Class/Object

org.apache.spark.ml.classification

DecisionTreeClassificationModel

Related Docs: object DecisionTreeClassificationModel | package classification

Permalink

class DecisionTreeClassificationModel extends ProbabilisticClassificationModel[Vector, DecisionTreeClassificationModel] with DecisionTreeModel with DecisionTreeClassifierParams with MLWritable with Serializable

Decision tree model (http://en.wikipedia.org/wiki/Decision_tree_learning) for classification. It supports both binary and multiclass labels, as well as both continuous and categorical features.

Annotations
@Since( "1.4.0" )
Source
DecisionTreeClassifier.scala
Linear Supertypes
MLWritable, DecisionTreeClassifierParams, TreeClassifierParams, DecisionTreeParams, HasSeed, HasCheckpointInterval, DecisionTreeModel, ProbabilisticClassificationModel[Vector, DecisionTreeClassificationModel], ProbabilisticClassifierParams, HasThresholds, HasProbabilityCol, ClassificationModel[Vector, DecisionTreeClassificationModel], ClassifierParams, HasRawPredictionCol, PredictionModel[Vector, DecisionTreeClassificationModel], PredictorParams, HasPredictionCol, HasFeaturesCol, HasLabelCol, Model[DecisionTreeClassificationModel], Transformer, PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. DecisionTreeClassificationModel
  2. MLWritable
  3. DecisionTreeClassifierParams
  4. TreeClassifierParams
  5. DecisionTreeParams
  6. HasSeed
  7. HasCheckpointInterval
  8. DecisionTreeModel
  9. ProbabilisticClassificationModel
  10. ProbabilisticClassifierParams
  11. HasThresholds
  12. HasProbabilityCol
  13. ClassificationModel
  14. ClassifierParams
  15. HasRawPredictionCol
  16. PredictionModel
  17. PredictorParams
  18. HasPredictionCol
  19. HasFeaturesCol
  20. HasLabelCol
  21. Model
  22. Transformer
  23. PipelineStage
  24. Logging
  25. Params
  26. Serializable
  27. Serializable
  28. Identifiable
  29. AnyRef
  30. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T

    Permalink

    An alias for getOrDefault().

    An alias for getOrDefault().

    Attributes
    protected
    Definition Classes
    Params
  4. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  5. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  6. final val cacheNodeIds: BooleanParam

    Permalink

    If false, the algorithm will pass trees to executors to match instances with nodes.

    If false, the algorithm will pass trees to executors to match instances with nodes. If true, the algorithm will cache node IDs for each instance. Caching can speed up training of deeper trees. Users can set how often should the cache be checkpointed or disable it by setting checkpointInterval. (default = false)

    Definition Classes
    DecisionTreeParams
  7. final val checkpointInterval: IntParam

    Permalink

    Param for set checkpoint interval (>= 1) or disable checkpoint (-1).

    Param for set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the cache will get checkpointed every 10 iterations.

    Definition Classes
    HasCheckpointInterval
  8. final def clear(param: Param[_]): DecisionTreeClassificationModel.this.type

    Permalink

    Clears the user-supplied value for the input param.

    Clears the user-supplied value for the input param.

    Definition Classes
    Params
  9. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  10. def copy(extra: ParamMap): DecisionTreeClassificationModel

    Permalink

    Creates a copy of this instance with the same UID and some extra params.

    Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See defaultCopy().

    Definition Classes
    DecisionTreeClassificationModelModelTransformerPipelineStageParams
    Annotations
    @Since( "1.4.0" )
  11. def copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): T

    Permalink

    Copies param values from this instance to another instance for params shared by them.

    Copies param values from this instance to another instance for params shared by them.

    This handles default Params and explicitly set Params separately. Default Params are copied from and to defaultParamMap, and explicitly set Params are copied from and to paramMap. Warning: This implicitly assumes that this Params instance and the target instance share the same set of default Params.

    to

    the target instance, which should work with the same set of default Params as this source instance

    extra

    extra params to be copied to the target's paramMap

    returns

    the target instance with param values copied

    Attributes
    protected
    Definition Classes
    Params
  12. final def defaultCopy[T <: Params](extra: ParamMap): T

    Permalink

    Default implementation of copy with extra params.

    Default implementation of copy with extra params. It tries to create a new instance with the same UID. Then it copies the embedded and extra parameters over and returns the new instance.

