org.apache.spark.mllib.clustering

GaussianMixtureModel

class GaussianMixtureModel extends Serializable with Saveable

:: Experimental ::

Multivariate Gaussian Mixture Model (GMM) consisting of k Gaussians, where points are drawn from each Gaussian i=1..k with probability w(i); mu(i) and sigma(i) are the respective mean and covariance for each Gaussian distribution i=1..k.

Annotations
@Since( "1.3.0" ) @Experimental()
Linear Supertypes
Saveable, Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. GaussianMixtureModel
  2. Saveable
  3. Serializable
  4. Serializable
  5. AnyRef
  6. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new GaussianMixtureModel(weights: Array[Double], gaussians: Array[MultivariateGaussian])

    weights

    Weights for each Gaussian distribution in the mixture, where weights(i) is the weight for Gaussian i, and weights.sum == 1

    gaussians

    Array of MultivariateGaussian where gaussians(i) represents the Multivariate Gaussian (Normal) Distribution for Gaussian i

    Annotations
    @Since( "1.3.0" )

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. def formatVersion: String

    Current version of model save/load format.

    Current version of model save/load format.

    Attributes
    protected
    Definition Classes
    GaussianMixtureModelSaveable
  12. val gaussians: Array[MultivariateGaussian]

    Array of MultivariateGaussian where gaussians(i) represents the Multivariate Gaussian (Normal) Distribution for Gaussian i

    Array of MultivariateGaussian where gaussians(i) represents the Multivariate Gaussian (Normal) Distribution for Gaussian i

    Annotations
    @Since( "1.3.0" )
  13. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  14. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  15. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  16. def k: Int

    Number of gaussians in mixture

    Number of gaussians in mixture

    Annotations
    @Since( "1.3.0" )
  17. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  18. final def notify(): Unit

    Definition Classes
    AnyRef
  19. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  20. def predict(points: JavaRDD[Vector]): JavaRDD[Integer]

    Java-friendly version of predict()

    Java-friendly version of predict()

    Annotations
    @Since( "1.4.0" )
  21. def predict(point: Vector): Int

    Maps given point to its cluster index.

    Maps given point to its cluster index.

    Annotations
    @Since( "1.5.0" )
  22. def predict(points: RDD[Vector]): RDD[Int]

    Maps given points to their cluster indices.

    Maps given points to their cluster indices.

    Annotations
    @Since( "1.3.0" )
  23. def predictSoft(point: Vector): Array[Double]

    Given the input vector, return the membership values to all mixture components.

    Given the input vector, return the membership values to all mixture components.

    Annotations
    @Since( "1.4.0" )
  24. def predictSoft(points: RDD[Vector]): RDD[Array[Double]]

    Given the input vectors, return the membership value of each vector to all mixture components.

    Given the input vectors, return the membership value of each vector to all mixture components.

    Annotations
    @Since( "1.3.0" )
  25. def save(sc: SparkContext, path: String): Unit

    Save this model to the given path.

    Save this model to the given path.

    This saves:

    • human-readable (JSON) model metadata to path/metadata/
    • Parquet formatted data to path/data/

    The model may be loaded using Loader.load.

    sc

    Spark context used to save model data.

    path

    Path specifying the directory in which to save this model. If the directory already exists, this method throws an exception.

    Definition Classes
    GaussianMixtureModelSaveable
    Annotations
    @Since( "1.4.0" )
  26. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  27. def toString(): String

    Definition Classes
    AnyRef → Any
  28. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  29. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  30. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  31. val weights: Array[Double]

    Weights for each Gaussian distribution in the mixture, where weights(i) is the weight for Gaussian i, and weights.

    Weights for each Gaussian distribution in the mixture, where weights(i) is the weight for Gaussian i, and weights.sum == 1

    Annotations
    @Since( "1.3.0" )

Inherited from Saveable

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped