org.apache.spark.ml.regression

LinearRegressionSummary

class LinearRegressionSummary extends Serializable

:: Experimental :: Linear regression results evaluated on a dataset.

Annotations
@Since( "1.5.0" ) @Experimental()
Source
LinearRegression.scala
Linear Supertypes
Serializable, Serializable, AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. LinearRegressionSummary
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. lazy val coefficientStandardErrors: Array[Double]

    Standard error of estimated coefficients and intercept.

  9. lazy val devianceResiduals: Array[Double]

    The weighted residuals, the usual residuals rescaled by the square root of the instance weights.

  10. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  11. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  12. val explainedVariance: Double

    Returns the explained variance regression score.

    Returns the explained variance regression score. explainedVariance = 1 - variance(y - \hat{y}) / variance(y) Reference: http://en.wikipedia.org/wiki/Explained_variation

    Note: This ignores instance weights (setting all to 1.0) from LinearRegression.weightCol. This will change in later Spark versions.

    Annotations
    @Since( "1.5.0" )
  13. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  14. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  15. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  16. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  17. val labelCol: String

  18. val meanAbsoluteError: Double

    Returns the mean absolute error, which is a risk function corresponding to the expected value of the absolute error loss or l1-norm loss.

    Returns the mean absolute error, which is a risk function corresponding to the expected value of the absolute error loss or l1-norm loss.

    Note: This ignores instance weights (setting all to 1.0) from LinearRegression.weightCol. This will change in later Spark versions.

    Annotations
    @Since( "1.5.0" )
  19. val meanSquaredError: Double

    Returns the mean squared error, which is a risk function corresponding to the expected value of the squared error loss or quadratic loss.

    Returns the mean squared error, which is a risk function corresponding to the expected value of the squared error loss or quadratic loss.

    Note: This ignores instance weights (setting all to 1.0) from LinearRegression.weightCol. This will change in later Spark versions.

    Annotations
    @Since( "1.5.0" )
  20. val model: LinearRegressionModel

  21. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  22. final def notify(): Unit

    Definition Classes
    AnyRef
  23. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  24. lazy val numInstances: Long

    Number of instances in DataFrame predictions

  25. lazy val pValues: Array[Double]

    Two-sided p-value of estimated coefficients and intercept.

  26. val predictionCol: String

  27. val predictions: DataFrame

    predictions outputted by the model's transform method.

  28. val r2: Double

    Returns R2, the coefficient of determination.

    Returns R2, the coefficient of determination. Reference: http://en.wikipedia.org/wiki/Coefficient_of_determination

    Note: This ignores instance weights (setting all to 1.0) from LinearRegression.weightCol. This will change in later Spark versions.

    Annotations
    @Since( "1.5.0" )
  29. lazy val residuals: DataFrame

    Residuals (label - predicted value)

    Residuals (label - predicted value)

    Annotations
    @Since( "1.5.0" )
  30. val rootMeanSquaredError: Double

    Returns the root mean squared error, which is defined as the square root of the mean squared error.

    Returns the root mean squared error, which is defined as the square root of the mean squared error.

    Note: This ignores instance weights (setting all to 1.0) from LinearRegression.weightCol. This will change in later Spark versions.

    Annotations
    @Since( "1.5.0" )
  31. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  32. lazy val tValues: Array[Double]

    T-statistic of estimated coefficients and intercept.

  33. def toString(): String

    Definition Classes
    AnyRef → Any
  34. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  35. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  36. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Members