org.apache.spark.ml.classification
MultilayerPerceptronClassifier
Companion object MultilayerPerceptronClassifier
class MultilayerPerceptronClassifier extends ProbabilisticClassifier[Vector, MultilayerPerceptronClassifier, MultilayerPerceptronClassificationModel] with MultilayerPerceptronParams with DefaultParamsWritable
Classifier trainer based on the Multilayer Perceptron. Each layer has sigmoid activation function, output layer has softmax. Number of inputs has to be equal to the size of feature vectors. Number of outputs has to be equal to the total number of labels.
- Annotations
- @Since( "1.5.0" )
- Source
- MultilayerPerceptronClassifier.scala
- Grouped
- Alphabetic
- By Inheritance
- MultilayerPerceptronClassifier
- DefaultParamsWritable
- MLWritable
- MultilayerPerceptronParams
- HasBlockSize
- HasSolver
- HasStepSize
- HasTol
- HasMaxIter
- HasSeed
- ProbabilisticClassifier
- ProbabilisticClassifierParams
- HasThresholds
- HasProbabilityCol
- Classifier
- ClassifierParams
- HasRawPredictionCol
- Predictor
- PredictorParams
- HasPredictionCol
- HasFeaturesCol
- HasLabelCol
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
An alias for
getOrDefault()
.An alias for
getOrDefault()
.- Attributes
- protected
- Definition Classes
- Params
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
final
val
blockSize: IntParam
Param for block size for stacking input data in matrices.
Param for block size for stacking input data in matrices. Data is stacked within partitions. If block size is more than remaining data in a partition then it is adjusted to the size of this data..
- Definition Classes
- HasBlockSize
-
final
def
clear(param: Param[_]): MultilayerPerceptronClassifier.this.type
Clears the user-supplied value for the input param.
Clears the user-supplied value for the input param.
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
copy(extra: ParamMap): MultilayerPerceptronClassifier
Creates a copy of this instance with the same UID and some extra params.
Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See
defaultCopy()
.- Definition Classes
- MultilayerPerceptronClassifier → Predictor → Estimator → PipelineStage → Params
- Annotations
- @Since( "1.5.0" )
-
def
copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): T
Copies param values from this instance to another instance for params shared by them.
Copies param values from this instance to another instance for params shared by them.
This handles default Params and explicitly set Params separately. Default Params are copied from and to
defaultParamMap
, and explicitly set Params are copied from and toparamMap
. Warning: This implicitly assumes that this Params instance and the target instance share the same set of default Params.- to
the target instance, which should work with the same set of default Params as this source instance
- extra
extra params to be copied to the target's
paramMap
- returns
the target instance with param values copied
- Attributes
- protected
- Definition Classes
- Params
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
Default implementation of copy with extra params.
Default implementation of copy with extra params. It tries to create a new instance with the same UID. Then it copies the embedded and extra parameters over and returns the new instance.
- Attributes
- protected
- Definition Classes
- Params
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
explainParam(param: Param[_]): String
Explains a param.
Explains a param.
- param
input param, must belong to this instance.
- returns
a string that contains the input param name, doc, and optionally its default value and the user-supplied value
- Definition Classes
- Params
-
def
explainParams(): String
Explains all params of this instance.
Explains all params of this instance. See
explainParam()
.- Definition Classes
- Params
-
def
extractInstances(dataset: Dataset[_], numClasses: Int): RDD[Instance]
Extract labelCol, weightCol(if any) and featuresCol from the given dataset, and put it in an RDD with strong types.
Extract labelCol, weightCol(if any) and featuresCol from the given dataset, and put it in an RDD with strong types. Validates the label on the classifier is a valid integer in the range [0, numClasses).
- Attributes
- protected
- Definition Classes
- ClassifierParams
-
def
extractInstances(dataset: Dataset[_], validateInstance: (Instance) ⇒ Unit): RDD[Instance]
Extract labelCol, weightCol(if any) and featuresCol from the given dataset, and put it in an RDD with strong types.