    Attributes
    protected
    Definition Classes
    Params
  13. lazy val depth: Int

    Permalink

    Depth of the tree.

    Depth of the tree. E.g.: Depth 0 means 1 leaf node. Depth 1 means 1 internal node and 2 leaf nodes.

    Definition Classes
    DecisionTreeModel
  14. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  15. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  16. def explainParam(param: Param[_]): String

    Permalink

    Explains a param.

    Explains a param.

    param

    input param, must belong to this instance.

    returns

    a string that contains the input param name, doc, and optionally its default value and the user-supplied value

    Definition Classes
    Params
  17. def explainParams(): String

    Permalink

    Explains all params of this instance.

    Explains all params of this instance. See explainParam().

    Definition Classes
    Params
  18. final def extractParamMap(): ParamMap

    Permalink

    extractParamMap with no extra values.

    extractParamMap with no extra values.

    Definition Classes
    Params
  19. final def extractParamMap(extra: ParamMap): ParamMap

    Permalink

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Definition Classes
    Params
  20. lazy val featureImportances: Vector

    Permalink

    Estimate of the importance of each feature.

    Estimate of the importance of each feature.

    This generalizes the idea of "Gini" importance to other losses, following the explanation of Gini importance from "Random Forests" documentation by Leo Breiman and Adele Cutler, and following the implementation from scikit-learn.

    This feature importance is calculated as follows:

    • importance(feature j) = sum (over nodes which split on feature j) of the gain, where gain is scaled by the number of instances passing through node
    • Normalize importances for tree to sum to 1.

    Note: Feature importance for single decision trees can have high variance due to correlated predictor variables. Consider using a RandomForestClassifier to determine feature importance instead.

    Annotations
    @Since( "2.0.0" )
  21. final val featuresCol: Param[String]

    Permalink

    Param for features column name.

    Param for features column name.

    Definition Classes
    HasFeaturesCol
  22. def featuresDataType: DataType

    Permalink

    Returns the SQL DataType corresponding to the FeaturesType type parameter.

    Returns the SQL DataType corresponding to the FeaturesType type parameter.

    This is used by validateAndTransformSchema(). This workaround is needed since SQL has different APIs for Scala and Java.

    The default value is VectorUDT, but it may be overridden if FeaturesType is not Vector.

    Attributes
    protected
    Definition Classes
    PredictionModel
  23. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  24. final def get[T](param: Param[T]): Option[T]

    Permalink

    Optionally returns the user-supplied value of a param.

    Optionally returns the user-supplied value of a param.

    Definition Classes
    Params
  25. final def getCacheNodeIds: Boolean

    Permalink

    Definition Classes
    DecisionTreeParams
  26. final def getCheckpointInterval: Int

    Permalink

    Definition Classes
    HasCheckpointInterval
  27. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  28. final def getDefault[T](param: Param[T]): Option[T]

    Permalink

    Gets the default value of a parameter.

    Gets the default value of a parameter.

    Definition Classes
    Params
  29. final def getFeaturesCol: String

    Permalink

    Definition Classes
    HasFeaturesCol
  30. final def getImpurity: String

    Permalink

    Definition Classes
    TreeClassifierParams
  31. final def getLabelCol: String

    Permalink

    Definition Classes
    HasLabelCol
  32. final def getMaxBins: Int

    Permalink

    Definition Classes
    DecisionTreeParams
  33. final def getMaxDepth: Int

    Permalink

    Definition Classes
    DecisionTreeParams
  34. final def getMaxMemoryInMB: Int

    Permalink

    Definition Classes
    DecisionTreeParams
  35. final def getMinInfoGain: Double

    Permalink

    Definition Classes
    DecisionTreeParams
  36. final def getMinInstancesPerNode: Int

    Permalink

    Definition Classes
    DecisionTreeParams
  37. final def getOrDefault[T](param: Param[T]): T

    Permalink

    Gets the value of a param in the embedded param map or its default value.

    Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.

    Definition Classes
    Params
  38. def getParam(paramName: String): Param[Any]

    Permalink

    Gets a param by its name.

    Gets a param by its name.

