public class CountVectorizerModel extends Model<CountVectorizerModel> implements MLWritable
Constructor and Description |
---|
CountVectorizerModel(java.lang.String[] vocabulary) |
CountVectorizerModel(java.lang.String uid,
java.lang.String[] vocabulary) |
Modifier and Type | Method and Description |
---|---|
CountVectorizerModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
double |
getMinDF() |
double |
getMinTF() |
int |
getVocabSize() |
static CountVectorizerModel |
load(java.lang.String path) |
DoubleParam |
minDF()
Specifies the minimum number of different documents a term must appear in to be included
in the vocabulary.
|
DoubleParam |
minTF()
Filter to ignore rare words in a document.
|
static MLReader<CountVectorizerModel> |
read() |
CountVectorizerModel |
setInputCol(java.lang.String value) |
CountVectorizerModel |
setMinTF(double value) |
CountVectorizerModel |
setOutputCol(java.lang.String value) |
DataFrame |
transform(DataFrame dataset)
Transforms the input dataset.
|
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
java.lang.String |
uid()
An immutable unique ID for the object and its derivatives.
|
StructType |
validateAndTransformSchema(StructType schema)
Validates and transforms the input schema.
|
IntParam |
vocabSize()
Max size of the vocabulary.
|
java.lang.String[] |
vocabulary() |
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
transform, transform, transform
transformSchema
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn, validateParams
toString
save
initializeIfNecessary, initializeLogging, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
public CountVectorizerModel(java.lang.String uid, java.lang.String[] vocabulary)
public CountVectorizerModel(java.lang.String[] vocabulary)
public static MLReader<CountVectorizerModel> read()
public static CountVectorizerModel load(java.lang.String path)
public java.lang.String uid()
Identifiable
uid
in interface Identifiable
public java.lang.String[] vocabulary()
public CountVectorizerModel setInputCol(java.lang.String value)
public CountVectorizerModel setOutputCol(java.lang.String value)
public CountVectorizerModel setMinTF(double value)
public DataFrame transform(DataFrame dataset)
Transformer
transform
in class Transformer
dataset
- (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
Derives the output schema from the input schema.
transformSchema
in class PipelineStage
schema
- (undocumented)public CountVectorizerModel copy(ParamMap extra)
Params
copy
in interface Params
copy
in class Model<CountVectorizerModel>
extra
- (undocumented)defaultCopy()
public MLWriter write()
MLWritable
MLWriter
instance for this ML instance.write
in interface MLWritable
public IntParam vocabSize()
Default: 2^18^
public int getVocabSize()
public DoubleParam minDF()
Default: 1
public double getMinDF()
public StructType validateAndTransformSchema(StructType schema)
public DoubleParam minTF()
Note that the parameter is only used in transform of CountVectorizerModel
and does not
affect fitting.
Default: 1
public double getMinTF()