public class RidgeRegressionModel extends GeneralizedLinearModel implements RegressionModel, scala.Serializable, Saveable, PMMLExportable
param: weights Weights computed for every feature. param: intercept Intercept computed for this model.
Constructor and Description |
---|
RidgeRegressionModel(Vector weights,
double intercept) |
Modifier and Type | Method and Description |
---|---|
double |
intercept() |
static RidgeRegressionModel |
load(SparkContext sc,
String path) |
static JavaRDD<Double> |
predict(JavaRDD<Vector> testData) |
static RDD<Object> |
predict(RDD<Vector> testData) |
static double |
predict(Vector testData) |
void |
save(SparkContext sc,
String path)
Save this model to the given path.
|
static String |
toPMML() |
static void |
toPMML(java.io.OutputStream outputStream) |
static void |
toPMML(SparkContext sc,
String path) |
static void |
toPMML(String localPath) |
static String |
toString() |
Vector |
weights() |
predict, predict, toString
predict, predict, predict
public RidgeRegressionModel(Vector weights, double intercept)
public static RidgeRegressionModel load(SparkContext sc, String path)
public static double predict(Vector testData)
public static String toString()
public static void toPMML(String localPath)
public static void toPMML(SparkContext sc, String path)
public static void toPMML(java.io.OutputStream outputStream)
public static String toPMML()
public Vector weights()
weights
in class GeneralizedLinearModel
public double intercept()
intercept
in class GeneralizedLinearModel
public void save(SparkContext sc, String path)
Saveable
This saves: - human-readable (JSON) model metadata to path/metadata/ - Parquet formatted data to path/data/
The model may be loaded using Loader.load
.