Extract labelCol, weightCol(if any) and featuresCol from the given dataset, and put it in an RDD with strong types. Validate the output instances with the given function.
- Attributes
- protected
- Definition Classes
- PredictorParams
-
def
extractInstances(dataset: Dataset[_]): RDD[Instance]
Extract labelCol, weightCol(if any) and featuresCol from the given dataset, and put it in an RDD with strong types.
Extract labelCol, weightCol(if any) and featuresCol from the given dataset, and put it in an RDD with strong types.
- Attributes
- protected
- Definition Classes
- PredictorParams
-
def
extractLabeledPoints(dataset: Dataset[_], numClasses: Int): RDD[LabeledPoint]
Extract labelCol and featuresCol from the given dataset, and put it in an RDD with strong types.
Extract labelCol and featuresCol from the given dataset, and put it in an RDD with strong types.
- dataset
DataFrame with columns for labels (org.apache.spark.sql.types.NumericType) and features (
Vector
).- numClasses
Number of classes label can take. Labels must be integers in the range [0, numClasses).
- Attributes
- protected
- Definition Classes
- Classifier
- Note
Throws
SparkException
if any label is a non-integer or is negative
-
def
extractLabeledPoints(dataset: Dataset[_]): RDD[LabeledPoint]
Extract labelCol and featuresCol from the given dataset, and put it in an RDD with strong types.
Extract labelCol and featuresCol from the given dataset, and put it in an RDD with strong types.
- Attributes
- protected
- Definition Classes
- Predictor
-
final
def
extractParamMap(): ParamMap
extractParamMap
with no extra values.extractParamMap
with no extra values.- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.
- Definition Classes
- Params
-
final
val
featuresCol: Param[String]
Param for features column name.
Param for features column name.
- Definition Classes
- HasFeaturesCol
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
fit(dataset: Dataset[_]): MultilayerPerceptronClassificationModel
Fits a model to the input data.
-
def
fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[MultilayerPerceptronClassificationModel]
Fits multiple models to the input data with multiple sets of parameters.
Fits multiple models to the input data with multiple sets of parameters. The default implementation uses a for loop on each parameter map. Subclasses could override this to optimize multi-model training.
- dataset
input dataset
- paramMaps
An array of parameter maps. These values override any specified in this Estimator's embedded ParamMap.
- returns
fitted models, matching the input parameter maps
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], paramMap: ParamMap): MultilayerPerceptronClassificationModel
Fits a single model to the input data with provided parameter map.
Fits a single model to the input data with provided parameter map.
- dataset
input dataset
- paramMap
Parameter map. These values override any specified in this Estimator's embedded ParamMap.
- returns
fitted model
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): MultilayerPerceptronClassificationModel
Fits a single model to the input data with optional parameters.
Fits a single model to the input data with optional parameters.
- dataset
input dataset
- firstParamPair
the first param pair, overrides embedded params
- otherParamPairs
other param pairs. These values override any specified in this Estimator's embedded ParamMap.
- returns
fitted model
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" ) @varargs()
-
final
def
get[T](param: Param[T]): Option[T]
Optionally returns the user-supplied value of a param.
Optionally returns the user-supplied value of a param.
- Definition Classes
- Params
-
final
def
getBlockSize: Int
- Definition Classes
- HasBlockSize
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
getDefault[T](param: Param[T]): Option[T]
Gets the default value of a parameter.
Gets the default value of a parameter.
- Definition Classes
- Params
-
final
def
getFeaturesCol: String
- Definition Classes
- HasFeaturesCol
-
final
def
getInitialWeights: Vector
- Definition Classes
- MultilayerPerceptronParams
- Annotations
- @Since( "2.0.0" )
-
final
def
getLabelCol: String
- Definition Classes
- HasLabelCol
-
final
def
getLayers: Array[Int]
- Definition Classes
- MultilayerPerceptronParams
- Annotations
- @Since( "1.5.0" )
-
final
def
getMaxIter: Int
- Definition Classes
- HasMaxIter
-
def
getNumClasses(dataset: Dataset[_], maxNumClasses: Int = 100): Int
Get the number of classes.
