Packages

class MultilayerPerceptronClassificationModel extends ProbabilisticClassificationModel[Vector, MultilayerPerceptronClassificationModel] with MultilayerPerceptronParams with Serializable with MLWritable with HasTrainingSummary[MultilayerPerceptronClassificationTrainingSummary]

Classification model based on the Multilayer Perceptron. Each layer has sigmoid activation function, output layer has softmax.

Annotations
@Since( "1.5.0" )
Source
MultilayerPerceptronClassifier.scala
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. MultilayerPerceptronClassificationModel
  2. HasTrainingSummary
  3. MLWritable
  4. MultilayerPerceptronParams
  5. HasBlockSize
  6. HasSolver
  7. HasStepSize
  8. HasTol
  9. HasMaxIter
  10. HasSeed
  11. ProbabilisticClassificationModel
  12. ProbabilisticClassifierParams
  13. HasThresholds
  14. HasProbabilityCol
  15. ClassificationModel
  16. ClassifierParams
  17. HasRawPredictionCol
  18. PredictionModel
  19. PredictorParams
  20. HasPredictionCol
  21. HasFeaturesCol
  22. HasLabelCol
  23. Model
  24. Transformer
  25. PipelineStage
  26. Logging
  27. Params
  28. Serializable
  29. Serializable
  30. Identifiable
  31. AnyRef
  32. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T

    An alias for getOrDefault().

    An alias for getOrDefault().

    Attributes
    protected
    Definition Classes
    Params
  4. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  5. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  6. final val blockSize: IntParam

    Param for block size for stacking input data in matrices.

    Param for block size for stacking input data in matrices. Data is stacked within partitions. If block size is more than remaining data in a partition then it is adjusted to the size of this data..

    Definition Classes
    HasBlockSize
  7. final def clear(param: Param[_]): MultilayerPerceptronClassificationModel.this.type

    Clears the user-supplied value for the input param.

    Clears the user-supplied value for the input param.

    Definition Classes
    Params
  8. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native() @IntrinsicCandidate()
  9. def copy(extra: ParamMap): MultilayerPerceptronClassificationModel

    Creates a copy of this instance with the same UID and some extra params.

    Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See defaultCopy().

    Definition Classes
    MultilayerPerceptronClassificationModelModelTransformerPipelineStageParams
    Annotations
    @Since( "1.5.0" )
  10. def copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): T

    Copies param values from this instance to another instance for params shared by them.

    Copies param values from this instance to another instance for params shared by them.

    This handles default Params and explicitly set Params separately. Default Params are copied from and to defaultParamMap, and explicitly set Params are copied from and to paramMap. Warning: This implicitly assumes that this Params instance and the target instance share the same set of default Params.

    to

    the target instance, which should work with the same set of default Params as this source instance

    extra

    extra params to be copied to the target's paramMap

    returns

    the target instance with param values copied

    Attributes
    protected
    Definition Classes
    Params
  11. final def defaultCopy[T <: Params](extra: ParamMap): T

    Default implementation of copy with extra params.

    Default implementation of copy with extra params. It tries to create a new instance with the same UID. Then it copies the embedded and extra parameters over and returns the new instance.

    Attributes
    protected
    Definition Classes
    Params
  12. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  13. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  14. def evaluate(dataset: Dataset[_]): MultilayerPerceptronClassificationSummary

    Evaluates the model on a test dataset.

    Evaluates the model on a test dataset.

    dataset

    Test dataset to evaluate model on.

    Annotations
    @Since( "3.1.0" )
  15. def explainParam(param: Param[_]): String

    Explains a param.

    Explains a param.

    param

    input param, must belong to this instance.

    returns

    a string that contains the input param name, doc, and optionally its default value and the user-supplied value

    Definition Classes
    Params
  16. def explainParams(): String

    Explains all params of this instance.

    Explains all params of this instance. See explainParam().

    Definition Classes
    Params
  17. final def extractParamMap(): ParamMap

    extractParamMap with no extra values.

    extractParamMap with no extra values.

    Definition Classes
    Params
  18. final def extractParamMap(extra: ParamMap): ParamMap

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Definition Classes
    Params
  19. final val featuresCol: Param[String]

    Param for features column name.

