org.apache.spark.ml.feature

HashingTF

class HashingTF extends UnaryTransformer[Iterable[_], Vector, HashingTF]

:: AlphaComponent :: Maps a sequence of terms to their term frequencies using the hashing trick.

Annotations
@AlphaComponent()
Linear Supertypes
UnaryTransformer[Iterable[_], Vector, HashingTF], HasOutputCol, HasInputCol, Transformer, Params, Identifiable, PipelineStage, Logging, Serializable, Serializable, AnyRef, Any
Ordering
  1. Grouped
  2. Alphabetic
  3. By inheritance
Inherited
  1. HashingTF
  2. UnaryTransformer
  3. HasOutputCol
  4. HasInputCol
  5. Transformer
  6. Params
  7. Identifiable
  8. PipelineStage
  9. Logging
  10. Serializable
  11. Serializable
  12. AnyRef
  13. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new HashingTF()

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. def addOutputColumn(schema: StructType, colName: String, dataType: DataType): StructType

    Attributes
    protected
    Definition Classes
    Params
  7. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  8. def checkInputColumn(schema: StructType, colName: String, dataType: DataType): Unit

    Check whether the given schema contains an input column.

    Check whether the given schema contains an input column.

    colName

    Parameter name for the input column.

    dataType

    SQL DataType of the input column.

    Attributes
    protected
    Definition Classes
    Params
  9. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  10. def createTransformFunc(paramMap: ParamMap): (Iterable[_]) ⇒ Vector

    Creates the transform function using the given param map.

    Creates the transform function using the given param map. The input param map already takes account of the embedded param map. So the param values should be determined solely by the input param map.

    Attributes
    protected
    Definition Classes
    HashingTF → UnaryTransformer
  11. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  12. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  13. def explainParams(): String

    Returns the documentation of all params.

    Returns the documentation of all params.

    Definition Classes
    Params
  14. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  15. def get[T](param: Param[T]): T

    Gets the value of a parameter in the embedded param map.

    Gets the value of a parameter in the embedded param map.

    Attributes
    protected
    Definition Classes
    Params
  16. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  17. def getInputCol: String

    Definition Classes
    HasInputCol
  18. def getNumFeatures: Int

  19. def getOutputCol: String

    Definition Classes
    HasOutputCol
  20. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  21. val inputCol: Param[String]

    param for input column name

    param for input column name

    Definition Classes
    HasInputCol
  22. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  23. def isSet(param: Param[_]): Boolean

    Checks whether a param is explicitly set.

    Checks whether a param is explicitly set.

    Definition Classes
    Params
  24. def isTraceEnabled(): Boolean

    Attributes
    protected
    Definition Classes
    Logging
  25. def log: Logger

    Attributes
    protected
    Definition Classes
    Logging
  26. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  27. def logDebug(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  28. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  29. def logError(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  30. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  31. def logInfo(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  32. def logName: String

    Attributes
    protected
    Definition Classes
    Logging
  33. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  34. def logTrace(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  35. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  36. def logWarning(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  37. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  38. final def notify(): Unit

    Definition Classes
    AnyRef
  39. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  40. val numFeatures: IntParam

    number of features

  41. val outputCol: Param[String]

    param for output column name

    param for output column name

    Definition Classes
    HasOutputCol
  42. def outputDataType: DataType

    Returns the data type of the output column.

    Returns the data type of the output column.

    Attributes
    protected
    Definition Classes
    HashingTF → UnaryTransformer
  43. val paramMap: ParamMap

    Internal param map.

    Internal param map.

    Attributes
    protected
    Definition Classes
    Params
  44. def params: Array[Param[_]]

    Returns all params.

    Returns all params.

    Definition Classes
    Params
  45. def set[T](param: Param[T], value: T): HashingTF.this.type

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Attributes
    protected
    Definition Classes
    Params
  46. def setInputCol(value: String): HashingTF

    Definition Classes
    UnaryTransformer
  47. def setNumFeatures(value: Int): HashingTF

  48. def setOutputCol(value: String): HashingTF

    Definition Classes
    UnaryTransformer
  49. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  50. def toString(): String

    Definition Classes
    AnyRef → Any
  51. def transform(dataset: DataFrame, paramMap: ParamMap): DataFrame

    Transforms the dataset with provided parameter map as additional parameters.

    Transforms the dataset with provided parameter map as additional parameters.

    dataset

    input dataset

    paramMap

    additional parameters, overwrite embedded params

    returns

    transformed dataset

    Definition Classes
    UnaryTransformer → Transformer
  52. def transform(dataset: DataFrame, paramPairs: ParamPair[_]*): DataFrame

    Transforms the dataset with optional parameters

    Transforms the dataset with optional parameters

    dataset

    input dataset

    paramPairs

    optional list of param pairs, overwrite embedded params

    returns

    transformed dataset

    Definition Classes
    Transformer
    Annotations
    @varargs()
  53. def transformSchema(schema: StructType, paramMap: ParamMap): StructType

    :: DeveloperApi ::

    :: DeveloperApi ::

    Derives the output schema from the input schema and parameters. The schema describes the columns and types of the data.

    schema

    Input schema to this stage

    paramMap

    Parameters passed to this stage

    returns

    Output schema from this stage

    Definition Classes
    UnaryTransformer → PipelineStage
  54. def transformSchema(schema: StructType, paramMap: ParamMap, logging: Boolean): StructType

    Derives the output schema from the input schema and parameters, optionally with logging.

    Derives the output schema from the input schema and parameters, optionally with logging.

    Attributes
    protected
    Definition Classes
    PipelineStage
  55. def validate(): Unit

    Validates parameter values stored internally.

    Validates parameter values stored internally. Raise an exception if any parameter value is invalid.

    Definition Classes
    Params
  56. def validate(paramMap: ParamMap): Unit

    Validates parameter values stored internally plus the input parameter map.

    Validates parameter values stored internally plus the input parameter map. Raises an exception if any parameter is invalid.

    Definition Classes
    Params
  57. def validateInputType(inputType: DataType): Unit

    Validates the input type.

    Validates the input type. Throw an exception if it is invalid.

    Attributes
    protected
    Definition Classes
    UnaryTransformer
  58. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  59. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  60. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from UnaryTransformer[Iterable[_], Vector, HashingTF]

Inherited from HasOutputCol

Inherited from HasInputCol

Inherited from Transformer

Inherited from Params

Inherited from Identifiable

Inherited from PipelineStage

Inherited from Logging

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Parameters

A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

Members

Parameter setters

Parameter getters