Get the number of classes. This looks in column metadata first, and if that is missing, then this assumes classes are indexed 0,1,...,numClasses-1 and computes numClasses by finding the maximum label value.
Label validation (ensuring all labels are integers >= 0) needs to be handled elsewhere, such as in
extractLabeledPoints()
.- dataset
Dataset which contains a column labelCol
- maxNumClasses
Maximum number of classes allowed when inferred from data. If numClasses is specified in the metadata, then maxNumClasses is ignored.
- returns
number of classes
- Attributes
- protected
- Definition Classes
- Classifier
- Exceptions thrown
IllegalArgumentException
if metadata does not specify numClasses, and the actual numClasses exceeds maxNumClasses
-
final
def
getOrDefault[T](param: Param[T]): T
Gets the value of a param in the embedded param map or its default value.
Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.
- Definition Classes
- Params
-
def
getParam(paramName: String): Param[Any]
Gets a param by its name.
Gets a param by its name.
- Definition Classes
- Params
-
final
def
getPredictionCol: String
- Definition Classes
- HasPredictionCol
-
final
def
getProbabilityCol: String
- Definition Classes
- HasProbabilityCol
-
final
def
getRawPredictionCol: String
- Definition Classes
- HasRawPredictionCol
-
final
def
getSeed: Long
- Definition Classes
- HasSeed
-
final
def
getSolver: String
- Definition Classes
- HasSolver
-
final
def
getStepSize: Double
- Definition Classes
- HasStepSize
-
def
getThresholds: Array[Double]
- Definition Classes
- HasThresholds
-
final
def
getTol: Double
- Definition Classes
- HasTol
-
final
def
hasDefault[T](param: Param[T]): Boolean
Tests whether the input param has a default value set.
Tests whether the input param has a default value set.
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
Tests whether this instance contains a param with a given name.
Tests whether this instance contains a param with a given name.
- Definition Classes
- Params
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
val
initialWeights: Param[Vector]
The initial weights of the model.
The initial weights of the model.
- Definition Classes
- MultilayerPerceptronParams
- Annotations
- @Since( "2.0.0" )
-
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
final
def
isDefined(param: Param[_]): Boolean
Checks whether a param is explicitly set or has a default value.
Checks whether a param is explicitly set or has a default value.
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
Checks whether a param is explicitly set.
Checks whether a param is explicitly set.
- Definition Classes
- Params
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
final
val
labelCol: Param[String]
Param for label column name.
Param for label column name.
- Definition Classes
- HasLabelCol
-
final
val
layers: IntArrayParam
Layer sizes including input size and output size.
Layer sizes including input size and output size.
- Definition Classes
- MultilayerPerceptronParams
- Annotations
- @Since( "1.5.0" )
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
final
val
maxIter: IntParam
Param for maximum number of iterations (>= 0).
Param for maximum number of iterations (>= 0).
- Definition Classes
- HasMaxIter
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
lazy val
params: Array[Param[_]]
Returns all params sorted by their names.
Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.
- Definition Classes
- Params
- Note
Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.
-
final
val
predictionCol: Param[String]
Param for prediction column name.
Param for prediction column name.
- Definition Classes
- HasPredictionCol
-
final
val
probabilityCol: Param[String]
Param for Column name for predicted class conditional probabilities.
Param for Column name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities.
- Definition Classes
- HasProbabilityCol
-
final
val
rawPredictionCol: Param[String]
Param for raw prediction (a.k.a.
Param for raw prediction (a.k.a. confidence) column name.
- Definition Classes
- HasRawPredictionCol
-
def
save(path: String): Unit
Saves this ML instance to the input path, a shortcut of
write.save(path)
.Saves this ML instance to the input path, a shortcut of
write.save(path)
.- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
final
val
seed: LongParam
Param for random seed.
Param for random seed.
- Definition Classes
- HasSeed
-
final
def
set(paramPair: ParamPair[_]): MultilayerPerceptronClassifier.this.type
Sets a parameter in the embedded param map.