    Param for features column name.

    Definition Classes
    HasFeaturesCol
  20. def featuresDataType: DataType

    Returns the SQL DataType corresponding to the FeaturesType type parameter.

    Returns the SQL DataType corresponding to the FeaturesType type parameter.

    This is used by validateAndTransformSchema(). This workaround is needed since SQL has different APIs for Scala and Java.

    The default value is VectorUDT, but it may be overridden if FeaturesType is not Vector.

    Attributes
    protected
    Definition Classes
    PredictionModel
  21. final def get[T](param: Param[T]): Option[T]

    Optionally returns the user-supplied value of a param.

    Optionally returns the user-supplied value of a param.

    Definition Classes
    Params
  22. final def getBlockSize: Int

    Definition Classes
    HasBlockSize
  23. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native() @IntrinsicCandidate()
  24. final def getDefault[T](param: Param[T]): Option[T]

    Gets the default value of a parameter.

    Gets the default value of a parameter.

    Definition Classes
    Params
  25. final def getFeaturesCol: String

    Definition Classes
    HasFeaturesCol
  26. final def getInitialWeights: Vector

    Definition Classes
    MultilayerPerceptronParams
    Annotations
    @Since( "2.0.0" )
  27. final def getLabelCol: String

    Definition Classes
    HasLabelCol
  28. final def getLayers: Array[Int]

    Definition Classes
    MultilayerPerceptronParams
    Annotations
    @Since( "1.5.0" )
  29. final def getMaxIter: Int

    Definition Classes
    HasMaxIter
  30. final def getOrDefault[T](param: Param[T]): T

    Gets the value of a param in the embedded param map or its default value.

    Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.

    Definition Classes
    Params
  31. def getParam(paramName: String): Param[Any]

    Gets a param by its name.

    Gets a param by its name.

    Definition Classes
    Params
  32. final def getPredictionCol: String

    Definition Classes
    HasPredictionCol
  33. final def getProbabilityCol: String

    Definition Classes
    HasProbabilityCol
  34. final def getRawPredictionCol: String

    Definition Classes
    HasRawPredictionCol
  35. final def getSeed: Long

    Definition Classes
    HasSeed
  36. final def getSolver: String

    Definition Classes
    HasSolver
  37. final def getStepSize: Double

    Definition Classes
    HasStepSize
  38. def getThresholds: Array[Double]

    Definition Classes
    HasThresholds
  39. final def getTol: Double

    Definition Classes
    HasTol
  40. final def hasDefault[T](param: Param[T]): Boolean

    Tests whether the input param has a default value set.

    Tests whether the input param has a default value set.

    Definition Classes
    Params
  41. def hasParam(paramName: String): Boolean

    Tests whether this instance contains a param with a given name.

    Tests whether this instance contains a param with a given name.

    Definition Classes
    Params
  42. def hasParent: Boolean

    Indicates whether this Model has a corresponding parent.

    Indicates whether this Model has a corresponding parent.

    Definition Classes
    Model
  43. def hasSummary: Boolean

    Indicates whether a training summary exists for this model instance.

    Indicates whether a training summary exists for this model instance.

    Definition Classes
    HasTrainingSummary
    Annotations
    @Since( "3.0.0" )
  44. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native() @IntrinsicCandidate()
  45. final val initialWeights: Param[Vector]

    The initial weights of the model.

    The initial weights of the model.

    Definition Classes
    MultilayerPerceptronParams
    Annotations
    @Since( "2.0.0" )
  46. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  47. def initializeLogIfNecessary(isInterpreter: Boolean): Unit
    Attributes
    protected
    Definition Classes
    Logging
  48. final def isDefined(param: Param[_]): Boolean

    Checks whether a param is explicitly set or has a default value.

    Checks whether a param is explicitly set or has a default value.

    Definition Classes
    Params
  49. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  50. final def isSet(param: Param[_]): Boolean

    Checks whether a param is explicitly set.

    Checks whether a param is explicitly set.

    Definition Classes
    Params
  51. def isTraceEnabled(): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  52. final val labelCol: Param[String]

    Param for label column name.

    Param for label column name.

    Definition Classes
    HasLabelCol
  53. final val layers: IntArrayParam

    Layer sizes including input size and output size.

    Layer sizes including input size and output size.

    Definition Classes
    MultilayerPerceptronParams
    Annotations
    @Since( "1.5.0" )
  54. def log: Logger
    Attributes
    protected
    Definition Classes
    Logging
  55. def logDebug(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  56. def logDebug(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  57. def logError(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  58. def logError(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  59. def logInfo(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  60. def logInfo(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  61. def logName: String
    Attributes
    protected
    Definition Classes
    Logging
  62. def logTrace(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  63. def logTrace(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  64. def logWarning(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  65. def logWarning(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  66. final val maxIter: IntParam

    Param for maximum number of iterations (>= 0).

    Param for maximum number of iterations (>= 0).

    Definition Classes
    HasMaxIter
  67. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  68. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @IntrinsicCandidate()
  69. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @IntrinsicCandidate()
  70. def numClasses: Int

    Number of classes (values which the label can take).

    Number of classes (values which the label can take).

    Definition Classes
    MultilayerPerceptronClassificationModelClassificationModel
  71. lazy val numFeatures: Int

    Returns the number of features the model was trained on.

    Returns the number of features the model was trained on. If unknown, returns -1

    Definition Classes
    MultilayerPerceptronClassificationModelPredictionModel
    Annotations
    @Since( "1.6.0" )
  72. lazy val params: Array[Param[_]]

    Returns all params sorted by their names.

    Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.

    Definition Classes
    Params
    Note

    Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.

  73. var parent: Estimator[MultilayerPerceptronClassificationModel]

    The parent estimator that produced this model.

    The parent estimator that produced this model.

    Definition Classes
    Model
    Note

    For ensembles' component Models, this value can be null.

  74. def predict(features: Vector): Double

    Predict label for the given features.

    Predict label for the given features. This internal method is used to implement transform() and output predictionCol.

    Definition Classes
    MultilayerPerceptronClassificationModelClassificationModelPredictionModel
  75. def predictProbability(features: Vector): Vector

    Predict the probability of each class given the features.

    Predict the probability of each class given the features. These predictions are also called class conditional probabilities.

    This internal method is used to implement transform() and output probabilityCol.

    returns

    Estimated class conditional probabilities

    Definition Classes
    ProbabilisticClassificationModel
    Annotations
    @Since( "3.0.0" )
  76. def predictRaw(features: Vector): Vector

    Raw prediction for each possible label.

    Raw prediction for each possible label. The meaning of a "raw" prediction may vary between algorithms, but it intuitively gives a measure of confidence in each possible label (where larger = more confident). This internal method is used to implement transform() and output rawPredictionCol.

    returns

    vector where element i is the raw prediction for label i. This raw prediction may be any real number, where a larger value indicates greater confidence for that label.

    Definition Classes
    MultilayerPerceptronClassificationModelClassificationModel
    Annotations
    @Since( "3.0.0" )
  77. final val predictionCol: Param[String]

    Param for prediction column name.

    Param for prediction column name.

    Definition Classes
    HasPredictionCol
  78. def probability2prediction(probability: Vector): Double

    Given a vector of class conditional probabilities, select the predicted label.

    Given a vector of class conditional probabilities, select the predicted label. This supports thresholds which favor particular labels.

    returns

    predicted label

    Attributes
    protected
    Definition Classes
    ProbabilisticClassificationModel
  79. final val probabilityCol: Param[String]

    Param for Column name for predicted class conditional probabilities.

    Param for Column name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities.

    Definition Classes
    HasProbabilityCol
  80. def raw2prediction(rawPrediction: Vector): Double

    Given a vector of raw predictions, select the predicted label.

    Given a vector of raw predictions, select the predicted label. This may be overridden to support thresholds which favor particular labels.

    returns

    predicted label

    Attributes
    protected
    Definition Classes
    ProbabilisticClassificationModelClassificationModel
  81. def raw2probability(rawPrediction: Vector): Vector

    Non-in-place version of raw2probabilityInPlace()

    Non-in-place version of raw2probabilityInPlace()

    Attributes
    protected
    Definition Classes
    ProbabilisticClassificationModel
  82. def raw2probabilityInPlace(rawPrediction: Vector): Vector

    Estimate the probability of each class given the raw prediction, doing the computation in-place.

