean + sigma * v).

    sc

    SparkContext used to create the RDD.

    size

    Size of the RDD.

    numPartitions

    Number of partitions in the RDD (default: sc.defaultParallelism).

    seed

    Random seed (default: a random long integer).

    returns

    RDD[Double] comprised of i.i.d. samples ~ N(0.0, 1.0).

  22. def normalVectorRDD(sc: SparkContext, numRows: Long, numCols: Int, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Vector]

    Generates an RDD[Vector] with vectors containing i.

    Generates an RDD[Vector] with vectors containing i.i.d. samples drawn from the standard normal distribution.

    sc

    SparkContext used to create the RDD.

    numRows

    Number of Vectors in the RDD.

    numCols

    Number of elements in each Vector.

    numPartitions

    Number of partitions in the RDD (default: sc.defaultParallelism).

    seed

    Random seed (default: a random long integer).

    returns

    RDD[Vector] with vectors containing i.i.d. samples ~ N(0.0, 1.0).

  23. final def notify(): Unit

    Definition Classes
    AnyRef
  24. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  25. def poissonJavaRDD(jsc: JavaSparkContext, mean: Double, size: Long): JavaDoubleRDD

    RandomRDDs#poissonJavaRDD with the default number of partitions and the default seed.

  26. def poissonJavaRDD(jsc: JavaSparkContext, mean: Double, size: Long, numPartitions: Int): JavaDoubleRDD

    RandomRDDs#poissonJavaRDD with the default seed.

  27. def poissonJavaRDD(jsc: JavaSparkContext, mean: Double, size: Long, numPartitions: Int, seed: Long): JavaDoubleRDD

    Java-friendly version of RandomRDDs#poissonRDD.

  28. def poissonJavaVectorRDD(jsc: JavaSparkContext, mean: Double, numRows: Long, numCols: Int): JavaRDD[Vector]

    RandomRDDs#poissonJavaVectorRDD with the default number of partitions and the default seed.

  29. def poissonJavaVectorRDD(jsc: JavaSparkContext, mean: Double, numRows: Long, numCols: Int, numPartitions: Int): JavaRDD[Vector]

    RandomRDDs#poissonJavaVectorRDD with the default seed.

  30. def poissonJavaVectorRDD(jsc: JavaSparkContext, mean: Double, numRows: Long, numCols: Int, numPartitions: Int, seed: Long): JavaRDD[Vector]

    Java-friendly version of RandomRDDs#poissonVectorRDD.

  31. def poissonRDD(sc: SparkContext, mean: Double, size: Long, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Double]

    Generates an RDD comprised of i.

    Generates an RDD comprised of i.i.d. samples from the Poisson distribution with the input mean.

    sc

    SparkContext used to create the RDD.

    mean

    Mean, or lambda, for the Poisson distribution.

    size

    Size of the RDD.

    numPartitions

    Number of partitions in the RDD (default: sc.defaultParallelism).

    seed

    Random seed (default: a random long integer).

    returns

    RDD[Double] comprised of i.i.d. samples ~ Pois(mean).

  32. def poissonVectorRDD(sc: SparkContext, mean: Double, numRows: Long, numCols: Int, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Vector]

    Generates an RDD[Vector] with vectors containing i.

    Generates an RDD[Vector] with vectors containing i.i.d. samples drawn from the Poisson distribution with the input mean.

    sc

    SparkContext used to create the RDD.

    mean

    Mean, or lambda, for the Poisson distribution.

    numRows

    Number of Vectors in the RDD.

    numCols

    Number of elements in each Vector.

    numPartitions

    Number of partitions in the RDD (default: sc.defaultParallelism)

    seed

    Random seed (default: a random long integer).

    returns

    RDD[Vector] with vectors containing i.i.d. samples ~ Pois(mean).

  33. def randomRDD[T](sc: SparkContext, generator: RandomDataGenerator[T], size: Long, numPartitions: Int = 0, seed: Long = Utils.random.nextLong())(implicit arg0: ClassTag[T]): RDD[T]

    :: DeveloperApi :: Generates an RDD comprised of i.