Sets a parameter in the embedded param map.
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): MultilayerPerceptronClassifier.this.type
Sets a parameter (by name) in the embedded param map.
Sets a parameter (by name) in the embedded param map.
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): MultilayerPerceptronClassifier.this.type
Sets a parameter in the embedded param map.
Sets a parameter in the embedded param map.
- Definition Classes
- Params
-
def
setBlockSize(value: Int): MultilayerPerceptronClassifier.this.type
Sets the value of param blockSize.
Sets the value of param blockSize. Default is 128.
- Annotations
- @Since( "1.5.0" )
-
final
def
setDefault(paramPairs: ParamPair[_]*): MultilayerPerceptronClassifier.this.type
Sets default values for a list of params.
Sets default values for a list of params.
Note: Java developers should use the single-parameter
setDefault
. Annotating this with varargs can cause compilation failures due to a Scala compiler bug. See SPARK-9268.- paramPairs
a list of param pairs that specify params and their default values to set respectively. Make sure that the params are initialized before this method gets called.
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): MultilayerPerceptronClassifier.this.type
Sets a default value for a param.
-
def
setFeaturesCol(value: String): MultilayerPerceptronClassifier
- Definition Classes
- Predictor
-
def
setInitialWeights(value: Vector): MultilayerPerceptronClassifier.this.type
Sets the value of param initialWeights.
Sets the value of param initialWeights.
- Annotations
- @Since( "2.0.0" )
-
def
setLabelCol(value: String): MultilayerPerceptronClassifier
- Definition Classes
- Predictor
-
def
setLayers(value: Array[Int]): MultilayerPerceptronClassifier.this.type
Sets the value of param layers.
Sets the value of param layers.
- Annotations
- @Since( "1.5.0" )
-
def
setMaxIter(value: Int): MultilayerPerceptronClassifier.this.type
Set the maximum number of iterations.
Set the maximum number of iterations. Default is 100.
- Annotations
- @Since( "1.5.0" )
-
def
setPredictionCol(value: String): MultilayerPerceptronClassifier
- Definition Classes
- Predictor
-
def
setProbabilityCol(value: String): MultilayerPerceptronClassifier
- Definition Classes
- ProbabilisticClassifier
-
def
setRawPredictionCol(value: String): MultilayerPerceptronClassifier
- Definition Classes
- Classifier
-
def
setSeed(value: Long): MultilayerPerceptronClassifier.this.type
Set the seed for weights initialization if weights are not set
Set the seed for weights initialization if weights are not set
- Annotations
- @Since( "1.5.0" )
-
def
setSolver(value: String): MultilayerPerceptronClassifier.this.type
Sets the value of param solver.
Sets the value of param solver. Default is "l-bfgs".
- Annotations
- @Since( "2.0.0" )
-
def
setStepSize(value: Double): MultilayerPerceptronClassifier.this.type
Sets the value of param stepSize (applicable only for solver "gd").
Sets the value of param stepSize (applicable only for solver "gd"). Default is 0.03.
- Annotations
- @Since( "2.0.0" )
-
def
setThresholds(value: Array[Double]): MultilayerPerceptronClassifier
- Definition Classes
- ProbabilisticClassifier
-
def
setTol(value: Double): MultilayerPerceptronClassifier.this.type
Set the convergence tolerance of iterations.
Set the convergence tolerance of iterations. Smaller value will lead to higher accuracy with the cost of more iterations. Default is 1E-6.
- Annotations
- @Since( "1.5.0" )
-
final
val
solver: Param[String]
The solver algorithm for optimization.
The solver algorithm for optimization. Supported options: "gd" (minibatch gradient descent) or "l-bfgs". Default: "l-bfgs"
- Definition Classes
- MultilayerPerceptronParams → HasSolver
- Annotations
- @Since( "2.0.0" )
-
val
stepSize: DoubleParam
Param for Step size to be used for each iteration of optimization (> 0).
Param for Step size to be used for each iteration of optimization (> 0).
- Definition Classes
- HasStepSize
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
val
thresholds: DoubleArrayParam
Param for Thresholds in multi-class classification to adjust the probability of predicting each class.