    Definition Classes
    Params
  39. final def getPredictionCol: String

    Permalink

    Definition Classes
    HasPredictionCol
  40. final def getProbabilityCol: String

    Permalink

    Definition Classes
    HasProbabilityCol
  41. final def getRawPredictionCol: String

    Permalink

    Definition Classes
    HasRawPredictionCol
  42. final def getSeed: Long

    Permalink

    Definition Classes
    HasSeed
  43. def getThresholds: Array[Double]

    Permalink

    Definition Classes
    HasThresholds
  44. final def hasDefault[T](param: Param[T]): Boolean

    Permalink

    Tests whether the input param has a default value set.

    Tests whether the input param has a default value set.

    Definition Classes
    Params
  45. def hasParam(paramName: String): Boolean

    Permalink

    Tests whether this instance contains a param with a given name.

    Tests whether this instance contains a param with a given name.

    Definition Classes
    Params
  46. def hasParent: Boolean

    Permalink

    Indicates whether this Model has a corresponding parent.

    Indicates whether this Model has a corresponding parent.

    Definition Classes
    Model
  47. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  48. final val impurity: Param[String]

    Permalink

    Criterion used for information gain calculation (case-insensitive).

    Criterion used for information gain calculation (case-insensitive). Supported: "entropy" and "gini". (default = gini)

    Definition Classes
    TreeClassifierParams
  49. def initializeLogIfNecessary(isInterpreter: Boolean): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  50. final def isDefined(param: Param[_]): Boolean

    Permalink

    Checks whether a param is explicitly set or has a default value.

    Checks whether a param is explicitly set or has a default value.

    Definition Classes
    Params
  51. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  52. final def isSet(param: Param[_]): Boolean

    Permalink

    Checks whether a param is explicitly set.

    Checks whether a param is explicitly set.

    Definition Classes
    Params
  53. def isTraceEnabled(): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  54. final val labelCol: Param[String]

    Permalink

    Param for label column name.

    Param for label column name.

    Definition Classes
    HasLabelCol
  55. def log: Logger

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  56. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  57. def logDebug(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  58. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  59. def logError(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  60. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  61. def logInfo(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  62. def logName: String

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  63. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  64. def logTrace(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  65. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  66. def logWarning(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  67. final val maxBins: IntParam

    Permalink

    Maximum number of bins used for discretizing continuous features and for choosing how to split on features at each node.

    Maximum number of bins used for discretizing continuous features and for choosing how to split on features at each node. More bins give higher granularity. Must be >= 2 and >= number of categories in any categorical feature. (default = 32)

    Definition Classes
    DecisionTreeParams
  68. final val maxDepth: IntParam

    Permalink

    Maximum depth of the tree (>= 0).

    Maximum depth of the tree (>= 0). E.g., depth 0 means 1 leaf node; depth 1 means 1 internal node + 2 leaf nodes. (default = 5)

    Definition Classes
    DecisionTreeParams
  69. final val maxMemoryInMB: IntParam

    Permalink

    Maximum memory in MB allocated to histogram aggregation.

    Maximum memory in MB allocated to histogram aggregation. If too small, then 1 node will be split per iteration, and its aggregates may exceed this size. (default = 256 MB)

    Definition Classes
    DecisionTreeParams
  70. final val minInfoGain: DoubleParam

    Permalink

    Minimum information gain for a split to be considered at a tree node.

    Minimum information gain for a split to be considered at a tree node. (default = 0.0)

    Definition Classes
    DecisionTreeParams
  71. final val minInstancesPerNode: IntParam

    Permalink

    Minimum number of instances each child must have after split.

    Minimum number of instances each child must have after split. If a split causes the left or right child to have fewer than minInstancesPerNode, the split will be discarded as invalid. Should be >= 1. (default = 1)

    Definition Classes
    DecisionTreeParams
  72. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  73. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  74. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  75. val numClasses: Int

    Permalink

    Number of classes (values which the label can take).

    Number of classes (values which the label can take).

    Definition Classes
    DecisionTreeClassificationModelClassificationModel
    Annotations
    @Since( "1.5.0" )
  76. val numFeatures: Int

    Permalink

    Returns the number of features the model was trained on.

    Returns the number of features the model was trained on. If unknown, returns -1

    Definition Classes
    DecisionTreeClassificationModelPredictionModel
    Annotations
    @Since( "1.6.0" )
  77. def numNodes: Int

    Permalink

    Number of nodes in tree, including leaf nodes.

    Number of nodes in tree, including leaf nodes.

    Definition Classes
    DecisionTreeModel
  78. lazy val params: Array[Param[_]]

    Permalink

    Returns all params sorted by their names.

    Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.

    Note: Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.

    Definition Classes
    Params
  79. var parent: Estimator[DecisionTreeClassificationModel]

    Permalink

    The parent estimator that produced this model.

    The parent estimator that produced this model. Note: For ensembles' component Models, this value can be null.

    Definition Classes
    Model
  80. def predict(features: Vector): Double

    Permalink

    Predict label for the given features.

    Predict label for the given features. This internal method is used to implement transform() and output predictionCol.

    This default implementation for classification predicts the index of the maximum value from predictRaw().

    Attributes
    protected
    Definition Classes
    DecisionTreeClassificationModelClassificationModelPredictionModel
  81. def predictProbability(features: Vector): Vector

    Permalink

    Predict the probability of each class given the features.

    Predict the probability of each class given the features. These predictions are also called class conditional probabilities.

    This internal method is used to implement transform() and output probabilityCol.

    returns

    Estimated class conditional probabilities

    Attributes
    protected
    Definition Classes
    ProbabilisticClassificationModel
  82. def predictRaw(features: Vector): Vector

    Permalink

    Raw prediction for each possible label.

    Raw prediction for each possible label. The meaning of a "raw" prediction may vary between algorithms, but it intuitively gives a measure of confidence in each possible label (where larger = more confident). This internal method is used to implement transform() and output rawPredictionCol.

    returns

    vector where element i is the raw prediction for label i. This raw prediction may be any real number, where a larger value indicates greater confidence for that label.

    Attributes
    protected
    Definition Classes
    DecisionTreeClassificationModelClassificationModel
  83. final val predictionCol: Param[String]

    Permalink

    Param for prediction column name.

    Param for prediction column name.

    Definition Classes
    HasPredictionCol
  84. def probability2prediction(probability: Vector): Double

    Permalink

    Given a vector of class conditional probabilities, select the predicted label.

    Given a vector of class conditional probabilities, select the predicted label. This supports thresholds which favor particular labels.

    returns

    predicted label

    Attributes
    protected
    Definition Classes
    ProbabilisticClassificationModel
  85. final val probabilityCol: Param[String]

    Permalink

    Param for Column name for predicted class conditional probabilities.

    Param for Column name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities.

    Definition Classes
    HasProbabilityCol
  86. def raw2prediction(rawPrediction: Vector): Double

    Permalink

    Given a vector of raw predictions, select the predicted label.

    Given a vector of raw predictions, select the predicted label. This may be overridden to support thresholds which favor particular labels.

    returns

    predicted label

    Attributes
    protected
    Definition Classes
    ProbabilisticClassificationModelClassificationModel
  87. def raw2probability(rawPrediction: Vector): Vector

    Permalink

    Non-in-place version of raw2probabilityInPlace()

    Non-in-place version of raw2probabilityInPlace()

    Attributes
    protected
    Definition Classes
    ProbabilisticClassificationModel
  88. def raw2probabilityInPlace(rawPrediction: Vector): Vector

    Permalink

    Estimate the probability of each class given the raw prediction, doing the computation in-place.

    Estimate the probability of each class given the raw prediction, doing the computation in-place. These predictions are also called class conditional probabilities.

    This internal method is used to implement transform() and output probabilityCol.

    returns

    Estimated class conditional probabilities (modified input vector)

    Attributes
    protected
    Definition Classes
    DecisionTreeClassificationModelProbabilisticClassificationModel
  89. final val rawPredictionCol: Param[String]

    Permalink

    Param for raw prediction (a.k.a.

    Param for raw prediction (a.k.a. confidence) column name.

    Definition Classes
    HasRawPredictionCol
  90. val rootNode: Node

    Permalink

    Root of the decision tree

    Root of the decision tree

    Definition Classes
    DecisionTreeClassificationModel → DecisionTreeModel
    Annotations
    @Since( "1.4.0" )
  91. def save(path: String): Unit

    Permalink

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  92. final val seed: LongParam

    Permalink

    Param for random seed.

    Param for random seed.

    Definition Classes
    HasSeed
  93. final def set(paramPair: ParamPair[_]): DecisionTreeClassificationModel.this.type

    Permalink

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Attributes
    protected
    Definition Classes
    Params
  94. final def set(param: String, value: Any): DecisionTreeClassificationModel.this.type

    Permalink

    Sets a parameter (by name) in the embedded param map.

    Sets a parameter (by name) in the embedded param map.

    Attributes
    protected
    Definition Classes
    Params
  95. final def set[T](param: Param[T], value: T): DecisionTreeClassificationModel.this.type

    Permalink

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Definition Classes
    Params
  96. def setCacheNodeIds(value: Boolean): DecisionTreeClassificationModel.this.type

    Permalink

    Definition Classes
    DecisionTreeParams
  97. def setCheckpointInterval(value: Int): DecisionTreeClassificationModel.this.type

    Permalink

    Specifies how often to checkpoint the cached node IDs.

    Specifies how often to checkpoint the cached node IDs. E.g. 10 means that the cache will get checkpointed every 10 iterations. This is only used if cacheNodeIds is true and if the checkpoint directory is set in org.apache.spark.SparkContext. Must be >= 1. (default = 10)

    Definition Classes
    DecisionTreeParams
  98. final def setDefault(paramPairs: ParamPair[_]*): DecisionTreeClassificationModel.this.type

    Permalink

    Sets default values for a list of params.

    Sets default values for a list of params.

    Note: Java developers should use the single-parameter setDefault. Annotating this with varargs can cause compilation failures due to a Scala compiler bug. See SPARK-9268.

    paramPairs

    a list of param pairs that specify params and their default values to set respectively. Make sure that the params are initialized before this method gets called.

    Attributes
    protected
    Definition Classes
    Params
  99. final def setDefault[T](param: Param[T], value: T): DecisionTreeClassificationModel.this.type

    Permalink

    Sets a default value for a param.

    Sets a default value for a param.

    param

    param to set the default value. Make sure that this param is initialized before this method gets called.

    value

    the default value

    Attributes
    protected
    Definition Classes
    Params
  100. def setFeaturesCol(value: String): DecisionTreeClassificationModel

    Permalink

    Definition Classes
    PredictionModel
  101. def setImpurity(value: String): DecisionTreeClassificationModel.this.type

    Permalink

    Definition Classes
    TreeClassifierParams
  102. def setMaxBins(value: Int): DecisionTreeClassificationModel.this.type

    Permalink

    Definition Classes
    DecisionTreeParams
  103. def setMaxDepth(value: Int): DecisionTreeClassificationModel.this.type

    Permalink

    Definition Classes
    DecisionTreeParams
  104. def setMaxMemoryInMB(value: Int): DecisionTreeClassificationModel.this.type

    Permalink

    Definition Classes
    DecisionTreeParams
  105. def setMinInfoGain(value: Double): DecisionTreeClassificationModel.this.type

    Permalink

    Definition Classes
    DecisionTreeParams
  106. def setMinInstancesPerNode(value: Int): DecisionTreeClassificationModel.this.type

    Permalink

    Definition Classes
    DecisionTreeParams
  107. def setParent(parent: Estimator[DecisionTreeClassificationModel]): DecisionTreeClassificationModel

    Permalink

    Sets the parent of this model (Java API).

    Sets the parent of this model (Java API).

    Definition Classes
    Model
  108. def setPredictionCol(value: String): DecisionTreeClassificationModel

    Permalink

    Definition Classes
    PredictionModel
  109. def setProbabilityCol(value: String): DecisionTreeClassificationModel

    Permalink

  110. def setRawPredictionCol(value: String): DecisionTreeClassificationModel

    Permalink

    Definition Classes
    ClassificationModel
  111. def setSeed(value: Long): DecisionTreeClassificationModel.this.type

    Permalink

    Definition Classes
    DecisionTreeParams
  112. def setThresholds(value: Array[Double]): DecisionTreeClassificationModel

    Permalink

  113. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  114. final val thresholds: DoubleArrayParam

    Permalink

    Param for Thresholds in multi-class classification to adjust the probability of predicting each class.

    Param for Thresholds in multi-class classification to adjust the probability of predicting each class. Array must have length equal to the number of classes, with values >= 0. The class with largest value p/t is predicted, where p is the original probability of that class and t is the class' threshold.