    :: DeveloperApi :: Generates an RDD comprised of i.i.d. samples produced by the input RandomDataGenerator.

    sc

    SparkContext used to create the RDD.

    generator

    RandomDataGenerator used to populate the RDD.

    size

    Size of the RDD.

    numPartitions

    Number of partitions in the RDD (default: sc.defaultParallelism).

    seed

    Random seed (default: a random long integer).

    returns

    RDD[Double] comprised of i.i.d. samples produced by generator.

    Annotations
    @DeveloperApi()
  34. def randomVectorRDD(sc: SparkContext, generator: RandomDataGenerator[Double], numRows: Long, numCols: Int, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Vector]

    :: DeveloperApi :: Generates an RDD[Vector] with vectors containing i.

    :: DeveloperApi :: Generates an RDD[Vector] with vectors containing i.i.d. samples produced by the input RandomDataGenerator.

    sc

    SparkContext used to create the RDD.

    generator

    RandomDataGenerator used to populate the RDD.

    numRows

    Number of Vectors in the RDD.

    numCols

    Number of elements in each Vector.

    numPartitions

    Number of partitions in the RDD (default: sc.defaultParallelism).

    seed

    Random seed (default: a random long integer).

    returns

    RDD[Vector] with vectors containing i.i.d. samples produced by generator.

    Annotations
    @DeveloperApi()
  35. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  36. def toString(): String

    Definition Classes
    AnyRef → Any
  37. def uniformJavaRDD(jsc: JavaSparkContext, size: Long): JavaDoubleRDD

    RandomRDDs#uniformJavaRDD with the default number of partitions and the default seed.

  38. def uniformJavaRDD(jsc: JavaSparkContext, size: Long, numPartitions: Int): JavaDoubleRDD

    RandomRDDs#uniformJavaRDD with the default seed.

  39. def uniformJavaRDD(jsc: JavaSparkContext, size: Long, numPartitions: Int, seed: Long): JavaDoubleRDD

    Java-friendly version of RandomRDDs#uniformRDD.

  40. def uniformJavaVectorRDD(jsc: JavaSparkContext, numRows: Long, numCols: Int): JavaRDD[Vector]

    RandomRDDs#uniformJavaVectorRDD with the default number of partitions and the default seed.

  41. def uniformJavaVectorRDD(jsc: JavaSparkContext, numRows: Long, numCols: Int, numPartitions: Int): JavaRDD[Vector]

    RandomRDDs#uniformJavaVectorRDD with the default seed.

  42. def uniformJavaVectorRDD(jsc: JavaSparkContext, numRows: Long, numCols: Int, numPartitions: Int, seed: Long): JavaRDD[Vector]

    Java-friendly version of RandomRDDs#uniformVectorRDD.

  43. def uniformRDD(sc: SparkContext, size: Long, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Double]

    Generates an RDD comprised of i.

    Generates an RDD comprised of i.i.d. samples from the uniform distribution U(0.0, 1.0).

    To transform the distribution in the generated RDD from U(0.0, 1.0) to U(a, b), use RandomRDDs.uniformRDD(sc, n, p, seed).map(v => a + (b - a) * v).

    sc

    SparkContext used to create the RDD.

    size

    Size of the RDD.

    numPartitions

    Number of partitions in the RDD (default: sc.defaultParallelism).

    seed

    Random seed (default: a random long integer).

    returns

    RDD[Double] comprised of i.i.d. samples ~ U(0.0, 1.0).

  44. def uniformVectorRDD(sc: SparkContext, numRows: Long, numCols: Int, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Vector]

    Generates an RDD[Vector] with vectors containing i.

    Generates an RDD[Vector] with vectors containing i.i.d. samples drawn from the uniform distribution on U(0.0, 1.0).

    sc

    SparkContext used to create the RDD.

    numRows

    Number of Vectors in the RDD.

    numCols

    Number of elements in each Vector.

    numPartitions

    Number of partitions in the RDD.

    seed

    Seed for the RNG that generates the seed for the generator in each partition.

    returns

    RDD[Vector] with vectors containing i.i.d samples ~ U(0.0, 1.0).

  45. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  46. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  47. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped