org.apache.spark.ml.classification
Class RandomForestClassificationModel

Object
  extended by org.apache.spark.ml.PipelineStage
      extended by org.apache.spark.ml.Transformer
          extended by org.apache.spark.ml.Model<M>
              extended by org.apache.spark.ml.PredictionModel<Vector,RandomForestClassificationModel>
                  extended by org.apache.spark.ml.classification.RandomForestClassificationModel
All Implemented Interfaces:
java.io.Serializable, Logging, Params

public final class RandomForestClassificationModel
extends PredictionModel<Vector,RandomForestClassificationModel>
implements scala.Serializable

:: Experimental :: Random Forest model for classification. It supports both binary and multiclass labels, as well as both continuous and categorical features. param: _trees Decision trees in the ensemble. Warning: These have null parents.

See Also:
Serialized Form

Method Summary
 RandomForestClassificationModel copy(ParamMap extra)
          Creates a copy of this instance with the same UID and some extra params.
static RandomForestClassificationModel fromOld(RandomForestModel oldModel, RandomForestClassifier parent, scala.collection.immutable.Map<Object,Object> categoricalFeatures)
          (private[ml]) Convert a model from the old API
 String toString()
           
 org.apache.spark.ml.tree.DecisionTreeModel[] trees()
           
 double[] treeWeights()
           
 String uid()
           
 StructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType)
          Validates and transforms the input schema with the provided param map.
 
Methods inherited from class org.apache.spark.ml.PredictionModel
setFeaturesCol, setPredictionCol, transform, transformSchema
 
Methods inherited from class org.apache.spark.ml.Model
hasParent, parent, setParent
 
Methods inherited from class org.apache.spark.ml.Transformer
transform, transform, transform
 
Methods inherited from class Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
 
Methods inherited from interface org.apache.spark.ml.param.Params
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, setDefault, shouldOwn, validateParams
 
Methods inherited from interface org.apache.spark.Logging
initializeIfNecessary, initializeLogging, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
 

Method Detail

fromOld

public static RandomForestClassificationModel fromOld(RandomForestModel oldModel,
                                                      RandomForestClassifier parent,
                                                      scala.collection.immutable.Map<Object,Object> categoricalFeatures)
(private[ml]) Convert a model from the old API


uid

public String uid()

trees

public org.apache.spark.ml.tree.DecisionTreeModel[] trees()

treeWeights

public double[] treeWeights()

copy

public RandomForestClassificationModel copy(ParamMap extra)
Description copied from interface: Params
Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly.

Specified by:
copy in interface Params
Specified by:
copy in class Model<RandomForestClassificationModel>
Parameters:
extra - (undocumented)
Returns:
(undocumented)
See Also:
defaultCopy()

toString

public String toString()
Overrides:
toString in class Object

validateAndTransformSchema

public StructType validateAndTransformSchema(StructType schema,
                                             boolean fitting,
                                             DataType featuresDataType)
Validates and transforms the input schema with the provided param map.

Parameters:
schema - input schema
fitting - whether this is in fitting
featuresDataType - SQL DataType for FeaturesType. E.g., VectorUDT for vector features.
Returns:
output schema