    Estimate the probability of each class given the raw prediction, doing the computation in-place. These predictions are also called class conditional probabilities.

    This internal method is used to implement transform() and output probabilityCol.

    returns

    Estimated class conditional probabilities (modified input vector)

    Attributes
    protected
    Definition Classes
    MultilayerPerceptronClassificationModelProbabilisticClassificationModel
  83. final val rawPredictionCol: Param[String]

    Param for raw prediction (a.k.a.

    Param for raw prediction (a.k.a. confidence) column name.

    Definition Classes
    HasRawPredictionCol
  84. def save(path: String): Unit

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  85. final val seed: LongParam

    Param for random seed.

    Param for random seed.

    Definition Classes
    HasSeed
  86. final def set(paramPair: ParamPair[_]): MultilayerPerceptronClassificationModel.this.type

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Attributes
    protected
    Definition Classes
    Params
  87. final def set(param: String, value: Any): MultilayerPerceptronClassificationModel.this.type

    Sets a parameter (by name) in the embedded param map.

    Sets a parameter (by name) in the embedded param map.

    Attributes
    protected
    Definition Classes
    Params
  88. final def set[T](param: Param[T], value: T): MultilayerPerceptronClassificationModel.this.type

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Definition Classes
    Params
  89. final def setDefault(paramPairs: ParamPair[_]*): MultilayerPerceptronClassificationModel.this.type

    Sets default values for a list of params.

    Sets default values for a list of params.

    Note: Java developers should use the single-parameter setDefault. Annotating this with varargs can cause compilation failures due to a Scala compiler bug. See SPARK-9268.

    paramPairs

    a list of param pairs that specify params and their default values to set respectively. Make sure that the params are initialized before this method gets called.

    Attributes
    protected
    Definition Classes
    Params
  90. final def setDefault[T](param: Param[T], value: T): MultilayerPerceptronClassificationModel.this.type

    Sets a default value for a param.

    Sets a default value for a param.

    param

    param to set the default value. Make sure that this param is initialized before this method gets called.

    value

    the default value

    Attributes
    protected[ml]
    Definition Classes
    Params
  91. def setFeaturesCol(value: String): MultilayerPerceptronClassificationModel

    Definition Classes
    PredictionModel
  92. def setParent(parent: Estimator[MultilayerPerceptronClassificationModel]): MultilayerPerceptronClassificationModel

    Sets the parent of this model (Java API).

    Sets the parent of this model (Java API).

    Definition Classes
    Model
  93. def setPredictionCol(value: String): MultilayerPerceptronClassificationModel

    Definition Classes
    PredictionModel
  94. def setProbabilityCol(value: String): MultilayerPerceptronClassificationModel

  95. def setRawPredictionCol(value: String): MultilayerPerceptronClassificationModel

    Definition Classes
    ClassificationModel
  96. def setThresholds(value: Array[Double]): MultilayerPerceptronClassificationModel

  97. final val solver: Param[String]

    The solver algorithm for optimization.

    The solver algorithm for optimization. Supported options: "gd" (minibatch gradient descent) or "l-bfgs". Default: "l-bfgs"

    Definition Classes
    MultilayerPerceptronParams → HasSolver
    Annotations
    @Since( "2.0.0" )
  98. val stepSize: DoubleParam

    Param for Step size to be used for each iteration of optimization (> 0).

    Param for Step size to be used for each iteration of optimization (> 0).

    Definition Classes
    HasStepSize
  99. def summary: MultilayerPerceptronClassificationTrainingSummary

    Gets summary of model on training set.

    Gets summary of model on training set. An exception is thrown if hasSummary is false.

    Definition Classes
    MultilayerPerceptronClassificationModel → HasTrainingSummary
    Annotations
    @Since( "3.1.0" )
  100. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  101. val thresholds: DoubleArrayParam

    Param for Thresholds in multi-class classification to adjust the probability of predicting each class.

    Param for Thresholds in multi-class classification to adjust the probability of predicting each class. Array must have length equal to the number of classes, with values > 0 excepting that at most one value may be 0. The class with largest value p/t is predicted, where p is the original probability of that class and t is the class's threshold.

