org.apache.spark.graphx.lib

SVDPlusPlus

object SVDPlusPlus

Implementation of SVD++ algorithm.

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. SVDPlusPlus
  2. AnyRef
  3. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Type Members

  1. class Conf extends Serializable

    Configuration parameters for SVDPlusPlus.

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  12. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  13. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  14. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  15. final def notify(): Unit

    Definition Classes
    AnyRef
  16. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  17. def run(edges: RDD[Edge[Double]], conf: Conf): (Graph[(Array[Double], Array[Double], Double, Double), Double], Double)

    Implement SVD++ based on "Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model", available at http://public.research.att.com/~volinsky/netflix/kdd08koren.pdf.

    Implement SVD++ based on "Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model", available at http://public.research.att.com/~volinsky/netflix/kdd08koren.pdf.

    The prediction rule is rui = u + bu + bi + qi*(pu + |N(u)|-0.5*sum(y)), see the details on page 6.

    edges

    edges for constructing the graph

    conf

    SVDPlusPlus parameters

    returns

    a graph with vertex attributes containing the trained model

  18. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  19. def toString(): String

    Definition Classes
    AnyRef → Any
  20. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  21. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  22. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Deprecated Value Members

  1. def runSVDPlusPlus(edges: RDD[Edge[Double]], conf: Conf): (Graph[(Array[Double], Array[Double], Double, Double), Double], Double)

    This method is now replaced by the updated version of run() and returns exactly the same result.

    This method is now replaced by the updated version of run() and returns exactly the same result.

    Annotations
    @deprecated
    Deprecated

    (Since version 1.4.0) Call run()

Inherited from AnyRef

Inherited from Any

Ungrouped