Param for Thresholds in multi-class classification to adjust the probability of predicting each class. Array must have length equal to the number of classes, with values > 0 excepting that at most one value may be 0. The class with largest value p/t is predicted, where p is the original probability of that class and t is the class's threshold.
- Definition Classes
- HasThresholds
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
final
val
tol: DoubleParam
Param for the convergence tolerance for iterative algorithms (>= 0).
Param for the convergence tolerance for iterative algorithms (>= 0).
- Definition Classes
- HasTol
-
def
train(dataset: Dataset[_]): MultilayerPerceptronClassificationModel
Train a model using the given dataset and parameters.
Train a model using the given dataset and parameters. Developers can implement this instead of
fit()
to avoid dealing with schema validation and copying parameters into the model.- dataset
Training dataset
- returns
Fitted model
- Attributes
- protected
- Definition Classes
- MultilayerPerceptronClassifier → Predictor
-
def
transformSchema(schema: StructType): StructType
Check transform validity and derive the output schema from the input schema.
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during
transformSchema
and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate()
.Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Definition Classes
- Predictor → PipelineStage
-
def
transformSchema(schema: StructType, logging: Boolean): StructType
:: DeveloperApi ::
:: DeveloperApi ::
Derives the output schema from the input schema and parameters, optionally with logging.
This should be optimistic. If it is unclear whether the schema will be valid, then it should be assumed valid until proven otherwise.
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
-
val
uid: String
An immutable unique ID for the object and its derivatives.
An immutable unique ID for the object and its derivatives.
- Definition Classes
- MultilayerPerceptronClassifier → Identifiable
- Annotations
- @Since( "1.5.0" )
-
def
validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructType
Validates and transforms the input schema with the provided param map.
Validates and transforms the input schema with the provided param map.
- schema
input schema
- fitting
whether this is in fitting
- featuresDataType
SQL DataType for FeaturesType. E.g.,
VectorUDT
for vector features.- returns
output schema
- Attributes
- protected
- Definition Classes
- ProbabilisticClassifierParams → ClassifierParams → PredictorParams
-
def
validateLabel(label: Double, numClasses: Int): Unit
Validates the label on the classifier is a valid integer in the range [0, numClasses).
Validates the label on the classifier is a valid integer in the range [0, numClasses).
- label
The label to validate.
- numClasses
Number of classes label can take. Labels must be integers in the range [0, numClasses).
- Attributes
- protected
- Definition Classes
- Classifier
-
def
validateNumClasses(numClasses: Int): Unit
Validates that number of classes is greater than zero.
Validates that number of classes is greater than zero.
- numClasses
Number of classes label can take.
- Attributes
- protected
- Definition Classes
- Classifier
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
write: MLWriter
Returns an
MLWriter
instance for this ML instance.Returns an
MLWriter
instance for this ML instance.- Definition Classes
- DefaultParamsWritable → MLWritable
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from MultilayerPerceptronParams
Inherited from HasBlockSize
Inherited from HasSolver
Inherited from HasStepSize
Inherited from HasTol
Inherited from HasMaxIter
Inherited from HasSeed
Inherited from ProbabilisticClassifier[Vector, MultilayerPerceptronClassifier, MultilayerPerceptronClassificationModel]
Inherited from ProbabilisticClassifierParams
Inherited from HasThresholds
Inherited from HasProbabilityCol
Inherited from Classifier[Vector, MultilayerPerceptronClassifier, MultilayerPerceptronClassificationModel]
Inherited from ClassifierParams
Inherited from HasRawPredictionCol
Inherited from Predictor[Vector, MultilayerPerceptronClassifier, MultilayerPerceptronClassificationModel]
Inherited from PredictorParams
Inherited from HasPredictionCol
Inherited from HasFeaturesCol
Inherited from HasLabelCol
Inherited from Estimator[MultilayerPerceptronClassificationModel]
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.
Members
Parameter setters
Parameter getters
(expert-only) Parameters
A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.