    Definition Classes
    HasThresholds
  102. def toString(): String
    Definition Classes
    MultilayerPerceptronClassificationModelIdentifiable → AnyRef → Any
    Annotations
    @Since( "3.0.0" )
  103. final val tol: DoubleParam

    Param for the convergence tolerance for iterative algorithms (>= 0).

    Param for the convergence tolerance for iterative algorithms (>= 0).

    Definition Classes
    HasTol
  104. def transform(dataset: Dataset[_]): DataFrame

    Transforms dataset by reading from featuresCol, and appending new columns as specified by parameters:

    Transforms dataset by reading from featuresCol, and appending new columns as specified by parameters:

    dataset

    input dataset

    returns

    transformed dataset

    Definition Classes
    ProbabilisticClassificationModelClassificationModelPredictionModelTransformer
  105. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame

    Transforms the dataset with provided parameter map as additional parameters.

    Transforms the dataset with provided parameter map as additional parameters.

    dataset

    input dataset

    paramMap

    additional parameters, overwrite embedded params

    returns

    transformed dataset

    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  106. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame

    Transforms the dataset with optional parameters

    Transforms the dataset with optional parameters

    dataset

    input dataset

    firstParamPair

    the first param pair, overwrite embedded params

    otherParamPairs

    other param pairs, overwrite embedded params

    returns

    transformed dataset

    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  107. final def transformImpl(dataset: Dataset[_]): DataFrame
    Definition Classes
    ClassificationModelPredictionModel
  108. def transformSchema(schema: StructType): StructType

    Check transform validity and derive the output schema from the input schema.

    Check transform validity and derive the output schema from the input schema.

    We check validity for interactions between parameters during transformSchema and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled by Param.validate().

    Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.

    Definition Classes
    ProbabilisticClassificationModelClassificationModelPredictionModelPipelineStage
  109. def transformSchema(schema: StructType, logging: Boolean): StructType

    :: DeveloperApi ::

    :: DeveloperApi ::

    Derives the output schema from the input schema and parameters, optionally with logging.

    This should be optimistic. If it is unclear whether the schema will be valid, then it should be assumed valid until proven otherwise.

    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  110. val uid: String

    An immutable unique ID for the object and its derivatives.

    An immutable unique ID for the object and its derivatives.

    Definition Classes
    MultilayerPerceptronClassificationModelIdentifiable
    Annotations
    @Since( "1.5.0" )
  111. def validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructType

    Validates and transforms the input schema with the provided param map.

    Validates and transforms the input schema with the provided param map.

    schema

    input schema

    fitting

    whether this is in fitting

    featuresDataType

    SQL DataType for FeaturesType. E.g., VectorUDT for vector features.

    returns

    output schema

    Attributes
    protected
    Definition Classes
    ProbabilisticClassifierParams → ClassifierParams → PredictorParams
  112. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  113. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  114. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  115. val weights: Vector
    Annotations
    @Since( "2.0.0" )
  116. def write: MLWriter

    Returns an MLWriter instance for this ML instance.

    Returns an MLWriter instance for this ML instance.

    Definition Classes
    MultilayerPerceptronClassificationModelMLWritable
    Annotations
    @Since( "2.0.0" )

Deprecated Value Members

  1. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] ) @Deprecated
    Deprecated

Inherited from HasTrainingSummary[MultilayerPerceptronClassificationTrainingSummary]

Inherited from MLWritable

Inherited from MultilayerPerceptronParams

Inherited from HasBlockSize

Inherited from HasSolver

Inherited from HasStepSize

Inherited from HasTol

Inherited from HasMaxIter

Inherited from HasSeed

Inherited from ProbabilisticClassifierParams

Inherited from HasThresholds

Inherited from HasProbabilityCol

Inherited from ClassifierParams

Inherited from HasRawPredictionCol

Inherited from PredictorParams

Inherited from HasPredictionCol

Inherited from HasFeaturesCol

Inherited from HasLabelCol

Inherited from Transformer

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Parameters

A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

Members

Parameter setters

Parameter getters

(expert-only) Parameters

A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

(expert-only) Parameter getters