    Definition Classes
    HasThresholds
  115. def toDebugString: String

    Permalink

    Full description of model

    Full description of model

    Definition Classes
    DecisionTreeModel
  116. def toString(): String

    Permalink

    Summary of the model

    Summary of the model

    Definition Classes
    DecisionTreeClassificationModel → DecisionTreeModel → Identifiable → AnyRef → Any
    Annotations
    @Since( "1.4.0" )
  117. def transform(dataset: Dataset[_]): DataFrame

    Permalink

    Transforms dataset by reading from featuresCol, and appending new columns as specified by parameters:

    Transforms dataset by reading from featuresCol, and appending new columns as specified by parameters:

    dataset

    input dataset

    returns

    transformed dataset

    Definition Classes
    ProbabilisticClassificationModelClassificationModelPredictionModelTransformer
  118. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame

    Permalink

    Transforms the dataset with provided parameter map as additional parameters.

    Transforms the dataset with provided parameter map as additional parameters.

    dataset

    input dataset

    paramMap

    additional parameters, overwrite embedded params

    returns

    transformed dataset

    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  119. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame

    Permalink

    Transforms the dataset with optional parameters

    Transforms the dataset with optional parameters

    dataset

    input dataset

    firstParamPair

    the first param pair, overwrite embedded params

    otherParamPairs

    other param pairs, overwrite embedded params

    returns

    transformed dataset

    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  120. def transformImpl(dataset: Dataset[_]): DataFrame

    Permalink
    Attributes
    protected
    Definition Classes
    PredictionModel
  121. def transformSchema(schema: StructType): StructType

    Permalink

    :: DeveloperApi ::

    :: DeveloperApi ::

    Check transform validity and derive the output schema from the input schema.

    Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.

    Definition Classes
    PredictionModelPipelineStage
  122. def transformSchema(schema: StructType, logging: Boolean): StructType

    Permalink

    :: DeveloperApi ::

    :: DeveloperApi ::

    Derives the output schema from the input schema and parameters, optionally with logging.

    This should be optimistic. If it is unclear whether the schema will be valid, then it should be assumed valid until proven otherwise.

    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  123. val uid: String

    Permalink

    An immutable unique ID for the object and its derivatives.

    An immutable unique ID for the object and its derivatives.

    Definition Classes
    DecisionTreeClassificationModelIdentifiable
    Annotations
    @Since( "1.4.0" )
  124. def validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructType

    Permalink

    Validates and transforms the input schema with the provided param map.

    Validates and transforms the input schema with the provided param map.

    schema

    input schema

    fitting

    whether this is in fitting

    featuresDataType

    SQL DataType for FeaturesType. E.g., org.apache.spark.mllib.linalg.VectorUDT for vector features.

    returns

    output schema

    Attributes
    protected
    Definition Classes
    ProbabilisticClassifierParams → ClassifierParams → PredictorParams
  125. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  126. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  127. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  128. def write: MLWriter

    Permalink

    Returns an MLWriter instance for this ML instance.

    Returns an MLWriter instance for this ML instance.

    Definition Classes
    DecisionTreeClassificationModelMLWritable
    Annotations
    @Since( "2.0.0" )

Deprecated Value Members

  1. def validateParams(): Unit

    Permalink

    Validates parameter values stored internally.

    Validates parameter values stored internally. Raise an exception if any parameter value is invalid.

    This only needs to check for interactions between parameters. Parameter value checks which do not depend on other parameters are handled by Param.validate(). This method does not handle input/output column parameters; those are checked during schema validation.

    Definition Classes
    Params
    Annotations
    @deprecated
    Deprecated

    (Since version 2.0.0) Will be removed in 2.1.0. Checks should be merged into transformSchema.

Inherited from MLWritable

Inherited from DecisionTreeClassifierParams

Inherited from TreeClassifierParams

Inherited from DecisionTreeParams

Inherited from HasSeed

Inherited from HasCheckpointInterval

Inherited from DecisionTreeModel

Inherited from ProbabilisticClassifierParams

Inherited from HasThresholds

Inherited from HasProbabilityCol

Inherited from ClassifierParams

Inherited from HasRawPredictionCol

Inherited from PredictorParams

Inherited from HasPredictionCol

Inherited from HasFeaturesCol

Inherited from HasLabelCol

Inherited from Transformer

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Parameters

A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

Members

Parameter setters

Parameter getters

(expert-only) Parameters

A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

(expert-only) Parameter setters

(expert-only) Parameter getters